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Abstract

Generic functionalities of applications are those concerns of the system that can be
useful in many places within the same application domain, or even in other domains,
playing distinct roles. Even though this kind of functionality is very common in software
development, current object-oriented language technologies give only little means to deal
with those functionalities.

Aspect-oriented programming has brought great advance for defining generic concerns
and integrating them into existent applications by introducing the concept of aspect.
However this abstraction loses object-oriented features when describing generic func-
tionalities chiefly because in the level of the aspects and its integration into the base
application goals of modularity are not completely achieved.

This thesis presents language support to the notion of aspect interfaces to improve the
current technology in the context of Caesar programming language. Aspect interfaces
are abstractions to help decoupling the aspect implementation from the aspect binding,
as well as describing concerns as a set of abstractions that together define the function-
ality as a whole. In addition to that, new support is presented in order to integrate these
concerns into base applications without changing their modular structure. With these
new concepts introduced in the language, Caesar facilitates reuse and componentization
of aspects.

By using aspect interfaces and their involved concepts, generic functionalities can be
expressed as self-contained components organized in stable architectures. In this struc-
ture they communicate with the application that they get integrated into through the
restricted and clearly defined aspect interface, thereby achieving goals of reusability and
extendibility.
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Chapter 1

Introduction

The main goal of modularity in software engineering is to provide support to developers
describing flexible software architectures made of extendable and reusable components.
Modularity leads to the term module that can be defined as the basic unit of decom-
position of the systems. Modules are not only little pieces of code as it could seem.
In order to be reusable and extendible, modules must be self-contained and organized
in stable architectures where they communicate with each other through restricted and
clearly defined interfaces.

Software is extendible when its requirements are changed without implying a big modi-
fication to the system’s module structure, or when new requirements are added without
causing a huge reorganization of the system. Reusability deals with the use of general-
purpose components in the software structure. It implies that these components should
be defined in a generic way, so they could be just plugged in other systems, or even be
instantiated many times in the same application.

An important modularity issue is the separation of concerns principals. Concerns are the
concepts, goals or purposes of the software. Hence the separation of concerns principals
say that language constructs should enable these concerns to be declared independent
from each other, thereby allowing them to be described in such a way that they are
reusable and extendable.

Trying to achieve a better modularization than those currently available in object-
oriented technology, the authors of [9] define the term which has driven this work:
generic functionalities. Generic functionalities of applications are those concerns of the
software that can be useful in many places within the same application domain, or even
in other domains, playing distinct roles. In this scenario, the functionalities might even
be instantiated many times in a single application.

1



2 CHAPTER 1. INTRODUCTION

Describing generic functionalities of software calls for technology support to: define
module constructions for components whose implementation is decoupled from any par-
ticular application, as well as easy remodularization of the software in order to plug these
components in many applications in a no invasive1 fashion.

These requirements of generic functionalities can be directly mapped to the requirements
of modularity for describing reusable and extendible software. The first requirement of
defining generic components is related to reusability in the sense that modules must
be defined as independent entities that can somehow be reused in other programs.
Regarding the second requirement of generic functionalities for easy remodularization,
it can be associated with both reusability and extendibility. Reusability in order that
it asks for an easy manner for reusable components be bound into the software, and
extendibility because it calls for support to insert or change concerns without a huge
remodularization of the software. Therefore, describing generic functionalities requires
language support to achieve modularity.

Object-oriented languages are not well equipped to cope with the subtle problems that
occur when integrating independently developed components. The implementation of
those generic functionalities might be scattered across the modular structure of the
applications, which directly affects the separation of concerns principals, and the func-
tionality is not modular anymore.

This kind of situation is the main target of aspect-oriented programming. The main-
stream of this programming technology is the concept of join point interception (JPI).
Languages equipped with this concept support the definition of points in the execution
of the base program to intercept allowing then their modification. These execution
points and their modifications are declared in an abstraction called aspect. The aspect
may be applied in the base application without physically changing its source code.

Aspect-oriented technology avoids hence the problem of defining functionalities, or as-
pects in the terms of this technology, scattered across the modular structure of the
system. Thus, generic functionalities could be defined by means of aspects, however as
argued in [10], more powerful means for structuring aspect code are needed on top of
JPI-based models. The deficiencies involving this concept will be better explained in
section 1.2.

This thesis presents the implementation of language support for aspect interfaces. This
new concept, first described in [9] as collaboration interface, is an abstraction which
improves the object technology support to represent generic functionalities. It is the
technology answer to the requirement of these functionalities for defining generic com-
ponents since it has the ability to represent an ’off-the-shelf’ component ready to be
included in an application.

1No invasive means that physical changes are not needed
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The aspect interfaces differs from ordinary interfaces as they are known from Java in
two points:

• They can be nested; hence the functionality can be defined as a set of abstractions
which together build up a concern of the software. Please note that the ability to
be nested here is not the same as it is known from Java inner classes. Being nested
means here that these interfaces are really part of the outer component, thereby
obliging classes that implement the enclosing interface to provide implementation
of these nested interfaces as well. These differences will be highlighted in chapter
3.

• They define what is implemented by the component, the provided contract, which
is what possible clients of the component can expect from that implementation.
This part of the contract can be seen as what ordinary interfaces can express.
However, aspect interfaces can also define what component implementations ex-
pect from their clients: the expected contract.

Hence, the implementation of aspect interfaces is broken up into two parts: implemen-
tation and binding. It has been divided in order to support a flexible integration of
generic components. Even though the implementation of aspect interfaces is separated
in two abstractions, both implementation and binding abstractions can access the whole
aspect interface contract as their own.

Implementing an aspect interface means implementing the provided contract of the
interface. These implementations are the realization of the generic functionality as a
component which communicates with the clients through the aspect interface.

On the other hand, binding an aspect interface means implementing the expect contract
of the interface. Bindings are the application-dependent part of the component. These
units allow at the same time no invasive and flexible remodularization of the software.
The model thus implements the second requirement from generic functionalities for
supporting easy decomposition of the software.

In [9], this kind of remodularization is called on-demand remodularization. This term
is used not only for the kind of decomposition described - without physical changes in
the modular structure - but also to highlight another important feature of the model:
the remodularization is applied only when it is demanded, so the modular structure of
the software is changed only when the remodularization is explicitly applied.

Please note that the model of on-demand remodularization used here is object-based in
contrast to the Hyperspace model [12] where it is class-based. There the decompositions
applied are valid for all instances of the class, but here it affects only specified objects. It
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gives a finer grain to control remodularization and allows single objects to be integrated
to different components.

This thesis presents the implementation of aspect interfaces and their bindings and
implementations in context of Caesar programming language in order to provide its
complete realization. This implementation adapts these new abstractions to abstrac-
tions already available in Caesar. Therefore, these new abstractions become able to use
the other concepts available in such programming language.

This thesis is structured as follows. In the next sections of this chapter, the example
used in the other chapters is presented in section 1.1, after the problems are outlined in
section 1.2, followed by the presentation of some related works in section 1.3. Chapter
2 explains the Caesar mechanisms. Chapter 3 describes what has been defined in the
language in order to support aspect interfaces, bindings and implementations in Caesar.
Chapter 4 shows how these concepts have been implemented in the context of Caesar.
Finally, chapter 5 describes future work and gives a summary of this thesis.

1.1 Example - the Mediator pattern

This section presents the example that is used in the next chapters. The example chosen
is the Mediator design pattern [3]. Patterns are good examples of generic functionalities
of applications, because they represent a concept in terms of collaboration between
objects independent of an application domain. Though they have been hugely reused
in the design level, their implementations are often rewritten.

The intent of the Mediator pattern is to “Define an object that encapsulates how a set
of objects interact” [3]. Hence, the pattern consists of one object playing the role of
the mediator of a collaboration among objects. The participants of this pattern are:
Mediator and Colleague. Mediator will mediate the interaction between Colleagues.
Figure 1.1 shows the class diagram of the pattern.

Note that the pattern itself does not define the protocol of their participants, but for
the purposes of this work it has been set up as shown in figure 1.1.

The implementation of this pattern often has an object elected to play the role of
Mediator which has references to all the Colleagues that it mediates and Colleagues
have reference to their mediator. Thus, whenever a Colleague has its state changed, it
calls its Mediator which issues suitable notifications to the other Colleagues.

In this work this pattern will be implemented as a generic component. With this generic
component implemented, it will be applied to a simple example in order to highlight
the main features of the aspect interfaces and other involved concepts.
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Mediator

+colleagueChanged(colleague:Colleague)

Colleague

+setMediator(mediator:Mediator)

+getState()

ConcreteMediator

+colleagueChanged(colleague:Colleague)

ConcreteColleague1

+getState()

ConcreteColleague2

+getState()

mediatormediator

Figure 1.1: Class diagram of the Mediator Pattern

1.2 Problem statement

This section outlines the shortcomings of the current language technology to support
reuse-based development in the context of generic components for a-posteriori integra-
tion in existing systems. In order to illustrate the problems described in this section
an implementation as proposed in [5] is shown. This implementation uses the AspectJ
[14] model to describe a reusable implementation of the Mediator pattern as presented
in the previous section.

Before showing the approaches used for the AspectJ solution and its related problems,
an important concept of AspectJ, which is used in the example, must be clarified: the
introduction mechanism. This mechanism allows changing the structure of Java classes
without having access to their sources. This is obtained through the declaration of
introductions in the aspect definition. For example, in listing 1.2 the clause declare

parents: inserts a subtype relationship between Button and Colleague turning But-

ton into a subtype of Colleague. Even though the solution presented does not need to
introduce methods or fields into the base classes (Button and Label), it would be pos-
sible. AspectJ allows declaring for example a method out of the class scope. A method
is defined in such a way when its name contains also the name of the class it belongs to.
For example, the definition of the method void Button.doubleClick(){...} would
cause the addition of this method to the class Button. Similarly, private LinkedList

Label.colleagues would add the field colleagues into the class Label.
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Now that this concept has been clarified, the example can be explained. Listing 1.1
shows the implementation of the reusable protocol of the pattern. MediatorProtocol

is an abstract aspect which defines two interfaces: Colleague and Mediator. These
interfaces are the abstraction of the roles of this collaboration.

The abstract pointcut change(Colleague c), when implemented, is responsible to ac-
tivate the advice after(Colleague c): change(c). Hence, this advice will run after
all methods to which the pointcut change(Colleague c) gets bound. The execution
of such advice causes the notification of the mediator, which is set to this colleague,
calling the abstract method notifyMediator(). The mapping between the mediators
and colleagues is stored in the WeakHashMap called mappingColleagueToMediator.

public abstract aspect MediatorProtocol {

protected interface Colleague { }

protected interface Mediator { }

private WeakHashMap mappingColleagueToMediator = new

WeakHashMap();

private Mediator getMediator(Colleague colleague) {

Mediator mediator =

(Mediator) mappingColleagueToMediator.get(colleague);

return mediator;

}

public void setMediator(Colleague c, Mediator m) {

mappingColleagueToMediator.put(c, m);

}

protected abstract pointcut change(Colleague c);

after(Colleague c): change(c) {

notifyMediator(c, getMediator(c));

}

protected abstract void notifyMediator(Colleague c,

Mediator m);

}

Listing 1.1: Reusable mediator protocol in AspectJ

In listing 1.2 a possible binding of the MediatorProtocol is shown. Using AspectJ’s
introduction mechanism, the subtype relationship is created between Colleague and
Button as well as Mediator with Label. It means that for example Button plays the role
of Colleague in this collaboration. The realization of the pointcut change(Colleague
c) indicates that the mediators are notified always after the method clicked() is exe-
cuted. This binding also implements the abstract method notifyMediator(Colleague
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c, Mediator m) inserting the proper notification logic.

public aspect MediatorImplementation extends

MediatorProtocol {

declare parents: Button implements Colleague;

declare parents: Label implements Mediator;

protected pointcut change(Colleague c):

(call(void Button.clicked()) && target(c));

protected void notifyMediator(Colleague c, Mediator m) {

Button button = ( Button) c;

Label label = ( Label) m;

if ( button == Main.button1) {

label.setText("Button1Ãclicked");

} else if ( button == Main.button2) {

label.setText("Button2Ãclicked");

}

button.setText("(Done)");

}

}

Listing 1.2: Binding of the Mediator protocol in the base code

This code deals well with the requirement of describing a reusable component. First of
all, the implementation of the mediator protocol is totally decoupled from the binding.
So, this same implementation can be easily bound in other contexts. This is because
the expected contract, the method notifyMediator(Colleague c, Mediator m) and
the pointcut change(Colleague c) in this code, is separated from the component im-
plementation. Furthermore, one simple role can be freely mapped to as much classes as
it is desired, as well as many roles can be bound to the same class.

Note that the introduction mechanism could be used to inject the expected methods
and fields into the base code instead of using the approach presented. Thus the aspect
participants could define a more refined protocol expressing the expected contract. The
problem with this approach is that they would loose flexibility. For example, in a
certain application two aspects are defined. Each aspect has one role which expects the
implementation of a method m(). When these aspects are bound to the base code, it is
detected that a certain class must bind both roles. This code would definitely generate
a compile error since the class would have the method m() defined twice. Similarly it
would occur if a certain class has to be bound with the same role many times. Therefore,
the code presented is more flexible concerning extendibility and reusability.
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However, even though this solution achieves extendibility and reusability, it has yet
some problems. The first problem becomes clear just by taking a quick look at the
code. As can be seen all methods in this collaboration are defined in the aspect Media-
torProtocol instead of in the abstraction they conceptually belong to. It breaks hence
the separation of concerns within the aspect leading to procedural code and loosing
therefore modularity.

Lacking modularity implies losing object-oriented features to describe the aspect. For
example, passing the role abstraction to another class that does not collaborate with
the whole aspect would not be possible since the methods do not pertain to the role.
Similarly, more complicated interactions between roles of the same aspect would increase
much complexibility of the aspect because the outer aspect would have to manage
itself all these interactions. It could get even worse if object-oriented features such as
inheritance between roles are needed because it would have to be manually controlled in
the outer aspect. Again the introduction mechanism could be used to insert the methods
and fields into concrete classes in the base code allowing the definition of methods in
the roles instead of in the outer aspect, but as discussed above it is not desirable as
well.

All problems described above come because the implementation of the component needs
to be decoupled from a particular application which it might get integrated. But as the
language offers only little support to express the expected contract of the component,
many object-oriented features are lost.

Another problem concerning this solution is that the aspect binding is coupled with
a particular implementation of the aspect. It is clear that the implementation of the
components should not be coupled with a particular binding since components represent
generic concepts. Nonetheless, clients tightly coupled with component implementations
are also undesirable. Bindings translate the application specific concepts, terms and
abstractions to the component’s world, but they do not directly depend on a specific
component implementation. Therefore, the coupling of the binding with a particular
component implementation implies that they cannot be reused to bind the application
with different component implementations.

The solution of creating a subtype relation between roles and base classes is also ques-
tionable. Inserting this relation has an invasive nature since it changes physically the
type structure of the base application, even though physical changes in the source code
are not needed. Beyond conceptually wrong since the base object is not of the role
type, but just plays that role in certain collaboration, it can cause practical problems.
Objects of those changed classes will remain instances of the role type, even when the
aspect collaboration has finished, or it has not started yet. It is not an issue if the com-
ponent is applied only once in the application, but in systems that reuse this pattern
many times, special care must be taken by the programmers.
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For example, using listing 1.2, an instance of a class other than Button but which has
been mapped to play the role of Colleague in other implementation of Mediator-

Protocol might be passed as Colleague to the method notifyMediator(Colleague,

Mediator) defined in the MediatorImplementation class. It would raise a ClassCas-

tException since in the implementation of this method it casts the Colleague received
to the Button class and the reference passed is not an instance of this class.

