Enhanced stiffness modeling of manipulators with passive joints

A. Pashkevich, A. Klimchik, D. Chablat

Ecole des Mines de Nantes, 4 rue Alfred-Kastler, Nantes 44307, France
Institut de Recherches en Communications et en Cybernetique de Nantes, 1 rue de la Noe, 44321 Nantes, France

(Accepted to "Mechanism and Machine Theory 46 (2011) 662–679")

Web-Appendix


Previous page  |  Outline  |  Next page

 

A: Algorithms for stiffness modeling

 

A.1  Pseudocode for computing of equilibrium configuration for given end-effector location


Algorithm A1   
Computing of equilibrium configuration  and external loading for given end-effector location  (for serial chain)


INPUT:   end-effector location  
     
OUTPUT:   equilibrium configuration
    external loading
 
stiffness matrix
     
PARAMETERS:   maximum number of iterations
    compliance matrix of elements
    internal preloading
    calculation accuracy
    weighting coefficients
     
INTERNAL FUNCTIONS:   geometry function  

   Begin

(1) initialization


(a) set initial configuration

;     ;      from inverse kinematic for unloaded mode

(b) disturb configuration with random noise

,

(c) set loop variables


(2) main loop


       while  do

(a) compute Jacobians for configuration

(b) compute new configuration  and loading

(c) redefine loop variables 

(d) compute residuals

(e) verify termination condition

(I) if   then     

(II) if             then     

       end (2)

(3) check stability of equilibrium configuration


(a) if

then

(I) compute Hessians of function

(II) compute SVD for Jacobians

(III) extract  corresponding to zero elements of

(IV) verify stability condition

if        

then     message(“Static equilibrium is stable”)    

else     message(“Static equilibrium is unstable”)

(b) if               then     message(“Solution was not found”)

(4) Compute stiffness matrix


if      then

   End


 

A.2  Pseudocode for computing of equilibrium configuration for given external loading


Algorithm A2
Computing of equilibrium configuration for given external loading   (for parallel manipulator)


INPUT:
    external loading
  end-effector location  for unloaded mode  
   
OUTPUT:
  end-effector location  
  stiffness matrix
   
PARAMETERS:
  number of kinematic chains
  number of passive joints  in  chain
  number of virtual joints  in  chain
  stiffness matrix of elements  for  chain
  internal preloading  in  chain
  weighting coefficient
  calculation accuracy
  maximum number of iterations
   
INTERNAL VARIABLES:
  equilibrium configuration  for  chain
  loading  in  chain
  stiffness matrix  for  chain
   
INTERNAL FUNCTIONS:
  geometry function  for  chain
    potential function  for  chain

   Begin

(1) initialization


(a) set initial configuration for all chains

;    from inverse kinematic for unloaded mode, 

(b) set initial end-effector location

(c) set external loading for chains

(b) set loop variables

(2) compute stiffness matrices  for unloaded configurations


(a) compute Jacobian and Hessian matrices

(b) compute stiffness matrix

(3) main loop


       while  do

(a) recompute end-effector location corresponding loading  (using linearized model)

 

(b) compute equilibrium configurations  and loading  for end-effector loacation ,

          apply Algorithm A1
                     input:
                     output:

(c) compute residual and loop variable

(d) verify termination condition

(I) if    then    

(II) if              then    

       end (3)

(4) compute end-effector deflection


(5) compute stiffness matrix for parallel manipulator


   End

Previous page  |  Outline  |  Next page