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Abstract

Due to the fast development of Internet services and the huge amount of network traffic, it is
becoming an essential issue to reduce its user-perceived latency. Although Web performance is
improved by caching, cache can provide more benefit than nowadays: prefetching reduces user
access time, at the expense of increasing traffic. Performance measurement of prefetching tech-
niques are made primarily in terms of hit ratio and bandwidth usage. A significant performance
factor for a prefetching algorithm in its ability to reduce latency is deciding which objects to
prefetch in advance. Nevertheless, to achieve the best performance, the prefetching policy must
match user access patterns and Web server characteristics. This implies that new prefetching
policies must be loaded dynamically as needs change.

Recent Web caches are large C++ programs, and thus adding a single prefetching policy to an
existing Web cache is a daunting task. Providing multiple policies is even more complex. The
essential problem is that prefetching concerns crosscut the cache structure. Aspect-Oriented
Programming (AOP) is a natural technique to address this issue. Actually, µDyner, a Dynamic
Weaver on native code address to provide dynamic weaving of aspects targeted toward C appli-
cations. It provides lower overhead for aspect invocation than other dynamic approaches, thus
meeting the performance needs of Web caches [22]. But, the unique main language supported
by µDyner is the C language.

The main goal of this dissertation is to realize a study on a dynamic weaving mechanism for the
C++ language and upgrade µDyner to support this new feature.

Keyword: Aspect-Oriented Programming, AOP, dynamic weaving, C++, prefetching, Web
caches
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Chapter 1

Introduction

Web traffic now accounts for most of the Internet traffic. Caching is one way to decrease the
amount of traffic: caches move documents close clients that need them. Thus, caches reduce the
number of server requests. Unfortunately, recent results suggest that the maximum achievable
cache hit rate is close to 40% to 50% [15]. Regardless of the caching scheme in use, one out of
two documents cannot be found in the cache.

One way to increase the caching hit ratio is to anticipate future documents requests and preload
or prefetch these documents in the cache. Prefetching transfers Web contents in the cache before
they have been requested in the hope that they will be accessed into near future. An appropriate
prefetching scheme can thus potentially decrease the latency experienced by users [18]. In order
to balance the reduction of the latency experienced by users against the additional traffic on
the network, prefetching strategies need to be tailored to user access pattern and to Web server
characteristics. To support the use of such policies, a Web cache must be able to load or unload
the new policies on demand.

Many Web caches, such as Squid [24], are implemented using static module architecture, fixed at
compile time. The common approach to extend such architecture relays on loading a new module
implementing a new functionality. Unfortunately, prefetching policies crosscut the cache struc-
ture [22]: module loading is this in adequate. Aspect-Oriented Programming (AOP) appears as
the most appropriate solution.

There is already one AOP system: µDyner targeting the adaptation needs of Web caches.
µDyner is an Aspect-Oriented Programming system for writing and dynamically deploying as-
pects in running C programs without program interruption. But future versions of the most
commonly used Web caches - Squid will be written in C++.

Despite the fact that C++ is a superset of C, C and C++ are very different languages. The
differences range from the source level up to the binary level. The goal of this dissertation is to

1



2 CHAPTER 1. INTRODUCTION

explore, if a tool similar to µDyner for C can be devised for C++.

In other words, the aim of this dissertation is twofold. Its first purpose is to determine if the
weaving techniques used in µDyner are appropriate for C++. Its second purpose is to discuss
an aspect language for C++.

The rest of this dissertation is structured as follows:

• Chapter Two explains the motivation of this dissertation. It points out the crosscutting
nature of prefetching policies. Considering different algorithms of prefetching policies, this
chapter analyzes how those algorithms crosscut the typical web cache - Squid.

• Chapter Three describes the different aspects systems available. It concludes that no
aspect system provides dynamic weaving for C++.

• Chapter Four illustrates the solution we propose. It studies how binary rewriting tech-
niques can be applied to C++ to build an aspect system.

• Chapter Five describes our implementation.

• Chapter Six summarizes and concludes before describing some future work.



Chapter 2

Motivation

This dissertation is motivated by the need to integrate prefetching policies on the fly in a Web
cache. This chapter firstly details what is a Web cache and presents the structure of the most
commonly used Web cache: Squid. Then this chapter continues with a description of prefetching
before showing why prefetching is a crosscutting concerns of Web cache.

2.1 Web Caches

Internet is becoming de facto standard to disseminate scientific, commercial and personal in-
formation. The Web consists of individual pages linked to or from other pages through Hyper
Text Markup Language (HTML) constructs. Although there are different protocols, HTML over
HTTP amounts to 80% [8] of the Web traffic. The Web offer us a quick access to tremendous
variety of information from anyplace in the world. We have all experienced that there is a delay
between moment when we request a Web object and the moment when the browser starts to load
the object on server. Such too high latency discourages us using the Web. In fact, reducing this
latency is an essential problem both for the content provider and the Internet Service Provider
(ISP) to attract and keep customers. Web caches are a low cost software solution. That can
reduce the network traffic and the server workload.

Basically, a cache is a kind of software that stores commonly accessed data elements on disks. A
Web cache acts as an intermediary between users and Web servers. Upon reception of a request,
if a local copy of the requested document is available, the Web cache will return this copy to
the user. Otherwise, it will relay the request to the Web server. The cache will keep a copy of
the newly downloaded document and send it to the user. A number of analytical and empirical
studies have already established the effectiveness of this approach [4, 5, 11, 25]. To further
increase efficiency, a Web cache can share its local space with others caches. This approach is
known as cooperative caching.

3



4 CHAPTER 2. MOTIVATION

Figure 2.1: Typical structure of a Web cache

2.1.1 Typical structure of a Web cache

Typical Web caches are structured into modules, each one implementing a different concern.
Figure 2.1 presents the structure of the most widely used web cache: Squid, an open-source Web
cache developed by the National Laboratory for Applied Network Research and the members
of the Web community [24]. The main Squid software functionalities are split in different
modules. As illustrated in Figure 2.1, these modules realize three basic tasks: user request
management, interaction with the neighbors and local storage management. To process a user
request, the cache accepts and parses the request (1 and 2), searches the document in the local
storage (3 and 4), and possibly forwards the request to the Web server (6) or to the neighbors
it is cooperating with (7). If a new document is obtained, it is saved to the local storage (4),
which may require the activation of the replacement policy (10) to free some space. Finally, the
document is sent to the user (8). Upon reception of a cooperation request from another cache
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in the neighborhood, the local cache checks whether the requested document is locally available
(3 and 4), and answers with either an error message or the requested document (9).

2.2 Prefetching

Only 22% of the resources are accessed more than once on the Web [18]. Hopefully, these 22%
accounts for 50% of the requests. One way to further increase the cache hit ratio is to anticipate
future requests and prefetch these objects into a local cache [26]. Studies of traces have shown
that [14]:

• Caching at the proxy side alone could reduce latency by at best 26%

• Prefetching at the proxy side could reduce latency by at best 57%

• Prefetching and caching at the proxy side could lead to a maximal 60% reduction of the
perceived latency

When making good predictions about future requests, the cache receives pages that are highly
likely to be accessed soon. Thus, the performance of the cache is improved and this in turn
has a direct effect in reducing the delays perceived by users [18]. In the future, it is likely
that prefetching could not be ignored on the Web as microprocessor or file system designers can
already not ignore it. Today, however, most Web caches do not support prefetching and HTTP
provides no support for it.

2.3 Caching/Prefetching Architecture

The prefetching policies can use different kind of input such global access statistics as (1) esti-
mation of object reference frequencies and (2) estimation of object lifetimes. These estimations
can be well maintained by servers. Servers can collect user access statistics and publish infor-
mation of objects popularity along with patterns of usage. They can also send prefetching hints
to cache.

2.3.1 Dynamical integration at the binary level

Best performance will only be reached if the cache employs an appropriate prefetching policy.
But a cache cannot predict by which client application it will be contacted. For example, it
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does not know if the HTML traffic will be mostly generated by browsers or robots like wget.
Additionally, a cache does not know in advance with which server it will interact. Thus, the
cache cannot choose at compile time the correct prefetching policy because it does not know
which policy will be the most appropriate. That’s why the integration has to be dynamic.
Previous work [17] has shown the difficulty to integrate a new feature in Squid. For example,
the replacement of Squid cooperation protocol - protocol already localized into two modules
(roughly 10% of the code) - required in practice the alteration of seven modules representing
roughly 40% of the code [16]. Moreover stopping the cache during the integration is not possible
because the integration of a new policy must be done without losing the cache content. It must
be done through code downloaded from servers and clients and executed in the cache. Therefore,
Aspect-Orientation has been proposed as integration technology. The approach requires to be
able to weave dynamically on the native code of a running processes.

2.4 Prefetching Policies

A prefetching policy is the combination of two algorithms: a prediction algorithm and a threshold
algorithm. The prediction algorithm is responsible of producing a list of Web objects that are
likely to be requested soon. Typical prediction algorithms use the user/server access history.
The threshold algorithm is in charge of determining the number of documents to prefetch within
this list depending on the resources available. For example, if the network link between the cache
and a given server is very fast, then it makes little sense of prefetching the contents of that server:
it will be better to prefetch pages from slower servers.

In this section we describe different algorithms. While looking for threshold algorithms, it
appears that only the Jiang’s [12] threshold algorithm has been published. The other imple-
mentations are all using a fixed hard coded threshold. Therefore this section mostly describes
the principles behind different prediction algorithms.

