Vrije Universiteit Brussels— Belgium
Faculty of Sciences
In collaboration with
Ecole des Mines de Nantes— France
Universidade Estadual do Norte Fluminense — Brazil

1999
RaIT
‘ﬁ‘r‘: Efr &
3 '%F
B I 3) :
."-n T
[N o) ,;.?'s?
ECOLE DES MINES DE NANTES ﬁ’}*} g‘f’ Universidade Estadual do
“ b ﬁ{'} Morte Fluminense
‘NGERE

Use of Web-based Three Tiers Architectures:
Applying Separation of Concernsto the
Modélization and Implementation
of a Dynamic Internet Database Interface

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange
project funded by the European Community)

By: Thomas Wallet

Promotor: Prof. Theo D’Hondt (Vrije Universiteit Brussels)
Co-Promotor: Prof. Cabral Lima (Universidade Estadual do Norte Fluminense)

Use oF WEB-BASED THREE TIERSARCHITECTURES:.
APPLYING SEPARATION OF CONCERNSTO THE
M ODELIZATION AND IMPLEMENTATION
OF A DYNAMIC INTERNET DATABASE | NTERFACE

Abstract

With the exponential increasing of the web-users number, web-based three-tiers applications are an
appropriate way for companies to provide through the Internet some services to a wide number of users. When
conceiving such applications it isimportant to realize an appropriate choice between the numerous technol ogies,
tools and techniques existing for such devel opment.

Thisthesis draws an analysis of some possibilitiesto realize the design of web-based three-tiers applications
as well as some technologies and tools that can be used for implementing such applications. It focuses
particularly on the way to program with separation of concerns, and specifically by using Aspect Oriented
Programming (AOP) and the AspectJ tool developed by Xerox Parc Corporation, Palo Alto, California

We applied the results of this analysis to the development of a web-based three-tiers application called
RECINTERNET, which is a web-based dynamic database interface realized for a Brazilian federal company
caled DATAPREV. We carried out the modelization and implementation of this application following two
approaches: a conventional object-oriented one and an aspect-oriented one.

In the context of the aspect-oriented approach, we created a way to realize and systematically organize
aspect-oriented design for web-based three-tiers applications. Our approach is based on a step by step
decomposition process and results to some aspects design tables, that are used to structure and visualize
interactions between the different entities of an aspect-oriented design.

Finally we illustrate the benefits of our support for aspect-oriented design in the concrete case of the
RECINTERNET application design and implementation. We draw then a comparison between the object-
oriented and the aspect-oriented approaches in the concrete RECINTERNET case.

Keywords

Web-based Three Tiers Architectures, Dynamic Database Interface, Object Oriented Design and
Implementation, Separation of Concerns, Aspect Oriented Design and Implementation, AspectJ, Aspects Design
Methodol ogy and Representation.

ACKNOWLEDGMENTS

Thisthesis could not have been developed without the help, the remarks, the pieces of advice and the critics
of several persons. These persons all know how grateful | am for every little thing they did to help me carrying
out thiswork, but | would like to name few of them that were particularly important for me during this thesis:

My first thanks go to Paulo Ramos and Claudio Passos, from GRAAL, who welcomed mein their working
team and always did their best to provide me the appropriate help during all the time | spent in DATAPREV.
They have been a precious advantage in the devel opment of the RECINTERNET project for their knowledge and
for their suggestions and critics about my work.

| have a particular thought for L.G. Kyal. Having L.G by my side day by day has been more than a great
support for this thesis. With smiles, warm support and funny words L.G. has been like a sun ray in this thesis.
L.G. can count on much more acknowledgments than these few words.

Asthe coordinator of the RECINTERNET project, Dr. Emmanuel Passos helped me alot to choose the best
options in order to develop a coherent system for the RECINTERNET project, even given the time constraints.
By his brief but pertinent remarks he efficiently supported me and directed my work in the good way to finally
reach concrete results representing the most part of the RECINTERNET project devel opment.

My best thanks are for Dr. Cabral Lima, who has been the best support | could imagine to carry out this
thesis. | am grateful for all he did to find and prepare such a collaboration between UENF and DATAPREV, for
his close supervision during my period in DATAPREV and for his efficient support in thefinal part of my thesis
in UENF. | could write several pages to enumerate all he did to welcome me in Brazil and to arrange the best
conditions for my work, as well as his help in several work and extra-work tasks. In these few lines of
acknowledgements | can just address him a particular “ Muito obrigado!” that only badly reflects al the gratitude
| feel.

I cannot finish these acknowledgments without a special thought for the friends that shared with me their
apartment in Rio. During al this time in Rio they helped me in everyday life and made me discover and
appreciate this particular Brazilian way of life. | thank them also for their great support and jokes about my
difficult Portuguese learning. | also address particular wishes to my friends in Campos that welcomed mein their
house and support my intensive finishing period in a very friendly way.

Finally I would like to thank the European Community, GRAAL and the Universidade Estadual do Norte
Fluminense for their financial support in this EMOOSE thesis.

TABLE OF CONTENTS

- CONTEXT 7
[.1) GENERAL CONTEXT 1teettetteesteesteesteesteesteesseesteesseesseesseesseesseesseesteesseesseessesssessseessesssesssesssesssesssesssesssenns 7
[.2) VWORKING CONTEXT .etteteeiteesteesteesteesteesteesteesbeesteesbeesbeesteesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesseens 7

[.2.1) Universidade Estadual do NOre FIUMINENSE.........cocuiiiiiiiiiiiie e e 7
[.2.2) TNE COIMPANY ...ttt ittt b e et a et e e a b s e e et e sh bt s et sa b sab e sabe et e snb e e nbeenbe et enes 7
1.2.2.1) DATAPREV ..ottt ettt ettt e et e s et e s s et et et e ateeemteeasteeasaeenteeanteeanteeaseeeaseeanteeantaens 8
1.2.2.2) UNISY S ANA GRAAL ...ttt ettt ekt bttt e s b e et esn e b e e e e e ne et e ennesnnes 8
[.2.3) TRESIS OrQANIZALIONottt ettt st s st sttt et e 9
1.2.3.1) OFQBNIZALION. ...ttt ettt sttt b et ae e b e e bt e s e e b e e bt e s e e sb e e bt eseeab e et e esneabeeneeaneenbeennesnnan 9
1.2.3.2) WOIKING CONAITIONS ...ttt ettt ettt b e bt s bt et s se et e e e e sneenbeennesnnes 9
1.2.3.3) THESISTEPOM SITUCTUME.......ei ettt sttt e s b et e e e s b e et e annenreen 10

[.3) RECSINWIN: COMPOSING DYNAMICALLY REQUESTSTO SINTESE DATABASEcovcuivienienie e 11
[.3.1) RECIINWIN PrOJECE....cetiitieitieitee st st st ste e st st sttt ste e sbe e st sbeesbeesbeesbeesbeesbeesbeesbeesbeenbeenbeens 11
[.3.2) RECIINWIN MOEooiiiiiiitieitie ettt ettt sttt sb e b sb e sbeenbeesbeenreen 12
1.3.2.2) INEFOOUCEION. ...ttt ettt b etttk e ke e bt e s s e ek e et e e seeeb e et e enneabeereannesreen 12
1.3.2.2) ArChitECIUrE OESCITPLION ...ttt sttt e b et e e e s b e e nreennesreen 13
1.3.2.3) Databases deSigN MOOEocviiiiiiiieie ettt sttt e b et sn e b e e nreannesreens 14
1.3.2.4) Design model describing the NaVIGALION...........coiiiiiiieieeer e 14
[.3.3) RECINWIN impIEmMENtatioNcoivieiieiieitie sttt s sreenree 16
[.4) RECINTERNET: A DYNAMIC WEB-BASED INTERFACEcoiviritiiiiesiiesiresieesieesieessteseesnnesnsesnne e 17
[.4.1) SPECHTICALIONSeetieitieitie sttt sttt b e bbb e e s b e e sb e e sb e e sbeesbeesbeenbeesbeenteen 17
1.4.2) DATAPREV requirements for the RECINTERNET ProjECt........ccoveieerieereeneenie e 17
[.5) RESEARCH OBJIECTIVES ...uttitttsteesteesteesteesueesueesteesseestaesssesasesssesssesseesasesasesatesasesatesstesatesnnesnbesntesnneenes 18
1.5.1) v, Sate of the art — Technologies and Techniques for devel oping Web-based Three-tiers

P Yol o= L] PO UR PR 19
1.5.2) Developing aspect-oriented web-based three-tiers applications...........ccoccevevcieevieeeneeeseesieens 19
1.53) i Comparison of object-oriented and aspect-oriented approaches for the RECINTERNET

(0 [C Y o] ol 0= 0| RSP PPUR TR 19

Il - STATE OF THE ART - DEVELOPING WEB-BASED THREE-TIERS APPLICATIONS--------- 21

[1.2) INTRODUCTIONctttettesttesteesteesteesteesteesaeesseesseesseesbeesaeesaeesabesbs e e seesae e ea b e sabeemb e eabese b e enbeenteenbesnbeenbeenes 21
11.1.1) Web-based Three-tiers appliCationS...........eovieiieiieiie e 21
11.1.2) Technologies and techniques applicable to RECINTERNET...........ccovivienienienee e 21

[1.2) PROGRAMMING SEPARATION OF CONCERNScoittiitiiritisittsitesitesitesisesisesssesasesseesnsesnaesanesntesasesnseenns 22
[1.2.1) SEparation Of CONCEIMIS.ucitiiitieriee st sieestee st sttt sb e sbeesbe e st e e sbeesbeesbeesbeesbeesbeesbeesbeesbeesbeenteens 22
11.2.2) Techniques for separating concerns from CompPONENtS COUEccceeriereereeriesee e 24

11.2.2.1) Meta |@Vel ProgramiMing.........ee eeeereereaeesseeseessesseessessesseessesssessee st sssesseensesssesseensessnesseensesnesseens 24
11.2.2.2) COMPOSITION FHTEIS. ..ottt ettt et sn e b e e nnesnnesreen 25
11.2.2.3) SUbjECt-Oriented PrOgraMIMINGo eerreirertierteeeesteesre s sre et e et sse st e e bt s seesbeeneessnesseensesnnesreens 26
11.2.2.4) AdapLiVE PrOgramMIMIiNG........ceieereeieeiteesteaeesteeste s steessessse st eseesseesbee bt ssseste e st sssesbeensessnesbeensesnnesseens 28
11.2.2.5) ASpect Oriented ProgramiMmingeereieeriereieesieesreeee et siee st sse st essessesseessessnesseensesnnesseens 29
11.2.3) Applying separation of concernsto RECINTERNEToocoiiiiiiiieiie e 30

[1.3) ARCHITECTURE ALTERNATIVES. ...ciitttitttsteesttesteesteesteesssesseesssesssesssesasesssesssesnsesssesssesnsesssesnsesnsesnsesnns 31
[1.3.1) TWO-TIErS ArChITECUIN ...ttt sttt st sttt bbb st sbeesbeesbeenreens 31
[1.3.2) TNree-TierS ArChITECIUNEcoviiitie ettt sttt st bbb sbe e e 32
[1.3.3) MUIti-TIErS ArChITECIUNottt sttt bbb e sbe e sbeesreen 33
[1.3.4) RECINTERNET &5 ChiItECIUINE.......coitiiitieitieitie sttt sttt sb e bbb sree 35

[1.4) INTERNET NAVIGATION DESIGNcuiiitiiitiiitiisite sttt sttt st sttt st sttt sttt 36
[1.4.1) OOHDM ...ttt ittt ettt b e b e s b e s b e e s bt e s bt e sb e e sbeesbe e sbeesbeesbeesbeesbeesbeesbeesbeenbeesbeenbeens 36
[1.4.2) OOHDM design patterns for web-based appliCations.............coveeieeneenienee e 38
11.4.3) Applying OOHDM t0 RECINTERNETcoiiiiieiiesiee ettt sttt st sreesreesree e 39

[1.5) SOME TECHNOLOGIES FOR THE THREE TIERS ..c..cttttttisttesitesitesitesieesieesssesnsesnsesasesssesnsesnnesnsesasesnsesnns 40
T O T o | PRSP PRRRRPRRRN 40

LS LLL) HTIML ettt bbbttt E etttk e et e h e e b e et e e se e e b e et e enn e e b e eteannenreen 40

T1.5.1.2) APPHICALION ..ttt ettt b btk e bt s e b e bt e ss e e b e e bt e se e s b e e b e enneebeereenneareen 41
LB) A o = SRR 41
11.5.1.4) JAVAADPPIEL ¢....cvoveeeeeeeee et s s s en et enean e enean e 42
11.5.1.5) Choice of a client technology for RECINTERNETccuiiiiiiiiiiiierie e 43
ST IS Y= OSSR 43
11.5.2.2) CGl ANA SCHIPLS......vevvoeeeceeeeeeeeeseeeesseesesseessssesseessssessssssesssssesssesssssasssssessasssssessssssassanssnssnssasesnesnean 43
11.5.2.2) APPIICALIONS. ... ettt ettt ettt e ket s e ke e bt e e e eb e e bt e nn e e beereennenreen 44
LRI IS A L= (SR SSRRTSR 45
11.5.2.4) Choice of a server technology for RECINTERNETccveiiiiiiiiiieie e 46
TG 7 =1 = = OSSPSR 47
[1.6) COMMUNICATION BETWEEN THE THREE TIERS ...c.uvtttiuterieesitesieesseesieesseesnsesseesseesssesssesnnesnsesnnesnsesnns 438
[1.6.1) Client/Server COMMUNICALION.c.uuiiieriiertee st sttt sttt et st s e st sb e sbeesbeesbeesbeesbeesbeesreens 48
11.6.1.1) HTTP cOMmMUNiCaLEON PrOtOCOcivveeiiiieitieitiiee sttt n e b nnesnnesneen 48
11.6.1.2) Socket-based COMMUNICALTION.eiiiiiiiiesieric et r e e e sreen 49
LTI I = Y= {1 USSR 50
[1.6.1.4) CORBAttteit ettt ettt et e st estee e teeaatee s s teessae e teeaateeaneeeasee e saeenteeaneeesnaeaasaeantenantaeanseennaen 51
L) O g1 =SSR TSR 53
11.6.1.6) Choice of the client/server communication technology for RECINTERNETccoooviiiiiiieniiiieninne 53
11.6.2) Server/Database COMMUNICALIONeeiviiitieitieree e stee st stee st st e steesteesbeesbeesbeesbeesbeesbeesbeesreens 54
11.6.2.1) Server/ “ normal” database COMMUNICALIONccveiriiieeieie ettt sreen 54
11.6.2.2) The particular case of server/SINTESE database communiCationccoovevviieieeneniieseeseseesene 56
[1.7) CONCLUSIONS ... teitteteesttesteesteesteesteesteesaeesaeesbeesse e sbeesa e e saeesab e sha e e et e sae e sa b e e e bt sab e eabese bt enbeeabeeabesmbeenbeenes 57
11 - APPLYING SEPARATION OF CONCERNSIN WEB-BASED THREE-TIERS APPLICATIONS
DESIGN 60
[T1.L) INTRODUCTION ..euttiteesttesteesteesteesteesteasueesseesseesseesasesaeesseesssesssesssesasesasessteanbesabessbesnbeentesnbesnbesnteenes 60
[11.1.1) SEParation Of CONMCEINS.......ciuiiiieiieitee ettt ettt sttt et sb e st e st e st e e sbeesbeesbeesbeesbeenreens 60
[11.1.2) Aspect Oriented ProgramimMingee eereereereesieesieesieesieesieesieesieesteesieesreesieesreeseeesseesseesseens 61
TT1.L.2.2) CONCEILS. ...ttt ettt etttk etttk et e skt et e s e R e et e ae e b et e e as e b e et e e meeeb e e bt enneabeeneannenreen 61
HH12.2.2) ASDEC....oeoeoeeecee et s st see s s e s es e s s s s essss s ssessen s s s e e ssensan s esnssansan e ssnssanenn e 62
111.1.2.3) EXpressing aspeCtS With ASPECE.....ccuveiuiieeitieii ettt ettt sre et be e b e nresnnesreen 63
TR T o= o Y-S R ST 66
[11.2) DESIGNING WEB-BASED THREE-TIERS APPLICATION WITH ASPECTS....cuvtiitiriiesiiesitesie e 67
[11.2.1) Motivations for designing web-based three-tiers applications with aspects............cccoceeveennenne 67
111.2.1.1) Aspect-oriented appliCatioNS (AOP)........ccuiiieiiiresierie ettt sbe et e e e nresnesreen 67
111.2.1.2) Aspect-oriented web-based three-tiers appliCatioNS.oiveriiieiiere e 68
111.2.1.3) Motivations for defining aspects at desigN [EVEL.........ccoiiiiieiiiee e 69
[11.2.2) Difficulties Of ASPECE AESIGN. ...civiiitieitierie ettt bbb bbb e sbeenree 70
111.2.2.1) An emerging programming Para0igM.........cceerueirereereeee et e e see e sre e sre e s sresreenresnesreens 70
111.2.2.2) DECOMPOSItiON CRAIENGE.eeiiiieiieeie ettt b e b e nresnnesreen 70
[11.2.3) How to design web-based three-tiers applications With @spects..........ccoceveeveeiiineinieeneenens 71
111.2.3.1) SteP Dy SLEP ASPECES GESION ...ttt ettt ettt sttt se e s b e et e esnesbeennesnnenreen 71
111.2.3.2) ASPECLS AESIGN TADIE.....c.ei ettt ettt e bt an e b e e nnesnneareen 74
111.2.3.3) A specific use of the aspects design table: detecting composition ConflictS..........coevvvveiiieniiienens 76
T11.2.3.4) CONCIUSIONSottt ettt ettt b et b e e et ae e ke e et ess e e b e e bt e seeeb e et e enneabeetesnnenreen 77
1) I WEB-BASED THREE-TIERS APPLICATION CONVENTIONAL OBJECT-ORIENTED DESIGN —
APPLICATION TOTHE RECINTERNET CASEuviiiiiitiiie ettt ettt e s ttee et e e s sntee e s nnte e e snte e e s snneeeesnnsenesanneeens 79
[11.3.1) Client appliCation GESIGN.......coieiiieiieiie ettt st sb e sb e b e sbeesbeesbeesreens 79
111.3.1.2) CONCEPLUBI MOGEL ...ttt sttt e st e et e esn e st e e nnesnnesreen 79
111.3.1.2) NaVigational MOGEoviiieiiiieiees ettt sttt sn e beenresnnesreen 81
111.3.1.3) INtErTACE MOUE ...ttt ettt e e s b e et sn e s b e enreannesreen 85
[11.3.2) RECINTERNET €Nir€ SYSIEMvieieieeieieeceesiesesteeesteeeseteeste e st e esseeesneeesneessnseeessaeesnenennsnesns 87
111.3.2.1) Client/Server COMMUNICALION.eiteerteirestierie e steeste ettt e st e e nte s s e sbeeneessnesseenresnnesreen 87
LI = oY= USSR 88
[11.3.2.3) DalAASE CCESS. ... veeiuteeiteeesieeesieesteeseeestaeasteeaeeessteessae e taeanteeasteeaseeaaseeanseeanseeasseaasaeasenanseesnseessaen 89
[11.3.3) CONCIUSIONS......cotiitieitieitee sttt sttt ettt st st bt b sb e s bt e sb e e sb e e sbeesbeesbeesbeesbeesbeesbeenbeesbeenteens 90
.4y ASPECT-ORIENTED WEB-BASED THREE-TIERSAPPLICATION DESIGN— APPLICATION TO THE
RECINTERNET CASE....ciiitiiieiitite ettt ettt e sttt e e s st e e sttt e e stee e e s asbeeeessteeeeanteeeeaasteeeeansaeeeeanseeeesnsenens 91
N I I 1 o (8o (o PSR RP PPN 91

[11.4.2) ClIEnt QPPIICALIONeevieitieitie sttt sttt st st st e st e e sbeesbeesbeesbeesbeenreens 91

[11.4.3) Client/Server COMMUNICALIONeeiteeriieitie sttt stee st steesteesteesbeesbeesbeesbeesbeesbeesbeesbeesbeesreens 96

Ry S < < PRSP PRRTRRPRRRN 99

[11.4.5) DALAIASEeeiteeitie ittt ettt st s a e a e st a b bbb enb e e nae e 104

B Gy I @0 g o U= o] PRSP TRP 106

[11.5) COMPARISON BETWEEN OBJECT-ORIENTED AND ASPECT-ORIENTED DESIGNScocveertienieenieenieeniene 107

[11.5.1) DESIGN PIOCESS.....teeteeiteestiesteesteesteesteesteeseeesseesaeesaeesateshaesaeesaeesabesatesabesnbesabesabesnbeenbeenbeenteenes 107

[11.5.2) COMPONENETCONCEINSveiteitiiiteesiee sttt sttt bee st sae e st te st st e ssbe st sabeenbeenbeenteenes 108

[11.5.3) IMplementation SUPPOIT..........oouiiiiieiie ettt et 108

[11.5.4) SPECIHTIC POIMNESeeiitiiieiiit ettt sttt ettt 110

[11.5.5) CompariSon CONCIUSIONSciuuiiiiiiiiiiiee ettt st et e 111

[11.6) CONCLUSIONS. ...cuttetieiteesteesteesteesteesteesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeenbeesbeenbeenbeenbeesbeenbeens 111

IV - RECINTERNET IMPLEMENTATION 112
[V, 1) INTRODUCTION ..euttetiesteesteesteesteesteesteesteesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeenbeenbeenbeens 112

IV.2) CONVENTIONAL OBJECT-ORIENTED IMPLEMENTATION OF RECINTERNETcocooiiiiniiniinieiniee 112

YA O T o | ST 113

Y S = o= PRSP 115

1V.2.3) Client/Server COMMUNICALION.oiuiiiiiieiie sttt st s 115

[V.2.4) DALADASE BCCESS.......veiteiitieiteesiee st sttt e st et e st sie e ss e e she e s aae s aee s abesabesabeeabesabesabesnbeenbeenbeenteenes 116

IV.3) GUIDELINES FOR THE IMPLEMENTATION OF THE ASPECT-ORIENTED DESIGNveeivieriienieenieesieeniens 116

IV.3.1) Aspect-oriented implementation With ASPECEooviiiiiiiiie e 116

1V.3.2) RECINTERNET implementation..........ccuoiiiiiiiiiiiinie ettt 118

[V .4) CONCLUSIONS. ...ceutteteesteesteesteesteesteesteesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeenbeesbeenbeenbeenbeesbeenbeens 121

V- CONCLUSIONSAND PERSPECTIVES 122
V.1) THE RECINTERNET PROJECT ...ccutiiitieitieiieesie ettt ettt ettt et ettt sttt sttt 122

V.2) OBJECT-ORIENTED AND ASPECT-ORIENTED APPROACHES OF RECINTERNET DEVELOPMENT 124

V.3) ASPECTSDESIGN TABLESAND STEPBY STEP ASPECTSDESIGN ..ccuvtitieiieieeieeieeieeeeseeseeseesnee e 125
FIGURES INDEX 129
TABLESINDEX 130
REFERENCES 131
APPENDIX A —RECSINWIN GRAPHICAL RELATIONAL MODEL 135

APPENDIX B —THE NODE ASA NAVIGATIONAL VIEW HYPERMEDIA SYSTEM PATTERN----138

APPENDIX C —NAVIGATIONAL FRAMEWORK CLASSES DESCRIPTION 139
APPENDIX D —RECINTERNET INTERFACE DESCRIPTION 142
APPENDIX E —WOVEN CODE OF THE DYNAMIC NODE LOAD ASPECT 156

| - CONTEXT

I.1) General context

It isimportant to explain the general context of thisthesissinceit isabit particular. This thesistook place
during six months in Rio de Janeiro city and Campos city, in the state of Rio de Janeiro in the south-east of
Brazil. It stands both for aresearch master thesis of the European Master of Sciencesin Object Oriented Software
Engineering (EMOOSE) and for a final year industrial project of the engineering school Ecole des Mines de
Nantes.

That isthe reason why thisthesis had to group in a same project a research aspect and an industrial aspect.
To satisfy these constraints this thesis was defined as a research work applied to a concrete industrial case, in a
collaboration between the Universidade Estadual do Norte Fluminense (UENF), which is a university of Rio de
Janeiro State situated in Campos city, and DATAPREV, which is a federal company situated in Rio de Janeiro
city.

Dueto this collaboration, we had to deal with different requirements coming both from the “research” thesis
specifications and from the company needs:

Toput it in anutshell, as aresearch master thesis thisthesis was bound to provide a substantial analysis and
synthesis of past and actual researchesin a domain of object oriented software engineering, and then to carry out
aresearch work to develop some new aspects in this domain.

In the sametime, from the company standpoint, thiswork had to provide a concrete result in the given time.
As this work was included in a project, the given objective had to be reached efficiently in order that this work
could be easily and concretely use by the project team.

These two kind of requirements sometimes go in two distinct directions, and so a particular balance had to
be done during all the time of thisthesis, in order to be able to present an appropriate and effective work for both
aspects.

[.2) Working context

1.2.1) Universidade Estadual do Norte Fluminense

The research development of this thesis was done under the responsibility of the UENF: Universidade
Estadual do Norte Fluminense (State University of North Fluminense), in Campos, under advising of Pr. Cabral
Lima, head of the SCC: Setor de Computacéo Cientifica (Scientific Computation Department). This department
ismainly specialized in Artificial Intelligence and Software Engineering (see for example [Lim95], [Lim97] and
[RLKS98]).

1.2.2) The company

The “industrial” part of this thesis took place inside a project included in a partnership between GRAAL,
UNISYSand DATAPREV. GRAAL isacompany specialized in software engineering and artificial intelligence.
GRAAL works jointly with UNISYS (a multinational involved in software and hardware developments) in
different projects contracted by DATAPREV, which is a federal company managing all the data related to
Brazilian social welfare system. Theindustrial aspect of this thesis was realized for GRAAL and was supervised
by Dr. Emmanuel Passos (chairman of GRAAL) and some research features by Pr. Cabral Lima (from UENF), as
heis also scientific consultant for this company.

1.2.2.1) DATAPREV

DATAPREV!, Empresa de Processamento de Dados da Previdéncia Social (Company of Social Welfare
Data Processing) is afederal company of the Ministério da Previdéncia e Assisténcia Social (Brazilian Ministry
of Social Welfare) existing (in its current structure) since 1974.

Having its headquarters in Rio de Janeiro city, and two more data processing centers (Rio de Janeiro and
S0 Paolo), DATAPREV also counts state officesin all Brazilian states. Currently, the company counts around
3,800 employees.

DATAPREYV isresponsible for the management of all Brazilian social welfare data. It includes particularly
the computer development of Brazilian social welfare ingtitutions, the processing of all the calculus concerning
social benefits (temporary retirements, health insurance, etc...), the processing of the main part of the pay rolls of
the country (reaching 17 millions of beneficiaries per month) and the collecting of social contributions of around
5 millions people and 3 millions companies.

Rio de Janeiro headquarters are situated in a recent 13-floors building where are working around 1,300
employees. An important part of the work realized in DATAPREYV is organized in projects which are frequently
delegated partially or totally to others companies.

.2.2.2) UNISYSand GRAAL

UNISY S?isamultinational present in more than 100 countries around theworld in various activity domains
of computer science such as hardware, software, electronic business, databases, communications. Created in 1986
from the merge of Sperry Gyroscope Co. and Remington Typewriter Co., UNISY S is now providing computer
science related services to tens of thousands of customers worldwide, including well-known companies such as
Microsoft, Intel, Compagq, Oracle, SAP, €tc...

GRAAL is a company of Rio de Janeiro city specialized in software engineering. Founded in 1990, this
company counts 15 employees and is led by Dr. Emmanuel Passos. GRAAL worksfor different partners (such as
EMBRATEL, Brazilian telecommunication company or DATAPREV) in software engineering projects dealing
with artificial intelligence, networks, database systems. The advisor of thisthesis, Pr. Cabral LIMA, isin charge
of GRAAL activities scientific bases through research projects developed in software engineering and artificial
intelligence domains.

UNISY S and GRAAL work jointly in projects for DATAPREV since 1997 These two companies provide
together specific services for DATAPREV in the domains of software engineering, database systems and
artificial intelligence.

This thesis took place in the context of a project of this triangular partnership, called RECIINWIN. This
project was started in 1997, and it consists in devel oping a software package that will be used by DATAPREV
employees to access efficiently Brazilian social welfare data of important databases (see Section 1.3 for more
details about RECSINWIN). The main software package was at the moment of this thesis in its evaluation and
testing stage.

This project was developed by a team of GRAAL working in DATAPREV. Thisteam is composed of three
people: Claudio Passos, Paulo Ramos and Dr. Emmanuel Passos (head of the project).

During this thesis we worked in a project called RECINTERNET, which isa project developed in paralld to
RECSINWIN. This project aims to develop a web-interface that enables web-users to compose dynamically
requests to a large database of DATAPREYV and to visualize their results (see Section 1.3 and 1.4 for more details
about RECSINWIN and RECINTERNET).

! Onlineinformation about DATAPREV can be found in DATAPREV Home Page, at the following URL: http://www.dataprev.gov.br/
2 Online information about UNISY S can be found in UNISY S Home Page, at the following URL : http:/www.unisys.com/

1.2.3) Thesis organization

.2.3.1) Organization

This thesis was entirely supervised by Pr. Cabral Lima in his quality of responsible of the Setor de
Computacdo Cientifica (Scientific Computation Department) of the UENF and also for his involvement in
GRAAL asresponsible of GRAAL activities scientific bases.

The first part of this thesis was developed in DATAPREV since the RECINTERNET project required a
good knowledge of the RECSINWIN software package and its environment. Being working with the
RECSINWIN team in DATAPREV, we were then able to understand the different aspects of the system that
would be used also for the RECINTERNET project. Given the security restrictions imposed by DATAPREV
polices, we had to be present in DATAPREV in order to understand and use the system that had been the support
of our work.

During this part, the RECINTERNET implementation work of thisthesiswasled by Dr. Emmanud Passos
(chairman of GRAAL). This work was inserted in a research process that we also developed in DATAPREV,
closaly followed by Pr. Cabral Lima by the way of meetings and weekly reports.

The last part of this thesis was carried out at UENF. There were developed the finalization of the research
aspects of thisthesisas wdll as the formalization of thisthesis report. Thislast part was achieved through a close
collaboration with Pr. Cabral Lima.

Finally through this particular organization it has been possible to give the required industrial dimension to
thisthesis—asit stands also for afinal year industrial project in the Ecole des Mines de Nantes— and in the same
time to include beneficially a concrete industrial application case into the research process of this master thesis.

1.2.3.2) Working conditions

For the comprehension of the general context of this thesis it seems necessary to quote few important
aspects of the particular working conditions encountered during the implementation part of this thesis in
DATAPREV.

Given the well-known economic problems faced by Brazil in this decade, it is a fact that most of the
Brazilian public companies suffer from infra-structures problems. On one hand Brazilian government invests a
lot in young researchers formation through national and international educational scholarships at several
formation levels. But in the other hand it is generally assumed that Brazilian government has to rely on foreign
infra-structures for their industrial park. This can be partially explained by the lack of national companies able to
work with new technologies and by the omnipresent of United States influence, particularly in their computer
material monopaly.

As aresult, even being the 10" economic world power, Brazil depends of United States willing for its own
technologic progress, and then, even in the case of a public Brazilian company dealing daily with billions of
crucial computerized data as DATAPREYV, used technol ogies are sometimes exceeded since many years. Thus, in
the working part in DATAPREV of this thesis, we had to face relatively important material problems, such as
hardware and software inadeguacy or continuously disturbed s ow networks connections.

In addition to these difficulties, appeared some problems in information collection about a database and its
access system. The RECINTERNET project was based on an important database grouping a high number of data
concerning social welfarein all the Brazilian states. Asthis database is considered as confidential, it was arduous
to obtain pieces of information or help in order to be able to use it in the project. Moreover developing the
implementation work of this thesis in a federal company with strong security polices involved also other
problems going from long delays to strict refusal to obtain required information or service.

To close thissmall parenthesisit isimportant to note that even when working conditions were difficult, the
entire project in DATAPREV was very interesting. Applying a research work to a concrete whole industrial
project dealing with multiple aspects of software engineering such as re-engineering, design, implementation or
evaluation was very stimulating. Moreover Pr. Cabral Lima had always been giving pieces of advise for solving
the encountered difficulties and he provided an adequate working environment for the final part of thisthesisin
UENF.

1.2.3.3) Thesisreport structure
Thisthesisreport is divided into 5 parts:

In Section | we have introduced the general context of this thesis. We will now present RECSINWIN, which
was the starting point of our work. Then comes an explanation of the objective of the RECINTERNET project
and of the research interests of thisthess.

In Section Il we present a state of the art of the different technologies and techniques usable for web-based
three-tiers applications such as RECINTERNET, both for design and implementation stages.

In Section |11 we explain how to do and how to represent an aspect-oriented design a web-based three-tiers
application. Then we draw a comparison between aspect-oriented design and conventional object-oriented design
of web-based three-tiers applications.

In Section 1V we extend these two approaches with the RECINTERNET implementation. We explain first
how we implemented RECINTERNET out of the conventional object-oriented design presented in the previous
part, and then give some guidedlines to realize the implementation of the aspect-oriented approach design.

In Section V we present the conclusions and perspectives of our thesis, for the work we achieved for GRAAL
and DATAPREV, for the comparison of the object-oriented and the aspect-oriented approaches and for the
original approach we propose for aspect-oriented design organization and representation.

This report contains the following appendix:

Appendix A: RECSINWIN graphical relational model

Appendix B: The Node as a Navigational View Hypermedia System Pattern
Appendix C: Navigational Framework Classes Description

Appendix D: RECINTERNET Interface Description

Appendix E: Woven code of the Dynamic Node Load aspect

Lists of tables, figures and references can be found at the end of this report.

10

1.3) RECSINWIN: composing dynamically requests to SINTESE database

The RECINTERNET project that we had to carry out for the company is based on an existing project:
RECSINWIN. Both of these projects central goa is the development of a software package. It seems then
important to have a brief presentation of the RECSINWIN software in order to understand the context of our
work in the RECINTERNET project.

1.3.1) RECSINWIN project

RECSINWIN is a software developed by GRAAL for DATAPREV. This project began in 1997, and is now
initsfinal stage of tests and modifications.

RECSINWIN means RECuperacao e Tratamento de Séries do SINTESE para WINdows (recuperation and
treatment of SINTESE series for Windows operating system). SINTESE is a system used by DATAPREV to
manage a huge number of data (20 GBytes) about Brazilian social welfare. SINTESE groups different sub-
systems providing different functionalities (RECSINWIN: recuperation of SINTESE series, ADMSINWIN:
system maintaining the integrity of the different databases used).

RECSINWIN has been devel oped for al the people (more than 3,000) working in DATAPREYV that need to
access some data of the SINTESE database. Before using RECSINWIN, these users were only able to retrieve
some data from the database with some complicated and obscure (syntactically) command lines directly
addressed to the database host via the intranet of the company. The visualization of the obtained data was
something perilous and absolutely not adapted. That is the reason why an efficient software package like
RECINTERNET was necessary to provide user a simple requests composition mechanism as well as a clear
visualization of the results.

Seriesin SINTESE database:

In the SINTESE database, data are organized in series (succession of data). Each serieis defined in a unit,
with atime unit and oneto three “space’ units. The “space’ term isnot used for spatial coordinates, but as a way
to express that the series can be expressed in different dimensions.

Entitiesin SINTESE database tables are represented as coded mnemonics, and finding the corresponding
names requires a difficult table-to-table complicated research. For a better understanding of what are SINTESE
series, we present an imaginary simplified example of a serie:

The Companies Benefits serie represents the benefits of governmental companies in dollars (the unit), for
different months (the time unit), for different states of Brazil (the first “space” unit), for different companies size
ranges (the second “space” unit), for different sectors of activity (the third “space” unit).

There can be many combinations for visualizing this serie. Let’s illustrate this with two of them:

(in USD)
L ess than 1,000 employees 12,546,000 11,425,000 11,200,000
3etween 1,000 and 2,000 25,123,000 30,222,000 28,565,000
More than 2,000 11,256,899 10,556,000 13,255,000

Table 1 - Companies_Benefits serie visualization by month and company size

The Table 1 shows the Companies_Benefits serie organized by months and by company size ranges.

11

(i1 USD)
Sector Sector Sector Sector
Administration Communication Administration Communication
Sdo Paolo 2,005,000 3,658,899 1,985,322 2,123,300
Rio de Janeiro 1,789,000 2,562,000 1,562,333 3,005,000
Minas Gerais 989,000 1,525,300 1,250,025 1,502,000

Table 2 - Companies_Benefits serie visualization by month, sector and state

The Table 2 shows the Companies Benefits serie organized by months, by activity sectors and by states.

Description of the RECSINWIN software package

RECSINWIN software package provides an object-oriented interface to compose the visualization of
SINTESE series. This RECSINWIN interface work in Windows environment. Each user needs to install the
software package on his machine, and then he can use it to compose requests (one by one) to the SINTESE
database.

Through a navigation in different screens, the user chooses some series and define the way to visualize
them. This request is then transmitted to the SINTESE host (the system that manages connections to the huge
SINTESE database), the obtained result is received by the application and then the user can visualize it and he
may modify some parts of it, or compose it with other ones.

RECSINWIN also provides a particular form to compose the visualization of SINTESE series. natura
language. Using this mode, the user can write in his natural language his request (for example: How much
benefits did the state companies in the communication sector in all the months of the year 19977?). The systems
interprets it using different filters and dictionaries, proposes some corrections in case of badly-formed requests,
and then the user can visualize the results asin screens navigation mode.

1.3.2) RECSINWIN model

[.3.2.1) Introduction

Today many companies are still using some specific software packages for different parts of their activities,
and it is common that these software packages were developed in old procedural languages such as C, Fortran,
Cobal, Ada, and designed with standards specific to each company. As new needs and technol ogies emerge, these
software packages need to evolve to provide some more appropriate services. Considering the high costs of
software developing, it often seems more benefic to reuse the existing old software as a base for a new software
rather than starting the development of a new one from scratch.

However reusing this kind of software is generaly a difficult task since they have not always been
developed with the preoccupation of being reusable or when it is the case different things happened in the
software development cycle that complicate reusability. Unfortunately whenever software design is a crucia
condition for reuse, numerous are the cases where there is no explicit model used for the software
implementation, or only for parts of it, or there are models in a non-adapted form for reuse. Often standards are
adopted for model s descriptions within a same company, but these standards become inadequate. Code evolution
without model s updates, missing documentation, code devel oped by different persons interfering with the models
are just few examples of other possible perturbations that affect the reusability of a software and its models.

The reuse of the RECSINWIN software for the RECINTERNET project is a concrete example of these

reuse difficulties. Even if the RECSINWIN project is a recent one, its modeling was described through models
standards of DATAPREV. These standards are becoming old and provide only incomplete description of the

12

RECSINWIN model. In fact they are specifically conceived to provide close directives for implementation, and
do not provide sufficient abstraction to be efficiently reused or modified.

In this context it was difficult to base the RECSINWIN reuse only on these inappropriate design models. In
the case of the RECSINWIN project, most of the design models only exist as a “live knowledge”, that is to say
that design models partially exist “in the heads’ of the members of the project team even if they are not defined
formally in written or eectronic design models. So finally the reuse of the RECSINWIN design for the
RECINTERNET project was achieved through a complex mix of information from RECSINWIN formal models,
from RECSINWIN code and from project members information.

We will now describe the RECSINWIN design model. Basically this modd is organized in two parts. a

description of the database systems and a description of the navigation. We add in this section a little description
of the architecture used, because we think it isimportant to understand the model.

1.3.2.2) Architecture description

The Figure 1 presents the global architecture of RECSINWIN.

USER MACHINE SINTESE DATABASE HOST

Remote /\
Database

Application

SINTESE
Database

L ocal
Structural
Database

=

Database
Update

Database
Access

| ——

Figure 1 - RECSINWIN global architecture

The Local Structural Database is a structural copy of the SINTESE main database. It means that this
database stores the same series than in the SINTESE database, but not in the same way: only the structure of the
series are stored, and not all the entries of the series. In the case of the Companies Benefits serie for instance, we
have different dimensions (month, sector, state, company size) and entries (expressed in USD) corresponding to
the values of the serie in the different dimensions crossing. For example we have one entry (12,236,000 USD)
corresponding to the crossing of a time element (January 96), an element of the first dimension (companies of
less than 1,000 employees), an eement of the second dimension (administration sector) and an element of the
third dimension (Rio de Janeiro State). In the SINTESE database for each serie are stored all the dimensions, all
the dimensions elements and all the entriesfor all the dimensions crossings. In the Local Structural Database will
be stored for each serie only its dimensions and dimensions units, but not all the entries.

13

The advantage of using aLocal Structural Database isin efficiency. When composing a request through the
RECSINWIN application, data about the selected series are necessary. It could be possible to access the
SINTESE database each time, but it would be very inefficient (this access is done through a network, and this
database can be accessed by other users in the same time). Then to provide the data necessary to compose the
final request, RECSINWIN hasthislocal structural database, and accessit easily.

There is absolutdly no modifications of the data of the local structural database since it is only used to
retrieve data. So there is no need for checking if the SINTESE database is coherent to the entries of the local
structural database. On the other hand the local structural database must follow the entries modifications of the
SINTESE database since new entries are sometimes added to it (this database is used in several applications of
DATAPREV). This updating is achieved through an application called ADMSINWIN®, which automatically
updates the local structural database according to the modifications appeared in the SINTESE database.

By using this local structural database all the composition of the request corresponding to the way of
visualizing some series is done without accessing the SINTESE database host. The final request is submitted
through the network to the SINTESE database host only when it has been totally defined locally. The SINTESE
database host proceeds it and returns the results to the RECSINWIN application. Then the results are shown for
the user.

1.3.2.3) Databases design model

RECSINWIN is based on the SINTESE database. This database and the way to access it was existing before
the RECSINWIN project. Moreover this database is also part of other applications used in DATAPREV for
different purposes. Then for the RECSINWIN project it was not possible to use another database or to use the
SINTESE in another way.

A modeling of the structure of this database has been realized for the RECINTERNET project, since it was
necessary in order to be able to create the local structural database and to use it efficiently. The model used is
called Modelo Relacional Gréfico (graphical relational model). This model can be found in Appendix A
(RECSINWIN graphical relational mode!).

This model describes all the tables used to store the structure of series, as well as the way the different
entities of these tables are related. It can be seen as a kind of relation-entity model of the series storage. This
model contains also some specific information that are hard-coded in the RECSINWIN application about these
database tables. Finally this model contains also some textual descriptions of the storage formats of each entity
stored in each table of the database.

This model describes only the internal structure of the database, and does not provide a view about the
entities of the application. Here we just have the model of the low level corresponding to the tables structure. It
would have been interesting to have another model representing the different objects (stored in the database
tables) used by the application. This should have provide a greater level of abstraction that is needed for a clear
understanding or reuse.

1.3.2.4) Design model describing the navigation

RECSINWIN design is aso described through a navigational model. Navigation in RECSINWIN
application is modeled as following: navigation is split in basic entities that are screens. A new screen is defined
each time a user action makes appear or disappear an el ement on the screen.

Based on this screens division, the navigation is modeled as following: thereisakind of graph where every
node is a screen, and every edge between two nodes is a navigation between these two nodes. Navigational
interaction (such as button clicks) are also described in this modd.

% When the RECSINWIN application is started, the user can choose to update or not the local structural database. In the update case,
the ADMSINWIN application is automatically started and updates the local structural database with the modifications which have happened
in the SINTESE database.

14

We do not present all the schemes of this navigational model. Here the idea is just to show the model
behavior. The Figure 2 (adapted from [RSW99]) presents atrandation of a part of this navigational model.

Screenl

Screen Format Definition

Options to choose the screen format:
Temporal or Spatial

Temporal Click Spatial Click
Screenl? Screen3

Message about Temporal Screen Screen “ Space” Dimension Definition

. Possible options for Spatial Units Selection
Confirm l

Screen?

Screen “ Time” Dimension Definition

Possible options for Temporal Units Selection

Figure 2 - Trandated extract of the RECS NWIN navigational model

In addition to these navigational moddl, there are some descriptions of al the procedures corresponding to
the actions performed by the user during the navigation. Navigation is defined as a tree where a branch
corresponds to a choice realized by the user. Then the model uses a decomposition in functions and sub-functions
representing the path to reach a given place in this navigational tree. Procedures description are then organized
into these functions and sub-functions.

In this hierarchical sub-function decomposition, each procedure resulting from user interaction is described
in pseudo-code. Without explaining the details of this particular procedure, we give an example of the way these
procedure descriptions are achieved in this navigational model. The Figure 3 (extracted from [RSW99]) shows a
trandated description of the procedure called when the user chooses to adopt the “temporal” composition way.

To conclude this section about RECSINWIN model, it can be said that the two design models used
(databases model and navigational model) have probably provide the appropriate support for RECSINWIN since
they describe very closaly the technical way it must be implemented. However these models are expressed into
specific formats (standards of DATAPREV) that do not provide abstraction mechanisms to express efficiently
entities of object oriented design models. This lack of abstraction provides a close view onto the RECSINWIN
implementation code but involves a difficult global understanding of the different objects used in this object-
oriented application.

15

Function: SERIESRETRIEVING. USING SCREENS
Sub-function: BuildingScreen. Confirm. BuildingTempor al Screen. TimeDefinition

Proc: Open RSCREENZ:

Dol =1 a 10; *Activate possible time options
for selected series*

If UTEMP. Count[I] = Count Seri es,
Activate correspondi ng option i n RSCREENZ;
end;
end;

Desactivate Confirm button;
Show and activate Exit button, place icon and nane;

Proc_end;

Figure 3 - Trandated extract of RECSINWIN procedures descriptions

Moreover this lack of more “abstract” design models is a crucial handicap for future modifications,
maintenance or reuse of RECSINWIN. Finally as software reuse is mainly based on design models, the reuse of
RECSINWIN for the RECINTERNET project has been strongly restricted by the abstraction poverty of its design
models.

1.3.3) RECSINWIN implementation

RECSINWIN has been a starting point for the RECINTERNET project. However RECSINWIN concrete
implementation details do not present a crucial interest in thisthesis, since itsimplementation has not been used
in the RECINTERNET project that takes place in a totally different implementation context: internet
programming with a different architecture from RECSINWIN. That is the reason why we only explain in few
words the main characteristics of the RECSINWIN implementation:

RECSINWIN is an object-oriented application programmed for Windows environments. This application
has been developed with DELPHI 1.0, and not with a more recent version, because some users run it with
Windows 3.1, and more recent versions are not compatible. The DELPHI code of RECSINWIN counts around
28,000 lines of code.

The deployment of this application installs locally the application, the local structural database, its access
elements, and also the necessary el ements to access the remote SINTESE database.