AspectJ from invasiveness is not very expressive for mapping the aspect abstraction
to corresponding base classes. The aspect abstractions in AspectJ can be mapped to
the base classes only through the declare parents: clause, as shown in example 1.2.
So, the base structure must have a specific abstraction to be bound to the aspect role.
However, this is not always the case; more sophisticated mappings may be needed.
For example, a role of some aspect could be needed to be bound with a concept in
the software that is not an abstraction itself, but a collaboration between abstractions
instead, for example.

1.3 Releated work

This section presents other efforts that have been done in order to improve the current
language technologies in the context of the problems that have been described in the
last section. Two works2 are shown here: Object Teams [15] and ACC [7][13]. These
two models have their prototype implementations available as extensions of the Java
compiler such as the implementation presented in this thesis.

1.3.1 Object Teams

Object Teams enable an abstraction to define generic components called Team Class.
The Teams combine properties of the classes with properties of packages. In Teams,
nested classes may be defined, these classes are called Role Classes. The Teams look
like ordinary Java outer/inner classes, just look like. The differences become clear when
regarding closer the inheritance relationship. The inheritance between teams implies
an implicit inheritance relationship of the contained Roles. Therefore, when a subtype
of a Team is created, all the roles defined in the super Team become available in the
subtype and can be overridden. In order to do so, the sub-Team has just to declare a
Role Class with the same name of the super Role it wants to override. It creates the
implicit relationship between them.

2The features of these works presented here are just those relevant to this thesis, other possible
features that are not described here are out of the scope of this work
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For example3, listing 1.3 describes inheritance relationships between Teams. In the
Team MySubTeam, the Role Role1 is overridden. It implies that this new Role1 is sub-
type of that Role1 defined in MyTeam. Hence methods and attributes can be overridden
following the known rules.

public team class MyTeam {

class Role1 {

String name;

public Role1 ( String n) { name = n; }

public void print() {

System.out.println("Name=" + name);

}

}

public Role1 getRole() { return new Role1("Joe"); }

}

public team class MySubTeam extends MyTeam {

class Role1 {

int age;

public void setAge(int a) { age = a; }

public void print() {

tsuper.print();

System.out.println("age=" + age);

}

}

public void doit() {

Role1 r = getRole();

r.setAge (27);

r.print();

}

}

...

MySubTeam myTeam = new MySubTeam();

myTeam.doit();

...

Listing 1.3: Implicit inheritance of Role Classes

Another important features of Object Teams for the purposes of this work are the
definition of the binding abstractions and the expect contract. Binding abstractions
here are Roles that map a Role to base classes. These mappings are performed using
the key word playedBy as an extends clause in Java. The semantics of this language
construction is that the Roles marked with this key word will decorate the base class

3All examples used to explain Object Teams are from [15]
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defined in the clause.

The expected contract can be defined by means of callin or callout methods. Callout
methods are defined as abstract methods in the super Roles, and they are bound to
the base methods through simple method forwarding and parameter mappings. On the
other hand, callin methods are roughly equivalent to advice weaving in existing aspect-
oriented languages. As well as at the callout methods, callin methods can be mapped
explicitly to base methods. However here three modifiers before, after and replace

control the relation between the role method and the base method which it is bound.
Callin methods may be defined in the Roles with a new modifier callin. Thus methods
marked with this modifier shall be bound to a base method, and the body of such callin
method should invoke “itself” by using the special name base. It causes the invocation
of the original method (the method in the base class that it has been bound).

In the code shown in listing 1.4, Role1 in MySubTeam binds itself to the base code
Staff, mapping for example the callout method payEuro(float) to the base method
payDM(float), changing the value of the parameter dm.

public team class MyTeam {

class abstract Role1 {

abstract void payEuro(float euro);

...

}

...

}

public class Staff { // a base class

public void payDM ( float dm) { ... };

...

}

public team class MySubTeam extends MyTeam {

class Role1 playedBy Staff {

void payEuro(float euro) -> payDM(float dm) with {

euro * 1.95338 - > dm

}

...

}

...

}

Listing 1.4: A binding with callout methods

Listing 1.5 shows the callin method log(String) that is bound to the method lo-
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gin(String, String) from the base class. Note that the methods do not have the
same signature, it is hidden from the method implementation in the component but the
second parameter is passed when it calls the base method.

...

class LogLogin playedBy Database {

callin void log ( String what) {

System.out.println("enter:" + what);

base.log(what.toLowerCase());

System.out.println("leave:" + what);

}

void log(String what) <- void login(String uid , String

passwd) with {

what <- uid;

}

}

...

(new Database()).login("Admin" , "Passwd");

...

Listing 1.5: The callin method implementation

The Object Teams approach presents good support to describe the concern using several
related abstraction with the use of the Role Classes and their implicit inheritance rela-
tionship that is one of the problems described in 1.2. Also it is not design invasive when
binding the component to the base code. It does not change the base class but instead
it just wraps the base class forwarding the methods as described by the developer.

Though Object Teams can express the separation of the expected contract implemen-
tation from the provided contract, this separation does not decouple the component
implementation from the binding. In other words, there is no support for using the
same binding with different implementations of the same component.

Another problem of this model is that it uses the same approach from AspectJ in order
to bind the component to the base code. The mappings of the components to the base
code are performed using the clause playedBy. This clause needs an abstraction from
the source code to be bound to the component, but as pointed out before it is not very
expressive.

1.3.2 ACC

The approach used in ACC is combine module systems with aspect-oriented technolo-
gies. The main abstraction in this model is the Aspectual Collaboration. This abstrac-
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tion can be used to describe components. This language construction is like a package
as it is known from Java, but it has the ability of be attached to other abstractions.
This concept will be clarified soon.

An Aspectual Collaboration consists of defining components through the definition of
their participants. The participants are similar to ordinary Java classes, but they can
express the expected contract of the participant. In order to express the expected
contract, participants can define two kinds of methods: expected and aspectual. The
expected methods look like ordinary abstract methods in Java, but they do not statically
inhibit instantiation of the participant. On other hand, aspectual methods can be seen
as the aspect-oriented approach of the model. These methods intercept the execution
of the methods which they are bound. In the prototype only around advices can be
expressed.

Listing4 1.6 shows the Aspectual Collaboration implementing the Observer design pat-
tern [3]. ObserverPattern is the Aspectual Collaboration and defines two partici-
pants Watched and Observer. The participant Watched provides an implementation of
getObservers() as a normal Java class, but this participant also defines the expected
method notify(Observer) and the aspectual method watchedOp(JP). Note that the
return type and parameter of this last method are undefined types; they will be defined
only when it is mapped to a concrete method.

collab ObserverPattern;

participant Watched {

aspectual RV watchedOp(JP jp) {{

Observer [] obs = getObservers();

for (int i = 0; i < obs.length; i++) notify(obs[i]);

return jp.invoke();

}}

expected void notify(Observer o);

Observer [] getObservers() {{ return observers ; }}

}

participant Observer {

Watched getWatched() {{ ... }}

}

Listing 1.6: Declaration of an Aspectual Collaboration

In order to bind the Aspectual Collaborations with the base code, they must be attached.
When attaching Aspectual Collaborations, their participants are bound to the base
abstractions that will play their roles during the collaboration. Expected methods may
be provided and the aspectual methods may be mapped at this stage.

4This example is shown in [13]
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When it is bound, as shown in listing 1.7, it maps its participants to the base classes, in
the example TextEditor will play the role of Watched in this collaboration providing an
implementation of the expected method notify(Observer) and mapping the method
edit to be intercepted by the aspectual method watchedOp.

collab ObservedBase;

extends Base;

attach ObserverPattern {

TextEditor += Watched {

around edit do watchedOp;

provide notify with

void ntfy ( Observer obs) {{

TextLogger tl = ( TextLogger)obs;

tl.logText(this.getText());

}}

}

TextLogger += Observer { }

}

attach ObserverPattern {

File += Watched {

around write do watchedOp;

provide notify with

void ntfy ( Observer obs) {{

FileLogger fl = ( FileLogger)obs;

f.logFile(this.getBytes ());

}}

}

FileLogger += Observer { }

}

Listing 1.7: Two bindings of the ObserverPattern

This approach deals well with the problem of expressing components as a collaboration
of related abstractions with the definition of the Aspectual Collaboration and its partic-
ipants. It also has support to separate the expected contract from the implementation
of the component, but as it was detected in Object Teams, it does not decouple the
implementation of the component from its bindings. The bindings are directly related
with a specific implementation of the component. On the other hand, the bindings
are not design invasive as AspectJ. They do not add the component types as super
types of the base abstractions. Again here, when binding the component to the base
program, an abstraction must exist in the base code to play the role of a participant
of the collaboration. However, this problem is better treated in ACC than in Object
Teams, because it can join more than one abstraction when binding a component.



Chapter 2

The Caesar Model

This chapter presents the Caesar model. Many features of the model are already imple-
mented. These implementations were realized in the context of two other Master theses
from Andreas Wittmann and Jürgen Hallpap. This chapter gives an overview of these
works. Obviously this chapter does not describes all the mechanisms in details, for more
details see [16] and [4]. Showing these mechanisms becomes necessary because they are
the basis for implementing Aspect Interfaces and their mechanisms in this thesis.

Caesar is a new programming language which introduces support to facilitate the sepa-
ration of concerns of the applications into reusable software blocks. The purpose of the
language is to provide support for allowing the developers to face with the problems
described in 1.2, and for giving more flexibility to the join point interception model of
current aspect-oriented language such as AspectJ.

With Caesar, crosscuting concerns become modular, thereby allowing them to be grouped
into components. On the other hand, it facilitates the integration of such components
with existing software in a no invasive fashion. The implementation of Caesar is an ex-
tension of the Java programming language. All functionalities of that language are also
available in Caesar, and all bytecode produced by the Caesar compiler is Java Virtual
Machine compatible.

Although aspect interfaces are part of the Caesar model, they are not presented in
this chapter because they are explained in details in chapters 3 and 4. In the next
sections the Caesar mechanisms are presented. Some mechanisms such as Virtual types
and Delegation are explained in more details because they are extensively used in this
thesis.

15
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2.1 Family polymorphism

Andreas Wittmann, in his thesis, developed a compiler called FamilyJ. This compiler
introduces the concepts of Family Polymorphism in the Java programming language and
is the base for other concepts of Caesar. This section gives an overview of this concept
and shows the approach used in FamilyJ to implement it on top of Java language.

Family polymorphism deals with grouping of types for allowing reuse and safety in
collaborations of group of objects. In [2] it is defined as “a programming language
feature that allows us to express and manage multi-object relations, thus ensuring both
the flexibility of using any of an unbounded number of families, and the safety guarantee
that families will not be mixed. This kind of polymorphism gives more power to the
compiler in order to ensure statically that the objects in a particular collaboration are
all pertaining to the same family of objects.

FamilyJ implements family polymorphism using the notions of virtual types and dele-
gation. The next subsections discuss the implementation of these two concepts and the
family polymorphism implementation itself in Caesar.

2.1.1 Virtual types

Nested classes allow defining classes that are in someway contained in an object. These
classes provide interesting features to implement family polymorphism. However, they
do not have themselves enough expressiveness to do so.

Family polymorphism requires the types of enclosing objects to be late bound. In a
nutshell, for implementing the grouping of types purposed for such technique, nested
types should be virtual similar to what is known as virtual methods. In a subclass rela-
tionship, virtual methods may be overridden by subclasses when they define a method
with the same signature as the virtual method in the super class. During compile time,
if a reference of the type containing the virtual method invokes the method, it will be
late bound, allowing the execution of the most recent implementation of the method in
the class hierarchy.

Virtual types give means to define nested classes that may be overridden by sub classes of
the enclosing classes. For example, if a class C defines a nested class N, and its subtype
C’ has also N declared, it will cause an implicit inheritance relationship between C.N
and C’.N. And the instantiation of N will be late bound similar as the execution of
virtual methods.

FamilyJ extends the semantics of Java nested types introducing two keywords to express
virtual types. These keywords are the two class modifiers: virtual and override.
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Listing 2.1 shows how the virtual types are defined and overridden in FamilyJ.

public class MediatorProtocol {

public virtual class Mediator {

public void colleagueChanged(Colleague c) { ... }

}

public virtual class Colleague {

public void setMediator(Mediator m) { ... }

public Object getState() { ... }

}

}

public class SubMediatorProtocol

extends MediatorProtocol {

public override class Mediator {

public void colleagueChanged(Colleague c) { ... }

}

}

...

MediatorProtocol protocol = new SubMediatorProtocol ();

MediatorProtocol.Mediator mediator = protocol.Mediator();

...

Listing 2.1: Virtual types in FamilyJ

The classes Mediator and Colleague, in example 2.1, are defined as virtual in Media-

torProtocol using the new class modifier virtual. Therefore, they can be overridden
in sub classes of MediatorProtocol. It is what happens in SubMediatorProtocol. In
this class, Mediator is overridden because it is defined with the same name as defined in
the super class, and it uses the new class modifier override. Note that, now SubMedi-

atorProtocol.Mediator inherits from MediatorProtocol.Mediator, hence methods
and fields may be overridden following the rules known from ordinary Java classes.

It may seem just syntactic sugar for developers do not have to explicitly create the
inheritance relationship. Late bound of nested types is not yet achieved. However, for
each virtual class that is defined, the compiler introduces a factory method into the
enclosing class. Hence, it uses the late binding available for methods to introduce late
bound instantiation of virtual classes. The code in listing 2.2 shows MediatorProtocol
and SubMediatorProtocol after these transformations.

Now in the transformed classes shown in listing 2.2, Mediator is late bound; the object
created will be of the type SubMediatorProtocol.Mediator. Obviously, developers
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do not have to use the factory method instead of new operator to create their objects.
The compiler automatically replaces the instantiation of virtual types by factory method
calls. Note that the factory methods return Object, it is because the return type cannot
be changed when overriding a method in Java. The solution was to introduce casts to
the right type when calling the factory methods as shown in listing 2.2. Again the casts
are automatically introduced by the compiler.

public class MediatorProtocol {

public class Mediator {

public void colleagueChanged(Colleague c) { ... }

}

public class Colleague {

public void setMediator(Mediator m) { ... }

public Object getState() { ... }

}

public Object createMediator () {

return new Mediator ();

}

public Object createColleague() {

return new Colleague();

}

}

public class SubMediatorProtocol

extends MediatorProtocol {

public class Mediator

extends MediatorProtocol.Mediator {

public void colleagueChanged(Colleague c) { ... }

}

public Object createMediator () {

return new Mediator ();

}

}

...

MediatorProtocol protocol = new SubMediatorProtocol ();

MediatorProtocol.Mediator mediator =

(MediatorProtocol.Mediator) protocol.createMediator ();

Listing 2.2: Transformed virtual types
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2.1.2 The delegation mechanism

The concept of virtual type brings a great flexibility for describing group of collabo-
rating classes. For example, the code in listing 2.3 inserts the virtual class Special-

Mediator in MediatorProtocol. As this class is a specialization of Mediator, and
keeping in mind the late bound instantiation of the virtual types discussed before, the
super class of MediatorProtocol.SpecialMediator in the instantiation shown in the
example is conceptually SubMediatorProtocol.Mediator instead of MediatorProto-
col.Mediator. But it cannot be achieved with the virtual types as they were described
above. Therefore, to allow late binding in such cases, delegation is used instead of in-
heritance to allow virtual classes to “inherit” from classes that are not known at compile
time.

Delegation gives the flexibility needed to implement virtual types. It is because delega-
tion deals with inheritance through collaboration of objects instead of statically defined
class relationships. The delegation used in FamilyJ is static, meaning that parents and
children cannot be changed at run-time, because the static approach is sufficient to deal
with the requirements of virtual types and dynamic delegation would lead to a more
complex implementation.

FamilyJ’s compiler performs some transformations in the base code in order to imple-
ment delegation. In the following, these transformations are discussed:

In FamilyJ all virtual types are transformed to have a reference to their parents. Hence,
all super class methods that are called for instances of subclasses of a class are delegated
to their parent object. For example, be C a virtual class and C’ another virtual class
that is subclass of C. After some transformations, the class C’ has a reference called
parent of the type C. Thus, if C defines a method m() which is not overridden in C’,
all m() calls for instances of C’ are delegated to the object parent.

