

Vrije Universiteit Brussels – Belgium
Faculty of Sciences

In collaboration with

Ecole des Mines de Nantes – France

Universidade Estadual do Norte Fluminense – Brazil

1999

Use of Web-based Three Tiers Architectures:
Applying Separation of Concerns to the

Modelization and Implementation
of a Dynamic Internet Database Interface

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange

project funded by the European Community)

By: Thomas Wallet

Promotor: Prof. Theo D’Hondt (Vrije Universiteit Brussels)
Co-Promotor: Prof. Cabral Lima (Universidade Estadual do Norte Fluminense)

 2

USE OF WEB-BASED THREE TIERS ARCHITECTURES:
APPLYING SEPARATION OF CONCERNS TO THE

MODELIZATION AND IMPLEMENTATION
OF A DYNAMIC INTERNET DATABASE INTERFACE

Abstract

With the exponential increasing of the web-users number, web-based three-tiers applications are an

appropriate way for companies to provide through the Internet some services to a wide number of users. When
conceiving such applications it is important to realize an appropriate choice between the numerous technologies,
tools and techniques existing for such development.

This thesis draws an analysis of some possibilities to realize the design of web-based three-tiers applications

as well as some technologies and tools that can be used for implementing such applications. It focuses
particularly on the way to program with separation of concerns, and specifically by using Aspect Oriented
Programming (AOP) and the AspectJ tool developed by Xerox Parc Corporation, Palo Alto, California.

We applied the results of this analysis to the development of a web-based three-tiers application called

RECINTERNET, which is a web-based dynamic database interface realized for a Brazilian federal company
called DATAPREV. We carried out the modelization and implementation of this application following two
approaches: a conventional object-oriented one and an aspect-oriented one.

In the context of the aspect-oriented approach, we created a way to realize and systematically organize

aspect-oriented design for web-based three-tiers applications. Our approach is based on a step by step
decomposition process and results to some aspects design tables, that are used to structure and visualize
interactions between the different entities of an aspect-oriented design.

Finally we illustrate the benefits of our support for aspect-oriented design in the concrete case of the

RECINTERNET application design and implementation. We draw then a comparison between the object-
oriented and the aspect-oriented approaches in the concrete RECINTERNET case.

Keywords

Web-based Three Tiers Architectures, Dynamic Database Interface, Object Oriented Design and
Implementation, Separation of Concerns, Aspect Oriented Design and Implementation, AspectJ, Aspects Design
Methodology and Representation.

 3

ACKNOWLEDGMENTS

This thesis could not have been developed without the help, the remarks, the pieces of advice and the critics

of several persons. These persons all know how grateful I am for every little thing they did to help me carrying
out this work, but I would like to name few of them that were particularly important for me during this thesis:

My first thanks go to Paulo Ramos and Claudio Passos, from GRAAL, who welcomed me in their working

team and always did their best to provide me the appropriate help during all the time I spent in DATAPREV.
They have been a precious advantage in the development of the RECINTERNET project for their knowledge and
for their suggestions and critics about my work.

I have a particular thought for L.G. Kyal. Having L.G by my side day by day has been more than a great

support for this thesis. With smiles, warm support and funny words L.G. has been like a sun ray in this thesis.
L.G. can count on much more acknowledgments than these few words.

As the coordinator of the RECINTERNET project, Dr. Emmanuel Passos helped me a lot to choose the best

options in order to develop a coherent system for the RECINTERNET project, even given the time constraints.
By his brief but pertinent remarks he efficiently supported me and directed my work in the good way to finally
reach concrete results representing the most part of the RECINTERNET project development.

My best thanks are for Dr. Cabral Lima, who has been the best support I could imagine to carry out this

thesis. I am grateful for all he did to find and prepare such a collaboration between UENF and DATAPREV, for
his close supervision during my period in DATAPREV and for his efficient support in the final part of my thesis
in UENF. I could write several pages to enumerate all he did to welcome me in Brazil and to arrange the best
conditions for my work, as well as his help in several work and extra-work tasks. In these few lines of
acknowledgements I can just address him a particular “Muito obrigado!” that only badly reflects all the gratitude
I feel.

I cannot finish these acknowledgments without a special thought for the friends that shared with me their

apartment in Rio. During all this time in Rio they helped me in everyday life and made me discover and
appreciate this particular Brazilian way of life. I thank them also for their great support and jokes about my
difficult Portuguese learning. I also address particular wishes to my friends in Campos that welcomed me in their
house and support my intensive finishing period in a very friendly way.

Finally I would like to thank the European Community, GRAAL and the Universidade Estadual do Norte

Fluminense for their financial support in this EMOOSE thesis.

 4

TABLE OF CONTENTS

I- CONTEXT --7

I.1) GENERAL CONTEXT ..7
I.2) WORKING CONTEXT ..7

I.2.1) Universidade Estadual do Norte Fluminense..7
I.2.2) The company ...7

I.2.2.1) DATAPREV ... 8
I.2.2.2) UNISYS and GRAAL.. 8

I.2.3) Thesis organization ...9
I.2.3.1) Organization.. 9
I.2.3.2) Working conditions ... 9
I.2.3.3) Thesis report structure.. 10

I.3) RECSINWIN: COMPOSING DYNAMICALLY REQUESTS TO SINTESE DATABASE11
I.3.1) RECSINWIN project..11
I.3.2) RECSINWIN model ...12

I.3.2.1) Introduction... 12
I.3.2.2) Architecture description... 13
I.3.2.3) Databases design model ... 14
I.3.2.4) Design model describing the navigation.. 14

I.3.3) RECSINWIN implementation ...16
I.4) RECINTERNET: A DYNAMIC WEB-BASED INTERFACE ..17

I.4.1) Specifications ..17
I.4.2) DATAPREV requirements for the RECINTERNET project..17

I.5) RESEARCH OBJECTIVES ...18
I.5.1)State of the art – Technologies and Techniques for developing Web-based Three-tiers

Applications ...19
I.5.2) Developing aspect-oriented web-based three-tiers applications..19
I.5.3)Comparison of object-oriented and aspect-oriented approaches for the RECINTERNET

development ...19

II - STATE OF THE ART - DEVELOPING WEB-BASED THREE-TIERS APPLICATIONS --------- 21

II.1) INTRODUCTION..21
II.1.1) Web-based Three-tiers applications..21
II.1.2) Technologies and techniques applicable to RECINTERNET..21

II.2) PROGRAMMING SEPARATION OF CONCERNS ...22
II.2.1) Separation of concerns...22
II.2.2) Techniques for separating concerns from components code ..24

II.2.2.1) Meta level programming... 24
II.2.2.2) Composition filters ... 25
II.2.2.3) Subject-oriented programming.. 26
II.2.2.4) Adaptive Programming... 28
II.2.2.5) Aspect Oriented Programming .. 29

II.2.3) Applying separation of concerns to RECINTERNET ...30
II.3) ARCHITECTURE ALTERNATIVES..31

II.3.1) Two-Tiers Architecture...31
II.3.2) Three-Tiers Architecture ..32
II.3.3) Multi-Tiers Architecture...33
II.3.4) RECINTERNET architecture ..35

II.4) INTERNET NAVIGATION DESIGN ...36
II.4.1) OOHDM..36
II.4.2) OOHDM design patterns for web-based applications..38
II.4.3) Applying OOHDM to RECINTERNET..39