2.4.1 Threshold Algorithm

The threshold algorithm computes the prefetch threshold for each server, which is the number of
document to prefetch for each server. This threshold embodies a trade-off between bandwidth
usage and latency. Zhimei Jiang [12] proposes to prefetch documents only if their access
probabilities is superior to a computed threshold. They proposed the following formula as an
upper bound estimation of the threshold:

H = 1−
(1− ρ)

αT

αB

(1− ρ)2b +
αT

αB
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Where:
αT dollars per time unit;
αB dollars per packet;
ρ = λ ∗ x is the system load;
λ is the arrival rate of user request without prefetching;
x is the time unit;
b is the system file capacity

For fixed b and
αT

αB

, as ρ increase, the over all trend of the prefetch threshold increase as well,

which means that fewer files should be prefetched. But Zhimei Jiang [12] found that if the

increase of thredhold is not monotonic for small values of
αT

αB

, the load is low, prefetching does

not save much time. As the load increase, it takes longer to transmit a file and prefetching can
save more time, therefore the threshold decreases.

2.4.2 Prefetching by Partial Match

Prediction by Partial Match (PPM) tries to capture recurring access patterns [18]. The al-
gorithm is based on calculating and comparing the probabilities of some requests occurring in
the future. These probabilities are derived from the number of times each Web object has been
accessed. These are some variations of this algorithm: Selecting requests from the highest pos-
sible order only; combining predictions from several orders; assigning different levels of trust to
various request orders; Choosing up to k requests to prefetch, where 1 ≤ k ≤ kmax.

Kroeger and Long [14] present an implementation of delta-compression techniques, based on
Prediction by Partial Match (PPM). Through this implementation, the prediction of the future’s
request is decided by previous accesses k. By the trace-driven simulation, cache-hits increase
averagely 25% than a non-prefetching and 4MB predictive cache could get higher hit rate than
a 90MB cache with LRU. The major drawback is this algorithm’s memory requirement.

Li Fan’s [7] results show that prefetching combined with cache and delta-compression can reduce
user-perceived latency up to 23.4%. The reduction is achieved using the Prediction by Partial
Matching (PPM) algorithm, with an accuracy ranging from 40% up to 73% and generating 1%
to 15% extra traffic on the modem links. A perfect predictor can increase the latency reduction
to 28.5%, whereas without prefetching, large browser cache and delta-compression can only
reduce latency by 14.4%. PPM can be configured to meet the desired properties.

PPM is especially appropriate for users carrying out a single type of activity and thus having
very stable access patterns.
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2.4.3 Prefetching by popularity

In 1998, Markatos et al. proposed a top ten approach for prefetching [26]. This idea is to
keep the top ten popular documents for each web server. Later on clients or proxy servers can
prefetch these documents. Their result shows that this approach can anticipate more than 40%
of client requests and achieves hit ratio close to a 60% at the cost of increasing network traffic
by no more than 10% in most cases.

2.4.4 Prefetching by lifetime

The lifetime of an object is the interval between two consecutive modifications of object [26]. The
longer mean lifetime an object has, the less frequently it changes. The bandwidth cost to update
stale objects hence decreases. If we select N objects with the longest lifetime to replicate in the
local cache, we can envision the least network traffic usage. That is, this prefetching policy is to
prefetch the most time-consuming N object into the cache. Of course, this prefetching policies
is efficient when the Web objects having the largest lifetime as popular as well.

2.4.5 Prefetching by Good-Fetch

The goal of this algorithm proposed by Venkatatramani [26] is to balance object access frequency
and object update frequency. Prefetching has the disadvantage that the prefetched objects may
not end up being used or being used before it gets stale. If an object can ends up being referenced
before it goes stale, it is considered as a good fetch. It only prefetches objects whose probability
of being accessed before being modified is above a given value. As for the object i, its lifetime
is li; its probability of being accessed is pi; and user request arrival rate denoting how many
requests arrive per second is a. Then the probability of object i to be accessed before it dies is:

PgoodFetch = 1− (1− pi)
a∗li

In this approach, a∗li is the number of requests arriving during the lifetime of object i, (1−pi)
a∗li

represents the probability that none of requests arriving during the lifetime of object i. Thus,
1− (1− pi)

a∗li denotes the probability of object i to be accessed before it dies. This algorithm
is interesting when the Web objects being accessed are changing frequently.

2.4.6 Prefetching by APL

As above, for object i, Ying [26] assumed that the object’s lifetime is li, pi for the probability of
being access, with user request arrival rate is a. Then, a ∗ pi is the user request rate for object
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i, and a ∗ pi ∗ li represents the number of requests for object i that arrive before it dies. Now
we discuss about the object popularity - a ∗ pi ∗ li. When n > 1, this algorithm becomes closer
to Prefetching by Popularity, that is, higher bandwidth is used to improve the response time. If
n < 1, this algorithm is closer to Prefetching by Lifetime. Thus it reduces network bandwidth
usage.

The threshold-based algorithm prefetching by APL algorithm can successful balance networks

resource cost and response time reduction. Using the
Hk

B
ratio (k = 5) to measure the per-

formance, this prefetching performance is considered good. (
Hk

B
=

(
Hitprefetching

Hitdemand

)k

BWprefetching

BWdemand

, where

Hitprefetching

Hitdemand

is the hit ratio improvement of prefetching over demand caching, where
BWprefetching

BWdemand
is network bandwidth increase over demand caching, where k is the power of hit ratio improve-
ment). It is appropriate for cache experiencing high variations in the congestion of the network:
the algorithm can balance the resource consumption.

2.5 Integrating Prefetching in Web caches

Many web caches, such as Squid, are implemented using a module-based architecture. A natural
strategy to extend a module-based system with a new functionality is to implement this func-
tionality as a new module [22]. Unfortunately, in the case of prefetching policy downloaded from
the clients or from the servers, the problem becomes even more acute: the code implementing
the policy needs to use some internals of the cache. These internals are: checking if an object is
in cache; sending a request to a server and storing an object in cache [16]. There are internals
because a cache does not normally offers these features separately to its clients. While these
features are available in any cache, the protocol to invoke them is therefore specific to a given
implementation. Web browsers cannot anticipate the caches that they will be encountered. A
protocol needed to integrate prefetching in a cache requires pervasive modifications. In terms of
source code, different modifications are required in many places: prefetching is a cross cutting
concern. Thus, a prefetching module would have to redundantly implement in many basic cache
operations.

2.5.1 Prediction by partial match

Prediction by Partial Match (PPM) depends on calculating and comparing the probabilities of
some events occurring next. For the different process, they can be classified in the following
categories [18]: client-base, server-based and combined client and server.
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Regarding as Combined client and server PPM, which combines client and server knowledge in
order to make more accurate predictions, the prefetching policy selects the documents to prefetch
based on the contained information of the user, which decides that the user should initialize the
information of the new document. This characteristic decides that the new document can be
initialized in the Accept User request Module in the Figure 2.1. Prefetching should also be
initialized when there is an incoming request for a document that is found in the cache. That
is, the Send User Reply modular in Figure 2.1 interacts with roiling the modular interface.

In addition, although Themistoklis Palpanas et al. [18] use the replacement policy in Lowest
Relative Value (LRV), popularly uses the LRU replacement, which depends on document’s
probability to choose the documents to remove from the cache. Because the basic assumption
of a prefetching policy is that prefetched documents will be used shortly after the requested
document, the access time associated with a prefetched document should be based on the access
time of the reused document, and not on the access time of the prefetched document itself.
The shorter access time is higher probability. Thus, the Local storage module in Figure 2.1
must be adapted with an aspect that identifies new prefetched documents and sets their access
times accordingly. The File Lookup module in Figure 2.1 must similarly be adapted with an
aspect that updates the probability of the associated prefetched documents when a requested
document is reaccessed from the cache. Finally, the replacement policy itself should be adapted
with an aspect that removes the associated prefetched documents when the requested document
is removed from the cache.

2.5.2 Prefetching by popularity

The popularity algorithm keeps the N most popular objects in the cache and updates them
immediately whenever these objects are modified. The Prefetching by Popularity policy is also
based on the contained popularity information of the document. This character decides that
the new document only can be initialized after the Network Module in the Figure 2.1. It will
interact the Send ICP request module and Send Internet request module, at which modules the
contents of the document have been sent. Prefetching should also be initialized when there is
an incoming request for a document that is found in the cache. That is, the Send User Reply
modular in Figure 2.1 interacts with roiling the modular interface.

Concerning the replacement policy, a LRU replacement depends on document’s popularity to
choose the documents to remove from the cache. As more frequently request, the access time
is shorter. The same as 2.5.1, the Local storage modular in Figure 1 must be adapted with an
aspect that identifies new prefetched documents and sets their popularities accordingly. The
File Lookup module and the replacement policy are the same to 2.5.1.
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2.5.3 Prefetching by lifetime

The Lifetime of an object is the interval between two consecutive modifications of object. With
the same analysis method to the 2.5.1, the Prefetching by Lifetime policy is based on the
contained Lifetime information of the document. And with this character, the new document
also only can be initialised after the Network Module in the Figure 2.1. For the same reason like
2.5.1, the prefetching should only be activated by the user’s request, instead of the neighbor’s
or prefetching’s request.

When it comes to the Reply for a document that is found in the cache, the Prefetching should
also be initialized. That is the same to 2.5.1, the Send User Reply modular in Figure 2.1 interacts
with roiling the modular interface. With the same condition, this prefetching policy should only
be applied by the user request.

Moreover, the replacement policy, a LRU replacement depends on document access time to
choose the documents to remove from the cache. In this case, the Local storage modular in
Figure 2.1 must be adapted with an aspect that identifies new prefetched documents and sets
their access times. The File Lookup module in Figure 2.1 must similarly be adapted with an
aspect that updates the lifetime. Finally, the replacement policy modular in Figure 2.1 must be
adapted with an aspect that removes the associated prefetched documents when the requested
document is removed from the cache, this function is the same to 2.5.1.