Concretely the RECSINWIN application provides the user different functionalities. The main oneis screen
navigation to compose a request to the SINTESE database. A similar request definition is possible through
sentencesin natural languages. Additional functionalities are provided, such aslocal structural database updating,
a contextual help, saving and composing results possibilities.

16

|.4) RECINTERNET: A Dynamic Web-based I nterface

The RECINTERNET project consists in developing a web-based application that enable users to compose
dynamically requests to the SINTESE database and to visualize their results. We were entirely responsible for
this project, and the major part of it has been started and carried out during thisthesis. The work realized during
this thesis led to the development of the most part of the RECINTERNET project, which will be finalized by the
other members of the RECSINWIN/RECINTERNET team. The following sections explains briefly the starting
point of this project as well as the given objectives.

1.4.1) Specifications

The objectives of the RECINTERNET application are to provide to any web-user through an internet
navigation the possibility to compose dynamically requests to the SINTESE database and to visualize their
results. This application must then provide to any web-user of the world an easy and efficient to navigate into
different screens to define step by step the characteristics of his own request and to visualize its results, in the
same way than the RECSINWIN application provided a local solution to compose a request and visualize its
results.

Concretely the RECINTERNET application should run in any web-browser without needing installing
anything special on the user machine, and it should also be possible to have several usersin the sametime, from
different places. Though these improvements RECINTERNET is open to al the employees of DATAPREV that
need to access the SINTESE database, but it is also open to any anonymous user that wants any information
about Brazilian social welfare.

RECSINWIN has been the starting point of the RECINTERNET project since both systems are used in the
same functionality of providing a user a way of dynamically compose requests and visualize their results.
However we had to devel op a totally new approach for the RECINTERNET project since web-based applications
require specific architectures, internet-specific way of programming, users access control and security,
functionality modifications, etc... In this context an important reflection was necessary to conceive the
RECINTERNET project, and an important work of design modeling was necessary to provide the appropriate
support for an efficient implementation.

Then most part of the functionalities of the RECSINWIN application had to be redlized in the
RECINTERNET application, or adapted to an internet way of programming. RECINTERNET had then to
provide a way to compose a request through screen navigation and different choices of the user in each screen. It
means that the user has the possibility to organize the lines, the columns and the sub-columns of the result sheet
that presents his selected series. The results of such requests had to be visualized and possibly downloaded in a
file. Contextual help screens had to be available at any moment of the navigation. However for a first prototype
of RECINTERNET few functionalities were not taken into consideration. They will only be inserted one by one
to future versions of RECINTERNET. Thisisthe case of the possihility to express requestsin natural languagein
RECSINWIN, or manipulate and combine requests results.

Finally as there were several similarities between RECSINWIN and RECINTERNET functionalities, we
tried to reuse some design moddls of RECSINWIN when it was possible. However for RECINTERNET we had
to carry out an important and specific work of design modeling to efficiently support the implementation of this
system based on the Internet.

1.4.2) DATAPREYV requirementsfor the RECINTERNET project
Given the short period (four months) where we worked on the RECINTERNET project inside DATAPREV,

it was not possible to carry out the whole project. Thus, considering strictly the company standpoint, the main
objectives of our thesis were defined as following:

17

Modelization

Based on the RECSINWIN experience, develop a design model for RECINTERNET that provide an
appropriate support for implementation, reuse or modificationsin future versions of RECINTERNET. That isthe
reason why we had to choose and to define design models in appropriate formats that would cover the different
aspects of the RECINTERNET project: architecture, communication, database, navigation...

I mplementation

RECINTERNET implementation had to be realized using the best appropriate technologies existing in the
different domains covered: internet navigation, three-tiers applications, communication protocol, database
access... Given the time restrictions we were asked to go as far as possible in implementation, and to leave to the
project team complete parts of implementation and guidelines for uncompleted parts so that the other members of
the RECSINWIN/RECINTERNET team could easily finalize the project.

Evaluation

All the completed parts of our RECINTERNET prototype implementation had to be evaluated carefully, in
order to leave to the project team tested and finished implementation parts that could be efficiently used to
finalize the project.

Toput it in anutshell, from the company “industrial” standpoint, we had to carry out all the designing stage
of the RECINTERNET project, to browse the last existing technologies in the different aspects of the project to
apply them in an implementation (or parts of it) and finally to test all we had implemented.

In spite of the time restrictions, the work realized during this thesis provided appropriate design models and
completed tested parts of implementation. The project was then left in an advanced phase that would provide to
the three persons of the team the necessary e ementsto implement efficiently the missing parts of the application.

As we will seeit in the next part, these company requirements were closaly linked to the research carried
out during thisthesis.

|.5) Research objectives

The main strength of the work realized during this thesis was that we had to carry out a research work that
could be directly applied to a concrete industrial case. This constraint was dueto the fact that thisthesis standsin
the same time for a Master of Science thesis and for a final year industrial project of the Ecole des Mines de
Nantes. Given this context, the research realized during this thesis was organized into three aspects:

First we analyzed the existing technologies and techniques suitable for design and implementation of web-
based three-tiers applications with large databases such as RECINTERNET. This study was concretely applied to
the RECINTERNET case by choosing the best techniques and technol ogies for its development.

In a second step we studied the way to program web-based three-tiers applications with separation of
concerns, and particularly with Aspect Oriented Programming (AOP). For this purpose we developed our own
approach to aspect-oriented design for such applications.

Thethird aspect of this research work was dedicated to apply this approach to realize separation of concerns
in web-based three-tiers applications development and to study the differences with a conventional object-
oriented approach. So we drew a comparison between an object-oriented approach and an aspect-oriented one for
the design and implementation of the RECINTERNET project.

18

1.5.1) State of the art — Technologies and Techniques for developing Web-based
Three-tiers Applications

Our first research objective was then to realize a analysis of the different technologies and techniques
applicable in the RECINTERNET project. Given the exponential development of public interest to the internet
media, thereis an explosion of the number of web-based applications since they provide an appropriate and easy
way for companies to provide their own services to awide public.

Given this context, new techniques and technol ogies for web-based three tiers applications are permanently
created or evolving in order to provide a better support to the clients or companies needs for their web-based
applications. That is the reason why we decided to draw a state of the art of the different technologies and
techniques (related to web devel opment or not) that can be applied in a project such as RECINTERNET.

In terms of design stage, we will identify different techniques to efficiently program separation of concerns
in object oriented paradigm, to realize navigational design of dynamic interfaces or to choose between different
kind of architectures.

In terms of implementation stage, our study will cover domains such as internet programming solutions,
remote communication technologies, databases access, but also applying some of the special techniques
described in the design part.

For both design and implementation, we have applied the appropriate studied techniques and technologiesto
the RECINTERNET project. We present in details this state of the art and its application to the RECINTERNET
project in the Section I1.

1.5.2) Developing aspect-oriented web-based three-tiers applications

This part of the research carried out during this thesis is focused on a particular technique that can be
beneficially used in projects such as RECINTERNET: Separation of Concerns, and particularly Aspect Oriented
Programming (AOP).

AOP isaparticularly active research domain of software engineering which provides an efficient solution to
program separation of concerns. Concrete solutions for implementing applications with AOP are developed such
as the solution for Java provided by the Xerox Parc Corporation: Aspectd [AJ]. However, as a new emerging
research domain, designing and programming with aspects processes need to be developed in order to become
really applicable to large scale applications.

In this context we focused our research on the way to realize aspect-oriented design, particularly for web-
based three-tiers applications. We tried to devel op an efficient way to organize an aspect-oriented design for such
applications, and to develop techniques to provide appropriate support for aspect-oriented implementation.

We present our approach for aspect-oriented design of web-based three-tiers applicationsin Section I11.

1.5.3) Comparison of object-oriented and aspect-oriented approaches for the
RECINTERNET development

We divided this comparison into two parts. design and implementation.

First we realized a conventional object-oriented design for the RECINTERNET application. Then, applying
our methodol ogy and representation for designing web-based three-tiers applications with aspects, we realized an
aspect-oriented design for the same application. This provides a concrete illustration of our approach of aspect-
oriented design and “real-world” example of its possibilities. Finally we compared the object-oriented approach
and the aspect-oriented one. These different parts of the design comparison can be found in Section I11.

19

Secondly we focused our work on the implementation of these two designs. We implemented most parts of
the conventional object-oriented design for RECINTERNET. For time constraints it was not possible to
implement the aspect-oriented approach. According to the company objectives for the RECINTERNET project,
we only gave guidelines and examples of how to redlize such an aspect-oriented implementation. The
RECINTERNET implementation with the two approachesis explained in Section IV.

To conclude this section about the context of this thesis, it can be said that mixing in a single project a
research work and a concrete industrial application was a very interesting challenge, even if it imposed many
congtraints to be able to compl ete the both aspectsin the given time.

20

I - STATE OF THE ART - DEVELOPING WEB-BASED THREE-
TIERSAPPLICATIONS

In this section we draw a state of the art of the existing techniques and technol ogies that can be interesting
for design and implementation of web-based three-tiers applications such as RECINTERNET.

[1.1) Introduction

11.1.1) Web-based Three-tiers applications

The “ web-based three-tiers application” term is generally used to reference a system involving three tiers
that communicate through the internet. The three tiers involved in such applications are generally clients (that
request services), servers (that provide services) and shared resources (printers, databases, modems or high
powered processors).

Given the exponential development of the internet media and its wide public, companies see a particularly
interesting and easy way to reach alarge public with web-based three-tiers applications. The fast devel opment of
numerous applications of this kind also involves the emergence of many new techniques and technologies.
Specific requirements for each of the threetiers have an important impact on the chosen technologies. Asaresult
there are many possible variations in the way to develop such applications, based on different techniques and
technologies.

The involved technologies cover different areas at different levels of the application development cycle. At
design level, such applications require a particularly elaborated and robust design since they deal with threetiers
having each their own distinct functionality and collaborating with each other in specific. It is then important to
choose appropriate and efficient design methodol ogies and techniques.

At implementation level, developers of such applications must pay a particular attention to choose
appropriate technologies between the wide range of new or permanently evolving technologies applicable.
Roughly all the recent technologies dealing with internet programming, internet communication protocols or
database systems have to be carefully studied when developing such applications.

Finally developing a web-based three-tiers application nowadays requires first an important research of the
appropriate techniques and technologies in the case of the application.

11.1.2) Technologies and techniques applicable to RECINTERNET

The RECINTERNET project, as a web-based three-tiers application, provides an interesting reference to
settle a state of the art of the technologies and techniques applicable in such applications. In the context of this
thesis, we analyzed severa techniques and technologies related to web-based three-tiers architectures. Anyway
the objective of the state of the art realized during this thesis was to browse the best existing techniques and
technologies applicable in the RECINTERNET project, as well as justifying the choice of the maost appropriate
Ones.

For time congtraints, the covered domains choice in this state of the art were directed by the
RECINTERNET specifications. As this project deals with complex concerns such as distribution, shared
resources, connections control, it was important to have the possibility to program efficiently with separation of
concerns. In an application involving three tiers distributed on remote locations, it was also important to study
carefully the architectural alternatives. As a dynamic interface using the internet to compose database requests,
RECINTERNET needed to use some appropriate technique to design internet navigation. In the same time, al

21

the technologies available for the three tiers implementation had to be studied, as well as the existing solutions
for communication between these three tiers.

To put it in anutshell, this state of the art will then be organized as follow:

Separation of concerns design and implementation (Section 11.2)
Architectural alternatives (Section 11.3)

Internet navigation design (Section 11.4)

Client, server and database technologies (Section 11.5)
Communication between the different tiers (Section 11.6)

After each topic in this state of the art we will justify which technologies and techniques we used for the
design and theimplementation in the RECINTERNET project, providing in thisway a concreteillustration of the
applicability of such a state of the art.

[1.2) Programming Separation of Concerns

11.2.1) Separation of concerns

Software application complexity is permanently increasing. Nowadays many applications deal with
complex concerns such as distribution, concurrency, rea-time constraints, debugging facilities, security,
communication strategies, persistence, error checking, memory management, historization...

Actual programming languages only provide component abstraction mechanisms. [KLM+97] defines a
component as an entity that “can be cleanly encapsulated in a generalized procedure (i.e. object, method,
procedure). By cleanly, we mean well-localized, and easily accessed and composed as necessary”. Unfortunately,
classical components abstractions cannot support clear encapsulation of such complex concerns into
programming entities. That is the reason why using some of these concerns in an application increases
consequently code complexity and by the way code size, understandability, modularity, maintainability and
reusability.

In fact the main problem comes from the fact that, in actual programming languages, the code
corresponding to a concern is cross-cutting the code of the different components of the system. Let’sillustrate
this with an example of book locators extracted from [LK97]. We just present the main ideas of separations of
concerns through a small parts of this example.

The Figure 4 presents mainly the Java code of two methods (r egi st er and unr egi ster) of the
BookLocat or class. This classis the main class of a system providing book location services, and these two
methods are used respectively to add a new book in a location and to remove an existing book. The code
presented focuses only on the implementation of these two methods. The particular code of the Book and
Locat i on classes, as well as the code of the other methods of the system will not be given here, for space
reasons.

Now, let’s suppose that this system can be accessed concurrently, i. e. the books[] and| ocati ons[]
variables are critical resources. Then synchronization mechanisms must be added to the initial system. A way to
doitispresented in Figure 5. Theideaisto add two methods (bef oreWite andafter Wi t e), that will be
synchronized and will organize a queue for the different entities trying to access the critical resources, based on
two counting variables (acti veReaders and acti veWiters). The concurrency concern added to the
initial code involves code modifications in different places scattered throughout the code (the added code is
underlined in thisfigure).

22

public class BooklLocat or

{
/1 book[i] is in locations[i]
private Book books[];
private Location locations[];
private int nbooks = O;

/1

public void register (Book b, Location I|)
throws LocatorFull {
if (nbooks > books. | ength)
throw new LocatorFull ();
el se {
/1 Just put it at the end
books[nbbooks] = b;
| ocati ons[nbbooks++] = 1;
}
}

}
/1

public void unregister (Book b) {
Book abook = books[O0]; int i =
while (i < nbooks &&
abook. get _isbn()!= b.get_isbn())
abook = books[++i];
if (i == nbooks) return;
/1 Simply shift down the rest
while (i < nbooks - 1) {
books[i] = books[i +1];
locations[i] = locations[++i];

0;

-

- -nbooks;

-

Figure 4 - Book locators (1): simple code example

public class BooklLocat or

{
/1 book[i] is in locations[i]
private Book books[];
private Location |locations[];
private int nbooks = O;

-~
~

pubii”c voi d register (Book b, Location I)
throws LocatorFull {

if (nbooks > books.|ength) {

throw new LocatorFull ();

el se {
/1 Just put it at the end
books[nbbooks] = b;
| ocati ons[nbbooks++] = 1;

}
.
public void unregister (Book b) {

Book abook = books[O0]; int i 0;

while (i < nbooks &&
abook. get _isbn()!= b.get_isbn())
abook = books[++i];
if (i == nbooks) {

return,;

}

/1 Sinmply shift down the rest

while (i < nbooks - 1) {
books[i] = books[i +1];

locations[i] = locations[++i];
%-nbooks;
afterWite();
}
/1

Iy

-~
~

Figure5 - Book locators (2): example with concurrency concern

This example illustrates the fact that there are complex concerns (such as the concurrency one in this
example) that are tangling the basic functionality code of a program.

In [HL95] is explained the main idea of the separation of concerns paradigm: different concerns should be
expressed in different modules, clearly separated from basic functionality components code. In the previous
example, applying separation of concerns would mean to have in amodule (or file), theinitial code of the Figure
4, and in a separated module the concurrency concern. Then we would have a clear distinction between
components (classical object-oriented entities such as the initial code of the example) and concerns, but also a
clear digtinction between different concerns (each concern expressed in one module). The way to express the

23

different concerns and the way they are related is specific to each technique used to realize separation of
concerns. To give an example, we express the concurrency concern of the book locators example in the D
language, described in [LK97], which is a language used in the aspect-oriented programming (see Section
11.2.2.5) way of solving separation of concern. This language is used to express concurrency and distribution
concerns.

The Figure 6 presents the concurrency concern of the book locators example in the D language. The
Bl coor d concern expresses all the changes seen in the Figure 5. Basically thesel f excl usi ve mechanismis
used to define methods that can only be executed at most by one thread at a time. The nut excl usi ve
mechanism is used to define a set of methods that mutually exclude each other. In this example we see that
expressing this concern this way provide a clear separation of concern, and also amodular program less complex
and long than the same program expressed without separation of concern.

coordi nator Bl coord : BookLocator {
sel fexclusive{register, unregister};
nmut excl usi ve{regi ster, unregister, |ocate};

}

Figure 6 - Book locators (3): example of the concurrency concern expressed in the D language

After thismodular decomposition of a system into different components and concerns, [HL95] specifies that
mechanisms must be defined to compose these components and concerns into an executable or compilable

program.

Finally the separation of concerns paradigm enables to express separately the different concerns and
components of a system, providing then a better understanding through a well-defined structure, a decreased
complexity and easier reusability, maintainability and modificability.

11.2.2) Techniquesfor separating concerns from components code

Different techniques are developed to realize separation of concerns. These techniques provide ways to
express clearly concerns in separate modules from components code and also they solve the problem of
composing these concerns and components to create efficient systems. The following sections present the most
advanced ones.

11.2.2.1) Metalevel programming [SW96], [Kai98]

Meta-classes are used in different programming languages to express the behavior of classes, in the same
way that classes express the behavior of objects. Reflexive languages such as Java or Smalltalk provide usersthe
possibility to access or/and modify meta-classes, and then it is possible to affect the behavior of classes.

Meta Object Protocols (MOP) reify in the chosen language itself the mechanisms of the language. It means
that MOPs describes in the chosen language some protocols used for example for compiling, executing or
debugging programs. They are based on some reifications of entities used in these protocols, such as
representation of message passing, representation of debugging stack.

Some strongly reflexive programming languages (such as Smalltalk), or extensions of languages (such as
Metaxa, for Java) provide programmers the possibility of modifying MOPs. It is then possible, for example, to
modify the corresponding MOP which is responsible to solve the methods lookup (within an inheritance classes
hierarchy) realized at run-time. Thus modifying MOPs provides an important power to the programmer, that can
modify strongly theinitial language in order to support his own execution mechanisms.

In this context modification of MOP provide the appropriate support to realize language modifications in
order to be able to program with separation of concerns. In [SW96] the authors explain that MOP can be used to
separate concerns from basic functionality components. Components are implemented at basic level whereas

24

concerns are implemented at meta-level. In this way we have a clear separation of concerns. They can be
expressed in meta-classes and then mapped to components code of basic level through modified MOPs. This can
be done for example by modifying MOP so that message passing are trapped and execution modifications are
realized instead of the initial message execution. In [Kai98], Kai Bdllert proposes a solution where MOPs are
modified so that components instances classes are replaced by classes that have been changed to insert
maodifications expressed in separated concerns.

The main interest is the strong flexibility for realizing separation of concerns in the most appropriate way.
MOPs modifications provide strong possibilities for the programmer to develop systems where concerns can be
separated and expressed in the most appropriate from, and then composed with components of basic level as
needed.

The restrictions of using meta-level programming to realize separation of concerns are that it requires the
use of strongly reflexive programming languages or reflexive extensions of programming languages in order to
be able to modify MOPs and meta-classes. Moreover reaching the meta-level at run-time and executing specific
manipulations involving meta-level entities dows down consequently the execution speed of a program. In this
case specific tricky optimizations are needed to decrease the cost of meta-level calls.

Multiple experiments have been carried out on this possibility, such asthe Smalltalk system [K&i98] of Kai
Bdllert, to separate synchronization and tracing concerns from components code expressed at classes level.
Actually this system is used to support aspect oriented programming (see Section 11.2.2.5), but it uses the
mechanisms described before (modifying MOP) to perform this objective. As in this case, meta-level
programming is often used to implement frameworks to support the other approaches for separation of concerns.

11.2.2.2) Composition filters [AT98], [Ber94], [Cza98]

The composition filter approach is based on applying filters on incoming messages and outgoing messages
of an object. It isthen an extension of the classical object model with messages filters and related mechanisms.

As it can be seen on the Figure 7(adapted from [Cza98]), modifications have been done to the classical
object modd. In the compoasition filter approach, an object is composed of an inner object (that can be seen asa
conventional object of the classical object model) and an interface layer. This interface layer contains a given
number of input filters and output filters. These filters are used to intercept messages incoming to the object or
outgoing from the object. Incoming filters are applied one by one to incoming messages. Output filters are
applied also one by one to the outgoing messages. A filter contains conditions to apply to the message to filter
and action to realize for each case defined by these conditions. For example depending on the conditions of the
filter being applied to a message (incoming or outgoing) this message can be rejected, normally evaluated,
delegated to external objects referenced by the object, delegated to internal objects of the object, it can be added
to aqueue or it can start other specific action.

Filters are defined as first class objects and then can be manipulated easily. Composition filter
implementation is based on using meta-objects to reify messages and message passing. Filterswill then be ableto
manipulate these message representations. Filter classes are used to express different filtering behaviors. They
can be sub-classed to define a more specific behavior. Pre-defined filters are provided: delegation filters for
delegating messages, wait filters for buffering messages and error filters for throwing exceptions.

The composition filter approach provide the appropriate support for realizing separation of concerns. Basic
functionality components can be expressed in conventional objects and cross-cutting concerns can be
implemented with composition filters. Filter classes can be expressed for a given concern and then applied to
different objects. We then have a clear separation between basic components code and concerns code.

This approach is particularly appropriate for implementing concerns related to synchronization constraints,
real-time congtraints, error checking as well as other concerns that rely on message passing filtering.

25

incoming
messages

L~ Input

\ Filters

.
D

Object Internal
Objects
Interface O
Layer

External
Objects O

references

Output
Filters

outgoing
VW messages

Figure 7 - Object elements in the composition filter model

However such an approach have its limits for concerns expressivity, since the filters defined for a concern
have to be applied to all the involved objects one by one. Even with filter classes, cross-cutting implementation
has to be realized for each concern. Moreover this approach request language extension with Meta Object
Protocol (MOP) modifications, and access to meta-level will be needed at run-time, which can limit execution
Speed.

The compoasition filter model has been implemented as extensions of C++ and Smalltalk languages. These
extensions are based on meta-objects representation of filters, so that can they be manipulated at run-time. A
prototype for supporting composition filters in the CORBA middleware communication mechanisms has been
developed but is not yet available.

11.2.2.3) Subject-oriented programming [OHBS94], [OKK+96], [AW99]

Subject-oriented programming proposes a way to encapsulate in subjects object oriented systems or sub-
systems. Subjects are subjective views on a part of a system. They can be composed to obtain larger subjects.

A subject defines a class hierarchy and its operations. It represents a subjective view of a domain. Inside a
subject, a set of classes is described as in the conventional object-oriented paradigm. Different subjects can be
views of the same domain. The Figure 8 (adapted from [AW99]) shows an example of two subjects (Renting and
Driving License Management). Some of their items are common between the two subjects (Car and
Driver/Rent er).

Subjects can be composed to form larger subjects. Composition is automatically realized according to
composition rules specified by the programmer. These rules specify which classes should be mapped, as well as
the way to map them. The programmer defines in fact classes correspondences, methods correspondences,
variables correspondences and methods combinations. Combination of two methods (from two composing

26

subjects) can be done by using only one of them is the composed subject, or by appending one method after the

other. Subject composition can affect code or bytecode, depending on the supporting framework used.

Subject: Renting

Rent

al

peri od

returnlten(): aCost

item
ter Car
t agNunber
Rent er nodel
creditCard damage

check() : bool

Subject:

Driving License Management

Driver

| i cense

goodDrxi ver () : bool

Car

nodel

| i censePl at e

Figure 8 - An example of two subjects

The Figure 9 (adapted from [AW99]) shows an example of a subject (Car renting) resulting from the
combination of the two subjects described in Figure 8. Elements combined from initial elements of the two
composing subjects are distinguished in italic.

Subject: Car Renting

Rent al

peri od

returnlten(): aCost

ter

item

Car

Rent er

| i cense
creditCard

check() : bool
goodDri ver () : bool

i censePl ate
nodel
danage

Figure 9 - The Car Renting composed subject

27

Subject oriented programming provide a good support for separation of concerns. Each concern can be
expressed in a separated subject. A concern will be defined in a subject with a set of methods and variables of
different components. The components expressed in such a subject will be only the components involved by the
concern, and moreover will be expressed only the part of these components affected by this concern. Composing
a concern with some components will be achieved through the subjects composition mechanism. Then an entire
program will be obtained by composing several subjects describing each a concern and several subjects
describing a part of the components of the system.

An experimental support of subject-oriented programming was devel oped for C++ (as an extension to IBM
Visual Agefor C++ 4.0). Some prototypes for Java and Smalltalk also exist but are not yet available.

The subject oriented approach is a particularly interesting support for separation of concernsin distributed
development contexts: different concerns can be developed independently and then an unanticipated composition
of different concerns and components can be realized. The composition mechanisms are redlly flexible. However
the main drawback of the subject oriented programming approach isthat it is not yet based on real-world systems
experiments.

11.2.2.4) Adaptive Programming [Lie92], [LO97]

Adaptive Programming basic aim is to enable developers to express some particular classes behavior in
addition to object-oriented structure description such as class diagrams.

Traversals are defined in [LO97] as navigations through a group of related objects with the purpose of
accomplishing a task. Object oriented programs tend to use many “small” methods used to perform little
computation but mainly to pass information to another method of another object until amethod realizesthe “real”
computation. The Figure 10, adapted from [LL96], describes a class structure containing a traversal for word
searching: when searching aword in a document, the research isfirst transmitted to all the paragraphs, that will
then transmit it to all of their lines, that will transmit it to all of their words.

Figure 10 - Adaptive programming traversal example

Document search(String aString) { \
search (String aString) { if (thisvalue eq astring)
%search(String astring) | | for all paragraphsp highlight()
\\ p.search(aString) }
paragraphs\\ I
\y 0.*
Paragraph * f :
0 Line words Word

®sarch(String aString) | lines & . :
seard1(Str|n\g astring) 0.7 | Wsearch(String aString)

®highlight()

!

search (String astring) { search (String astring) {

for al linesl for al wordsw o
|.search(aString) w.search(aString) <<pri mg;/ii;'yp9>>
} }

When classes structures are modified, maintaining these traversals are a difficult task. In most cases the
maintaining of such traversals consists in modifying little pieces of code and can be done straightforward, but it
takes however alot of timein large class structures.

28

The idea of Adaptive Programming (AP) is to use a language to describes succinctly traversals instead of
developing them as numerous methods in class structures. A traversal is then described with the origin class of
the traversal (in our example Docunent) aswell as the destination class (Wor d) and with the appropriate code
to execute for the destination objects (the body of the method sear ch() inthe classWor d). The class structure
is described without any of the methods involved in the traversal.

A composition mechanism will enable to obtain an executable system with traversals fully executed. An
important advantage of adaptive programming is that when modifying theinitial class structure, when inserting
new classes involved in traversals, it is not necessary to redefine anything concerning these traversals. The new
classes are inserted in the traversal execution mechanism automatically, and the traversals will be executed
completely with these classes.

As we have a separated language for expressing traversals, it is possible to redlize separation of concerns
with adaptive programming. Basic functionalities will be expressed in class structures and separated concerns
will be expressed in distinct traversals description.

Different software have been developed to support the concepts of adaptive programming. Demeter/C++
provides an AP support in C++, and Demeter/Javain Java.

11.2.2.5) Aspect Oriented Programming [KLM+97], [Kic98], [MLTK97]

Aspect Oriented Programming main idea is to decompose any object-oriented system in components and
aspects. Components are basically conventional object-oriented entities encapsul ating functionalities. Aspects can
be seen as expression of concerns that cross-cut this components implementation and result in concerns scattered
throughout the components code.

Aspect Oriented Programming abstracts the implementation of concerns from components by expressing
them into separated modules. Aspects modules will then be written in one (or more) specific aspect language.
The two main parts of an aspect are join points and modifications. Join points identify the places in the
components code that will be affected by the aspect, and modifications describes which code modifications will
be realized at these places. The Figure 11 illustrates this aspects/components decomposition of a system. The
edges represent join points expressed in the aspect code.

Components Code

Aspect Code

<

/<

Figure 11 - Aspects/components interaction

29

Aspect Oriented Programming provides a mechanism called compasition to obtain executable programs out
of this aspects’components modules decomposition. The idea is to apply automatically the modifications
described in aspects to components code. This process of merging components and aspectsis called weaving. The
weaver is a kind of pre-processor that identifies join points between aspects and components, and apply the
transformations described in the aspects to the components code. The result is a woven code including into
components the modifications due to aspects. This code can then be classically compiled to obtain executable
programs.

Separation of concerns is then supported by the fact that features cross-cutting components code can be
expressed easily in separated modules that are aspects. An aspect will group in a separated module all the code
related to a given concern as well as the way to apply them to components code.

Different experiments are developed to support AOP. The main one is Aspectd [AJ], developed by Xerox
Parc Corporation (Palo Alto, California) and provides a general-purpose aspect language a weaver to apply them
to Java code. Other experiments are carried out to propose frameworks to support AOP, such as the Smalltalk
framework of Kai Bdllert [Kai98], or TyRUBA, the meta logic programming system supporting AOP of Kris De
Volder [DVDH99].

11.2.3) Applying separation of concernsto RECINTERNET

As a web-based three-tiers application, RECINTERNET deals with different complex concerns such as
distribution, different communication strategies, connections control, concurrency... It seems then particularly
interesting to apply separation of concerns techniques to this project. Developing RECINTERNET with
separation of concerns techniques will then be consequently benefic in terms of code understandability, easy
evolution, reusability and complexity decreasing.

As we have just seen in the previous part, many techniques are being devel oped to support separation of
concerns programming. As this domain is quite new in software engineering research, most of these techniques
are ill in definition stages and permanently evolving. It seems then difficult to apply them to real-world
applications development, such as RECINTERNET.

However Xerox Corporation has developed an efficient practical solution to support aspect oriented
programming with Java: Aspectd [AJ]. Thistool provides alanguage to express different kinds of aspects and to
merge them with Java code. The resulting code is usable as any Java code and has the advantage to give detailed
explanations about the way composition between aspects and components has been realized. Plugging in or out
aspects to components code is practically simple thanks to the AspectJ “pre-processor” that composes the output
code. It seemsthen particularly benefic to develop RECINTERNET with AOP, and to implement it with AspectJ.

As a technique based on components implementation, AOP tools like AspectJ do not provide any support
for designing systems with aspects. Aspect-oriented design is an active domain of software engineering, but time
is needed before it reaches maturation and provides efficient techniques and tools for supporting AOP at design
level. In this context it was particularly important to factor out a way to realize aspect-oriented design that could
be applied to RECINTERNET. We present this point and also give further explanations about AOP and AspectJ
in Section 111,

30

[1.3) Architecture alternatives

In web based applications, the internet is used to realize a communication between remote machines.
Particularly, in the case of an application like RECINTERNET, a user runs a client application to retrieve data
from aremote database. Thiskind of scenario iswidely used in applications known as client/server applications.

In client/server applications based on a database access, three parts are generally defined in software
architecture: the User Interface, the Business Logic and the Data Management. User Interface contains the
support for presentation and user interaction. Business Logic groups the processing of the different requests
addressed by the user, and Data Management supports the access to the database.

Different software architectures are possible for dividing these three parts. The following sections present
the exigting ones. two-tiers, three-tiers and multi-tiers architectures.

11.3.1) Two-Tiers Architecture [GR96], [C/S], [Hun98]

The two-tiers architecture involves two computers. a client machine and a server machine. These two
remotetiers of the application communicate through the internet. The computing client talks directly to the server
with no other intervening processes. There can be multiple clients using the same server.

In the case of a database application, the client communicates with a data server running a DataBase
Management System (DBMYS) that support the database access. The Figure 12 shows the two-tiers architecture.

N
Database v

Client
Data
Database
; Server

|

NETWORK

CLIENT SERVER

Figure 12 - Two-tiers architecture for databases applications

The three parts of the software (user interface, business logic and data management) are divided between
these two tiers:

the client tier application covers the user interface tasks and a part of the business logic tasks
the server tier application covers the other part of the business logic tasks and the data management
tasks

In fact the client application enables the user interaction and composes the corresponding requests to the
database (generally in a SQL-like language), and then transmit these requests to the server tier. When receiving
the results from the server, the data returned can be manipulated by the client application for further sub-
selection, business modeling, reporting, visualization, etc...

31

The server application runs the DataBase Management System (DBMS) in order to processes the clients
requests to retrieve the appropriate data from the database and to support database updating and integrity
checking tasks.

The communication between the client and the server is assured through the internet, and can be realized by
different ways (see Section 11.6).

The two-tiers architecture is a simple architecture that is perfectly suitable for many applications. Its main
advantages are that atwo-tiers architecture softwareis developed faster than more complex architecture software.
Thiskind of architectureis perfectly suitable for applications destined to afew number of users and where there
isno need of elaborated processing between the user interactions and the requests transmission to the server.

However thiskind of architectureis often not enough robust for elaborated database applications. First of all
performance deteriorates with high number of users, because clients connect directly to the server. Secondly, the
client application must handle all the processing corresponding to SQL preparation and SQL exploitation, and it
can compromise flexibility since each client application need to use the correct requests corresponding to the
server requests processing management. Finally two tiers architecture are not suitable for elaborated applications
when important processing tasks are required between user interaction and requests transmission to the server,
since client applications would then be complex and maybe difficult to deploy.

11.3.2) Three-Tiers Architecture [Hun98], [GR96], [C/S)]

Three-tiers architectures insert one middle-tier between the client and the database server. We will then
have a client application running on a machine and communicating through the internet with one server
application running one another machine. This server will communicate with a database server, potentially
running on another machine. This three-tiers architecture is depicted in the Figure 13.

Client Server

DBMS Database

Figure 13 - Three-tiers architecture for database applications

The middle-tier in three-tiers architecture (that we call server) enablesto totally separate the business logic
part of the application form the client tier. In a three-tiers application, the different tasks are cleanly divided as
following between the different tiers:

Theclient tier covers the tasks related to user interface
The server tier covers the tasks related to business logic
The data server covers the tasks related to data management

32

Concretely the client application supports the user interaction and transmits the resulting demands to the
server. The client application is then more specific than in a two tiers application since it does not realize
processing (or only few) when the user interacts, but just transmit the demand to the server.

The server application manages the demands coming from the different clients and realizes the appropriate
processing corresponding to each of them. The server is also responsible to provide to the clients the data they
asked. Then the server code the corresponding SQL queries and transmit them to the data server and collect the
answers, in order to be able (eventually after processing the results in different ways) to send the appropriate
answer to the client. The client isthetotally freed by the different tasks related to database access.

The data server is just running a DataBase Management System (DBMS) and is able to receive the SQL
queries of the server. It processes them and return the appropriate results.

In a three-tiers architecture there are two kinds of communication. The first one is the communication
between the client and the server. This communication is achieved through the internet, potentialy with one of
the solutions described in Section 11.6.1 (HTTP — HyperText Transfer Protocol, TCP/IP — Transmission Control
Protocol/Internet Protocol, Java RMI — Remote Method Invocation, CORBA — Common Object Request Broker
Architecture, ec...).

The communication between the server and the data server can be done remotely or not. Here are used some
standards for database connectionsthat are concretely achieved through different driversfor the different kinds of
databases used (see Section 11.6.2).

Three tiers architectures provide many advantages compared to two tiers architecture. First of all the clear
functional separation between the three tiers can clarify the development process and the modularity,
maintainability and flexibility of the entire system. The use of the middle-tier enables also to have a robust
application since this tier can organize queuing mechanisms. It also increases considerably the efficiency of he
entire system since the client can process other tasks once he had transmit its demand to the server. Thisone will
bein charge of realizing it and then will re-contact the client with the result. Moreover the client is“lighter” than
in two-tiers architecture since it does not deal with anything specific with database (for example the client never
uses SQL, it just sends parameters to the server that creates the appropriate SQL requests). Finally introducing a
middle-tier enables to process specific computations to react to user interaction, and not only access a database.

All these improvements compared to two-tiers architecture are unfortunately paid by the increased needs for
more network traffic management (two connectionsinstead of only one with two tiers), and even if they increase
robustness of the application, specific developments for client connections (such as queuing systems).

11.3.3) Multi-Tiers Architecture [Hun98], [GR96], [C/S]

Multi-tiers architectures are a particular case of three-tiers architectures: the business logic tasks of the
middle-tier can be realized by more than one server, and with connection to more than one database. Then we
have an-tiers architecture with multiple (n) servers and/or multiple database serverswith their own DBMS. It can
distribute clients demands across multiple servers and can access data in multiple databases. The Figure 14 -
Multi-tiers architecture for database applications presents this architecture.

This architecture derived from three-tiers architecture is used when several databases must be accessed, or
when there must be different serversin order to deal with different kind of requests from clients. It is particularly
interesting to use this kind of architecture to distribute the clients requests between multiple serversin order to
divide the work between the different CPU of the servers (load-balancing).

33

SIER =D | DBMS [o iabasel
Client
Server 2
=D | DBMS | abase 2
Server 3
=D | DBMS | iabase3

Server n ‘
R Databasen

Figure 14 - Multi-tiers architecture for database applications

= Server Local Structural Database

We present in this section a specific case of multi tiers architectures. Thisimprovement isinteresting only
in certain conditions. Theidea isto use a second database that is a structural copy of the classical main database.
This second database will be located on the middlie-tier host. Both databases will be accessed by a unique server.
This special multi-tiers architectureisillustrated in the Figure 15.

CLIENT SERVER DATA SERVER

Client «

Figure 15 - Three-tiers architecture using a server local structural database

The Server Local Structural Databaseisa“structural” copy of the main database. It meansthat this database
is stored only the structure of the main database, and not all the entries. As an example, we can imagine that in
the main database there is a table containing a succession of entries called Birth representing respectively the
number of girls and the number of boys born during each of thelast 20 yearsin Brazil. The information copied in
the server local structural database will only be the name of this succession of entries, the two sexes and the 20
years, but not the numbers of each case.

The aim of this second database is a question of efficiency. The mechanism to retrieve data from the main
database is then the following: the client application transmit demands to the server application. This one
accesses only the server local structural database to provide the data requested by the client, except when the data
entries of the main database are needed (then the server connects to the main database to submit its request).

The advantages of this improved architecture is the efficiency of the system. First because we decrease the
number of connections to the main database (thisis particularly interesting when this main databaseis located on
another host than the server), replacing them by local connection. Moreover the local databaseis smaller than the
main one, so request proceeding in this database is faster than in the main one.

This approach is particularly interesting when the main database is a huge one that can be “structurally
copied”, and when this database suffers from multiple access from many users and different applications. It is of
courseinteresting if parts of the users requests do not require the data entries only located in the main database.

This approach is subject to several restrictions and can be applied only in specific conditions: as there are
two databases that are supposed to share the same information, the coherence between the two must be
maintained. Concretely it means updating the local structural database when themain oneismodified and vice et
versa. When this updating cannot be done dynamically, a careful use must be defined in order to have a coherent
system. Also it needsto install a database on the server host, with a DataBase Management System (DBMYS).

11.3.4) RECINTERNET architecture

In the RECINTERNET case, it seems unsuitable to adopt a two-tiers architecture. First because the
interaction of the users require some processing before being trandated as database queries. It would mean
including this processing in the client application, what would increase its complexity and decrease its flexible
deployability. Moreover, the connection to the SINTESE database (where are all the data requested by the client)
can only be achieved through particular connections (see Section 11.6.2.2), and it is complex to encapsul ate them
in aclient application distributed through the internet.

The three-tiers architecture seems particularly better in the RECINTERNET case. It enables to encapsulate
the functionality processing related to user interaction in an application separated from the client application. It
also provides the possibility to program efficiently connection strategies (such as clients demands queuing,
database access contral...). Finaly all the code related to database connection will be totally separated from the
client application.

In the case of RECINTERNET, we will use an ameliorated multi-tiers architecture with one server and two
databases: the main one and a server local structural database’. The RECINTERNET project fulfills all the
specific conditions for using such an architecture. First, the data entries of the main database are only necessary
when the user submitsitsfinal request, because the user can use only the structural information contained in the
structural database to compose this final request. Secondly it must be remarked that the RECINTERNET system
isonly used to consult data from the SINTESE database, and that it never modifies any data of this database. So
thereis no need to check the coherence of the SINTESE database with the local structural one sincethislast one
isnever modified. In the other way, the SINTESE database is only updated rarely, and the updates are planed and
realized at once. Moreover a system (called ADMSINWIN) exists to start an automatic update of these kind of
structural copies of the SINTESE database. It seems then possible to use this améliorated three-tiers architecture
since the coherence between the two databases can be guaranteed.

4 We should call this architecture multi-tiers architecture, but as it is just a variation of the three-tiers architecture, we will use the term
three-tiersarchitecturein this report.

35

[1.4) Internet Navigation Design

Hypermedia applications are applications were users can navigate in a system to define the way they want to
organize or “visualize’ some multimedia data (such as images, text, video, sounds, etc...). Hypermedia
applications design shares many points with navigational applications such as RECINTERNET, were a user
navigates to organize and visualize some data coming from a database. In this context it is interesting to have a
look on the design methodol ogies dealing with navigation that were developed for hypermedia applications.

Designers of navigational applications have to face different difficulties such as combination of different
ways to navigate within the same application, appropriate representation of data, navigation efficiency, etc... All
these problems should be solved in a systematic and modular way, through a design methodology separating the
addressed concerns in distinct design activities, each expressed at the proper stage and at the proper level of
abstraction.

In this context were developed hypermedia design methodologies such as RMM — Relationship
Management Design Methodology [1SB95], HDM — Hypermedia Design Model [GSP93], or OOHDM — Object
Oriented Hypermedia Design Method [SRB96]. These methodologies aim to separate hypermedia application
design in digtinct stages dealing each with a particular view on the system. This design stage decomposition
enables iterative and incremental development life cycle.

As we will explain it in this part, some principles of the OOHDM methodology can be easily and
beneficially applied to navigational applications such as RECINTERNET. That is the reason why we give an
overview of this method specific to hypermedia applications and also to a hypermedia design patterns system that
can be applied to navigational applications.

11.4.1) OOHDM [SRB96], [SR9S]

The Object Oriented Hypermedia Design Method (OOHDM) is a model-based approach that provide ways
to realize a robust and efficient design for large scale hypermedia applications. The idea of OOHDM is to use
classification, aggregation and generalization/specialization mechanisms in an object oriented framework to
allow a concise description of complex information items and in the same time to allow the specification of
complex navigation patterns and interface transformations.

Hypermedia applications are then built in four distinct steps that allow an incremental devel opment process:
conceptual design, navigational design, abstract interface design and implementation. Each step is focused on a
particular design concern, and leads to the building of an object-oriented model or implementation. Table 3,
extracted from [SR98], summarizes the different steps, products, mechanisms and design concerns addressed in
OOHDM.

In the Conceptual Design step, a conceptual model of the application domain is built using well-known
object-oriented modeling (as OMT or UML) and relation-entities principles. Theidea isto represent as neutrally
as possible the domain semantic, with no concern for the types of users and tasks. Finally the conceptual schema
resulting of this design step will be a modd created thanks to sub-systems, classes and relationships of the
domain entitiesthat will be used in the application.

In the Navigational Design step, the hypermedia application is defined in terms of navigationa structure.
This navigational structure deals with entities such as navigational contexts, which are induced from navigation
classes such as nodes, links, indexes... This navigational structure takes into account the types of users and their
tasks. Nodes represent logical navigational entities (“windows’, “screen”, “view”) involving conceptual classes
defined during domain analysis. The idea is that different navigational models can be built out of the same
conceptual modd, as different views of the same domain. Finally in this step is defined the navigational semantic
in terms of nodes and links.

36

Formalisms

Classes, Object-Oriented Classification, Moddl the semantics
Conceptual | sub-systems, Modeling constructs; | aggregation, of the application
Design relationships, attribute| Design Patterns generalization and domain
perspectives specialization
Object-Oriented Takes into account
Nodes, links, Views, user profile and task.
Access structures, Object-Oriented State| Classification, Emphasison
Navigational | Navigational charts; Aggregation, Cognitive aspects.
Design contexts, navigational | Context Classes, generalization and Build the
transformations Design Patterns; specialization. Navigational
User Centered Structure of the
Scenarios Application
Model perceptible
Abstract interface Objects,
Objects, Abstract Data Implementing
Abstract Responses to external | Views; Configuration | Mapping between chosen metaphors.
I nterface events, Diagrams, navigation and Describe interface
Design Interface ADV-Charts, perceptible objects for navigational
transformations Design Patterns objects. Define lay-
out of interface
objects
Those supported by | Those provided by Performance,
| nplementation | Running application | the target the target Completeness
environment environment

Table 3 - OOHDM devel opment steps

In the Abstract Interface Design step is built an abstract interface model defining perceptible objects (e.g. a

picture, a city map, atext, etc...) in terms of interface classes. Interface classes are defined as aggregations of
primitives components (such as text fields and buttons) and can also be composed of interface classes. These
classes are used to give an perceptible appearance to the navigational objects defined in the previous step. Events
handling and links between the different interfaces and the navigational objects corresponding define the
interface behavior.

In the Implementation step interface objects are mapped to concrete programming language objects. A same
interface model can be integrated into different kind of hypermedia applications such as web-sites, client/server
with databases, multimedia guided tours...

Thisdivision in four step used in OOHDM isreally suitable for huge hypermedia application devel opment.
It provides a way to proceed a incremental development process since each of the four steps used provides a
model covering a clearly separated aspect of the design process. During each step a set of object-oriented models
describing particular design concerns are built from previous iterations.

Moreover the separation of conceptual, navigational and interface design allows to concentrate on different
concerns one by one. It results in modular and reusable designs, encapsulated in a general methodological
framework where designing experience is represented into different modules dealing each with a particular
design concern (conceptual, navigational and interface).

37

11.4.2) OOHDM design patterns for web-based applications [LRS98], [RSG97]

Design Patterns have known an increasing success in software engineering since they provide a way to
record design experience and to simplify consequently software devel opment through reuse of patternswhich are
known as being appropriate design solutions for recurrent problems of software design. In [GHIV94] are named,
explained and evaluated the most famous important and recurrent designs in software systems.

Sometimes it is possible to structure simple patterns in order to develop a pattern language, that isto say a
set of patterns that are often used together in a given application domain. One mgjor idea of the OOHDM method
isthat it is possible to define design patterns specially applicable for hypermedia application design.

In this context OOHDM defines a set of simple design patterns that address usual concerns of hypermedia
applications. These specific design patterns are grouped in a pattern language that is basically suitable for the
OOHDM method. These patterns are divided in three groups serving the model decomposition of the OOHDM
method: Patterns for Hypermedia Systems, Navigational Design Patterns and Interface Patterns.

Patterns for Hypermedia Systems

This group of patterns presents the bases of the OOHDM decomposition. Here are defined which
mechanisms can be used to differentiate conceptual model, navigational model and interface model. These
patterns can be used to build hypermedia applications, or to extend conventional applications with hypermedia
functionality. The initial patterns of this group were: Node as a navigational view, Link as a relationship view,
Anchor, Navigation strategy, Navigation observer, Node class — link class, and Wrapper node.