Beyond adding the parent reference, the subclass relationship is replaced by a subtype
relation. It is required because subclasses may not know the real implementation of
their parent at compile time, what they know is the type of their parents. Therefore,
it implies that the classes are divided from their types. In terms of Java, it means that
class is now divided into a class which contains the implementation and an interface
which defines the type of the object. Hence, instead of subclasses referring to their
super class, they implement their super class interface.

Figure 2.1 shows these two transformations. On the left side, the classes before the
transformations are shown. This class hierarchy is transformed as shown on the right
side of the figure. The class Mediator is broken up into the interface Mediator and
the class Mediator_Impl, and a subtype relation is created between them. Now the
implementation is not part of the type Mediator anymore. Similar to Mediator, Spe-
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cialMediator is also divided into an interface and an implementation class, replacing
therefore the subclass relation between Mediator and SpecialMediator by the inheri-
tance among their interfaces.

public class MediatorProtocol {

public virtual class Mediator {

public void colleagueChanged(Colleague c) { ... }

}

public virtual class Colleague {

public void setMediator(Mediator m) { ... }

public Object getState () { ... }

}

public virtual class SpecialMediator

extends Mediator {

...

public void addColleague(Colleague c} { ... }

}

}

public class SubMediatorProtocol

extends MediatorProtocol {

public override class Mediator {

public void colleagueChanged(Colleague c) { ... }

}

}

...

MediatorProtocol protocol = new SubMediatorProtocol ();

MediatorProtocol.SpecialMediator mediator =

protocol.SpecialMediator();

...

Listing 2.3: A more complex virtual type definition

In the transformed code of figure 2.1, one can also see the reference in subclasses to
their parent. The class SpecialMediator_Impl has a reference of Mediator which is
used now to delegate method calls. Therefore the method calls for methods that are
implemented in Mediator and are not overridden in SpecialMediator in the original
code will be forwarded to the right implementation through the reference parent by
instances of SpecialMediator_Impl.

These transformations enable the structure for delegation, but delegation is not achieved
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<<interface>>

Mediator

Mediator_Impl

Mediator

SpecialMediator <<interface>>

SpecialMediator

SpecialMediator_Impl

parentparent

Figure 2.1: Class transformations for delegation

yet only with this structure. With this structure it is possible to forward methods to
the parent reference, but alone it does not allow methods to be dispatched to the right
objects, using the terms introduced before methods are no longer late bound anymore.

For example, in listing 2.4 if an instance of SpecialMediator receives a call for col-

leagueChanged(Colleague c), it will forward the call to its parent. The implementa-
tion of the method colleagueChanged(Colleague c) in the parent calls the method
getColleagues(Colleague c). This call will be dispatched to the wrong implementa-
tion since the implementation reached will be that in the class Mediator instead of the
implementation in the class SpecialMediator that is the type of the original receiver
of the method call. Therefore FamilyJ does more transformations in the base code to
achieve delegation. Now the transformations are performed for methods.

The approach used in FamilyJ to avoid this problem is adding a new method for each
method defined in the virtual class. These new methods contain all method parameters
plus a parameter that is the reference to the first receiver of the method call. This new
parameter, called self in FamilyJ, plays the same role as this in Java. Therefore, the
methods are now dispatched by the subtypes to this new implementation of the method,
passing itself to be bound with self.

Using only this new method to avoid the dispatching problem would cause copies of the
same method implementation in the classes increasing the complexity of the transfor-
mations. For this reason, FamilyJ breaks up each method into three methods: the self
context method with the parameter self, the implementation method also with the
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parameter self and the method with the signature as it was defined by the developer.
Hence, the method implementation is kept in just one method, the implementation
method, and the other two methods just forward their execution to such method.

public class MediatorProtocol {

public virtual class Mediator {

...

public void colleagueChanged(Colleague c) {

...

Colleague [] collegues = getColleagues(c);

...

}

public Colleague [] getColleagues(Colleague c) { ... }

}

public virtual class SpecialMediator

extends Mediator {

...

public Colleague [] getColleagues(Colleague c) { ... }

}

}

Listing 2.4: Wrong method dispatching

Listing 2.5 shows how the code of the method colleagueChanged(Colleague c) shown
in 2.4 would look like after these transformations1. The implementation method col-

leagueChanged_implementation(Colleague c) now encapsulates the implementation,
which is the same as it was originally implemented but every reference for this which
act as a receiver of a public method is replaced by self. The self context method col-

leagueChanged_selfContext(Object self, Colleague c) just forwards the method
call to the implementation method passing the parameter self as it was received, adding
just the cast to the right self type. And the method with the original signature for-
ward the execution to the implementation method passing the current method receiver
as self.

This implementation has yet a problem: self context methods and original methods
would have to be copied for all abstractions of the class hierarchy in a complex way,
because it would have to look for which methods would have to be delegated to the
parent, and which one would be executed by itself. Beyond that, the class hierarchy
would have to be recompiled whenever a protocol of some class in the hierarchy changes.

This problem is resolved in FamilyJ creating another abstraction from the virtual classes:
the proxy classes. For each virtual class therefore is also created a proxy class. These

1The class transformations discussed before are not shown because they would pollute the listing
with code that is not necessary to understand the method transformations
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classes implement the protocol of the virtual classes providing the implementation of
these two kinds of methods. The methods defined with the original signature forward
now the execution to the self context method, passing the receiver (this) as the self
parameter, and the self context methods defined in these classes delegate the execution
to the parent reference, passing self as received.

public class MediatorProtocol {

public virtual class Mediator {

...

//Method with the original signature

public void colleagueChanged(Colleague c) {

colleagueChanged_implementation(this , c);

}

//Self context method with the self parameter

public void colleagueChanged_selfContext(Object self ,

Colleague c) {

colleagueChanged_implementation(( Mediator)self , c);

}

//Original implementation of the method , but replacing

this by self.

private final void colleagueChanged_implementation(

Mediator self , Colleague c) {

...

//Calls getColleagues(c) in self instead of this

Colleague [] collegues = self.getColleagues(c);

...

}

...

}

...

}

Listing 2.5: After the method transformations

Hence FamilyJ performs this new class transformation that implies in another relation-
ship. The virtual classes now have an inheritance relationship with the proxy class of
their super virtual class. Figure 2.2 shows in the left side the original code, and the right
side illustrates the original code after all the transformations discussed, the method m()

was used instead of colleagueChanged(Colleague c), as it has been used, for reasons
of space.

For the classes taking advantage of the delegation mechanism some restrictions2 have

2Actually, the restrictions are not necessary but it was chosen in [16] to simplify the process.
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Figure 2.2: Code structure after the transformations

to be respected. The classes that use the delegation mechanism must have a clean
interface. Clean classes, or classes which have a clean interface, are another type of
class in FamilyJ. The clean classes are defined using a new class modifier: clean, and
all transformations discussed in this section to enable delegation for virtual classes are
performed also for this kind of class. Therefore, not only virtual and override classes are
able to use the advantages of the delegation mechanism. Any class which respects the
restrictions of clean classes and is defined as clean (marked with the clean modifier)
uses delegation instead of ordinary inheritance. Since virtual and override classes use
delegation, it implies that they must be clean as well, therefore they must respect the
restrictions.

A class is declared to have a clean interface if it respects the following restrictions:

• it does not declare fields with visibility other than private;

• it does not declare methods with visibility other than public or private;

• it references private members only on this and never on different instances of same
class;

• it inherits another clean class or no other class;
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• it is super class of another clean class or no other class.

Beyond that, for every constructor defined in clean classes, implicitly or explicitly, a new
constructor which receives the parent reference of the object is added. This new con-
structor has the implementation of the original constructor, and the original constructor
now does not have implementation anymore, but just a call to this new constructor,
passing as parent a reference for a fresh object of the class marked to be super class of
the current class by the developer. This is to allow the parent reference initialization;
since this reference is immutable during the execution, it has to be initiated by the con-
structors. For example, listing 2.73 shows the clean class MediatorProtocol defined in
2.6 after the constructor transformation.

public clean class MediatorProtocol {

...

public MediatorProtocol(String name) {

this.name = name;

}

...

}

public clean class SubMediatorProtocol

extends MediatorProtocol {

...

public MediatorProtocol(String name) {

super(name);

}

...

}

Listing 2.6: MediatorPrototocol as a clean class

Although the implementation of delegation as presented so far deals well with many
cases, it fails yet in more complex cases. The delegation implementation described in
this section is flexible enough to allow that subclasses of some clean class act as parent
of each other. For example, be C a clean class, and C’ and C” clean subclasses of C.
C” can act as parent of C. Therefore, when an instance of C’ c’ delegates a method to
its parent, it would pass itself as self parameter, but even that a reference of C” is set
as parent of c’, c’ is not of the type C”, hence methods defined in C” would not be able
to call methods that are not defined in C but only in C”.

Thus, in order to avoid this problem, self is calculated at runtime. FamilyJ has a
mechanism which creates a method dispatcher at run time. This dispatcher is a reference

3Again here, this is a pseudo code, the code generated by the class and method transformations
were omitted
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of a class created on-the-fly, which is of the type of the parent reference. This object has
ability to dispatch methods that are defined only in the parent to the parent reference,
and others to the original receiver of the method call. Therefore, in a super call, explicit
or implicit, the self parameter passed is calculated at runtime.

public clean class MediatorProtocol {

...

public MediatorProtocol(String name) {

this(new Object() , name);

}

public MediatorProtocol(Object parent , String name) {

...

this.name = name;

}

...

}

public clean class SubMediatorProtocol

extends MediatorProtocol_Proxy {

...

public SubMediatorProtocol(MediatorProtocol parent ,

String name) {

super(parent);

}

public SubMediatorProtocol(String name) {

this(new MediatorProtocol(name));

}

...

}

Listing 2.7: Constructor transformation of clean classes

2.1.3 Family polymorphism implementation

All mechanisms described in last sections provide the base for the implementation of
family polymorphism in Caesar. Classes which enclose virtual classes then can serve as
group of classes. Family polymorphism allows checking at compile time if the families,
or group of objects, are not mixed.

FamilyJ allows references of enclosing classes to be part of the reference type of their
virtual class instances. For example, listing 2.8 contains the definition of two possible
family types: MediatorProtocol and SubMediatorProtocol. They are possible family
types because they enclose virtual classes. Therefore, their instances can be part of the
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reference type of instances of their virtual class.

public class MediatorProtocol {

public virtual class Mediator {

public void colleagueChanged(Colleague c) { ... }

...

}

public virtual class Colleague {

...

}

}

public class SubMediatorProtocol

extends MediatorProtocol {

....

public override class Colleague {

...

}

}

...

//Family definition

final MediatorProtocol family = new SubMediatorProtocol ();

//Another family

final MediatorProtocol anotherFamily = new

MediatorProtocol ();

//A type definition using family

family.Mediator mediator = family.new Mediator();

//Now using family2

anotherFamily.Colleague colleague =

anotherFamily.new Colleague();

//It is not allowed by the compiler

anotherFamily.Colleague anotherColleague =

family.new Colleague();

//It is ok!

mediator.colleagueChanged(family.new Colleague());

//It generates a compile time error ,

//since colleague belongs to another family

mediator.colleagueChanged(colleague);

...

Listing 2.8: Families in FamilyJ
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For example, in the bottom of listing 2.8, two families are created: family and anoth-

erFamily. Thus these families now are able to belong to the reference type of Mediator
and Colleague instances. It is what happens following the code, for example, family
is used to be part of the type of mediator.

Defining these families hence allows the compiler to check if the code is not mixing fam-
ilies. For example, the compiler does not allow anotherColleague to be instantiated.
It would mix the families, because the type of this reference defines that it belongs to
anotherFamily, and the developer is trying to assign a reference of the family family

instead. Note that families can be polymorphic, the type of family is MediatorPro-

tocol in the code, but an object of the type SubMediatorProtocol is assigned to it.

Defining reference types using families is available when declaring a reference type of a
virtual class in any part of the code. For example, it could be defined as a parameter
type, a local variable or a field in this fashion. It would just have to respect the same
rules, therefore the compiler can check if the code respects the families in all these places
as well.

2.2 Dynamic join point interception

This section gives a brief overview of the concept of dynamic join point interception
applied in Caesar. This concept was introduced in the language by Jürgen Hallpap in
his Master thesis [4]. His implementation provides language means to define when an
aspect is applied. The term aspect used in this section has the same meaning as in
AspectJ, since the implementation of the join point interception (JPI) in Caesar is an
extension of AspectJ’s model on top of FamilyJ.

Hence Caesar has an enhanced JPI model. Beyond all features provided by the JPI
model of AspectJ (such as joinpoint and advices definition), Caesar gives language
support to allow aspects to be deployed dynamically. Besides, Caesar does not need a
special crosscut abstraction, like aspect in AspectJ, to define joinpoints and advices.
In Caesar they can be declared in ordinary classes.

For an aspect to become active in Caesar, it must be deployed through the language
construction deploy(aspect). After this statement, a block is defined, and only the
code surrounded by this block will be affected by the aspect. Listing 2.9 shows how
the aspects can be deployed in Caesar. In the bottom of this listing the aspect that
will be used is chosen and deployed. So, in this code the first time the method col-

leagueChanged(Colleague) is called, it is affected by the aspect chosen while the
second one is not.
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public class ChangeAspect {

...

pointcut change(Mediator m, Colleague c):

call (* colleagueChanged (..) ) && target(m);

}

public class LoggingChangeAspect

extends ChangeAspect {

...

before(Mediator m, Colleague c): change(m, c) {

out.println(c + ‘‘ changed and ’’ + m + ‘‘ called.’’);

}

}

public class CountingChangeAspect

extends ChangeAspect {

...

before(Mediator m, Colleague c): change(m, c) {

count ++;

}

}

...

//Create the aspect to be applied.

ChangeAspect aspect = null;

if ( wantsLogging)

aspect = new LoggingChangeAspect ();

else if ( wantsCounting)

aspect = new CountingChangeAspect();

//Deploy the chosen aspect

deploy(aspect) {

...

//If an aspect was chosen , it is aplied here

mediator.colleagueChanged(colleague);

...

}

...

//here there is no aspect deployed anymore

mediator.colleagueChanged(colleague);

...

Listing 2.9: Aspect deployment
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Listing 2.9 presents also another important feature of the model: the Aspectual Poly-
morphism. The Caesar model gives flexibility enough for aspect types to be chosen
dynamically, for example, if the variable wantsLogging is true, the aspect instantiated
is LoggingChangeAspect, otherwise if wantsCounting is true, CountingChangeAspect
is created.

Note that the aspect to be deployed can even be null. The semantics of a null aspect
is the same as when there is no aspect deployed, in other words, the code inside the
deploy block is not affected by any aspect.



Chapter 3

Language support for Aspect

Interfaces

As introduced before, this thesis provides the implementation of aspect interfaces and
the concepts involved in context of Caesar. This chapter explains in more details these
concepts and shows what was included into the language in order to allow developers
to express the concepts.

The following sections are divided by the core concepts of aspect interfaces that were
implemented during this thesis. Section 3.1 presents the aspect interfaces, followed
by sections 3.2 and 3.3 which show how the aspect interfaces are implemented using
Caesar. After that, sections 3.4 and 3.5 describe how to use aspect interfaces and their
implementations and bindings.

3.1 Aspect Interfaces

Defining generic functionalities is not a simple task. Using current language technologies
it gets worse since they do not have expressiveness enough to do so. As pointed out in
section 1.2, even though using current aspect-oriented models such as AspectJ brings
a great advance in modularizing concerns, the structure of the aspects does not follow
the concepts of extendibility and reusability.