2.5.4 Conclusion

The crosscutting nature of prefetching policies suggests that such policies should be implemented
using aspect oriented programming (AOP). Actually the wide range of prefetching policies makes
it very difficult, not to say impossible, to design an interface provided by the cache allowing
their integration. This is not a desirable feature as such an interface would be likely to reduce
the cache efficiency. Instead, it would be better to alter the control flow and data flow of the
cache on demand in order to integrate the prefetching policy. Nevertheless, web caches possess
specific characteristics that motivate the need for a specific AOP infrastructure, providing the
following features [22]:

Dynamic weaving and deweaving of aspects Policies running within a cache must change
over time to cope with the characteristics of accessed servers.

Continuous servicing Loading or unloading a new policy must be done without losing the
cache content. Additionally, service unavailability must be short enough to be masked by
TCP/IP retransmission mechanisms.

Aspects for C++ programs Prefetching must be integrated within real Web caches such as
Squid 3.0 that are written in C++.
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Efficiency Policy execution must be as fast as possible to avoid degrading cache performance,
both in terms of latency and bandwidth.

2.6 Summary

Prefetching and Caching are common techniques used in I/O systems to reduce latency. A Web
cache acts as a relay between users and Web servers. It has three goals: reducing the user’s
latency, decreasing the consumed bandwidth and reducing the workload on the Web Server.
But Web caches’ benefit has limited by the rapid changes of objects in the Web. A solution
is to anticipate future requests and prefetch the document in the cache [26]. Prefetching is
complementary to the cache mechanism.

A prefetching policy results of the combination of two algorithm: a prediction algorithm and
a threshold algorithm. The prediction algorithm is responsible of producing a list of the Web
objects that are likely to be requested soon. Typical prediction algorithm use the user/server
access history. The threshold algorithm is in charge of determining the number of Web objects
to prefetch within this list depending on the resource available. Prefetching can be understood
as a concern in Web caches. The bad news is that prefetching appears as a crosscutting concern
with regards to typical Web cache structure. We believe that therefore Aspect-Orientation can
help to implement prefetching within Web cache.



Chapter 3

State of the Art

Computer science evolved from assembly code to procedural programming, structured program-
ming, functional programming and logic programming. Each step has improved the programmer
ability to achieve a clear separation of concerns.

Currently, OOP (Object-Oriented Programming)is the most common programming paradigm.
With OOP once builds software systems by decomposing a problem into objects. Objects
abstract behavior and data into a single conceptional entity. Object-Orientation is reflected in
the entire spectrum of current software development methodologies and tools. Nevertheless it
has some limits: there are still concerns that fail to be separated clearly.

Aspect-Oriented Programming (AOP), is based on the idea that software systems would be
better programmed by separately specifying the various concerns their relationship; then relying
on mechanisms in the underlying AOP environment compose - weave - them together to build
a program. AOP emerges as a new direction for software engineering. In this chapter, we
first present the key concepts of AOP. The next section in this chapter levearages on this
understanding of AOP key concepts to discuss how some programming languages have been
extended with AOP constructs. This chapter concludes that there is no AOP extension allowing
aspects to be woven on the fly in a C++ application.

3.1 Introduction to Aspect Oriented Programming

Thirty years ago, D. L. Parnas [19] already stated the importance of separation of concerns.
Concern refers to the parts of software that are relevant to a particular concept, goal, or purpose.
Separation of Concerns (SoC) refers to the ability to identify, encapsulate, and manipulate those
concerns from the tangling codes. According to Kiczales et al. [9], a concern in an application
should either appear in the source code as:

13
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• A component if it is cleanly encapsulated in building block of the programming language.

• An aspect if it cannot be cleanly encapsulated in any construct of the programming lan-
guage. Aspects are properties that crosscut components and tend to affect component
performance and semantics.

Separation of concerns motivates AOP. In this section, we first describe this principle and its
relationship to AOP. Then we will present the key concepts of AOP.

3.1.1 The separation of concerns principle

In a concrete complex system, there are a lot of concerns hidden in the implementation. These
concerns can be divided into functional concerns and non-functional concerns. The former, func-
tional concerns are circumscribed to the application domain. The typically functional concern
deals with some basic functionality of the application domain. Non-functional concerns are not
specific to the application domain and relates to housekeeping tasks. Typical non-functional
concerns are dealing with real-time, persistence, distribution.

An Example - Logging Concern

Kiczales et al. [9] illustrates their approach with a bank system: a functional module, which
copes with the business logic. It allows opening or closing an account, and withdrawing or
depositing money. These tasks belong to the business logics of the bank system, so this module
realizes a functional concern. A canonical example of a function concern is logging.

For the sake of security, the bank system has to record each manipulation on this system. In
other words, a history of all the transactions has to be kept. Therefore, the logging concern
takes place everywhere: in withdrawing, in depositing money by client and even for opening a
new account.

With traditional programming paradigms, there is no way to clearly isolate the logging concern.
It is mixed with the code of functional concerns. Therefore, all modules functions or methods
involved in the different tasks (withdrawing, depositing or opening a new account) will contain
at least a piece of code dealing with logging.

Crosscutting Concerns

When a modularized unit contains pieces of code dealing with different concerns, we say the
code is tangled. If the code implementing a certain concern is contained in more than one
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modularized unit, That is scattered code. Tangled scattered codes are typical issues of traditional
paradigms. They are revealing the necessity of a better mechanism enabling to separate different
concerns. crosscutting concern is the one is scattered and tangled with the codes of other
concerns. Crosscut is named from cutting across the several objects or methods.

3.1.2 Key concepts of AOP

Many AOP systems have been realized. But almost all of them share a common set of concepts.
The most common structure used by AOP system is built on three concepts.

• The base program implements the logic of the application. concretely it implements
all the concerns of the application that the preexisting language allow to separate cleanly.
Thus the base program can be implemented using a traditional programming, non aspect-
oriented paradigm.

• Aspects are implementing crosscutting concerns. These concerns cannot easily separated
in the preexisting language. Aspects are isolating what would otherwise result in tangled
or scattered code. They enable a better composition and reuse of the different concerns
involved in the application.

• The Weaver: a mechanism is needed to compose the code of the non crosscutting concerns
expressed in a traditional language with the crosscutting concerns. This composition
named weaving is realized by a tool called weaver.

With aspect-orientation, the base program remains the same as in traditional programs but
crosscutting concerns are implemented with aspects. In order to model and abstract crosscutting
concerns, the aspect language should allow programmers to express how aspects should be
composed with the base program. This mechanism relies in the following three elements.

• A joinpoint is a point in the base program that can be modified by an aspect. Joinpoints
are well-defined points in a program’s execution. It is a location in the base program
where the control flow can be transferred to the aspect. Candidate joinpoints, for example,
include calls to a method, a conditional check, a loop’s beginning, or an assignment.

• A pointcut is a description of the execution contexts in which an aspect should be
activated. Pointcuts are used to design joinpoints. Poincuts allows a programmer to
specify where an aspect should be executed. They are expressed in a dedicated formalism:
the pointcut language. They act as filters for the different joinpoints.

• An advice is the code implementing the functionality provided by an aspect. Joinpoint
and pointcut define where and when control should be transferred to an aspect. Advices
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are used to define the aspect behavior once it is executed. In other words, advices contain
the code that will be run at the joinpoints designed by the pointcut. Additionally, advice
should be able to retrieve information from the base program. This kind of special func-
tionality should be supported by the AOP system. Generally speaking, the advice can be
implemented in the same language that the base program. However, another implemen-
tation language can be used.

3.2 Implementation of AOP: An Overview

The main goal of an AOP system is to ensure that aspect and non-aspect code run together in a
properly coordinated fashion. This coordination process is initialize at weaving time. It makes
sure that the appropriate advices are run at the appropriate join points. This section discusses
how to achieve weaving.

A given program P can always be viewed as a sequence of statements aimed at produce some
result R. This result R is obtained through the execution of the program P. This execution is
done by some platform (hardware, operating system, virtual machines etc.) that interprets the
program’s sequence of statements. Thus, any result R of a computation depends on both a
program P and an interpreter I. A different result may be obtained by changing, at least, one
of the elements of the couple < P, I >.

Bouraqadi-Saadani and Thomas Ledoux [3] propose to consider the set of the application
components as a unique entity, which is a program P0 written for some I0. This couple < P0,I0 >
produces some result R0. Aspects affect application execution to produce R1. This new result
can be obtained by changing, at least, one of the elements of the couple < P0,I0 >. The change
is either a transformation of the program P0, or a transformation of the interpreter I0, or both
transformations. These transformations allow to describe the whole set of possible approaches
to implement a weaver.

3.2.1 Weaving through program transformation

This approach consists to transform only the program P0. The interpreter I0 is kept unchanged.
A new program P1 is built from both the application aspects and the program P0. Each aspect
is a set of transformation rules that refer to some join points. Aspect weaving consists to apply
these transformation rules to the initial program P0. This offers the advantage of leaving the
interpreter I0 untouched. This is especially interesting if the interpreter is not made in software
but in silicium.

To use the pseudo-code program P0 as an example
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class A {

void foo(){

//some commands

}

void bar() {

//some commands

}

}

Then, if one wants to log in some file all invocations of foo() method, this logging can be an
aspect to the joinpoint ”invocation of the foo() method”. Using the transformation rule, one
can insert a log statement at the beginning of the foo() method:

Aspect Log{

Insert ’logFile.write(currentDate)’ in method foo();

}

To insert the log aspect in original program P0 by aspect weaving. After weaving, the new
program P1 may look like:

class A{

void foo(){

LogFile.write(currentDate);

//some commands

}

void bar(){

//some commands

}

}

3.2.2 Weaving through interpreter transformation

An alternative approach is to transform only the interpreter I0 instead of P0. A new interpreter
I1 is built from both the application aspects and the interpreter I0. As a result, the interpretation
P0 is changed to take into account the different aspects.