Navigational Design Patterns

This group of patterns present the way to design navigational mechanisms. Patterns of this group can be
used for organizing the navigational structure of a hypermedia application in a clear and efficient way. Theinitial
patterns of this group were: Node as a single unit, Node creation method, Link creation method, Navigational
context and Active reference.

Interface Patterns

This group of patterns provides solutions to interface design problems. The given patterns are environment
independent but can be used by hypermedia GUI (Graphical User Interface) designers to efficiently organize
graphical interfaces. The initial patterns of this group were: Information on demand, Information-interaction
decoupling, Information-interaction coupling, Behavioral grouping, Behavior anticipation and Process feed-
back.

As an example, the detailed description (from [RSG97]) of the Hypermedia System Pattern named Node as
a Navigational View is given in Annex B. For complete definitions of all the OOHDM patterns, we refer to
[LRS98] and [RSG97].

Toput it in anutshell, OOHDM defines a pattern language (composed of several related patterns applicable
at different design level) and integrates it at the different steps of its design models decomposition (conceptual
design, navigational design and interface design).

OOHDM patterns are particularly interesting since they provide appropriate and proven solutions in
navigational and interface design. Moreover they can be used also in other contexts that pure hypermedia
navigation, because they address problems of domains (navigation structure, interface organization) present in
many software development (GUI design, navigation, €tc...).

38

11.4.3) Applying OOHDM to RECINTERNET

RECINTERNET is incompletely concerned by the OOHDM methodology since it only deds with
navigation and visualization of literal data, and not multimedia items such as images, video, sounds, €tc...
Moreover the different navigational units (screens or nodes) that will be used in RECINTERNET navigation are
not purely views on the conceptual entities as defined in OOHDM, but more logical divisions for requests
composition.

However many concepts of OOHDM are totaly suitable in the RECINTERNET case. The main
characteristic of RECINTERNET is to be a dynamic interface for the internet. It means that users navigate to
compose as wanted their request. Then OOHDM navigation principles are absol utel y adaptabl e to this navigation.
And even if the RECINTERNET interface does not require multimediaitems “visualization”, its graphical aspect
(nodes components appearance, window organization, look, etc...) is important, and requires an appropriate
design methodol ogy such as OOHDM.

That is the reason why we decided to apply the design decomposition proposed in the OOHDM
methodology. The RECINTERNET design will be then separated into a conceptual model (where we represent
the data on which isbased the application), a navigational model (wherewill be defined the navigational structure
and mechanisms) and a interface model (where will be defined the graphical appearance of the application),
independent from the programming environment chosen. This decomposition will be particularly interesting for
addressing separately the different parts of the design cycle, and will provide robust and appropriate models for a
simple implementation of this complex application.

In this context several patterns of the OOHDM patterns language can be used in the RECINTERNET
design. Many of the patterns of each of the three groups (Hypermedia Systems Patterns, Navigational Design
Patterns and Interface Patterns) can be used to simplify the design process and to provide a robust and proven
solution to the RECINTERNET application.

39

[1.5) Some technologiesfor thethreetiers

Many applications are based, as this is the case for RECINTERNET, on a three-tiers architecture
(client/server/shared resources). Aswe have already explained it clients are characterized by the fact that they are
requesting services, servers by the fact that they are providing services, and shared resources by the fact that they
are used by servers to provide services.

In the case of RECINTERNET, clients are applications ran by users and using the internet to communicate
with a server. This server is situated on another machine and manage the requests of the clients by accessing
databases.

As the number of systems of this type is increasing consequently and quickly, many new related
technologies are also emerging. Anyway few of them are efficiently usable in the case of applications like
RECINTERNET. In this section we will present the main technical solutions existing for implementing each of
the three tiers of applications like RECINTERNET®.

11.5.1) Client

The following sections present the best existing technologies for programming efficiently a client
application that uses the internet to communicate with a server.

11.5.1.1) HTML [Html1], [HtmI2]

HTML (HyperText Markup Language) was developed at CERN by Tim Berners-Lee, who is now Director
of the World Wide Web Consortium (W3C) at MIT's Laboratory for Computer Science. HTML descends from
SGML (Standard Generalized Markup Language), the SO standard language for text. SGML isin widespread
use by the US Government and the publishing industry for representing documents.

HTML is not a complete programming language but a simple markup language. An HTML document is an
ASCII text with markups (embedded instructions) that affect text display. It is based on tags (such as ,
</ B>) to specify text, hyper links or components format.

Basically a web browser will fetch the HTML document by it's name (that can be a URL for example),
interpret the HTML and display the document. This process can also involve additional HTML documents
fetching or special areas display that can accept user inputs or involve other HTML documents fetching. Then an
HTML application can be seen as a collection of related web pages managed by a single HTTP (HyperText
Transfer Protocol isthe TCP/IP protocol that defines the interaction of WWW clients and servers) server.

Through this language it is possible to visualize elaborated components such as lists, buttons, tables... It is
then possible to handle users interaction such as button click, item selection in alit, etc... Successions of HTML
documents can be accessed through hyper links navigation. In the section 11.6.1.1 we will describe how HTML
clients can communicate with serversto handle elaborated usersinteraction.

The main advantage of programming aclientin HTML is platform independence. HTML is supported by all
web browsers since HTML documents displaying is their basic feature. This enable to reduce consequently the
important proportion of developers resources used for devel oping and maintaining versions of their products for
the different hardware/software platform combinations.

On the other hand programming a client purely in HTML isnot really practical. HTML languageislimited
in its computational power. Moreover it only provides a set of tags but no possibility of abstraction in data

5 Most of the technologies depicted in this part are based on new or aways evolving features of programming languages or
communication systems. Therefore this part of this state of the art is mainly based on recent descriptions, often only available online on
internet, and not formally described in books or papers. Anyway the corresponding references will be provided as precisaly as possible.

40

structures or procedures. Programming in HTML requires then a very low level programming and a laborious
repetition of code modules that leads to complicated high size code files.

Sections|1.5.1.3 and 11.5.1.4 show that HTML documents are in general used as a support for other kinds of
client programming.

11.5.1.2) Application

Anocther solution to program a client using the internet is a basic application. It meansthat the client will be
an application developed in any programming language and ran by the user on a machine.

The chosen programming language can be any programming language that provide possihilities to develop
communication with a server through the internet. The permanent increasing of internet activities led to the
devel opment of internet programming facilitiesin many programming languages such asinternet components for
Delphi 4 [Can98], Distributed Smalltalk [Stk], programming Ada WWW applets[Ada], etc...

In the domain of programming languages targeted at Internet applications, Javais today viewed as the most
appropriate one. Particularly adapted for internet communication (for example through Java Remote Method
Invocation, described in Section 11.6.1.3) Java offersimportant GUI (Graphical User Interface) librariesfor client
programming.

Without entering into details specific to each characteristics of each programming language, in the case of
client programming with internet communication, the main problems of most programming languages (except
Java) is platform dependence and immature or complex internet communication facilities (since they are
languages not explicitly developed for internet applications). From this point of view, the use of Java brings
platform independence since Java programs code is compiled in bytecode that can be run in every Java Virtual
Machine.

Anyway, in any case an important disadvantage of using an application developed in a programming
language as client is the fact that it requires a specific deployment in each machine where a client isrun.

11.5.1.3) ActiveX [ActX1], [ActX2]

Used extensively across the Internet computing environment, ActiveX controls are being employed as site-
enhancing objects, aids for application devel opment, and standal one programs.

We can define ActiveX as a set of technologies that allows developers to build objects that can interact with
one another in networked environment. These objects are self-contained and become independent from the
programming language in which they had been created (Java, C++ and Visual Basic support ActiveX
programming [ActX1]). ActiveX isbuilt out of two Microsoft technologies:

DCOM (Distributed Component Object Modd) provides the low-level, object-binding mechanism that
lets objects communicate with each other (locally and remotely). Like Java Remote Method |nvocation
(RMI), DCOM provides transparent message-passing between objects located in different machines
with different operating systems. [ActX1]

OLE (Object Linking and Embedding) uses DCOM to provide high-level application services, such as
linking and embedding, to et users create compound documents. Built on the foundation of Component
Object Modd (COM, the predecessor to DCOM), OLE is optimized for end-user usability and
integration of desktop applications. [ActX1]

ActiveX controls are the basic elements of this ActiveX technology. They describe themsdves through a

binary description file that lists the properties, methods and events that should be exposed. They can be
embedded in web sites and respond interactively to events, providing high level functionality.

41

In this way ActiveX can be used to program a client communicating with a server through the internet.
ActiveX components will be embedded in HTML documents that can be viewed with web browsers. When these
HTML documents will be fetched from a HTTP server, the ActiveX controls will be downloaded and saved in
the user hard drive and then executed to compute and manipulate data or communicate with other controls.

Programming a client with ActiveX provide a high level interaction functionality and also the possibility to
compose easily specific components (ActiveX controls) to build an entire application. An important advantages
of this technologies is that once the different components of the application have been downloaded, they can be
use very efficiently (in terms of execution speed).

The main drawbacks are security risks and portability. Thereisno limitation to actions realized by ActiveX
contrals. They can use functionality of the machine on which they are run, and then security issues are absolutely
not assured. ActiveX system only uses "cryptographic” techniques to make sure that an application comes from
its supposed point of origin, and that it has not been altered by any party along the Internet's string of host-to-host
connections. From the portability standpoint, the ActiveX binaries are only runnable in Windows environments.
Thisisa particularly important drawback of this technology.

11.5.1.4) Java Applet [DD974], [FC97], [Applet]

Java applets are Java programs intended not to be run on their own, but rather to be embedded inside
another application. The Java bytecode corresponding to the applet can be loaded from a remote machine in
order to run it on any Java Virtual Machine accepting appl ets.

Java applet code is compiled into Java bytecode. This bytecode can be embedded in a HTML page (thanks
to the <APPLET> HTML tag). In this case the bytecode files are stored with the HTML document file on the
HTTP server. When aweb browser will load thisHTML page from the HTTP server, the classes described in the
applet bytecode will be loaded in the Java Virtual Machine of the web browser. Web browser will then start the
applet execution in its Java Virtual Machine. When new classes are required for the applet execution, they are
loaded automatically from the HTTP server. In this way we obtain an application easily deployable in any web
browser.

Applets are implemented in Java and must respect standard methods needed for any web browser to run
them. The Applet class provides a standard interface between applets and their environment, in order to manage
user interaction, communication with other applets, information providing for the web browsers. Java GUI
libraries (such as Abstract Window Toolkit or SWING) are then available to develop through applets really
efficient web applications.

Security aspects are assured by the fact that applet execution is limited to the web browser Java Virtua
Machine., Web browsers running applets must ensure some security restrictionsin applet execution:

Applets cannot read or writein local files

Applets cannot start a communication session with another machine that the one from where they have
been downloaded

Applets cannot call executable applications on the user machine

Finally applets provide a good way to program client using the internet since they can be easily downloaded
through HTML documents and they provide the functionalities of the Java language.

The main advantages of programming client with Java applets are platforms independence and easy
deployment. As applets bytecode are interpreted in web browsers Java Virtual Machine they can be executed on
any platform with any operating system only with a web browser recognizing the Java language version used.
Easy deployment is provided through embedding in HTML documents (as simply as images). Applet way
provide then easy application loading through classical HTTP downloading process.

42

A drawback in applet approach is that the applet bytecode must be downloaded each time the HTML page
containing it is reload in the browser since there is no caching for applets loading in web browser. This
mechanism is sometimes long and so initialization of an applet can take time.

[1.5.1.5) Choice of a client technology for RECINTERNET

One crucia issue in the choice of the technology for RECINTERNET client programming was easy
portability. It means being able for a new user to run the client whatever its platform and operating environment
could be, and through an easy deployment.

This easy deployment constraint excludes the possibility of using a basic application for the client side,
since application requires an installation process. Moreover evolutions of clients as applications require re-
distribution to all the users and re-installation for each new version. Non Java applications also involve important
work for providing versions for different platforms.

The concept of giving a user the possibility to run the client application only with a web browser on any
platform with any operating system is particularly convenient for the RECINTERNET project. ActiveX is then
excluded because of its restriction to Windows environments.

Applets provide more programming potentiality than HTML. They seem then particularly adapted also for
communication with the server as we will describe it with Java RMI in Section 11.6.1.3. They provide also the
GUI facilities of Java and can really be used with the most used web browsers® (HotJava, Internet Explorer or

Netscape).

RECINTERNET will then use a Java applet for its client side. It will then be possible to use Java
programming facilities and library for creating clients that can interact in appropriate way with users and
communicate efficiently with server, keeping in the same time an easy deployment mechanism for any platform
or operating system.

11.5.2) Server

Before presenting the different waysto program a server, we need to open a special parenthesis about HTTP
servers. In fact we have seen in Section 11.5.1 that client applications can be embedded in HTML documents, and
then downloaded through the HTTP protocol. This requiresin the server part a HT TP server. This server will be
contacted through a given URL and then provide to the different users the HTML documents and embedded
applications requested. All the necessary files (HTML pages, images or applications embedded in these HTML
pages) will be stored on thisHTTP server, and then downloaded from it when necessary.

In addition to this HTTP server, another server will be needed for communication. The basic functionality
of this server isto provide services to clients. Often these services require access to databases. That is the reason
why the choice of the technology used for a server depends on the technol ogies chosen for clients (Section 11.5.1)
and databases (Section 11.5.3), as well as the technologies used for client/server communication (Section 11.6.1)
and for server/database communication (Section 11.6.2).

We will present in the following sections the best existing technologies to program a communication server
that can efficiently communicate with clients and database and realize required computations.

11.5.2.1) CGI and Scripts[Cgi], [ND98], [Wil95]
CGI (Common Gateway Interface) provides a way to manage clients/servers application through the web.

The CGI mechanism enables through HTTP protocol clients to request server services. In the current section we
will only present the server side used with CGI: how can be programmed servers with CGI scripts.

& At the moment where this thesis took place, the version 1.2 of JDK was not supported by all the recent versions of the commonly
used web browsers. It was then possible to fix this problem simply by downloading and installing the verson 1.2 of Java Runtime
Environment (http://java.sun.com/products/jdk/1.2/jref) on these web browsers.

43

A CGlI script is a program that is stored on the HTTP server and executed on this server in response to a
request from a user (Section 11.6.1.1 provides more details). A CGI script file is written in a programming
language and can be compiled to run on this server (in languages such as C, C++, Visual Basic, Ada...[ND98]) or
interpreted on this server (in languages such as Perl, JCL: Job Control Language, JavaScript...).

Clients can then start the execution of CGI scripts, and also provide these scripts some parameters through
different mechanisms (see Section 11.6.1.1). In thisway, for each new request of a client, a new process executing
the appropriate script is started on the server with the given parameters. If needed a HTML page can be returned
to the client through the classical HTTP protocol (for example to show some results, or to say that the action was
correctly executed).

It seems then that CGI scripts could be appropriate to program server side of applications such as
RECINTERNET. However there are some important disadvantagesin using CGI. First each action (like a button
click, an item selection, etc...) of the user must be related to a script on the server, even if the corresponding
action (provoked by this user interaction) isjust a minimal one that should not request the server work. Then all
the computational processes corresponding to al the usersinteraction are done on the server CPU. When dealing
with an important number of clients, this can lead to performances worst than with other systems than CGlI.

Secondly an important disadvantage comes from the fact that CGI transactions are absolutely stateless. It
means that once a user has requested a service through CGI to a server, the server totally “forgets’ everything
about thisuser. If the server needs to do some computations related to each client that requestsit, then if the same
user requests several timesthe server, the server will have to redo these computations each time.

11.5.2.2) Applications

Another alternative for programming the server side of an application like RECINTERNET is to use an
application running on the server machine. The server application will be developed in a given programming
language and then ran on the server maching’. Its functions will be to communicate with clients (receive requests
and return answers), to eventually compute some actions necessary for the service requested, and to communicate
with databases to proceed some requests in these databases and receive the appropriate results. The interface used
in this server can be very basic since it should require only few configurations and only compute actions for
services requested by clients.

Developing the server side as an application requires a programming language satisfying some particular
constraints. The first of them is an appropriate support to communicate through the web with the clients.
Moreover the clients can be developed in a programming language, and then a particular solution should be
found.

In this context the CORBA standard proposes a solution enabling communication between remote
applications developed in heterogeneous languages (Java, C, C++, Smalltalk...), asit will be described in Section
11.6.1.4. Thanks to CORBA, it is then possible to program in a transparent way the server application
communicating with the clients one. The Java alternative to CORBA is Java RMI (described in Section 11.6.1.3)
that provides the same facilities of remote communication between a Java client and a Java server. It is then
possible to choose to program the server application in a programming language providing some appropriate and
easy solutions for communication with the client. The Section 11.6.1 about client/server communication will bring
more elements for this choice.

So a particular attention must be paid to the ability to support a multi-clients system on a same server. Since
the server can be requested by many clientsin the same time, the chosen programming language must provide an
efficient way to execute a new process for each new client request, in other words it must support a safe
multithreading mechanism. As described in [GmG95], multithreading is supported in most of the languages
through added libraries for threads programming. A critical point is then thread safety, i.e. being sure that locks

" If the clients are Java applets downloaded from a HTTP server, it is necessary that the communication application server (to which are
addressed the requests from dlients) is located on the same machine than the HTTP server. In fact this restriction comes from the security
restrictions of applets, that cannot open communication sessionswith another host than the HTTP server from where they were downloaded.

44

can always be freed, even in case of threads abnormal termination. The Java Virtual Machine and the Java
language are particularly adapted for multi-threads support through a sophisticated set of synchronization
primitives and threads class, as well as a robust run-time threads management.

At last another point iscrucial for the programming language choice: communication with the database. The
chosen language must provide good support for database accessing. The main way to retrieve some data from a
database is achieved with some SQL-like requests. In this context it is important to have an efficient gateway
between the programming language used and these SQL-like mechanisms. A good point is that however
numerous are the different kinds of databases, industrial standards are adopted to simplify programming, such as
JDBC (Java DataBase Connectivity), ODBC (Open DataBase Connectivity) or OLE DB (Object Linking and
Embedding DataBase). Then specific drivers are developed and available for most of the existing databases in
many programming language (C++, C, Java). When choosing the programming language for the server
application, it isimportant to know what are the facilities with the databases that will be used. More detail s about
server/database connection are in Section 11.6.2.

To conclude this section about applications, we could say that different programming languages provide
some elaborated and robust support for the important aspects required when developing the server
(communication with the client or the database, multi-client management). The choice of one language in
particular depends of course of the technologies used for both databases and clients, but also of the specific
congtraints of the system.

11.5.2.3) Serviets [Servi1], [Servi2], [Zeig99]

Java Servlets provide through the simple and flexible Serviet API interesting features for request/response-
oriented web programming. The Serviet APl group the necessary technologies for such systems server side
programming. Serviets can be seen as a considerable improvement in CGl-like web programming since they
provide web devel opers particularly appropriate and adapted functionalities in server programming.

The main functionality of servlietsisto provide away for serversto respond to clients requests. A serviet is
basically an executable Java code that will be run on the server when a client requests it, like CGI scripts. A
servlet is described in a Java class that isloaded, instantiated and initialized in the executing environment of the
server. The server is then able to call the different methods of this object when needed. The easy loading and
unloading of a serviet on the HTTP server is supported through the basic Java methods used for serviets
(init() anddestroy()).

A client will then download some HTML documents from the HTTP server (the different serviets are
running also on this server). When the user will interact through some elements of the HTML documents (such as
clicking abutton, selecting an item, navigating through a hyper link...), thisinteraction istransmitted tothe HTTP
server to create arequest thread. Thisthread is given as a parameter of the appropriate method to the appropriate
servlet. The servliet computes then the appropriate actionsin the server execution environment and can return asa
result anew HTML page to the client. In thisway we can obtain dynamic answersto client interaction.

When receiving a request thread from a client (through the HTTP server), the servlet can know different
information such as the different parameters corresponding to therequest in the HTML document of the user, the
name of the remote host where the client application is executed and the name of the server that received the
request. Therequest isalso transmitted to the servlet with an output “reference” that will be used to providein the
appropriate format the possible answer of the servlet to the client, such asanew HTML document.

It has to be noticed that unlike CGI scripts where a new script is executed for each client request, only one
servlet is run on the server and will bein charge of responding to all the client requests, that will be queued and
passes as requests thread to the servliet methods. A servlet can then support multiple requests concurrently and
control the different clients access.

Being explicitly written in Java, servliets can use many features of the Java language. It is possible to
devel op servlets communicating together, for example to forward requests to different servletsin aload balancing
system. It isalso possible to use all the facilities of Javato access databases. Written in Java, servlets can also use

45

RMI or CORBA facilities to communicate with clients through the internet. As al Java code, serviets are
platform independent and easily deployable.

A important advantage is also the fact that all the basic functionality used for serviets are included in Java
classes and interfaces providing all needed to deploy efficiently serviets on a server. It is then easy to subclass
these classes and interfaces in order to create more specific functionality to serviets.

Anyway the main redtriction to servlets is that, even providing many programming facilities and
potentialities, they are still limited to a CGI-like web programming. It means that servlets methods are executed
each time a client submit a request through a classical HT TP communication mechanism (such as activating a
component of a HTML document, or navigating to a new HTML document), but only for this kind of request. If
the interaction of the user is embedded into a Java Applet for example, servliets methods can only be called
through other communication protocols, such as Java RMI. Thisis possible but then the interest of using servlets
is considerably decreased.

Finally, given thisrestriction, servlets provide an easy way to enhance consequently servers, thanksto their
particularly simple and flexible use and thanks to the fact that they provide a way to use al the powerful features
of Java.

[1.5.2.4) Choice of a server technology for RECINTERNET

The main function of the RECINTERNET server isto be able to receive requests from the RECINTERNET
clients, and thanks to connections and requests to the two databases (the local structural one and the SINTESE
one), to return the required answered. Because of that the technology choice for the server depends a lot on the
technology used for the client side (Java Applet) and on the technology used for client/server communication (see
Section 11.6.1).

CGlI technology seems too restricted because of its “stateless’ quality, and mainly because of the necessity
of having a script executed on the server for each simple interaction of the user. It would be unnecessarily costly
(in term of remote connections client/server) to access the server and execute a script on it each time the user
interacts on the client application.

An application seems a good solution for the RECINTERNET server, and particularly a Java application
sinceit presents all the facilities needed in the RECINTERNET case: appropriate communication protocol with
the clients, appropriate communication protocol with the database and efficient multithreading support for multi-
clients support. Appropriate developing environments are also available to program efficiently such a server
application.

As explained before, servlets provide important server programming facilities but are basically conceived to
respond to clients requests transmitted through the classical HTTP communication protocol. It seems them not
particularly interesting in the RECINTERNET case to use serviets, because it would mean restrict the client
interaction to interaction in HTML documents, and not in embedded applications such as Java applets.

An interesting alternative should have been to realize the server using both servlets and a classical Java
server application, where the used serviets would have been able to communicate with the server application.
Some controls on users connections or some load-balancing between several serviets should have been
implemented through the facilities brought by the serviets way of programming, and also to use the Java
applications facilities for communicating with clients. In the given time we focused our work only in developing
the server side of RECINTERNET as a Java application

46

11.5.3) Database

Many companies that decide to realize three-tiers applications through the web where the third tier is a
database generally reuse their own database, and do not construct a new database from scratch for this new
application.

This way of doing avoids two important tasks necessary to create a database from scratch. First designing
the database, which is a non-trivial task, and secondly re-computerize all the entries of the existing database, a
potentially very fastidious task.

Thisisthe casein the RECINTERNET project. As explained in Section 11.3.4, two databases will be used.
Thefirst oneisthelocal structural database. This database is located on the same machine than the server, and
contains al the information necessary to compose the final request of the user. The second oneisthe SINTESE
database, located on the DATAPREYV intranet. This database will be remotely accessed by the server to get the
results of the final request submitted by users.

The local structural database was designed for the RECSINWIN project, and can be reused for the
RECINTERNET project since in both cases this database is used for the same kind of reguests.

The SINTESE database is a very huge one, used since a long time by several distinct applications. The

RECINTERNET system is basically designed for accessing this database, and it cannot be modified sinceits size
istoo important and since it is also used by other applications.

47

[1.6) Communication between the threetiers

Web based three-tiers applications use a server tier in order to provide a layer between a client and a third
tier (databases, printers, files, high-powered processors...). Regquests of clients are processed by the server using
the third tier resources (in this case databases). Consequently appropriate solutions have to be found in order to
support communication between clients and server, and between server and databases.

11.6.1) Client/Server communication

Thefollowing sections present the main existing technol ogies to support communication between client and
server in web-based three-tiers applications.

11.6.1.1) HTTP communication protocol [ND98g], [Wil95], [ServI1]

HyperText Transfer Protocol (HTTP) is used to support communication through the internet related to
HTML documents. From a client to a server or reciprocally, this protocol is used to transmit different kind of
files (such as HTML pages, images, mails...) or parameters.

Thanks to a web browser, the user requests a document through a URL (Uniform Resource Locator). The
corresponding HTTP server receives this request and will send to the client web browser the appropriate
document (that is stored on the HTTP server) in a MIME (Multipurpose Internet Mail Extension) format®. The
document is received by the web browser and displayed for the client.

Thisfirst mechanism is achieved through the GET method of the HTTP protocol. This method is sent by the
web browser to ask for a document. When using this method, the browser must specify different parameters such
as the name of the requested file, the version of HTTP used, the MIME format it will accept in return and
different characteristics describing itself. The HTTP server receives this GET request and sends to the user the
code representing the MIME document with different parameters such as information on the server, the protocol
used, the document.

Ancther mechanism existsfor filestransfers. It is achieved through the POST method of the HT TP protocal.
HTML proposes some tags to include in HTML pages some components to enable user interaction (like text
fields, text areas, buttons, radio buttons, etc..). This enable to present to the user some forms he can fill (for
example some different text fields to enter personal information: name, age, city, etc...). When the form is
complete, it is submitted by the client and then the POST method isused. Asthe GET method this method is sent
to the HTTP server with some parameters, and amongst them are included the different values entered in the
form. The server receives it and passes it to some server programs (like CGI scripts, servlets) that can treat it in
order to compute an action and eventually returns a MIME document to the user, generally aHTML page.

These two mechanisms (POST and GET) are the base of any HT TP transfers through the internet. With the
description of these mechanisms we can note that the HT TP communication protocol is particularly conceived for
acertain type of client and server.

Using HTTP is particularly suitable for users interacting in a HTML document and its components.
Appropriate servers for this kind of HTTP communication are basically CGl-like servers, where the server can
address the requests received through GET and POST methods to some given programs (or scripts) running
independently on the server, like CGI scripts or Java serviets.

The advantages of such a protocol are mainly that it is universally used by all the internet community, since
it is one of the basic communication protocol standard on which is based the internet. The fact that the
communication with the HTTP protocal is efficient and rapid is also a great advantage for using HT TP between a

8 The MIME format groups many formats used in web transfer such as ASCII and non ASCII text files, GIF, JPEG image files, MPEG
video files, WAV audiofiles, €c...

48

client and aserver. Finally HTTPis also interesting since it is a protocol that does not suffer any restrictions for
firewalls crossing.

The critical limitation of this protocol is that it is by definition limited to its two classical communication
mechanisms (GET and POST). These two mechanisms are very efficient but do not provide adequate support for
more elaborated exchanges between entities of two remote applications. Finally HTTP is an efficient
communication protocol, but limited by its too low-level communication mechanisms.

11.6.1.2) Socket-based communication [DD97b], [MAB+98]

Another alternative for the client/server communication is the use of sockets. Different programming
languages provide sockets support for networking (C++, Visual Basic, Java...). Sockets exchanges are based on
the TCP/IP (Transmission Control Protocol/Internet Protocol) suite of protocol and provide away to transfer data
between two parties through streams connection.

TCP/IP is the suite of protocols that defines the Internet. It is named as TCP/IP for its two most important
protocols TCP and IP. Originally designed for the UNIX operating system, TCP/IP software is now available for
exchanges between many heterogeneous environments. TCP and IP are some layers used in the multi-layers
systems used to achieve connection between remote machines. TCP/IP protocols provide "low-level” functions
needed for networked applications.

As in Java, most programming languages supporting sockets provide sockets manipulation through 1/0
streams: a program can read from a socket or write to a socket asif it was afile. A socket represents a connection
between two processes, potentially on remote machines. The protocol used for the transmissions in these
connectionsis TCP/IP.

There are principally two kinds of sockets used: stream sockets and datagram sockets. Stream sockets are
“connection-oriented” sockets since they provide a connection between two processes through a continuous
stream. It can be compared to a phone call protocol, where once the two parts have establish the communication,
the connection is maintained until the end. Thiskind of connection is realized through the TCP protocol.

The second kind of sockets are datagrams sockets. Datagrams sockets are “ connectionless’ since exchanges
are realized through packets sends and receptions with no continuous connection between the two processes. It
can be compared to the mail post service protocol, where letters are sent from to an address. This kind of
connection is realized through the UDP (User Datagram Protocol) protocol, which is one of the TCP/IP suite of
protocols.

Programming languages generally provide some classes (java.net package in Java) or libraries (netinet and
socket in C++) grouping the needed elements to realize applications using sockets. The most common methods
used in sockets management are for sockets creation, socket allocation, socket connection, waiting for a socket
connection, accepting a socket connection, stream send and receive, closing a socket.

Then programming client/server communication with sockets is suitable for both client and server
applications (or embedded applications such as Java applets or ActiveX controls) developed into a programming
languages supporting it.

The advantages of using sockets for client/server connection is that as they are based on TCP/IP protocols,
they can be used between applications running on heterogeneous environment. Moreover the good sockets
support in Java and C++ for example enable to program efficiently connections between remote applications, but
also to redlly control al the details of these connections since sockets provide a certain “low-leve”
communication control.

This “low-level” characteristic of sockets management is also a disadvantage since programming resl
exchanges between applications requires complex and elaborated communication scenario. In fact the sockets
layer is generally covered by a high level layer that enable to program communications between applications
more transparently.

49

11.6.1.3) Java RMI [Jdk], [Rmi]

One particularly interesting alternative for remote communication between applications is the Java RMI
(Remote Method Invocation). Java RMI is used to interlink objects that are distributed throughout a network and
physically reside on different machines (and running in different Java Virtual Machine). Thisisrealized through
a support for call of remote methods. From the application's point of view, a remote method and a local method
areinvoked in the same manner using the same semantics. RMI takes care of the details at alower level.

In the distributed object model used in RMI, the methods of a class that can be called remotely are described
in a RMI interface’. This interface lists the remotely accessible methods signatures. A remote object is then
known by other objects as a Java interface. Concretdly, the class of this object must implement all the methods
that are described in the RMI interface. Through this interface mechanism, calls to local or remote objects
methods are programmed with the same syntax.

Java programs with RMI use a specific RMI compiler (rmic, which is part of the Java Development Kit).
For each class implementing RMI interfaces, this compiler generates two files: a stub and a skeleton. The stub
resides on the client machine and the skel eton resides on the server machine. The stub and skeleton are comprised
of Java code that provides the necessary link between potentially remote objects, and use object serialization to
marshal and unmarshal parameters needed when realizing a remote invocation.

When executing a Java program using RMI, when a client object invokes a server method, the Java Virtual
Machine looks at the stub to do type checking (since the class defined within the stub is an image of the server
class). The request isthen routed to the skeleton on the server, which calls the appropriate method on the server
object. This method is executed in the server Java Virtual Machine. To put it in other words, the stub acts as a
proxy to the skeleton and the skeleton is a proxy to the actual remote method. The Figure 16 illustrates this
mechanism.

CLIENT SERVER
Client Server Application
Application — 1§ |
RMI
Client object Transport RMI Server object
e ey g | ittt o

Figure 16 - RMI transport in distributed applications

Java RMI package provides different services. To only hame the main ones, there is the bootstrap naming
service, that is used to provide the concrete reference of server remote objects out of their given name'®, and there
is also a security manager service, that define a default security policy

9 Actually aclass can implement several RMI interfaces when it is needed for providing distinct sets of methods remotely accessible.
1% This lookup is achieved in the RMI registry that is managed (creation, update, destruction) on the server side. Server objects are
referred in thisregistry by a name associated to the concrete reference that can be used for RMI transport.

50

Java RMI is particularly suitable for client/server communication when both client and server are
programmed as Java applications. The main advantage of using Java RMI is that it enable to work in Java
environments in client and server side. Moreover the communication between the two sides is realized
transparently since once the references of remote objects are known, local or remote calls are coded exactly in the
same way. There are no restriction on the type of objects that can be transferred, and there is no special coding
before sending or after receiving a remote method invocation. The Java packages defining Java RMI provide the
basic functionality for remote communication and can be easily extended to more specific policies.

In heterogeneous environments, the fact to have to use Java on both client and server sides can be a
disadvantage (for example when parts of a system are already existing in another programming language).
Moreover using Java RMI in web browser embedded applicationsis not possiblein all web browsers. It requires
to install some plug-in onto the web browser in order to obtain the compatibility. Finally Java RMI
communication can be refused by certain firewalls.

11.6.1.4) CORBA [Omg], [GGM97], [ACW98]

The Common Object Request Broker Architecture (CORBA) has been defined by the Object Management
Group (OMG)" in itsfirst version in 1991. Itsaim is to define a standard answer to the need for interoperability
among the rapidly proliferating number of hardware and software products available today. CORBA allows
heterogeneous applications to communicate through a network within a specific implementation of an Object
Request Broker (ORB).

Using the ORB middleware, an object of a client application can invoke transparently a method of an object
of the server application, even when these two applications are running on different machines. In fact the ORB
intercepts all the method calls and is in charge of finding the appropriate server object, passing to it the
corresponding parameters and starting the appropriate method to return the result to the client.

Asin Java RMI, methods that can be invoked remotely are described in interfaces. For CORBA these
interfaces are defined in the Interface Declaration Language (IDL). This language, specified by the OMG, is
independent from programming languages but offers a vocabulary common to the different existing programming
languages. The interfaces described in IDL can then be mapped to the programming language used in the
application. These interfaces are compiled and a stub (client side) and a skeleton (server side) are created. These
stub and skeleton will be used when a remote method is called in order to transfer this call to the appropriate
server object through the ORB (or through several ORBs linked together).

It isthen possible to program distributed applications where different parts are devel oped in heterogeneous
environments, even with different programming languages. The client object calling a remote method does not
have to be aware of where the server object is located, its programming language, its operating system, or any
other system aspectsthat are not part of an object's interface. Through the mapping of IDL with the most popular
programming languages (such as Java, C++, C, Smalltalk...), and through the management of all the aspects of
the distribution by the ORB, it is then possible to program remote clients and server in atotally transparent way.
CORBA is then particularly suitable when programming client/server applications in heterogeneous
environments and different programming languages.

The Figure 17 presents the general CORBA architecture used for communication between distributed
applications.

! The Object Management Group (OMG) was founded as a consortium in April 1989 to promoate the adoption of industrial standards
for managing distributed objects. The OMG groups several important companies such as 3Com, Canon, Sun Microsystems, Unisys, Hewlett-
Packard...

51

araumentsin

Met hod()
CLIENT « SERVER

arauments out + return value

Server

Object Reference I I
p
IDL DSl
Skeleton
\§

[DIl][IDL Stub] Obj ect Adapter

ORB Core

Figure 17 - CORBA ORB architecture

The Dynamic Invocation Interface (DII) provides an alternative to the classical requests through the IDL
stubs. It enables a client to dynamically addresses requests without requiring IDL interface-specific stubs to be
linked in.

The Dynamic Skeleton Interface (DSI) is the server side's analogue to the client side's DII. The DSI allows
an ORB to deliver requests to an object implementation that does not have compile-time knowledge of the type of
the object it isimplementing.

The Object Adapter assists the ORB with delivering requests to the object and with activating the object.

The main advantages of using CORBA for client/server programming are the fact that it provides robust
standard industrial technologies for distributed applications which are divided into modules potentialy in
different environments and devel oped in different programming languages. The remote accessisthen assuredin a
transparent way for the user, thanks to different technologies and services (such as the Naming Service, to find
the reference of an object from its name, the Trading Service, to find the objects based on their properties) of the
ORB.

The main limitation for using CORBA is that its complex deployment. Using CORBA requires the
installation and configuration of a middleware (the ORB), and involves some specific configurations before using
the remote invocations transparently. In the case of clients and server applications using the same language, it
seems better to use another technology that can be deployed and programmed more easily. As the Java RMI
technology, using CORBA for communication between distributed applications can be limited by certain
firewalls.

52

[1.6.1.5) Others

In this section we will just give a brief overview of other existing ways of realizing client/server
communication. These technologies do not provide the adequate support for applications such as
RECINTERNET. For further information on these technologies, consult the given references.

COM/DCOM [Dcom]

The Distributed Component Object Model (DCOM) is a Microsoft protocol that enables components of
distributed applications to communicate over a network. DCOM uses the Microsoft Component Object Model
(COM) and can be used over different network transport protocol such as HTTP to achieve communication
between active components (such as Java applets and ActiveX) embedded in applications. The crucial restriction
of thistechnology isthat it can be used only for Windows environment.

RPC [Tan89)]

Remote Procedure Call (RPC) systems provide away to realize remote callsin procedural languages. Using
client and server stub as proxy, a remote procedure can be called across a network. All the management of the
communication through sockets and TCP/IP protocols are hidden to the user. Asthiskind of systemsis designed
for procedural languages (such as C, FORTRAN, Ada), it seems not interesting in object-oriented applications.
RPC can be seen as the ancestor of object oriented equivalent such as Java RM| or CORBA.

[1.6.1.6) Choice of the client/server communication technology for RECINTERNET

In the RECINTERNET case, an elaborated technology for client/server communication must be chosen
sincethe RECINTERNET interface must provide important interaction possibilities to the user. It seemsalso that
the best way to implement the client and the server sideis an application, or an embedded application into HTML
documents (as explained in Section 11.5.1 and Section 11.5.2). As aresult the chosen technology for client/server
communication must be adapted to thiskind of solutions.

The HTTP protocal is limited to basic communication mechanisms, only supporting basic interaction of a
limited set of components used in HTML programming. That isthe reason why it seemslaboriousto useit in the
RECINTERNET case. It would mean coding all the client side in HTML, with only a few set of components
allowed in HTML documents, and also to program the server side only with CGI scripts or Servlets. Adopting
HTTP seems then too constraining for the client/server communication.

Using a socket-based system for this communication seems also not adequate. Sockets programming
involves a“low-level” programming where remote call needs decomposition in different stages such as treatment
before and after the communication in order to able to transfer messages in packets or into streams. Asthere are
some more elaborated solutionsthat add a layer to this socket mechanism and provide transparent remote call, the
socket way was not chosen for RECINTERNET.

Java RMI| and CORBA seem to provide an appropriate solution since they enable to program remote
method call inside applications in a transparent way. Both of these technologies provide a flexible and robust
solution to distributed application. But Java RMI is particularly easily usable and deployable when both client
and server are developed in Java. On the contrary the CORBA system is more dedicated to cases where
programming languages used in client and server are different, because it requires the deployment of a set of
CORBA components that seems a bit exaggerated when some features of the shared programming language can
be used more smply. That is the reason why we chose Java RMI to realize the client/server communication of
RECINTERNET.

53

11.6.2) Server/Database communication

This section will be focused on three-tiers applications were the third tier is a database. Wewill then present
the best existing solutions for accessing a relational database through SQL (Structured Query Language) queries
expressed at programming language level.

However, as we have seen in Section 11.3, a good aternative for three tiers architectures (specificaly in the
case of RECINTERNET) is to use two databases. One will be located on the same host than the server, and will
be a structural copy of the main database. The main database contains all the data entries and can be located on
another machine,

In the case of RECINTERNET, the communication protocol between the server and the main database
(SINTESE database) is particular and specific. That is the reason why we will separate this analysis about
server/database communication into two parts: one for the access to a “normal” database (using SQL queries),
that can be applied to the server/local structural database communication in RECINTERNET, and oneto describe
the particular communication between the server and the SINTESE database in RECINTERNET.

11.6.2.1) Server/“normal” database communication

The feature depicted in that section istheintegration of the server program with the DataBase Management
System (DBMS) of the local structural database. It means describing the technol ogies available for making the
link between the programming language used in the server and the SQL system that concretely accessthe entries
of the database.

Given the high number of different relational database products (to only name few of the main vendors',
there are Oracle, IBM, Sybase, SAS, Borland, etc...), standards had to be adopted in order to provide some
common programming-level interface for communicating with databases. Drivers specific to each kind of
relational databases have to be developed in order to support the connectivity mechanism described in these
common interface standards. The two most popular standards are ODBC, the Microsoft's Open Database
Connectivity standard, and JDBC, the Java DataBase Connectivity standard.

In this context, “connectivity vendors’ take really care of providing for each kind of relational database the
appropriate driversin order to be compliant with the main standards.

ODBC [Odbd]

The Microsoft’'s Open DataBase Connectivity standard is an APl (Application Programming Interface)
widely accepted for database access. It as been adopted as an industrial standard to provide a common interface
for connectivity with relational databases at programming language level. ODBC can be used for aimost any PC
database and with different programming languages (such as C, C++, Visua Basic, Smalltalk, Java).

ODBC is based on the specifications for databases APIs (called CLI: Call-Level Interface) defined by 1SO
and X/Open. ODBC uses SQL for expressing relational queries for database access. It then provides a way to
simply call SQL queries on a database inside programs written in most of the programming languages.

ODBC link with DataBase Management Systems (DBMYS) is achieved through drivers specific to each kind
of databases and to the platform running the application using ODBC. These drivers are installed on the machine
running the application and provides the underlying layers for processing the SQL requests express through the
ODBC interface. Since ODBC is the most used connectivity interface standard, all the relational database
products vendors have developed their specific drivers for ODBC, and generally they can be freely downloaded
from the internet.

12 The main vendors are enumerated in: Integrating Databases with Java via JDBC. Rawn Shah. Javawor| 1996
http://www.javawor|d.com/javaworl d/jw-05-1996/jw-05-shah.html

Moreover many programming environments (such as JBuilder for Java, Borland C++) have an adapted
support for ODBC since they provide some ODBC components that group all the ODBC functionality in simple
units responsible of the different aspects of the database access (such as database connection, database tables,
statement for supporting the SQL query, €tc...).

The main advantage of ODBC isthat as it has been adopted as an industrial standard widely used, all the
database products vendors provide the different supports to be compliant with it. Unfortunately, the main
disadvantage of ODBC is that it involve deployment restrictions since the drivers used with it are platform
dependent.

JDBC [JdK]

Java DataBase Connectivity (JDBC) standard is as ODBC an API for providing a common interface at
programming level for database access. Its specificity is to be usable only with the Java language. Given the Java
“fever” in application development, the JDBC standard is becoming more and more widely accepted by the
industrial community. It is aso “the’ standard for all Java applications using database access, and it would be
particularly stupid to not adopt it in a Java application.

JDBC is similar in concept to ODBC since it is also based on the X/Open Cal-Leve Interface (CLI)
specifications for Structured Query Language (SQL). It also provide a ssimple way to include database access in
Java code by a specific support at language level for SQL queries. The java.sgl package provides the necessary
classes for the basic functionalities required for database access.

Aswith ODBC, the link between the language interface provided by JDBC and the DataBase Management
System (DBMS) is supported by drivers specific to each kind of relational databases. A main distinction between
ODBC and JDBC is that these drivers are not platform dependent. They are independent from the chosen
platform and moreover areloaded dynamically at application runtime. In fact driversfor JDBC are represented as
Java classes that are dynamically loaded by the standard DriverManager class of Java at runtime. The fact to
have JDBC drivers written all in Java involve true platform independence and easy deployment. Moreover the
Java Deployment Kit (JDK) provides a set of common JDBC drivers for the most used kind of databases that can
be chosen and used dynamically.

An important feature of JDBC is that JDK proposes some bridges between JDBC and ODBC, in order to be
able to use ODBC drivers with Java.

The basic scenario used in Java programs to read from a database i s the following:

Thedriver corresponding to the used relational databaseisloaded dynamically as a Java diver class

A connection object is created to represent the connection to the database (defined through a database
URL address, that can be local or remote)

A statement object is created. This statement will use a SQL Sring to execute the SQL query
Theresult of the processing of the SQL query in the database isloaded into a result set object
Thisresult set object can be exploited as wanted with different methods (next, getString...)

The result set, statement and connection objects are closed

There are also different functionalities for modifying the database.
Finally the JDBC standard is very useful and simple to use within Java programs, mainly because a set of
Java classes groups al the required functionalities. The main advantage of using JDBC is the fact to be able to

load dynamically platform independent drivers, and mainly that JDBC is “THE" reference for accessing
databases with Java.

55

= RECINTERNET case

The strategy for the RECINTERNET case was to choose a standard API for the connectivity with the local
structural database, so that it would be easy and simple to include database access code in the server application
code.

The major parameter in this choice was the fact that the server side of RECINTERNET was developed in
Java. Then using the JDBC standard was the logical choice for realizing the connection to this database. JIDBC
was then a good choice because it was possible to use the existing Java classes to insert easily in the code
databases access. Moreover it was possible to insert Java variables directly in the SQL strings used for database
queries.

The local structural database developed and used for the RECSINWIN project was reused for the
RECINTERNET project. This database is a Interbase database of approximately 22 MBytes, working with the
DataBase Management System (DBMS) Inter Server. All-Java driversfor JDBC/Interbase are available for free®,
and provided all the needed functionalities for the database connection.

The choice of JDBC for the RECINTERNET project simplified also the database access programming
thanks to many reusable examples and to the good documentation provided by Oracle™ fredly.

[1.6.2.2) The particular case of server/SINTESE database communication

It would have been particularly interesting to also use a standard like JDBC to realize the communication
between the RECINTERNET server and the main database containing all the entries (the SINTESE database).
Unfortunately this was not possible because the SINTESE database isinserted into the SINTESE system that uses
a particular DataBase Management System (DBMS) that is not based on SQL queries.

As explained before it was not possible to modify the SINTESE system and so we were obliged to adapt the
RECINTERNET project to this system. We will now describe briefly the specificity of the communication with
this SINTESE database, and the way we used it in the RECINTERNET project.

The SINTESE database is a DM SII database of approximately 20 GBytes, located in the CTRJ (Centro de
Tratamento de Informagdes do Rio de Janeiro — Information Treatment Center of Rio de Janeiro), on a high-
powered storing computer. This computer is part on the intranet where are connected the different machines of
DATAPREV headquarters and other centers.