The notions of aspect interfaces bring new kinds of abstraction to the language to de-
scribe generic functionalities. Aspect interfaces are responsible to define the protocol of
such functionalities allowing them to be defined as self-contained components. These in-
terfaces let developers define concerns of applications detached from each other, thereby
avoiding the problems of modularity in such abstractions.
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Beyond defining the provided behaviour of components as ordinary interfaces do, aspect
interfaces have the ability to describe what components expect from their clients, de-
coupling hence aspect implementations and bindings that can now be defined in distinct
modules. Though they have this special ability, they behave as ordinary interfaces. It
allows both implementations and bindings to use the whole protocol as their own.

In Caesar, an aspect interface can be defined using the common Java’s interface dec-
laration clause and adding an interface modifier: aspect. Therefore interfaces marked
with this new modifier play the role of describing how the components will communicate
with their clients and vice-versa. As common interfaces, aspect interfaces can be used
in any place of the code to define reference types.

Since the whole functionality cannot always be described using just one abstraction,
but a set of collaborating participants instead, aspect interfaces can contain nested
interfaces to describe a set of related abstractions. Any interface declared inside an
aspect interface is implicitly an aspect interface, even if it is not marked with the
modifier aspect.

Nested aspect interfaces become part of the enclosing aspect interface. The semantics
of these interfaces can be seen as the semantics of methods defined in interfaces. Their
implementation must be supplied by their implementers. Thus as well as implement
methods of the interface, bindings and implementations of an enclosing aspect interfaces
must provide implementation of the nested interfaces.

In addition to that, nested aspect interfaces can be overridden by subtypes of their
enclosing interfaces. Due to FamilyJ’s virtual classes, it causes an implicit inheritance
relationship between them, and the implementers must provide implementation of the
most specific nested aspect interface in the hierarchy. In order to override a nested
aspect interface, sub interfaces of the enclosing aspect interface must define a nested
interface with the same name, using the FamilyJ’s class modifier override. Therefore,
it follows the same rules discussed for virtual classes in FamilyJ.

Listing 3.1 shows an example of an aspect interface. The interface MediatorProtocol

is an aspect interface since it is defined with the modifier aspect. It defines the nested
aspect interface Mediator. And this interface is overridden by the sub aspect interface
SubMediatorProtocol using the interface modifier override.

Defining an interface as aspect interface implies that all methods defined on it must
be marked with one of the two new method modifiers: expected or provided. These
modifiers hence allow choosing which methods will be implemented by the component
and which ones are going to be provided by the clients of such component.

Listing 3.2 shows the aspect interface definition for the Mediator pattern which is used
during the rest this chapter. MediatorProtocol is an aspect interface which defines
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two nested aspect interfaces: Mediator and Colleague, which are the participants
of the pattern. Therefore implementations and bindings of MediatorProtocol must
provide implementation of Mediator and Colleague. The method colleagueChanged(

Colleague colleague) defined by Mediator is dependent on the specific context that
the aspect interface gets bound to, therefore it was defined expected. On the other
hand, setMediator(Mediator mediator) is generic enough to be implemented by the
component, thus it was defined provided.

public aspect interface MediatorProtocol {

//it is an aspect interface too

public interface Mediator {

...

}

...

}

public aspect interface SubMediatorProtocol

extends MediatorProtocol {

//This interface overrides MediatorProtocol.Mediator

public override interface Mediator {

...

}

}

Listing 3.1: Aspect interface inheritance

public aspect interface MediatorProtocol {

public interface Mediator {

//this method must be implemented by the client.

public expected void colleagueChanged(

Colleague colleague);

}

public interface Colleague {

//this method must be implemented by the component.

public provided void setMediator(Mediator mediator);

public provided Mediator getMediator();

public expected String getState();

}

}

Listing 3.2: Aspect interface of the Mediator pattern
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Aspect interfaces describe the type of generic functionalities. As ordinary interfaces,
they do not provide any implementation but just describe the protocol. It decouples
the functionality abstraction from any specific implementation detail. Besides it sep-
arates particular component implementations from their clients allowing them to use
any implementation of such component.

3.2 Aspect Implementations

Aspect implementations are the implementation of a generic functionality described
by an aspect interface as pluggable component. They realize the aspect interface by
providing implementations for the provided contract defined on it. These classes are
called implementation classes in this work.

The main purpose of implementation classes is to separate the component implemen-
tation from the component definition itself, or aspect interface using the terms of this
work. It is because for a single component there may be many implementations. With
that, binding classes can be decoupled from a specific implementation of the component.
Thus, the model does not suffer from the problem described in section 1.2 of AspectJ’s
solution where binding classes are directly attached with a particular component im-
plementation.

In Caesar, implementation classes are defined using the language construction provides.
This clause is defined in the same way as Java’s extends clause but the type defined at
the clause must be an aspect interface. Using this clause when defining a class implies
a subtype relationship between the class and the aspect interface; in addition to that, it
must implement all methods marked with the provided modifier in the aspect interface.

Furthermore, implementation classes must implement all nested aspect interfaces de-
fined in the aspect interface that it provides. For doing so, this class has to provide
nested classes with the same name of the super nested aspect interfaces, similarly as it
is done with the methods defined in the interface. So, nested implementation classes
do not need to define the provides clause since it is implicitly achieved by matching
names. Besides that, they cannot declare other inner classes than those ones defined in
the aspect interface.

For example, listing 3.3 shows MediatorProtocolImpl which is an implementation
of the aspect interface MediatorProtocol defined in the last section. In this code,
the aspect interface Colleague is implemented just because MediatorProtocolImpl

defines a nested class with the name Colleague. Therefore, in spite of the subtype
relationship between MediatorProtocolImpl and MediatorProtocol, the provides

clause implies that MediatorProtocolImpl.Colleague is subtype of MediatorProto-
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col. Colleague. Note that Mediator was not implemented in this class; it is because
this abstraction does not define any provided method.

public class MediatorProtocolImpl

provides MediatorProtocol {

//Here above , the class defines that it is

//the implementation of MediatorProtocol

//Collegue is implemented here

public class Colleague {

private Mediator mediator;

public void setMediator(Mediator mediator) {

this.mediator = mediator;

}

public Mediator getMediator() {

return mediator;

}

}

}

Listing 3.3: Implementation class of the Mediator pattern

Implementation classes can be specialized. Subclasses of implementation classes become
implementation classes as well and can override methods as in an ordinary subtype
relationship, besides that they can also override the nested implementation classes.
Nested implementation classes have the same semantics as FamilyJ’s virtual classes.
Thus, they can be overridden using the same rules presented in the last section.

However, implementation classes on top of the class hierarchy cannot extend other
classes. In other words, if a class defines the clause provides, it is forbidden to define
the clause extends. Besides it cannot provide implementation of more than one aspect
interface as well as it cannot bind (this concept will be highlighted soon) an aspect
interface; other ordinary interfaces can be freely implemented in the same way as com-
mon classes do. In a nutshell, the provides clause can be seen as an extends clause
with different semantics.

Another restriction of implementation classes is that they cannot define other nested
classes than those which implement the nested aspect interfaces of their aspect inter-
faces. In other words, they can declare only implementation nested classes. However,
as their subclasses are not transformed in the same way as the classes that directly
declare the provides clause, their subclasses are allowed to define any nested class it
is desired. The transformations applied in these classes will be described in chapter 4.
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3.3 Binding classes

Binding classes are responsible to adapt the component to a specific application that it
gets integrated into. They translate the component protocol to the application concepts.
In other words, they implement the expected contract of the aspect interface mapping
it to the base application.

In Caesar, it is defined by means of the binds clause. Similarly as the provides clause,
it is used in the same way as Java’s extends clause and creates a subtype relationship
between the aspect interface and the binding class which defines the clause, as well as
obliges the class to implement the nested aspect interfaces. However, binding classes
implement methods defined with the expected modifier in the aspect interface.

Unlike in implementation classes, nested binding classes must be defined using the
binds clause instead of be declared with the same name of the aspect nested interface.
Still, they do not need to be defined with the same name. It allows binding classes to
provide more than one nested binding of a single nested aspect interface.

Listing 3.4 shows how a binding class looks like in Caesar. In this code, the class
MediatorProtocolBinding is marked to bind the aspect interface MediatorProtocol.
As it can be seen, it defines more than one nested binding to the aspect interface
Mediator.

Similar to implementation classes, binding classes can have subclasses. All features
and restrictions discussed for implementation classes are valid for binding classes as
well. Therefore, it cannot extend other class or implement or even bind other aspect
interfaces. Furthermore, their subclasses can also override their nested classes.

Another important feature of nested binding classes is that they can wrap another class.
As presented in the beginning of this section, binding classes adapt a component to a
particular application. In order to facilitate that, another language construction was
inserted: the wraps clause.

Defining a binding class with the wrap clause maps the binding to a specific class of
the base code. Thus, every binding class that wraps a base class can access methods
of such class by means of wrappee. Hence, inside the scope of the wrapper class every
public methods of that base class can be directly accessed as a normal method call, for
example wrappee.getName() in listing 3.5.

Actually, the wrapper declaration:

public class MediatorBinding ... wraps Label {...}}

is just syntactic sugar for:
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public class MediatorBinding ... {

private Label wrappee;

public MediatorBinding(Label wrappee) {

this.wrappee = wrappee;

}

...

}

Therefore, when creating instances of wrapper classes a reference of the wrappee class
must be provided. Besides that, it is forbidden for wrapper classes to declare construc-
tors with parameters.

public class MediatorProtocolBinding

binds MediatorProtocol {

//Here above , the class defines that it is

//the binding class of MediatorProtocol

public class MediatorBinding

binds Mediator {

public void colleagueChanged(

Colleague colleague) {...}

}

public class SpecialMediatorBinding

binds Mediator {

public void colleagueChanged(

Colleague colleague) {...}

}

public class ColleagueBinding

binds Colleague {

public String getState () {...}

}

}

Listing 3.4: Binding class in Caesar

In listing 3.5, a possible binding implementation1 of MediatorProtocol is declared.

1A complete realization of the component as it was defined in AspectJ would need to use the
concepts of JPI of the language, but as it is out of the scope of this work, it is not shown here.
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In this code, it is used the same application used in section 1.2 for the AspectJ’s so-
lution. In this collaboration, Button is wrapped by ColleagueBinding that binds
MediatorProtocol.Colleague. It means that Button plays the role of Colleague in
this collaboration as well as Label plays the role of Mediator.

public class MediatorProtocolBinding

binds MediatorProtocol {

public class MediatorBinding

binds Mediator

wraps Label {

//It is a wrapper of Label

public void colleagueChanged(

Colleague colleague) {

//Here it access a method of Label

wrappee.setText(colleague.getState () + ‘‘clicked ’’);

}

}

public class ColleagueBinding

binds Colleague

wraps Button {

//It wraps Button

public String getState () {

return wrappee.getName();

}

}

}

Listing 3.5: Binding class of MediatorProtocol

Note that, though in the example all nested bindings explicitly declare the wraps clause,
it is not necessary. Binding nested classes can be defined just with the binds clause and
map the component to a concept of the base application which does not have a specific
abstraction. Thus, it allows sophisticated mappings, which is one of the problems
identified in section 1.2 with the AspectJ’s solution. Besides that, these mappings are
no invasive. It does not physically change the structure of the abstractions of the base
code.

With binding classes the model implements the concept of on-demand remodularization
outlined in the beginning of this document. Binding classes are the abstractions that
allow the decomposition that is achieved only when the component is created using an
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implementation and a binding class. This combined with the join-point interception of
the language can directly affect the behaviour of the base application.

3.4 Weavelet classes

For a component to become effective it must combine an implementation and a binding
class. Weavelet classes are responsible for joining these two abstractions in order to
create a class that is valid to be instantiated.

In Caesar, weavelet classes are declared using a special extends clause. It differs from
the common extends clause because the type defined in this clause must be an aspect
interface followed by an implementation and a binding class between parenthesis. Hence,
they allow the creation of the component bound with the application by means of the
binding class defined in the clause.

Declaring a weavelet class implies that beyond weaving the binding class with the imple-
mentation class defined in the extends clause, all nested implementation and binding
classes of such classes are implicitly joined as well, without needing to declare it inside
the weavelet body.

For example, in listing 3.6, the weavelet class MediatorProtocolWeavelet extends the
aspect interface MediatorProtocol providing implementation for it with the methods
declared by the implementation class MediatorProtocolImpl and the binding class
MediatorProtocolBinding. Thus, the component now can be instantiated as shown
in the bottom of the code.

//This is a weavelet class ,

//since it uses the special extends clause

public class MediatorProtocolWeavelet

extends MediatorProtocol(MediatorProtocolImpl ,

MediatorProtocolBinding) {

}

....

MediatorProtocolWeavelet component = new

MediatorProtocolWeavelet();

....

Listing 3.6: Weavelet class of MediatorProtocol

Having a reference of a weavelet instance it is possible to create the nested aspect
interfaces implemented by the component. The name of the objects to be created are
those defined in the binding class, because since it can declare more than one nested
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binding of the same nested aspect interface, it would be not possible to know which
class should be used in that instantiation.

References of weavelet classes become families like those ones discussed in chapter 2 for
FamilyJ’s implementation. Therefore reference type definitions and object creation of
nested classes of the component must respect the rules of family polymorphism. With
that, the compiler ensures that nested components are not being mixed.

Listing 3.7 shows how components are instantiated. The reference mediator, for exam-
ple, is well typed, because the reference of the type definition is the same as that used
to instantiate MediatorBinding. However, the reference colleague does not respect
the rules of family polymorphism; hence it is not allowed by the compiler. Note that a
reference of Label, for example, is passed to the constructor of MediatorBinding. It is
because this class wraps Label and therefore, as discussed before, requires a reference
of such class.

...

//Creates two components

final MediatorProtocol component = new

MediatorProtocolWeavelet();

final MediatorProtocol anotherComponent = new

MediatorProtocolWeavelet();

...

//Creates a new nested component

component.Mediator mediator = component.new

MediatorBinding(label);

...

//This is not allowed because the families are different

anotherComponent.Colleague colleague = component.new

ColleagueBinding(button);

....

Listing 3.7: Component creation

3.5 Wrapper Recycling operator

With the new language constructions shown in this chapter, it is possible to express
generic functionalities and bind them to a particular application, but there is a problem
concerning the object creation yet.

Section 3.3 states that binding classes may wrap abstractions from the base code. It
helps developers to join component roles with the application without changing the
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modular structure of the base code. Hence in spite of avoiding the problem identified
in the AspectJ’s solution, it gives means to specify more sophisticated mappings since
binding classes are not needed to wrap explicitly one abstraction but can define their
own logic for a particular concept in the application which may not be declared in an
abstraction.

However, using wrappers instead of changing the structure of the code leads to a prob-
lem. As the remodularization is not introduced into the base application but just
decorates abstractions or concepts, whenever the remodularization must be applied in
certain collaboration, new instances of the wrappers have to be created, even if the the
abstraction or abstractions which play a certain role in the collaboration have already
been wrapped by the component.

This problem causes that wrappers lose their state and identity, therefore using wrappers
in this way the components would not be able to maintain internal structure losing
important features of the model.

In order to avoid this problem, Caesar provides a new operator to create wrappers:
the wrapper recycling operator. This operator plays the same role of the new Java’s
operator, but they only create new instances of the wrappers, if the objects passed to
the constructor have not been wrapped before by the component of that collaboration.

The wrapper recycling operator is activated whenever the developer declares a statement
that calls a constructor as a normal method call, without using the operator new. For
example component.MediatorBinding(label) in listing 3.9.

This operator is available for all nested binding classes, even if it does not explicitly
declares a wraps clause. The semantics of the wrapper recycling operator in these cases
is the same as in the cases that the bindings are explicitly declared wrappers. If the
parameters passed have already been passed once, it does not create a new reference of
the binding class.

The wrapper recycling operator is object-oriented. If there are two objects of the same
class and these two objects use the wrapper recycling operator to instantiate objects
of their nested classes, even that the references passed to the constructor point to the
same object, new wrappers will be created. For example, mediator and mediator4 in
listing 3.9 are references to distinct objects.