II.5) SOME TECHNOLOGIES FOR THE THREE TIERS ...40
II.5.1) Client...40

 5

II.5.1.1) HTML.. 40
II.5.1.2) Application .. 41
II.5.1.3) ActiveX ... 41
II.5.1.4) Java Applet .. 42
II.5.1.5) Choice of a client technology for RECINTERNET .. 43

II.5.2) Server ..43
II.5.2.1) CGI and Scripts.. 43
II.5.2.2) Applications... 44
II.5.2.3) Servlets .. 45
II.5.2.4) Choice of a server technology for RECINTERNET ... 46

II.5.3) Database..47
II.6) COMMUNICATION BETWEEN THE THREE TIERS ..48

II.6.1) Client/Server communication..48
II.6.1.1) HTTP communication protocol ... 48
II.6.1.2) Socket-based communication.. 49
II.6.1.3) Java RMI ... 50
II.6.1.4) CORBA ... 51
II.6.1.5) Others .. 53
II.6.1.6) Choice of the client/server communication technology for RECINTERNET..................................... 53

II.6.2) Server/Database communication ..54
II.6.2.1) Server/ “normal” database communication .. 54
II.6.2.2) The particular case of server/SINTESE database communication ... 56

II.7) CONCLUSIONS ...57

III - APPLYING SEPARATION OF CONCERNS IN WEB-BASED THREE-TIERS APPLICATIONS
DESIGN -- 60

III.1) INTRODUCTION ..60
III.1.1) Separation of concerns..60
III.1.2) Aspect Oriented Programming ..61

III.1.2.1) Concepts... 61
III.1.2.2) AspectJ ... 62
III.1.2.3) Expressing aspects with AspectJ .. 63

III.1.3) Objectives...66
III.2) DESIGNING WEB-BASED THREE-TIERS APPLICATION WITH ASPECTS...67

III.2.1) Motivations for designing web-based three-tiers applications with aspects.............................67
III.2.1.1) Aspect-oriented applications (AOP)... 67
III.2.1.2) Aspect-oriented web-based three-tiers applications... 68
III.2.1.3) Motivations for defining aspects at design level.. 69

III.2.2) Difficulties of aspect design...70
III.2.2.1) An emerging programming paradigm... 70
III.2.2.2) Decomposition challenge... 70

III.2.3) How to design web-based three-tiers applications with aspects..71
III.2.3.1) Step by step aspects design .. 71
III.2.3.2) Aspects design table .. 74
III.2.3.3) A specific use of the aspects design table: detecting composition conflicts 76
III.2.3.4) Conclusions .. 77

III.3)WEB-BASED THREE-TIERS APPLICATION CONVENTIONAL OBJECT-ORIENTED DESIGN –
APPLICATION TO THE RECINTERNET CASE ...79

III.3.1) Client application design...79
III.3.1.1) Conceptual model ... 79
III.3.1.2) Navigational model ... 81
III.3.1.3) Interface model ... 85

III.3.2) RECINTERNET entire system ...87
III.3.2.1) Client/Server communication... 87
III.3.2.2) Server ... 88
III.3.2.3) Database access... 89

III.3.3) Conclusions ..90
III.4)ASPECT-ORIENTED WEB-BASED THREE-TIERS APPLICATION DESIGN – APPLICATION TO THE

RECINTERNET CASE ..91
III.4.1) Introduction..91

 6

III.4.2) Client application ...91
III.4.3) Client/Server communication ..96
III.4.4) Server...99
III.4.5) Database ..104
III.4.6) Conclusions ..106

III.5) COMPARISON BETWEEN OBJECT-ORIENTED AND ASPECT-ORIENTED DESIGNS107
III.5.1) Design process..107
III.5.2) Components/Concerns ..108
III.5.3) Implementation support...108
III.5.4) Specific Points ..110
III.5.5) Comparison conclusions ...111

III.6) CONCLUSIONS ..111

IV - RECINTERNET IMPLEMENTATION ---112

IV.1) INTRODUCTION ..112
IV.2) CONVENTIONAL OBJECT-ORIENTED IMPLEMENTATION OF RECINTERNET112

IV.2.1) Client..113
IV.2.2) Server ...115
IV.2.3) Client/Server communication...115
IV.2.4) Database access..116

IV.3) GUIDELINES FOR THE IMPLEMENTATION OF THE ASPECT-ORIENTED DESIGN116
IV.3.1) Aspect-oriented implementation with AspectJ ..116
IV.3.2) RECINTERNET implementation..118

IV.4) CONCLUSIONS..121

V - CONCLUSIONS AND PERSPECTIVES--122

V.1) THE RECINTERNET PROJECT..122
V.2) OBJECT-ORIENTED AND ASPECT-ORIENTED APPROACHES OF RECINTERNET DEVELOPMENT124
V.3) ASPECTS DESIGN TABLES AND STEP BY STEP ASPECTS DESIGN ...125

FIGURES INDEX ---129

TABLES INDEX---130

REFERENCES --131

APPENDIX A – RECSINWIN GRAPHICAL RELATIONAL MODEL ---------------------------------------135

APPENDIX B – THE NODE AS A NAVIGATIONAL VIEW HYPERMEDIA SYSTEM PATTERN----138

APPENDIX C – NAVIGATIONAL FRAMEWORK CLASSES DESCRIPTION-----------------------------139

APPENDIX D – RECINTERNET INTERFACE DESCRIPTION--142

APPENDIX E – WOVEN CODE OF THE DYNAMIC NODE LOAD ASPECT ------------------------------156

 7

I - CONTEXT

I.1) General context

It is important to explain the general context of this thesis since it is a bit particular. This thesis took place
during six months in Rio de Janeiro city and Campos city, in the state of Rio de Janeiro in the south-east of
Brazil. It stands both for a research master thesis of the European Master of Sciences in Object Oriented Software
Engineering (EMOOSE) and for a final year industrial project of the engineering school Ecole des Mines de
Nantes.

That is the reason why this thesis had to group in a same project a research aspect and an industrial aspect.

To satisfy these constraints this thesis was defined as a research work applied to a concrete industrial case, in a
collaboration between the Universidade Estadual do Norte Fluminense (UENF), which is a university of Rio de
Janeiro State situated in Campos city, and DATAPREV, which is a federal company situated in Rio de Janeiro
city.

Due to this collaboration, we had to deal with different requirements coming both from the “research” thesis

specifications and from the company needs:

To put it in a nutshell, as a research master thesis this thesis was bound to provide a substantial analysis and

synthesis of past and actual researches in a domain of object oriented software engineering, and then to carry out
a research work to develop some new aspects in this domain.

In the same time, from the company standpoint, this work had to provide a concrete result in the given time.

As this work was included in a project, the given objective had to be reached efficiently in order that this work
could be easily and concretely use by the project team.

These two kind of requirements sometimes go in two distinct directions, and so a particular balance had to

be done during all the time of this thesis, in order to be able to present an appropriate and effective work for both
aspects.

I.2) Working context

I.2.1) Universidade Estadual do Norte Fluminense

The research development of this thesis was done under the responsibility of the UENF: Universidade
Estadual do Norte Fluminense (State University of North Fluminense), in Campos, under advising of Pr. Cabral
Lima, head of the SCC: Setor de Computação Cientifica (Scientific Computation Department). This department
is mainly specialized in Artificial Intelligence and Software Engineering (see for example [Lim95], [Lim97] and
[RLKS98]).