To access this database, a user must first connect to the SINTESE system, through a TCP/IP protocol (LCW
gateway). He can then use the functionality of the system through a terminal. In order to retrieve data form the
SINTESE database, he must use a particular syntax which is very different from the SQL syntax since it was
specifically defined for the access to this database. The way to retrieve some entries of the database isto combine
some command lines describing the way to organize the lines and columns of the table showing the resulting
serie. The Figure 18 illustrates this specific syntax:

- LI ESP ESTADO (* REGQ AO SE)
- M $SUB. CONTRI ANO 97 98 99 POSTO FA3056
- M $DCOLAR. C MES 0199 0299 0399 0499 0599 0699

Figure 18 - Example of the SNTESE request syntax

These three command lines represent a request to the SINTESE database. In the first line of this exampleis
specified that the lines of the results sheet will be al the states of the region Sudeste. The second line specifies
that in the columns will be the serie referenced as Sub.Contri for the years 1997, 1998 and 1999, for the Posto

%2 Drivers downloadable on the Interbase Site: http://www.interbase.com
14 JDBC documentation and examples: http://www.oracl e.com/javal/codesampl es/jdbc/index.html

56

referenced as FA3056. Thethird line specifiesthat in other columns of the same sheet will be the serie referenced
as Dolar.C for the months 01/1999 to 06/1999.

Once he has submitted its command lines combination, the user can visualize the result table on histerminal
screen. Thanksto a special SINTESE command, the user can retrieve the result as an ASCI| text file.

In order to be able to access the SINTESE database with the RECINTERNET server, we needed some
specific measures. First of al the connection to the remote SINTESE system will be done thanks to a specific
Java API that simulates the terminal connection using the TCP/IP protocol.

Then we needed to use the specific syntax to express queries to the SINTESE database. In fact in the
RECINTERNET system, the user compose dynamically a final request through a navigation and accesses to the
server and the local structural database. This final request is structurally described by the different navigational
choices done by the user. The different parameters of this request are chosen by the user in the different
navigation screens. Finally there are only few different structural request-types, that need to be filled in with the
specific choices of the user. So we just needed to express the structure of these request-types in the SINTESE
request language, and then complete them with the SINTESE code of the different parameters.

Finally when the user has composed hisfinal request, the RECINTERNET server passes the corresponding
command lines structure completed with the user parametersto the SINTESE simulated terminal, callsthe special
command to receive the ASCII resultsfile, and then parsesit to create an exploitable Java object that will be sent
to the client.

By this mechanism we can then use the specific SINTESE system to access the SINTESE database from the
RECINTERNET server.

[1.7) Conclusions

To conclude this analysis of the main technologies and techniques usable in the design and implementation
of the RECINTERNET project, we will sum up the different choices we did for RECINTERNET.

We will use some concepts and patterns of the Object Oriented Hypermedia Design Method (OOHDM)
sinceit enablesto adopt robust and proven solutions to recurrent navigational applications design problems. The
design decomposition in conceptual design, navigational design and interface design seems particularly suitable
to address in different steps the different concerns of the application design. Using the set of hypermedia design
patterns of OOHDM will also be very benefic since it will enable to organize the different mechanisms used in
RECINTERNET in coherent and efficient ways.

Our study of the architectural possibilities for an application like RECINTERNET highlighted that three-
tiers architectures are particularly suitable for web-based applications involving shared resources such as
databases. In the case of RECINTERNET we will use a variation of three-tiers architectures. A server local
structural database will be used to increase requests preparation efficiency since only final requests will be
addressed to the main SINTESE database.

Then we chose different technologies for the three-tiers of this dynamic internet database interface and the
communication between the three-tiers. The client part of RECINTERNET will be programmed in a Java applet,
embedded in a HTML page downloadable with any web-browser. This is the best solution we found to provide
an easy way for usersto reach an efficient application from any web-browser. The server part of RECINTERNET
will be programmed as a Java application running on the server host. It seems the appropriate solution to
implement the different functionalities of RECINTERNET and to support simple communication protocol with
the client and simple databases access. Client/server communication will then be realized with Java RMI since it
provides a transparent way to realize method calls between remote objects of different Java applications.
Structural database access from the server application will be achieved through the JDBC standard and the
corresponding drivers, that enable to construct SQL queries and exploit queries resultsinto Java code. The access

57

to the SINTESE database will be done through the simulation of a terminal of the SINTESE DataBase
Management System (DBMS) with aremote connection by TCP/IP protocol. The constraint of using this existing
database and its associated DBMS is then included into the RECINTERNET project.

The Figure 19.presents a summary of the different technologies used in the RECINTERNET project for the
threetiers and for the communication between them.

CLIENT SERVER

Java Applet

_—

R Local

Structural
Database

Java Server

HTML Page

User Web Browser

SINTESE Connection

DATABASE HOST

Figure 19 - Summary of the chosen technologies for RECINTERNET

Finally we will also program the whole system with separation of concerns. It seems particularly suitable to
enable an efficient and flexible programming for different concerns used in RECINTERNET such as connection

58

control, user interaction, synchronization... Out of the different techniques existing to support separation of
concerns, Aspect-Oriented Programming (AOP) provides the appropriate mechanisms and technology to
efficiently express complex concerns cross-cutting the code into separated modules. By using the AspectJ tool it
is possible to implement aspects that will be automatically woven with Java components code.

The following sections of this thesis will present the way we developed the RECINTERNET project with
the different techniques and technologies. Our research is particularly focused on one of these techniques: AOP.
Wewill present in Section I11 our approach for designing with aspects for web-based three-tiers applications. We
will illustrate this way of programming in a comparison between a conventional object-oriented design and an
aspect-oriented one for the RECINTERNET case in Section |11, and present the way to implement these two
solutionsin Section 1V.

59

[l - APPLYING SEPARATION OF CONCERNSIN WEB-BASED
THREE-TIERSAPPLICATIONS DESIGN

[11.1) Introduction

In this introduction we will go further in the descriptions of separation of concerns and Aspect Oriented
Programming (AOP) given in the Section 11.2. We will also state the interest of using these techniques for web-
based three-tiers applications and present the objectives of their application at the design level of an application
such as RECINTERNET.

I11.1.1) Separation of concerns

Aswe have seen it in Section I1.2.1, the separation of concerns paradigm aims to define programsin terms
of components and concerns. Components are entities that can be encapsulated in traditional object oriented
structures to express the basic functionality of a program, and concerns are more complex entities that cannot be
encapsulated in components structures because they are cross-cutting the basic functionality code. The idea of
separation of concernsisto have separated modules for each new concern.

Now we explain in details the composition/decomposition mechanisms involved by this way of
programming:

Decomposition

The aim is to decompose a system into different concerns and components. The decomposition in
components is done in the classical way of dividing a system into objects. Then concerns are defined for cross-
cutting entities, for example for concurrency control, remote communication strategy, real-time constraints,
security. Concretely the idea is to define in separate modules all the modifications that will be done to the
components code for one concern.

Each different technique for realizing separation of concerns have its own mechanism for identifying and
expressing concerns, but al of them try to provide a way to express a set of modifications to the basic
functionality code into separated modules. Each concern is closaly related to the design and eventually to the
implementation of the components of the system. The way to express a concern is also specific to the technique
chosen. It can be specific aspects languages (in aspect oriented programming), meta-level code (in meta-
programming), behavioral specifications (in adaptive programming), or special entities such asfilters classes (in
composition filters), or subjects (in subject oriented programming). As this is a quite new and active research
domain, thereis not definitive and precise methodology to realize decomposition.

Composition

The different concerns and components resulting from the decomposition are expressed in different ways
and cannot be compiled or ran likethat. That isthe reason why the different techniques for separation of concerns
try to define a composition mechanism in order to obtain a compilable or executable system out of the concerns
and components as they are expressed.

These composition mechanisms are al so specific to each technique and can work either at source code levd,
either at compiled code level, or at both levels. In aspect oriented programming composition is realized by an
aspect weaver taking code as input and producing code as output. In subject oriented programming, automatic
composition of code or bytecode of some subjects are realized with composition rules. Meta-programming way
is to compose concerns and components by modifying meta object protocols. Composition filters use a modified
way to evaluate message passing in order to add the concerns functionality. Adaptive programming generates

60

code in classes involved in traversal strategies. The idea is too realize automatically this composition for the
user.

By these mechanisms the separation of concerns paradigm provides important improvementsto the classical
object oriented software development. For many kinds of applications it provides ways to reduce program
complexity and to amdiorate flexibility, reusability, maintainability and evolutivity.

111.1.2) Aspect Oriented Programming

Aspect Oriented Programming (AOP) isthe base of the work presented in Section I11 and IV about applying
separation of concerns in web-based three-tiers applications design and implementation. That is the reason why
we extend now the definition given in Section 11.2.2.5 with further details.

[11.1.2.1) Concepts

Thereare* AOP-specific” termsthat are independent from the concrete solution chosen to support AOP. We
will define these terms in this part. A system and its implementation can be decomposed into components and
aspects.

Component

“A component can be cleanly encapsulated in a generalized procedure (i.e. object, method, procedure,
API). By cleanly, we mean well-localised, and easily accessed and composed as hecessary. Components tend to
be units of a system’s functional decomposition, such as image filters, bank accounts, service providers, GUI
widget.” [KLM+97]

Aspect

“ An aspect cannot be cleanly encapsulated in a generalised procedure. Aspects tend not to be units of the
system’s functional decomposition, but rather to be properties that affect the performance or semantics of the
components in systemic ways. Example of aspects include memory access patterns and synchronisation of
concurrent objects.” [KLM+97]

Decomposition

Decomposition in AOP is the definition of a system in terms of components and aspects. Aspects must be
cleanly separated from components, and aspects must be separated from each other. At design level the choiceis
done between what will be expressed in components, and which aspects will be used. Aspects are then expressed
in a specific language (or in distinct specific languages™) that enable to define efficiently concerns in relation
with involved components aready defined in the classical programming language used'®. Aspects are always
based on components implementation.

Granularity

An important characteristicin AOP isthe granularity of the aspects. It means on what level of granularity do
the aspects affect the components code. In object-oriented languages, aspects can reach methods and variables of
aclass. It meansthat generally, aspects are allowed to add new methods and variables to a class, but also to wrap
an existing method of a class with further code, that will be executed before or after the normal body of the
method. Anyway this generally assumed granularity level can be different depending on the aspects languages
used.

% For example, in the D Framework [LK97], two aspects languages are used: Ridl, to express remote access strategies and Cool, to
express threads coordination.

18 Even if the main research work on AOP is applied to object-oriented languages, AOP principles are also valid for other paradigms, as
specified in [KLM+97]. For example aspects can be defined on procedural systems, or aspects can even be used to express entities cross-
cutting aspects.

61

Join point

Join points are used to identify the different locations of the components code that aspects will affect.
Expressing aspects is dealing with two issues: expressing modifications that will be applied to components and
specifying where these modifications will take place. More detail s about this decoupling can be found in [Beu99].
The last of these two feature is in fact expressing join points. Aspects languages provide specific semantics for

defining join points, and some join points abstractions to express for example “all the methods of aclass’ ™.

Weaving

The aim of AOP is to provide an automatic mechanism of composition. Aspects and components will be
composed to create a usable system (by usable, we mean a system that can be compiled or directly run). It means
that the aspects will be taken one by one and applied to the components code. This mechanism is assured by an
aspect weaver, which is a kind of pre-processor that takes as input components and aspects expressed in given
languages to produce as output a woven code. This woven code represents the components plus the different
aspects modifications added.

111.1.2.2) Aspect]

Aspectd [AJ] is an general-purpose aspect-oriented extension to Java developed by the Xerox Parc
Corporation in Palo Alto. Aspect] provides an aspect language that enables to express aspects applicable to
classical Java code. As explained in Section 11.2, Aspect] is the most advanced solution for efficiently
programming with aspects. Moreover it works with Java, that we were using for the RECINTERNET project, and
is easily usable. We worked then with the version 0.3.0 beta 3 release, that can be downloaded fredly from the
Aspect Home Page [AJ]].

More details will be presented about concrete implementation with Aspectd in Section 1V, but it is
interesting to present in this section few characteristics of AspectJ that will influence the way to design with
aspects.

The Figure 20 presents the global mechanism of the Aspectd weaver. Components Java code and aspects
code (expressed according to the Aspectd semantic) are combined statically by the Aspect] weaver (that can be
seen as a pre-processor). The output is some woven Java code that can be compiled as classical Java code to
produce executable Java bytecode'®. It has to be noticed that the input aspects and components files are not
modified by the weaver. The output is created in distinct files.

Theinterest of such amechanism istheflexibility obtained for plugging in or out aspects. Plugging in anew
aspect is done by weaving it with the components code. Plugging out an aspect is done ssimply by taking the
initial component code that has been left unmodified by the previous weaving.

Without entering in the details of the Aspect] weaver, we can describe the weaving mechanism as
following: the weaver takes the aspect files one by one, then analyses the aspect to solve the join points
considering the components code. Taking the solved join points one by one, it then writes the corresponding
modifications in the different output files with some comments to describe the realized modifications. Weaving
errors can stop the weaving process (such as incorrect join points), and they are then reported by the aspect
weaver.

7 With Aspect] [AJ], it is possible for example to express “ al the public methods of the Java dass Poi nt ” with this syntax: publ i ¢
* Point.*(..) (formoredetailsabout the syntax, werefer to [AJPrimer]).

18 Actually it is possible to directly obtain the Java bytecode corresponding to the Java woven code compiled. An option of the Aspect]
weaver enables to weave the aspects and components and directly call the classica Java compiler to provide to the user the final woven
bytecode.

62

Components
Java Code
(.java)
Woven
Java Code

AspectJ ﬁ (.java)
Weaver

Aspects

Code

Figure 20 - AspectJ weaving mechanism

Finally in AspectJ we can see the expression of aspects as directives for the weaver to insert pieces of code
into components code. The following section will give more details about the way to express these directives and
what can be reached with these directives.

[11.1.2.3) Expressing aspects with AspectJ

This section is mainly based on the explanations given by the AspectJteam in [AJPrimer]. In this section we
will speak of aspects in the specific context of Aspectd. It is important to clearly understand what can be
expressed with aspects, in order to be able to design aspects effectively realizable with AspectJ.

Theidea of AspectJisthat aspect declarations are similar to Java class declarations:

aspect MyAspect {

}

The different members declared in an aspect can be variables, constructors and methods (as in Java class
declarations), but also introduce weaves and advice weaves. Weaves designate where code will be inserted
(through designators) and what Java code to insert. We will now define these different terms involved in aspect
declarations:

Designators

Designators are used to define the aspects join points. They point to one or more methods or constructors of
oneor moreclass. For example:

63

public void Point.setX(int x)

points to the method set X method of the classPoi nt that takes an integer as parameter and hasavoi d return.
Theideaisthe samefor constructors. It is also possible to use packagesin class reference.

It is possible to use specific characters. The “*” isused to say that anything can replaceit. It can be used
for package name, class name, return type, constructor name or method name. The “. . ” is used to specify that
the parameters of a method (or a constructor) can be anything. The “! " character enables to express some
conditions on the modifiers. For example;

public !abstract void MyPackage.*.set(..)

refersto all the public set methods (with any kind of parameters) of all the classes of the package MyPackage
which are not abstract.

With this syntax it is then possible to refer to multiple methods or constructorsin the same time,

I ntroduce weaves

The introduce weaves are used to insert in one or more classes variables, methods or constructors. The place
where they will be inserted is defined by one or more designators. The body (or initializer) of the introduce
weave will be the body (or initializer) of the methods or constructors (or variables) introduced. For example:

introduce public int Point.getX() { return x; }

will introduce the method get X with the appropriate body in the class Poi nt .

And, for the variable introduce weave, for example:

i ntroduce private Col or Point.color = new Col or(0,0,0);

will introduce the variable col or and itsinitializer to the class Poi nt .

It is also possible to define a weave that introduce several methods:

introduce public String Point.getNane()
public static String Line.getNane()
protected String Square. get Name() {
return name;

Advise weaves

Advise weaves are used to insert code into methods or constructors. As introduce weaves they use
designators to point to the wanted methods or constructors.

The before advise weave will insert some code before the body of the initial method. For example:

advi se public void Point.setX(int _x) {
static before { if (lassertX(_x)) return; }

}

means that the given body will be executed just before the set X body, each time the set X method will be
executed.

The after advise weave is the same but will be added at the end of a method body.

The catch advise weave is used to add a “try-catch” wrapping the entire body of a method. For example:

advi se public void Point.setX(int _x) {
static catch (Exception e) { Systemout.printin(e); throwe; }

}

will add the given behavior to execute when exception are raised in the set X method of the class Poi nt .

The finally advise weave is used to add a“finally” wrapping the entire body of a method body. For example:

advi se public void Point.setX(int _x) {
static finally { rel easeResources(); }

}

will add the given behavior to execute at the end of the set X method of the class Poi nt , even if exceptions are
raised.

Asfor introduce weaves, an single advise weave body can be expressed for several designators.

Aspects variables, constructors and methods

As for any Java class, an aspect declaration can contain some variables, constructors and methods. The
syntax is the one used in Java classes. These aspect variables, constructors and methods can be called or used
from within this aspect. For example;

aspect MyAspect {
private static int countPointlnstances = 0; // The aspect variable

advise Point(..) {
static after { countPointlnstances++; }
}
}

will increment the count Poi nt | nst ances variable of the aspect MyAspect after each time a constructor of
the class Poi nt is executed.

Specific variables

Foecific variables can be used in aspects. They are used to hold references solved at run-time:

= thisOoject: thisvariable holds the reference to the current object (equivalent to the “t hi s” in
Java).

= thisJoinPoi nt. met hodNane: holds the name of the current method on which the current advise
weave is being executed.

= thisJoi nPoi nt. cl assNamne: holds the name of the current class containing the method on which
the current advise weave is being executed.

65

= thisResult: holds the return value of the method on which the current advise weave is being
executed, if any.

Remarks

In the latest versions of AspectJ™, some new features related to non-static weaves have been added. It is
possible to instanciate aspects in the same way than classes instantiation (by calling an aspect constructor).
Aspect instances can then be associated with objects (being referenced by an instance variable of the object) and
objects to aspects (through an aspect domain that holds references to associated objects).

To support these features, AspectJ provides some new specific variables and methods, in order to be ableto
“manipulate’ these associations. It is then possible to have references to aspects from objects and automatic
references to objects from aspects (through their domain). These new features enable some “non-static”
exploitation of aspects and components weaving. We will not provide further information about these features
since we decided to not use them for our design with aspects. In fact they are quite recent in the Aspect]
development and should evolve consegquently in the near future. Moreover most of these new features can be
obtained with the “classical” AspectJ features.

Ancther point is the particular use of Java interfaces. Normally a Java interface only defines methods
signatures that must be defined in classes implementing this interface. In AspectJ, a join point referencing a
method of an interface will in fact reference all the implementations of this method in the classes implementing
thisinterface. This enable to factor out some modifications on methods of several classes.

For further details about this aspect language, we refer to [AJPrimer].

Now that we have explained more in details AOP and Aspect], it is possible to understand what can exactly
be expressed in aspects, and the way it will affect the components code. Finally AspectJ provide an appropriate
tool for programming with aspects as well as a powerful language that provides a wide range of possible actions
on components code.

111.1.3) Objectives

In the following sections we will present the different stages of our research process. The principal ideawas
to apply separation of concerns (and particularly aspect-oriented programming) in web-based three-tiers
applications devel opment.

Aspect oriented programming is an emerging way of programming that provides many improvements in
application development. Unfortunately as a new technique, a clear methodology to be efficient and to take all
the benefits of it is missing.

Moreover aspect oriented programming, and particularly aspect oriented programming with Aspect], is a
technique mainly based on implementation stage. Aspects are defined relying on basic components
implementation. However inserting aspects at design level is a motivating challenge since it provides important
advantages such as composition conflicts solving or better reuse to name only few.

That is the reason why we will present in the following sections how we did to design a web-based three-
tiers application with aspect. We will compare this approach with a classical approach (without aspects). This
comparison will take place in the concrete case of the RECINTERNET project.

We will present in Section [11.2 what are the mativations, the difficulties and a technique to realize aspect
oriented design in web-based three-tiers applications. The idea is then to draw a comparison between a design
without and with aspects for this kind of applications, and particularly in the concrete case of the
RECINTERNET applications. For this purpose we will present in Section 111.3 the design without aspects that we
realized for RECINTERNET, and in Section I11.4 a design with aspects for the same application. The Section

' Previous to the version 0.3.0 beta 3 release.

66

[11.5 will then draw a comparison and these two approachesin this concrete case and we will give the conclusions
of this research for the design level in Section 111.6.

[11.2) Designing web-based three-tiers application with aspects

Web-based three-tiers applications design is a particularly complex stage of their development cycle since
this kind of systems involve distinct machines with different technologies for each part of the system. Complex
concerns are then scattered throughout the code of the different components of the system. An aspect oriented
design of such systemsisthen particularly interesting.

[11.2.1) Maotivations for designing web-based three-tiers applications with aspects

111.2.1.1) Aspect-oriented applications (AOP)

Using AOP in any kind of applications development provides several advantages. Most of them are highly
related, but we can separate the main advantages of using AOP as following:

Modularity

With AOP it is possible to express aspects in separated modules from components code. Moreover it is
possible to express different aspects in separated modules. Then an important advantage is that an application
will be programmed in distinct modules, each of them corresponding to a clearly defined concern. This
modularity is a important advantage during design stage, where it is possible to concentrate on one concern at a
time, but also at implementation stage, where it is easier to implement concerns one by onethan all together in a
same module.

Size

As we have seen with Aspect], it is possible to express very succinctly in one aspect some modifications
affecting several components code locationsin the sametime. For this reason, code duplication is avoided, and it
is possible to express in few lines of an aspect some modifications corresponding to a high number of
components code lines. For this reason using aspects in applications development generally decreases programs
size.

Complexity

The modularity provided by AOP is an important factor of complexity decreasing. Understanding an aspect
oriented program is easier than understanding a conventional one. Even if the program is divided into severa
modules (corresponding to the different aspects and components), as each concern is addressed distinctly from
the others, it is easier to better realize the impact of each concern on the code than if this concern was scattered
throughout the code and mixed with several other concerns. Moreover aspect oriented programs small size
increases their understandability.

Flexibility

Aspect oriented programs are particularly flexible since, asin Aspect], it is possible to plug-in or plug-out
aspects easily. The aspect weaver support these two mechanisms in such a way that replacing an aspect by
another oneis asimple operation involving just a static re-weaving and a compilation of the woven code. By this
way it is possible to obtain easily distinct programs with modules addressing different issues out of a basic
program structure by the way of plugging-in or out aspects. It can then be realized without modifying all the
code, even if these different issues involve entities tangling the basic functionality code in many places.

67

Maintainability

With Aspect], the executable Java bytecode is obtained by the compilation of the woven Java code. For this
reason, aspect-oriented programs errors are difficult to track since they refer to the woven code and not to the
initial aspects and components Java code modules. However the woven Java code is carefully commented by the
weaver in order to describe clearly from where is coming the code. Moreover, since separated concerns are
addressed in distinct modules, it is possible to maintain separately parts of a system corresponding to distinct
concerns. Locating the involved modulesis then a simple task.

Reusability

Reusability issues are particularly well addressed with AOP. Reusing an existing aspect-oriented system can
be seen as a matter of plugging-in new aspects and plugging-out non necessary old aspects. Moreover
understanding the reused system is a crucial part of reuse, and this is consequently simplified thanks to systems
complexity and size decreasing due to AOP. Finally the modular design of aspect oriented systems is an
important advantage for their reuse.

[11.2.1.2) Aspect-oriented web-based three-tiers applications

Involving multiple tiers and multiple technologies, web-based three-tiers applications deal with severa
complex concerns that can beneficially be expressed through aspects. This makes the aspect oriented approach
particularly interesting for their development cycle. Here is a non-exhaustive enumeration of some particular
features of web-based three-tiers applications that are consequently interesting to devel op with aspects.

Remote communication

Web-based applications rely on remote communication between a client and a server. As stated in Section
11.6.1, solutions like Java RMI can be adopted for this communication. However programming this remote
communication concretely cross-cuts the functionality components code (with stub and skeleton management
code, remote interfaces code, remote exceptions handling and so on). It is then particularly powerful and brief to
express this remote communication feature in aspects.

User interaction

As explained in Section 11.5.1, internet provides different possibilities to support applications dedicated to
user interaction handling. In the Java applet solution, user interaction is managed through events handling. The
web browser react to events such as mouse actions (click, moves...), windows events (close, minimize...) and so
on, and these events must be converted into the appropriate method call to realize the needed actions. It can be
much simple to implement this user interaction scheme with aspects.

Server functionality

In web-based three-tiers applications, the middlie-tier (the server) can implement different functionalities.
The fact to deal with multiple users require some multi threading policies that are involving elementsin different
parts of the server code, and then can be encapsulated efficiently in aspects. Moreover in a multi-tiers application
with multiple servers, the different elements related to the load balancing feature cross-cut the basic components
of the server application. For this concern it is also interesting to use AOP.

Database access

In the same way, the code related to database access (database connection, SQL strings creation, results
exploitation...) can involve many entities of the server code, and also several features which are specific to the
kind of databases used in the application. Expressing this code in aspects can avoid code tangled throughout
components code but also reduce efficiently code complexity by expressing in distinct modules specific concerns
of different kind of databases access.

68

111.2.1.3) Motivations for defining aspects at design level

Asexplained in [Aop]: “ Like objects, aspects are intended to be used in both design and implementation.
During design the concept of aspect facilitates thinking about cross-cutting concerns as well-defined entities.
During implementation, aspect-oriented programming languages make it possible to programdirectly in terms of
design aspects, just as object-oriented languages have made it possible to program directly in terms of design
objects’ .

Then, even if aspects are based on components implementation, define them at design level can enhancein
many ways the development cycle.

Firgt of all, defining aspects at design level will help designers to separate systems in different modules
related to distinct concerns. This mechanism will enable to address one concern at atime and to design it almost
independently from the other concerns. It means that designing the aspect encapsulating all the elements of a
concern will be easier than designing these elements into the entire system without aspects since everything
related to this concern will be expressed in only one module, and almost independently from the other concerns.

Ancther advantage of defining aspects at design level is that it is then possible to define some pluggable
aspects. In fact aspects can also be seen as pluggable modules that can be added or removed to a system to
support different functionality.

For instance we can imagine a system where some clients access as aremote server. A strategy could be that
if the connection isnot realized after a given timelimit, an error message is displayed to inform the client that the
connection is not possible. Another strategy could be that when this time limit is reached, the client request is
automatically transferred to another server. These strategies could be expressed each in one aspect. Then
choosing a server policy could be done by plugging-in the wanted aspect and eventually plugging out the
previous one. These alternatives are chosen before the code is compiled, and it can be very useful. These kind of
pluggable functionalities must be defined at design level, since they affect consequently the whole system
implementation.

An important decision in developing aspect-oriented systems is choosing what to put in aspects and what
not. The boundary is often difficult to define at implementation level. It is then important to have defined during
the design of the system which concerns will be addressed in aspects, and then the different el ementsinvolved in
the given concerns can be extracted from the basic functionality components code to be expressed in aspects.
Finally the implementation will have to follow closaly what the design expressed and then aspectswill be defined
more clearly and in a homogeneous way since they respect the aspect decomposition policy defined during
design.

An aspect is based on components implementation. It will be woven to components code to add some code
into these components, but there can be some composition conflicts. For instanceif two aspects define some code
addition on the same join point, the result can be different from excepted since the pieces of code added by the
two aspects can be incompatible. Expressing clearly the join points of aspects and the modifications involved at
design level can enable to detect these kind of composition conflicts.

Finally defining aspects at design level enable to efficiently organize design in separated concerns. It will
result in systems where each feature has been clearly and separately defined. Implementing such a design will
then be facilitate and composition conflicts can be avoided. Finally a clear structure will be provided for design
models. Reusing these design models will then be easier since they will be more structured and more
understandable through a clear separation of concerns.

69

I11.2.2) Difficulties of aspect design

[11.2.2.1) An emerging programming paradigm

Separation of concern is one of the most active research domain of software engineering. But as a new
paradigm, related techniques are quite new. AOP is one of these emerging techniques to realize separation of
concern. Thus AOP is in a maturation phase where it evolves a lot and where it is not yet an efficient and
generally adopted way of programming. Many improvements and propositions have to be done before an
efficient way to design with aspects is defined and accepted as standard.

In this context Xerox Parc Corporation decided to develop Aspect]. As a beta version, AspectJ is evolving
permanently and new features are added in frequent new releases. It evolves to provide new features requested by
its users in an efficient way and to solve the problems of the previous versions. Important modifications also
involve different ways to design a system, in order to be able to implement it with AspectJ.

As an example, the version 0.1.0 of Aspect] was supporting two aspect languages to provide only
mechanisms for concurrency control (COOL) and remote communication (RIDL). For more details on these
languages, see [LK97]. The version 0.2.0 aims to support general-purpose cross-cutting mechanisms.
Consequently using one version instead of another modifies not only the way to implement a system, but also the
way to design it.

Moreover many frameworks for AOP are using some specific-purpose aspect languages, and then use a
specific methodology for decomposing a system into aspects and components. It is then difficult to spesk of a
global methodology to design systems with general -purpose aspect languages frameworks.

Currently there is not a standard methodology to design with aspects. This is a domain of software
engineering that will require maturation and experiments in order to be able to abstract some efficient way to
design with aspects. In Sections 111.2.3 and I11.4 we explain a way to realize an aspect-oriented design and to
represent it for web-based threetiers applications and we illustrate it with the concrete design of
RECINTERNET.

[11.2.2.2) Decomposition challenge

The AOP decomposition mechanism — separating a systems into different components and aspects — must
be defined at design level for the reasons we explained in Section 111.2.1.3. However thisis a difficult challenge
for which no standard methods are defined.

The firgt difficulty is in choosing what should be expressed in aspects and what should not. Web-based
three-tiers applications have been and can be totally designed and implemented in a conventional object oriented
way. In an degenerated view we can also imagine such an application where any entity that cross-cut just a bit the
components structure is expressed in an aspect. Then we would have a proliferation of aspects with a very poor
components structure. It seems that an intermediate solution between these two extremities should be found in
general. The pending question is then: until what point should we put cross-cutting entities into aspects?
Obvioudly the answer depends on the kind of application. Wetry to answer this question in the case of web-based
three-tiers applications in the following parts.

Ancther difficulty isthat aspects are based on components implementation. At design level components are
not yet implemented and then it can be a hard task to clearly define aspects at this moment of the devel oppment
cycle. Join points are a particularly important feature in aspects expression. It is then important to define as
clearly as possible these join points between aspects and components, even at design level. We try to explain the
way to express these join pointsin an appropriate way at design level for web-based three-tiers applicationsin the
following parts.

70

111.2.3) How to design web-based three-tiers applications with aspects

In this section we describe a step by step methodol ogy to support aspect-oriented design in web-based three-
tiers applications by proposing some guiddines to structure the aspects/components decomposition, as well as a
clear way to define aspects/components interactions. We finaly propose a table representation for
aspects/components decomposition design.

This methodology and representation will be used and illustrated in details in Section 111.4 in the concrete
case of RECINTERNET. In fact we propose a way to design based on a step by step decomposition and
characterization that we created for the RECINTERNET case.

[11.2.3.1) Step by step aspects design

The process we propose to design a system with aspectsis divided in different steps organized in four parts.
It has to be noticed that it is difficult to strictly follow this method step by step since many steps are closely
involved, and sometimes defining a step will modify another step previoudy defined and then all the intermediate
steps will have to be re-done. The basic idea of this methodology is to decompose the designed system by
characterizing the different dements of its two dimensions (the aspects dimension and the components
dimension), and to clearly define the interactions between these two dimensions.

A POINT |: ASPECTSIDENTIFICATION
A Step I-1: Aspects Areas | dentification

In thisfirst step are defined the different characteristics of a given system that address some concerns that
will surely cross-cut components implementation and that could be beneficially expressed with aspects. These
aspects areas are then named and a brief description of the kind of aspects of such areas is defined. In Section
111.2.1.2 we have named some of these areas that can be used in web-based three-tiers applications aspect design
(shared resources, user interaction, remote communication, server functionalities, database access...).

In the case of a web-based three-tiers application, we can pick up for example the following aspect area:
shared resources. We can describe it briefly the potential aspects of this area as following: the aspects of this
area will express all the code modifications related to methods synchronization or shared variables access
synchronization.

A Step I-2: Aspects | dentification

In this step, taking one by one the previoudy described aspects areas, we will try to point out all the aspects
of the area. We will then identify precisely what each of these aspects is supposed to provide. This point is the
answer to the question: what is this aspect concretely concerned with? This should be explicitly described for
each of the identified aspects. This description is not directly concerned with components, but address the
principal objectives of an aspect. For example we could have an aspect Database Access Synchronization which
could be described by: realize the synchronization of all the threads requiring access to the database.

A Step 1-3: Aspect Type

We propose two characterizations for aspects. type and plugging constraints.

Type: an aspect is either a required or an optional one. A required aspect will be woven to the
components code to produce an executable code. The original components code cannot be run without
being woven with such an aspect. An optional aspect represents an option that can be plugged or
unplugged to the system. The system can work without the plugging of such an aspect. Weaving such an
aspect to the system can add a particular feature to the system.

71

Plugging constraints. this characterization of aspects enables to specify the way aspects or groups of
aspects can be plugged. We have identified two kinds of plugging constraints, but it is not an
exhaustive list. The first one is that an aspect can be used only when another aspect (or severa others
aspects) are also plugged on the system. The second one is that only one aspect out of a group of
aspects can be plugged on a system

As an example we can have two optional aspects of cannot be plugged together: the first onewill be used to
specify that a user will receive an error message after atime-limit for the connection to the server, and the second
one that the request of the user will be re-directed to another server after the connection time-limit.

So in this step we will describe for each aspect its type (required or optional), and if it is involved in
plugging constraints, we will specify the different constraints and other aspects involved.

A Aspects Definition Representation

We can use a table to summarize the results of this first part. As an example we take a table used in the
aspects design of the client application of RECINTERNET from Section 111.4.2.

User Interaction Support Navigation Support

Aspectsrelated to user interaction | Aspectsrelated to navigation
and direct consequences of user actions or tasks required for
interaction navigation

Events Handling Dynamic Node Loading

Defining components interactibility
and linking interaction eventsto the
appropriate methods

Searching or creating required
nodes when navigating

A POINT |1 COMPONENTSDESIGN

Designing the components of the system is done in the conventional object oriented way. Based on the
application specifications, the system is decomposed into functional entities (classes and objects). The specific
point due to AOP is that the designer must be careful to definitively not addressin this functional decomposition
of the system any feature related to some concerns that have been defined to be treated in aspects. It isimportant
to take one by one the identified aspects to check that there is nothing related to them in the components model.

A POINT I11; ASPECT CHARACTERIZATION

At this point of our step by step decomposition, we have designed the components and also identified and
briefly defined the aspects that will be used. It is now possible to characterize these aspects:

A Step 111-1: Aspect description applied to components

Based on the aspect description realized in Step [-2: Aspect Identification, and using the components
designed, we can refine the aspect description by precisaly expressing the modifications involved. In this step we
try to apply the first description realized to the designed components. For example if in a web-based three-tiers
application a database is accessed through a given set of methods, the Database Access Synchronization aspect
could be redefined as: all the methods accessing the database X will be synchronized using a lock on which they
will be queued.

72

A Step111-2: Involved components

With this description and with the components mode, it is possible to track for each aspect the involved
components. This point isthe answer to the question: what are the componentsinvolved that are affected (i.e. will
require some modifications) by something in the description of this aspect?

A Step111-3: Join points Definition

In this step we will explicitly name the join points for each aspect and for each component involved. We
will then name them one by one, without generic naming (such as the possibility to use wildcards in AspectF°).
We will use the Java signatures of methods, constructors and variables to define join points. In a case where the
join point does not exist in the component (for example when adding a variable to a class), the join point will be
the new member name (for example Poi nt . shadow in the case of adding the variable shadow to the class
Poi nt). This gtep is the answer to the question: Where will each component involved with an aspect be
modified?

Taking one by one the join points previoudy defined, we will define their type. This point is the answer to
the question: what kind of modifications will this aspect do on the given join point? There can be severa
modifications for a samejoin point, and in this case we will do asif there were two distinct join points. There are
pre-defined modification types (that are strongly related to the aspect language used). We give these modification
types as a base for aspects expressed with AspectJ: variable adding, constructor adding, method adding, before
wrapping, after wrapping, catch wrapping, finally wrapping in reference to the aspect expression possibilities of
AspectJ described in Section 111.1.2.3.

A Join Points Representation

We can then use atable to summarize the definitions of this part. As an example we take such atable from
the aspects design of the client application of RECINTERNET, presented in Section 111.4.2.

For adding listenersto the
Rl Node3 new() “interactabl€” components created
in this constructor

For defining thet ar get Node

Transformati on void action(String nane) variable accessed in this method
Navi gTr ansf or mati on voi d specificAction(String nanme) |ldem
I ntraTransformtion voi d specificAction(String nanme) |ldem
ExtraTransformati on voi d specificAction(String nanme) |ldem

RI PrevNext Transformati on |voi d specificAction(String nanme) |Idem

A POINT IV: ASPECT M EMBERS DEFINITION
A Step IV-1: Aspect Members | dentification

For each aspect described before we will try to group all the join points that will be treated in the same way
by the aspect. It means if the same piece of code will be added at the end of several methods, these methods can
be grouped. Join points can be grouped only if they have the same type. A join point included in two distinct
modifications should be seen as two join points. We call the obtained group aspect members, because they will
represent the different partsin the aspect implementation.

D ike* Point.*(..) torefertoall themethodsof class Poi nt .

73

We also try to express the join points of an aspect member through generic expression using the particul ar
characters of Aspectd syntax, as for example: public !abstract * set(..), * *.get(String
nane) , which means all the non abstract public set methods of any class and all the get methods of any class
takinga St ri ng as parameter.

For each aspect member we will also explain what modifications will be realized on the corresponding join
points. This step has the objective to provide enough information for the implementation of the given aspect. It
answers to the question: What modification should be implemented for this group of join points? For example, in
the case of a debugging aspect that is used to print a message each time a variable of the class Poi nt is
modified (through a mutator), we could have the following description for the post-method wrapping on thejoin
points Poi nt.set X(..) and Point.setY(..): print the folloning message on console window. “a
variable of the class Point has been modified” .

Finally we also specify the type of each aspect member. This type is the type of al the join points of an
aspect member. It is one of the types given in Step 111-3: Join Points Definition.

A Step IV-2: Aspectual Members
With AspectJit is possible to have variables, constructors and methods inside an aspect. They can be called
from within the different members of the aspect and should be specified in the design since they can be important
in the realized modifications to components code. We call them aspectual members
These aspectual members should also be clearly identified. We will use the same way than for components
join points to identify them. The “component” will be the aspect concerned, and the “join point” will be the
signature of the given aspectual member.

Aspectual member type will be specified. It can be one of the following: aspect variable, aspect constructor
and aspect method. We also need to give a brief definition of these aspectual members.

A Aspectual Members Representation

As we have represented join points, we can represent aspectual members in a table. The following table,
extracted from Section 11.4.2, represents three aspectual members (methods):

Dispatch an event to the

Event s_Handl i ng_RI Node3 | Bool ean di spat ch(Event evt) appropriate method of the node 3

Node createNode(String nane) Create a new node out of its name
Dynam c_Node_Load Call the get Node method of the
- - Node get Node(String nane) context. If the node is not found,

call thecr eat eNode method

[11.2.3.2) Aspects design table

Based on this two-dimensions (components and aspects dimensions) step by step decomposition we propose
away to represent aspects at design level. The idea is to represent the characterization of each aspect in atable.
This table contains different parts representing the different elements addressed in the previoudy explained
decomposition. Some parts of the tables can be extended (specifying more information about some given points)
or collapsed (to not use some information that could not be useful in the design).

The Table 4 presents a simple example of such atablein the case of a debugging aspect. In this example all
the table parts are entirely shown.

74

Debugging®

Aspects dealing with debugging stuff

Var AccessShowi ng®

Show all the accesses to the variables of the classes Poi nt
AndCircle

Optional Aspect — No Plugging Consgtraints

Read member®© Write member
Display a message telling that a Display a message telling that a
variable has been read variable has been modified
After wrapping After wrapping
—_
Get x() € ©
poi nt» [SELY0)
Set X(int x)
set Y(int vy)
getCtr()
- t Ray()
Circe |9 ’
setCr(int c)
setRay(int r)

Table 4 - Aspects design table: simple example
In this table, we present how the Var AccesShow ng aspect can be described at design level. The
following notes explain some specific points. This example is used to present the main idea of the aspects design
table,
(a) When a new aspects areais added in atable, the table is extended horizontally with a new column.

(b) When a new aspect is added into an aspects area, a new sub-column is added into the column corresponding
tothisarea

(c) The names given to the aspect members are just used to distinguish them. These names are not used in
AspectJ implementation.

(d) These cells are filled in when some syntax of Aspectd (using ‘*’ or ‘. . ") can be used to define severa join
points of the corresponding member in one expression.

(e) When a new join point must be added for a component, a new sub-line is created in the appropriate
component line. One join point can be involved in several aspects members. Here we do not show the entire
signature of the different join points (for space reason).

(f) A colored cell meansthat the corresponding join point isinvolved in the corresponding aspect member.

(g) A non colored cell means that the corresponding join point is not involved in the corresponding aspect
member.

(h) When a new component must be added, a new lineis created.

111.2.3.3) A specific use of the aspects design table: detecting composition conflicts

The aspects design table can be used to track some kind of composition conflicts. A composition conflict
appear when the weaving of an aspect will provoke some errors or some interference with already implemented
code. There can be composition conflicts between aspects and components or between different aspects. In this
part we will focus only on aspects composition conflicts. This kind of conflicts will appear when weaving an
aspect is defining some modifications on components code that will interfere with some modifications defined in
another aspect (or in other aspects). The composition will then create some problems that will maybe be specified
by the weaver, but maybe the problems generated will not be detect and then will create some problems at
execution.

These conflict generally arise because two distinct aspects can be developed independently, only based on
the components implementation. Many distinct composition conflict types can exist. Some of them are very
subtle, or specific to each application. Anyway some of them can be detected and then corrected at design level.
The aspects design table provide a simple visual way to track some types of conflict.

The conflicts addressed in this visualization with the aspects design table are some conflicts due to the fact
that some join points can be involves in different aspect members (potentially from different aspects). So all the
join points that are present in several aspects members are potentially conflict sources. With the aspects design
table we can simply identify such join points. These are all the join points represented by the lines where several
cellsare colored. The Table 5 shows an imaginary example where the join point Poi nt . i ni t () isused by two
distinct aspect members. The line corresponding to this join pointsis colored in two cells, corresponding to the
two columns of the involved aspect members. This potential composition conflict source is then easily visualized
thanks to the aspects design table?.

Resour ces M anagement
A Resource management All resources
a0 creation
Release Resource A Reset Resource A Creation
After wrapping Before wrapping Method Adding !
C Point.init(..) No No G
init() IO 0 [
Point |init(int i)
get X(i nt x)
set X(int x)

Table 5 - Detecting potential composition conflicts

All the join points involved in several aspect members are potentially sources of composition conflicts and
should be carefully checked at design level. However, there are cases where we can precise the composition
conflict type, depending on the modification type of the different members involving the same join point. The
Table 6 shows these composition conflict types. In this table are presented what kind of conflicts can happen due
to the modification types of two aspect members involving the same join point. The colored cdlls define cases
that cannot happen because of the syntax used for join points (for example it is not possible to use ajoin point
expression that will reference both a variable and a constructor. The explanations in the cells present possible

2 |n this case there is effectivdly a composition conflict since the aspect member Creation objective is to define a new method
init() in the class Poi nt. Either the method aready exist in the component implementation and then it cannot be redefined (this is a
component-aspect composition conflict), either it does not exist yet, and in this case the aspect member Creation must be woven to the
components code before the aspect member Release Resource A (that makes some modifications on this method), unless there will be a
composition conflict.

76

causes for possible composition conflicts. It has to be noticed that here are only presented potential conflicts
sources directly involved by two modifications types mix. The possible conflicts due to the composition of a
single aspect member with some components are not included in thistable.

Duplicate
definition

Duplicate
definition
Weavin Weavin Weavin Weavin .
order o order o order o order o c?duf)r::(ti%tr?
problem (a) problem (a) | problem (a) | problem (a)
Compatible | Compatible | Compatible | Compatible
types types types types
Compatible | Compatible | Compatible
types types types
: Duplicate
Problem (b) type
Incompatible
types (¢)
Duplicate
definition
Duplicate
definition
Duplicate
definition

Table 6 - Modification types compatibility

(a) It happens when an aspect member references a method that has been added to a component by ancther aspect
member. In this case the aspect member defining the method adding should be woven first.

(b) A modification type conflict can occur if there is a finally wrapping aspect member related to a catch
wrapping aspect member and if this catch wrapping aspect member was not woven before the finally wrapping
aspect member.

(c) Adding two “finally” clauses around the same method without any “catch” clause between is not possible.

It isthen possible to easily visualize some possible sources of composition conflicts due to a delicate mix of
two or more aspect members dealing with common join points. Moreover as the aspects design tableis based on a
very simple principle (decomposition of a system in two dimensions: a dimension for aspects and a dimension for
components), it does not seem complicated to implement a little program that will identify the join points of the
table that can be sources of composition conflicts?®. Anyway there are composition conflicts that are subtle that
require a careful track to be detected.

111.2.3.4) Conclusions

We have presented in this section the some guidelines to realize aspect-oriented design aswell asa simple
way of representing this design. Our step by step design process decomposition provide an efficient way to
structure and organi ze aspects and components.

Important characteristics of this decomposition can be represented in aspects design table. The
decomposition is then shown in two dimensions (aspects and components dimensions). Each entity of both
dimensions is described and carefully identified. The aspects design tables provide a ssmple way to concretely

2 |n a software package such as Microsoft Excel, a macro can easily be defined for that. It will localize the join points involved in
several aspect members (they can be colored in a specific color), and according to the Table 6 it can show some messages about potential
composition conflict reasons.

77

visualize aspects/components interactions. An important point is that these interaction can be visualized in both
ways: from a given component it is possible to track all the concerns (aspects) in which it isinvolved, and from a
given aspect it is possible to find al theinvolved components. Thisis a powerful issue of our proposition since a
clear identification of aspects’components interactions at design level provide possibilities to efficiently separate
concerns without having problems in the final composition after implementation.

Aspects design tables can provide a good support for detecting simple composition conflicts between
aspects. ldentification of shared join points between distinct aspectsis an important step in solving composition
conflicts. This can be done very easily with the aspects design tables.

Finally we have proposed some guidelines and a way of representing aspects at design level. Weiillustrate

their utility and present further use examples in the concrete case of the aspect-oriented design of
RECINTERNET in Section I11.4.

78

[11.3) Web-based three-tiers application conventional object-oriented design —
Application to the RECINTERNET case

In the following sections we draw a comparison between conventional object-oriented and aspect-oriented
design. This comparison takes place in the context of web-based three-tiers applications, and is applied to the
RECINTERNET concrete case. It is organized in three parts: the current section which presents the conventional
object-oriented design of RECINTERNET, the Section 111.4 which presents the same design but with an aspect-
oriented approach, and finally the Section I11.5 which draw a comparison of these two approaches.