Before presenting an example of using wrapper recycling, a new binding of Mediator is
introduced because both bindings MediatorBinding and ColleagueBinding declared
in section 3.3 are explicitly declared wrappers. Hence it would be not possible to show
the use of the operator for ordinary binding classes. Listing 3.8 shows this new binding
SpecialMediatorBinding. Note that it is declared inside MediatorProtocolBinding

that was presented before. All other abstractions remain the same as declared.
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public class MediatorProtocolBinding

binds MediatorProtocol {

....

public class SpecialMediatorBinding

binds Mediator {

private Label label;

private String name;

public SpecialMediatorBinding(

Label label , String name)

{

this.label = label;

this.name = name;

}

public void colleagueChanged(

Colleague colleague) {

label.setText(name + ‘‘:’’ + colleague.getState()

+ ‘‘clicked’’);

}

}

...

}

Listing 3.8: New binding for Meditor

Now with this new binding, some examples of wrapper recycling can be shown. In listing
3.9, some references of MediatorBinding and SpecialMediatorBinding are defined.
For example mediator and mediator2 which are initialized with the return of the
wrapper recycling call. If after these statements the references are compared (mediator
== mediator2) the result of the computation is true, they are references of the same
object. It happens also if specialMediator and specialMediator2 are compared,
however it will be false if specialMediator is compared with specialMediator3. As
discussed, the wrapper recycling is object-oriented, therefore the references mediator

and mediator4, for example, point to different objects.

Hence, using this new operator, instances of the components can be maintained allowing
the components to have internal state and remain their identity. Therefore, it avoids
the problems outlined in the beginning of this section without changing other parts of
the model described here.

...

final MediatorProtocol component = new

MediatorProtocolWeavelet();
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final MediatorProtocol anotherComponent = new

MediatorProtocolWeavelet();

//Creates a new nested component

component.Mediator mediator =

component.MediatorBinding(label);

//Here , it will not create a new MediatorBinding

component.Mediator mediator2 =

component.MediatorBinding(label);

//It creates a new MediatorBinding again

component.Mediator mediator3 =

component.MediatorBinding(new Label());

//It also creates a new MediatorBinding

anotherComponent.Mediator mediator4 =

anotherComponent.MediatorBinding(label);

//It is true

mediator == mediator2;

//It is false

mediator2 == mediator3;

//It is false as well

mediator == mediator4;

String name = ‘‘Button’’;

//Creates a new SpecialMediatorBinding

component.Mediator specialMediator =

component.SpecialMediatorBinding(label , button);

//Does not create a new reference

component.Mediator specialMediator2 =

component.SpecialMediatorBinding(label , button);

//Creates a new reference again

component.Mediator specialMediator3 =

component.SpecialMediatorBinding(new Label , button);

//It is true

specialMediator == specialMediator2;

//It is false

specialMediator == specialMediator3;

...

Listing 3.9: Using wrapper recycling operator

Beyond creating the wrappers in this way, developers are able to disassociate a base
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object from its respective wrapper. It allows wrappers to be instantiated even if they
have already been created once. This is achieved by means of the new wrapper destructor
operator : ~. Syntactically, using this operator in the language is very similar with the
wrapper recycling operator. The only difference is that before the wrapper type to be
created the operator ~ must be inserted.

The semantics of this operator is that if the parameters passed to the operator have
already been used to create a wrapper, it destroys this wrapper. Therefore, when a new
wrapper recycling call is performed with those parameters, a new wrapper is created.
Otherwise, if the parameters have not been passed yet, it does not have any effect.

For example, listing 3.10 presents the use of such operator. After creating mediator,
it calls the destructor of such wrapper, thus mediator2 is a reference of new wrapper.
Note that it destructs the wrappers only in the context of the component that they were
created. For example, after creating a wrapper using anotherComponent, it destroys
the wrapper instantiated using the component reference. If the wrapper recycling is
used again in the context of anotherComponent, it does not instantiate a new wrapper.

...

final MediatorProtocol component = new

MediatorProtocolWeavelet();

final MediatorProtocol anotherComponent = new

MediatorProtocolWeavelet();

//Creates a new wrapper

component.Mediator mediator =

component.MediatorBinding(label);

//It removes the wrapper of label

component.~ MediatorBinding(label);

//Creates again!

component.Mediator mediator2 =

component.MediatorBinding(label);

//Now it does not instantiate the wrapper

component.Mediator mediator3 =

component.MediatorBinding(label);

//It is false now!

mediator == mediator2;

//But it is true

mediator3 == mediator2;

//Creates because it is anotherComponent
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anotherComponent.Mediator anotherMediator2 =

anotherComponent.MediatorBinding(label);

//Destroys the wrapper , but from the reference component

component.~ MediatorBinding(label);

//Now it does not instantiate the wrapper

anotherComponent.Mediator anotherMediator3 =

anotherComponent.MediatorBinding(label);

//Removes the wrapper

antoherComponent .~ MediatorBinding(label);

//Nothing happens here

antoherComponent .~ MediatorBinding(label);

...

Listing 3.10: Using wrapper recycling operator

Using wrapper recycling operator developers can manage the wrapper creation avoiding
the problems of lose identity and state of such wrappers. Besides that, the wrapper
destructor operator gives more control to them, allowing destroying the wrappers when
it is desired, thereby the wrapper destructor operator can be used to release the wrapper
objects for garbage collection.
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Chapter 4

Aspect interfaces in the Caesar

compiler

This chapter presents how aspect interfaces and their concepts presented in the last
chapter have been implemented in Caesar using the notions of virtual types and dele-
gation as presented in chapter 2.

The virtual types and delegation presented in section 2 are the basis for the imple-
mentation that has been performed during this thesis. However these mechanisms
themselves were not totally adapted to be directly used for the implementation of the
aspect interfaces. Therefore, this chapter discusses also the improvements that have
been implemented concerning virtual types and delegation implementations.

In the following, section 4.1 defines how the delegation mechanism has been used. Sec-
tion 4.2 describes the transformations in the Abstract Syntax Tree to allow using the
FamilyJ’s concepts in this implementation. The next section 4.3 shows how the compo-
nents are created at runtime. Section 4.4 discusses the improvements in the FamilyJ’s
implementation. In section 4.5 the approach used to implement the wrapper recycling
operator is presented. Finally, section 4.6 gives an overview of the source code additions
in the compiler.

4.1 Using the delegation mechanism

One of the main mechanisms for the concepts presented in this thesis is delegation.
Delegation is an important concept for implementing aspect interfaces because it allows
class hierarchies to be assembled at runtime without loosing late binding features. This
section shows how the delegation mechanism available in FamilyJ has been used to
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implement components using two separated abstractions.

As described in chapter 2, FamilyJ uses delegation to allow virtual classes to execute
the right method implementations when such classes do not know their super type
implementation at compile time. It permits, for example, a super class of a virtual class
to be overridden, because the class hierarchy is assembled depending of the context in
which the virtual class is instantiated.

This feature of FamilyJ’s model gives a clue of how aspect interfaces can be implemented.
But before showing the approach used to allow aspect interfaces in the model, some
features of the delegation mechanism available in FamilyJ are refreshed.

In that model, every method call that is not supported by the protocol of the receiver
of the message, but for the protocol of its super class, is delegated to the super class
instance that is defined at runtime. The super class implementation may be any class
that implements the clean interface of such a super class. Hence, it can obviously be an
instance of the super class itself, but it can also be an instance of any subclass of such
class.

When delegating a method call, FamilyJ provides an object to play the role of the
receiver of calls to methods defined in the same scope that the method is being executed.
This object, self in FamilyJ, is the first receiver of the message that has not been
performed in this scope (this in Java, for example).

The first thought which could arise when providing such object is passing itself to the
next method implementation if it is the first receiver of the message, or the object
that has been received in methods that have already been called through delegation.
However, as discussed before it would imply that, in some configurations, some methods
of the protocol would become disabled.

Therefore, in FamilyJ the object, and its class representation, to play this role is created
at runtime depending on the context that the method is being executed. The new class
created to represent this object implements the clean interface of the parent reference
of the object that is currently executing the method, providing implementation of the
methods of such interface by delegating the method to the right receivers.

For example, if the clean interface of the parent defines a method that is not defined
in the clean interface of the first receiver, it delegates the method to the current parent
reference, otherwise it delegates to the first receiver or the first object in the runtime
hierarchy that implements that method.

Now with these features elucidated, let’s try to map these features to the requirements
of execution of the component as they were described in this work. On one hand,
binding or implementation classes provide only part of the protocol of aspect interfaces,
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but on the other hand they can use the whole aspect interface protocol as their own.

Even though binding and implementation classes do not know about the existence of
each other, they know that they become available to be instantiated only when they
are woven with a class which implement the other part of their protocol. Besides
that, they have a common super type: the aspect interface. Hence an instance of the
implementation class, for example, can be set as parent of a binding object.

By setting the implementation object as parent of a binding instance, calls to provided
methods that are not implemented by the binding class are delegated to the parent
reference. The parent reference is an instance of the implementation class which does
implement the method. In this way, the requirement of binding classes call provided
methods can be achieved, but how can implementation instances call expected methods?

Note that the first receiver of method calls is always the binding instance because it is
the child object and is passed to the implementation object by means of the method
dispatcher instance. Therefore this object acts as self for all calls to methods that
are defined in the aspect interface. Thus all method calls for self that are defined
in the aspect interface performed by the implementation instance reach the binding
instance that executes the method if it is defined on it or calls the implementation
to execute otherwise. In this way, the expected methods are also bound to the right
implementation. So this is how implementation instances can call expected methods.

In order to show an example of these collaborations using delegation, a more complex
collaboration than that defined in the mediator pattern example is presented. The
expected method isAvailable() was added to the aspect interface MediatorProto-

col. This method is called by the implementation class in the method setMedia-

tor(Mediator) to ensure that the Colleague is available. Listing 4.1 shows the new
implementation of setMediator(Mediator) as well as the implementation of the new
expected method.

With this new implementation, it is possible to present a collaboration between a bind-
ing and a implementation instances using the approach introduced in this section. Fig-
ure 4.1 presents the collaboration diagram of an hypothetical setMediator(Mediator)
execution.

In this diagram, a client of the component sends the message setMediator(Mediator)

to the binding reference. This method is not implemented by the binding class since
it is a provided method, thus the method is delegated to the parent reference, which
was set with the implementation instance. When the setMediator(Mediator) method
calls isAvailable(), this message is sent to the binding instance that now has the
implementation of the method and executes it.
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//A special implementation with

//a more complex collaboration

public class SpecialMediatorProtocolImpl

provides MediatorProtocol {

public class Colleague {

private Mediator mediator;

public void setMediator(Mediator mediator) {

if ( isAvailable())

this.mediator = mediator;

}

...

}

}

public class MediatorProtocolBinding

binds MediatorProtocol {

//Implementation of the new protocol

//providing the new expected method implementation

public class SpecialColleagueBinding

binds Colleague

wraps Button {

public boolean isAvailable() {

return wrappee.isEnabled();

}

...

}

...

}

Listing 4.1: New implementation and binding classes

Note that it is not passing directly the first receiver of the method (this) as self

parameter, but it is passing a method dispatcher - created by means of the method
getDispatcher(object, object) - reference instead. In this case it does not have
any implication since all messages will be dispatched to the binding object. However, if
the implementation class had defined a public method that is not in the aspect interface,
the implementation instance would be able to call this method without the dispatcher
reference.

For example, the implementation class MediatorProtocolImpl.Colleague shown in
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binding : SpecialColleagueBinding

implementation : Colleague

delegates

2 : setMediator(dispatcher(this, parent), mediator)2 : setMediator(dispatcher(this, parent), mediator)

client : 
1 : setMediator(mediator)1 : setMediator(mediator)

calls self

3 : isAvailable()3 : isAvailable()

delegates calls self

Figure 4.1: Collaboration between binding and implementation using delegation.

listing 4.2 declares the method isMediatorSet() that is not declared in the aspect
interface MediatorProtocol. When it calls this method, the method dispatcher sends
this method to the implementation instance instead of the binding object.

//A special implementation with

//a more complex collaboration

public class SpecialMediatorProtocolImpl

provides MediatorProtocol {

public class Colleague {

private Mediator mediator;

public void setMediator(Mediator mediator) {

if ( isAvailable() && isMediatorSet())

this.mediator = mediator;

}

//This method is not declared in the interface

public boolean isMediatorSet() {

return mediator != null;

}

...

}

}

}

Listing 4.2: Implementation class declaring a new public method

Listing 4.31 presents a theorical implementation of the method dispatcher in the case
shown in figure 4.1 where the method setMediator(Mediator) is delegated from the
binding object to the implementation instance using the code shown in 4.2. The concep-

1This code does not show the real implementation of the dispatcher, it is just for illustrating the
concept, for more details about the real implementation please refer to [16].
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tual class Dispatcher implements the interface MediatorProtocolImpl.Colleague2

delegating the method calls to self if the method is declared in the aspect interface
or for parent otherwise. Note that when dispatching the method isMediatorSet() it
needs to provide a method dispatcher similar to Dispatcher presented.

public class Dispatcher

implements MediatorProtocolImpl.Colleague {

//Parent on that method dispatch

private MediatorProtocolImpl.Colleague parent;

//Self on that method call (it will be ’this ’ in this

case)

private MediatorProtocolBinding.ColleagueBinding self;

public void setMediator(Mediator mediator) {

self.setMediator(mediator)

}

public Mediator getMediator() {

return self.getMediator();

}

public String getState () {

return self.getState ();

}

public boolean isMediatorSet() {

//Here it is dispatched to the parent object

return parent.isMediatorSet();

}

}

Listing 4.3: Theoretical implementation of the method dispatcher

In summary, the approach used to allow binding and implementation classes to call
methods of each other is by using delegation. The implementation object is set as
parent of the binding instance and using delegation they can call provided or expected
method as their own. In order to use this mechanism, some transformations have
to be performed to adapt the new abstractions presented in this work to the FamilyJ
implementation. The next section shows these transformations and section 4.3 describes
how the objects are created to assemble this structure at runtime.

2The creation of this interface is shown in section 4.2.
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4.2 Transformations

In the last chapter, the approach used in the compiler to implement binding and imple-
mentation classes using FamilyJ’s delegation mechanism has been presented. In order
to enable the approach, the implementation carried out during this thesis adds new
transformations to be performed before FamilyJ’s transformations shown in chapter 2.
These new transformations adapt the new abstractions of the model to FamilyJ’s ab-
stractions allowing direct use of delegation as discussed in the previous section. This
section describes these transformations and states the restrictions that come with them.

As this section makes extensive use of FamilyJ’s concepts described in chapter 2, before
starting to show the transformations some terms are elucidated: clean classes, virtual
classes and override classes. Clean classes are classes that have a clean interface and use
delegation in place of common inheritance. Virtual classes are inner classes with clean
interfaces and use delegation as well, in addition to that, they can be overridden by
subclasses of the enclosing class and their instantiation is late bound. Override classes
are virtual classes that override other virtual class.

Now with these terms the transformations are shown. In the following, how the new
abstraction of Caesar presented in chapter 3 are transformed to FamilyJ’s abstractions
is described.

4.2.1 Aspect interface transformations

All transformations performed to aspect interfaces are realized in the beginning of the
compilation. After parsing a compilation unit and creating the respective Abstract
Syntax Tree, AST for short, the compiler performs the transformations needed for these
interfaces.

Hence in this turn, if an interface declared with the modifier aspect is found in the
AST, this interface is replaced by a clean class if it is not a nested interface; otherwise
it is substituted by a virtual class.

As described in chapter 3, nested aspect interfaces do not need to be defined with
the modifier aspect because if they are in the scope of an aspect interface, they are
implicitly declared aspect interfaces. It is because all interfaces declared in the scope
of an aspect interface are transformed to virtual classes. However aspect interfaces can
have subtypes and their subtypes can override their nested interfaces. Therefore, nested
interfaces that override a super aspect interface are transformed to override classes.