I.2.2) The company

The “industrial” part of this thesis took place inside a project included in a partnership between GRAAL,
UNISYS and DATAPREV. GRAAL is a company specialized in software engineering and artificial intelligence.
GRAAL works jointly with UNISYS (a multinational involved in software and hardware developments) in
different projects contracted by DATAPREV, which is a federal company managing all the data related to
Brazilian social welfare system. The industrial aspect of this thesis was realized for GRAAL and was supervised
by Dr. Emmanuel Passos (chairman of GRAAL) and some research features by Pr. Cabral Lima (from UENF), as
he is also scientific consultant for this company.

 8

I.2.2.1) DATAPREV

DATAPREV1, Empresa de Processamento de Dados da Previdência Social (Company of Social Welfare
Data Processing) is a federal company of the Ministério da Previdência e Assistência Social (Brazilian Ministry
of Social Welfare) existing (in its current structure) since 1974.

Having its headquarters in Rio de Janeiro city, and two more data processing centers (Rio de Janeiro and

São Paolo), DATAPREV also counts state offices in all Brazilian states. Currently, the company counts around
3,800 employees.

DATAPREV is responsible for the management of all Brazilian social welfare data. It includes particularly

the computer development of Brazilian social welfare institutions, the processing of all the calculus concerning
social benefits (temporary retirements, health insurance, etc...), the processing of the main part of the pay rolls of
the country (reaching 17 millions of beneficiaries per month) and the collecting of social contributions of around
5 millions people and 3 millions companies.

Rio de Janeiro headquarters are situated in a recent 13-floors building where are working around 1,300

employees. An important part of the work realized in DATAPREV is organized in projects which are frequently
delegated partially or totally to others companies.

I.2.2.2) UNISYS and GRAAL

UNISYS2 is a multinational present in more than 100 countries around the world in various activity domains
of computer science such as hardware, software, electronic business, databases, communications. Created in 1986
from the merge of Sperry Gyroscope Co. and Remington Typewriter Co., UNISYS is now providing computer
science related services to tens of thousands of customers worldwide, including well-known companies such as
Microsoft, Intel, Compaq, Oracle, SAP, etc...

GRAAL is a company of Rio de Janeiro city specialized in software engineering. Founded in 1990, this

company counts 15 employees and is led by Dr. Emmanuel Passos. GRAAL works for different partners (such as
EMBRATEL, Brazilian telecommunication company or DATAPREV) in software engineering projects dealing
with artificial intelligence, networks, database systems. The advisor of this thesis, Pr. Cabral LIMA, is in charge
of GRAAL activities scientific bases through research projects developed in software engineering and artificial
intelligence domains.

UNISYS and GRAAL work jointly in projects for DATAPREV since 1997 These two companies provide

together specific services for DATAPREV in the domains of software engineering, database systems and
artificial intelligence.

This thesis took place in the context of a project of this triangular partnership, called RECSINWIN. This

project was started in 1997, and it consists in developing a software package that will be used by DATAPREV
employees to access efficiently Brazilian social welfare data of important databases (see Section I.3 for more
details about RECSINWIN). The main software package was at the moment of this thesis in its evaluation and
testing stage.

This project was developed by a team of GRAAL working in DATAPREV. This team is composed of three

people: Claudio Passos, Paulo Ramos and Dr. Emmanuel Passos (head of the project).

During this thesis we worked in a project called RECINTERNET, which is a project developed in parallel to

RECSINWIN. This project aims to develop a web-interface that enables web-users to compose dynamically
requests to a large database of DATAPREV and to visualize their results (see Section I.3 and I.4 for more details
about RECSINWIN and RECINTERNET).

1 Online information about DATAPREV can be found in DATAPREV Home Page, at the following URL: http://www.dataprev.gov.br/
2 Online information about UNISYS can be found in UNISYS Home Page, at the following URL: http://www.unisys.com/

 9

I.2.3) Thesis organization

I.2.3.1) Organization

This thesis was entirely supervised by Pr. Cabral Lima in his quality of responsible of the Setor de
Computação Cientifica (Scientific Computation Department) of the UENF and also for his involvement in
GRAAL as responsible of GRAAL activities scientific bases.

The first part of this thesis was developed in DATAPREV since the RECINTERNET project required a
good knowledge of the RECSINWIN software package and its environment. Being working with the
RECSINWIN team in DATAPREV, we were then able to understand the different aspects of the system that
would be used also for the RECINTERNET project. Given the security restrictions imposed by DATAPREV
polices, we had to be present in DATAPREV in order to understand and use the system that had been the support
of our work.

During this part, the RECINTERNET implementation work of this thesis was led by Dr. Emmanuel Passos

(chairman of GRAAL). This work was inserted in a research process that we also developed in DATAPREV,
closely followed by Pr. Cabral Lima by the way of meetings and weekly reports.

The last part of this thesis was carried out at UENF. There were developed the finalization of the research

aspects of this thesis as well as the formalization of this thesis report. This last part was achieved through a close
collaboration with Pr. Cabral Lima.

Finally through this particular organization it has been possible to give the required industrial dimension to

this thesis – as it stands also for a final year industrial project in the Ecole des Mines de Nantes – and in the same
time to include beneficially a concrete industrial application case into the research process of this master thesis.

I.2.3.2) Working conditions

For the comprehension of the general context of this thesis it seems necessary to quote few important
aspects of the particular working conditions encountered during the implementation part of this thesis in
DATAPREV.

Given the well-known economic problems faced by Brazil in this decade, it is a fact that most of the

Brazilian public companies suffer from infra-structures problems. On one hand Brazilian government invests a
lot in young researchers formation through national and international educational scholarships at several
formation levels. But in the other hand it is generally assumed that Brazilian government has to rely on foreign
infra-structures for their industrial park. This can be partially explained by the lack of national companies able to
work with new technologies and by the omnipresent of United States influence, particularly in their computer
material monopoly.

As a result, even being the 10th economic world power, Brazil depends of United States willing for its own

technologic progress, and then, even in the case of a public Brazilian company dealing daily with billions of
crucial computerized data as DATAPREV, used technologies are sometimes exceeded since many years. Thus, in
the working part in DATAPREV of this thesis, we had to face relatively important material problems, such as
hardware and software inadequacy or continuously disturbed slow networks connections.

In addition to these difficulties, appeared some problems in information collection about a database and its

access system. The RECINTERNET project was based on an important database grouping a high number of data
concerning social welfare in all the Brazilian states. As this database is considered as confidential, it was arduous
to obtain pieces of information or help in order to be able to use it in the project. Moreover developing the
implementation work of this thesis in a federal company with strong security polices involved also other
problems going from long delays to strict refusal to obtain required information or service.

 10

To close this small parenthesis it is important to note that even when working conditions were difficult, the

entire project in DATAPREV was very interesting. Applying a research work to a concrete whole industrial
project dealing with multiple aspects of software engineering such as re-engineering, design, implementation or
evaluation was very stimulating. Moreover Pr. Cabral Lima had always been giving pieces of advise for solving
the encountered difficulties and he provided an adequate working environment for the final part of this thesis in
UENF.

I.2.3.3) Thesis report structure

This thesis report is divided into 5 parts:

• In Section I we have introduced the general context of this thesis. We will now present RECSINWIN, which
was the starting point of our work. Then comes an explanation of the objective of the RECINTERNET project
and of the research interests of this thesis.

• In Section II we present a state of the art of the different technologies and techniques usable for web-based
three-tiers applications such as RECINTERNET, both for design and implementation stages.

• In Section III we explain how to do and how to represent an aspect-oriented design a web-based three-tiers
application. Then we draw a comparison between aspect-oriented design and conventional object-oriented design
of web-based three-tiers applications.