So we begin in this section with the different parts of our object-oriented design for RECINTERNET. We
present and explain the different design models we realized. Our design is separated into the navigational client
application design and the entire system design including client, server and database.

111.3.1) Client application design

The design of the client side of RECINTERNET is realized according to some parts of the OOHDM
methodology presented in Section I1.4. This methodology divides the development cycle of hypermedia
navigations into four incremental steps. conceptual design, navigational design, interface design and
implementation. We apply partially this methodology for our design, and we also use some of the navigational
design patterns described in the OOHDM methodol ogy.

[11.3.1.1) Conceptual model

In the OOHDM methodology, the first step of the development cycle is the definition of the conceptual
model. It means representing in a model the different entities that are specific to the domain of the devel oped
application. These specific entities can be defined in relational object oriented diagrams, in order to visualize
easily the different relationships between the concerned entities.

We have decided to apply this conceptual model step of OOHDM in the RECINTERNET design. In the
case of RECINTERNET, the entities specific to the application domain are all the entities stored in the databases.
So we had to mode the different entities stored in the databases. As explained before we reused exactly the
databases of the RECSINWIN application (the local structural database as well as the SINTESE database). That
is the reason why we reused the mode that had been done for the RECSINWIN database. This model, that
describes closaly the tables structure of the local structural database, can be found in Appendix A.

In fact we reused this model to define different classes describing the different entries stored in the
databases. Finally we defined an object oriented relational model, which isa UML (Unified Modeling Language)
class diagram used to show the relationships between the classes describing the common behavior of the different
domain-specific entities of the RECINTERNET application. The Figure 21 shows this conceptual modd.

Without explaining all the details of this model, we will briefly present its main e ements:

Serie,Goup andArea

Series are the basic entities of the SINTESE database (we refer to the previous definition of SINTESE series
in Section 1.3.1). The hierarchical organization used isthe following: there are different interest areas, which can
contain series or groups, where groups can then contain series. Theidea of RECSINWIN and RECINTERNET is
to compose a visualization of some entries of one or more series. Entries of a series are expressed in a unit
(Uni t).

Tenporal _uni t

Series entries are organized in four dimensions. The first one is the temporal dimension. The entries of a
serie are expressed for different temporal eements (for example different years, different months, etc...).
Conversions between the different time units exist.

79

Type composition | 0-1 | Area
«operation ;‘ . Group gmnemonic
gsignification Ser!e 0.. emnemonic 0. gname

2nmanne1210nlc <>zame_ ; 0.1
1 . description —
Unit @descrlptlon gconcept — L.
gconcept g&Ccreation_date |
type - L =
e 0.*1 ecriteria 01 gmaintain_dete| | Situation
i @ggreggatlon / gaccess - oname
| #haseyear X 1 pdescription
—~| gdecimals
0..*| @security -
Event . -
odesription —— ¢Propagation | . L
h &phase_delay &mnemonic
gsource @description Se_ctor
0..*| gactualization Ssigle
conversion first_data 7 loa whame
1 &last_data | 7

Temporal_Unit gCcreation_date Q 1. 0.1

= gmaintain_date Usesi

cANENIE gactualization_date :

gmnemonic 0.*
\ &hame 1 e
_ _ /Q 0..* eaddress | Institution
Spatial_Unit 1.3 Space &CEP &sigle
mnemonic cit 0..* 0.1 &nhame
@ osigle ecily _
gname 1.* | @code }* 0..*| ¢phone L7
description <>—1 gabreviation| > &UF .
paccess odescription 0.+ @password_type 0..
@creatlo_n_date . /(7 ~¢:>~password_valueK
gmaintain_date | - /| ggroups_use 0. Aptitude
0..*| ¢spaces_use - .
e 1| @mnemonic
_ name
User_type | 1 Creation_date 2 description
conversion ename gmaintain_date

Figure 21 - RECINTERNET conceptual model

Space and Space_uni t

The three other dimensions of a serie are three “spatial” dimensions. The term spatial must not be taken
literally, it is used to specify that a dimension can be expressed in three other dimensions than the temporal
dimension. So the space represents the dimension (for example geographic dimension), and the space units are
the different elements of a space (for example the different states of Brazil). Conversions can exist between the
different space units.

80

User andd i ent

Each user has some permissions to access some information of the database. His access on series groups,
spaces, space units can be limited. A group of users having the same access permissionsis called client.

[11.3.1.2) Navigational model

In the OOHDM methodology, the navigational model is based on the entities of the conceptual model. A
navigational node proposes a specific view on entities of the conceptual node. Some relationships between
classes of the conceptual model can be abstracted in the navigational model as navigational links between nodes.

For RECINTERNET we do not realize the navigational model in the same way. A navigational node in
RECINTERNET will not be a view on some entities of the conceptual model (asin OOHDM), but a logical unit
proposing some choices in the organization for the visualization of entities of the conceptual modd.

Navigational Segquences

Thefirst task of the navigational design was to define the different ways to navigate in the RECINTERNET
client application. Thisfirst step was adapted from the navigation in the RECSINWIN application.

The term navigational sequence describes the different navigation realized by a user from the moment he
enters the application to the moment he visualize the results of his request. In Section 1.3.2.4 we described how
the navigational sequences of RECSINWIN are modeled. Navigational sequences in RECSINWIN and
RECINTERNET are similar since both of them lead to the same result (the visualization of an organized view on
a SINTESE serie). However, as RECINTERNET proposes this navigation in an “internet” way, adaptations had
to be done. The idea was to not have more than 3 or 4 main nodes in a navigational sequence, in order to have a
simpleinternet navigation. In the same time the different nodes had to be clear enough (i.e. not contain too many
elements) to be easily understand by any user. As in RECSINWIN, a navigational sequence uses around 15
nodes, we had to re-structure the navigation. The Figure 22 presents a description of the navigational sequences
in RECINTERNET.

Navigational nodes

Navigational nodes are perceivable navigational units. Navigation exists when the user goes from a node to
another one. A node contains elements used to show information and navigate. An intra node is related to a
navigational node. It is used to present more information about some elements of the navigational node. When
navigating to an intra node from a navigational node, the intra node must be closed to allow the use of its
navigational node. An extra node can be accessed from anavigational node. The navigational node and theextra
node can be used then in parallel, independently. Thetypical use of extra nodesis for contextual help.

The RECINTERNET navigation is then organized as following:

= Node 0 (Welcome) presents some general information about DATAPREYV, about RECINTERNET and how
to useit. The user entersitslogin and password® and can then navigate to the Node 1.

= Node 1 (Series Selection) enables the user to select the series he would like to visualize. Once this choice
realized, he can choose to organize the visualization temporally (the lines of the series visualization table will
then be used for the temporal dimension) or spatially (the lines will be used for one of the “spatial”
dimensions). The navigation isthen processed either to Node 211, either to Node 221.

= Node 211 (Lines Composition — Spatial way) enables the user to select the “spatial” dimension he wants to
use for the lines of the results table. He will then choose the elements to place in these lines. He can then
navigate to Node 212.

2 With no appropriate |ogin/password, this user will only have some default access rights to SINTESE database.

81

Node 0
Welcome
Node 1
Series Selection Node 1C
> Compatibility Details
\ Node 221
Node 211 v | 4 Lines& Columns —
Lines Composition | . 4 Composition Navigational Node
Spatial Way A Help Temporal Way
Node
+ + Intra Node
4 4o Vv
— Node 222 L&'
Columns & Sub-Columns) . Sub-Columns
Composition Composition
Spatial Way Temporal Way
Node 3 Node 3D
Result Visualization | * > Results Details

Figure 22 - RECINTERNET navigational sequences

Node 221 (Lines & Columns Composition — Temporal way) enables the user to select atime unit and some
temporal elements for the line of the results table. The user also specifies the columns of the results table (the
columns will be different years). He can then navigate to Node 222.

Node 212 (Columns & Sub-Columns Composition — Spatial Way) gives the possibility to organize the
columns of the results table (columns will represent different temporal el ements), and also the sub-columns
(sub-columns will represent different elements of the two lasting “spatial” dimensions). The user can then
navigate to Node 3.

Node 222 (Sub-Columns Composition — Temporal Way) enables the user to select the “spatial” e ements that
will be used in the sub-columns of the results table. He can then navigate to Node 3.

Node 3 (Results Visualization) presents to the user the table showing the sdlected series in the way
corresponding to his composition.

From all these nodes it is also possible to navigate to the Help Node which presents some contextual help
about each node.

From Node 1 it is possible to navigate also to the intra node Node 1C (Compatibility Details) which presents
some extra information about the compatibility between the selected series of the Node 1.

From Node 3 it is possible to navigate also to the intra node Node 3D (Details) which presents some extra
information about the columns selected in the Node 3.

82

It has to be noticed also that for all the navigational nodes, some extra information (like localization in the
navigational sequence) and some extra functionality (like re-starting the composition, exit the application,
navigate backwards or forwards, navigate to help) are added through adecorator. A decorator isakind of “ mask”
that is applied on a node to add some functionalities to this node. The advantage of using a decorator is to factor
out some elements existing in different nodes.

Navigational framework

Based on these navigational sequences and navigational nodes definitions, we had to define a generic
framework to support such navigations. For this task we applied some of the navigational design patterns
described in the OOHDM methodology. The design patterns (or adaptations of them) we used for our
navigational design are:

= Anchor: an anchor represents alink into a node and is responsible for this link activation. The link is then
independent from any meansto activate it.

= Navigation Strategy: proposes a solution to decouple links from the way their target are obtained.

= Navigation Observer: use of an History object (we will use the term context) to record the information about
navigation.

= Node class; abstract the behavior of similar nodes. This class will be sub-classed to define the concrete
nodes used in the application.

= Link class; abstract the behavior of similar nodes. This class will be sub-classed to define the concrete links
used in the application.

= Wrapper node and Navigational context: the idea is to decorate nodes with some wrapper nodes (we will
use the term decorator) providing some more interaction or information possibility to the node, eventually
depending on the navigational context.

= Node as a single unit: a node encompass a sdf-contained “unit” of information that make sense for users
performing a set of tasksin a given domain. All data that are relevant to this set of tasks should be included
in this node.

For detailed descriptions of these design patterns, we refer to [LRS98] and [RSG97].
The navigational framework we designed is language independent and can be extended for several
navigational applications requiring support for concepts such as decorators, navigational, intra and extra nodes,

anchors, links, target and transformations or context. The Figure 23 presents this framework. A complete
description of the elements of this class diagram is given in Appendix C.

83

Panel Node FrameNode
gname String Q)frame : Frame
Breset() <}
“rshow() 4””/7/ resetComponents() showFrame()
hide() pcloseFrame()
. addDecorator()
Pactivate() : addComponent()
@desactivate() 1 1@ 1.1 R
Breset() ~ Y h /\
@addComponent() // |J—7
1..1? /\/ 1.* //0”*
L (Decorator NavigNode IntraNode ExtraNode
-
Component @show() @show() @show()
Phide() Phide() Phide()
Wshow() 1. 0.% \ 0..*
Phide() V11
:zctlvat:z()t Link 11 Q 11
esactivate() 1.* \ CacheContext
/\ 1.1 @navigate() < __| Transformation \\ %currentExtraNode
T % 7 \
Anchor |~ 1.x 111 aaction @addNode()
. L . 1.1\
@’specchcnon() \ 1.1
“proceedLink(A O\ 1.1 Q
= 0.* Context
Target
&ptarget : String ﬁggtCurrentNode() e
Binit() 1.1
@getTarget %setCurrentNode() ‘
2 - get() PgetNode() | 1.1
/\ 1.1 NodesManager
‘ ‘ ‘ PgetNode()
NavigTransformation IntraTransformation ExtraTransformation @’createNode()
DynamicTarget @QspecificAction() @OspecificAction() @OspecificAction()
TﬂdefineTarget() 0.*
WgetTarget()

Figure 23 - Navigational framework class diagram

Navigational model of RECINTERNET

We extended the navigational framework described previousy to support the navigation of the
RECINTERNET client application. We present in the Figure 24 a class diagram of the RECINTERNET client
application navigational dements. The prefix “RI” in the class name is for RECINTERNET. It shows that this
class is specific to the RECINTERNET application. The classes without the “RI” prefix are part of the
navigational framework presented in Figure 23. The different nodes and decorators will be described later.

It has to be noticed that we extended the classes CacheContext, Transformation and
Dynami cTar get in order to support forward (next) and backward (previous) navigation. It is possible to
navigate this way between two navigational nodes without re-initializing the target node. The context keep a

reference to know until which navigational node it is possible to navigate forward. The method next Al | owed
check this reference to know if the forward navigation is allowed.

84

NavigNode
A
T
RINodeO RINodel RINode211 RINode212 RINode221 RINode222 RINode3
IntraNode ExtraNode Decorator NodesManager
A A A
/\ % L\F\ %
RINodelC RINode3D RIHelp RIDecorator0 RINodesManager
CacheContext Transformation DynamicTarget
A A A
p T T
RIContext T ‘ ‘
%nextlndex -int RIPrevNextTransformation RITargetNext RITargetPrev
$nextAllowed() @’SpecificAction() @’defineTarget() @’defineTarget()

Figure 24 - Navigational framework extension for RECINTERNET

111.3.1.3) Interface model

The last step of the OOHDM hypermedia application design is the interface design. The aim of thisstep is
to define all the elements of the graphical interface in classes, using the navigational model. The event handling
and the organization of these elements will define the behavior of the interface.

In this part we use some components types that describe the kind of component (for example: button, text
field, list, arborescent ligt, etc...). For the implementation these types will have to be mapped to the components
existing in the libraries of the chosen programming language.

To definethis graphical interface we designed each node and decorator. For that we defined which graphical
components should each node (or decorator) contain. We defined then how would each node be organized (how
to place the different components). For each component we described its characteristics and the way the user can
interact with it (or not). We described also what should happen each time the user interact with a component.
This description of the RECINTERNET interface can be found in Appendix D.

Based on this description we completed the design of the classes presented in Figure 24 to obtain the
concrete elementsthat will be used in theinterface. In the Figure 25 are presented these modifications. We do not
present all the components of each node, but only the main characteristics of their anchor, aswell asthe different
methods that will be used to handle user interactions™.

24 The concrete way these methods are called when the user interacts depends on the programming language as well as the technology
used for the client application.

85

RIDecorator0 ANCHORS: N RINode0 RiNode1
startPressed() Start - Target (static): RINodel 'ﬁthe.meUpdated()
% 4 : Yreset() serieUpdated()
nextPressed() - NavigTransformation
"prevPressed() | Next - RITargetNext ‘SeleCtPressedo
%helpPressed() - RIPrevNextTransformation $unselectPressed()
PexitPressed() Prev - RITargetPrev “downloadPr'essed()
Wreset() - RIPrevNextTransformation ﬂselecteQSgrlesUpdated()
Help - Target (static): RIHelp ScompatibilityPressed()
- ExtraTransformation YspatialWayPressed()
Exit - Target(static): RINode0 “temporalWayPressed()
- NavigTransformation ﬂreset()’
ANCHORS: ANCHORS: AN
Continue - Target (static): RINode212 Compatibility - Target (static): RINodelC
- NavigTransformation - IntraTransformation
Spatial_Way - Target (static): RINode211

/
/

/

RINode212

RINode211

%dimensionUpdated(int dim)
%selectPressed()
%elementsUpdated()
%select1Pressed()
%unselect1Pressed()
#selectedElemenstUpdated()
%continuePressed()

Wreset()

RINode221

“timeUnitUpdated()
#monthsUpdated()
@yearsUpdated()
%selectPressed()
%unselectPressed()
%selectionUpdated()
%continuePressed()

Wreset()

RINode3

“columnSelectionUpdated()
%detailsPressed()
%downloadPressed()
Wreset()

Temporal_Way

- NavigTransformation
- Target (static): RINode221
- NavigTransformation

4timeUnitUpdated()

%daysUpdated() ANCHORS: AN
@monthsUpdated() |
%yearsUpdated() Submit - Target (static): RINode3
YselectPressed) | - NavigTransformation |
%unselectPressed() i

%selectionUpdated()
spaceUnitUpdated(int dim)
elementsUpdated(int dim)
select1Pressed(int dim)
Punselect1Pressed(int dim)
#selection1Updated(int dim)
@submitPressed()

Wreset()

ANCHORS:

Continue - Target (static): RINode222
- NavigTransformation

RINode222

spaceUnitUpdated(int dim)
%elementsUpdated(int dim)
#selectPressed(int dim)
PunselectPressed(int dim)
selectionUpdated(int dim)
WsubmitPressed()

Wreset()

T
\

ANCHORS:

Details
- IntraTransformation

- Target (static): RINode3D

ANCHORS:

Submit - Target (static): RINode3

- NavigTransformation

RINode3D RINode1C RINodesManager
RIHelp
#downloadPressed() $downloadPressed() createNodes()
WokPressed() %okPressed() WokPressed()
Preset() Preset() Preset()

Figure 25 - RECINTERNET interface extension

Finally with this decomposition in three levels (conceptual, navigational and interface) for the client
application design, we provide some design models that cover the different requirements of the concrete
implementation of the client side of RECINTERNET. Moreover these models are basically language
independent, and are also based on a navigational framework which is application independent. These points
provide solid bases for future design reuse.

86

111.3.2) RECINTERNET entire system

We have summarized in Section 1.7 the different technologies used for RECINTERNET. The client
application isimplemented as a Java applet running in aweb browser. The server isa Java application running on
the server host. The client/server communication isrealized through Java RMI (Remote Method Invocation). The
server local structural database on the server host is accessed with SQL queries through JDBC (Java DataBase
Connectivity). The SINTESE database on the SINTESE host is accessed with queries in SINTESE syntax
through alocal terminal simulation connected to the SINTESE host with a TCP/IP protocol.

However the design we propose for the entire RECINTERNET system is quite generic and could be used
with other technologies. The specifications we followed for the design were: the client and the server are
applications running on different hosts. The client/server communication is done through some APl providing
transparent remote references (such as Java RMI or CORBA). The access to the server local structural databaseis
done with execution of SQL queries on a database connection. The access to the SINTESE database is done with
SINTESE syntax on a simulation of aterminal providing queries execution possibilities.

We have described the client application design in the previous part. The following sections present the
design for the other parts of the RECINTERNET system.

111.3.2.1) Client/Server communication

We designed the client/server communication for any middieware that provides a transparent way to redlize
remote method calls, by the way of remote invocations interfaces (such as RMI interfaces with Java or IDL
interfaces with CORBA). We designed the different interfaces that will be necessary to support user interaction
transmission to server as well as server answer. The requests will be submitted by the nodes objects of the client
application to a unique dispatch manager object of the server application. The Figure 26 shows these interfaces.

<<interface>> §<I nterface>>
I_RINode211 |_DispatchManager
«f#r_get_elements(Object]] eltsStruct) - new_user_init_n1_dO(decorator, login, pwd)
~init_n1_dO(decorator0, access)

#0et_series nl(nodel, access, area)
/ i+get_compatibility_nl(nodel, access, selectedSeries)
RINode211 irget_dements_n211(node211, access, selSeries, selUnit)
..fga_dements_n212(node212, access, sel Series, spaceUnit)
..finit_n3_n212(node212, access, sel Series, linUnit, linElts, col Elts, subColUnits, subCol Elts)
| s¥#get_elements n222(node222, access, sl Series, spaceUnit)
DispatchManager ##init_n3_n222(node222, access, sdl Series, linElts, col Elts, subCol Elts)
«f#init_n3d_n3(node3, access, colName)

N

<<interface>> <<Interface>>
|I_RIDecorator0 I_RINodel
777777777 RINodel
..lir_new_user_init_nl(String access, Object[] areasStruct) #r_get_series(String[][] seriesAndDetails)
.lir_init_nl(Object[] areasStruct) #r_get_compatibility (String[][] compatibility)
/ <<Interface>> <<interface>>
- I_RINode222 I_RINode212
RIDecorator0
e RINode212
..lir_get_elements(String[] elts) ..lir_get_elements(String[] elts)
.Iﬁr_init_nS(Object[] results) ..ﬁr_init_nS(Object[] results)y | e

<<Interf ace>>

RINode222
I_RINode3

RINode3

.Iﬁr_init_n3d(0bject[] colDetails)

Figure 26 - RECINTERNET remote interfaces

87

111.3.2.2) Server

The server application receives the clients requests through its dispatch manager object. This one creates a
new client thread (independent process running on the server) for each client new request. Thereisaclient thread
class for each possible request type, as shown on Figure 27.

ClientThread
Tpaccess : String
TedbManager : DBManager Thread
: FeconstructQuery() = &
Thinit3_212 FAsubmitQuery() start()
&n212 : |_RINode212 F®answerClient()
&pseries: String Thinit3_222 Ystart()
&slinUnit : String &n222 : |_RINode222
&linElts : String[] &y series: String Z>
&xcolElts: String[] &linElts: String]] [\
&ksubColUnits: String[]| | &colElts: String[] ClientThreadSINTESE ClientThreadSQL
&subColElts: String[] | | &subColElts : String]] Toresilts: File Toresults: ResultSet
FoconstructQuery () FoconstructQuery () FesubmitQuery () FesubmitQuery ()
F@answerClient() F@answerClient() A A
\ \ & i
[[\ \
ThNewUser Thinitl ThGetSeriesl ThGetCompatibility 1
&d0 : |_RIDecorator0| | |&d0: |_RiDecorator0| | | &nl: |_RINodel &»n1:|_RINodel
&plogin: String &parea: Sring &series: Stringf]
&spwd : String FeconstructQuery ()
F@answerClient() @’construct_Quef y() FeconstructQuery ()
gconstructQuery 0 FeanswerClient() F@answerClient()
answer Client()
ThGetDetails3 ThGetElements222 ThGetElements211 ThGetElements212
&5n3: |_RINode3 &n222: 1_RINode222| |&n211:|_RINode211| |&n212:1_RINode212
&col : String &series: Stringf[] &series: Stringf] &series: Stringf]
&kunit : String &kunit : String &kunit : String
FeconstructQuery ()
F@answerClient() FeconstructQuery () FeconstructQuery () FeconstructQuery ()
F@answerClient() F@answerClient() F@answerClient()

Figure 27 - Client threads class diagram

These client threads are used in the way presented in Figure 28. The server creates a new thread for each
client request. Thisthread will be responsible for everything related to database queries. It means query creation:
using pre-defined queries sentences (in SQL or in SINTESE syntax), entire queries are created by inserting the
parameters given by the client into these pre-defined query sentences. The thread is also responsible for passing
the query to a database manager (responsiblefor the database connection) and receives the appropriate result. The
thread will then send back the result to the client object after having computed it (so that it could be directly
usable by the client). It has to be noticed that the concurrent accesses to the databases are synchronized in the
DBManager class, described in the next part.

88

clientObject : | serverDispatchManager : clientThread : dbManager :

Panel DispatchManager ClientThread DBManager
m ”:Iiﬁ’é’;é”i”s”; ””””””” - i
the following . One instance of the
classes: fr?rreraezicl);fs”}gr following classes:
- RIDecoratorO each kind of - RIDBManagerSQL
- RINode1l client request - RIDBManagerSINTESE
- RINode211 q
- RINode212
- RINode222
- RINode3
< desactivate
request
* createThread
One of the fo‘llowing B SQL or SINTESE [\
' | requests (the suffix of L query
each method shows the startThread
origin of the request): :
- new_user_init_nl_dO0 i
- init_n1_doO iconstructQuery
- get_series_n1l i -
- get_compatibility_n1 L submitQuery
- get_elements n211 o proceedQuery
- get_elements n212 ”””””””””
- init_n3_n212 queryResult % < .
- get_elements n222
i !n!t_n3_n222 "Arrange” the result |\
" Init_n3d_n3 so that it could be
used by the client
///
answer
< destruction
1 Answering is done by calling an T
;"L accept method of the client
object that made the request -
L destroy

Figure 28 - RECINTERNET request scenario

111.3.2.3) Database access

We designed the databases management in order to concentrate all the related features in the class
DBManager . This class synchronizes the different threads requesting database access. All the issues of database
connection and queries processing are addressed by this class. This class will be sub-classed into classes specific
to each kind of database access. The different methods of these classes will address the particular operations for
the connection to their specific kind of database.

89

We designed two sub-classes (Rl DBManager SQL and RI DBManager SI NTESE) for managing
respectively the access to the structural database and to the SINTESE database, asit can be seen in Figure 29.

DBManager

Tlogin: Sring
Hgspassword : String

P¥proceedQuery()
¥initializeConnection()
#¥closeConnection()
/\
\ f \
RIDBManagerSQL RIDBManagerSINTESE

&databaseURL : String
&driverName: String F¥<<SYNC>> proceedQuery ()
F¥initializeConnection()
¥initializeConnection() #%cl oseConnection()
P®<<SYNC>> proceedQuery ()
#¥cl oseConnection()

Figure 29 - RECINTERNET databases management

It has to be noticed that the results of a query processed by a database manager are returned in their basic
form (SQL result set with JDBC for example, or a single stream with SINTESE), but after a cast to a generic
class (in Javathe class bj ect). Theseresultswill then be “arranged” by the corresponding threads.

111.3.3) Conclusions

We have presented in this section different design models that cover the different aspects of the
RECINTERNET system. Following the OOHDM methodol ogy and applying some of its design patterns for the
client application, we have provided different models and description which are concrete and efficient supports
for implementation, for each level of the application: conceptual, navigational and interface.

We have also specified design models describing the web-based threetiers architecture of the
RECINTERNET system, as wdll as the interactions between the three tiers: client, server and database. With
UML diagrams we have defined the main characteristics of the different classes that will be implemented for the
RECINTERNET system.

It has to be noticed that we proposed a language-independent framework providing sufficient abstraction to
be reused in applications similar to RECINTERNET, basically web-based three-tiers applications. We specified
this framework in order to provide an appropriate support for RECINTERNET implementation, but it seems
possible to realize ssimply this extension for other applications.

To conclude this section about conventional object-oriented design of RECINTERNET, we can say that we
have created different models covering the main needs of RECINTERNET implementation, but that also provide
an appropriate support for future modifications of this system, as well as enough abstraction to reuse our
framework or parts of it in different contexts.

In thefollowing Section (111.4), we present the same design but with an aspect-oriented approach. These two
design approaches are compared in Section 11.5.

90

[11.4) Aspect-oriented web-based threetiers application design —
Application to the RECINTERNET case

[11.4.1) Introduction

We have explained in Section 111.2 how separation of concerns and particularly aspect-oriented
programming can be interesting for web-based three-tiers applications development, and especially at design
level. We also explained in this section how an aspect-oriented design decomposition can be structured and
represented with aspects design tables. We will now present the concrete case of an aspect-oriented design, in
which we applied this decomposition methodol ogy to the case of RECINTERNET.

We have divided the aspect-oriented RECINTERNET design into four parts. client application, server
application, client/server communication and database. In each part we tried to identify cross-cutting concerns
that could be expressed in aspects, mainly in the areas presented in Section 111.2.1.2: sharing resources, user
interaction, server functionalities, remote communication and database access. An important point is to express
in aspects only features that improve design and implementation by being encapsulated in an aspect.

The following design is based on the possibilities of Aspectd since the aspects described were created to be
composed with components by the Aspect] weaver. As Aspectd uses Java, we will often use some Java code in
our design description. Moreover many parts of the design are very close to the conventional object-oriented
design of RECINTERNET presented previously. We will refer to some parts of the conventional object-oriented
modelsin order to avoid fastidious model descriptions repetition. Finally having previously designed the system
in a conventional object oriented style helped us to identify better which concerns were cross-cutting
conseguently the code and should be beneficially expressed in aspects.

In the following sections we describe how we applied our aspects/components decompasition methodol ogy
(Section 111.2.3) in each part of the RECINTERNET system. For the following explanations we will follow the
three parts of this methodology: aspects identification, components design and aspects characterization. Once
again it has to be noticed that these three parts are often overlapping each other and so their definition is often
donein parallel. However we present them in this order. We will also used aspects design tablesto represent the
different entities of the RECINTERNET design.

[11.4.2) Client application
For this section we will detail each step of the decomposition:
A POINT | — ASPECTSIDENTIFICATION
A Step I-1: Aspect areas identification

The main features of the client application in RECINTERNET are: user interaction support, graphical
interface and navigation support. User interaction support covers all the concerns dealing with user interaction
events creation, handling and consequences. User interaction events mechanisms areinvolving many components
such as different nodes of the navigational system. It seems to us that concerns of this area could beneficially
expressed with aspects. Concerns addressed by the graphical interface feature are mainly visualization of data
and interaction possibilities. It appears that these concerns can cleanly be encapsulated into object oriented
structures, using GUI libraries such as Java AWT (Abstract Windowing Toolkit), and do not require specific
COoNcerns cross-cutting components implementation. Then we will not take the graphical interface feature as an
aspects area. And finally the navigation support feature deals with concerns involving many components of the
client application, such as nodes, anchors, links, context, etc... That is the reason why the concerns of the
navigation support area should be better developed with aspects. So finally we will focus our aspects
identification on the two aspects areas user interaction support and navigation support.

9

A Step I-2: Aspectsidentification
Taking one by one these two aspects areas, we have identified the following aspects:

P User interaction support aspects area:
P Event handling aspect: defining components interactability (register listeners associated to components
which will create events for each user interaction) and associating interaction events (button click,
selection, etc...) to the appropriate methods calls.

P Navigation support aspects area:

P Dynamic node loading aspect: searching existing nodes or creating non-existing ones when a client
reguests a navigation towards a node.

A Step |-3: Aspects type
P Event handling

b Type required®

P Plugging constraints®®: no
P Dynamic node loading

P Type required

P Plugging congtraints: no

A Aspects Definition Representation

User Interaction Support Navigation Support
Aspectsrelated to user interaction | Aspectsrelated to navigation
and direct consequences of user actions or tasks required for
interaction navigation

Events Handling Dynamic Node Loading

Defining components interactibility | Searching or creating required
and linking interaction events to the | nodes when navigating
appropriate methods

A POINT || — COMPONENTSDESIGN

We use the same design for the client application that in the conventional object-oriented approach. The
different models of this client application can be seen in Section 111.3.1. Few specifications for aspects support
must however be explained:

Event handling aspect: defining component interactability is achieved in Java by adding alistener to the
wanted component. Once this listener will have been added to the component, an event will be created when this
component is interacted. So, in the components design, the listeners adding must be totally not taken into
account. Linking interaction eventsto the appropriate methods can be donein Javawith some objectsthat receive

% Asexplained in Section 111.2.3.1, required aspects need to be woven to components code to have a executable system., in distinction
with optional aspects, which are not necessary to have an executable system.

% As explained in Section 111.2.3.1, plugging constraints are used to express plugging dependencies between different aspects, such as
necessary aspects to specify other aspects that are necessary in order to plug the current aspect, or incompatible aspects to define a group of
aspectsin which only one can be plugged to the system (like a set of options where only one can be chosen).

92

all the application events, test their origin and call the appropriate method. The components design must not take
into account such components.

Dynamic Node Loading: in the conventional approach, the get Node(String nane) of the
CacheCont ext classis used to look for a node. This method delegates the search to a NodesManager
object that looks for the node in the cache context and if it does not find it, creates a new one. For the aspect
oriented approach, we need to define these points differently since everything will be defined in the aspect. So
there will be no more NodesManager class, and no more get Node(String nane) in the Cont ext
class. We will just add ainstance variablet ar get Node to the Tr ansf or mat i on class. Thisvariable will be
used each time the target node must be called. The Dynamic Node Loading aspect will be responsible for what
holds this variable. The Figure 30 presents the differences with the conventional model presented in Figure 23.

Context public void action(String target) {
specificAction(target);
targetNode.show();

%getCurrentNode()
@init() }
%setCurrentNode() | ..
X Transformation
@OtargetNode : Node
Paction() N
@’specificAction() protected void specificAction(String target) { |
context.getCurrentNode().hide();
JA context.setCurrentNode(targetNode);
NavigTransformation IntraTransformation ExtraTransformation RIPrevNextTransformation
FWspecificAction() FWspecificAction() FWspecificAction() FWspecificAction()

\\

protected void specificAction(String target) { "\
context.getCurrentNode().desactivate();
targetNode.reset()

}

protected void specificAction(String target) {
context.getCurrentNode().hide();
context.setCurrentNode(targetNode);
context.getCurrentNode().reset();

protected void specificAction(String target) { ™\
targetNode.reset();

}

}

Figure 30 - Components involved in the Dynamic Node Loading aspect

A POINT 1] - ASPECTSCHARACTERIZATION
A Step 111-1: Aspect description applied to components

P Events handling: each method where a component that can be interacted is created and added to a node (or a
decorator) will be wrapped to also add a listener to this component. This listener will define that when the
component is interacted, a method of the aspect must be called with the created event. This aspect method
will make the dispatch to the appropriate node (or decorator) method. For length reasons, we will define one
aspect for each node (or decorator) events handling. We only describe the aspect for the Rl Node3 class, for

93

the other classes (Rl Decor at or O, Rl Nodel, Rl Node211, Rl Node212, Rl Node221, Rl Node222,
Rl NodelC, Rl Node3D, Rl Hel p) the decomposition principles are the same.

Dynamic Node Load: each method where the t ar get Node variable of the Tr ansf or mat i on classis
used will be wrapped so that this variable refers the correct node. This reference definition will be done
through two methods, one for searching nodes in the context and one for creating non-existing nodes.

A Stepl11-2: Involved components

Events Handling RINode3:
PRI Node3 (for listeners adding and for events/method linking)

Dynamic Node Load:

Cont ext (for nodes search)

Transformati on (fortarget Node access)

Navi gTr ansf ormati on (fort ar get Node access)

I ntraTransformation (fortarget Node access)
ExtraTransformati on (fortar get Node access)

Rl PrevNext Transf ornati on (fort ar get Node access)

U T UTUTUTTU

A Step111-3: Join points definition

Events Handling RINode3:
P Rl Node3. new() —after wrapping

Dynamic Node Load join points:

P Node Context.get Node(String name) —method adding
P void Transformation.action(String nanme) —beforewrapping
P void NavigTransformation. specifcAction(String nanme) —beforewrapping
P void IntraTransfornmation. specificAction(String nane) —beforewrapping
P void ExtraTransformation. specificAction(String nane) —beforewrapping
P void Rl PrevNext Transfornation. specificAction(String nane) —beforewrapping
A Join points representation
For adding listenersto the
Rl Node3 new() “interactabl€” components created
in this constructor
: . . . For defining thet ar get Node
Transformation voi d action(String nane) variable accessed in this method
Navi gTr ansf ormati on voi d specificAction(String nanme) |ldem
I ntraTransformtion voi d specificAction(String nanme) |ldem
ExtraTransformati on voi d specificAction(String nanme) |ldem
Rl PrevNext Transformati on |voi d specificAction(String nanme) |Idem

94

POINT IV — ASPECTSMEMBERS DEFINITION
A Step I'V-1: Aspect members identification

Events Handling RINode3:
P Adding listeners member:
P Join points: Rl Node3. new(. .)
P Type: after wrapping
P Description: add the appropriate listener to all the components of this node that have to be
interacted. Thislistener callsthe methods di spat ch(Event evt) of the aspect when reacting.

Dynamic Node Load:
P Target node access member:
P Join points. protected !abstract void *.specificAction(..), public void
Transformation. action(..)
P Type: beforewrapping
P Description: call the aspect method to get a node out of its name
b Cache searching member:
P Join points. Node Concept . get Node(Stri ng nane)
P Type: method adding
P Description: in this method the three vectors (navi gNodes, ext r aNodes and i nt r aNodes)
of the context are browsed to look for a node having the given name. The nodeis returned if found,
nul I if not.

A Step IV-1: Aspectual members

Events handling RINode3:
P Events dispatching member:
P Identification: bool ean Events_Handl i ng_RI Node3. di spat ch(Event evt)
P Type: aspect method
P Description: call the appropriate method of the class Rl Node3 depending on the origin component
of the event evt .

Dynamic Node Load:
P Node creation member:
P Identification: Node Dynani ¢c_Node Load. creat eNode(Stri ng nane)
P Type: aspect method
P Description: create a new node out of its name
P Searching Node member:
P Identification: Node Dynani ¢c_Node Load. get Node(Stri ng nane)
P Type: aspect method
P Description: call the get Node method of the context. The nodeisreturned if found, and if not the
result of the cr eat eNode method of the aspect will be returned.

95

A Aspectual Members Representation

Dispatch an event to the

Event s_Handl i ng_RI Node3 | bool ean di spat ch(Event evt) appropriate method of the node 3

Node creat eNode(String name) Create a new node out of its name
Dynam c_Node_Load Call the get Node method of the
- - Node get Node(String nane) context. If the node is not found,

call thecr eat eNode method

A Components/Aspects | nteraction Representation

User Interaction Navigation
Events Handling Node3 Dynamic Node Load
Adding Event TargetNode Cache Node | Searching |
liseners | dispatching access searching | creation node
After Aspect Before Method Aspect Aspect
wrapping method wrapping adding method method
R Node3 new() [|
Cont ext get Node() '
Transformation |action()
Navi S .
Tr ansf or r’rgati on |SPe¢! ficAction()
Intra s .
Transformation | P ficAction()
Extra . .
Transformation | SPe¢! fi cAction()
Rl Pr evNext S .
Transformation |°P€¢ ficAction()
ﬁ‘é?;;”a”d"”g di spat ch()
, get Node() |
Dynamic Node Load creat eNode() -

111.4.3) Client/Server communication

In the previous section we have described in details the aspects/components decomposition steps. For the
following sections we will only present the main results of our step by step decomposition, highlighting only
some important details.

A POINT | — ASPECTSIDENTIFICATION

Client/server communication is based in RECINTERNET on Java RMI. The unique feature of this part of
the system is remote calls. We consider it as an aspects area because it is atypical case of cross-cutting concern
(components of the server and of the client).

Weidentified one aspect in thisarea. Wecalled it thedistribution aspect. It dealswith all the modifications
due to the difference between alocal method call from a remote method call. We used a specific feature for this
aspect, inspired from the RIDL language of [LK97]. The idea is to pass as parameters to remote methods only
parts of an object and not al the object. This enables to not have to pass entire objects (that can contain
unnecessary variables) in remote methods call. This aspect is a very wide one since it involves al the

96

communications between all the nodes (or decorators) and the server. Then we only present the mechanisms
involved in the concrete case where the user click on the compatibility button in Node 1. These mechanisms can
be applied to all the interactions requiring a communication with the server in the same way.

Remote Cadlls

Aspects related to method calls on remote objects

Distribution

Express all the modifications due to the fact that methods are called remotely and specify
which objects parts will be passed to remote methods

A POINT || — COMPONENTSDESIGN

We use the same design for the client/server communication than in the conventional object-oriented
approach. The different models of this client application were presented in Section 111.3.1. However there are
some modifications due to the Distribution aspect.

No remote objects must be defined in any node class of the client or in any client thread class of the server.
No remote call must be written in any method. No specific syntax (as declaring that a method throws some
remote exception, or as catching such exceptions) must be added to any method. To illustrates these directives,
we present in Figure 31 the involved methods of the classes concerned by the compatibility clicked interaction.

Normally the reference to the dispatch manager AN
remote object should be done in this node
constructor: RINodel().

RINodel In this case, it will not be done here anymore.
$RINode1() | | The call to the get_compatibility_n1() method of
®compatibilityClicked() the remote dispatch manager is not done in this
%r_get_compatibility() method anymore.

| These methods are defined as if they were \
methods invoked by local objects (i.e. noremote |
| exception throwing)

DispatchManager

®get_compatibility _n1() The call to the r_get_compatibility() method of the
remote node 1 object is not done in this method

ThGetCompatibilityl ~_ anymore.

F¥answerClient()

Figure 31 - Components involved in the Distribution aspect

97

Java RMI interfaces are defined as components, but they are defined with no methods. For all the remote
cals, the parameters passed will be the entire objects, such as a node or a context, even if there are many
informations in these objects that are not useful for the remote call. In the case of the compatibility interaction,
the parameters passed to the remote call will be only the context object (this object contains references to any
nodes where some information could be needed for thisinteraction).

A Components/Aspects | nteraction Representation

Remotecalls

Distribution (1/2)

Ref. Creation

Add do-request Call

Add Answer Call

The definition of
thereferenceto the
remote dispatch
manager isadded

Add the call the
aspectual method for
“preparing” the
parameters
(do-request)

The effective call of the
remote method of the
node 1 object is added

No No No
new()
RI Nodel conpatibility_
clicked()
ThGet answer _
Conpatibilityl |client()
Remote calls

Distribution (2/2)

Adding do-request Remncq)tgr?gdwer Remote request method
Extract the necessary | The method receiving | The method receiving
elements (accessand | remote answersis remote requestsis
selected series) from | added. The answer is | added. The request
the parameters object | just passed to parametersarejust
(nodel and context) | another method of the | passed to another
and call the remote node method
method (r_get _ (get _

(compatibility_
request) only with
these parameters.

conpatibility).

conpatibility_
nl).

No

No

No

[E

Method adding

Method adding

| _Di spatch conpatibility_
Manager request ()
| Rl Nodel conpatibility_

answer

Di stribution

do_request

98

111.4.4) Server

A POINT | — ASPECTSIDENTIFICATION

Many features could be expressed with aspects in a server application, such as connections control, multi-
threading concurrency control. We decided to focus specially on the server policies. This area includes the
different strategies that can be used in the server to “control” the client connections. We designed four aspectsin
thisarea

The displaying server messages aspect groups al the modifications required to display in the client
application messages coming from the server.

The time bound aspect includes all the modifications to add a time boundary to client request satisfaction.
Basically it means that once a client has connect the server to submit arequest, if the server cannot answer before
agiven timethreshold, amessage will be return to the client to tell him that hisrequest was taking too much time
on the server.

The size bound aspect limits the results answer addressed to clients in size. If this size is over a given
threshold, a message will be return to the client to tell him that the result size istoo high.

The connection bound aspect is used to define a maximum number of client threads running on the server.
Passed thislimit, new client requests are not allowed and a message will be return to the client to tell him that the
server is busy.

Connection Control
A T I T o
Aspects used to express different connection control policies of the server
Displaying Time Bound Size Bound Connection Bound
Server Messages
'Modifications | Expressall the | Expressallthe ~ |Expressall the modifications
required to modifications modifications needed to | needed to define a maximum
display onclient | needed toincludea |include a sizethreshold | number of client threads
application some | time threshold to for the results answer to | running on the server. If this
messages coming | satisfy client the client. An error number is over, an error
fromthe server. |requestsbeforean |messageisreturnedif | messageisreturned to each
error message is the threshold is new client reguest.
_ e |veturned. _____|overcome. | _
A Optional Optional Optional Optional
Displaying Server Displaying Server . .
! No Vescgesaspect | Messogesaspent | DISPIng Server Messages
required required

A POINT || — COMPONENTSDESIGN

We use the same components design for the server application than in the conventional object-oriented
approach. This design was explained in Section 111.3.2.2.

The client application design differs lightly from the conventional object-oriented approach. In fact a client

thread of the server calls a client object method to send him the results of its request. For the aspect-oriented
approach we add a parameter to all these methods that are called by the client threads of the server to send back

99

results to clients object. This parameter isa St ri ng which is by default empty. This St ri ng parameter hasto
be added to all the methods used to receive answersin the client application®’, which are:

Rl DecoratorO.r_new user _init _nl(..)
Rl DecoratorO.r_init_nl(..)
Rl Nodel.r _get Series(..)

Rl Nodel.r _get conpatibility(..)

Rl Node211.r _get _elenments(..)
Rl Node212.r _get el enments(..)

Rl Node212.r _init _n3(..)

Rl Node222.r _get _elenments(..)

Rl Node222.r _init _n3(..)
Rl Node3.r _init_n3d(..)

For example the new signature of the method r _get conpati bi l ity of theclass Rl Nodel used to
receive the answer to the request to get compatibility between seriesis:

public void r_get conpatibility(String[][] conpatibility,

A Components/Aspects | nteraction Representation

Rl Decor at or 0

r_new_user_init_nl()

String nessage);

Connections Control

Displaying Server M essages

) Showing
Test for Showing Messages M s
Atest isdoneto seeif the message This method

parameter of the method is empty. If so, the
normal body is executed. If not, thereisa
call totheshow_nessage method of this
aspect, and the end of the method is not

executed.

shows a string to
the user in a new
frame.

No

No

r_init_nl()

r_get_series()

Rl Nodel —
r_get_conpatibility()
Rl Node211 r_get_elements()
r_get_elements()
Rl Node212
r_init_n3()
r_get_elements()
Rl Node222
r_init_n3()
Rl Node3 r_init_n3d()
Di spl ayi ng
Server show_nessage(String)
Messages

Aspect Method

-

" |t also means adding this Stri ng parameter in the RMI interfaces definition. This must be carefully check in the Distribution

aspect.

100

Connections Control
Size Bound
Size Limit Constant Chmk;r;%rajlt Results size check behavior
Adding thesizelimit | This method tests | This member call the result

constant that will be | if thesizeof the | sizetest, and if theresultsis
used asa parameters | Resul t Set tolarge, answer the client
in client threads resultsismore with the special parameter
answersto client than a given SIZE LIMT
objects threshold.
No No Yes®
Variable adding Method adding Before wrapping

29
d i ent Thread SIZELIMT
SQL check_Si ze_
Limt()
Panel SIZE_ LIMT
ThNewUser answer Client()
Thinitl answer Client()
ThGet Seri esl answer Client()
ThGet .
Conpati bi lity1 |answerdient()
ThGet .
Bl enents211 answer Client()
ThGet .
El enent s212 answer Client()
ThGet .
El enent $222 answer Client()

ThGet Det ai | s3

answer Client()

% The genericjoin point expression is * ! abstract answerdient(..)
2 The entire signature of this variableisin Java: static final String SIZE LIMT = “Size Limt” .Itisasovalidfor

the sizelimit variable added to the Panel

class.

101

Connections Control

Time Bound (1/2)

Time Limit Answer Locking Answer D?a;%' gg
Constant Synchronizer Synchronizer Threads
Adding the Thisvariableis Thismethod is This
time limit used to synchronize | synchronized. If | synchronized
constant that the accessto the the method

will beused as | answer O i ent sync_answer | destroysthe
aparameters | method by athread | variableisfalse, | corresponding

inclient orits thenitischanged | client thread
threads corresponding totrue. Elsethe | and the count
answersto count down thread | callingthreadis | down thread.
client objects put to wait.