In order to turn interfaces into classes, it is necessary to provide implementation for
their methods. Thus when it transforms aspect interfaces, it inserts empty bodies for
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the interface methods. The problem is that methods that return a value cannot have
an empty body; they need at least the return statement. Therefore, when the method
defines a return type that is not void, it is injected a return statement in the empty
method body. The return values of these statements are: null if the method returns a
reference type; 0 if the return is a numeral; and false if it returns a boolean.

This transformation is performed to maintain the consistency of the binding and imple-
mentation classes. As binding and implementation classes do not implement the whole
protocol, they would not be valid Java classes. Hence even though the generated class
has empty methods, these methods will never be executed at runtime.

Listing 4.4 shows how the aspect interface MediatorProtocol presented in the last
chapter looks like after this transformation.

public aspect clean class MediatorProtocol {

public aspect virtual class Mediator {

public expected void colleagueChanged(

Colleague colleague) {

}

}

public aspect virtual class Colleague {

public provided void setMediator(Mediator mediator) {

}

public provided Mediator getMediator() {

return null;

}

public expected String getState() {

return null;

}

}

}

Listing 4.4: Aspect interface transformations

In this code, it can be seen that the modifier of aspect interfaces aspect remains after
the transformation, and all nested interfaces receive this modifier marking that the class
is the representation of an aspect interface. In addition to that, the implicit modifiers
of interfaces (abstract and interface) and interface methods (abstract) have been
removed.

Keeping the aspect modifier is important for the compilation process. The compiler
must perform special checking and semantic analysis for aspect interfaces. Since the
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aspect interface is transformed to clean classes without this information the compiler
would not know when it is compiling this kind of abstraction.

Using this approach brings some restrictions to aspect interfaces concerning subtype
relations. Aspect interfaces can be subtype only of other aspect interface. Besides
that, they can declare a subtype relationship with just one aspect interface. These two
restrictions appear because the interfaces are transformed to classes and have therefore
to follow the rules of ordinary Java classes. Another restriction is that they cannot be
declared as nested interfaces of ordinary interfaces or classes. This restriction comes
from the clean classes that they cannot be declared nested.

4.2.2 Implementation class transformations

As well as aspect interfaces, implementation classes are transformed to clean classes.
Furthermore, the providing relation - the relationship created by the provides clause
- is changed to a subclass relationship that after is changed to a subtype relationship
as discussed before for clean classes. Hence implementation classes are changed to be
subclasses of the transformed aspect interface that it provides.

After these transformations, nested implementation classes can be transformed. As
implementation classes are subclasses of classes that contains virtual classes (the trans-
formed aspect interfaces), their nested classes are able to override the nested virtual
classes of their super class. Therefore, nested implementation classes are turned into
override classes, and thus they have the implicit subclass (subtype after FamilyJ’s trans-
formations) relationship with the aspect interfaces.

This transformation shows why nested implementation classes do not need to define
the provides clause and must be declared with the same name of the aspect interfaces
that they provide. Furthermore, as all nested implementation classes are replaced to
override classes, they cannot declare other nested classes than those ones defined by
their aspect interfaces. It would cause an error during the compilation because it would
override a class that does not exist.

After these transformations MediatorProtocolImpl described in section 3.2 of the last
chapter would look like the code in listing 4.5.

Note that in this code the providing modifier has been added to the classes. As well as
it happens to aspect interfaces it is inserted to allow providing classes to be identified
during the compilation process. However, it is different of aspect interfaces because this
modifier is not available in the language, it is used only for the internal structures of
the compiler; developers therefore are not able to use that.
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With these transformations implementation classes now override the provided methods
of the transformed aspect interface using common method overriding available in Java.
Hence, they provide a real implementation of the provided contract defined in the aspect
interface, hiding the empty methods declared in those classes.

public providing clean class MediatorProtocolImpl

extends MediatorProtocol {

public providing override class Colleague {

private Mediator mediator;

public void setMediator(Mediator mediator) {

this.mediator = mediator;

}

public Mediator getMediator() {

return mediator;

}

}

}

Listing 4.5: Implementation class after transformations

Transforming implementation classes into clean classes implies that implementation
classes must follow the rules of clean classes described in chapter 2. Hence, as clean
classes can only have sub clean classes, subclasses of implementation classes have to be
explicitly declared clean using the clean modifier available in FamilyJ. As well as they
cannot be declared inside the scope of an ordinary class.

Besides that, as described before, they cannot declare other inner classes than those
declared in the aspect interface, though it is not true for their subclasses, which are
able to declare any nested class the developer wants. It is because nested classes of
sub implementation classes do not need to be transformed to override classes by the
compiler, the developer have to explicitly declare it if it is desired by using the override
modifier available in FamilyJ.

4.2.3 Binding class transformations

The transformations performed to binding classes are very similar to those presented
for implementation classes. Binding classes are also transformed to clean classes. As
well as the binding relationship (created by means of the binds clause) is changed to a
subclass relation.

However, as a binding class may provide more than one implementation of the same
nested aspect interface using different names, they cannot be transformed to override
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classes. Thus, nested binding classes are turned into virtual classes with an explicit
subclass relationship with the transformed super nested aspect interface.

public clean binding class MediatorProtocolBinding

extends MediatorProtocol {

public clean binding class MediatorBinding

extends Mediator {

//New field wrappee

private Label wrappee;

public MediatorBinding(Label wrappee) {

this.wrappee = wrappee;

}

public void colleagueChanged(

Colleague colleague) {

_getWrappee().setText(colleague.getState() + ‘‘

clicked’’);

}

public Label _getWrappee() {

return wrappee;

}

}

public clean binding class ColleagueBinding

extends Colleague {

private Button wrappee;

public ColleagueBinding(Button wrappee) {

this.wrappee = wrappee;

}

public String getState () {

return _getWrappee().getName();

}

public Button _getWrappee() {

return wrappee;

}

}

}

Listing 4.6: Binding class after transformations
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In this way they can also override the empty super methods using the common method
overriding from Java, because it will use delegation instead of ordinary inheritance to
dispatch methods even that it does not override the super aspect interface.

As described before, binding classes may wrap other classes. Therefore, some trans-
formations have to be performed if a binding class explicitly defines the wraps clause.
This declaration leads the compiler to insert a new field called wrappee and add - or
change if the constructor is already declared - the constructor to receive the wrappee

reference. Beyond that, the _getWrappee() method is introduced in the class to allow
sub classes to use wrappee in the language also. Due to that, all references to wrappee

are changed to common method calls that will reach this new method.

Similar to implementation classes, a modifier that is not enabled in the language is
added to binding classes. Thus, binding classes are marked with the modifier binding
for their identification in the compilation process. Listing 4.6 shows the binding class
MediatorProtocolBinding defined in section 3.3 after these transformations.

As it can be seen in this code, now the other part of the contract (the expected con-
tract) from the aspect interface is implemented, and the empty methods that have been
inserted in the aspect interface are overridden by the binding class. Therefore empty
method implementations of the interface are no longer called, since the implementation
class has overridden the provided methods, and the binding classes have hidden the
expected contract. Now method calls are performed as described before in section 4.1.

Defining binding classes in this way brings some restrictions as well. Binding classes
must declare a clean interface, since they are transformed to clean classes, therefore they
have the same restrictions describe to implementation classes concerning clean classes.
However, as discussed, they can declare other inner classes that are not defined by
the aspect interface. Another restriction arises when the wraps clause is declared: the
constructors cannot be defined with parameters, because it could bring inconsistency
to the wrapper recycling operator.

4.2.4 Weavelet class transformations

Likewise other abstractions presented in this section, weavelet classes are transformed
to clean classes. However, as they do not have nested classes, there is no special trans-
formation for nested classes of this abstraction.

Weavelet classes are turned into subclasses of the binding class that is defined in the
special extends clause of such abstractions. Hence, weavelet classes remain subclasses
of the aspect interface, since the binding class is a subclass of the aspect interface.
Furthermore, objects of this type can be used to create nested binding classes. These
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nested classes hence are the classes able to be initialized using the factory methods
inserted in the binding class for their virtual classes. Note that nested binding classes
are transformed to virtual classes; it implies that their enclosing classes define a factory
method for their creation. These creations are clarified in section 4.3.

In the same way that binding and implementation classes have a special modifier that are
not allowed in the language, weavelet classes are also marked with a special modifier,
weavelet, for allowing their identification in the compilation process. The code in
listing 4.7 presents the weavelet class MediatorProtocolWeavelet declared in section
3.4 after these transformations.

public clean weavelet class MediatorProtocolWeavelet

extends MediatorProtocolBinding {

}

Listing 4.7: Weavelet class of MediatorProtocol

The first implication of this transformation is the same as discussed before for classes
that are turned into clean classes, so weavelet classes must respect the rules of such
abstraction. Another implication of these transformations is that the constructors de-
clared with parameters by binding classes must be explicitly declared in the weavelet
classes. It is because as they are subclasses of binding classes they must respect the
rules of the Java constructors in subclass relationships.

4.3 Hierarchy construction

Now with the classes transformed in this way, the model is able to use FamilyJ’s delega-
tion mechanism as described in chapter 4.1. For doing so, objects must be constructed
in such way that represents that structure at runtime.

Hence, other transformations are needed in order to adapt the aspect interfaces and the
other concepts to the delegation mechanism. These transformations change the object
constructors of these new abstractions to instantiate the right parents and children.

As described before, the approach used by Caesar to execute the components is using
delegation, where an implementation instance is set to be parent of a binding object.
FamilyJ’s implementation inserts a new constructor for every constructor declared in
the clean or virtual classes which receives as first parameter the reference parent to be
set for the object that is being created. The type of this reference is the same set by
the developer to be super class of the current class. This is the way that instances of
subclasses of the same class can be passed to this new constructor and therefore can be
set parent of each other.
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Thus, after performing the transformations described in the last section, where aspect
interfaces, as well as their binding and implementation classes, are turned into clean
classes and binding and implementation classes become subclasses of the transformed
aspect interface, the new constructor introduced by FamilyJ allows implementation
objects to be set parent of binding instances since they have a common super clean
class.

In this way, they could already be directly created by developers, however they would
have to provide information about which binding and implementation class should be
used in every instantiation. For avoiding that, weavelet classes have been inserted in
the language where developers declare it only once, in the weavelet declaration, and
after that they can instantiate it as an ordinary Java class.

Weavelet constructors are responsible to create the runtime hierarchy structure of the
components. They are transformed to instantiate the binding and implementation ob-
jects that compound the whole functionality, and set their respective parents. Listing
4.8 shows the weavelet constructor after this transformation. The second constructor
declared in this class will be explained soon; by now the first one is focused.

public clean weavelet class MediatorProtocolWeavelet

extends MediatorProtocolBinding {

//The constructor is changed

//to create the class hierarrchy

public MediatorProtocolWeavelet() {

super(new MediatorProtocolBinding(new

MediatorProtocolImpl());

}

//Constructor provided by FamilyJ

//that is changed too.

public MediatorProtocolWeavelet(MediatorProtocolBinding

parent) {

super(new MediatorProtocolBinding(new

MediatorProtocolImpl(parent));

}

...

}

Listing 4.8: Weavelet class of MediatorProtocol

By taking a look in this new constructor a restriction of the model arises. One of the two
abstractions (binding or implementation) cannot define constructors with parameters.
Since this constructor calls directly both constructors, it would be not possible to know
for which of them the parameters should be passed. Hence in Caesar, implementation
classes cannot declare constructors with parameters. It seems to be more acceptable
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to have binding class able to declare constructors because they are related with the
application. Since they adapt the component to the base code, they need to define links
to base objects. Besides that, if implementation classes need to create objects, it could
be specified expected methods in the aspect interface that would be implemented by
the bindings that would provide such objects.

Having this restriction respected by implementation classes, the model can already
create the class hierarchy needed to enable delegation as described in section 4.1. Figure
4.2 shows a collaboration diagram illustrating the runtime class hierarchy created when a
weavelet class is instantiated. Note that the instance responsible to receive all messages
from the client is not the binding object as it was described in section 4.1, but the
weavelet. It does not imply any change in the structure since the weavelet object
delegates first to the binding object, but it brings a feature to weavelet classes, now
they can override any method of the aspect interface.

weavelet : MediatorProtocolWeavelet

binding : MediatorProtocolBinding

implementation : MediatorProtocolImpl

aspectInterface : MediatorProtocol

Figure 4.2: Runtime hierarchy of the component.

This approach is used to create the most outer components, but creating this structure
already enables instantiation of nested classes of the component. As discussed before,
for each constructor of the virtual classes a factory method is inserted in the enclosing
class of such virtual class and all virtual class instantiation is changed to call these
factory methods instead of directly create the objects by using the new operator. With
that, FamilyJ allows late bound instantiation of virtual classes. This combined with
the structure created for enclosing instances is everything that is needed here.

This is because factory methods use other factory methods to obtain the parent reference
of virtual and override classes. In the case of override classes, the parent reference is
gotten by calling the same factory method in the super class, like a common super call.
In the case of virtual classes that are explicitly declared to extend another virtual class,
the parent reference is obtained through the factory method of that super virtual class.
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Thus, as in the structure created objects always use delegation to invoke methods,
and factory methods become common methods in the classes, they are called by using
delegation as well. In this way, if the structure is already supporting the execution of
the methods using delegation, the right objects are created.

Figure 4.3 shows a conceptual collaboration diagram of the instantiation of nested com-
ponents. Note that details of delegations are not shown in this diagram. The weavelet
instance just delegates the method call to the binding object since its class does not
declare this method. The binding instance creates a MediatorBinding passing parent
as the result of the createMediator() method since MediatorBinding is set subclass
of Mediator. This method call reaches the implementation object because it is the first
object in the hierarchy whose class declares this method. So, in this method the parent
reference is obtained by calling createMediator() for its parent, aspectInterface,
since it is creating an override reference. The aspectInterface reference just returns
a new instance of Mediator because it is not a override class and there is no super class
directly declared for this virtual class. With this object, the implementation reference
can return a new instance of its Mediator override class with the right parent set.

weavelet : MediatorProtocolWeavelet

binding : MediatorProtocolBinding implementation : MediatorProtocolImpl

aspectInterface : MediatorProtocol

client : 

1 : createMediatorBinding()

2 : createMediatorBinding()

1 : createMediatorBinding()

2 : createMediatorBinding()

3 : createMediator()

4 : createMediator()

3 : createMediator()

4 : createMediator()

Figure 4.3: Nested components creation.

After this collaboration the runtime hierarchy created is as shown in figure 4.4. It looks
like the runtime structure of enclosing components. The only difference is that nested
components do not have weavelet because the role of weaving nested components is
played also by the weavelet of the enclosing objects as it has been shown in figure 4.3.
Therefore, it creates the right structure of nested objects as well, with a binding object
delegating to an implementation instance.

With this transformation, simple configurations of the component as shown here can
already be used. But there are problems yet concerning subclasses of binding classes.
Before describing these problems a more complex example is shown extending the classes
that have been created until here. Listing 4.9 shows this new configuration.



4.3. HIERARCHY CONSTRUCTION 63

aspectInterface : MediatorProtocol.Mediator

implementation : MediatorProtocolImpl.Mediator

binding : MediatorProtocolBinding.MediatorBinding

parent

parent

parent

parent

Figure 4.4: Runtime structure of nested components.

//The weavelet now weaves other

//implementation with another binding

public class MediatorProtocolWeavelet

extends MediatorProtocol(SpecialMediatorProtocolImplSub ,

SpecialMediatorProtocolBindingSub) {

}

//This is a subclass of MediatorProtocolBinding

public clean class SpecialMediatorProtocolBinding

extends MediatorProtocolBinding {

...

