Ecole des Mines de Nantes, 4 rue Alfred-Kastler, Nantes 44307, France
Institut de Recherches en Communications et en Cybernetique de Nantes, 1 rue de la Noe, 44321 Nantes, France
(Accepted to "Mechanism and Machine Theory 46 (2011) 662–679")
[1] J. Park, B. Kim, J. Song, H. Kim, Safe link mechanism based on nonlinear stiffness for collision safety. Mechanism and Machine Theory 43(10) (2008) 1332-1348.
[2] J. Angeles, F. Park, Performance Evaluation and Design Criteria, in: B. Siciliano, O. Khatib, (Eds.), Handbook of robotics, Springer, Berlin, 2008, pp. 229-243.
[3] A. De Luca, W. Book, Robots with Flexible Elements, in: B. Siciliano, O. Khatib, (Eds.), Handbook of robotics, Springer, Berlin, 2008, pp. 287-319.
[4] Sh. Y. Nof, (Ed.), Handbook of industrial robotics, John Wiley, New York, 1999.
[5] M A. Meggiolaro, S Dubowsky, C Mavroidis, Geometric and elastic error calibration of a high accuracy patient positioning system, Mechanism and Machine Theory 40 (2005) 415–427
[6] R. Filippini, S. Sen, A. Bicchi, Toward soft robots you can depend on, IEEE Robotics and Automation Magazine 15(3) (2008) 31-41.
[7] U. Scarfogliero, C. Stefanini, P. Dario, The use of compliant joints and elastic energy storage in bio-inspired legged robots, Mechanism and Machine Theory 44 (2009) 580–590.
[8] J.-P. Merlet, Analysis of Wire Elasticity for Wire-driven Parallel Robots, In: Proceedings of the Second European Conference on Mechanism Science (EUCOMES 08), Springer, 2008, pp. 471-478.
[9] B. H. Kang, J. T. Wen, N. G. Dagalakis, J. J. Gorman, Analysis and design of parallel mechanisms with flexure joints, IEEE Transactions on Robotics 21(6) (2005) 1179-1184.
[10] Y. K. Yong, T.Lu, Kinetostatic modeling of 3-RRR compliant micro-motion stages with flexure hinges, Mechanism and Machine Theory 44(6) (2009) 1156-1175.
[11] N. Lobontiu, E. Garcia, Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms, Computers and Structures 81 (2003) 2797–2810.
[12] S. Timoshenko, J. N. Goodier, Theory of elasticity, 3d ed., McGraw-Hill, New York, 1970
[13] K. D. Hjelmstad, Fundamentals of structural mechanics, Prentice-Hall, New York, 1997.
[14] J. Duffy, Statics and Kinematics with Applications to Robotics, Cambridge University Press, New York, 1996.
[15] B.-J. Yi, R.A. Freeman, Synthesis of actively adjustable springs by antagonistic redundant actuation, Journal of Dynamic Systems, Measurements and Control, 114 (1992) 454-461.
[16] B.-J. Yi, R.A. Freeman, Geometric analysis antagonistic stiffness redundantly actuated parallel mechanism, Journal of Robotic Systems 10(5) (1993) 581-603.
[17] Griffis, M., Duffy, J.: Global stiffness modeling of a class of simple compliant couplings. Mech. Mach. Theory 28(2), 207–224 (1993)
[18] Ciblak, N., Lipkin, H.: Asymmetric Cartesian stiffness for the modeling of compliant robotic systems. In: Proc. 23rd Biennial ASME Mechanisms Conference, Minneapolis, MN (1994)
[19] N. Ciblak, and H. Lipkin, Synthesis of stiffness by springs, In: Proceedings of DETC'98, 1998 ASME Design Engineering Technical Conferences, Atlanta, Georgia, 1998.
[20] T. Pigoski, M. Griffis, J. Duffy, Stiffness mappings employing different frames of reference. Mechanism and Machine Theory 33(6) (1998) 825–838.
[21] Howard, S., Zefran, M., Kumar, V.: On the 6 x 6 Cartesian stiffness matrix for three-dimensional motions. Mech. Mach. Theory 33(4), 389–408 (1998)
[22] J. Kövecses, J. Angeles, The stiffness matrix in elastically articulated rigid-body systems, Multibody System Dynamics 18(2) (2007) 169–184.
[23] N. Ciblak, H. Lipkin, Synthesis of Cartesian Stiffness for Robotic Applications, In: IEEE International Conference on Robotics and Automation (ICRA), Detroit, MI, 1999(3), pp. 2147–2152.
[24] S. Chen, I. Kao, Conservative Congruence Transformation for Joint and Cartesian Stiffness Matrices of Robotic Hands and Fingers, The International Journal of Robotics Research 19(9) (2000) 835–847.
[25] C. Huang, W. H. Hung, I. Kao, New Conservative Stiffness Mapping for the Stewart-Gough Platform, In: Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), Washington, 2002, pp. 823–828.
[26] G. Piras, W.L. Cleghorn, J.K. Mills, Dynamic finite-element analysis of a planar high-speed, high-precision parallel manipulator with flexible links, Mechanism and Machine Theory 40 (7) (2005) 849–862.