No No No No

O] G [vetowarg | wetting | v

bef ore_Answer ()
af ter _Answer ()

TINVE_LIM T -
31
d i ent Thread Sync_answer

Panel TIME_LIMT

Connections Control

Time Bound (2/2)

Calling Calling .
bef or e_answer af t er _answer Starting Count Down
The method The method Inner class
af ter _asnwer is af ter _asnwer is Count Down
called. called. definition. Thisinner
classisinstantiated and
started.
* labstract * labstract N
answerClient(..) |answerCdient(..) 0
ThNewUser answer Client()
Thinitl answer Client()
ThGet Seri esl answer Client()
ThGet .
Conpatibilityl |2nswerdient()
ThGet .
El enent s211 answer Cl i ent ()
ThGet .
El enent s212 answer Cl i ent ()
ThGet .
El enent $222 answer Cl i ent ()

ThGet Detail s3 |answerdient ()
d i ent Thread start ()

% The entire signature of this variable isin Java: static final String TIMELIMT = “Tine Linmt ”. Thisisadsothe
signature for thetime limit variable added to the Panel class.
% The entire signature of this variableisin Java: pr ot ect ed bool ean sync_answer = fal se.

102

Remark about the inner class Count Down:

This inner class extends the Java Thr ead class. The idea is to have a thread running in parallel of each
client thread which will limit this client thread maximum execution time. This can avoid server CPU overflow by
limiting threads taking too much time to complete their tasks. The Count Down class is instantiated when the
start method of a client thread begins. The resulting thread is also started at this moment. This thread will wait a
given time (a constant of the class Count Down) and then call theanswer Cl i ent method of its corresponding
client thread, with a special parameter (TI ME_LI M T) which indicates that the maximum time before the server
answersisover. If thismethod call is executed before the normal one happening when a normal answer is sent to
the client, the client will know that the time limit is over, and the client thread of the count down object will be
destroyed, letting free the resources for the other client threads.

Connections Control

Connection Bound (1/2)

Clients Count

Reference Dispatch
Manager

Initialization of the Dispatch
Manager Reference

Thisinteger represents
the number of client
threads running
currently on the server.

Thispublic static
variable holds the
referenceto the
dispatch manager

The static variable of the
classd i ent Thread is
assigned to the new dispatch
manager object.

No

No

No

Variable adding

Di spat chManager

cli ent sCount

Variable adding

After wrapping

| lember
Type

new()
C i ent Thread dspchManager !
Connections Control
Connection Bound (2/2)
Server Busy
Count Increment Count Decrement Congtant
In a synchronized block (on The method will be | Adding the Server
cl i entsCount),ifagiven |asynchronized Busy constant that
threshold is over, call the block (on will beused asa
answer Cl i ent method clientsCount) |parametersin
with the SERVER_BUSY where thisvariable | client threads
parameter. If not, increment is decreased. answersto client
clientsCount . objects
No No No
Before wrapping Method adding Variable adding
start ()
dientThread destroy()
SERVER_BUSY
Panel SERVER BUSY

103

[11.4.5) Database

A POINT | — ASPECTSIDENTIFICATION

The main feature that can be addressed in the database access part of RECINTERNET is the specificity of
the databases. We can then define an aspect area called Database Specificity that groups the aspects that deals
with concernsincluding issues specific to the kind of database used.

In this aspects area we have decided to address two aspects. One is the Structural Database Connection
aspect, which deals with opening and closing the connection with the structural database. The other one is the
SINTESE Database Connection aspect, which deals with opening and closing the connection with the
SINTESE database.

Database Specificity
A T P
Aspects used to express concerns involving the specificity of the databases used
Structural Database Connection SINTESE Database Connection
| All the specific actions for opening and closing | All the specific actions for opening and closing a
a connection with the structural database. connection with the SNTESE database.
A Required Required
Olugging | e
C onstraints No No

A POINT || — COMPONENTSDESIGN

We use the same idea than in the conventional object-oriented approach: having a database manager object
responsible for proceeding the requests sentences (class DBManager). We will aso have two subclasses of this
class, one for each database (Rl DBManager SQL and Rl DBManager SI NTESE). The concurrent access to the
databases by clients threads will be managed by synchronizing the methods pr oceedQuery of the two sub-
classes. In all these classes nothing related with opening or closing connections will be defined. The Figure 32
shows these classes definition.

DBManager

F¥proceedQuery()
/\

A

[|
RIDBM anagerSQL RIDBManagerSINTESE

F¥<<SYNC>> proceedQuery () | #<<SYNC>> proceedQuery ()

Figure 32 - Components involved in the Database Connection aspects

104

A Components/Aspects | nteraction Representation

Database Connection

Structural Database Connection (1/2)

Di%bl?se Dri_ver Open_ Close_
Variable Variable Connection Connection
Thisvariable | Thisvariable | Inthis In this method
will hold the | will hold the method are | arerealized all
address of name of the realized all | the operations
the driver classto | the for closing the
structural use with the operations | connection.
database. structural for the
database. connection.
No No No No
Variable Variable Method ;
Dat abaseURL
Dri ver Name
RI DBManager SQL
open_connection()
cl ose_connection()
L |
Database Connection -
Structural Database Connection (2/2) -
Calling Open Calling Close) . Password
Connection Connection Login Varigble Variable
Acall tothe Acall tothe Thelogin The password
open_ cl ose_ variableused | variable used
connection Connection for the for the
method isadded. | method isadded. | connectionis | connectionis
added. added.
No No No No
: . Variable Variable
e [.
RI DBMVanager SQL | | ogi n
password

We will not represent the components/aspects interaction for the SINTESE Database Connection aspect
since the same aspect members are used than in the Structural Database Connection aspect. The body of the
different methods are changing, but the aspects design table is the same. It has to be noticed that the Driver
Variable aspect member isnot used any more for this aspect sinceit is specific to the connection to the structural

database.

2 Thiscdlassisin fact the classthat is responsible for starting and stopping the server.
% This method isin fact the method where the server will be stopped.

105

111.4.6) Conclusions

In this section we have explained our aspects/components decomposition in the RECINTERNET design. In
this aspect-oriented approach, components design is represented through conventional object-oriented diagrams
(such as UML class diagrams), and aspects design as well as aspects/components interactions are represented
with aspects design tables. These different models and tables provide then a good support for the
RECINTERNET implementation.

It has to be noticed that in this aspect-oriented design of RECINTERNET, most parts of the components
design are similar to the conventional object-oriented design presented in Section 111.3. We have just extracted
from the components level the different features related to concerns that can be beneficially expressed in aspects.
We can see the aspect-oriented approach as a two-dimensions decomposition, with one dimension for the
components definition and one for the aspects definition. With aspects design tables we address particularly these
two dimensions representation and structuration as well as the interactions between them. In fact we believe that
using this two-dimension decomposition is an appropriate way to view aspects design.

An important remark is that our aspects definition is quite dependent from the current AspectJ possibilities,
and conseguently from Java. This provides a close support to aspects implementation, but can be a limit to this
design reuse with new versions of Aspect], or even for design reuse with other aspect languages and other
programming languages. During this design, we have been also bound by a specific characteristic of AspectJ.
When severa aspects are woven to components code in a same weaving, it is not possible to specify the order in
which the aspects are taken to apply their modifications to the code. For instance, for two aspects realizing both
an after-wrapping modification on the same method, the order of these two aspects weaving can be very
important. A solution is to realize two weavings, with only one aspect at each time, or to detect the possible
conflict and solve it in another way. It has to be noticed that for this second solution the design aspects table
helped us consequently.

An important improvement in using aspectsin web-based three-tiers applications design isthat it is possible
to express in aspects some functionalities (as seen with the different aspects used in the RECINTERNET server
application) that will be simply added to the application by plugging in the corresponding aspect to the
components code. This is a specific feature of aspect-oriented programming that plays an important role in
application design.

For this aspect-oriented design we had chosen only to develop few aspects in each part of the application.
Anyway there were several conflicts between the different aspects and components. Using aspects design tables
helped us to structure this design and to track some of the conflicts. In this section we only presented the result of
our design, but of course, this had been achieved with many modifications and after many errors.

106

[11.5) Comparison between object-oriented and aspect-oriented designs

In this section we draw a comparison of the conventional object-oriented design of RECINTERNET
presented in Section 111.3 and the aspect-oriented design of the same application presented in Section I11.4. This
comparison is organized into distinct points: first we look at the two approachesin terms of design process, that is
to say how is realized the design. Then we highlight the separation and relationships between components and
concerns, before comparing the way these two designs support implementation. We finish this comparison with
some specific points for the two approaches. In all these sections we will highlight some important points that
were revealed during the design realized for the two approaches.

[11.5.1) Design process

Object-oriented design methodologies have been and still are an important field of software engineering
research. This field as been largely exploited and maturated. There are many examples of object oriented real-
world systems design, using different methodologies and representations to achieve efficient design models.
Many tools, representation and techniques are available for the different stages of object-oriented design.

In the case of RECINTERNET, we used for the client application the OOHDM methodology [SRB96],
[SR98], some design patterns [GHIV94], [LRS98], [RSG9I7], and some existing way of programming object-
oriented systems proven as good and reusable solutions (three-tiers architectures, distributed programming with
object-oriented interfaces, etc...). We could use some well-defined design language (UML), as well as efficient
tools supporting design and automatic code generation (Rational Rose®™). So there was a wide range of
technol ogies and techniques usable for a conventional object-oriented design.

AOP [Aop] isan emerging programming paradigm, and then isnot yet well structured and supported asthe
object-oriented one. Frameworks to support aspects implementation and weaving are often developed just as
experiments (such as [Kai98] or [DVDH99])and are not appropriate for real-world applications devel opment.
AspectJ is one of the most developed tool for implementing aspects, but it is still available as a beta version
evolving permanently, and AspectJ users for large applications are considered as software engineering pioneers!
As AOP is basically related to components implementation, designing with aspectsis still a very broad research
area, where methodologies, representations and tools are missing. In comparison with the numerous existing
object-oriented design supports, the aspect-oriented design support possihilities were quite not existing, and we
had to create our own way to design and to support our design. In this context we devel oped an original approach
to aspects design illustrated with this concrete aspect-oriented design.

We developed our step by step decomposition and the aspects design table in order to provide the
appropriate support for implementation. With this quite basic technique we provided an appropriate support for
RECINTERNET implementation. Finally, an important difference between the object-oriented and the aspect-
oriented design approaches used was the difference of available technologies for design support, that we tried to
compensate by creating new support for aspect-oriented design.

Ancther important point of the design process for the comparison of these two approaches is the way to
design specific concerns cross-cutting the basic functionality components structure. In the object-oriented
approach there was no possibility to use any abstraction to express cross-cutting concerns such as events handling
for instance. We were then obliged to design the different components involved by this concernsin respect to it,
inserting methods or variable that will be used for this concern. It was particularly complex when different
concerns were involving same components, because these components had to be designed to support all these
different concernsin the sametime.

The main advantage of AOP is to be able to express cross-cutting concerns in separated modules. By only
identifying join points with components, it is possible to cleanly express complex concerns in distinct aspects
separated from components and from other aspects. This has been a great advantage in the RECINTERNET
design compared to the object-oriented approach. And this modifies consequently the design process. It is

3 UML Resource Center. Home Page: http://www.rational .com/uml
% Rational Rose 98. Rose Enterprise Evaluation Edition. See Rose Home Page: hitp://www.rational .com/rose

107

possible to concentrate on complex concerns one by one, and almost independently from other ones. Anyway
aspects composition asto be carefully foreseen at design level. It was possible with the aspects design tables, that
clearly identify the aspects/components interactions and enable to efficiently track conflicts between different
aspects. In this way the design process in the aspect-oriented approach was clearly more structured than in the
object-oriented approach.

Finally we had less support for the aspect-oriented design than for the object-oriented one, but because of
the possibility of separating concerns with AOP and to structure components/aspects decomposition with aspects
design table the aspect-oriented approach provided an efficient and more structured design.

111.5.2) Components/Concerns

Aswe have briefly introduced it in the design processes comparison, an important point of web-based three-
tiers applications design is the separation and the relationships between components (conventional object-
oriented entities) and concerns (functional or non-functional ones, such as distribution, events handling, server
functionalities, etc...).

In conventional object-oriented approaches, such concerns are flatten into components structure. As a
conseguence concerns are scattered throughout components code, and moreover we have all concerns and
components expressed in the same code. In applications such as RECINTERNET it can lead to complex design
and complex implementation. At design levd it isthen difficult given a component to recognize which parts of it
are associated to which concern. In the other way it is also difficult to find out al the components associated to a
given concern.

On the other hand, the aspect-oriented approach can be seen as adding a dimension in the design process:
we will have the components dimension (as in the conventional object-oriented approach) and the aspects
dimension. Links between the entities of these two dimensions are expressed with join points identification. The
design process is then simplified because it is possible to abstract some complex concerns from the components
dimension by expressing them in the aspects dimension. We then have a clear separation between concerns
definition and their related components, and alocalized definitions of the links between them in join points. Once
again, the different aspects design tables shown in Section 111.4 provide the appropriate support for representing
this aspects/components separation and relationships.

In the classical aspect-oriented approach, join points are defined in order to link aspectsto components. It is
then possible to track the different components involved in each aspect. With aspects design tables we go one
step further since we provide a way to concretdly visualize aspects/components interaction in two ways: given a
component, it is possible to know in which concerns it is involved, and given an aspect it is possible to know
which componentsit involves.

To put it in a nutshell, the aspect-oriented approach support a clear separation of concerns which is not
possible with conventional object-oriented approaches. This is a consequent improvement in software design
process, and particularly in complex applications involving several complex concerns such as web-based three-
tiers applications and particularly RECINTERNET. Moreover with aspects design tables, separation of concerns
can be cleanly organized and visualized. The different aspects’components interactions can also be simply
developed and visually addressed in these aspects design tables. For these reasons the aspect-oriented design can
be considered as more efficient than object-oriented design for systems involving complex concerns.

111.5.3) I mplementation support

Some tools exist for linking conventional object-oriented design to implementation automatically. For
instance with Rational Roseit is possible to automatically generate code (for Java, CORBA, C++...) out of design
models. This a great advantage in the conventional object-oriented approach since it simplifies consequently the
implementation stage, and it enables to have an implementation respecting closdly the design.

108

With the aspect-oriented approach, we can use the same techniques to link the components design to their
implementation. Anyway there is no equivalent technology or tools for linking aspects design to their
implementation. The entireimplementation of aspects must be done manually. As AOP isan emerging technique,
there is not appropriate support for such automatic linking. Thisis an important drawback when comparing the
conventional object-oriented and the aspect-oriented designs.

On the other hand, as we decided to use AspectJ, we had to design our aspects concretely in function of the
possibilities of Aspectd, and to define their interaction with components through join points described in Java. For
this reason our aspects design depends on the programming language used for join points, but also provides a
closer support for implementation, asit can be seen in Section 1V.3.

The decomposition principle of the aspect-oriented approach involves a modularization of the
implementation code (distinct modules for aspects and components, and distinct modules for different aspects).
Asaresult the number of modules used in the aspect-oriented approach is higher than in the conventional object-
oriented case. In the case of the RECINTERNET design, the Table 7 shows the number of modules (classes or
classes and aspects) for the two approaches. Even if the way large aspects are split into several smaller ones
modifies consequently such numbers, this table illustrates the tendency of modules number increasing with
aspect-oriented design.

c 350 34+10 = 44 @7 29%
Cc 7 7+1=8 14%
S 16 16+6 = 22 38%
=

Table 7 - Modules number in RECINTERNET design

In counterpart to this modules number increasing with the aspect-oriented approach, there is a consequent
decreasing of classes size, and moreover of the total size of the application. Even if it is not possible to measure it
at design level, we can explain it simply. In comparison to conventional object-oriented design, the aspect-
oriented approach, features of specific concerns are “extracted” from the components code to be put in aspects.
As afirst result we then have a decreasing of the components size. Moreover, because it is possible to specify for
one aspect member a generic join point referencing several members of components, same modifications in
different components can be expressed only once. So finally the total size of the implemented application will be
decreased with the aspect-oriented approach.

With these advantages of the aspect-oriented approach comes unfortunately an additional problem:
composition conflicts. These conflicts happen in the aspects weaving after implementation of aspects and
components. They can be very complex and difficult to detect. The aspects design table provides good ways to
track and detect such conflicts because of its clear representation of components/aspects interaction, but also
common components (through their join points) involved in distinct aspects. When defining the RECINTERNET
design with the aspect-oriented approach, we represented aspects with the aspects design table and detected some
basic composition conflicts. Anyway there can be subtle composition conflicts that will only be detected when
evaluating the application. In this case the aspect-oriented approach creates with composition conflicts new kind
of problems (new compared to the object-oriented approach) that cannot always be solved at design level.

Finally we have seen that the object-oriented design provides a good support for implementation. The
aspect-oriented one is not as well supported and there is not appropriate design/implementation links. Anyway
even if new problems arise because of aspects'components decomposition (composition conflicts) design,
modularization and size decreasing are a concrete amelioration for the implementation of an aspect-oriented
design of a system.

36 Number of classes.
37 Number of classes + number of aspects.

109

111.5.4) Specific Points
Evolution

Systems designed with conventional object-oriented techniques are difficult to evolve because severa
concerns can be involved in a single component. For instance if we have several complex concerns all involving
an important class of a system. If this system has to evolve by sub-classing this important class for adding new
functionality for example, the fact to have several concerns involved can make this evolution design very
complex (we can think of some synchronization of methods in the important class that will have to be carefully
re-done with the methods of the sub-class).

With the aspect-oriented design, as we have a clear separation between components and concerns, it is
easier to make them evolve. Particularly it is simpleto make evolve features of a concern (expressed in an aspect)
without modifying at all any components design nor implementation. However for components evolution,
involved aspects has to been tracked in order to see if they should be modified also or not. This tracking is
particularly improved with aspects design table, where we can find easily all the aspects involving a given
component. As an example of system evolution, we can imagine that one day the RECINTERNET system will
use another kind of structural database (than Interbase) compliant with JIDBC. Thisimplies a modification of the
different variables (driver name, database URL...) used for the database connection. With the aspect-oriented
approach, this can be done simply by modifying the appropriate database connection aspect, but without
modifying any components.

For the same example with the object-oriented design we would have to create a new subclass reusing some
methods of the initial classes and overriding other ones. Modifications due to this evolution would then be
scattered through different methods of this new class and we would have a complicated collaboration between
redefined methods and methods of initial classes.

Reuse

Conventional object-oriented design is sometimes difficult for the same results: several concerns can be
mixed in the same component. Thisis a concrete handicap for system understanding as well as system extending
or modifying. With the aspect-oriented design, understandability isincreased thanksto clean modularization, and
simplification of the different modules. This afirst advantage for reuse.

Aspects reuse in different systems is quite difficult because they are based on components implementation.
However with a clear definition of the role of the different components involved in an aspect and of the objective
of each aspect member as with the aspects design table, it is possible to “extract” an aspect from its “components
context”. For instance the mechanisms for realizing events handling design in aspects could be applied to other
applicationsthan RECINTERNET.

It is also possible to reuse some design of a set of related aspects and components in different applications.
As an example we could imagine to reuse the database manager classes and their corresponding aspects of
RECINTERNET in other applications dealing with database access.

Flexibility

Flexibility is an important advantage of the aspect-oriented approach compared to the conventional object-
oriented one. Designing with aspects provides a way to devel op flexible systems that cannot be obtained simply
with conventiona object-oriented design. With AOP, and particularly with AspectJ, aspects weaver involves
plugging facilities that can be used to obtain great flexibility. Plugging in or out an aspect from a system is then
simply realized. With different aspects expressing different functionalities for a same system, it is possible to
simply add or remove functionality of this system.

In comparison, with a conventional object-oriented approach, “plugging out” a concern requires first to
identify the different components it involves, and to remove from the components the related features, after

110

verifying the consequences of such changes. We have seen in the RECINTERNET design with aspects that
different functionalities (time bound, size bound and connection bound) can be easily added or removed to the
server application.

111.5.5) Comparison conclusions

To generalize to any kind of application some points of this comparison of a conventional object-oriented
and an aspect-oriented one for the RECINTERNET application, we can first insist on the fact that AOP is an
emerging paradigm that is not yet as mature as the object-oriented one. Asaresult there are is a huge difference
between the technol ogies, techniques and tools avail able for design in the two approaches.

Anyway AOP provides concrete support for separation of concerns that cannot be done in object-oriented
paradigm. The resulting aspects’components modularization in design (and consequently in implementation) isan
important advantage for systems understandability, complexity and size decreasing, reuse, maintenance and
evolution.

Moreover, important drawbacks of the aspect-oriented design process such as the lack of design
representation tools or composition conflicts detection can be consequently ameliorated by designing components
and aspects as well as representing them with aspects design table.

Finally the emerging aspect-oriented paradigm is highly promising with itsinteresting concepts for software
engineering, but needs a phase of maturation so that appropriated and efficient tools, technol ogies and techniques
could be devel oped for an appropriate support at any stage of software development cycle.

[11.6) Conclusions

We have then presented how it is possible to apply separation of concerns into web-based three-tiers
applications design. Based on the characteristics of AspectJ to support aspect-oriented programming, we have
proposed guidelines to realize aspects/components decomposition in a step by step process. This design
decomposition can be efficiently represented in aspects design tables.

In a second time we have presented two different approaches for web-based three-tiers applications design:
a conventional object-oriented one and an aspect-oriented one. These two approaches have been devel oped for
the concrete case of the RECINTERNET system. We have then draw a comparison between these two
approaches for this concrete case. The interesting feature was that we draw this comparison for a concrete
industrial system which involves different complex concerns, and illustrates then the benefits of an aspect-
oriented approach.

Thefirst conclusion we can draw from this section is about the methodology and representation we propose
for aspects design. This step by step way of decomposing the aspects design enables a clear identification and
organization of the different entities of an aspect-oriented design. Aspects/components interactions are clearly
expressed, and in both ways. from an aspect to its components and from a component to its involving aspects.
Aspects design tables contain the important information related to this decomposition, and provides an efficient
way to visualize them. The clear aspects/components interaction visualization provides then a good support to
detect eventual composition conflicts.

We have illustrated the interest of using these decomposition guidelines and aspects design tables for the
aspect-oriented design in the concrete case of the RECINTERNET application. By comparing this aspect-
oriented approach to a conventional object-oriented one in this same concrete case, we have shown the great
interest of the aspect-oriented paradigm for web-based three-tiers applications, even with the important drawback
that AOP needs maturation in order to be supported by efficient tools and techniques, particularly at design level.

Based on these two approaches to realize web-based three-tiers applications design, we present in the
following section (1V) how to realize the RECINTERNET implementation.

111

1V - RECINTERNET IMPLEMENTATION

IV.1) Introduction

We have previoudy drawn a state of the art of the different technologies and techniques applicable to
applications such as RECINTERNET (Section I1). We have also realized the design of such an application with
two different approaches (Section I11): an object-oriented one and an aspect-oriented one.

In the current section we present how to implement a web-based three-tiers application such as
RECINTERNET. It would have been a good point to extend to implementation stage the comparison realized for
design between the conventional object-oriented approach presented in Section I11.3 and the aspect-oriented one
presented in Section 111.4. Given the time congtraints of this thesis it was not possible to implement the two
approaches.

From the DATAPREV standpoint, the objectives of this thesis were to achieve efficient design models that
could provide an appropriate support for the RECINTERNET implementation, and then to implement and
evaluate entire parts of the system. Then the project could be completed by the other members of the
RECSINWIN/RECINTERNET DATAPREV team, based on appropriate design models as well as entire
implemented and tested parts of the system.

According to these objectives we decided then to begin with the implementation corresponding to the
conventional object-oriented design of RECINTERNET?. This decision was motivated by the need of a concrete
result in the given time, and mainly by the fact that main parts of thisimplementation could be reuse afterwards
for an implementation of the aspect-oriented approach. As a result we implemented and evaluated parts of the
RECINTERNET system based on our conventional object-oriented design. Then we left sufficient design models
and guidelinesin order that the RECINTERNET project could be efficiently finished by the other members of the
team, asit isexplained in Section V.1.

For the second approach (aspect-oriented) it was not possible to implement in the time of this thesis our
aspect-oriented design of RECINTERNET. Anyway we developed some guidelines for explaining how to
implement and deploy this approach. These guidelines and the aspects design tables presented in Section I11.4
provide an appropriate support for a future implementation of an aspect-oriented version of RECINTERNET.

Finally in the current section we present how we implemented the conventional object-oriented design of
RECINTERNET in Section 1V.2, and how to implement the aspect-oriented one in Section 1V.3. These sections
provide a concrete illustration of the different points developed in this thesis: analysis of the technologies and
techniques applicable in the RECINTERNET project and RECINTERNET design with two approaches. a
conventional object-oriented design and an aspect-oriented one.

IV.2) Conventional object-oriented implementation of RECINTERNET

We have seen in Section Il how the Java language provides an appropriate support (through different
features such as Java applet, RMI, etc...) for the programming of the whole RECINTERNET system. Then the
different parts of RECINTERNET were all implemented in Java, based on the version 1.2 of the Java
Development Kit (JDK*?). We used the JBuilder* Client/Server Suite Version 2.0 to develop our Java program,
since this programming environment provides an efficient drag and drop support for GUI and ssimple JDBC
support.

% This decision was approved by the RECSINWIN/RECINTERNET project responsible (Dr. Emmanuel Passos) and by our advisor
from (Dr. Cabra Limafrom UENF).

%9 Documentation and free download available online. Java Home Page. Sun Microsystems. http://www.java.sun.com

40 Borland JBuilder™ Client/Server Suite Version 2.0. Borland International . http:/www.borland.com

112

IV.2.1) Client

We have chosen to implement the client tier of RECINTERNET as a Java applet embedded in an HTML
page, as explained in Section 11.5.1.5. It means that the HTML page referencing the Java applet class bytecode
and the different compiled Java classes needed in this applet will be stored on the HTTP server. When a user will
request this HTML page to the HTTP server through a given URL, his web browser will receive the HTML code
of this page as well as the compiled classes Java bytecode. The web-browser is then able to execute the appl et.

We developed then a Java applet as a support for node visualization. We implemented the different classes
presented in the conventional object-oriented design to support navigation and user interaction. We also
implemented the different nodes and decorators of RECINTERNET, and we used the Java Abstract Windowing
Toolkit (AWT) of Java for the most part of the graphical components of each node (buttons, lists, labels, text
aress...).

As RECINTERNET had to be accessible by any kind of user, using any kind of the most popular web
browsers, we tested our applet with the most used web browsers (Microsoft Internet Explorer, Netscape and Hot
Java). An important issue was to be able to execute the applet with different versions of these browsers. To solve
this problem (without entering into details), we used a Java tool called HTML converter®! that enables to modify
the HTML code for the embedded applet so that Java Plug-In* is used to choose a compatible Java Runtime
Environment® (JRE) where the applet can be normally executed. If these web-browser extensions are not
available on the user machine, the user will be asked to accept their download and installation before continuing.
This solution enables to execute the RECINTERNET applet in most part of used web-browsers. We evaluated
our Java applet by testing successfully its functionalities with different sets of data, on different web-browsers.
Finally we realized completely the RECINTERNET client tier implementation. The following figures present few
screens of the RECINTERNET applet.

- SERIES SELECTION -

Retirament:

BEatirar

T 1 | [

Figure 33 - Node 1 and Node 1C screen

“LHTML Converter. Availablefor freeonline: http://java.sun.com/products/plugin/1.1.2/converter.html

42 Java Plug-In is a Java tool that enables to choose the Java Virtual Machine used to execute an applet from any web browser.
Available for free online: http://java.sun.com/products/plugin/downl cad/windows.html

4 Java Runtime Environments (JRE) are Java Virtua Machines compatible with a given JDK version. The JRE for JDK 1.2 is
availablefor free online: http://java.sun.com/products/jdk/1.2/jre/downl oad-windows.html

113

- LINES COMPOSITION - - COLUMNE COMPOSITION -

Figure 34 - Node 221 screen

Figure 35 - Node Help screen

114

1V.2.2) Server

The server part of the RECINTERNET system was implemented as a Java application, aswe explained it in
Section 11.5.2.4. This application will be started on the server host. This application will be executed in the Java
Virtual Machine of the server host. The Java classes of the server application use the version 1.2 of JDK, and
then a compatible Java Virtual Machine must be available on the server host.

It has to be noticed that this server application must be running on the same host (the same | P address) from
where the client applet where downloaded. This is due to the security restrictions of Java applets. an applet
cannot realize a remote communication with another host than the one from where it has been downloaded. So
the server application will be run on the same machine than the HTTP server.

We implemented a main class, that can be started to initialize the different parts of the server (Java RMI
registry, database manager objects). The most part of the server application implementation was the definition of
the different client threads classes, as well as the dispatch manager class (which receives requests from clients
and creates and starts the appropriate client thread) and the database manager classes. All this classes
implementation was closely supported by the object-oriented design that we presented in Section 111.3.2.

There was no particular need for graphical interface for this server application. So we just implemented an
application that can be launched with a Java command line and that prints few informations about the server
states on the control window.

We have tested this server application by simulating some client reguests coming from client applets. We
made tests with requests corresponding to each kind of client threads classes that can be executed on the server.
The execution of these threads was at the end carried out on the server without problems. So finally this part of
RECINTERNET was cleanly implemented and tested.

1V.2.3) Client/Server communication

As we have shown it in Section 11.6.1.6, we chose to realize the client/server communication with Java
RMI. This technology enables to call methods of objects running in Java Virtual Machines of different machines
in atransparent way.

To realize the implementation of this communication part, we mainly defined the RMI interfaces (that
describes the methods that can be called remotely), according to the design presented in Section 111.3.2.1. We
then have added the required modifications to the classes of the server (Di spat chManager) and of the client
(the different nodes and decorators) that had to implement these interfaces.

These classes implemented the RMI interfaces had to be compiled with the Java command r mi ¢, in order
to create the appropriate RMI stubs and skeletons that will be used to call the remote objects. When starting the
server application, the RMI registry must also be started so that the dispatch manager object can be registered in
the Java RMI registry and called by client applets. It has to be noticed that the | P address of the host on which is
running the server application must be known from the client applets. These applets can then create the
appropriate references for the remote server dispatch manager and call some of its methods correctly.

We only had the possibility to test the RMI deployment of RECINTERNET on the DATAPREV intranet. It
was however not possible to test the system on any HTTP server and then the RMI features with the Internet. A
HTTP server will only be available when the whole RECINTERNET system will have been implemented and
will be ready to be opened to the public. Anyway we have validated locally the main functionalities of the RMI
communication between the client Java applets and the server application.

115

1V.2.4) Database access

We have described in Section 11.6.2.1 and 11.6.2.2 the way the RECINTERNET databases are accessed. The
access to the server structural database is done using the JDBC standard. It is then possible to insert database
exploitation with SQL queriesinside Java code.

The server structural database must be installed on the server host. It is an Interbase database, that is
managed by Interbase server, which must be started on the server machine. Specific JDBC driversfor Interbase™
must be installed on the server machinein order to be able to realize the database connection.

The SINTESE database is hosted on a remote machine connected to the server host by the DATAPREV
intranet. The database server on this remote machine is normally accessed through terminals connection. With
Java it is possible to simulate such a terminal and to pass to it command lines (in SINTESE syntax) through
TCP/IP protocol. Then it is possible to submit from the server application some requests to the SINTESE
database.

We implemented the Dat abaseManager classes described in Section 111.3.2.3 to provide the appropriate
structure for databases access, but for time reason we did not implemented the detailed finalization of databases
connection nor results exploitation. Anyway we clearly defined the Rl Dat abaseManager SQL and the
Rl Dat abaseManager SI NTESE classes structure and the way to achieve their implementation.

Finally, based on our state of the art of possible technologies and on our conventional object-oriented
design, we have implemented and tested most of the parts of the RECINTERNET system. Client applet and
server application were totally implemented and were successfully tested. Client/server communication with Java
RMI was entirely implemented but only tested locally, without a complete Internet deployment. Database access
was partially implemented, and will be completed by the other members of the RECINTERNET team, according
to the DATAPREV the definition of our thesis work objectivesin the given time,

IV.3) Guidelinesfor the implementation of the aspect-oriented design

We did not have time to implement the aspect-oriented design of RECINTERNET we presented in Section
[11.4. However we present here briefly how to realize in Java this aspect-oriented implementation with AspectJ.

1V.3.1) Aspect-oriented implementation with AspectJ

The implementation mechanism with Aspect] can be decomposed as following: components
implementation, aspects implementation and components/aspects composition.

- Components implementation is realized by implementing Java components classes in the same way than
in a conventional object-oriented implementation. Java classes of the different components are implemented
according to the different designs models presented in Section I11.4 (most parts of these components
implementation are the same than in the conventional object-oriented implementation). The result is a set of
classes expressed in Java code (.java files).

Aspects implementation is donein the same way than components implementation. Based on the aspects
design tables presented in Section 111.4, aspects are expressed in the Aspect] language presented in Section
111.1.2.3. Aspects are defined as Java classes in modules, with different aspect members using the Java syntax.
The result is a set of aspects expressed in Aspectd language (concretely these aspects are stored also in .java file,
even if they are not expressed in conventional Java code).

“ The all-Java JDBC driver for Interbase can be downloaded for free from the Interbase Home Page: http://www.interbase.com

116

- Componentgaspects composition is automatically done with the AspectJ weaver. Once Aspect] is
installed, after having set the different source and class paths (as explained in the Aspect] installation
documentation), it is possible to use the aj ¢ command to start the aspects/components weaving. This command
take as parameters all the javafiles (.java) of the aspects and components to be woven. Given the options chosen,
it is either possible to obtain the woven Java code either to obtain directly the corresponding compiled Java
bytecode™. It has to be noticed that this obtain Java code (or bytecode) is created in new files (.java for Java code
or .class for Java bytecode), and then theinitial aspects and components code is not modified.

It is possible to plug-in or plug-out some aspects on the obtained woven Java code in a simple way. For
instance, to plug-in a new aspect on awoven Java code, it isjust needed to weave this aspect with the woven Java
code. To plug-out one aspect, it isjust needed to take back theinitial components code that were |eft unmodified
by the previous weaving and weave them again if needed. The Figure 36 presents one example of these plug-in
and plug-out mechanisms.

Aspectl.java Aspect2.java Componentl.java Component2.java
PLUGGING-OUT
NORMAL WEAVING v ASPECT1.JAVA
Weaving Weaving I
A .
WovenCode2.java WovenCodel’ java WovenCode2' java

WovenCodel.java

Aspect3.java

PLUGGING-IN
ASPECT3.JAVA

Weaving

WovenCodel'' .java WovenCode2'' java

Figure 36 - Plug-in and plug-out mechanisms

4 If this option is chosen, the weaver creates the woven Java code and calls the normal Java compiler (j avac) to compileit and creste
the corresponding Java bytecode.

117

1V.3.2) RECINTERNET implementation

The aspects design tables presented in Section 111.4 and the components design models of Sections|11.4 and
[11.3 provide a good support for the implementation of the aspects and components of this approach, as we
explain it in the current section.

With an aspect-oriented decomposition of RECINTERNET into components and aspects, the components
implementation process is the same that in a conventional object-oriented approach. However, specifications
about the components involved in different aspects must be carefully respected. For the aspects implementation,
it is possible to closdly follow the information of the aspects design table, that identify properly the different
members, join points and intentions of an aspect. As an example, we give the implementation of the Dynamic
Node Load aspect, presented in detailsin Section 111.4.2. The summary of the aspects design table for this aspect

isgivenin Table 8.

Navigation
Dynamic Node Load
access Cache Node | Searching
Tergetode searching | creation node
YGS46 No No No
. Method Aspect Aspect
elorewrepping adding | method | method
Cont ext Cet Node()
Transformation |Action() I |
Navi g — -
Transf or mati on Speci ficAction()
Intra . -
Transf or mati on Speci fi cAction()
Extra o]
Transformation | SPe€ci ficAction()
RI Pr evNext o]
Transformation | SPeci ficAction()
i Cet Node()
Dynamic Node oad Cr eat eNode()

Table 8 - Dynamic Node Load aspects design table

The Figure 37 presents our Java implementation of the different classes involved in this aspect. Their
implementation has been done according to the specifications given in Section 111.4.2 about the Dynamic Node

Load aspect, and also about the conventional object-oriented models presented in Section 111.3.1.

% The generic join point expression is protected !abstract

Transformation.action(..).

void * specificAction(..),

public void

118

RiContext.java
package Rec_I nternet;

/** This class is used to represent the navigation informations */
public class R Context
ext ends CacheContext {
/1 W don’t present the code of this class since it is not used for this aspect exanple

}

Transformationjava
package Rec_I nternet;

/** This class is used to contains the necessary nethods and variables to describe navigation actions */
public abstract cl ass Transformation {

/** O ass variable: the context */
protected static R Context context = null;

/** Instance variable: reference of the target node of a navigation */
protected Node targetNode = null ;

/** O ass nethod context nutator */
public static final void setContext(R Context context_) { context = context_; }

/** context accessor */
public R Context getContext() { return context; }

/** Tenplate nethod to define the structure of a navigation action */
public void action(String target, Ooject args[])

throws R Exception {

speci fi cAction(target, args);

t ar get Node. show(); }

/** Abstract nethod for specific actions depending on the type of navigation */
protected abstract void specificAction(String target, Cbject args[])
throws Rl Exception; }

NavigTransfor mation.java
package Rec_I nternet;

/** This class is used in the case of a nornmal navigation between two navigational nodes */
public class NavigTransfornation
extends Transformation {

/** In the case of a nornmal navigation between two navigational nodes, we need to hide the origin node, to
reset the target node, and then set in the context the current node index and the next index */
protected void specificAction(String target, Cbject args[])
throws RI Exception {
cont ext . get Current Node() . hi de();
cont ext . set Cur r ent Node(t ar get Node) ;
cont ext . set Next | ndex(target);
target Node. reset (args); } }

IntraTransformation.java
package Rec_I nternet;
/**This class is used in the case of a navigation froma navigational node to an intra node */
public class IntraTransformation
extends Transformation {
/** For a navigation to an intra node, we desactivate the navigational no de, and reset the target node */
protected void specificAction(String target, Cbject args[])
throws RI Exception {
cont ext . get Current Node() . desacti vate();
target Node.reset (args); } }

ExtraTransformation.java
package Rec_I nternet;
/** Used for a navigation froma navigational node to an extra node */
public class ExtraTransformation
extends Transformation {
/** In the case of a navigation to an extra node, we just need to reset the target node */
protected void specificAction(String target, bject args[])
throws RI Exception {
target Node. reset (args); } }

RIPrevNextTransformation.java
package Rec_I nternet;

/** To describe previous and Next navigation */
public class R PrevNext Transformation
extends Transfor nation {

/** In the case of a previous or next navigation, we hide the origin node and set in the context the
target node as current node. W don't reset the target node */
protected void specificAction(String target, Cbject args[])
throws Rl Exception {
cont ext . get Current Node() . hi de();
cont ext . set Current Node(target Node); } }

Figure 37 - Components code for the Dynamic Node Load aspect

119

The Figure 38 presents the code of the Dynamic Node Load aspect. This aspect has been implemented
according to the corresponding aspects design table.

AdynamicNodel oad.java
package Rec_Internet;

/** This aspect defines all the necessary nodifications related to dynam c node search a nd
creation when navigating */
aspect ADynam cNodelLoad {

/** Node Creation nenber:
This nethod dispatch the creation request to the appropriate node constructor */
public static Node createNode(String nane)

throws RI Exception {

if (nane.equal s("Node0")) return new Rl NodeO();

if (nane.equal s("Nodel")) return new Rl Nodel();

if (nane.equal s("Node211")) return new Rl Node211();
if (nane.equal s("Node212")) return new Rl Node212();
if (nane.equal s("Node221")) return new Rl Node221();
if (nane.equal s("Node222")) return new Rl Node222();
if (nane.equal s("Node3")) return new Rl Node3();

if (nane.equal s("NodelC')) return new Rl NodelC();
if (nane.equal s("Node3D"')) return new Rl Node3D();
if (nane.equal s("Hel p")) return new Rl Hel p();

/1 Throw an exception for other nanes
throw new Rl Excepti on(name, UNKNOWN_NCDE) ;

}

/** Sear chi ng Node nenber:
This method organize the node search/creation. First it calls the nmethod to search the
node in the context, and if it is not found, call the method t o create it */
public static Node getNode(String nane, Rl Context context)
throws Rl Exception {
Node result = context.get Node(nane);
if (nane == null) {
return ADynam cNodelLoad. cr eat eNode(nane); }
else return result;

}

/** Tar get Node Access nenber:
We add the targetNode initialization before all the nmethods where this variable is used */
advi se protected !abstract void *.specificAction(..),
public void Transformation.action(..) {
before { target Node = ADynam cNodelLoad. get Node(target, context); }
}

/** Cache Searching nenber:
We introduce in the R Context class the nethod to search a node */
i ntroduce public Node RI Context.getNode(String target) ({
for (int i=0; i<navigNode.size(); i++) {
Node node = (Node) navi gNode. el ement At (i);
if (node.getName().equal s(target))
return node; }
for (int i=0; i<intraNode.size(); i++) {
Node node = (Node) intraNode. el ement At (i);
if (node.getName().equal s(target))
return node; }
for (int i=0; i<extra.Node.size(); i++) {
Node node = (Node) extraNode.el ementAt(i);
if (node.getName().equal s(target))
return node; }
return null;

Figure 38 - Dynamic Node Load aspect

120

The weaving of these components with the aspect can then be done as explained in the previous part. We
can plug-in or plug-out as wanted the different aspects of the aspect-oriented RECINTERNET system. We then
obtain automatically different woven Java files (.java) that can be normally compiled to produce an executable
Java bytecode (.class). The Appendix E presents the resulting code of the weaving of this aspect and its related
components.

It has to be noticed that once the weaving mechanism has been achieved, when compiling the obtained code,
the compilation errors refers to the woven code, and not to the initial components or aspects code. Then with a
compilation error and the line where it happened, the debugger needs to track from which component or aspect
the code is coming. This is facilitate by the comments generated by the aspect weaver, but however it make
debugging process more difficult. In the same way run-time exceptions are shown with a line number, which
refers to the woven code and not the initia one.

Another problem encountered with AspectJ is that it is not possible to specify in which order the given
aspects will be woven to the components code. When weaving a set of components and aspects files, AspectJ
takes the aspects one by one in a random order and weave them to the components code. There is no way to
specify an aspect weaving order. The only solution when two aspects must be woven in agiven order isto realize
a first weaving with only the first aspect, and then a second weaving with the second aspect on the obtained
woven code. Anyway it add on level of “weaving indirection” for debugging the obtained code, which can be
problematic.

Anyway Aspect] provides an efficient way to implement aspect-oriented programs. RECINTERNET can
then be implementing by following closdly the aspects design tables of Section 111.4 and the components
description of Section I11.4 and 111.3.

IV.4) Conclusions

Given the time congtraints it was not possible to extend to a complete implementation the two approaches
(object-oriented and aspect-oriented) we used for RECINTERNET design. We dstarted then with the
implementation of our conventional object-oriented design and achieved most parts of this implementation. For
the aspect-oriented approach we only give guiddines to explain how it could be done.

We have then presented in this section the way we realized our object-oriented implementation of the
RECINTERNET system. To briefly give a synthesis of the achievement we reached in thisimplementation, it can
be said that most parts of the RECINTERNET system have been wholly implemented: the client applet, the
server application as well as the client/server communication features are entirely coded. For the database access
part we have only implemented it partially. It must also be noticed that for each of these parts implemented we
realized corresponding evaluation by testing their execution with sample sets for the different functionality they
had to provide. Finally we have developed most parts of the RECINTERNET system according to the design we
had conceived and represented in design models. We explain in Section V.1 how our implementation will be used
by the RECSINWIN/RECINTERNET team to finalize the devel opment of the RECINTERNET project.

We have also presented in the current section some guidelines for realizing the implementation of the
aspect-oriented approach. For this purpose we described precisely the weaving mechanism of Aspectd to
compose automatically aspects with components code. We explained also the way to devel op aspects code with
the support of our aspects design tables. We finaly illustrated these guidelines with an implementation example
of one aspect we described in our aspect-oriented design: the Dynamic Node Load aspect.

To conclude this section, we can say that by devel oping the implementation (or explaining how to realize it)

of the RECINTERNET whole system with the object-oriented and aspect-oriented approaches, we gave a
concrete illustration of the different research aspects developed in thisthesis.

121

V - CONCLUSIONSAND PERSPECTIVES

In this section we draw conclusions about the work realized and we analyze the perspectives it involves. In
Section V.1 we analyze the state of the RECINTERNET project at the end of this thesis and explain how it will
evolve. We give in Section V.2 conclusions about the two approaches we used for developing the
RECINTERNET project: the object-oriented and the aspect-oriented approaches. We finish in Section V.3 with
conclusions and perspectives about our origina approach for aspect-oriented design organization and
representation.

V.1) The RECINTERNET project

From the industrial standpoint of DATAPREV, the work realized during this thesis had to reach different
objectives. Based on the RECSINWIN project we had to conceive the RECINTERNET system, that isto say a
web-interface that enables users to compose dynamically a request to the SINTESE database of DATAPREV and
then visualizeits results. The given objectives were to browse the existing technol ogies and techniquesin order to
create appropriate design models and to implement and evaluate most parts of the RECINTERNET system.

In this thesis we realized an analysis of the techniques, technologies and tools suitable for the
RECINTERNET development. For design stage we analyzed particularly the architectural possihilities, the way
to design dynamic web-interfaces and the techniques to realize separation of concerns. For implementation stage
we focused on the technologies available for implementing each of the three tiers of RECINTERNET: client,
server and database. We also studied some possihilities to realize the communication between these three tiers.
Finally we also analyzed the existing technol ogies to support implementation with separation of concerns.

As a result of this analysis we proposed the following choices for the RECINTERNET development.
RECINTERNET can be programmed according to the principles of separation of concerns, and particularly with
Aspect Oriented Programming (AOP). In a more conventional object-oriented way, RECINTERNET can be
developed according to the Object Oriented Hypermedia Design Methodology (OOHDM) and its associated
design patterns. This two possibilities have been the starting point of the development of RECINTERNET with
two approaches and their comparison.

We have also chosen for RECINTERNET a three-tier architecture with a specific characteristic: using a
server local structural database mirroring the structure of the main SINTESE database of DATAPREV in order to
make the requests composition faster and to only connect to the SINTESE database for final requests.

Our analysis led us to choose to program the client part of RECINTERNET as a Java applet embedded in a
HyperText Markup Language (HTML) page, so that it can be executed within any web-browser. The server part
is a Java application running on a server host and communicating with the client applets with Java Remote
Method Invocation (RMI). The access to the server local structural database is achieved through the Java
DataBase Connectivity (JDBC) standard, and the access to the remote SINTESE database is done through a
smulation of a terminal connection to the SINTESE DataBase Management System (DBMS) with a
Transmission Control Protocol/Internet Protocol (TCP/IP).

Based on these choices we realized the RECINTERNET devel opment with two approaches: a conventional
object-oriented one and an aspect-oriented one. We applied the OOHDM methodology to design the client
application of RECINTERNET, aswell as some of its design patterns. We also designed carefully the other parts
of the system: server, client/server communication and database access. As a result we provided a set of object-
oriented design models that cover the different parts of the RECINTERNET system and provide an appropriate
support for itsimplementation.