}

//One more level

public clean class SpecialMediatorProtocolBindingSub

extends SpecialMediatorProtocolBinding {

...

}

//This is a subclass of MediatorProtocolImpl

public clean class SpecialMediatorProtocolImpl

extends MediatorProtocolimpl {

...

}

//Another level for implementation too

public clean class SpecialMediatorProtocolImplSub

extends SpecialMediatorProtocolImpl {

...

}

Listing 4.9: New configuration for MediatorProtocol
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Using only the transformations in weavelets constructors presented in this section with
the new configuration shown in listing 4.9 , it would not create the right runtime hi-
erarchy. Besides that it would generate an error during the compilation. It is related
with the constructors inserted by FamilyJ in the abstractions, so before showing why
these errors would occur, a closer look in these constructors is taken.

As described before, FamilyJ enables one more constructor for each constructor declared
by the developer inserting the parent reference. The type of this new reference is the
super class explicitly declared by the developer. Besides that the body of the new
constructor is copied from the old constructor that now just calls this new constructor
passing as parent a reference of an object directly created in this constructor.

Inserting this new constructor and creating an object in the old constructor enable the
creation of the hierarchy when calling the old constructor, because it always creates a
fresh reference to act as parent. However, if the new constructor is called directly it
does not create the hierarchy, because it assumes that the hierarchy has already been
created before.

Now, let’s go back to the weavelet constructors. The constructor created in the weavelet
classes calls the constructor of the binding class passing as parent a reference of the
implementation class. Using the code presented in listing 4.9, it is

new SpecialMediatorProtocolBindingSub(new

SpecialMediatorProtocolImplSub())

The problem concerning the error in the compilation arises because the constructor
inserted in the binding class SpecialMediatorProtocolBindingSub expects a reference
of the type SpecialMediatorProtocolBinding, however the reference passed is of the
implementation type instead, so the compiler cannot find the constructor called by the
weavelet.

The other problem is due to how the constructor added by FamilyJ is implemented.
Using this constructor means that the class hierarchy has already been initialized, but
this is not the case here since the hierarchy passed is the implementation hierarchy, but
the binding hierarchy has not been created yet.

These problems do not happen with binding nested classes because they are created
through factory methods which allow late bound instantiation. Therefore the structure
does not need to be created by hand as non-nested classes that must be directly created
by the weavelet class.

In order to avoid these problems a new constructor is injected into explicit or implicit
subclasses of non-nested binding classes. The parent parameter of this constructor
is of the aspect interface type. Before calling the constructor introduced by FamilyJ
it directly creates a new object of the super class passing the received parameter as



4.3. HIERARCHY CONSTRUCTION 65

parent. Hence, when creating this new object the constructor call reaches this same
kind of constructor in the super class if it is not the real binding class yet, or the
constructor inserted by FamilyJ if it is an explicitly declared binding class. With that,
it creates the binding structure as well, because when it arrives in a binding class, the
structure is already created.

Listing 4.10 shows the constructors created by FamilyJ and the new constructors in-
serted to allow the creation of the right structure.

public clean class SpecialMediatorProtocolBinding

extends MediatorProtocolBinding {

//Constructor inserted by FamilyJ

public SpecialMediatorProtocolBinding(

MediatorProtocolBinding parent) {

...

}

//New constructor inserted

public SpecialMediatorProtocolBinding(

MediatorProtocol parent) {

this (new MediatorProtocolBinding(parent));

}

...

}

//One more level

public clean class SpecialMediatorProtocolBindingSub

extends SpecialMediatorProtocolBinding {

//Constructor inserted by FamilyJ

public SpecialMediatorProtocolBindingSub(

SpecialMediatorProtocolBinding parent) {

...

}

//New constructor inserted

public SpecialMediatorProtocolBindingSub(

MediatorProtocol parent) {

this (new SpecialMediatorProtocolBinding(parent));

}

...

}

Listing 4.10: New constructors added by Caesar

The second constructor introduced in listing 4.8 has been inserted just to maintain
consistency of clean classes, in addition to that it might allow other kind of structure to
be created. Duo to this, the new constructor added into binding classes are also inserted
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in subclasses of implementation classes, because without that the problems discussed
for sub binding classes would arise also for sub implementation classes, since the type
of the parameter received is a binding type and it would not create the implementation
hierarchy.

In summary, the constructors of weavelet classes are transformed to create the runtime
object hierarchy. For avoiding the problems that would occur by using just the con-
structors added by FamilyJ, new constructors are inserted in the non-nested binding
classes, as well as for no-nested implementation classes to maintain the consistency of
clean classes.

4.4 Enhanced virtual types and delegation

Although virtual classes and the delegation mechanism available in FamilyJ enables
means to express almost everything that has been needed in the implementation of
aspect interfaces presented in the last sections, some cases were not contemplated yet.
This section presents these cases and how they have been implemented in this thesis.

The next subsections show two problems that have been detected and the solution that
have been found to avoid them.

4.4.1 Enclosing object reference problem

Ordinary nested classes in Java have an internal field introduced by the compiler that
contains the reference of their enclosing object at runtime. Through this reference,
nested objects can access methods of their respective enclosing instances. Since Fam-
ilyJ’s implementation does not take special care with this case, it implied a wrong
behaviour at runtime.

In common Java nested classes the constructors are responsible to initialize this new
field. In order to do so, the compiler changes the constructors of nested classes by
inserting a new parameter in all constructors of such classes. Hence, when the compiler
finds a nested class creation, it inserts the code needed to provide this new parameter
to that constructor call. For example an object creation like

this.new Mediator ();

is translated to something like

new Mediator(this);
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and the constructor of the nested class Mediator initializes the reference to the enclosing
object with this.

Since clean and virtual classes use delegation to bind the messages to the right method
implementations and they may declare nested virtual classes in their body, special care
must be taken in order to virtual class instances call the right methods in their enclosing
objects when they are instances of clean or virtual classes.

Using the outer this initialization as it has been presented for ordinary nested classes
would imply that method calls from virtual class objects to their enclosing reference
reached the object in the hierarchy which contains the factory method that has created
the virtual class object. Though it is correct when the enclosing object does not use
delegation, it could execute the wrong method implementation if the outer object does
use delegation.

Figure 4.5 shows how a component created as described in the last sections would have
their relations with their enclosing objects. outerImplementation is an instance of
the enclosing implementation class and outerBinding is the enclosing binding object.
Together they constitute the outer component that has created the nested component
compound by nestedImplementation, the implementation object, and nestedBinding,
the binding instance. Therefore, they all use delegation instead of common inheritance,
because their classes have been transformed as discussed in section 4.2

outerImplementation : 

outerBinding : 

nestedImplementation : 

nestedBinding : 

outerThis

parent

outerThis

parentparent

outerThis

outerThis

parent

Figure 4.5: Outer reference problem.

The problem that can be seen in this diagram is that as outerImplementation and
outerBinding dispatch their methods through delegation, methods called by nested-

Implementation and nestedBinding to these objects should follow delegation rules. In
other words, methods called by nestedBinding and nestedImplementation to their
outer reference, which are declared in the aspect interface of the outer component,
should reach before the binding reference, or outerBinding in this example. But in
this case, methods called by nestedImplementation to its enclosing reference will al-
ways reach outerImplementation.

In order to avoid this problem, the instantiation of virtual classes has been improved
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as well as their internal reference to the enclosing objects has been changed. The
instantiation of virtual classes are always performed by factory methods that are inserted
in their enclosing classes. As factory methods are just common methods in the clean or
virtual classes, they are transformed to receive also a reference to the right dispatcher
depending of the context that they have been called.

Therefore, as this dispatcher has been created to call the right methods for the context
that the virtual object is instantiated, or in other words, as it dispatches the method calls
performed by the factory method to the right method implementation, this dispatcher
can play the role of the enclosing reference of the new virtual class instance that is being
created as well.

Hence, the reference of the dispatcher received in the factory method is the reference
passed to the constructor of the nested virtual instance that is created by the factory
method. In this way, the constructor of the nested virtual class initializes the virtual
class field responsible to be the receiver of method calls from this class to its enclosing
object with the reference of such dispatcher.

In order to allow it, the type of the enclosing reference in the nested classes has been
changed. Before showing why it has been changed, let’s refresh the transformations
performed for clean and virtual classes described in chapter 2. Clean and virtual classes
are broken up into three new abstractions: an implementation class, a proxy class and
a clean interface. The abstraction responsible to enclose the implementation classes
created through virtual classes is the implementation class of the enclosing class.

Now that it has been elucidated, the problem can be shown. In a common nested class,
the type of the outer reference is the type of the enclosing class of the nested class.
In this case it would be the type of the implementation class of the enclosing clean
or virtual class that is the real enclosing class of this class. The problem is that the
reference that is now passed to the constructor is a reference of the dispatcher that is not
of the same type of the real enclosing class. Though the dispatcher has not exactly type
of the enclosing class, it implements its clean interface as discussed before in chapter 2.

Thus, the internal reference type of virtual classes has been changed to the clean inter-
face of its enclosing class. After these changes, the runtime structure showed before in
figure 4.5 looks like the conceptual collaboration diagram in figure 4.6. Now the nested
classes point their reference to the enclosing objects to the dispatcher, and method calls
to these dispatchers reach the right object in the runtime hierarchy.

Though this solution deals well with the problem when calling public methods from
nested objects to their respective enclosing objects, private methods or fields of the
enclosing class cannot be accessed by nested virtual classes anymore. It is because the
type of their reference has been changed to the clean interface of their enclosing class,
and interfaces cannot define private methods or declare non-static fields.
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outerImplementation : 

outerBinding : nestedBinding : 

nestedImplementation : 

parent

outerThis

outerThis

parent

dispatcher : 

dispatcher : 

parent

outerThis

outerThis

parent

Figure 4.6: The right runtime configuration.

This restriction remains in the current implementation. A possible solution for this
problem would be inserting another field in the virtual classes to access public methods
as discussed in this section. Leaving then the reference for the enclosing object as
it is carried out for common nested classes in Java. Then public methods would be
accessed through this new field, and private methods and fields could be invoked using
the reference to the real outer object passing the reference contained in this new field
to play the role of self in such private methods.

Another possible solution would be using the information of the real outer reference
contained in the dispatcher set as the enclosing reference of the virtual class. As shown
in figure 4.6 the dispatcher maintains this information. The dispatcher keeps this ref-
erence because it needs to know how dispatch public methods that are not declared
in outerBinding for example. Hence this information could be used in order to allow
virtual classes to invoke private methods or access fields of their real outer reference.

4.4.2 Parameter types problem

In FamilyJ, methods defined with parameter, whose type is a virtual class that has
been overridden in the same scope that the method is being executed, have their bodies
changed by the compiler. It introduces downcasts to the right type in that context as
first statements of such methods.

For example, in listing 4.11 Mediator is overridden to introduce a new method that is
not declared in the MediatorProtocol.Mediator aspect interface. Now this method
should become available to be called in the context of MediatorProtocolImpl.

In order to allow it in the method setMediator(Mediator), the parameter mediator

is renamed and a new local variable is introduced using the old name. This new local
variable is initialized by down casting the parameter received to the class Mediator

overridden in this context. Hence, it allows setMediator(Mediator) to call this new
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method declared only in the scope of the MediatorProtocolImpl class.

public providing clean class MediatorProtocolImpl

extends MediatorProtocol {

public providing override class Mediator {

//This method is not declared in the aspect interface

public boolean isAssignable(Colleague colleague) {

...

}

...

}

public providing override class Colleague {

...

//The contract of the method was defined in the aspect

interface

//then the parameter type is the super type

public void setMediator(MediatorProtocol.Mediator

_renamedMediator) {

//Downcast introduced by the compiler

MediatorProtocolImpl.Mediator mediator =

(MediatorProtocolImpl.Mediator) _renamedMediator;

//Now it can access this method

if ( mediator.isAssignable(this))

this.mediator = mediator;

}

...

}

}

Listing 4.11: Downcast problem

The problem with this approach is that in some hierarchies, like the hierarchy of the
components presented in this chapter it causes a runtime error. For elucidating this
problem let’s remember how hierarchies of components are created in Caesar. Regard-
ing only nested components, which is where the problem arises, the first object in the
hierarchy (that object which receives method calls) is a binding object. The implemen-
tation objects are in the hierarchy but always playing the role of parent of some binding.
Hence binding objects are the objects available to be passed as parameters because they
are the objects available to developers maintain references in the program.

Therefore, the references of nested components passed to methods are always references
of binding objects. When executing the downcast in the methods declared in the imple-



4.4. ENHANCED VIRTUAL TYPES AND DELEGATION 71

mentation classes, it would generate a ClassCastException since the parameter passed
is not of the implementation type but of the binding type.

Due to this problem a new method is now inserted in virtual and override classes enclosed
in clean, virtual or override classes. This new method (_adapt<TypeName>(Object
enclosing)) looks up to the right object reference in the hierarchy for the context that
it gets applied, hence the cast can be performed without raising exceptions.

This method uses the information of the real enclosing reference available in the dis-
patcher set as outer reference of virtual references as discussed in the end of section
4.4.1. With this information the method can discover the level in the hierarchy that
the virtual class is and therefore can return the right object for the context it has been
invoked.

In listing 4.12, this new method3 is inserted in the virtual and override classes. As it
can be seen in this listing the method has a different behaviour for virtual and override
classes

In the case of virtual objects, they just return themselves, because it is not possible
to go further in the hierarchy since it is the last object. On the other hand, when the
object is an override reference it has to check if it is the right object to return. In order
to do so, it checks if its real enclosing reference is the same as the reference passed
(enclosing). If it is the same, it means that the method has arrived in the same level
in the hierarchy that it has been called, thus it is the right object to be returned, then
return itself; otherwise it calls its parent. In summary, the method consists in delegate
the method calls until it finds the right object or a virtual object.

Actually the methods in both cases return a dispatcher created for the context that the
method is being executed because methods called in this reference must be dispatched
following the delegation principals as well, but as it is a conceptual method it has been
hidden to simplify their presentation.

With this method, before down casting the parameter inside the method bodies it
adapts the parameter for the context of the execution of such method. It can be
seen in listing 4.12. In the body of the setMediator(Mediator) method, before down
casting the parameter _renamedMediator as in listing 4.11, it calls the new method
in the parameter reference passing its real enclosing reference. Therefore, the problem
disappears because the parameters are now also dependent of the context which they
get used.

3It is a conceptual implementation, details like the method used to get the real reference are not
shown.
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public aspect clean class MediatorProtocol {

public aspect virtual class Mediator {

//It is a virtual class , it does

//not have super with the same type

public Object _adaptMediator(Object enclosing) {

return this;

}

....

}

...

}

public providing clean class MediatorProtocolImpl

extends MediatorProtocol {

public providing override class Mediator {

//It is an override class , so first test

//if it is the right reference for the context

public Object _adaptMediator(Object enclosing) {

//MediatorProtocolImpl.this here means the

//real outer reference

if ( MediatorProtocolImpl.this == enclosing)

return this;

//It is not , so try the parent reference

return parent._adaptMediator(enclosing);

}

public void setMediator(MediatorProtocol.Mediator

_renamedMediator) {

//Here it first adapt the parameter , after realize

the down cast

//MediatorProtocolImpl.this shall be seen as the

reference to the real

//enclosing object

MediatorProtocolImpl.Mediator mediator =

(MediatorProtocolImpl.Mediator)

_renamedMediator._adaptMediator(

MediatorProtocolImpl.this);

...

}

....

}

...

}

Listing 4.12: Method to adapt parameters to certain context
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4.5 Wrapper recycling implementation

Using the wrapper recycling operator is very similar to common method invocation.
Syntactically it does not differ from method calls. In the Caesar compiler, the node
representation of such expression in the AST is the same as a method call, the only
difference is that the invoked method is a constructor instead of an ordinary method.

Therefore, this expression must follow the same scoping rules from Java method calls.
In other words, the class of the reference that receives the wrapper recycling call must
define a nested class, explicitly or implicitly by inheriting, with that name which acti-
vates the call, and this nested class must declare a constructor with parameters that
match with the parameters passed.