• In Section IV we extend these two approaches with the RECINTERNET implementation. We explain first
how we implemented RECINTERNET out of the conventional object-oriented design presented in the previous
part, and then give some guidelines to realize the implementation of the aspect-oriented approach design.

• In Section V we present the conclusions and perspectives of our thesis, for the work we achieved for GRAAL
and DATAPREV, for the comparison of the object-oriented and the aspect-oriented approaches and for the
original approach we propose for aspect-oriented design organization and representation.

This report contains the following appendix:

• Appendix A: RECSINWIN graphical relational model

• Appendix B: The Node as a Navigational View Hypermedia System Pattern

• Appendix C: Navigational Framework Classes Description

• Appendix D: RECINTERNET Interface Description

• Appendix E: Woven code of the Dynamic Node Load aspect

Lists of tables, figures and references can be found at the end of this report.

 11

I.3) RECSINWIN: composing dynamically requests to SINTESE database

The RECINTERNET project that we had to carry out for the company is based on an existing project:

RECSINWIN. Both of these projects central goal is the development of a software package. It seems then
important to have a brief presentation of the RECSINWIN software in order to understand the context of our
work in the RECINTERNET project.

I.3.1) RECSINWIN project

RECSINWIN is a software developed by GRAAL for DATAPREV. This project began in 1997, and is now
in its final stage of tests and modifications.

RECSINWIN means RECuperação e Tratamento de Séries do SINTESE para WINdows (recuperation and

treatment of SINTESE series for Windows operating system). SINTESE is a system used by DATAPREV to
manage a huge number of data (20 GBytes) about Brazilian social welfare. SINTESE groups different sub-
systems providing different functionalities (RECSINWIN: recuperation of SINTESE series, ADMSINWIN:
system maintaining the integrity of the different databases used).

RECSINWIN has been developed for all the people (more than 3,000) working in DATAPREV that need to

access some data of the SINTESE database. Before using RECSINWIN, these users were only able to retrieve
some data from the database with some complicated and obscure (syntactically) command lines directly
addressed to the database host via the intranet of the company. The visualization of the obtained data was
something perilous and absolutely not adapted. That is the reason why an efficient software package like
RECINTERNET was necessary to provide user a simple requests composition mechanism as well as a clear
visualization of the results.

• Series in SINTESE database:

In the SINTESE database, data are organized in series (succession of data). Each serie is defined in a unit,

with a time unit and one to three “space” units. The “space” term is not used for spatial coordinates, but as a way
to express that the series can be expressed in different dimensions.

Entities in SINTESE database tables are represented as coded mnemonics, and finding the corresponding

names requires a difficult table-to-table complicated research. For a better understanding of what are SINTESE
series, we present an imaginary simplified example of a serie:

The Companies_Benefits serie represents the benefits of governmental companies in dollars (the unit), for

different months (the time unit), for different states of Brazil (the first “space” unit), for different companies size
ranges (the second “space” unit), for different sectors of activity (the third “space” unit).

There can be many combinations for visualizing this serie. Let’s illustrate this with two of them:

(in USD) January 1996 February 1996 April 1997

Less than 1,000 employees 12,546,000 11,425,000 11,200,000
Between 1,000 and 2,000 25,123,000 30,222,000 28,565,000

More than 2,000 11,256,899 10,556,000 13,255,000
Table 1 - Companies_Benefits serie visualization by month and company size

The Table 1 shows the Companies_Benefits serie organized by months and by company size ranges.

 12

January 1996 February 1996 (in USD)

Sector
Administration

Sector
Communication

Sector
Administration

Sector
Communication

São Paolo 2,005,000 3,658,899 1,985,322 2,123,300
Rio de Janeiro 1,789,000 2,562,000 1,562,333 3,005,000
Minas Gerais 989,000 1,525,300 1,250,025 1,502,000

Table 2 - Companies_Benefits serie visualization by month, sector and state

The Table 2 shows the Companies_Benefits serie organized by months, by activity sectors and by states.

• Description of the RECSINWIN software package

RECSINWIN software package provides an object-oriented interface to compose the visualization of

SINTESE series. This RECSINWIN interface work in Windows environment. Each user needs to install the
software package on his machine, and then he can use it to compose requests (one by one) to the SINTESE
database.

Through a navigation in different screens, the user chooses some series and define the way to visualize

them. This request is then transmitted to the SINTESE host (the system that manages connections to the huge
SINTESE database), the obtained result is received by the application and then the user can visualize it and he
may modify some parts of it, or compose it with other ones.

RECSINWIN also provides a particular form to compose the visualization of SINTESE series: natural

language. Using this mode, the user can write in his natural language his request (for example: How much
benefits did the state companies in the communication sector in all the months of the year 1997?). The systems
interprets it using different filters and dictionaries, proposes some corrections in case of badly-formed requests,
and then the user can visualize the results as in screens navigation mode.

I.3.2) RECSINWIN model

I.3.2.1) Introduction

Today many companies are still using some specific software packages for different parts of their activities,
and it is common that these software packages were developed in old procedural languages such as C, Fortran,
Cobol, Ada, and designed with standards specific to each company. As new needs and technologies emerge, these
software packages need to evolve to provide some more appropriate services. Considering the high costs of
software developing, it often seems more benefic to reuse the existing old software as a base for a new software
rather than starting the development of a new one from scratch.

However reusing this kind of software is generally a difficult task since they have not always been

developed with the preoccupation of being reusable or when it is the case different things happened in the
software development cycle that complicate reusability. Unfortunately whenever software design is a crucial
condition for reuse, numerous are the cases where there is no explicit model used for the software
implementation, or only for parts of it, or there are models in a non-adapted form for reuse. Often standards are
adopted for models descriptions within a same company, but these standards become inadequate. Code evolution
without models updates, missing documentation, code developed by different persons interfering with the models
are just few examples of other possible perturbations that affect the reusability of a software and its models.

The reuse of the RECSINWIN software for the RECINTERNET project is a concrete example of these

reuse difficulties. Even if the RECSINWIN project is a recent one, its modeling was described through models
standards of DATAPREV. These standards are becoming old and provide only incomplete description of the

 13

RECSINWIN model. In fact they are specifically conceived to provide close directives for implementation, and
do not provide sufficient abstraction to be efficiently reused or modified.

In this context it was difficult to base the RECSINWIN reuse only on these inappropriate design models. In

the case of the RECSINWIN project, most of the design models only exist as a “live knowledge”, that is to say
that design models partially exist “in the heads” of the members of the project team even if they are not defined
formally in written or electronic design models. So finally the reuse of the RECSINWIN design for the
RECINTERNET project was achieved through a complex mix of information from RECSINWIN formal models,
from RECSINWIN code and from project members information.

We will now describe the RECSINWIN design model. Basically this model is organized in two parts: a

description of the database systems and a description of the navigation. We add in this section a little description
of the architecture used, because we think it is important to understand the model.

I.3.2.2) Architecture description

The Figure 1 presents the global architecture of RECSINWIN.