Class Interpreter {

Object invoke (Method m, Object[] args, Object receiver){
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//invoke Method m with arguments args on receiver

}

Object read (Field f, Object receiver){

//return value of field f in receiver

}

}

Then, one can define a log aspect as follows to log all method invocations in the original program
P0,

Aspect Log{

Insert ’if(m.name==foo()) logFile.write(currentDate)’

in the method Interpreter::invoke()

}

This aspect refers to the same joinpoint ”invocation of the foo() method” in a different way -
by interpreter’s transformation. Then the new interpreter I1 might look like:

Class Interpreter {

Object invoke (Method m, Object[] args, Object receiver){

If(m.name=="foo") logFile.write(currentDate)

//invoke Method m with arguments args on receiver

}

Object read (Field f, Object receiver){

//return value of field f in receiver

}

}

The rest of this section reviews the different aspect systems that have been devised. As it can
be seen from table 3.1, most systems extends a language, usually Java. Because our prfetching
policies should be deployed on demand we pay a particular attention to the weaving time. The
composition of the aspects and the base program at weaving time, can be done on demand, that
is dynamically at runtime or statically at compile time.

3.2.3 Static weaving

Static weaving [6] is usually achieved by modifying the the source code of a class to aspect
specific statements at join points. In other words, the aspect code is inlined into the base
program. The result is a highly optimized woven code whose execution speed is comparable to
code written without AOP.
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Weaving Transformations Weaving Type Language

AspectJ Program Transformation Static Java
AspectC Program Transformation Static C

AspectC++ Program Transformation Static C++
TinyC2 Program Transformation Dynamic C
JAC Program Transformation Dynamic Java

PROSE Interpreter Transformation Dynamic Java
LOOM.NET Program Transformation Dynamic C#

µDyner Program Transformation Dynamic C#

Table 3.1: Comparison of Aspect-Oriented Programming tools

AspectJ: An AOP implementation for Java

AspectJ is a freely available AOP implementation for Java from Xerox PARC. AspectJ design’s
goal is to be a compatible extension to Java [13] in order to ease its adoption by current
programmers. AspectJ provides:

• Upward compatibility all legal Java programs are legal AspectJ programs.

• Platform compatibility all legal AspectJ programs run on standard Java virtual ma-
chines. AspectJ’s weaver takes the form of an aspect compiler. Because the final code
generated by the AspectJ compiler is expressed in standard Java byte code, it can run on
any standard Java Virtual Machine (JVM).

AspectJ extends Java with support for two kinds of crosscutting implementation [13]. It first
makes it possible to define additional implementation to run at certain well-defined points in
the execution of the program. Secondly, AspectJ enables to define new operations on existing
types. We call this static crosscutting because it affects the static type signature of the program.
In addition, AspectJ also allows the ”aspecting” of other aspects and classes in several ways.
Indeed, you can introduce new data members and new methods, as well as declare a class to
implement additional base classes and interfaces.

AspectC

AspectC is a simple aspect-oriented functional language. The initial design of AspectC was
taken directly from the non-object oriented subset of AspectJ. The language has them evolved
to acknowledge the differences between C and the non-OO subset of Java. Aspect code, known
as advice, interacts with primary functionality at function call boundaries and can run before,
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after or around the call. The central elements of the language are a means for designating
particular function calls, for accessing parameters of those calls, and for attaching advice to
those calls.

AspectC++

AspectC++ is a general-purpose aspect-oriented extension of C++ [10]. Most of the basic
constructs of AspectC++ are modelled from AspectJ. AspectC++ is implemented as a C++
preprocessor; based on PUMA [10]. PUMA is a source code transformation system for C++.
This architecture is shown in Figure 3.1. First the AspectC++ source code is scanned, parsed
and a semantical analysis is performed. Then, at the planning stage, the pointcut expressions are
evaluated and the join point sets are calculated. A plan for the weaver is created containing join
points and the operations to be performed at the join points (i.e. adding advice code). While the
planing stage is mainly independent from C++, the weaver is responsible to transform the plan
into concrete manipulation commands based on the C++ syntax tree generated by the PUMA
parser. The actual code manipulation is then performed by the PUMA manipulation engine.
The output of the prototype compiler is in C++ source code with the aspect code woven in.
The produced output source code does not contain AspectC++ language constructs anymore
and thus can be translated to executable code using conventional C++ compilers.

3.2.4 Dynamic weaving

The compilation of the base program and the aspect code: weaving can be done dynamically
or statically. For example, the weaving operation can be understood as a scheduling operation
that will yield the execution of the aspect at appropriate times.

TinyC2: a dynamic weaving aspect language for C

The design goal of the TinyC2 language [27] is to provide a language perspective in terms
of code instrumentation, and, at the same time, to establish a framework for implementing
a post-compilation weaving aspect language that uses the C syntax. It uses a third party
instrumentation tool as the back-end. Similar to AspectJ using standard Java grammar, TinyC2

uses the standard C grammar extended with a few new syntactic constructs. Programmer can
use the regular C syntax to compose code blocks. However, the basic modularization units
in TinyC2 are not functions but ”snippet”. A snippet is a unit of aspect implementation. It
encapsulates a code block and defines the ”weaving” points in the component program where
the aspect code is inserted. Snippets are functionally equivalent to the ”joinpoint” and ”advice”
concepts in an ”aspect” module in AspectJ.
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Figure 3.1: Architecture of the AspectC++ compiler
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Figure 3.2: Compilation process of TinyC2

TinyC2’s compiler [27] perform a source-to-source translation using the ANTLR parser generator
tool. It consists of three main components: the grammar file for the language, the lexer and
parser generated form the grammar file, and the back end code translator and generator. The
most fundamental component of the translator is the Snippet class which is the abstraction of
the generated code for a particular language element in TinyC2. Programs written in Tiny2

language are translated by TinyC2 compiler to a source file written according to the application
programming interface of the target instrumentation platform. The generated source file then
can be compiled again using the common language compiler of the runtime platform. It is the
responsibility of the instrumentation platform to integrate the generated aspect system and the
component program together. This process is illustrated on Figure 3.2.

The current implementation of the back end code generator is targeted at the Dyninst runtime
instrumentation platform. Therefore, the TinyC2 code is firstly translated into C code calling
the Dyninst library API [27]. The translated code is then compiled by a regular C compiler
to generate a binary executable which is linked to the Dyninst instrumentation library. The
executable is started with the process information of the target running system. The Dyninst
library is responsible for properly inserting the code into the address space of the target program.
Thus, TinyC2 can be classified as a dynamic weaving aspect language.

Java Aspect Component (JAC)

JAC (Java Aspect Components) [23] is a framework for aspect-oriented programming in Java,
not a new language. JAC is object-based and does not require any syntactic extension to Java.
It uses the Javassist class load-time MOP. In JAC, an aspect is a regular Java object. An aspect
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Figure 3.3: The JAC architecture

program in JAC is a set of aspect objects that can be dynamically deployed and undeployed on
top of running application. Aspect objects may define three kinds of aspect methods wrapping
methods (that wrap application methods and provide the ability to run code before and after
the wrapped methods); role methods (that add new functionalities to application objects) and
exception handlers. The aspects composition issue is handled through a well-defined wrapping
controller that specifies for each wrapped object at wrap time, runtime or both, the execution
order of aspect objects.

Figure 3.3 shows how the different JAC system objects interact with the application objects to
implement the aspects semantics. On the right side of the figure, one can see that the functional
classes are modified at the bytecode-level in order to make their instances wrappable. The JAC
MOP implementation uses a load-time transformative technique that inserts hooks towards the
wrappers. These hooks are reflective invocations so that the actual wrapping method can be
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resolved at runtime. Once the classes are translated, they are ready to be wrapped by the
aspect components. When an aspect is woven to a given application, the JAC system first reads
the available aspect component configuration (*.acc files on the upper left of the figure). The
parser then invokes a set of configuration methods on the newly instantiated aspect component.
These invocations trigger the creation of pointcuts and the tagging of the functional classes with
some meta-data (through the RTTI). When a new instance is created, the AC-Manager (Aspect-
Component-Manager) automatically notifies all the registered aspects so that the pointcuts wrap
its methods according to the aspect configuration. The important point here is that any aspect
component can be woven or unwoven at any time, moreover, its configuration file can be parsed
again while the application is running. When an aspect is unwoven or when a new configuration
is read, all the added meta- data and the pointcuts are destroyed by the system. This is possible
thanks to the wrapping mechanism implementation for dynamic wrapping/unwrapping.

JAC wrappers can be added or removed at runtime. Contrary to regular wrappers, which
delegate to the wrappee and implement the same interface as the wrappee in most of the time,
dynamic wrappers rely on a Meta-Object Protocol that uses reflection for its implementation.
The JAC Meta-Object Protocol uses a load-time tranformative technique that inserts hook
towards the wrappers. These hooks are reflective invocations so that the actual wrapping method
can be resolved at runtime.

PROgrammable extenSions of services (PROSE)

PROSE (PROgrammable extenSions of sErvices) [20] is a platform based on Java. It supports
dynamic weaving. Aspects are expressed in the same source language as the application (Java),
and PROSE allows aspects to be woven, unwoven, or replaced at run-time, providing for speeding
up the design-test cycle. In PROSE, aspects are written in Java. No separate tools are needed:
PROSE is based on the debugger interface of the virtual machine. By expressing aspects in the
source language, PROSE allows the definition of customized AOP constructs.