With those rules, the compiler can use the same approach used by FamilyJ to define
factory methods. A method is inserted in the enclosing class of a nested binding class
for each constructor declared in that nested class. The only exception is when the
constructor has no parameters at all. It is because, it would not make sense to enable
wrapper recycling operator for constructors without parameters since it would create
always a new wrapper instance that is the semantics of the new operator.

In order to allow the semantics of the wrapper recycling, the references of the wrappers
need to be maintained by their enclosing objects. It is because the enclosing objects
are the responsible to create the wrappers if they have not been created yet through
the method inserted on it. For doing that, for each nested binding class is added a
correspondent map into its outer class which links the parameters passed to the wrapper
recycling operator to the wrapper instances.

Hence the method inserted for the wrapper recycling implementation consists in lookup
in the map if the wrapper has already been created for the parameters passed; if it finds
the wrapper for the current parameters it just returns this object, otherwise it creates
a new wrapper, links it to the parameter references in the map and returns the new
object.

Listing 4.13 shows how this method is implemented in Caesar. Note that it returns
Object instead of the wrapper type. The reason for doing so is the same as discussed
for FamilyJ’s factory methods. Since the types can be overridden, this method can be
overridden as well; if the return type is set with the type declared in this class, it would
cause an error when the type is overridden because this method would be overridden
too but changing the return type. Therefore, the compiler inserts automatically casts to
the right type of the objects that can be known only in the context where the wrapper
recycling method is invoked.

Although this method calls factory methods and instances of the right type would be
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created even if the wrapper recycling method was not redefined in the subclasses, there
would be the problem concerning constructor parameters that can be changed when
nested binding classes are overridden. For this reason, for every binding nested class -
even if it is not explicitly declared binding but just overrides a binding class - is inserted
a wrapper recycling method for each constructor declared in that nested class.

public clean binding class MediatorProtocolBinding

extends MediatorProtocol {

//The map for mediatorBindings

private HashMap mediatorBindingMap = new HashMap();

...

//Wrapping recycling operator method

public Object _getMediatorBindingWrapper(Label label) {

Object result = mediatorBindingMap.get(label);

if ( result == null) {

result = _createMediatorBinding(label);

mediatorBindingMap.set(label , result);

}

return result;

}

...

}

Listing 4.13: Wrapper recycling method

With this method implementation, the wrapper recycling operator works only for nested
binding classes that wrap explicitly a base abstraction and those classes which declare
constructors with just one parameter. It is because in these cases there is only one
reference to link to the wrapper in the map. But as this operator can be used with
any number of parameter a new class, WrapperKey, has been inserted in the runtime
environment of Caesar. Instances of this class compound an undefined number of objects
creating a unique representation of them. Hence, for constructors with more than one
parameter, an object of this class is created to link the parameters to the wrapper
object.

For example, in listing 4.14 the new binding class SpecialMediator has been inserted,
so the wrapper recycling method must be added in the class MediatorProtocolBind-
ing as well as its respective map. But as this class declares a constructor with two
parameters, the WrapperKey class must be used in the wrapper recycling method.

As it can be seen in the code in listing 4.14, WrapperKey groups all parameters in an
Object array and now represents the key of all parameters. This key then can be used in
the map to link the wrapper instances to the group of parameters passed. Hence when
exactly the same parameters are passed one more time to the wrapper recycling method,
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it has already their representation in the map, through the instance of WrapperKey, and
therefore the wrapper is not instantiated again.

public clean binding class MediatorProtocolBinding

extends MediatorProtocol {

...

//It is a binding too since its super class is a binding

public clean class SpecialMediator

extends MediatorBinding {

...

public SpecialMediator(Label label , String name) {

....

}

}

...

//Wrapping recycling operator method of

//a constructor with more parameters

public Object _getSpecialMediatorWrapper(

Label label , String name) {

//Creates a compound key

Object key = new WrapperKey(new Object []{label , name})

;

Object result = mediatorBindingMap.get(key);

if ( result == null) {

result = _createSpecialMediator(label , name);

specialMediatorMap.set(key , result);

}

return result;

}

...

}

Listing 4.14: Wrapper recycling method

Although using this approach the requirements of the wrapper recycling operator are
achieved, it can cause problems concerning memory management. It is because wrapper
objects remain linked with the base object through the maps after the scope that they
were created is no longer valid. For example, if a local variable in a method is assigned
with the result of the wrapper recycling operator, the entry in map created to link the
wrapper to the base objects remains even after that the method execution ends. With
that, objects from the base application that would be able to be collected are no longer
eliminated because the entry in the map which links it to its wrapper still point to that
object.
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A first attempt to resolve this problem was create weak references available in Java when
using the standard API class WeakHashMap. Unlike strong references, weak references do
not inhibit collection of the object it points. Hence, this hashtable-based implementation
maintains its entries while keys of the entries are in ordinary use. Therefore, when
other objects no longer point to the key, the entry in the map is automatically removed
allowing the garbage collector to remove the objects.

But maintaining the wrappers in WeakHashMap instead of common hashtable-based maps
as shown here does not work as desired in both cases (using the base object as key, or
a compound key using WrapperKey).

The first case where the base objects become keys in the maps seems to be the exact
application of weak references. But if a closer look is taken in the binding implementa-
tions, the problem arises.

The most common implementations of binding classes keep a reference to the base object
that it wraps, often using the wraps facility available in the language. With that, this
reference disenables the entry in the map to be removed since there is still this strong
reference to the key, or wrappee, object.

In the second case using the compound object as key is even worse. The new object
created to be the key is pointed by a strong reference only in the context of the wrapper
recycling method. When the execution of this method ends, the entry is able to be
removed from the map and the semantics of the wrapper recycling operator is no longer
achieved.

Duo to this problem, a common map is used (HashMap) and the new operator discussed
before (~ <NestedBindingType>(...)) has been introduced in the language to allow
manually detaching of the wrapper with the base object. Note that it is not necessary
to be used. The base objects will be collected when the wrappers can be discarded. In
other words, when the outer object that contains the maps can be removed. However,
if developers desire to control the memory, they can use this new operator for detaching
base objects from their respective wrappers.

The implementation of this operator is very similar to the wrapper recycling operator.
For each wrapper recycling method added in the binding classes, it is inserted a method
(_remove<NestedBindingType>Wrapper(...)) to remove the entries in the map using
the keys as presented in this section. Thus, like the wrapper recycling operator, this
operator is replaced to an ordinary method call that reaches this new method.

Although this new operator has been inserted to deal with memory management prob-
lems, it brings more control to developers when using wrappers in their applications.
With this new operator, it can be decided if the wrapper should be recreated for certain
object that may be useful for some kinds of application.
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4.6 Implementation details

This section gives a very brief overview of the implementation of the compiler realized
in this thesis. It shows only the main classes introduced in the compiler as well as some
classes that have been changed during the implementation.

The Caesar compiler has been implemented on top of the open source Java compiler
KOPI [1]. Therefore all abstractions introduced in the compiler somehow extend the
abstractions implemented in KOPI. As introduced before, the concepts presented in this
thesis have been realized in an extension of the work carried out in context of Andreas
Wittmann’s thesis [16] and Jürgen Hallpap’s thesis [4]. However the code structure
followed in this work is that defined by Hallpap.

In order to introduce the new language support presented in chapter 3, the scanner and
parser had to be changed. These changes have been done in the files Caesar.t, Caesar.g
and CaesarMessages.msg. In the file Caesar.t the new key words have been inserted.
Caesar.g is the definition of the grammar, so all rules needed to allow the concepts
presented in this thesis in the language have been introduced in this file. The other
file CaesarMessages.msg is the file that contains the error messages generated by the
compiler, so the new error messages introduced in the compiler are in this file.

After having the language accepting the new abstractions and operators, the source
code of the compiler have been modified. These changes have been realized to allow
the representation of those abstractions and operators in the AST, as well as intro-
duce semantic analysis for them. Besides that, new visitors have been introduced or
changed, these visitors are the classes responsible to traverse the AST performing some
modifications, transformations or checking in the elements of the AST.

Inn the following, the main classes introduced in the compiler during this thesis, as
well as the main FamilyJ’s classes that have been modified, are presented with a brief
discussion of their roles:

• org.caesarj.compiler.util.AspectInterfaceTransformation: This class has
been introduced to perform the transformations discussed in section 4.2, as well
as to insert the internal structure of explicitly declared wrappers. It is a visitor
which traverses the AST transforming the abstractions that are needed.

• org.caesarj.compiler.util.MethodTransformationFjVisitor: It is another
visitor built in the FamilyJ’s implementation. The constructor’s transformations
presented in section 4.3 are carried out in this class. Besides that, this class is
responsible to insert the wrapper recycling structure discussed in section 4.5.

• org.caesarj.compiler.ast.CaiClassDeclaration: This class represents a class
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declaration in the AST that may be an implementation or binding class. It has
been introduced on top of FamilyJ’s hierarchy of class declarations.

• org.caesarj.compiler.ast.CaiWeaveletClassDeclaration: This class repre-
sents a weavelet class in the AST.

• org.caesarj.compiler.ast.FjCleanClassDeclaration: This class has been
created in the FamilyJ’s project, but it had to be adapted to allow binding and
implementation classes.

• org.caesarj.compiler.ast.CaiInterfaceDeclaration: This class has been
introduced to allow interfaces to be declared as aspect interfaces.

• org.caesarj.compiler.ast.CaiWrappeeExpression: Objects of this class are
created in the AST when a wrappee expression is found in the source code

• org.caesarj.compiler.ast.FjMethodCallExpression: It is a FamilyJ’s class
that has been adjust for the implementation of the wrapper recycling and wrapper
destructor operators.

This is the main files and classes that have been introduced or changed in the compiler.
For more details, please refer to the source code documentation that has been realized
using Javadoc in the points of the code that have been modified, or in those classes that
have been inserted in this implementation.



Chapter 5

Summary and future work

This chapter gives an overview of the concepts presented in this thesis. Besides that
it makes an evaluation of the implementation of the model showing how it avoids the
problems discussed in chapter 1. In addition to that, it presents what could be carried
out to improve the current implementation.

During this thesis, it has been presented so far new language support to facilitate the
description of generic functionalities of applications as independent components that
become reusable and extendible achieving then goals of modularity.

In addition to that, new support has been described in order to integrate these new com-
ponents into base applications without changing their modular structure. It permits the
component implementations to be decoupled from application’s particularities, thereby
allowing them to be applied into many applications or even into many abstractions in
the base code.

The key concept presented here is the notion of aspect interfaces. These new abstrac-
tions allow describing the type of components not only by representing the contract
provided by the component implementation as common interfaces do, but they can also
express what implementations of the components expect from of the applications that
they get integrated into. In other words, these interfaces permit separating the expected
and provided contract of the component.

An important feature of aspect interfaces is that they can be nested. This feature gives
means to describe component types as a set of abstractions that together define the
functionality as a whole.

This new interface leads to two new abstractions that are responsible to provide imple-
mentation for it: implementation and binding classes. Implementation classes realize
the generic parts of the functionality, in which binding classes integrate into a particular

79
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application.

Although implementation classes are totally decoupled from the application, they can
communicate with the base objects of the application that they get integrate into. It is
realized through the binding classes using the clearly defined interface described in the
aspect interface that they implement.

On the other hand, binding classes are also decoupled from a specific implementation
class and as well as implementation classes can communicate with the implementation
of the component by using the aspect interface.

With binding and implementation classes decoupled from each other these classes can
be freely combined by means of the new abstraction provided by Caesar: the weavelet
classes. These classes then join a binding and an implementation class building up a
complete implementation of the aspect interface.

The mappings of the component to the base application are carried out through the
binding classes. These classes may be just a wrapper of a base abstraction, however
they may also be mapped to a concept of the base application that not necessarily is
an abstraction in such application.

In order to use wrappers without losing their internal state and identity, the wrapper
recycling operator has been presented. This operator avoids the creation of wrappers of
base objects that have been already wrapped once allowing hence wrappers to maintain
state and identity. Besides that, base objects can be detached from their respective
wrappers with the wrapper destructor operator. This operator permits hence the cre-
ation of new wrappers for the same base object.

The wrapper recycling operator combined with binding classes and the dynamic JPI
presented in chapter 2 enable the application of on demand remodularization presented
in chapter 1. Using the JPI model available in Caesar, binding classes can declare
joinpoints that intercept the execution of the base application, becoming hence aspects
as they are known from AspectJ for example.

Using that, binding classes can introduce the behaviour contained in the component into
the application using these joinpoints for intercepting the execution of the base code
that shall be decorated with the component behaviour. In this way, the introduction of
the component into the application would be applied just in the code surrounded by a
deploy() block where the binding instance would be applied. In addition to that, by
using the wrapper recycling operator to create the binding instance, this new aspect
(binding instance) can maintain state and identity.

Evaluating the implementation of the model presented in this work, it covers the prob-
lems identified in the AspectJ’s solution described in chapter 1.
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It enables support to express the expected contract of the component through aspect
interfaces, thereby avoiding the problems that become in languages like AspectJ that
provide only little assistance to express the expected contract.

Unlike in AspectJ, or even in Object Teams and ACC presented in chapter 1, binding
classes are totally decoupled from any implementation of the component. They are
linked to an specific implementation just by the common aspect interface. It increases
reusability of the abstractions because as well as implementation classes, binding classes
become reusable.

Binding classes wrap base objects rather than physically change their structure as in the
AspectJ solution. Meaning that the model does not have the invasive nature presented
by AspectJ, therefore it does not suffer of the problems identified in the AspectJ solution
when it injects a new type in the modular structure of the base application.

Though binding classes may be directly mapped to one abstraction of the base code
using the wraps clause, it is not restrictive. Through binding classes, components can
be integrated into applications even if such application does not define any abstraction
to play certain role of the component. With that, it provides the sophisticated mappings
that are not possible in the other models presented, AspectJ, Object Teams and ACC.

Though the implementation of the model presented improves the expressiveness of the
language technology to facilitate the separation of an application into reusable modules
and avoids the problems outlined in chapter 1, it is an ongoing work and there is work
to be done yet.

A point that could be tackled is the class hierarchies of implementation and binding
classes. As discussed in chapters 3 and 4, classes that declare the binds or provides

clause cannot have a subclass relationship with other classes.

Allowing this subclass relationship would increase reusability and extendibility in the
language. As aspect interfaces can be defined in a hierarchy of interfaces, when im-
plementing the contract of a sub aspect interface, the contract of the super aspect
interface must be provided as well. Hence, with this relationship, binding or implemen-
tation classes that implement the contract of a sub aspect interface could reuse possible
implementations of the super aspect interface, by extending such classes.

Another concept that could be improved in the current implementation of the compiler
is the wrapper recycling operator. First by implementing the notions of most specific
wrappers introduced in [10] that is not available in this implementation. With this kind
of wrapper recycling operator the wrapper to be created is chosen based on the runtime
type of the parameters passed to the operator. This operator would be valid just when
nested bindings are declared with the same name, which is another point that is not
allowed in the current version and could therefore be another future work.
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Concerning the wrapper recycling operator yet, the memory management of wrappers
could be improved. As described in chapter 4, the memory management of wrappers is
not a simple task and the current implementation has a simple implementation of that
because of the problems described in such chapter. Maybe a possible solution could be
extending the implementation of WeakHashMap allowing that whenever the base object
are released to garbage collection by the base application its correspondent entry in the
map that link it to a wrapper is removed, releasing it also to be collected. On the other
hand maintaining it even if the key is not directly pointed by a strong reference and the
base objects cannot be collected yet.

These are some future works concerning the implementation of the model, obviously
the model is also an ongoing work, therefore it is being improved as well, but as this
thesis talk about the implementation of the model rather than the model itself, these
future works are not presented here. For further information about that please refer to
[10] and [9].
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