Figure 1 - RECSINWIN global architecture

The Local Structural Database is a structural copy of the SINTESE main database. It means that this

database stores the same series than in the SINTESE database, but not in the same way: only the structure of the
series are stored, and not all the entries of the series. In the case of the Companies_Benefits serie for instance, we
have different dimensions (month, sector, state, company size) and entries (expressed in USD) corresponding to
the values of the serie in the different dimensions crossing. For example we have one entry (12,236,000 USD)
corresponding to the crossing of a time element (January 96), an element of the first dimension (companies of
less than 1,000 employees), an element of the second dimension (administration sector) and an element of the
third dimension (Rio de Janeiro State). In the SINTESE database for each serie are stored all the dimensions, all
the dimensions elements and all the entries for all the dimensions crossings. In the Local Structural Database will
be stored for each serie only its dimensions and dimensions units, but not all the entries.

SINTESE DATABASE HOST

Local
Structural
Database

SINTESE
Database

USER MACHINE

Remote
Database

Access

Local
Database

Access

RECSINWIN
Application

Local
Database
Update

 14

The advantage of using a Local Structural Database is in efficiency. When composing a request through the
RECSINWIN application, data about the selected series are necessary. It could be possible to access the
SINTESE database each time, but it would be very inefficient (this access is done through a network, and this
database can be accessed by other users in the same time). Then to provide the data necessary to compose the
final request, RECSINWIN has this local structural database, and access it easily.

There is absolutely no modifications of the data of the local structural database since it is only used to

retrieve data. So there is no need for checking if the SINTESE database is coherent to the entries of the local
structural database. On the other hand the local structural database must follow the entries modifications of the
SINTESE database since new entries are sometimes added to it (this database is used in several applications of
DATAPREV). This updating is achieved through an application called ADMSINWIN3, which automatically
updates the local structural database according to the modifications appeared in the SINTESE database.

By using this local structural database all the composition of the request corresponding to the way of

visualizing some series is done without accessing the SINTESE database host. The final request is submitted
through the network to the SINTESE database host only when it has been totally defined locally. The SINTESE
database host proceeds it and returns the results to the RECSINWIN application. Then the results are shown for
the user.

I.3.2.3) Databases design model

RECSINWIN is based on the SINTESE database. This database and the way to access it was existing before
the RECSINWIN project. Moreover this database is also part of other applications used in DATAPREV for
different purposes. Then for the RECSINWIN project it was not possible to use another database or to use the
SINTESE in another way.

A modeling of the structure of this database has been realized for the RECINTERNET project, since it was

necessary in order to be able to create the local structural database and to use it efficiently. The model used is
called Modelo Relacional Gráfico (graphical relational model). This model can be found in Appendix A
(RECSINWIN graphical relational model).

This model describes all the tables used to store the structure of series, as well as the way the different

entities of these tables are related. It can be seen as a kind of relation-entity model of the series storage. This
model contains also some specific information that are hard-coded in the RECSINWIN application about these
database tables. Finally this model contains also some textual descriptions of the storage formats of each entity
stored in each table of the database.

This model describes only the internal structure of the database, and does not provide a view about the

entities of the application. Here we just have the model of the low level corresponding to the tables structure. It
would have been interesting to have another model representing the different objects (stored in the database
tables) used by the application. This should have provide a greater level of abstraction that is needed for a clear
understanding or reuse.

I.3.2.4) Design model describing the navigation

RECSINWIN design is also described through a navigational model. Navigation in RECSINWIN
application is modeled as following: navigation is split in basic entities that are screens. A new screen is defined
each time a user action makes appear or disappear an element on the screen.

Based on this screens division, the navigation is modeled as following: there is a kind of graph where every

node is a screen, and every edge between two nodes is a navigation between these two nodes. Navigational
interaction (such as button clicks) are also described in this model.

3 When the RECSINWIN application is started, the user can choose to update or not the local structural database. In the update case,

the ADMSINWIN application is automatically started and updates the local structural database with the modifications which have happened
in the SINTESE database.

 15

We do not present all the schemes of this navigational model. Here the idea is just to show the model
behavior. The Figure 2 (adapted from [RSW99]) presents a translation of a part of this navigational model.

Figure 2 - Translated extract of the RECSINWIN navigational model

In addition to these navigational model, there are some descriptions of all the procedures corresponding to
the actions performed by the user during the navigation. Navigation is defined as a tree where a branch
corresponds to a choice realized by the user. Then the model uses a decomposition in functions and sub-functions
representing the path to reach a given place in this navigational tree. Procedures description are then organized
into these functions and sub-functions.

In this hierarchical sub-function decomposition, each procedure resulting from user interaction is described

in pseudo-code. Without explaining the details of this particular procedure, we give an example of the way these
procedure descriptions are achieved in this navigational model. The Figure 3 (extracted from [RSW99]) shows a
translated description of the procedure called when the user chooses to adopt the “temporal” composition way.

To conclude this section about RECSINWIN model, it can be said that the two design models used

(databases model and navigational model) have probably provide the appropriate support for RECSINWIN since
they describe very closely the technical way it must be implemented. However these models are expressed into
specific formats (standards of DATAPREV) that do not provide abstraction mechanisms to express efficiently
entities of object oriented design models. This lack of abstraction provides a close view onto the RECSINWIN
implementation code but involves a difficult global understanding of the different objects used in this object-
oriented application.

Screen Format Definition

Options to choose the screen format:

Temporal or Spatial

Screen1

Message about Temporal Screen

Screen12

Screen “Space” Dimension Definition

Possible options for Spatial Units Selection

Screen3
Temporal Click Spatial Click

Screen “Time” Dimension Definition

Possible options for Temporal Units Selection

Screen2
Confirm

 16

Function: SERIES RETRIEVING. USING SCREENS
Sub-function: BuildingScreen. Confirm. BuildingTemporalScreen. TimeDefinition

Proc: Open RSCREEN2:

 Do I = 1 a 10; *Activate possible time options
 for selected series*

 If UTEMP.Count[I] = CountSeries,
 Activate corresponding option in RSCREEN2;
 end;
 end;

 Desactivate Confirm button;
 Show and activate Exit button, place icon and name;

Proc_end;

Figure 3 - Translated extract of RECSINWIN procedures descriptions

Moreover this lack of more “abstract” design models is a crucial handicap for future modifications,

maintenance or reuse of RECSINWIN. Finally as software reuse is mainly based on design models, the reuse of
RECSINWIN for the RECINTERNET project has been strongly restricted by the abstraction poverty of its design
models.

I.3.3) RECSINWIN implementation

RECSINWIN has been a starting point for the RECINTERNET project. However RECSINWIN concrete
implementation details do not present a crucial interest in this thesis, since its implementation has not been used
in the RECINTERNET project that takes place in a totally different implementation context: internet
programming with a different architecture from RECSINWIN. That is the reason why we only explain in few
words the main characteristics of the RECSINWIN implementation:

RECSINWIN is an object-oriented application programmed for Windows environments. This application

has been developed with DELPHI 1.0, and not with a more recent version, because some users run it with
Windows 3.1, and more recent versions are not compatible. The DELPHI code of RECSINWIN counts around
28,000 lines of code.

The deployment of this application installs locally the application, the local structural database, its access

elements, and also the necessary elements to access the remote SINTESE database.

Concretely the RECSINWIN application provides the user different functionalities. The main one is screen

navigation to compose a request to the SINTESE database. A similar request definition is possible through
sentences in natural languages. Additional functionalities are provided, such as local structural database updating,
a contextual help, saving and composing results possibilities.

 17

I.4) RECINTERNET: A Dynamic Web-based Interface

The RECINTERNET project consists in developing a web-based application that enable users to compose
dynamically requests to the SINTESE database and to visualize their results. We were entirely responsible for
this project, and the major part of it has been started and carried out during this thesis. The work realized during
this thesis led to the development of the most part of the RECINTERNET project, which will be finalized by the
other members of the RECSINWIN/RECINTERNET team. The following sections explains briefly the starting
point of this project as well as the given objectives.