The goal of PROSE is to allow the definition of aspects following existing AOP solutions, while
avoiding the complexity of Meta Object Protocols. In PROSE, aspects are defined as classes
and aspect are objects. An aspect contains the information about the matched join-points as
well as the advice action and may be stateful like any other object. The AspectJ counterpart of
the PROSE aspect uses the same key words: before, after to define how the crosscut is woven
into the original code.

The PROSE uses the run-time approaches to implement AOP [20]. Run-time application
changes can be achieved using meta-object protocols (MOPs), which have been used to express
crosscutting concerns before the notion of AOP was proposed. A straightforward run-time
approach to AOP for Java is to locate the support for weaving and unweaving aspects directly
in the Java Virtual Machine (JVM). JVM also provide an interface for weaving aspects at run-
time, called Java Virtual Machine Aspect Interface (JVMAI). The PROSE JVMAI is designed
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as a JVM plug-in.

AOP with C# and .NET (LOOM.NET)

”Dynamic aspect weaving” [21] means the at a component (a target class) and an aspect class
will become woven during runtime. In LOOM.NET, an aspect is a simple C# class derived
from the base class Aspect. An aspect class works only in conjunction with an instance of
another class. At a connection point both will become woven. Methods of the aspect class can
be identified as connection points, which is indicated by the C# call attribute above the method
definition in the aspect class. During dynamic aspect weaving, all of the connection points inside
an aspect class will become woven with a target class’s method if some requirements is met [21].
The context property of the aspect base class allows access to an object of type AspectContext,
which contains the required information. Schult et al. [21] gave a solution based on Microsoft
.NET and implemented for dynamic aspect weaving in a .NET library. This library provides
several classes and attributes defined within the namespace Aspects:

Aspect is the base class for all defined aspects.

Weaver is a class which implements the weaving functionality.

Call is an attribute to define connection points.

AspectContext allows invocation of instance methods via Aspect.Instance.

As described above, the Aspects namespace contains a class called Weaver. It provides a function
named CreateInstance to weave a given target class. This function does the same as the new
statement - it creates a new object of a given class (the target class). This function does the
same as the new statement - it creates a new object of a given class (the target class). But
furthermore this function weaves the target class with an aspect-object. This can be done in
two ways: dynamically and staticallly. The dynamic version is as follows:

A a=Weaver.CreateInstance(typeof(A), null, new MyAspect()) as A;

Giving the aspect instance explicitly as a parameter to CreateInstance is more flexible than
naming it via attribute - as the aspect and its parameters can be identified at runtime. The code
implementing dynamic aspect weaving first looks for a custom attribute derived from Aspect. If
there is no aspect given, the CreateInstance call is equivalent to new A(args). What happened
during the creation is illustrated in Figure 3.4.The weaver looks for connection points and tries
to join them with the target class’s methods.
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Figure 3.4: The weaving process

micro DYNamic weavER (µDyner)

The µDyner Aspect-Oriented Programming infrastructure dynamically deploys aspects in run-
ning C programs. Generally speaking, µDyner realizes the weaving process by directly rewriting
the code being executed. Figure 3.5 represents the architecture of µDyner.

From an architecture viewpoint, µDyner can be divided into two parts. The first one deals with
the aspect generation: it is essentially based on an aspect compiler. The second part is in charge
of weaving the compiled aspects into the base program: this part relays essentially on a kernel
library loaded with the base program.

µDyner uses standard library mechanisms to force the kernel library to be loaded by the base
program. A kernel library: uDDT.so receives and handles the weaving requests. Weaving re-
quests allows third part processes to deploy compiled aspects in the base program. Compiled
aspects are produced by an aspect compiler provided by µDyner. This compiler first translates
the aspect code into C and relays on a regular C compiler (gcc) to generate the executable code.
As shown on Figure 3.5, compiled aspects are packaged as shared libraries.

We use a toy example: TestBase.c for the sole purpose of illustration. The usage of µDyner
can be roughly separated into three steps: configuring the system, compiling the aspects and
weaving.

Configuration of µDyner

µDyner is a flexible system: it delays as much as possible the binding between the components
involved in its architecture. In order to achieve this goal, a few shell variables are used to locate
the different components. Therefore, a user should first set these variables to allow proper
operations of the system.
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Figure 3.5: The architecture of µDyner

First of all, a shell variable is used to locate the directory where the µDyner system is installed.
Using a bourne shell, it can be set:

export UDDT_PATH=/home/ychen/uDDT

The kernel is a shared library dynamically linked with the base program through the LD_PRELOAD
shell variable. Using a bourne shell again:

export LD_PRELOAD =

/home/ychen/uDDT/Base-Program-ToolBox/Support/libuDDT.so

The aspect compilation chain in µDyner is open. This openness is achieved by letting advanced
users specify how the aspect code should be translated in C code. Less advanced users control
this process by setting the shell variable UDDT_ASPECT_PREPROCESSOR. For example, Again with
a bourne shell:

export UDDT_ASPECT_PREPROCESSOR =

/home/ychen/uDDT/RewritingSite/ReadGlobalVariable/AspectPreprocessor

/preprocessor
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In order to ease aspect development, one can set the shared library-searching path with:

export LD_LIBRARY_PATH=.

Compilation of the base program

The current implementation of µDyner involves rewriting on the fly the object code of the
base program. It exploits debugging information to determine the rewriting sites. The analysis
performed by µDyner do not currently support function inlining. Therefore the base program
should be a C program compiled with debugging information and without function inlining.
With gcc, the base program should have been compiled with -g and with a level of optimization
not high than -O2. Outside these two restrictions, no special modification of the base program
is required.

Compilation of the aspect

The aspect Aspect.c can be compiled in Aspect.so as follows:

../uDDT/Preprocessor/AspectPreprocessor/preprocessor Aspect.so

Aspect.c

Weaving

Before weaving, the base program is executed:

./TestBase

Then, we weave the aspect into the base program:

../uDDT/Weave/weave 29136 WEAVE Aspect.so

(29136 is the process id of example TestBase in our experiment.)

Hereto, the aspect is successfully woven into the base program by µDyner aspect system.

Aspect Syntax

The syntax of the aspect language is defined by [22] in Figure 3.6
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<aspect>::=<name>":["<filters-advice>"]"
<name>::=<identifier>
<filter-advice>::=<function-invocation>"["<filters-advice>"]"

|<function-invocation>"["<advice>"]"
|< global-variable-access>"["<advice>"]"

<function-invocation>::=<type><identifier>"("<params>")"
<type>::=<C-type>
<params>::=<type><identifier>|<params>","<params>
<global-variable-access>::=<global-variable-read>

|<global-variable-write>
<global-variable-access>::=<type><identifier>
<global-variable-access>::=<type><identifier>"=" <identifier>
<advice>::=<C-compond-instruction>

Figure 3.6: The aspect language syntax

3.3 Summary

Aspect-Oriented Programming (AOP) is an emerging programming paradigm and philosophy.
Its origin goes back to several approaches focusing on Separation of Concerns (SoC). AOP is
based on three elements: joinpoint, pointcut, advice. Most AOP languages today, including
AspectJ, Hyper/J [1], AspectC and AspectC++ statically transforms program either at the
source-code level or at the byte code level. The transformation of the AspctC# (LOOM.NET),
TinyC2 and µDyenr are done dynamically. PROSE uses the interpreter transformation. The
Meta-Object Protocols (MOPs) has been used to express crosscutting concerns by JAC. Last,
we draw a conclusion: there is no AOP tool supporting dynamically weaving aspect in C++
application.
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Chapter 4

Contribution

Our approach is motivated by the need to integrate on demand prefetching policies into Web
caches. Aspect-Oriented Programming is a solution, as explained in the previous chapter. How-
ever no dynamic weaver is available for C++. AspectC++ [10], for instance, allows only to
weave aspects at compile-time. On the other hand, µDyner provides the ability to weave aspect
on the fly but only in C applications. In this chapter, we identify the problems preventing
µDyner to be applied to C++ applications.

The syntax of the µDyner aspect language is defined as an aspect name followed by a nested
sequence of pointcuts before a block of C code containing the advice. First of all, the pointcuts
offered by the extension of µDyner for C++ should be C++ specific, in other words, different
from these provided by µDyner for C. Understanding the source level differences between C
and C++ is consequently crucial to determine the appropriate set of pointcut that the aspect
language should provide.

C and C++ are compiled by different compilers and the code generated, despite the fact that
C++ is a superset of C, is different. The differences between a compiled C program and a
compiled C++ program prevents µDyner weaving mechanism to be used directly on a C++
application. Therefore it is primordial to understand the difference between C and C++ code
at the binary level to design an appropriate weaving mechanism.

The rest of this chapter is structured as follows: it studies the difference between C and C++
at the source level and at the binary level. Next, this chapter describes the solutions we propose
allowing to dynamically weave aspect in C++ programs.

31
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4.1 Source level difference between C and C++

C++ can be understood as a superset of C. Almost all of the features and constructs available
in C are also available in C++. C++ is object-oriented. It therefore supports polymorphism
thanks to function overriding and function overloading and provides multiple inheritance.

4.1.1 Function Overloading

C++ supports function overloading. In other words, the same function name can be defined
more than once with different formal parameters. Overloading is the practice of supplying more
than one definition for a given function name in the same scope. The compiler determines which
definition is intended to be used by the context in which the function occurs. In other words,
the compiler picks the appropriate version of the function based on the arguments with which
it is called.