[27] X. Hu, R. Wang, F. Wu, D. Jin, X. Jia, J. Zhang, F. Cai, Sh. Zheng, Finite Element Analysis of a Six-Component Force Sensor for the Trans-Femoral Prosthesis, In: V.G. Duffy (Ed.), Digital Human Modeling, Springer-Verlag, Berlin Heidelberg, 2007, pp. 633–639.
[28] K. Nagai, Zh. Liu, A Systematic Approach to Stiffness Analysis of Parallel Mechanisms and its Comparison with FEM, In: Proceeding of SICE Annual Conference, Kagawa University, Japan, 2007, pp 1087-1094.
[29] C. Corradini, J.C. Fauroux, S. Krut, O. Company, Evaluation of a 4 degree of freedom parallel manipulator stiffness, In: Proceedings of the 11th World Cong. in Mechanism & Machine Science (IFTOMM’2004), Tianjin, China, 2004, pp. 1857-1861.
[30] B.C. Bouzgarrou, J.C. Fauroux, G. Gogu, Y. Heerah, Rigidity analysis of T3R1 parallel robot with uncoupled kinematics, In: Proceedings Of the35th International Symposium on Robotics, Paris, France, 2004.
[31] B.S. El-Khasawneh, P.M. Ferreira, Computation of stiffness and stiffness bounds for parallel link manipulators, International Journal of Machine Tools and Manufacture 39 (2) (1999) 321–342.
[32] C.S. Long, J.A. Snyman, A.A. Groenwold, Optimal structural design of a planar parallel platform for machining, Applied Mathematical Modelling 27 (8) (2003) 581–609.
[33] R. Rizk, J.C. Fauroux, M. Mumteanu, G. Gogu, A comparative stiffness analysis of a reconfigurable parallel machine with three or four degrees of mobility, Journal of Machine Engineering 6 (2) (2006) 45–55.
[34] D. Deblaise, X. Hernot, P.Maurine, A systematic analytical method for PKM stiffness matrix calculation, In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Orlando, Florida, 2006, pp. 4213-4219.
[35] H. C. Martin, Introduction to matrix methods of structural analysis, McGraw-Hill Education, 1966
[36] Y.W. Li, J.S. Wang, L.P. Wang (2002). Stiffness analysis of a Stewart platform-based parallel kinematic machine, In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Washington, US, 2002(4), pp. 3672–3677
[37] K. Nagai, Zh. Liu, A Systematic Approach to Stiffness Analysis of Parallel Mechanisms, In: IEEE International Conference on Robotics and Automation (ICRA), Pasadena, CA, USA, 2008, pp.1543-1548.
[38] M. Carricato, J. Duffy, V. Parenti-Castelli, Catastrophe analysis of a planar system with flexural pivots, Mechanism and Machine Theory 37 (2002) 693–716
[39] R. Hines, D. Marsh, J. Duffy, Catastrophe analysis of the planar two-spring mechanism, International Journal of Robotics Research 17 (1) (1998) 89–101.
[40] J. Salisbury, Active Stiffness Control of a Manipulator in Cartesian Coordinates, in: 19th IEEE Conference on Decision and Control, 1980, pp. 87–97.
[41] C. Gosselin, Stiffness mapping for parallel manipulators, IEEE Transactions on Robotics and Automation 6(3) (1990) 377–382.
[42] C.M. Gosselin, D. Zhang, Stiffness analysis of parallel mechanisms using a lumped model, International Jornal of Robotics and Automation 17 (2002) 17-27.
[43] A. Pashkevich, A. Klimchik; D. Chablat, Nonlinear effect in stiffness modeling of robotic manipulators, In: Proceedings of International Conference on Computer and Automation Technology (ICCAT 2009), Venice, Italy, 2009, World Academy of Science, Engineering and Technology 58 (2009) 168-173.
[44] F. Majou, C. Gosselin, P. Wenger, D. Chablat, Parametric stiffness analysis of the Orthoglide, Mechanism and Machine Theory 42 (2007) 296-311.
[45] M. Ceccarelli, G. Carbone, A stiffness analysis for CaPaMan (Cassino Parallel Manipulator), Mechanism and Machine Theory 37 (5) (2002) 427–439.
[46] O. Company, S. Krut, F. Pierrot, Modelling and preliminary design issues of a 4-axis parallel machine for heavy parts handling, Journal of Multibody Dynamics 216 (2002) 1–11.
[47] H.K. Arumugam, R.M. Voyles, S. Bapat, Stiffness analysis of a class of parallel mechanisms for micro-positioning applications, in: Proceedings of IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS), 2004, vol. 2, pp. 1826–1831.
[48] R. Vertechy, V. Parenti-Castelli, Static and stiffness analyses of a class of over-constrained parallel manipulators with legs of type US and UPS, in: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2007, pp. 561–567.
[49] A. Pashkevich, D. Chablat, Ph. Wenger, Stiffness analysis of overconstrained parallel manipulators, Mechanism and Machine Theory 44 (2009) 966-982.