I.4.1) Specifications

The objectives of the RECINTERNET application are to provide to any web-user through an internet
navigation the possibility to compose dynamically requests to the SINTESE database and to visualize their
results. This application must then provide to any web-user of the world an easy and efficient to navigate into
different screens to define step by step the characteristics of his own request and to visualize its results, in the
same way than the RECSINWIN application provided a local solution to compose a request and visualize its
results.

Concretely the RECINTERNET application should run in any web-browser without needing installing

anything special on the user machine, and it should also be possible to have several users in the same time, from
different places. Though these improvements RECINTERNET is open to all the employees of DATAPREV that
need to access the SINTESE database, but it is also open to any anonymous user that wants any information
about Brazilian social welfare.

RECSINWIN has been the starting point of the RECINTERNET project since both systems are used in the

same functionality of providing a user a way of dynamically compose requests and visualize their results.
However we had to develop a totally new approach for the RECINTERNET project since web-based applications
require specific architectures, internet-specific way of programming, users access control and security,
functionality modifications, etc... In this context an important reflection was necessary to conceive the
RECINTERNET project, and an important work of design modeling was necessary to provide the appropriate
support for an efficient implementation.

Then most part of the functionalities of the RECSINWIN application had to be realized in the

RECINTERNET application, or adapted to an internet way of programming. RECINTERNET had then to
provide a way to compose a request through screen navigation and different choices of the user in each screen. It
means that the user has the possibility to organize the lines, the columns and the sub-columns of the result sheet
that presents his selected series. The results of such requests had to be visualized and possibly downloaded in a
file. Contextual help screens had to be available at any moment of the navigation. However for a first prototype
of RECINTERNET few functionalities were not taken into consideration. They will only be inserted one by one
to future versions of RECINTERNET. This is the case of the possibility to express requests in natural language in
RECSINWIN, or manipulate and combine requests results.

Finally as there were several similarities between RECSINWIN and RECINTERNET functionalities, we

tried to reuse some design models of RECSINWIN when it was possible. However for RECINTERNET we had
to carry out an important and specific work of design modeling to efficiently support the implementation of this
system based on the Internet.

I.4.2) DATAPREV requirements for the RECINTERNET project

Given the short period (four months) where we worked on the RECINTERNET project inside DATAPREV,
it was not possible to carry out the whole project. Thus, considering strictly the company standpoint, the main
objectives of our thesis were defined as following:

 18

• Modelization

Based on the RECSINWIN experience, develop a design model for RECINTERNET that provide an

appropriate support for implementation, reuse or modifications in future versions of RECINTERNET. That is the
reason why we had to choose and to define design models in appropriate formats that would cover the different
aspects of the RECINTERNET project: architecture, communication, database, navigation...

• Implementation

RECINTERNET implementation had to be realized using the best appropriate technologies existing in the

different domains covered: internet navigation, three-tiers applications, communication protocol, database
access... Given the time restrictions we were asked to go as far as possible in implementation, and to leave to the
project team complete parts of implementation and guidelines for uncompleted parts so that the other members of
the RECSINWIN/RECINTERNET team could easily finalize the project.

• Evaluation

All the completed parts of our RECINTERNET prototype implementation had to be evaluated carefully, in

order to leave to the project team tested and finished implementation parts that could be efficiently used to
finalize the project.

To put it in a nutshell, from the company “industrial” standpoint, we had to carry out all the designing stage

of the RECINTERNET project, to browse the last existing technologies in the different aspects of the project to
apply them in an implementation (or parts of it) and finally to test all we had implemented.

In spite of the time restrictions, the work realized during this thesis provided appropriate design models and

completed tested parts of implementation. The project was then left in an advanced phase that would provide to
the three persons of the team the necessary elements to implement efficiently the missing parts of the application.

As we will see it in the next part, these company requirements were closely linked to the research carried

out during this thesis.

I.5) Research objectives

The main strength of the work realized during this thesis was that we had to carry out a research work that
could be directly applied to a concrete industrial case. This constraint was due to the fact that this thesis stands in
the same time for a Master of Science thesis and for a final year industrial project of the Ecole des Mines de
Nantes. Given this context, the research realized during this thesis was organized into three aspects:

First we analyzed the existing technologies and techniques suitable for design and implementation of web-

based three-tiers applications with large databases such as RECINTERNET. This study was concretely applied to
the RECINTERNET case by choosing the best techniques and technologies for its development.

In a second step we studied the way to program web-based three-tiers applications with separation of

concerns, and particularly with Aspect Oriented Programming (AOP). For this purpose we developed our own
approach to aspect-oriented design for such applications.

The third aspect of this research work was dedicated to apply this approach to realize separation of concerns

in web-based three-tiers applications development and to study the differences with a conventional object-
oriented approach. So we drew a comparison between an object-oriented approach and an aspect-oriented one for
the design and implementation of the RECINTERNET project.

 19

I.5.1) State of the art – Technologies and Techniques for developing Web-based
Three-tiers Applications

Our first research objective was then to realize a analysis of the different technologies and techniques
applicable in the RECINTERNET project. Given the exponential development of public interest to the internet
media, there is an explosion of the number of web-based applications since they provide an appropriate and easy
way for companies to provide their own services to a wide public.

Given this context, new techniques and technologies for web-based three tiers applications are permanently

created or evolving in order to provide a better support to the clients or companies needs for their web-based
applications. That is the reason why we decided to draw a state of the art of the different technologies and
techniques (related to web development or not) that can be applied in a project such as RECINTERNET.

In terms of design stage, we will identify different techniques to efficiently program separation of concerns

in object oriented paradigm, to realize navigational design of dynamic interfaces or to choose between different
kind of architectures.

In terms of implementation stage, our study will cover domains such as internet programming solutions,

remote communication technologies, databases access, but also applying some of the special techniques
described in the design part.

For both design and implementation, we have applied the appropriate studied techniques and technologies to

the RECINTERNET project. We present in details this state of the art and its application to the RECINTERNET
project in the Section II.

I.5.2) Developing aspect-oriented web-based three-tiers applications

This part of the research carried out during this thesis is focused on a particular technique that can be
beneficially used in projects such as RECINTERNET: Separation of Concerns, and particularly Aspect Oriented
Programming (AOP).

AOP is a particularly active research domain of software engineering which provides an efficient solution to

program separation of concerns. Concrete solutions for implementing applications with AOP are developed such
as the solution for Java provided by the Xerox Parc Corporation: AspectJ [AJ]. However, as a new emerging
research domain, designing and programming with aspects processes need to be developed in order to become
really applicable to large scale applications.

In this context we focused our research on the way to realize aspect-oriented design, particularly for web-

based three-tiers applications. We tried to develop an efficient way to organize an aspect-oriented design for such
applications, and to develop techniques to provide appropriate support for aspect-oriented implementation.

We present our approach for aspect-oriented design of web-based three-tiers applications in Section III.

I.5.3) Comparison of object-oriented and aspect-oriented approaches for the
RECINTERNET development

We divided this comparison into two parts: design and implementation.

First we realized a conventional object-oriented design for the RECINTERNET application. Then, applying

our methodology and representation for designing web-based three-tiers applications with aspects, we realized an
aspect-oriented design for the same application. This provides a concrete illustration of our approach of aspect-
oriented design and “real-world” example of its possibilities. Finally we compared the object-oriented approach
and the aspect-oriented one. These different parts of the design comparison can be found in Section III.