For the design of the aspect-oriented approach we decomposed the different parts (client, server,

client/server and database access) of the RECINTERNET system into aspects and components. The components
design reused parts of the conventional object-oriented design models and add some modifications in order to

122

support aspects. Aspects design was realized with a step by step decomposition methodology we developed.
Finally we represented this aspects/components design with some aspects design tables that organize the
decomposition and enable a clear visualization of aspects'components interactions.

Wethen realized the implementation of the conventional object-oriented implementation design models. We
implemented and evaluated completely the client part of RECINTERNET, as well as the server application. For
the client/server communication part, we implemented it totally but only tested it locally*’. We provided a
partially completed implementation of the database access part. Given the time congraints, for the
implementation of the aspect-oriented approach we only proposed some guidelines on the way to do it, aswell as
example of aspects implementation.

Finally we have redlized partially two approaches for the RECINTERNET development. For both
approaches we have developed a set of design models covering the different parts of the system and providing
appropriate implementation support. In the object-oriented approach we | eft to the project team most of the parts
of the RECINTERNET system totally implemented and evaluated and guidelines to finalize the lasting parts
implementation and deployment. In the aspect-oriented approach we left to the RECSINWIN/RECINTERNET
project team guidelines to achieve the RECINTERNET implementation from our design models as well as
illustrative exampl es.

Evolution of the RECINTERNET project

Based on the work realized during our thesis, and according to what had been foreseen about this work with
DATAPREV, the members of the RECSINWIN/RECINTERNET project team will finalize the RECINTERNET
development.

In a first step they will finalize the conventional RECINTERNET implementation. Based on the parts
already implemented and on our design models, they will finish the implementation of the database access part.
They will then continue with some tests on this implementation before carrying out the whole deployment of the
entire RECINTERNET system: installing the required applications, database and files on the HTTP server and
testing the internet access and the whole system execution.

The RECSINWIN/RECINTERNET team agreed to use our aspect-oriented approach to become more
familiar with the aspect-oriented way of programming that they had never used previously. They were
particularly interested in the possibility to program some server functionalities (client thread execution time
control, results size control and number of client threads running on the server control) with easily pluggable
aspects as we proposed in our aspect-oriented approach.

At this point of the project we also have some concrete propositions for the enhancement of the
RECINTERNET system:

A first improvement in the soon evolution of RECINTERNET should be to realize its Brazilian version (in
Portuguese language). It means that any information appearing in the client applet should be written in
Portuguese. Actually the client applet implementation we realized is only in English and then cannot be deployed
to alarge Brazilian public. Even if the data provided by the databases are all in Portuguese language (such as the
name of the states of a serie, the months where a serie is defined and so on), the graphical and navigational
informations of the client applet are in English (such as continue, exit, help, etc...). We can imagine to modify
these words hard-coded in the client applet implementation. Another idea should be to devel op some “language’
aspects (English, Portuguese aspects, or even more) that can be plugged to the client applet code to define
language variables (and their corresponding values which will be the words in the given language) that will be
read each time a word must appear to the user in the applet. By plugging-in one of these aspectsit could be then
simpleto obtain a different language version of the client applet.

47 As we explained in Section 1V.2.3, it was not possible to realize complete tests because we did not have the possibility to use an
HTTP server.

123

Asan ulterior evolution we propose to extend the RECINTERNET system in order to provide web-usersthe
possihility to define their requests in a different way. Asiit is possible in the RECSINWIN system, it could be
possible to express requests to the SINTESE database in natural language. The web-user could then write a
request with his own words or choose between a set of pre-defined sentences. The same approach than the one
used in RECSINWIN could be used to filter and correct such sentences and translate them in to SINTESE
gueries. It has to be noticed however that this extension should modify consequently the RECINTERNET system
since it requires some language dictionaries where are referenced the different words that can be used. A good
solution could be to store these dictionaries on the server host and to access them with Java RMI from the client

applet.

We propose also an improvement in the database access part of the RECINTERNET system. The idea
should be to light up the connections to the SINTESE database by using a kind of cache mechanism. We thought
about storing in the server local structural database not only the structure of the SINTESE database but also the
series entriesthat are requested by usersvery frequently. In fact there are series of the SINTESE database that are
requested more frequently than others, and so it could ameliorate consequently the requests answering
mechanisms to only consult the server local structural database for very common requests. Moreover as the
SINTESE databaseis only updated in given period, all at atime, updating the server local structural database for
these cached series entries would not require more specific attention than in the actual updating mechanism.

A last enhancement that we propose as an ulterior modification for RECINTERNET aims to address the
problem of server overflow. If RECINTERNET becomes used by a high number of clients, the unique CPU of
the server where client threads are running can be rapidly insufficient. As a solution we can propose to replace
the middle tier (the server) of RECINTERNET by several identical servers, running on different hosts. The
architecture will then evolve to a multi-tiers architecture. All the client request would till be addressed to a
unique server with Java RMI, but a load-balancing functionality will be defined to choose to execute the
corresponding client thread on the “less busy” of the different servers.

To conclude this part we can say that we have carried out the most part of the development of afirst version
of RECINTERNET, which will be finalized by the RECSINWIN/RECINTERNET team and be ameliorated and
modified in future versions.

V.2) Object-oriented and Aspect-oriented approaches of RECINTERNET
development

We have also explained in this thesis how we realized the RECINTERNET project with two approaches: a
conventional object-oriented one and an aspect-oriented one.

In the conventional object-oriented approach we have split the RECINTERNET system into four parts:
client, server, client/server communication and database access. Using parts of the OOHDM methodology we
have decomposed the RECINTERNET client application into functional units. These units are encapsulated in
objects, which are described by their classes. We have described these classes using conventional design models
for object-oriented programming: class diagrams and state diagramsin UML, classes descriptions. These models
are language independent. They describe different parts of the client application, such as the structure of the
entities of the databases that will be used (conceptual model), classes framework for navigation, extension of this
framework for RECINTERNET (navigational model) and graphical representation (interface model).

We also described the other parts of the RECINTERNET system (server, client/server communication and
database access) with these conventional object-oriented design models. The main particularities of this design
are the use of Java RMI interface for describing remote calls between client and server, the use of client threads
classes representing each kind of client requests, the fact that these client threads directly communicate with the
client object to send back the results of a request and the fact that the two databases are only accessed through a
database manager object. All these points are concretely described in the different language independent UML
diagrams and explanations that we provided for the object-oriented approach.

124

Based on these design models, the object-oriented implementation of RECINTERNET can be characterized
by the fact that we could automatically generate an important part of the code from the design models with the
Rational Rose tool. All our implementation was done in Java, using the programming facilities of JBuilder such
as graphical interface development facilities and debugging.

For the aspect-oriented approach we realized a decomposition of the RECINTERNET system into different
aspects and components, based on the possibilities of the AspectJ tool, which works with components expressed
in Java. In order to realize this decomposition at design level, we followed a methodology we developed to
organi ze aspects conception. We reused several parts of the conventional object-oriented design models to define
the different components of the aspect/components decomposition. We realized some modifications in these
design models in order to support the different aspects of this decomposition. So the components design of this
approach were described with conventional object-oriented language independent design models, with few
comments specific to Javain order to specify some points for aspects support.

Aspects design was achieved through our step by step decomposition. We identified some aspects in the
different parts of the RECINTERNET system (client, server, client/server communication and database access).
We designed aspects for dynamic node loading, event handling, distribution, server functionalities (client threads
execution time limit, results size limit and number of client threads running on the server limit) and database
connection. To represent them we introduced our aspects design tables, which enable to clearly structure aspects
and components and to visualize aspects/components interaction. Finally we modeled the aspect-oriented design
with conventional object-oriented diagrams for components and with aspects design tables for aspects and
aspects/components interaction.

We provided elements to guide the implementation of the aspect-oriented approach. Components
implementation can be done in the same way than in the conventional object-oriented approach, using for
example automatic code generation from design models. Aspects can be implemented with AspectJ by following
closely the aspects design tables. However there is no automatic aspects implementation support nor facilities
such as debugging as in object-oriented implementation.

We compared these two approaches in the case of RECINTERNET development, mainly for the design
stage. We highlighted that AOP is an emerging paradigm that need time to maturate in order to support more
efficiently design and implementation processes with appropriate tools and techniques. For this point object-
oriented design and implementation is clearly supported in a better way with appropriate tools and design
techniques. In this context we illustrated the benefits of our aspects design tables for aspects implementation
support.

On the other hand we insisted on the advantages of the aspect-oriented approach, and particularly for
RECINTERNET and web-based three-tiers applications. By supporting separation of concerns programming,
AOP is clearly advantageous compared to object-oriented programming. To sum up the advantages we
highlighted for aspect-oriented design and implementation of RECINTERNET, we can say that AOP introduces a
notion of high modularity (distinguish components and aspects as well as aspects between themselves) that is
cruelly missing in object-oriented programming. This modularity improves consequently programs complexity
and size decreasing, understandability, flexibility and reuse.

Finally we have shown that AOP presents important advantages compared to object-oriented programming.
It isthen an interesting and promising emerging paradigm, which needstime in order to reach maturation and to
be supported by efficient tools and techniques for each stages of software development.

V.3) Aspects design tables and step by step aspects design

As aspects are mainly based on components implementation it is difficult to clearly express them at design
level. Moreover as AOP is an emerging programming technique, when developing the RECINTERNET project
with the aspect-oriented approach, we were confronted to alack of appropriate techniques and representation for
aspects design.

125

In this context we developed an original approach for organizing and representing aspects design. Themain
idea is to decompose a system design in two dimensions. a components dimension and an aspects one. We
proposed a step by step methodology to structure this decomposition, divided in four points. aspects
identification, components design, aspects characterization and aspect members definition.

The different steps of this methodology gives an appropriate support to characterize and organize these two
dimensions of a design, as well as clearly define the interactions between these two dimensions. Through a clear
identification and description of join points between aspects and components, it is then possible to define
precisaly the way these two dimensions collaborate. Aspectsintention is carefully described through explanations
of their aspect members objectives and the way they involve components.

Aspects design tables sum up the main information of aspects/components decomposition with this
methodology. Aspects are represented in table columns and components in table lines. In a further level aspect
members are represented in sub-columns and components join points in sub-lines. Aspects/components
interactions are represented in the crossing of these sub-columns and sub-lines. Aspects design tables also
contains additional information such as aspect type and plugging constraints, member type and generic join
points expression and several descriptions of the different entities of the two dimensions.

We have illustrated that this smple way of representing aspects design presents several advantages for
design realization as well asimplementation support.

A first advantage comes from the visualization possibilities of aspects design tables. The decomposition in
two dimensions and the way these two dimensions are linked can simply be visualized with aspects design tables.
Interactions between aspects and components can be easily identified in lines and columns crossing. These
interactions are defined at components members® and aspects members®™ level. An important characteristic is
that aspects design tables provide interaction visualization in both directions: from a given component it is
possible to simply find the different aspects whereit isinvolved, and from a given aspect it is possible to find the
components it involves. Moreover this simple interactions visualization goes one step further since it is also
applicableto the level of components members and aspects members.

Ancther important advantage of aspects design tablesis for detecting aspects composition conflicts. Aspects
conflicts can appear when two or more aspects are woven to the same component code but describes some
incompatible code modifications. Aspects interferences can be very subtle, but aspects design tables enable to
track and detect smply some of them. Shared join points between aspects can be a source of composition
conflicts since they represent different modifications at the same place of components code. Components
involvement in aspects can be efficiently visualized with aspects design tables, and then it is easy to track shared
join points and to localize potential conflicts between aspects members.

Last, but not least, aspects design tables provide an efficient way of representing aspects design and then an
appropriate support for aspects implementation. All the important informations for implementing aspects are
represented in aspects design tables and can be closely followed during aspects implementation. Columns and
sub-columns describe closely the different aspects modules as well as the aspects structure (the different
members of an aspect) and the components code modifications that will be defined in aspects members.

Weillustrated the applicability and the benefits of our methodology and representation in the concrete case
of RECINTERNET design. All the aspects of the system were conceived with our methodology and represented
in aspects design tables. Finally we illustrated the way aspects design tables provide a good support for
implementation by implementing one of the aspects of the RECINTERNET design (the Dynamic Node Load
aspect) out of its aspect design table.

Possible improvements of our methodology and its aspects design tables

The step by step aspects/components decomposition process and its aspects design tables we proposed are
just a smple way to organize and visualize aspects design. However it presents consequent advantages and we

8 Component members are the variables, constructors or methods of aclass.
49 Aspects members are the variables, constructor, methods, introduce members or advise members of an aspect.

126

thought about few improvements that could make it more benefic in aspect-oriented software development. We
also stay open to any comments and suggestions for improving our methodol ogy and representation.

A simple first enhancement could be to simply color differently the cell corresponding to the crossing of a
component join point with an aspect member which creates a new component member (one of the aspect member
types we defined as variable adding, constructor adding and method adding). This would provide more direct
information of components structure modifications (i.e. members adding), but would mainly highlight
composition conflicts happening if aspect weaving is not realized in the appropriate order. For instance if an
aspect Al add a new method M in a component C and another aspect A2 realizes modifications on this method M
(such as an after wrapping modification for example), the aspect A1 must be woven to the component C code
before the aspect A2. If not there will be a composition conflict since the aspect A2 describes modifications on an
non-existing method. Coloring specially the cell corresponding to the crossing of method M line and the
corresponding aspect member of aspect A1 column would provide an efficient way to detect this kind of conflicts
with aspects design tables.

Another improvement we propose is to express inside the crossing cells the different methods or variable
callsthat will be done in the corresponding aspect member. For instance we can imagine that we have an aspect
Al. This aspect has an aspect member Al that add a method M1 to a component C1. In the description of this
method M1 is explained that there will be a call to avariable V1 of a component C2 and a call to a method M2 of
the aspect Al. Then we can write in the corresponding cell (C1.M1:A1.AM1) the name of the involved calls that
we represented for this example by C2.V1 and A1.M2. This provides one more level in information of what will
be coded in aspect members, and also one more level for composition conflicts detecting. This proposition will in
fact refine the possibility to track the different modifications involved by an aspect and to potentially detect more
subtle composition conflicts.

For the RECINTERNET design case, we have developed this methodology and representation specifically
for the Java language and the AspectJ tool and its associated aspect language. An interesting extension could be
done to be independent of components languages but also (as much as possible) independent from aspect
languages. This last point could be done by extending the range of aspect members type to the new kind of
modifications involved by other aspects language than AspectJ, as well as new possibilities for join points
expression.

As ulterior improvements, we also thought of automatic potential composition conflicts detection. With
computerized aspects design tablesit seems possible to devel op a small application that browses the different join
points of a design and the type of the aspect member in which they are involved. Taking one by one the
components members represented in an aspects design table, this tool could search for the different aspects
membersinvolving thisjoin point and eventually check the type compatibility of the found aspects members. The
developer could then be automatically warned for each join point involved in several aspect members, with
particular warning messages about the possible incompatibility problems due to the involved aspects members
type (as we described it in the table® representing the possible conflicts related to aspect member types).

The last enhancement we propose is more ambitious. The ideais to automatically generate aspect code out
of the information contained in aspects design tables. In the case of AspectJ, we can imagine atool that browses
the different aspects of the table and creates the code corresponding to the aspect declaration, and also the
gtructure of its aspect members (declaring in this aspect introduce or advise members, or aspects methods,
variables and constructors) with the expression of their join points. This would provide an efficient way to
simplify the transposition of aspects design to aspects implementation.

In the short period of thisthesisit was unfortunately not possible to realize these different improvements for
our aspect-oriented development support. However by keeping in touch with the members of the
RECSINWIN/RECINTERNET project team, and by following the future evolutions of the RECINTERNET
project we will continue on working and ameliorating the original support we provided for aspect-oriented
development.

% Table6in Section 111.2.3.3

127

To put it in a nutshell we have developed a methodology and its associated representation to simply
organize the two dimensions (aspects and components) of an aspect-oriented design. We illustrated its benefits
for design and implementation in the concrete case of an industrial application development. This simple
proposition is bound to evolve in order to provide an efficient solution for designing and implementing systems
in the emerging aspect-oriented paradigm, as this one is concretely based on components implementation and
does not provide yet efficient techniques and tools for design.

To conclude, even with the particular constraints of realizing this thesis in the same time as a Master of
Sciencethesisand as an industrial engineering project, we have achieved an intensive and important work during
these 6 months of thesis. We believe that thisthesis was realized adopting a rigorous scientific process so that we
could conciliate in a same “real-world” project research aspects resulting in original propositions and concrete
industrial development for a project which will be continued and also useful for Brazilian social welfare,

128

FIGURES INDEX

FIGURE 1 - RECSINWIN GLOBAL ARCHITECTURE ...eutuuitieetitttttsseeestestssiasssssssessssnssssssesssmsessseessmmnseeeseeenn. 13
FIGURE 2 - TRANSLATED EXTRACT OF THE RECSINWIN NAVIGATIONAL MODEL ..vuuiiiieiiieiiiiinseeeeeeeesniinsseesseeesnns 15
FIGURE 3 - TRANSLATED EXTRACT OF RECSINWIN PROCEDURES DESCRIPTIONS...uuutiieiieettuiseeeerersssnnsssesseeesnns 16
FIGURE 4 - BOOK LOCATORS (1): SIMPLE CODE EXAMPLEceteiiteestiesieesteesteesieesteesseesseesseesseesseesaessseessesssessasessnas 23
FIGURE 5 - BOOK LOCATORS (2): EXAMPLE WITH CONCURRENCY CONCERNcoittiitiirieesiiesieesieesieesseesseeseeesaeesanas 23
FIGURE 6 - BOOK LOCATORS (3): EXAMPLE OF THE CONCURRENCY CONCERN EXPRESSED IN THE D LANGUAGE24
FIGURE 7 - OBJECT ELEMENTSIN THE COMPOSITION FILTER MODELcevvvuuiieeeiiertrsnnseeesseesssnnssessseesssnnnsseesseessnes 26
FIGURE 8 - AN EXAMPLE OF TWO SUBJIECT S.1uuuutiteiitttttusseesseeessunssesssssssssssssssessssmsesssessssmseseteessimsessen. 27
FIGURE 9 - THE CAR RENTING COMPOSED SUBJIECT .vvvuuuiieeittettuasseesssesssssssessssessssnssssssesssssssessseessmmnnseesseeesnn. 27
FIGURE 10 - ADAPTIVE PROGRAMMING TRAVERSAL EXAMPLE ..vuuuiiiiiiiitttiesseeessesstiisssesssesssssssssssesssssnsssesseessnes 28
FIGURE 11 - ASPECTS/COMPONENTS INTERACTION «..ueeeeeeeees e s e s e sess e e e s s s s s ssssssssssssssssssssssssssssssssssssnssssss s sssnsssnnnns 29
FIGURE 12 - TWO-TIERS ARCHITECTURE FOR DATABASES APPLICATIONS . ..uutiiiiiittttieseeeeseesssssssessseessssnsssesseessnes 31
FIGURE 13 - THREE-TIERS ARCHITECTURE FOR DATABASE APPLICATIONS. . .uiiiiiiittttiieseeeesesssisnsssssseesssnnsseesseessses 32
FIGURE 14 - MULTI-TIERS ARCHITECTURE FOR DATABASE APPLICATIONS ..uuiiiiiiittttieseeeesesssinsssesssessssnnsssesseessnes 34
FIGURE 15 - THREE-TIERS ARCHITECTURE USING A SERVER LOCAL STRUCTURAL DATABASEoeiiiveevviiieneeeereeennns 34
FIGURE 16 - RM| TRANSPORT IN DISTRIBUTED APPLICATIONS ..vuuuiiieiiittttisseeessessssisssssssesssssssessseessssnsssesseeesnes 50
FIGURE 17 - CORBA ORB ARCHITECTURE .1uuuiiiiittttttisseestetesstsssesssesssssssssssessssnsesssesssmnseseseesseeern. 52
FIGURE 18 - EXAMPLE OF THE SINTESE REQUEST SYNTAX ...uuuttttteeeeeiiiirrreeeeeessisnssssseesesssinsssssseesesssinnssssseseesns 56
FIGURE 19 - SUMMARY OF THE CHOSEN TECHNOLOGIESFOR RECINTERNETovviiiiiiiiieeee e 58
FIGURE 20 - ASPECTJWEAVING MECHANISMiiiiietttiisseesietettuasssesssessssssssssssessssnssssssessssssssssseesssmnsseesseeesnes 63
FIGURE 21 - RECINTERNET CONCEPTUAL MODEL ..vtuuuiiiiiiitttttasseeesttssssssssesssessssnsssssssessssssssssseesssmnseesseeesne. 80
FIGURE 22 - RECINTERNET NAVIGATIONAL SEQUENCES.utttttteeeiiiittreeeeeessiasstnereeseessinsssssssesessssnnsssssesaesas 82
FIGURE 23 - NAVIGATIONAL FRAMEWORK CLASSDIAGRAM ..cvvvtuiiieeiiittttesseeessesstsnsssssssessssnssessseesssnnsseesseresnes 84
FIGURE 24 - NAVIGATIONAL FRAMEWORK EXTENSION FOR RECINTERNETcovvvieiiiiiieeeiee e 85
FIGURE 25 - RECINTERNET INTERFACE EXTENSION ...uuiieiiieetttaiseeeseesssssssessssessssnssesssessssssssessseesssmnsseesseeesnes 86
FIGURE 26 - RECINTERNET REMOTE INTERFACES. . .uuitieiittetttiseeesttsttssssessssesstsnssssssessssssessseesssnnsseesseresne. 87
FIGURE 27 - CLIENT THREADS CLASSDIAGRAMetttttttiiseeetetetttasseeesttstsaasssssssesstanssesssessssassesssessssansssesseessnes 88
FIGURE 28 - RECINTERNET REQUEST SCENARIO .. .utttttiieeiiiititeeeeeesssiistreeeeeesssaasssssessessssnsssssssessssssnnssssseeessns 89
FIGURE 29 - RECINTERNET DATABASES MANAGEMENT ...cetvtttiiiieettetttttsseesssessssnsssesssesssssssessseesssmnsseesseeesnes 90
FIGURE 30 - COMPONENTSINVOLVED IN THE DYNAMIC NODE LOADING ASPECT .vvvuuiiiiiiiieeriiieieeeeseeessnnsseesseeesnns 93
FIGURE 31 - COMPONENTSINVOLVED IN THE DISTRIBUTION ASPECT ...ccvttuuiiieeeiertrsnnseeesseesssnnsssssseesssninsseesseeesnes 97
FIGURE 32 - COMPONENTSINVOLVED IN THE DATABASE CONNECTION ASPECTS..ccvtvuiiieeeieerrrinsseeeseeesssnnnssessnes 104
FIGURE 33 - NODE 1 AND NODE 1C SCREEN.....uuiiiiiiitttutiisieeetesttsusssssssesssssassssssessssnsessseesssnseesssessinseesne 113
FIGURE 34 - INODE 221 SCREENvtuuuiiieittettssssseesstessssasessssessssssssssssessssssseeesseesssmseeeseesssm et 114
FIGURE 35 - INODE HELP SCREEN ...uuuuuiiiiitettttitseeeseesssssseesssesssssssssssssesssssassessssessssnsseesseessssseeessessinnnreesne 114
FIGURE 36 - PLUG-IN AND PLUG-OUT MECHANISMS ...etuuuiiiieeiietttinsseeeseesssssssessssessssnssessseessssnsseesssessminnsseesne 117
FIGURE 37 - COMPONENTS CODE FOR THE DYNAMIC NODE LOAD ASPECT .uvuuiiiiiiiettiiieieeeeeeeesiinssesessessssnnssesenes 119
FIGURE 38 - DYNAMIC NODE LOAD ASPECT 1uvuutiiiiiiietttiiseeeesessssasssssseesssssssessssessssnsessseesssnsseeessessrsnnsseesee 120

129

TABLESINDEX

TABLE 1 - COMPANIES_BENEFITS SERIE VISUALIZATION BY MONTH AND COMPANY SIZEuvviieiiieeeeiiieeesnnieeeennes 11
TABLE 2 - COMPANIES_BENEFITS SERIE VISUALIZATION BY MONTH, SECTOR AND STATEvvvveieieeeeirieeesnnieeeeanns 12
TABLE 3 - OOHDM DEVELOPMENT STEPS.....ceetteeeeeeereseeesesssseesessesssssssssesssssssssssssssssssssesssssssesesssser. 37
TABLE 4 - ASPECTSDESIGN TABLE. SIMPLE EXAMPLE ...ccvvvttteeeeeeeeeeeeeeseseeeesessssessee 75
TABLE 5 - DETECTING POTENTIAL COMPOSI TION CONFLICTS ..vvvvvvrereeeerereeeereeseseseesessssssssssssssssesssssssssssssmsssssssmmsees 76
TABLE 6 - MODIFICATION TYPES COMPATIBILITY evvvtvteeeeeeeeeeeeessesessssessssessssessssesssmssee 77
TABLE 7 - MODULESNUMBER IN RECINTERNET DESIGNcccvvvivieieieeeeeeeeeeeerereeeereeeeeesesereesessssssssssssssssmsmsssees 109
TABLE 8 - DYNAMIC NODE LOAD ASPECTS DESIGN TABLEevvttttteeteeeeeerereeeeressesesrsssesssssssesssssssssssssssssssssmressseees 118

130

REFERENCES

Separation of Concerns and Aspect Oriented Programming

[AJ]
[AJPrimer]
[Aop]
[ATO8]

[AW99]

[Ber94]
[Beu99]

[Cza08)]

[DVDH99]
[FS99]
[HLO5]
[Kai 98]

[Kicog]

[KLM+97]

[Lamog]

[Lie92]

[LK97]
[LL96]

[LO97]

AspectJ™ Home Page. Xerox Parc Corporation
http://www. parc.xerox.com/spl/projects/aop/aspect]

The AspectJ™ Primer. A Practical Guide for Programmers. Xerox Parc Corporation
http://www. parc.xerox.com/spl/projects/aop/aspectj/primer

Aspect Oriented Programming Home Page. Xerox Parc Corporation
http://www. parc.xerox.com/spl/projects/aop

M. Aksit and B. Tekinerdogan, Solving the Modeling Problems of Object-Oriented Languages by
Composing Multiple Aspects Using Composition Filters, AOP'98 workshop position paper, 1998.

Veronica Arganaraz and Thomas Wallet. Aspect Oriented Programming vs. Subject Oriented Programming,
in Separation of concerns workshop, organized by Carine Lucas, for the EMOOSE Master. Nantes, February
1999.

L. Bergmans, The Composition Filters Object Model, Dept. of Computer Science, University of Twente,
1994.

Antoine Beugnard. How to make aspects re-usable, a proposition. Published in proceedings of ECOOP 99.
Lisbon, June 1999

K. Czanercki. Generative Programming: Principles and Techniques of Software Engineering Based on
Automated Configuration and Fragment-Based Components Models (Chapter 7). Ph.D. Thesis, Technische
Universitét [Imenau. Germany, 1998

Kris De Volder and Theo D’ Hondt. Aspect-Oriented Logic Meta Programming. Published in proceedings of
Reflection’ 99, St Malo, July 1999.

Andrés Farias and Mario Sudhalt. Definition of the security aspect in Java. Thesis report of the EMOOSE
Master. Ecole des Mines de Nantes, August 1999.

Walter L. Hirsch and Crigtina Videira Lopes. Separation of Concerns. Northeastern University technical
report NU-CCS-95-03, Boston, February 1995

Kai Bodllert. Aspect-Oriented Programming. Case Sudy: System Management Application. Diplom-
Wirtschaftsinformatiker (FH) Thesis. Flensburg University. November 1998.

Gregor Kiczaes. Aspect-oriented Programming: Going Beyond Objects for Better Separation of Concerns
in Design and I mplementation. Aspect-Oriented Programming talk, 1998
(http://www.parc.xerox.com/spl/projects/aop/invited-tal k)

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Chrigtina Videira Lopes, Jean-Marc
Loingtier, John Irwin. Aspect Oriented Programming. Published in proceedings of ECOOP 97, Finland,
June 1997.

John Lamping. The role of the base in aspect oriented programming. Published in proceedings of
ECOOP 99, Lishon, June 1999

Karl J. Lieberherr. Component Enhancement: An Adaptive Reusability Mechanism for Groups of
Collaborating Classes, in Component Enhancement: Information Processing *92, 12" World Computer
Congress, pages 179-185, J. Van Leeuween. Madrid, 1992.

Christina Videira Lopes and Gregor Kiczales. D: A Language Framework for Distributed Programming.
Xerox Palo Alto Research Center. Technical report SLP97-009, P9710044. February 1997.

Chrigtina Videira Lopes and Karl J. Lieberherr. AP/St++: Case-study of a MOP for Purposes of
Software Evolution. Published in proceedings of Reflection’96.

Karl J. Lieberherr and Doug Orleans, Preventive Program Maintenance in Demeter/Java (Research
Demonsgtration), in International Conference on Software Engineering, pages 604-605, ACM Press. Boston
1997.

131

[MLTK97]

[OHBS94]

[OKK+96]

[SW96]

K. Mens, C. Lopes, B. Tekinerdogan and G. Kiczales. Aspect Oriented Programming. In Jan Bosch and
Stuart Mitchell, editors. ECOOP 97 Workshop Reader, Lecture Notes in Computer Science, pp 483-496.
Springer Verlag 1997.

Harold Ossher, William Harrison, Frank Budinsky, and lan Simmonds, Subject-Oriented Programming:
Supporting Decentralized Development of Objects, Proceedings of the 7th IBM Conference on Object-
Oriented Technology, July, 1994

H. Ossher, M. Kaplan, A. Katz, W. Harrison, V. Kruskal, Specifying Subject-Oriented Composition, Theory
and Practice of Object Systems, volume 2, number 3, 1996, Wiley & Sons

R.J. Stroud and Z. Wu. Using Metaobject Protocols to Satisfy Non-Functional Requirements, Technical
Report 533, Department of Computing Science, University of Newcastle upon Tyne, 1995.

Threetiersarchitectures

[C/S]

[GR96]

[Hungg]

Client/Server Software Architectures— An Overview. Software Engineering Institute. 1999
http://www.sel.cmu.edu/str/descriptions/clientserver _body.html

J. Gallaugher and S. Ramanathan. Choosing a Client/Server Architecture. A Comparison of Two-Tier and
Three-Tier Systems. Information Systems Management Magazine. 1996

Ching-Ho Hung. The Implementation of Web-Databases by the Approach of Java Database Connectivity:
JDBC. (Chapter 2: Components and Architecture of Web Database). Master Thesis. Knowledge Systems
Ingtitute. Illinois, 1998

Hyper media Navigation

[GHIV94]

[GSP93]

[1SB95]

[LRSO8]

[RSG97]

[SRBY6]

[SR98]

E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns. Elements of Reusable Object-Oriented
Software. Addison Wesley. 1994

F. Garzotto, D. Schwabe, P. Paolini. HDM — A Model Based Approach to Hypermedia Application Design.
ACM Transaction on Information Systems. Vol. 11, pp 1-26. 1993

T. Isakowitz, E. Stohr and P. Balasubramaniam. RMM, A methodology for structured hypermedia design.
Comm ACM., pp 34-48. August 1995

F. Lyardet, G. Ross, D. Schwabe. Using Design Patterns in Educational Multimedia Applications.
Proceedings of EDMedia'98. Freiburg, Germany, 1998

G. Ross, D. Schwabe and A. Garrido. Pattern Systems for Hypermedia. Proceedings of PLOP97 -
University of Illinois, USA, 1997

Danid Schwabe, Gustavo Rossi and Simone D. J. Barbosa. Systematic Hypermedia Application Design with
OOHDM. Proceedings of Hypertext’ 96. Washington DC, USA, 1996

Daniel Schwabe and Gustavo Rossi. Developing Hypermedia Applications using OOHDM. Workshop on
Hypermedia Devel opment Processes, Methods and Models. Hypertext'98. Pittsburgh, USA, 1998

Technical solutions for Three-tiers Architectures

[ActX1]

[ActX2]

[ACWOS]

[Ada]

[Applet]

[Can9g]

[Cai]

ActiveX Controls. Microsoft COM Technol ogies Home Page. Microsoft Corporation.
http://www.microsoft.com/com/tech/activex.asp

ActiveX. Active Group Home Page.
http://www.activex.org

David Aries, Laurent Cailleteau and Thomas Wallet. CORBA et la Migration d’ Objets (CORBA and Object
Migration). Computer Sciences Formation Transversal Project. Ecole des Mines de Nantes. Nantes, 1998

Ada and the Web and Java. Home page. Kempe Software Capital Enterprises (KSCE).
http://www.adahome.com/Resources/Ada_Java.html

Applets. Java™ Technology Home Page. Sun Micrasystems, Inc.
http://www.javasoft.com/applets/index.html

Marco Cantu. Dominando o Delphi 4.0 — A Biblia (Mastering Delphi 4.0 — The Bible), Chapters 23
(Programacéo para Internet) e 24 (Programando WEB no lado do servidor). Makron Books, S&o Paulo,
1998.

A guideto HTML and CGI scripts. Mike Smith. University of Brighton. July 1995.
http://snowwhite.it.brighton.ac.uk/~mas/mas/courses/html/html.html

132

[Dcom]

[DD974]

[DD970)]

[FC97]

[GGMY7]

[GMGYS]

[Html1]

[HtmI2]

[Jdk]

[MAB+98]

[ND9S]

[Odbd]

[Omg]

[Rmi]

[Servi]

[Servi2]

[Stk]

[Tangg]

[Wil95]

[Z€i99]

Miscellaneous
[Lim95]

DCOM. Microsoft COM Technol ogies Home Page. Microsoft Corporation. 1999
http://microsoft.com/com/tech/DCOM .asp

H. M. Deitdl and P. J. Deitdl. Java™ How to Program. Chapter 1: Introduction to Computers and Java
Applets, pp 2-59. Published by Prentice-Hall International, Inc. ISBN 0-13-286163-1. New Jersey, 1997.

H. M. Deitel and P. J. Deitel. Java™ How to Program. Chapter 16: Networking, pp 816-859. Published by
Prentice-Hall International, Inc. ISBN 0-13-286163-1. New Jersey, 1997.

Jim Flynn and Bill Clarke. Visual J++™ — Programando em Java™. Parte I11: Construindo Programas em
Java, pp 141-167. Published by MAKRON Books do Brasi| Editoria Ltda. ISBN 85-346-0805-9. S&o Paolo,
1997

Jean-Marc Geib, Christophe Gransart and Philippe Merle. CORBA : Des concepts a la pratique (CORBA:
From concepts to practical use). Published by Editions Masson. ISBN 2225830460. Paris, France, October
1997

James Goding & Henry McGilton. The Java(tm) Language Environment: A White Paper. (Multithreading
chapter). Sun Microsystems, Inc. 1997
http://www.pas.com.au/java/doc/javawhitepaper_1.html

W3C Home Page for HyperText Markup Language.
http://www.w3.org/MarkUp

HTML Tutoria. Tim Clinton and CultureNet, March 1995
http://www.ffa.ucal gary.cal/cnet/html -course/contents.html

JDK™ 1.2 Documentation on Javasoft Home Page. Sun Microsystems, Inc. 1999
http://www.javasoft.com

Martin Murhammer, Orcun Atakan, Stefan Bretz, Larry Pugh, Kazunari Suzuki, David Wood. TCP/IP
Tutorial and Technical Overview. IBM Redbook GG24-3376-05. Part |: Architecture and Core Protocols, pp
1-93. ISBN number 0738412007. 1998

Robert Niles and Jeffry Dwight. CGl em Exemplos. Trandated from CGIl By Examples by Eduardo Nunes.
Makron Books. S&o Paulo, 1998.

ODBC. Microsoft ODBC Technol ogies Home Page. Microsoft Corporation. 1999
http://www.microsoft.com/data/odbc

Object Management Group Home Page. Object Management Group, Inc. 1998
http://www.omg.org

RMI. The Java™ tutorial. Sun Microsystems, Inc. 1999
http://java.sun.com/docs/books/tutorial/rmi/index.html

Servlets. The Java™ tutorial. Sun Microsystems, Inc. 1999
http://java.sun.com/docs/books/tutorial/servlets/overview/index.html

Java Web Server. JavaServer Group Home Page. Sun Microsystems, Inc. 1999
http://jserv.javasoft.com/index.html

HP Distributed Smalltalk. Hewlett-Packard Company Home Page.
http://www.hp.com

Andrew S. Tanenbaum. Computer Networks (Chapter 10). Published by Prentice Hall. ISBN 0-13-162959-
X. New Jersey, 1989

Arthur Wilson. An introduction to CGI Scripts and HTML Forms. Workbook. University of Edinburgh.
November 1995

Stefan Zeiger. Serviets Essentials. April 1999
http://www.novocode.com/doc/servl et-essential s

J C. M Lima Knowedge representation in software packages aimed to know about their users. In
"Advances in Database and Expert Systems’. 1|AS Editions, ISBN 0921836228, Windsor, Canada, pp 110-
114, 1995.

133

[Lim97]

[RLKS98]

[RSW99]

J. C. M. Lima Teaching intelligently by computers: a formal model based on an object notation.

Universidade Estadual do Norte Fluminenese, Centro de Ciéncia e Tecnologia, Research report 12. 97,
Campos, Brasil, 1997.

A. Romanczuck-Requile, J. C. M. Lima, C. Kaestner, E. Scalabrin. A Contextual Help System Based on
Intelligent Diagnosis Processing Aiming to Design and Maintain Object-Oriented Packages. In "Lecture
Notesin Computer Science", ISBN 3-540-65460-7 1543, Springer-Verlag, pp. 64-65, 1998.

Projeto Logico/Fisico de Modernizagdo do Sintese para Windows (Logical/Physical Project of the Sntese
Modernization for Windows). Internal Technical Report. DATAPREV. Brazil, January 1999.

134

APPENDIX A — RECSINWIN GRAPHICAL RELATIONAL MODEL

This appendix presents the graphical relational model used to describes the tables structure used for the
local structural database of the RECSINWIN application (adapted from [RSW99]).

Fig. 2.1.1 GRUPO-USUARIO
— GRUPO-ID
AREA-GRUPO GRUPO X
USUARIO-ID
GRUPO-ID
GRUPO-ID .
i MNEMONICO
—» AREA-ID
NOME
DESCRIGAO SITUAGAO
CONCEITO _
= ~ SITUAGAO-ID
AREA SITUAGAO-ID |ja— |
NOME
ACESSO ~
. . DESCRIGAO
AREA -ID DT-CRIACAO
MNEMONICO DT-MANUTENGAO
NOME
ACESSO
P Publico
R Restrito
COMPONENTES SERIE
AGREGADA-ID GRUPO-ID -
. SERIE-UESPACIAL
COMPONENTE-ID\ AREA-ID
OPERACAO-ID SERIE-ID SERIE-ID
MNEMONICO UESPACIAL-ID
NOME
DESCRIGAO
= CONCEITO
OPERAGAO B
CRITERIOS
OPERAGAO-ID UTEMPO-ID
~ UTEMPORAL
NOME AGREGAGAO
—»| UNIDADE-ID UTEMPO-ID -
CONVERSAO
DECIMAIS NOME
- ANO-BASE UTEMPO-ID
EVENTO SERIE_EVENTO|
SEGURANGA UTEMPO-ID
EVENTO-ID SERIE-ID jl«——— SITUAGAO-ID -
B \ © AGREGAGAO
DESCRIGAO EVENTO-ID TIPO_ID
PROPAGAGCAO s ELEMENTAR
PERIODO
N |AGREGADA
DEFASAGEM
UNIDADE
VALINEXISTE
UNIDADE-ID FONTE
TIPO ATUALIZAGAO
NOME ATUALIZADOR |e4—— _
PROPAGAGAO
PRIM-DADO
ULT-DADO S Propagavel
DT-CRIAGCAO . X
" N Néo Propagével
- DT-MANUTENGAO|
SITUACAO ~
DT-ATUALIZAGAO
SITUAGAO-ID
VALINEXISTE
NOME
DESCRIGCAO S Zero
N Ignorado
TIPO-SERIE USUARIO
TIPO-ID CLIENTE-ID
OPERACAO UESPACIAL-ID
SIGNIFICADO USUARIO-ID
LEGENDA:
TABELAS DO BDSINWIN ESTRUTURAS

INTERNAS DE PROGRAMAS

135

UECONVERSAO

UEORIGEM
UEDESTINO

SERIE-UESPACIAL

SERIE-ID

UESPACIAL-ID

Fig.2.1.2

UESPACIAL

UESPACIAL-ID

UESPACIAL_USUARIO

UESPACIAL_ID
USUARIO_ID

CLIENTE

CLIENTE_ID

MNEMONICO
NOME

DESCRICAO
ACESSO

DT-CRIAGAO
DT-MANUTENGAQ

ESPACO

UESPACIAL-ID

ECONVERSAO

UEORIGEM
EORIGEM

UEDESTINO
EDESTINO

ESPACO-ID
SIGLA
CODIGO
ABREVIAGAO
DESCRICAO

UESPACIAL_ID
ESPACO_ID

USUARIO

USUARIO_ID
UESPACIAL_ID
ESPACO_ID

ACESSO

P | PUBLICO

R | RESTRITO

CLIENTE

CLIENTE_ID
UESPACIAL_ID
ESPACO_ID

USUARIO

USUARIO_ID
UESPACIAL_ID
ESPAGCO_ID

136

UESPACALD

UESPACALD
EPAQOID

Fig 213

TPO D
0 D)
NSTTUCXO T \ ,
SETORD
DI CRACRO TPOD

QENTE STUAGAOCLENTE
STUAGAOD
QLENTED
R NOMVE
DESCRGAO
-
UESPACALD
EPAQO D
APTDAO
PTIOA
USLAROAPTDA(EVONGO
NOVE

137

APPENDIX B— THE NODE AS A NAVIGATIONAL VIEW
HYPERMEDIA SYSTEM PATTERN

This description is extracted from [RSG97].

Node as a Navigational View

Problem: How to add navigation capabilities to the components of an object-oriented (OO) application,
therefore adding hypermedia functionality to the application ?

Forces:

We want to add hypermedia functionality to existing applications

Original interface behavior must be preserved, and hypermedia behavior must be added

Modifications of objectsin the original application isundesirable

Redefining the original GUI to include hypermedia capabilities (bookmarks, backtracking, history
maintenance, to name a few) is undesirable and many times unfeasible

It isdifficult to include dynamic links to the existing interface

Solution: Define a navigational layer between the application to be enhanced and its graphical interface,
build up of objects observers are called nodes. Implement the navigational behavior in nodes. Then define
each node' s GUI adding means of activating node’ s behavior.

This solution implies defining a hypermedia node as dependent of an object or group of objects, thus
separating hypertext functionality from the behavior of the application and its interface.

Known uses: The OOHDM methodology defines the concepts of Node as a navigational view over a
conceptual moddl [Schwabe96]. In [Bieber95] the authors present an architecture for adding hypertext
functionality, where nodes are defined as representations of the objects of interest to the application. A
similar approach has been used in the Devise Hypermedia Model [Gronbaek94b].

Related patterns: Navigation is performed by links (Link as a Relationship View pattern) and activated by
anchors (Anchor pattern). Nodes are Observers [Gamma94].

References:
[Bieber95] M. Bieber and C. Kacmar. “ Designing Hypertext Support for Computational Applications”’.
Communications of the ACM 38 (8), August, 1995
[Gamma94] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns. Elements of Reusable

Object-Oriented Software. Addison Wesley. 1994

[Gronbaek94b] K. Gronbaek. “Compositesin a Dexter-Based Hypermedia Framework” . Proceedings of the
European Conference on Hypermedia Technology, ECHT'94, Edinburgh, Scotland,
September 1994, pp. 59-69.

[Schwabed6] Daniel Schwabe, Gustavo Ross and Simone D. J. Barbosa. Systematic Hypermedia

Application Design with OOHDM. Proceedings of Hypertext’96. Washington DC, USA,
1996

138

APPENDIX C — NAVIGATIONAL FRAMEWORK CLASSES DESCRIPTION

This appendix describes the classes of the navigational framework presented in Part [11.3.1.2. Some methods
are described in Java to explain how they should be implemented (even if it could be in another programming

language).

Panel class

This abstract class is used to model a frame that contains
Some components.

Class Variables
context: a public Cont ext . Will be used by the instances of
the subclasses (Node and Decor at or) for their initializing.

Instance Variables
componenty]: a private Vect or of Conponent . Used to
reference the different components of the Pandl.
name apublicStri ng

Methods
reset(): a public abstract method that will be overridden in he
subclasses to provide a way to initialize (or re-initialize) the
eements of the container.
show(): a public abstract method which will be overridden to
make visible the panel
hide(): a public abstract method which will be overridden to
makeinvisible the panel
activate(): a public method used to make accessible the pandl.
The body of this method depends of the programming
language and of theinterface kind.
desactivate(): a public method used to make inaccessible the
pand. The body of this method depends of the programming
language and of theinterface kind.
AddComponent(Component c): a public method used to add a
component to the pand.

Node class

This abstract subclass of Panel is used to mode
perceivable navigational units. A node will contain different
components or decorators.

Instance Variables
decoratory]: a private Vect or of Decor at or . Here are
stored the different decorators applied to the node.

Methods
reset(): this public template method is used to initialize or re-
initialize the dements composing the node (decorators and
components), thanks to the context.

public void reset() {
for (int i=0, i<decorators.size(), i++)
decorators[i].reset(); /1
Decorators initialisation
}
conponent sReset () ;
initialisation

}

/1 Conponents

resetComponents(): this abstract public method will be
overridden in the subclasses to describe the way the
components of the node are initialized.

addDecorator (Decorator d): this public method is used to add
adecorator to the node.

Decor ator_class

This abstract subclass of Panel is used to model node's
decorators. This class will be sub-classed for each new kind of
decorator.

NavigNode class

This abstract subclass of Node is used to modd the
navigational nodes. This class will be sub-classed in the application
for each new navigational node.

Methods
show(): a public method which make visible the navigational
node. The body of this method depends of the programming
language and of theinterface kind.
hide(): a public method which make invisble the
navigational node. The body of this method depends of the
programming language and of the interface kind.

FrameNode class

This abstract subclass of Node is used to mode both intra
and extra nodes. Concretely these nodes will appear as a new frame
on top of the current navigational node.

Instance variable
frame: a private Fr ame used to show the node

Methods
showFrame(): a protected method used to show the frame.
Will be called by the subclasses show method. s
closeFrame(): a protected method used to close the frame.
Will be called by the subclasseshi de method.
addComponent(Component ¢): a public method used to add a
component to the frame

IntraNode class

This abstract subclass of Fr ameNode is used to mode the
intra nodes. This class will be sub-classed in the application for
each new intra node.

Methods

show(): a public method which makes visible the intra node.
The body of this method depends of the programming
language and of theinterface kind.
hide(): a public method which make invisible the intra node.
The body of this method depends of the programming
language and of theinterface kind.

139

ExtraNode class

This abstract subclass of Node is used to model the extra
nodes. This class will be sub-classed in the application for each
new extranode.