Syntactically, if one wants to overload a function called ave() computing the average of two
numbers:

//Find the average of two integers

float ave (int a, int b) {

return float (a+b)/2.0;

}

and

//Find the average of an array of n integers

float ave (int a[], int n) {

int sum = 0;

for (int i = 0; i < n; i++)

sum += a[i];

return float (sum) / n;

}

The function ave() is overloaded. It can be used:

int a = 2, b = 3;

int x[5] = {10, 20, 30, 40, 50};

cout << "The average of 2 and 3 is " << ave (a, b) << endl;

cout << "The average of the integers 10, 20, 30, 40,"

<< " 50 is" << ave (x, 5) << endl;
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Figure 4.1: Single inheritance graph

Thus the pointcut language of an aspect system for C++ should allow to distinguish the different
version of an overloaded function.

4.1.2 Inheritance

Syntactically, considering the inheritance tree from Figure ??, yields the following C++ class
hierarchy:

class PrintedDocument{

//Member List.

};

//Book is derived from PrintedDocument

class Book: public PrintedDocument{

//Member List.

};

//PaperbackBook is derived from Book

class PaperbackBook: public Book{

//Member List.

};

In an inheritance tree, the derived class contains the members of the base class plus zero or
more new members. As a result, a derived class can refer to members of the base class (unless
those members are redefined in the derived class). The scope-resolution operator (::) can be
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used to refer to the members of the base classes when those members have been redefined in the
derived class.

class Document{

public:

char *Name;

void PrintNameOf();

};

void Document::PrintNameOf(){

cout<<Name<<endl;

}

class Book: public Document{

public:

Book(char *name, long pagecount);

private:

PageCount;

};

Book::Book(char *name, long pagecount){

Name = new char[strlen(name)+1];

strcpy(Name,name);

PageCount = pagecount;

}

The pointcut language of an aspect system for C++ should therefore take the scope into account.

4.1.3 Function Overriding

The redefinition of a virtual function in a derived class is called overriding. Syntactically, the
declaration of the overridden functions are marked with a keyword virtual. If a function is
declared as virtual in the base class, it is virtual in all the derived classes. All derived-class
functions that match the signature of the base-class declaration will be called using the virtual
mechanism. At compile time, the compiler does not know the addresses of a virtual function
call. Therefore, the virtual mechanism employs a scheme named late binding that allows to
delay the function lookup at runtime. By contrast, C function can be invoked only using early
binding.

The following example highlights the C++ syntax. It shows a base class providing an imple-
mentation of the PrintBalance function:
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class Account {

public:

Account( double d ); // Constructor.

virtual double GetBalance(); // Obtain balance.

virtual void PrintBalance(); // Default implementation.

private:

double _balance;

};

//Implementation of constructor for Account.

double Account::Account( double d ) {

_balance = d;

}

//Implementation of GetBalance for Account.

double Account::GetBalance() {

return _balance;

}

// Default implementation of PrintBalance.

void Account::PrintBalance() {

cerr << "Error. Balance not available for base type."

<< endl;

}

Two derived classes, CheckingAccount and SavingsAccount, can be created as follows:

class CheckingAccount: public Account{

public:

void PrintBalance();

};

//Implementation of PrintBalance for CheckingAccount.

void CheckingAccount::PrintBalance() {

cout << "Checking account balance: " << GetBalance();

}

class SavingsAccount: public Account{

public:

void PrintBalance();

};
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//Implementation of PrintBalance for SavingsAccount.

void SavingsAccount::PrintBalance() {

cout << "Savings account balance: " << GetBalance();

}

The PrintBalance function in the derived classes is virtual because it is declared as virtual
in the base class, Account. To call virtual functions such as PrintBalance, code such as the
following can be used:

// Create objects of type CheckingAccount and SavingsAccount.

CheckingAccount *pChecking = new CheckingAccount( 100.00 );

SavingsAccount *pSavings = new SavingsAccount( 1000.00 );

// Call PrintBalance using a pointer to Account.

Account *pAccount = pChecking;

pAccount->PrintBalance();

// Call PrintBalance using a pointer to Account.

pAccount = pSavings;

pAccount->PrintBalance();

If a class is declared that does not provide an overriding implementation of the PrintBalance

function, the default implementation from the base class Account is used.

Functions in derived classes override virtual functions in base classes only if their types is the
same. A function in a derived class cannot differ from a virtual function in a base class in its
return type only; the argument list must differ as well.

Because calls to virtual functions are dispatched in a different manner than C style function,
the pointcut language of an aspect system for C++ should consider the virtual function.

4.1.4 Multiple Inheritance

As shown in Figure 4.2, in C++, a given class can inherit from more than one super class. This
property named: ”multiple inheritance” may introduce naming conflicts in derived class.

Multiple inheritance improves the programmers ability to combine classes. To be fully exploited
multiple inheritance is normally used in conjunction with virtual functions. Syntactically, one
can declare CollectibleString, derived from Collectible and String, as following:
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Figure 4.2: Multiple inheritance graph

Figure 4.3: Virtual inheritance graph

class CollectibleString: public Collectible, public String{

//new members;

};

Multiple inheritance raises however specific problems. Consider, for example, the class hierarchy
in Figure 4.3. A is the base class for both B and C. However, when both classes are combined
to form D, the newly formed class D will contain two subobjects of type A, one from B and the
other from C. To solve the problem C++ provides a mechanism called virtual inheritance.

The following C++ code declares A to be a virtual base class:

class A{

//member list

};

class B: public virtual A{

//member list

};
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class C: public virtual A{

//member list

};

class D: public B, public C{

//member list

};

The virtual inheritance mechanism ensures that D will contain only one A object. Thus virtual
inheritance complicates the inheritance problem that the pointcut language should cope with.

4.2 Binary level difference between C and C++

The previous subsection has described the main characteristics of C++ source code. In order to
extend µDyner for C++, the original pointcut language should be modified to reflect the way
function calls are dispatched in C++. But before thinking to reshape the pointcut language, a
weaving mechanism for C++ is needed. The design of this mechanism requires to understand
the differences at the binary level between C and C++ preventing its original µDyner weaving
mechanism to be applied in C++ application. This understanding is the purpose of this section.

4.2.1 Name mangling

At the binary level after compilation, functions are designated by symbols. A symbol is a
unique name within an executable file. In C++ symbols names are produced at compile time
by decorating the original function or variable name.

For example, member names are made unique by concatenating the name of the member with
that of the class. For example, given the declaration

class Bar {

public:

int ival();

...

};

The symbol used by g++ for ival() looks like:
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// a possible function name-mangling

ival_3Bar()

This scheme known as ”name mangling” allows the source code to provide overriding and over-
loading while using still at the binary level code to use unique symbol names to refer to variables
and functions.

4.2.2 Virtual Member Functions

In the following class1, the method vfunc1(), vfunc2() and vfunc3() are all declared as
virtual functions. The compiler will connect them to their function body at runtime due to the
late binding mechanism.

class Class1{

public:

m_data1;

m_data2;

virtual vfunc1();

virtual vfunc2();

virtual vfunc3();

};

g++ uses vprt and vtable to support the virtual function. A table of pointers to the different
virtual functions in generated for each class. This table is called the virtual table (vtable). A
single pointer to the associated virtual table is inserted within each class object. This pointer is
called the vptr. Vtable and vptr are generated and manipulated behind the scenes by the C++
compile and the C++ runtime system.

Each time one creates a class containing virtual functions, or one derives a class from a class
containing virtual functions, the compiler creates a unique vtable for that class. Three cases are
occur:

• A new virtual function not present in the base class can be introduced. In this case, the
virtual table is grown by a slot and the address of the function is placed within that slot.

• A newly introduced function overloads a function of the base class. It inherits the virtual
function declared within the base class. Literally, the address of that virtual function is
copied into the associated slot in the derived class’s virtual table.

• A newly introduced function overrides another function. In this case, the virtual table is
grown by a slot and the address of the function is placed within that slot.
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Figure 4.4: Vtable layout of class2

There is only one vptr for each object with simple inheritance. This vptr is statically initialized
to point to the appropriate vtable. For example, we have another class class2, derived from
class1.

class Class2: public class1{

public:

m_data3;

virtual vfunc2();

};

In this case, in the vtable of class2, the compiler places the address of all the functions that
are declared virtual in this class or in the base class. Because the vfunc2() is overridden,
the compiler will associate the pointer referred to class1::vfunc2() with the new address for
class2::vfunc2(). vfunc1() and vfunc3() have not been overridden, the compiler uses the
address of the base-class version in the derived class for the virtual functions. The memory
layout of class2 is expressed on the Figure 4.4.

Multiple inheritance and virtual inheritance also use virtual function to achieve their late bind-
ing.

There are more pointers involved in vtable under multiple inheritance and virtual inheritance,
which is caused by relationship of the derived class with its second and subsequent base class
subobjects.

4.3 A dynamic weaver for C++

The two previous sections have established that a number of issues arise preventing to apply
µDyner to C++. These issues can be roughly classified in language level issues and binary
level problems. Language issues reveal that a pointcut language originally built for C programs
would be inadequate for C++. The problem can be summarized in one sentence: C and C++
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aspect-library ::= aspect | aspect aspect-library+
| C++-compound-instruction aspect-library+

aspect ::= aspect-name "[:"pointcut-advice":]"
pointcut-advice ::= function-call "[:"pointcut-advice ":]"

| function-call "[:" advice":]"
| global-var-access

function-call ::= type identifier-or-star "("params ")"
| type identifier-or-star "()"

params ::= type identifier | params ","params
global-var-access ::= global-var-read | global-var-write
global-var-read ::= type identifier-or-star

global-var-write ::= type identifier-or-star "=" identifier
advice ::= C++-compound-instruction

identifier-or-star ::= identifier | "*"
aspect-name ::= identifier

Figure 4.5: An aspect language for C++

uses different mechanisms to identify variables and functions. In C, a variable or a function
is designated by a name, unique in the translation unit. In C++, a variable or a function is
designated by its name and the class it belongs to and plus for functions, the arguments list.