 20

Secondly we focused our work on the implementation of these two designs. We implemented most parts of
the conventional object-oriented design for RECINTERNET. For time constraints it was not possible to
implement the aspect-oriented approach. According to the company objectives for the RECINTERNET project,
we only gave guidelines and examples of how to realize such an aspect-oriented implementation. The
RECINTERNET implementation with the two approaches is explained in Section IV.

To conclude this section about the context of this thesis, it can be said that mixing in a single project a

research work and a concrete industrial application was a very interesting challenge, even if it imposed many
constraints to be able to complete the both aspects in the given time.

 21

II - STATE OF THE ART - DEVELOPING WEB-BASED THREE-
TIERS APPLICATIONS

In this section we draw a state of the art of the existing techniques and technologies that can be interesting
for design and implementation of web-based three-tiers applications such as RECINTERNET.

II.1) Introduction

II.1.1) Web-based Three-tiers applications

The “web-based three-tiers application” term is generally used to reference a system involving three tiers
that communicate through the internet. The three tiers involved in such applications are generally clients (that
request services), servers (that provide services) and shared resources (printers, databases, modems or high
powered processors).

Given the exponential development of the internet media and its wide public, companies see a particularly

interesting and easy way to reach a large public with web-based three-tiers applications. The fast development of
numerous applications of this kind also involves the emergence of many new techniques and technologies.
Specific requirements for each of the three tiers have an important impact on the chosen technologies. As a result
there are many possible variations in the way to develop such applications, based on different techniques and
technologies.

The involved technologies cover different areas at different levels of the application development cycle. At

design level, such applications require a particularly elaborated and robust design since they deal with three tiers
having each their own distinct functionality and collaborating with each other in specific. It is then important to
choose appropriate and efficient design methodologies and techniques.

At implementation level, developers of such applications must pay a particular attention to choose

appropriate technologies between the wide range of new or permanently evolving technologies applicable.
Roughly all the recent technologies dealing with internet programming, internet communication protocols or
database systems have to be carefully studied when developing such applications.

Finally developing a web-based three-tiers application nowadays requires first an important research of the

appropriate techniques and technologies in the case of the application.

II.1.2) Technologies and techniques applicable to RECINTERNET

The RECINTERNET project, as a web-based three-tiers application, provides an interesting reference to
settle a state of the art of the technologies and techniques applicable in such applications. In the context of this
thesis, we analyzed several techniques and technologies related to web-based three-tiers architectures. Anyway
the objective of the state of the art realized during this thesis was to browse the best existing techniques and
technologies applicable in the RECINTERNET project, as well as justifying the choice of the most appropriate
ones.

For time constraints, the covered domains choice in this state of the art were directed by the

RECINTERNET specifications. As this project deals with complex concerns such as distribution, shared
resources, connections control, it was important to have the possibility to program efficiently with separation of
concerns. In an application involving three tiers distributed on remote locations, it was also important to study
carefully the architectural alternatives. As a dynamic interface using the internet to compose database requests,
RECINTERNET needed to use some appropriate technique to design internet navigation. In the same time, all

 22

the technologies available for the three tiers implementation had to be studied, as well as the existing solutions
for communication between these three tiers.

To put it in a nutshell, this state of the art will then be organized as follow:

• Separation of concerns design and implementation (Section II.2)
• Architectural alternatives (Section II.3)
• Internet navigation design (Section II.4)
• Client, server and database technologies (Section II.5)
• Communication between the different tiers (Section II.6)

After each topic in this state of the art we will justify which technologies and techniques we used for the

design and the implementation in the RECINTERNET project, providing in this way a concrete illustration of the
applicability of such a state of the art.

II.2) Programming Separation of Concerns

II.2.1) Separation of concerns

Software application complexity is permanently increasing. Nowadays many applications deal with
complex concerns such as distribution, concurrency, real-time constraints, debugging facilities, security,
communication strategies, persistence, error checking, memory management, historization...

Actual programming languages only provide component abstraction mechanisms. [KLM+97] defines a

component as an entity that “can be cleanly encapsulated in a generalized procedure (i.e. object, method,
procedure). By cleanly, we mean well-localized, and easily accessed and composed as necessary”. Unfortunately,
classical components abstractions cannot support clear encapsulation of such complex concerns into
programming entities. That is the reason why using some of these concerns in an application increases
consequently code complexity and by the way code size, understandability, modularity, maintainability and
reusability.

In fact the main problem comes from the fact that, in actual programming languages, the code

corresponding to a concern is cross-cutting the code of the different components of the system. Let’s illustrate
this with an example of book locators extracted from [LK97]. We just present the main ideas of separations of
concerns through a small parts of this example.

The Figure 4 presents mainly the Java code of two methods (register and unregister) of the

BookLocator class. This class is the main class of a system providing book location services, and these two
methods are used respectively to add a new book in a location and to remove an existing book. The code
presented focuses only on the implementation of these two methods. The particular code of the Book and
Location classes, as well as the code of the other methods of the system will not be given here, for space
reasons.

Now, let’s suppose that this system can be accessed concurrently, i. e. the books[] and locations[]

variables are critical resources. Then synchronization mechanisms must be added to the initial system. A way to
do it is presented in Figure 5. The idea is to add two methods (beforeWrite and afterWrite), that will be
synchronized and will organize a queue for the different entities trying to access the critical resources, based on
two counting variables (activeReaders and activeWriters). The concurrency concern added to the
initial code involves code modifications in different places scattered throughout the code (the added code is
underlined in this figure).

 23

public class BookLocator
{
 // book[i] is in locations[i]
 private Book books[];
 private Location locations[];

private int nbooks = 0;

// ...

public void register (Book b, Location l)
throws LocatorFull {
 if (nbooks > books.length)
 throw new LocatorFull();
 else {
 // Just put it at the end
 books[nbbooks] = b;
 locations[nbbooks++] = 1;
 }
}

public void unregister (Book b) {
 Book abook = books[0]; int i = 0;
 while (i < nbooks &&
 abook.get_isbn()!= b.get_isbn())
 abook = books[++i];
 if (i == nbooks) return;
 // Simply shift down the rest
 while (i < nbooks – 1) {
 books[i] = books[i+1];
 locations[i] = locations[++i];
 }
 --nbooks;
}

// ...

}

// ...

Figure 4 - Book locators (1): simple code example

public class BookLocator
{
 // book[i] is in locations[i]
 private Book books[];
 private Location locations[];

private int nbooks = 0;
protected int activeReaders = 0;
protected int activeWriters = 0;
// ...
public void register (Book b, Location l)
throws LocatorFull {
 beforeWrite();
 if (nbooks > books.length) {
 afterWrite();
 throw new LocatorFull();
 }
 else {
 // Just put it at the end
 books[nbbooks] = b;
 locations[nbbooks++] = 1;
 afterWrite();
 }
}
public void unregister (Book b) {
 Book abook = books[0]; int i = 0;
 beforeWrite();
 while (i < nbooks &&
 abook.get_isbn()!= b.get_isbn())
 abook = books[++i];
 if (i == nbooks) {
 afterWrite();
 return;

 }
 // Simply shift down the rest
 while (i < nbooks – 1) {
 books[i] = books[i+1];
 locations[i] = locations[++i];
 }
 --nbooks;
 afterWrite();
}

// ...

protected synchronized void beforeWrite()
{
 while (activeWriters > 0 ||
 activeReaders > 0)
 try
 {
 wait();
 }
 catch (InterruptedException e) {}
 ++activeWriters;
}

protected synchronized void afterWrite()
{
 --activeWriters;
 notifyAll();
}
// ...