Methods
show(): a public method which makes visible the intra node.
The body of this method depends of the programming
language and of theinterface kind.
hide(): a public method which make invisible the intra node.
The body of this method depends of the programming
language and of theinterface kind.

Component class

This abstract class is used as a super class of al the different
graphical components that will be used.

Methods
show(): a public method to make visible the component.
hide(): a public method to make invisible the component.
activate() : a public method to make available the component.
desactivate(): a public method to make unavailable the
component.

Anchor class

This subclass of Component is used to encapsulate a
navigational link. It will be instantiated for each new anchor of
each node.

Instance Variables
link: aprivateLi nk

Methods
proceedLink(): a public method that calls the navi gat e
method of thelink.

Link class

This class is used to model navigationa links. Each link of
an anchor will be a new instance of this class, with its own target
and one of the possible transformations.

Instance Variables
target: aprivate Tar get
transformation: aprivate Tr ansf or mat i on

Methods
navigate(): a public method used to define the navigation.
voi d navigate(){
String targetNane = target.getTarget();
transformation. acti on(target Nane) ;

}
Target class

Thisclassis used to define the target of a navigation.

Instance Variables
target: aprivate String which isthe name of thetarget.

Methods
getTarget(): this public method return the name of the target.

DynamicT ar get class

This abstract class is used to model a Tar get whose target
name will be define dynamicaly in the navigation time This
dynamicity generally requires to use the context. This class will be
sub-classed for each new dynamic target.

Class Variables
context: a private static Cont ext . It will be used to define
dynamically thetarget name.
Methods
getTarget(): public template method

public String getTarget() {
defineTarget();
return target;

defineTarget(): public abstract method that will be overridden
for each specific dynamic target. Here should be defined the
way atarget isdynamically created.

Transfor mation class

This abstract class is used to mode the actions to do for a
navigation between two nodes.

Class Variables
context: a private static Cont ext . It will be used in the
different actions.

Methods
action(String target): a template public method.

public void action(String target) {
Node t arget Node =

cont ext . get Node(target);
speci fi cAction(target);
t ar get Node. show() ;

specificAction(String target): an abstract protected method
that will be overridden to define actions specific to some
kinds of transformations.

NavigTransfor mation class

This cdass represents transformations happening when
navigating from a navigational node to ancther one.

Methods
specificAction(String target): this method describes the
specific actions realized for thiskind of navigation:

protected void specificAction(String target)

{
cont ext. get Current Node() . hi de();
cont ext . set Current Node(cont ext . get Node

(target));
context. get Current Node().reset();
}

IntraTransfor mation class

This cdass represents transformations happening when
navigating from a navigational nodeto an intra node.

Methods

140

specificAction(String target): this method describes the
specific actions realized for thiskind of navigation:

protected void specificAction(String target)

{
cont ext. get Current Node() . desactivate();
cont ext . get Node(target).reset()

ExtraTransfor mation class

This cdass represents transformations happening when
navigating from a navigationa node to an extranode.

Methods
specificAction(String target): this method describes the
specific actionsrealized for thiskind of navigation:

protected void specificAction(String target)

{
}

cont ext. get Node(target).reset();

Context class

This class is used to mode the navigational context. This
class will be instantiated once for each new user. This object will
encapsulate all the needed information about the user’ s navigation.

Instance Variables
currentNode: a private Node that refers the current node of
the navigation.
nodesManager: a private NodesManager that will be used
to create new nodes.

Methods
getCurrentNode(): a public method that return the current
node.
init(): apublic method used to initialize the context.
setCurrentNode(node n): to set the current node.
getNode(String target): this method will call the get Node
method of the nodes manager.

CacheContext class

This class is used as a navigational context but also as a
cache for nodes. Instead of always cresting new nodes, they are
cached in this context

and ssimply re-initialized when needed.

I nstances Variables

navigNodeq]: a public vector of Node. Here are referenced
the navigationa nodes that have been created.

intraNodeg]]: a public vector of Node. Here are referenced
theintra-nodes that have been created.

extraNodeq]: a public vector of Node that references the
extra nodes.

currentExtraNode: a private Ext r aNode that reference the
last extranode reached.

Methods
addNode(Node n): a public method used to add a node in the
cache context. This method uses the class of the node to add it
to the appropriate vector (navi gNodes, i ntraNodes or
ext raNodes) .

NodesM anager class

This abstract class is used to manage nodes demands. It is
used to find an existing node or to create a new node. This class
will be overridden to define the nodes creation for a specific
application.

Instance Variables
context: aprivate Cont ext .

Methods
getNode(String node): a public method to get a node out of its
name. If the context is not a CacheCont ext , this method
just cals the cr eat eNode method. If it is, it will look for
the appropriate node in the three nodes vectors of the cache
context (navi gNodes, i ntraNodes or extraNodes)
to find the wanted node. If this node does not exist, the
cr eat eNode method will be called.

CreateNode(String node): a protected abstract method that
will be overridden to define the creation of nodes out of their
name (which is specific to each application).

141

APPENDIX D — RECINTERNET INTERFACE DESCRIPTION

In this appendix we present the different nodes and decorators used in RECINTERNET. The drawings
shows the different elements as well as the way they are organized. The final appearance of the implemented
interface can be different from these drawings since we use them just to identify the different components of each
node and organize them. The description of each node gives the characteristics of all its components (type,
behavior, etc...).

Decorator 0

This decorator will be added to all the navigational nodes. It factor out some more functionalities and
information.

(D.1) Location element: this eement shows the user where he is in his navigation. For that it shows the name of
the navigational nodes, and differentiates the current node from the others.

Type: text area

Modification: impossible

Visible aways

(D.3) Help anchor:

Type: anchor

Visble always

Available: aways

]gla“ . Modificatiqn: click

D& . Target: static: Help extra-node.
What for: provide appropriate help to the user
On click: navigation to the Help extra-node with the information corresponding to the current context. Search by

IJ?I]B"""-Ius topics and navigation are possible into this help system node.
(D.4) Previous anchor:
et Type: anchor
D'SF Visible: always

Available: in Node 211, 212, 221, 222, 3

{'lElp . Modification: click

[D3 . Target: dynamic: from Node 211 and Node 221, the target is Node 1. From Node 212, the target is Node 211.
From Node 222, the target is Node 221. From Node 3, the target is either Node 212 or Node 222, depending of
the node where the user was previoudly.

On click: navigation to the previous node (as specified in Target). When leaving the origin node, the states of all
the dements of the node are stored in a context object. When reaching the target node, the user finds the
edements of this node exactly how they were when he quitted this node.

(D.5) Next anchor:
Type: button
Visble aways
Available: only from anodethat has been reached with the Previous navigation.
Modification: click
Target: dynamic: from Node 1, the target is either Node 211 or Node 221, depending of the node where the user was previsously. From
Node 211, thetarget is Node 212. From Node 221, thetarget is Node 222. From Node 212 or Node 222, the target is Node 3.
On dlick: navigation to the next node (as specified in Target). When reaching this target node, the user finds the elements of this node
exactly how they were when he quitted this node (with the previous anchor).

(D.6) Sart anchor:
Type: button
Caption: “ Start” in Node 0, “ Re-start” in Node 1, Node 211, Node 212, Node 221, Node 222 and Node 3.
Visible aways
Available: dways
Modification: click
Target: static: Node 1
On click: navigation

(D.7) Exit anchor:
Type: button
Visible aways
Available: dways
Modification: click
Target: static: Node 0
On click: navigation

142

Node 0 — Welcome

Password

Dliﬁevious

D_S]Next

DB]HeIp

D7) Exit

Thisisthe welcoming node.

(0.1) SINTESE Information element: this element provides information about SINTESE
Type: text area

Node O init: visihble
Modification: impossible

(0.2) Company Information element: this element provides information about the company (logo...)
Type: text area
NodeOinit: visble
Modification: impossible

(0.3) Help element: Description of how to use the different commands of the decorator
Type: text area

Node O init: visible
Modification: impossible

(0.4) Login/Password element: this element enables the user to write hislogin and his password
Type: text field + password field
NodeOinit: visble
Node O default value: empty and empty
Modification: write
Available: dways

143

Node 1 — Series Selection

(11

Available Series

(12

|c131 ‘m} |t15:- |uﬁ} |¢m |t131 |

Gowricad

Selected Series

(19
Eﬁgmpaﬁbility] Eiaaatial Way j E'ﬁgpord mw]

In this node, the user will be able to choose a subset of
series.

Data elements

(1.1) Themes Structure Tree element: this dement is an
arborescent list of the different themes of series. They are
organized in directories grouping themes of series. This
structure is extracted from the database of the web server.

Type: arborescent list

Node 1 init: visible

Node 1 init values: the different directories grouping themes

of series

Node 1 init expansion: collapsed

Madification: extend or collapse directory, selection

Available: dways

Sdlection: oneitem or onedirectory

On selection update:

If a directory is selected, the Available Series element (1.2) is

et to empty.

If an item is selected, the Available Series element (1.2) is

filled in with the available series corresponding to the sdected

theme.

(1.2) Available Series element: in this element appear the
different series available for the theme sdected in the Themes
Structure Tree element (1.1).

Type: list

Node 1 init: visible

Node 1 init values. empty

Modification: selection

Available: when not empty

Sdection: oneitem

On sdection update: the First, Second, Third Dimension
Space Unit elements (1.3 to 1.5), the Time Unit element (1.6),
the First Data element (1.7) and the Last Data element (1.8)
are filled in with the information corresponding to the
selected serie.

(1.3 to 1.5) First, Second and Third Dimension Space Unit
dements these dement provides the space units of the
selected serie

Type: 3text fidds

Node 1 init: visible

Modification: impossible

(1.6) Time Unit element: this eement provides the time unit
of the sdlected serie

Type: text field

Node 1 init: visible

Modification: impossible

(1.7) First Data element: this eement provides the date of the
first data of the sdlected serie

Type: text field

Node 1 init: visible

Modification: impossible

(1.8) Last Data element: this element provides the date of the
|ast data of the selected serie
Type: text field
Node 1init: visible
Modification: impossible
(1.9) Selected Series element: in this element appear the

different seriesthat the user have chosen.
Type: list

144

Node 1 init: visible - empty

Modification: sdection

Available: when not empty

Sdection: oneitem

On sdlection update: nothing
Functional elements

(1.10) Select Serie element:

Type: button

Node 1 init: visible

Modification: click

Available: when a serie is sdected in the Available Series
Element (1.2)

On click: the sdlected serie of the Available Series element
(1.2) is added to the Selected Series element (1.9) if it was not
dready in.

(1.11) Unselect Serie element:

Type: button

Node 1 init: visible

Modification: click

Available when a serie is sdected in the Selected Series
Element (1.9)

On dlick: the selected serie of the Selected Series Element
(1.9) isremoved.

(1.12) Download element:

Type: button

Node 1 init: visible

Modification: click

Available. when the Available Series Element (1.2) is not
empty.

Function: provide the user a text file containing the list of the
available seriesfor the sdlected theme.

On click: starts aweb browser classical downloading process.
I ntra-navigational elements

(1.13) Detail Compatibility element:

Type: anchor

Node 1 init: visible

Modification: click

Available: when the Selected Series Element (1.9) is not
empty.

Target: static: Node 1 + Series Compatibility

On click: navigation

Navigational elements

(1.14) Spatial Way element:

Type: anchor

Node 1 init: visible

Modification: click

Available. when the Selected Series Element (1.9) is not
empty, and when we have space compatibility between the
selected series

Target: static: Node 211

On click: navigation

(1.15) Temporal Way element:

Type: anchor

Node 1 init: visible

Modification: click

Available. when the Selected Series Element (1.9) is not
empty

Target: static: Node 221

On click: navigation

Node 1C — Series Compatibility Details

Download
(1C.5)

(1C.6)

Compatibility

— Compatible —
| _Time Units

Compatible
—= - Finst =

Space Units

_ Dimension |

- Compatible |
Dimension |

-— —Second ——

Space Units

Compatible
_Dimension

Space Units

This intra node shows some extra information about the

compatibility of the selected series.

whi

(1C.1) Compatible Time Units element: this eement shows

ch arethe compatible time units for the sdlected series

Type: set of text fields
Node 1C init: visible
Modification: impossible

(1C.2) to (1C.4) Compatible First, Second and Third
Dimension Space Units elements. these elements show which
are the compatible space unitsfor the selected series

Type: 3 setsof text fields

Node 1C init: visible

Modification: impossible

(1C.5) Download element:
Type: button
Node 1C init: visible
Modification: click
Available: dways
Function: provide the user a text file containing the
compatibility information of the selected series
On click: starts aweb browser classical downloading process.

(1C.6) OK element:

Type: button

Node 1C init: visible

Modification: click

Available: dways

On click: exit from this node to go back to the Node 1

145

Node 211 — Lines Composition — Spatial Way

LINES

1st Dimension Units
(21.2)

2nd Dimension Units
(211.3)

3rd Dimension Units

21.8

Selected
Unit

(211.5)

{211.6

Arborescent list of
211.4) available elements

{211.9)
Selected
Elements

M
-
-
-
=

(21.7

In this node the user defines what spatial elements will
appear in thelines of the result sheet.

Data elements

(211.2) to (211.4) First, Second and Third Dimension Units
elements:
Type: linked lists
Node 211: visible
Node 211 init values: for the available dement(s), the units
(in the corresponding dimension) for which the set of sdected
series are defined.
Node 211 init selection: none
Available: for the dement(s) corresponding to the dimensions
for which the set of sdected series are defined, always. For
the other(s), never.
Modification: selection
On sdection update: when the user sdects something in one
of thethreelists, the two others are set to no selection.

(211.5) Selected Unit element: this element shows the unit
chosen by the user.
Type: text field
Node 211 init: visible
Node 211 init default value: nothing
Modification: impossible

(211.6) Arborescent List of Available Elements element: this
dement provides the user different possibilities of selections
related to the selected unit of the Selected Unit element(211.5)

Type: arborescent list

Node 211 init: visible

Node 211 init values: nothing

Modification: extend or collapse directories, selection

Available: when not empty

Sdection: multiple sdlection of items of a same directory.
Multiple sdection of items from different directories is not
possible. Selection of directoriesisnot possible.

On directory collapse: nothing

On sdection update: nothing

On directory extension: the directory is open and the items
corresponding to the directory (from the web server database)
appear

(211.7) Selected Elements element: in this eement appear the
different eements chosen by the user

Type: list

Node 211 init: visible

Node 211 init values: empty
Modification: selection
Available: when not empty
Sdection: oneitem

On sdection update: nothing

Functional elements

(211.8) Select Unit element:

Type: button

Node 211 init: visible

Modification: click

Available: when a unit is selected in one of the First, Second
and Third Dimension Units e ements (211.2 to 211.4)

On click:

If the unit of the Selected Unit Element (211.5) is the same
that the unit sdected in the First, Second and Third
Dimension Units elements (211.2 to 211.4), nothing happens.

Else

146

The Sdected Unit dement (211.5) fidd is set to the name of
the sdlected unit in the Firgt, Second and Third Dimension
Units dements (211.2 to 211.4)

The Arborescent List of Available Elements element (211.6) is
initialised with the items corresponding to the sdected time
unit and organised in parts (let's suppose for these
explanations that the sdected time unit is Posto), and by
default all thedirectories are collapsed:

Part 1: this part contains only the item “All the Postos of
Brasil”.

Part 2: this part contains a directory caled “Postos of
Brasil”. The items of this directory are al the Postos of
Brasil, ordered alphabetically.

Part 3, 4, 5...: the unit Posto can be converted into bigger
units (like Estado, Regiao...). There will be one part for each
of this converted units. Each of these parts will contain one
directory. Its name will be for example “ All the Postos of an
Estado”. The items of this directory will be the different
Estados. If the user sdects for example the state “Rio de
Janeiro” in this directory, it means the lines will be all the
Postos of the state Rio de Janeiro, one per line.

When a directory contains more items than a defined limit,
this directory will appear, but it will not be possible to open
thisdirectory to select someitems.

The Sdlected Elements element (211.7) is set to empty

(211.9) Select Element element:

Type: button

Node 211 init: visible

Modification: click

Available. when at least one eement is sdected in the
Arborescent List of Available Elements element (211.6)

On click:
If the Selected Elements e ement (211.7) was empty:

The sdected dements of the Arborescent List of Available
Elements element (211.6) are added to the Selected Elements
eement (211.7)

Else:

If the dements of the Selected Elements element (211.7) are
from the same directory than the sdected dements of the
Arborescent List of Available Elements element (211.6):

The sdected dements of the Arborescent List of Available
Elements dement (211.6) that are different from the elements
of the Sdected Elements eement (211.7) are added to the
Sdlected Elements element (211.7)

Else:

The Sdected Elements dement (211.7) is set to empty, and
then the sdected elements of the Arborescent List of
Available Elements dlement (211.6) are added to it.

(211.10) Unselect Element element:
Type: button
Node 211 init: visible
Modification: click
Available: when an eement of the Selected Elements element
(211.7) is selected
On dlick: the sdlected serie of the Selected Elements element
(211.7) isremoved.

Navigational elements

(211.11) Continue element:
Type: anchor
Node 211 init: visible
Modification: click
Available when the Sdlected Elements dement (211.7) is not
empty
Target: static: Node 212
On click: navigation

147

Node 212 — Columns & Sub-Columns Composition — Spatial Way

COLUMNS SUB-COLUMNS

2123 Time Unit ‘ ‘[212_3)2nd Dimension Units 212.9) 3rd Dimension Units
Days

et d) Second Third
Units Dimension Dimension

212.5) Elements Elements

Re-start Years
(D6 2126) 212.10) 212.11)

evious 212.14) 21219 212.16) @ @12.18) 21217) @ 212.19)

MNext Selected

Units
212.7) 212.12)

D5)

Selected Selected
Elements Elements

212.13)

(DB)HeIp .

D7) Exit

CZ Submit Request j
12.20)

In this node the user defines how will be organized the
columns and sub-columns of the result sheet.

Data elements

(212.3) Time Unit element: this eement provides the user the
possibility to choose between the time units available for the
sdected series (that are included in: day, week, decade,
fortnight, month, bimestre, trimestre, quadrimestre, semestre,
yesr).

Type: List

Node 212 init: visible

Node 212 init default selection: none

Node 212 init values: the time units for which the set of

selected seriesis defined

Available: dways

Modification: select one e ement

On selection update:

If thesdectionis* year” :

The Days dement (212.4) and the Units ement (212.5) are

settoinvishble.

The Selected Units element (212.7) isinitialised to empty.

Setting of the Y ears element (212.6):

Vaues years of the union of the periods for which the

selected series are defined.

Sdlection: none

Else|f thesdectionis* day” :
Setting of the Days element (212.4):
Vishble yes

Values: integersfrom 1 to 31
Sdlection: none

Setting of the Units element (212.5):
Vishble yes

Caption: months

Values: the names of the 12 months of the year

Sdlection: none

Setting of the Y ears element (212.6):

Values the years of the union of the periods for which the
selected series are defined.

Sdlection: none

The Selected Units element (212.7) isinitialised to empty.

Else:

The Days element (212.4) isset toinvisble.

The Selected Units element (212.7) isinitialised to empty.
Setting of the Units element (212.5):

Vishble yes

Caption: name of thetime unit selected

Values: integers from 1 to MAX, where MAX is the number of
thetime unit selected in ayear.

Sdlection: none

Setting of the Y ears element (212.6):

Values the years of the union of the periods for which the
selected series are defined.

Sdlection: none

(212.4) Days element:

Type: list

Node 212 init: invisible
Available: dways

Modification: selection (oneitem)
On sdection update: nothing

(212.5) Units element:

Type: list

Node 212 init: invisible
Available: dways

Modification: selection (oneitem)
On sdlection update: nothing

148

(212.6) Years element:
Type: list
Node 212 init: visible
Available: dways
Modification: selection (oneitem)
On sdlection update: nothing

(212.7) Selected Units element: in this dement appear the
different unitsinstances chosen by the user.

Type: list

Node 212 init: visible

Modification: selection

Available: when not empty

Sdlection: oneitem

On sdlection update: nothing

(212.8) to (212.9) Second and Third Dimension Units elements:
Type: lists
Node 212 init: visible
Node 212 init values: for the available eement(s), the units
(in the corresponding dimension) for which the set of selected
seriesare defined + theitem “ no sdlection”
Node 212 init slection: item “ no sdlection”
Available: only for the element(s) corresponding to the
dimensions for which the set of selected series are defined.
Modification: selection
On sdection update the corresponding Xth Dimension
Elements element (212.10 or 212.11) is filled in with the
dements of the web server database corresponding to the
sdlected unit + anitem “ al dements’ .

(212.10) to (212.11) Second and Third Dimension Elements
elements: lists of the available eements corresponding to the
selected unit

Type: lists

Node 212 init: visible

Node 212 init values: nothing

Available. when not empty, and only for the eement(s)

corresponding to the dimensions for which the set of selected

series are defined.

Modification: selection

On sdlection update: nothing

(212.12) to (212.13) Second and Third Dimension Selected
Elements elements: lists of the elements chosen by the user for
each dimension

Type: list

Node 212 init: visible

Modification: selection

Available when not empty, only for the eement(s)

corresponding to the dimensions for which the set of selected

series are defined.

Sdlection: oneitem

On sdlection update: nothing

Functionnal elements

(212.14) Select Unit element:
Type: button
Node 212 init: invisible
Modification: click

Available: if the elements Days element (212.4), Units
element (212.5) and Years element (212.6) that are visble
have each oneitem sdected.

On click: a composition of the sdlection of the Days element
(212.4) (if it is visble), the sdection of the Units element
(212.5) (if it is visible) and the sdlection of the Years element
(212.6) is constructed and added to the Selected Units element
(212.7) if it is a valid composition. A composition is valid
when the sdected day effectively exists in the given month
(Monthswith 30 or 31 days, February with 28 or 29 days).

(212.15) Unselect Unit element:

Type: button

Node 212 init: invisible

Modification: click

Available: when an dement of the Selected Units element
(212.7) isselected

On dick: the sdlected serie of the Selected Units element
(212.7) isremoved.

(212.16 t0 212.17) Second and Third Dimension Select Element
elements:

Type: buttons

Node 212 init: visible

Modification: click

Available; if one item is sdected in the corresponding Xth
Dimension Elements element (212.10 or 212.11), and only for
the dement(s) corresponding to the dimensions for which the
set of selected series are defined.

On click: the sdected element of the corresponding Xth
Dimension Elements element (212.10 or 212.11) is added to
the corresponding Xth Dimension Selected Elements element
(212.12 or 212.13) if it was not aready in.

(212.18 to 212.19) Second and Third Dimension Unselect
Element elements:

Type: buttons

Node 212 init: visible

Modification: click

Available when an eement of the corresponding Xth
Dimension Selected Elements (212.12 or 212.13) is selected,
and only for the eement(s) corresponding to the dimensions
for which the set of selected series are defined.

On click: the sdected eement of the corresponding Xth
Dimension Selected Elements 212.12 or 212.13) isremoved.

Navigational Elements

(212.20) Submit Request element:
Type: anchor
Node 212 init: visible
Modification: click
Available if:
The Sdlected Units element (212.7) contains at least oneitem
For each available dimension in the Sub-Columns Part:
The corresponding Xth Dimension Selected Elements element
(212.12 or 212.13) contains at least one element, except if the
selection of the corresponding Xth Dimension Units element
(212.10 or 212.11) is“nosdection”.
Target: static: Node 3
On click: navigation

149

Node 221 — Lines & Columns Composition — Temporal Way

LINES

Time Unit
(221.2)

First Element
(221.3)

Quantity
(221.4)

COLUMNS

Months
{221.5)

Years
{221.6)

(221.3) (221.9)

Selected
Units

(221.7)

221_m;:ontlnue

In this node the user defines what temporal eements will
appear in thelines and the columns of the result shest.

Data elements

(221.2) Time Unit element: this element provides the user the
possibility to choose between the time units available for the
sdected series (that are included in: day, week, decade,
fortnight, month, bimestre, trimestre, quadrimestre, semestre,
yesr).

Type: list

Node 221 init: visible

Node 221 init default values: the time units for which al the

selected series are defined

Node 221 init default selection: none

Available: dways

Modification: select one dement

On selection update:

If the sdlectionis* year” :

Setting of the First Element element (221.3):

Vishble yes

Values: the years of the unions of the periods for which the

selected series are defined.

Sdection: thefirst of theseyears.

Setting of the Quantity eement (221.4):

Vishble yes

Values: integersfrom 1 to 999

Sdection: 1

All the dements of the Columns Part are set to invisible.

If the sdlectionisnot “ year” :

If the sdlection is“ day”:

The First Element dement (221.3) and the Quantity element
(221.4) areset toinvisible.

The Months element (221.5), Sdected Units element (221.7),
Sdect dement (221.8) and Unselect element (221.9) are set to
visble.

Setting of the Y ears dement (221.6):

Vishble yes

Values: the years of the unions of the periods for which the
selected series are defined.

Sdection: thefirst of theseyears.

If the sdlectionisnot “ day” :

Setting of the First Element element (221.3):

Visble yes

Vaues: integers between 1 and MAX, where MAX is the
number of the time unit selected in ayear.

Sdection: 1

Setting of the Quantity eement (221.4):

Vishble yes

Values: integersfrom 1 to 999

Sdlection: MAX

The Months element (221.5) isset toinvisible.

The Sdlected Units element (221.7), Select element (221.8)
and Unsdlect dement (221.9) are set tovisible.

Setting of the Y ears element (221.6):

Vishble yes

Values: the years of the unions of the periods for which the
selected series are defined.

Sdection: thefirgt of theseyears.

(221.3) First Element element:
Type: list
Node 221 init: visible
Node 221 init default value: none
Available: when something different from “ day” is sdlected in
the Time Unit element (221.2)
Modification: selection
On selection update: nothing

(221.4) Quantity element:

Type: list

150

Node 221 init: visible

Node 221 init default value: none

Available: when something different from “ day” is sdlected in
the Time Unit element (221.2)

Modification: selection

On sdlection update: nothing

(221.5) Months el ement:

Type: list

Node 221 init: invisible

Node 221 init default values: the 12 months of the year
Node 221 init default selection: none

Available: dways

Modification: selection (oneitem)

On sdlection update: nathing

(221.6) Years element:

Type: list

Node 221 init: visible

Node 221 init default values: none

Node 221 init default selection: none

Available: when something different from “year” is sdected
in the Time Unit element (221.2)

Modification: selection (oneitem)

On sdlection update: nothing

(221.7) Selected Units element: in this dement appear the
different unitsinstances chosen by the user.
Type: list
Node 221 init: visible
Modification: selection
Available: when not empty
Sdection: oneitem
On sdlection update: nathing
Functional elements

(221.8) Select Unit element:
Type: button
Node 221 init: visible
Modification: click
Available: if the ements Months element (221.5) and Years
element (221.6) that are visible have each one item selected
On click: a composition of the selection of the selection of the
Months element (221.5) (if it is visible) and the sdlection of
the Years element (221.6) is constructed and added to the
Selected Units element (221.7) (if not already in).

(221.9) Unselect Unit element:
Type: button
Node 221 init: visible
Modification: click
Available: when an dement of the Selected Units element
(221.7) isselected
On dick: the sdlected serie of the Selected Units element
(221.7) isremoved.

Navigational elements

(221.10) Continue element:
Type: anchor
Node 221 init: visible
Modification: click
Available: when an item is sdected in the Time Unit element
(221.2) and:
If the Years dement (221.6) is available, the Selected Units
element (221.7) must not be empty
Target: static: Node 222
On click: navigation

151

Node 222 — Sub-Columns Composition — Temporal Way

}2223)1 st Dimension Units

2nd Dimension Units

3rd Dimension Units

222.4) (222 5)
First Second Third
Dimension Dimension Dimension
Elements Elements Elements
D6 222 6 2227) 222 8)
m Selected Selected Selected
Elements Elements Elements
.3telp 2229) i222.10) 222.11)
(D_?)Exit

CZ Submit Request j
22.18)

In this node the user defines how will be organized the sub-

columns of the result shest. (222.12 10 222.14) 1st, 2nd and 3™ Dimension Select Element:
Type: buttons
Data element Node 222 init: visible

Modification: click

(222.3) to (222.5) 1st, 2nd and 3™ Dimension Units elements: Available: if one item is sdected in the corresponding Xth

Type: lists

Node 222 init: visible

Node 222 init values: for the available dement(s), the units
(in the corresponding dimension) for which the set of selected
seriesare defined + theitem “ no sdlection”

Node 222 init sdlection: item “ no sdlection”

Available: only for the element(s) corresponding to the
dimensions for which the set of selected series are defined
Modification: selection

On <Hection update: the corresponding Xth Dimension
Elements element (222.6, 222.7 or 222.8) isfilled in with the
dements of the web server database corresponding to the
sdlected unit + anitem “ al dements’ .

Dimension Elements element (222.6, 222.7 or 222.8)

On dlick: the sdected dement of the corresponding Xth
Dimension Elements element (222.6, 222.7 or 222.8) is added
to the corresponding Xth Dimension Selected Elements
dement (222.9, 222.10 or 222.11) if it was not already in.

(222.15 to 222.17) 1st, 2nd and 3 Dimension Unselect
Elements:

Type: buttons

Node 222 init: visible

Modification: click

Available when an dement of the corresponding Xth
Dimension Sdected Elements dement (222.9, 222.10 or
222.11) is selected

(222.6) to (222.8) 1st, 2nd and 3 Dimension Elements
elements: lists of the available elements corresponding to the
selected unit

On dlick: the sdected dement of the corresponding Xth
Dimension Selected Elements element (222.9, 222.10 or

Type: lists

Node 222 init: visible— values. nathing
Available: when not empty
Modification: selection

On sdlection update: nothing

(222.9) to (222.11) 1s, 2nd and 3 Dimension Selected
Elements elements. dimension e ementslists chosen by the user
Type: list
Node 222 init: visible
Modification: selection
Available: when not empty
Sdection: oneitem
On sdlection update: nothing
Functional elements

222.11) isremoved.

Navigational Elements

(222.18) Submit Request element:
Type: anchor
Node 222 init: visible
Modification: click
Available: If for each available dimension the corresponding
Xth Dimension Selected Elements element (222.9, 222.10 or
222.11) contains at least one element, except if the selection
of the corresponding Xth Dimension Units element (222.6,
222.7 or 222.8) is* no sdection” .
Target: static: Node 3
On click: navigation

152

Node 3 — Results Visualization

(D 3)Help

(D.?)Ex't Details

The aim of this node is to present to the user the result of the
request he submitted.

Data elements

(3.1) Results Array element: this dement is an array that
formats the answer given to the request submitted by the user in
the Node 212 or 222.

Type: array

Node 3init: vishle

Modification: column selection (one)

Available: dways

On selection update: nothing

Functional elements
(3.2) Download element:

Type: button
Node 3 init: vishle

Modification: click

Available: dways

Function: provide the user a text file containing a text
trandation of all theinformation of the results array.

On click: starts aweb browser classical downloading process.

I ntra-navigational elements

(3.3) Details element:

Type: anchor

Node 3init: vishle

Modification: click

Available: when a column is selected in the Results Array
element (3.1)

Target: static: Node 3 + Details

On click: navigation

153

Node 3D — Results Details

Name

(30.1)

| ‘(3D_glimemonic | ‘(3[’):.%3': Space

Description

(3D0.2)

Unit Details

‘[SD.G] | ‘[30.11]

Period

Description

‘[30 Fill H[3D.14]

Sg\:ond Space

Concepts

(30.3)

(R} |
o L=l
-

Details
z

Description
3D.15

Events

(3D.4)

Details
3D.13

lgE‘Fﬁcription

Ea[Pﬁ '°adj [30.13)0K

=
|
=
—
o
[0
T
[}
(1]
®

-

This node presents some extra detaills about the column
selected in theresultstable.

(3D.1) Name element: this element provides the name of the
serie of the selected column

Type: text area

Node 3D init: vishle

M odification: impossible

(3D.2) Description element: this element provides the
description of the serie of the selected column

Type: text field

Node 3D init: visble

Modification: impossible

(3D.3) Concepts element: this element provides the concepts
informations of the serie of the selected column

Type: text field

Node 3D init: visible

Modification: impossible

(3D.4) Events element: this eement provides the events
informations of the serie of the selected column

Type: text field

Node 3D init: visible

M odification: impossible

(3D.5) Mnemonic element: this dement provides the
mnemonic of the serie of the selected column

Type: text field

Node 3D init: visble

Modification: impossible

(3D.6) Unit element: this eement provides the unit of the
serie of the selected column

Type: text field

Node 3D init: visible

Modification: impossible

(3D.7) Period element: this element provides the period of the
selected column
Type: text field

Node 3D init: visible
Modification: impossible

(3D.8 to 3D.10) First, Second and Third Space elements:
these element provide the three spaces of the serie of the
selected column

Type: 3text fidlds

Node 3D init: visible if the serie is defined for the
corresponding dimension

Modification: impossible

(3D.11 to 3D.13) First, Second and Third Dimension Details
elements: these element provide details about the three spaces
of the serie of the selected column

Type: 3text fidds

Node 3D init: visible if the serie is defined for the
corresponding dimension

Modification: impossible

(3D.14 to 3D.16) First, Second and Third Dimension
Description elements: these eement provide descriptions of
the three spaces of the serie of the sdlected column

Type: 3text fidds

Node 3D init: visible if the serie is defined for the
corresponding dimension

Modification: impossible

(3D.17) Download element:
Type: button
Node 3D init: visble
Modification: click
Available: dways
Function: provide the user a text file containing the details
about the selected column
On click: starts aweb browser classical downloading process.

(3D.18) OK element:
Type: button
Node 3D init: vishle
Modification: click
Available: dways
On click: exit from this node to go back to the Node 3

Help Node

This extra node provides some contextual help about the current navigational node.

(H.1) Help Text element: this dement contains the help description
Type: text field

NodeH init: visible

Modification: impossible

(H.2) OK element:
Type: button
NodeH init: visible
Modification: click
Available: dways
On click: closethisnode

155

APPENDIX E —WOVEN CODE OF THE DYNAMIC NODE L OAD ASPECT

ExtraTransfor mation.java

package Rec_Internet;
/** Used for a navigation froma navigational node to an extra node */
public class ExtraTransfornati on extends Rec_lnternet. Transfornmat i on {

/*

* This is the orginal nethod body for

* protected void specificAction(java.lang.String target, java.lang.Object[] args) throws
Rl Excepti on

* it is nowcalled fromthere inside of any advi se weaves.
*/
prot ect ed final voi d Rec_I nter net _ExtraTransformati on$speci fi cAction(java.lang.String
target, java.lang.Qbject[] args) throws Rl Exception {
t arget Node. reset (args);
}

/** In the case of a navigation to an extra node, we just need to reset the target node */

/*

* The body of this nmenber was replaced by aspect]

* At the core of this code is a call to

* protected final wvoid Rec_|nternet_ExtraTransformation$specificAction(java.lang.String
target, java.lang.Object[] args) throws Rl Exception

* which holds the original nethod body.

* Around this call is the code for all advise

* weaves that apply to this menber.

*/

protected void specificAction(java.lang.String target, java.lang.(Cbject[] args) throws
Rl Exception {

/*
* Generated by aspect]j
* This inplenents the before advice protected void specificAction()
* weave fromthe aspect ADynam cNodeLoad. (ADynam cNodelLoad.java: 35)
*/
{
java.util.Enunmeration _enuneration = _aspects.elenents();
whil e (_enuner ati on. hasMoreEl enents()) {
java.lang. Ovj ect _thi sAspect = _enuneration. nextEl ement ();
if (_thisAspect instanceof Rec_lnternet.ADynam cNodeLoad) {
final Rec_I nt er net. ADynam cNodelLoad t hi sAspect =
(Rec_I nternet. ADynani cNodelL oad) _t hi sAspect;

target Node = Rec_| nternet. ADynam cNodelLoad. get Node(target);
}
}
}
} . o
Rec_| nt ernet _ExtraTransformati on$speci fi cAction(target, args);
}

}
}

IntraTransfor mation.java

package Rec_Internet;
/**This class is used in the case of a navigation froma navigational node to an intra node */
public class IntraTransfornation extends Rec_lnternet. Transformation {

/*

* This is the orginal nethod body for

* protected void specificAction(java.lang.String target, java.lang.ject[] args) throws
Rl Excepti on

* it is nowcalled fromthere inside of any advi se weaves.
*/
prot ect ed final voi d Rec_I nternet_| ntraTransformati on$speci fi cAction(java.lang. String
target, java.lang. Qject[] args) throws Rl Exception {
cont ext . get Current Node() . desactivate();
target Node. reset (args);
}

156

/** In the case of a navigation to an intra node, we need to desactivate the navigational
node, and to reset the target node */

/*

* The body of this nenber was repl aced by aspect]j

* At the core of this code is acall to

* protected final void Rec_lnternet_IntraTransformation$specificAction(java.lang.String
target, java.lang.Object[] args) throws Rl Exception

* which holds the ori ginal nethod body.

* Around this call is the code for all advise

* weaves that apply to this menber.

*/

protected void specificAction(java.lang.String target, java.lang.Cbject[] args) throws

Rl Exception {

/*
* Generated by aspect]
* This inplenents the before advice protected void specificAction()
* weave fromthe aspect ADynami cNodeLoad. (ADynam cNodelLoad.java: 35)
*/
{
java.util.Enunmeration _enuneration = _aspects.elenents();
whil e (_enuneration. hashoreEl ements()) {
java.lang. Obj ect _thi sAspect = _enuneration. nextEl ement ();
if (_thisAspect instanceof Rec_lnternet.ADynam cNodeLoad) {
final Rec_I nt er net. ADynam cNodelLoad t hi sAspect =
(Rec_I nternet. ADynanm cNodelLoad) _t hi sAspect;

target Node = Rec_| nternet. ADynam cNodelLoad. get Node(target);
}
}
}
} . o
Rec_I nternet _I ntraTransformati on$specificAction(target, args);
}
}
}

NavigTransfor mation.java

package Rec_Internet;
/** This class is used in the case of a normal navigation between two navigational nodes */
public class NavigTransfornation extends Rec_lnternet. Transformation {

/*

* This is the orginal nethod body for

* protected void specificAction(java.lang.String target, java.lang.bject[] args) throws
Rl Excepti on

* it is nowcalled fromthere inside of any advi se weaves.
*/
prot ect ed final voi d Rec_I nt ernet _Navi gTr ansf or mati on$speci fi cActi on(j ava. |l ang. String
target, java.lang. Qbject[] args) throws Rl Exception {
cont ext . get Current Node() . hi de();
cont ext . set Current Node(t ar get Node) ;
cont ext . set Next | ndex(target);
t arget Node. reset (args);
}

/** In the case of a normal navigation between two navigational nodes, we need to reset the
target node, and then set in the context the current node index and the next index */

/*

* The body of this nenber was replaced by aspectj

* At the core of this code is a call to

* protected final wvoid Rec_|lnternet_NavigTransformation$specificAction(java.lang.String
target, java.lang.Object[] args) throws Rl Exception

* which holds the original nethod body.

* Around this call is the code for all advise

* weaves that apply to this menber.

*/

protected void specificAction(java.lang.String target, java.lang.Object[] args) throws
Rl Exception {

/*

* Generated by aspect]j
* This inplenents the before advice protected void specificAction()

157

* weave fromthe aspect ADynami cNodeLoad. (ADy nam cNodelLoad.java: 35)
*/
{
java.util.Enunmeration _enuneration = _aspects.elenents();
whil e (_enuneration. hasMreEl enents()) {
java.lang. Ovj ect _thi sAspect = _enuneration. nextEl ement ();
if (_thisAspect inst anceof Rec_Internet.ADynani cNodeLoad) {
final Rec_I nt er net. ADynam cNodelLoad t hi sAspect =
(Rec_I nternet. ADynani cNodelLoad) _t hi sAspect;

target Node = Rec_I nternet. ADynam cNodelLoad. get Node(target);
}
}
}
} . o
Rec_| nt ernet _Navi gTr ansf or mat i on$speci fi cActi on(target, args);
}
}
}

RIContext.java

package Rec_Internet;
/** This class is used to represent the navigation informations */
public class Rl Context extends Rec_Internet.CacheContext {
/*
* Cenerated by aspect]j
* This inplenents the introduce public Node getNode(java.lang.String target)
* weave fromthe aspect ADynami cNodeLoad. (ADynami cNodelLoad.java: 38)
*/
public Node get Node(java.lang.String target) {
org.aspectj.runtinme.JoinPoint thisJoinPoint = null;
for (int i = 0; i < navigNode.size(); i++) {
Node node = (Node)navi gNode. el enent At (i);
if (node.get Name().equal s(target)) return node;
}
for (int i =0; i < intraNode.size(); i++) {
Node node = (Node)i ntraNode. el enent At (i);
if (node.getNanme().equal s(target)) return node;
}
for (int i =0; i < extra.Node.size(); i++) {
Node node = (Node)extraNode. el enent At (i);
if (node.getName().equal s(target)) retur n node;
}
return null;
}
}

RIPrevNextTransfor mation

package Rec_Internet;
/** To describe previous and Next navigation */
public class RIPrevNextTransformati on extends Rec_| nternet. Transfornation {
/*
* This is the orginal nethod body for
* protected void specificAction(java.lang.String target, java.lang.Object[] args) throws
Rl Excepti on
* it is nowcalled fromthere inside of any advi se weaves.
*/
protected final void Rec_lnternet_RI PrevNextTransformati on$specificAction(java.lang.String
target, java.lang.Qject[] args) throws Rl Exception {
cont ext . get Current Node() . hi de();
cont ext . set Current Node(t ar get Node) ;
}
/*
* The body of this nenber was replaced by aspectj
* At the core of this code is a call to
* protected final void
Rec_| nt ernet _RI PrevNext Transf or mati on$speci fi cAction(java.lang. String target,
java.lang. Object[] args) throws RIException
* which holds the original nmethod body.
* Around this call is the code for all advise

158

* weaves that apply to this nenber.
*/
protected void specificAction(java.lang.String target, java.lang.(Cbject[] args) throws
Rl Exception {

/*
* Generated by aspect]j
* This inplenents the before advice protected void specificAction()
* weave fromthe aspect ADynanm cNodelLoad. (ADynani cNodeload.java: 35)
*/
{
java.util.Enunmeration _enuneration = _aspects.elenents();
whil e (_enuneration. hasMreEl enents()) {
java.lang. Obj ect _thi sAspect = _enuneration.nextEl ement();
if (_thisAspect instanceof Rec_lnternet.ADynam cNodeLoad) {
final Rec_I nt er net. ADynam cNodelLoad t hi sAspect =
(Rec_I nternet. ADynani cNodelLoad) _t hi sAspect;

target Node = Rec_I nternet. ADynam cNodelLo ad. get Node(target);
}
}
}
}
Rec_I nt ernet _RI PrevNext Transf or mati on$speci fi cAction(target, args);
}

}
}

Transformation.java

package Rec_Internet;
/** This class is used to contains the necessary nmethods and variables to describe navigation
actions */
public abstract class Transformati on extends java.lang. Object {
/** Class variable: the context */
protected static Rec_lnternet. Rl Context context = null;
/** |nstance variable: reference of the target node of
a navigation */
protected Node targetNode = null;
/** Class nethod context nmutator */
public static final void setContext(Rec_lnternet. Rl Context context_) {
context = context_;
}

/** context accessor */

public Rec_lInternet. Rl Context getContext() {
return context;

}

/*
* This is the orginal nethod body for
* public void action(java.lang.String target, java.lang. Qbject[] args) throws RI Exception
* it is nowcalled fromthere inside of any advi se weaves.
*/
pr ot ect ed final voi d Rec_I nternet _Transformati on$acti on(java.l ang. String target,
java.lang. Object[] args) throws RIException {
speci fi cAction(target, args);
t ar get Node. show() ;
}

/** Tenpl ate nmethod to define the structure of a navigation action */

/*

* The body of this nenber was replaced by aspectj

* At the core of this code is a call to

* protected final voi d Rec_| nternet _Transfornation$acti on(java.lang. String target,
java.lang. Object[] args) throws RIException

* which holds the original nmethod body.

* Around this call is the code for all advise

* weaves that apply to this menber.

*/

public void action(java.lang.String target, java.lang. Object[] args) throws Rl Exception {

{
/*

159

* Generated by aspect]j
* This inplenents the before advice public void action()
* weave fromthe aspect ADynam cNodeLoad. (ADynam cNodelLoad.java: 35)
*/
{
java. util.Enunmeration _enuneration = _aspects.elenents();
whil e (_enuneration. hasMreEl ements()) {
java.lang. Qvj ect _thisAspect = _enuneration. next El ement () ;
if (_thisAspect instanceof Rec_lnternet.ADynam cNodeLoad) {

final Rec_I nt er net. ADynam cNodelLoad t hi sAspect =

(Rec_I nternet. ADynani cNodelLoad) _t hi sAspect;

target Node = Rec_| nternet. ADynam cNodelLoad. get Node(target);
}
}
}
}
Rec_| nternet _Transformati on$acti on(target, args);
}
}

/** Abstract nethod that should describe some specific actions depending on the type of

navi gation */

protected abstract void specificAction(java.lang.String target, java.lang.bject[] args)

throws RI Exception;

protected java.util.Vector _aspects = new java.util.Vector();
public java.util.Vector getAspects() {

return _aspects;
}

}

AdynamicNodel oad.java

package Rec_Internet;
cl ass ADynam cNodelLoad extends java.l ang. Qbject {
public static Node createNode(java.lang. String nane) throws Rl Exception {
if (nane.equal s("Node0")) return new Rl NodeO();
if (nane.equal s("Nodel")) return new Rl Nodel();
if (nane.equal s("Node211")) return new Rl Node211();
if (nane.equal s("Node212")) return new Rl Node212();
if (nane.equal s("Node221")) return new Rl Node221();
if (nane.equal s("Node222")) return new Rl Node222();
if (nane.equal s("Node3")) return new Rl Node3();
if (nane.equal s("NodelC')) return new Rl NodelC();
if (nane.equal s("Node3D')) return new Rl Node3D();
if (nane.equal s("Hel p")) return new Rl Hel p();
t hrow new RI Exception(nane, UNKNOAN_NCDE) ;
}

public static Node getNode(java.lang.String nanme, Rec_Internet. Rl Context

Rl Exception {
Node result = context.get Node(nane);

if (nanme == null) { return Rec_Internet.ADynani cNodelLoad. creat eNod e(nane);

el se return result;

}

private java.util.Vector _objects = new java.util.Vector();
public java.util.Vector getObjects() { return _objects; }

public void addbj ect (Rec_I nternet. Rl PrevNext Transf ormati on object) {
if (!_objects.contains(object)) {
obj ect . get Aspect s() . addEl ement (t hi s);
_obj ects. addEl enent (obj ect);
}
}

public void renmoveObj ect (Rec_I nternet. Transformati on object) {
obj ect . get Aspect s().renmoveEl enent (this);
_obj ects.renpveEl enent (obj ect);
}
}

context) throws

}

160