[50] A. Pashkevich, A. Klimchik, D. Chablat, Ph. Wenger, Accuracy Improvement for Stiffness Modeling of Parallel Manipulators, In: Proceedings of 42nd CIRP Conference on Manufacturing Systems, Grenoble, France, 2009.
[51] A. Pashkevich, D. Chablat, P. Wenger, Stiffness analysis of 3-d.o.f. overconstrained translational parallel manipulators, In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Pasadena, CA, 2008, pp. 1562-1567
[52] D. Chablat, P. Wenger, Architecture Optimization of a 3-DOF Parallel Mechanism for Machining Applications, the Orthoglide, IEEE Transactions On Robotics and Automation 19(3) (2003) 403-410.
[53] C. Quennouelle, C. Gosselin, Stiffness Matrix of Compliant Parallel Mechanisms, In: Proceedings of the ASME Mechanisms and Robotics Conference, 2008.
[54] C. Quennouelle, C. M.Gosselin, Instantaneous Kinemato-Static Model of Planar Compliant Parallel Mechanisms, In: Proceedings of ASME International Design Engineering Technical Conferences, Brooklyn, NY, USA, 2008.
[55] C. Quennouelle, Modelisation geometrico-statique des mecanismes paralleles compliants, Ph.D. thesis, Universite Laval, Quebec, QC, Canada, 2009.
[56] J. S. Przemieniecki, Theory of Matrix Structural Analysis : McGraw-Hill 1968.
[57] G. Alici, B. Shirinzadeh, Enhanced stiffness modeling, identification and characterization for robot manipulators, Proceedings of IEEE Transactions on Robotics 21(4) (2005) 554–564.
[58] Sh.-F. Chen, I. Kao, Geometrical Approach to The Conservative Congruence Transformation (CCT) for Robotic Stiffness Control, In: Proceedings of the 2002 IEEE lntemational Conference on Robotics and Automation (ICRA) Washington, DC, 2002, pp 544-549.
[59] Y. Li 1, Sh.-F. Chen, and I. Kao, Stiffness Control and Transformation for Robotic Systems With Coordinate and Non-Coordinate Bases, In: Proceedings of the 2002 IEEE lntemational Conference on Robotics 8 Automation (ICRA), Washington, DC, 2002, pp 550-555.
[60] D. Chakarov, Study of passive compliance of parallel manipulators, Mechanism and Machine Theory 34 (1999) 373–389.
[61] D. Chakarov, Study of antagonistic stiffness of parallel manipulators with actuation redundancy, Mechanism and Machine Theory 39 (2004) 583–601.
[62] W. Wei, N. Simaan, Design of planar parallel robots with preloaded flexures for guaranteed backlash prevention, Journal of Mechanisms and Robotics 2(1) (2010) 10 pages.
[63] D. Zhang, F. Xi, C.M. Mechefske, S.Y.T. Lang, Analysis of parallel kinematic machine with kinetostatic modeling method, Robotics and Computer-Integrated Manufacturing 20 (2) (2004) 151–165.
[64] F. Xi, D. Zhang, Ch. M. Mechefske, Sh. Y. T. Lang, Global kinetostatic modelling of tripod-based parallel kinematic machine, Mechanism and Machine Theory 39 (2004) 357–377.
[65] D. Zhang, C.M. Gosselin, Kinetostatic modeling of parallel mechanisms with a passive constraining leg and revolute actuators, Mechanism and Machine Theory 37 (2002) 599–617.
[66] J.-P. Merlet, C. Gosselin, Parallel mechanisms and robots, In B. Siciliano, O. Khatib, (Eds.), Handbook of robotics, Springer, Berlin, 2008, pp. 269-285.
[67] Y. Li, Q. Xu, Stiffness analysis for a 3-PUU parallel kinematic machine, Mechanism and Machine Theory 43(2) (2008) 186-200.
[68] R. Clavel, DELTA, a fast robot with parallel geometry, In: Proceedings of the 18th International Symposium of Robotic Manipulators, 1988, IFR Publication, pp. 91–100.
[69] J.-P. Merlet, Parallel Robots, Kluwer Academic Publishers, Dordrecht, 2006.
[70] A. Pashkevich, A. Klimchik, D. Chablat, Ph. Wenger, Stiffness analysis of multichain parallel robotic systems with loading, Journal of Automation, Mobile Robotics & Intelligent Systems 3(3) (2009) 75-82
[71] J. Angeles, Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms, Springer, New York, 2007.
[72] G. Strang, Introduction to Linear Algebra, Wellesley, MA, Wellesley Cambridge Press, 1998.
[73] F. Gantmacher, Theory of matrices, AMS Chelsea publishing, 1959
[74] Web-appendix, http://www.emn.fr/z-auto/apashkevich/WebApp_Buckling.html
[75] A. Pashkevich, P. Wenger, D. Chablat, Design Strategies for the Geometric Synthesis of Orthoglide-type Mechanisms, Mechanism and Machine Theory 40(8) (2005) 907-930
[76] C. Quennouelle, C. M. Gosselin, Stiffness Matrix of Compliant Parallel Mechanisms, In: Springer Advances in Robot Kinematics: Analysis and Design, 2008, pp. 331-341.