The binary issues shows that the rewriting techniques provided by µDyner can not be applied
as if to C++. These issues prevent the original µDyner weaving mechanism to work on C++
application. At the binary level, the problem is twofold. First of all, µDyner made the assump-
tions that the symbol names corresponds to the names appearing in the aspect pointcut source
code. As it has been explained in section 4.2.1, this is not the case in C++. C++ employs a
name mangling algorithm. Secondly, µDyner was designed for C, a language that provides only
early binding. Instead, in order to support object-oriented feature, C++ uses early and late
binding. C++ uses vtable to implement late binding. In the following subsections, solutions to
these problems are presented.

4.3.1 Language level issues

We propose to keep almost the same pointcut language than µDyner. C-type becomes C++
types. C-compound instructions becomes C++-compound instructions. These choices solve the
language issues. The BNF we proposed is described in figure 4.5. It remains simple and can be
understood by programmers as an extension of the µDyner language for C.

Contrary to most aspects language that extends an object-oriented base language, aspects are
not objects in our approach. The relationships between objects and aspects is still unclear.
Among different issues, one can wonder what would mean the inheritance relationship between
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aspects or how what will be the sense of a constructor method for aspects. One can also wonder
if aspects belong to the meta level part of the object-model rather than the base level. Our
proposition eludes these problems while allowing different approaches to be experienced. For
example, a programmer can choose that the advices of all the aspects will delegate their work to
an instance method of some C++ class. Templates and macros can even be used to automate
this kind of approach. The advantage of our proposition is that an aspect does not have to be an
object if it is not needed. Thus, with our aspect language aspects can be extremely lightweight
and still allow programmers to experiment different relationships between aspects and objects.

4.3.2 Binary level issues

Binary level issues prevent the efficient weaving techniques proposed by µDyner to be applied on
C++ program. This is very unfortunate since we believe that efficient aspect systems will ease
the acceptance of AOP in the industry. In this subsection, we show how to devise an efficient
weaving scheme for C++ by extending the µDyner proposition.

Symbols

µDyner uses nm to translate the names defined in the source code into symbol names in the
object file. nm is a command the posix tool that extracts the symbols contained in compiled
program. Invoked with proper options, nm will demangle the symbol names contained in the
executable file. Still deeper modifications of µDyner are required. For example, µDyner parsing
algorithms need to be modified to take into account the type of the arguments of the function
and not to limit themselves to the function name only. To implement our extension, we have
modified µDyner to invoke properly nm as well as its parsing algorithm.

nm involved with the appropriate option can demangle C++ symbol.

Late binding

µDyner analyzes the object code of the application. It scans the object code looking for function
calls or variable accesses. These calls or accesses are detected when the proper instruction refers
the address of the function body or of the variable. But this approach is not appropriate for
C++ virtual functions. The object code lookups the address of the functions using the vtable.
Thus, the address of virtual function is not hard coded in the object code as it is for early
bound function. µDyner proposition is to rewrite the call site of the functions. We propose to
keep this scheme for early bound C++ functions and for virtual functions to alter the vtable.

When the pointcut of an aspect ends with a function call declared as virtual in the base



4.4. SUMMARY 43

program, we propose to change the address that will be provided by the vtable to a new function.
This new function will be responsible of checking the remaining elements of the pointcuts. If
necessary, it will execute the advice of the aspect. Otherwise, it will call the function originally
provided by the vtable. This new function should be generated behind scenes by the aspect
compiler.

As explained before, µDyner uses nm to the retrieve symbols from a compiled program. nm

unfortunately only provides the address and the size of the vtables available in the compiled
program. In other words, nm does not describe what the different vtables are containing. In
order to be able to replace the appropriate pointer in the vtable, such a knowledge is nevertheless
necessary.

If nm describes the content of the different vtables, every vtable function has an associated
symbol that nm retrieves. When appropriate, the address of this symbol is contained in a slot
of vtable.

Therefore, we first scan all the function symbols retrieved by nm. Then we scan each slot of each
vtable and compare it with the addresses of the different functions. We wrote a postprocessor
that stores the content of the vtables in a meta-data-file. At weaving time, this meta-data
allows our extension of µDyner to exchange the appropriate pointer in the vtable with almost
any lookup overhead.

4.4 Summary

Being motivated by the dynamic integration prefetching policies into Web caches, we extended
µDyner for C++ because the original one provided to dynamically weave aspect in running C
application. This chapter firstly discussed the difference between C and C++ at the source level
and binary level. Based on those difference, we proposed our proposition. At the language level,
we kept almost the same pointcut language than the original µDyner by changing C-compound
instructions into C++-compound instructions. At the binary level, We proposed to invoke a
proper option of nm for demangling the symbol names contained in the executable file. We
proposed to keep the original scheme for early bound C++ functions. But for the pointcut of an
aspect ending with a virtual function, we proposed to change the address that will be provided
by the vtable to a new function.
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Chapter 5

Implementation

In chapter 3, an overview of µDyner (micro DYNamic weavER) has been given. This tool allows
to dynamically weave and deweave aspects in running C applications. This chapter show how we
modified µDyner to support the extension described in the contribution chapter. However, this
requires a more detailed understanding of µDyner than given in the overview before. The rest
of this chapter describes the different components of µDyner. For each component, we present
the modification we introduced.

5.1 Inside µDyner

The base program implements the application. The µDyner kernel library is linked at load-time
to the base program through the LD_PRELOAD shell variable. When a program is executed, the
dynamic linker ld.so is used to retrieve and load the shared libraries. At this point, along
with the required libraries, ld.so will load as well the shared libraries listed by the LD_PRELOAD

variable. This trick avoids any intrusive modifications of the base program compilation scheme.
This kernel library is responsible of three tasks:

1. Load the aspect shared library to be woven in the address space memory of the base
program;

2. Translate the symbolic designation of the rewriting sites provided by the aspects into
addresses. The kernel library relies on meta data to perform this translation. These meta
data are packaged as shared libraries generated on a per need basis by the kernel library.

3. Loading the hooking libraries in order to rewrite the pointcuts required by the aspects. A
hooking library provides the ability to rewrite a specific type of site. All in all, an aspect
provides the ”what” to rewrite in the base program. The meta data libraries provide

45



46 CHAPTER 5. IMPLEMENTATION

the ”where” to rewrite in the object code of the base program. The difference between
”what” and ”where” lies in the fact that an aspect can only designate the rewriting sites
symbolically while an effective address is required to rewrite. The kernel library does not
perform the rewriting by itself. This ”how to rewrite” is provided by the hooking kernel.

Because aspects are packaged as dynamically loaded libraries, the kernel library is independent
from the aspects to be woven. For similar reasons, the kernel library is independent from
the structure of the base program thanks to meta data libraries. Since the actual rewriting is
delegated to hooking libraries, the kernel library is as well independent from the type of pointcut
and of the type of rewriting sites. This independence has been a previous asset to extend µDyner
to C++.

In the next sections we will discuss the details on these libraries. We will focus on their roles
and interactions between them and kernel, and also their generations. The description of the
different interactions between the different components is the key to understand the weaving
process used by µDyner. Based on those information, we show how we extend µDyner for C++.

5.2 Aspect Compliation

An aspect shared library contains the advice code along with and the code checking the pointcut.
The shared library has been generated by the aspect compiler.

5.2.1 Interaction between the kernel and the aspect

When the application is deployed, the µDyner kernel forks a thread that waits on a socket for
weaving and deweaving requests from third part processes. Upon reception of a weaving request,
the µDyner kernel loads the requested aspect into the address space of the base process as a
shared library (using dlopen) and then instruments the join points described by the innermost
pointcut of the aspect. This instrumentation essentially consists in the introduction of hooks in
the base program.

5.2.2 Aspect compilation

The aspect compiler generates an aspect shared library from an aspect program. It is a two-
stepped process. Firstly, the aspect preprocessor translates the aspect program into C code.
Next, it uses gcc to compile that C code to generate the aspect shared library. In this section,
we will discuss them in detail and then propose our extension for C++.
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The Aspect preprocessor

µDyner aspect complier is structured around aspect preprocessors. Each aspect preprocessor is
responsible of translating a given type of pointcut into C code. This top level aspect compiler
coordinates different preprocessors before using gcc to generate a compiled aspect. The goal of
the different preprocessors is to translate the aspect code into C. Advanced users can extend
the aspect syntax by providing new preprocessors. The current implementation ties a type of
rewriting site to a preprocessor. It offers three kinds of aspect preprocessors - global-variable-
read, global-variable-write and function-invocation.

5.2.3 Extension - A new aspect compiler

The preprocessors of the original µDyner are used without modifications in our extension. They
allow to compile aspects that should be triggered on early bound function or global variables.
For the other functions, we introduce a new preprocessor that generate the appropriate C++
code. We also modified the original aspect compiler provided by µDyner so that it uses a C++
compiler to compile the C++ code generated by the post-processor.

5.3 Meta-Data Library

Due to its central role, the kernel knows the pointcut sequence for any aspect and knows ”what”
to do at the rewriting site. The next thing is to know ”where” to rewrite. In µDyner aspect
system, the meta-data libraries offer this kind of information.

5.3.1 Interactions between the kernel and meta-data libraries

After the kernel receives a weaving request, it will use the meta data libraries to locate the
rewriting site. For a given type of rewriting site, a meta data library contains a representation
of all the rewriting sites available in the base program. µDyner uses as a rewriting site’s the
innermost element appearing in the pointcut sequence.

If the kernel failed to load a meta data libraries, it will uses the appropriate post processor to
generate the missing meta data. Thus, meta data are generated on the fly on a per need basis.
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5.3.2 Meta-data library Deployment

In order to collect the information for the meta-data, the different types of the join points
associate with different postprocessors for rewriting site. That is, according to the type of
the join point, the kernel will call different postprocessor for the appointed type, which are
still the three types in the µDyner - global-variable-read, global-variable-write and
Function-invocation.

5.3.3 Extension - A New Postprocessor

In the original µDyner, there are three postprocessors, one for each type of pointcut. For the
newest postprocessor type - virtual functions, µDyner does not support to generate the meta-
data library from virtual table. As we discussed in the previous parts, the virtual functions are
all relocated in the virtual table. That is the new postprocessors should successfully select the
necessary information from virtual table and mangled signature for the meta-data libraries.

Firstly, we release a basic program to achieve this purpose. The following method has this
functionality.

But when we want to collect the information from vtable, we found there are some extra pointers
are involved to support the runtime type. That is, if we have the call

ptr->z();

there needs to be some information associated with ptr available at runtime such that the
appropriate instance of z() can be identified, found, and invoked.

When we try to print to the address of the vtable through the base program. They will have the
different result. The Figure 5.1 describes these differences. It shows there are two extra pointers
at the beginning of the class1 and class2 vtable [2]. The first two pointer are pointing to the
offset of the class and the RTTI type of its super class. This is only the single inheritance case.

When it comes to the multiple inheritance and virtual inheritance, the problem will be more
difficult. If we check the beginning address of each vtable and each VTABLE[0]. We will find
the difference is not 8 bytes anymore.

[2] gives the reasons of this difference. We examine them one by one. Firstly, the top class A,
its vtable is the same as the one of class1.

A::offset_to_top (0)

A::rtti
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Figure 5.1: Vtable layout of class1 and class2

Figure 5.2: The pointers inside of vtable of virtual function

Class Name Beginning Address VTABLE[0] Address Size Difference Number of Pointers
A 0x804a4d8 0x804a4e0 14H (20D) 8H (8D) 5
B 0x804a4a0 0x804a4c8 34H(52D) 28H (40D) 13
C 0x804a460 0x804a488 34H(52D) 28H (40D) 13
D 0x804a400 0x804a43c 48H(72D) 3cH (60D) 18

Table 5.1: The difference between the beginning address and VTABLE[0]
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Figure 5.3: Virtual function pointers of vtable
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A::f() []

A::g() []

A::h() []

In B, it overrides the functions f() and h(). As A is the virtual base class of B, there are more
extra pointer are added into the vtable of B. The information is followed.

B::offset_to_A (16)

B::offset_to_top (0)

B::rtti

B::f() []

B::g() []

A::offset_for_h (-16)

::offset_for_g (0)

A::offset_for_f (-16)

A::offset_to_top (-16)

A::rtti

B::f() [[-24] offset_for_f]

A::g() []

B::h() [[-24] offset_for_h]

In C, it overrides the functions g() and h(). The same as B, there are more extra pointer are
added into the vtable of B. The information is followed.

C::offset_to_A (16)

C::offset_to_top (0)

C::rtti

C::g() []

C::h() []

A::offset_for_h (-16)

A::offset_for_g (-16)

A::offset_for_f (0)

A::offset_to_top (-16)

A::rtti A::f() []

C::g() [[-32] offset_for_g]

C::h() [[-40] offset_for_h]

In D, it overrides the functions h(). The same as B, there are more extra pointer are added into
the vtable of B. The information is followed.
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D::offset_to_A (32)

D::offset_to_top (0)

D::rtti

B::f() []

D::h() []

C::offset_to_A (16)

C::offset_to_top (16)

C::rtti C::g() []

D::h() [-16]

A::offset_for_h (-32)

A::offset_for_g (-16)

A::offset_for_f (-32)

A::offset_to_top (-32)

A::rtti B::f() [[-24] offset_for_f]

C::g() [[-32] offset_for_g]

D::h() [[-40] offset_for_h]

The difference between the virtual table belonging to the virtual functions and its belonging to
the virtual base class is the latter have more extra pointers in the derived D in our case.

This is the details of the pointers in virtual table. When we know the details of the layout of
those virtual tables. It is very essential to our implementation part.

5.4 Hooking Library

Weaving with µDyner requires the identification of the join points in the executable code and
modifying the join points to jump to the code implementing the advice. The hooking library
provides these capabilities. It tells the kernel ”how” to rewrite.

5.4.1 Interaction between the kernel and the hooking library

The kernel delegates the rewriting task to hooking libraries. Hooking library will rewrite accord-
ing to the types of rewrite site. Thus, there are three different kinds of the hooking libraries.
The hook manages the invocation of the advice Hooks check whether the sequence of pending
return points on the execution stack corresponds to the sequence of pointcuts described by the
aspect, and if so, invokes the advice. If the pointcuts are not satisfied, the hook performs the
action of join point and returns control to the application. Corresponding to the different types
of the rewriting sites, we use the different hooking libraries to generate the hooks. The interface
of the concrete hooking library is as Figure 5.4
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struct ConcreteSite{

ConcreteSite* (*make) (char *symbolName, int

address, int length, char *SourceFile, int sourceLine, char

*inFunction, int inFunctionAddress,...)

void (*serializedAsCCode)(File *file, ConcreteSite *data)

void (*writeIncludesSupportingSerialization)(File *file,

ConcreteSite *data)

void (*destory)(ConcreteSite *site)

void (*rewriteAsJump)(ConcreteSite *site, void *addressToJumpTo,

Guard *guard)

void (*restoreFunctionCode)(ConcreteSite *site)

boolean (*equals)( ConcreteSite *aSite, ConcreteSite *anotherSite)

boolean (*hasBeenRewritten)(ConcreteSite *site)

}

Figure 5.4: The internal representation of concrete hooking library

5.4.2 Extension - A New Hooking Library

The existing µDyner let the global variables and the functions can be hooked. In µDyner for
C++, we focus on functions, instance functions, virtual functions. There is not virtual function
pointcut in the original µDyner. For a virtual function, the hooking library will directly change
the pointer in the vtable. The following program proves this idea is feasible.

void changeVT ( class1 *pa ) {

// p sees pa as an array of dwords

unsigned * p = (unsigned *)(pa);

// vt sees vtable as an array of pointers

int ** vt = (int **)(p[0]);

printf( "vtable[0] address = %p\n",vt);

printf("%p %p\n",vt[2],&vt[2]);

vt[2]=(int*)(advice);

}

In this method, the input is the pointers of class1, which is an example in the previous chapter.
The first pointer is vptr of class1. Through this vptr, we can access to the vtable. With
the strict order rules in vtable, the method class1::vfunc3() is pointed by the pointer at
VTABLE[2]. If the input is the pointers of class2, a derived class of class1, the pointer at
VTABLE[2] is also successfully changed to pointing advice().
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After knowing we can replace the pointers in the vtable, our hooking library will be built on
this idea. When it comes to the other two pointcuts type - function and instance function,
the µDyner uses the original technique. More, for the instance function joinpoint, the hooking
libraries should solve the scope operator.

5.5 Summary

This Chapter presented how we extended µDyner to support C++. Concretely, we modified
the µDyner kernel so that it does not assume that symbols in the binary level file would the
number of the function appearing in the pointcut aspect source code. We changed the manner
µDyner retrieves the symbol name to take into account the C++ name mangling scheme. We
changes the aspect compiler so that advice can be programmed in C++. We introduced a new
prepocessor handling pointcut ending with virtual function call. We had a new post-processor
to the system collecting vtable information. Finally, we implemented a new hooking library
allowing aspect to be triggered on virtual function call.
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Conclusion

The Web latency has become an important issue. While prefetching appears as a low cost
solution, the efficiency of prefetching largely depends of the user access patterns and of the
contents provided by servers. For maximum efficiency prefetching policies should be deployed
on demand in Web caches.

Web caches like Squid are large C programs. Squid architecture relies on a set of statically
linked modules. In this particular architecture prefetching policies are crosscutting concerns.
Therefore, it has been proposed to use dynamically woven aspects to deploy prefetching policies
in Squid. A tool has been designed in this goal: µDyner. It provides an aspect system for C
program.

But future version of Squid will be written in C++. This dissertation explored the possiblity
to apply the weaving techniques devised for the C language in µDyner to the C++ language.
The basis of these techniques is to rewrite on the the fly the object code executed by the
microprocessor.

Our contribution is twofold. First of all we highlight key elements that the pointcut language
should cover. Second, we conclude that the techniques devised for C can successfully be applied
to C++. The latter conclusion was difficult to establish due to the number of technical details
that had to be considered.

As a side effect and despite the lack of time to realize a detailed performance study, it should be
noted that our extension of µDyner for C++ should yield good performance. In particular, due
to late binding, weaving an aspect executed on a virtual function call, reduces to an exchange
of pointers.

Much work is still left. First of all, it would interesting to implement prefetching policies in
Squid using our extension as soon as a C++ version of Squid will be available. This could lead
to reshape the aspect language.
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Another interesting point would be to package the modifications we made to the original µDyner
as aspects. These aspects could be woven on demand, when µDyner detects - using the debugging
- information that the base program has been written in C++. This approach would result in
a first step towards a language independent weaving infrastructure. In the second step, we
could like to study the possibility to offer an aspect language decoupled from the programming
language used for the base program. We do believe that this could support ”aspect-off-the-shelf”.
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