}
// ...

Figure 5 - Book locators (2): example with concurrency concern

This example illustrates the fact that there are complex concerns (such as the concurrency one in this
example) that are tangling the basic functionality code of a program.

In [HL95] is explained the main idea of the separation of concerns paradigm: different concerns should be

expressed in different modules, clearly separated from basic functionality components code. In the previous
example, applying separation of concerns would mean to have in a module (or file), the initial code of the Figure
4, and in a separated module the concurrency concern. Then we would have a clear distinction between
components (classical object-oriented entities such as the initial code of the example) and concerns, but also a
clear distinction between different concerns (each concern expressed in one module). The way to express the

 24

different concerns and the way they are related is specific to each technique used to realize separation of
concerns. To give an example, we express the concurrency concern of the book locators example in the D
language, described in [LK97], which is a language used in the aspect-oriented programming (see Section
II.2.2.5) way of solving separation of concern. This language is used to express concurrency and distribution
concerns.

The Figure 6 presents the concurrency concern of the book locators example in the D language. The

Blcoord concern expresses all the changes seen in the Figure 5. Basically the selfexclusive mechanism is
used to define methods that can only be executed at most by one thread at a time. The mutexclusive
mechanism is used to define a set of methods that mutually exclude each other. In this example we see that
expressing this concern this way provide a clear separation of concern, and also a modular program less complex
and long than the same program expressed without separation of concern.

coordinator Blcoord : BookLocator {
 selfexclusive{register, unregister};
 mutexclusive{register, unregister, locate};
}

Figure 6 - Book locators (3): example of the concurrency concern expressed in the D language

After this modular decomposition of a system into different components and concerns, [HL95] specifies that

mechanisms must be defined to compose these components and concerns into an executable or compilable
program.

Finally the separation of concerns paradigm enables to express separately the different concerns and

components of a system, providing then a better understanding through a well-defined structure, a decreased
complexity and easier reusability, maintainability and modificability.

II.2.2) Techniques for separating concerns from components code

Different techniques are developed to realize separation of concerns. These techniques provide ways to
express clearly concerns in separate modules from components code and also they solve the problem of
composing these concerns and components to create efficient systems. The following sections present the most
advanced ones.

II.2.2.1) Meta level programming [SW96], [Kai98]

Meta-classes are used in different programming languages to express the behavior of classes, in the same
way that classes express the behavior of objects. Reflexive languages such as Java or Smalltalk provide users the
possibility to access or/and modify meta-classes, and then it is possible to affect the behavior of classes.

Meta Object Protocols (MOP) reify in the chosen language itself the mechanisms of the language. It means

that MOPs describes in the chosen language some protocols used for example for compiling, executing or
debugging programs. They are based on some reifications of entities used in these protocols, such as
representation of message passing, representation of debugging stack.

 Some strongly reflexive programming languages (such as Smalltalk), or extensions of languages (such as

Metaxa, for Java) provide programmers the possibility of modifying MOPs. It is then possible, for example, to
modify the corresponding MOP which is responsible to solve the methods lookup (within an inheritance classes
hierarchy) realized at run-time. Thus modifying MOPs provides an important power to the programmer, that can
modify strongly the initial language in order to support his own execution mechanisms.

In this context modification of MOP provide the appropriate support to realize language modifications in

order to be able to program with separation of concerns. In [SW96] the authors explain that MOP can be used to
separate concerns from basic functionality components. Components are implemented at basic level whereas

 25

concerns are implemented at meta-level. In this way we have a clear separation of concerns. They can be
expressed in meta-classes and then mapped to components code of basic level through modified MOPs. This can
be done for example by modifying MOP so that message passing are trapped and execution modifications are
realized instead of the initial message execution. In [Kai98], Kai Böllert proposes a solution where MOPs are
modified so that components instances classes are replaced by classes that have been changed to insert
modifications expressed in separated concerns.

The main interest is the strong flexibility for realizing separation of concerns in the most appropriate way.

MOPs modifications provide strong possibilities for the programmer to develop systems where concerns can be
separated and expressed in the most appropriate from, and then composed with components of basic level as
needed.

The restrictions of using meta-level programming to realize separation of concerns are that it requires the

use of strongly reflexive programming languages or reflexive extensions of programming languages in order to
be able to modify MOPs and meta-classes. Moreover reaching the meta-level at run-time and executing specific
manipulations involving meta-level entities slows down consequently the execution speed of a program. In this
case specific tricky optimizations are needed to decrease the cost of meta-level calls.

Multiple experiments have been carried out on this possibility, such as the Smalltalk system [Kai98] of Kai

Böllert, to separate synchronization and tracing concerns from components code expressed at classes level.
Actually this system is used to support aspect oriented programming (see Section II.2.2.5), but it uses the
mechanisms described before (modifying MOP) to perform this objective. As in this case, meta-level
programming is often used to implement frameworks to support the other approaches for separation of concerns.

II.2.2.2) Composition filters [AT98], [Ber94], [Cza98]

The composition filter approach is based on applying filters on incoming messages and outgoing messages
of an object. It is then an extension of the classical object model with messages filters and related mechanisms.

As it can be seen on the Figure 7(adapted from [Cza98]), modifications have been done to the classical

object model. In the composition filter approach, an object is composed of an inner object (that can be seen as a
conventional object of the classical object model) and an interface layer. This interface layer contains a given
number of input filters and output filters. These filters are used to intercept messages incoming to the object or
outgoing from the object. Incoming filters are applied one by one to incoming messages. Output filters are
applied also one by one to the outgoing messages. A filter contains conditions to apply to the message to filter
and action to realize for each case defined by these conditions. For example depending on the conditions of the
filter being applied to a message (incoming or outgoing) this message can be rejected, normally evaluated,
delegated to external objects referenced by the object, delegated to internal objects of the object, it can be added
to a queue or it can start other specific action.

Filters are defined as first class objects and then can be manipulated easily. Composition filter

implementation is based on using meta-objects to reify messages and message passing. Filters will then be able to
manipulate these message representations. Filter classes are used to express different filtering behaviors. They
can be sub-classed to define a more specific behavior. Pre-defined filters are provided: delegation filters for
delegating messages, wait filters for buffering messages and error filters for throwing exceptions.

The composition filter approach provide the appropriate support for realizing separation of concerns. Basic

functionality components can be expressed in conventional objects and cross-cutting concerns can be
implemented with composition filters. Filter classes can be expressed for a given concern and then applied to
different objects. We then have a clear separation between basic components code and concerns code.

This approach is particularly appropriate for implementing concerns related to synchronization constraints,

real-time constraints, error checking as well as other concerns that rely on message passing filtering.

 26

Figure 7 - Object elements in the composition filter model

However such an approach have its limits for concerns expressivity, since the filters defined for a concern

have to be applied to all the involved objects one by one. Even with filter classes, cross-cutting implementation
has to be realized for each concern. Moreover this approach request language extension with Meta Object
Protocol (MOP) modifications, and access to meta-level will be needed at run-time, which can limit execution
speed.

The composition filter model has been implemented as extensions of C++ and Smalltalk languages. These

extensions are based on meta-objects representation of filters, so that can they be manipulated at run-time. A
prototype for supporting composition filters in the CORBA middleware communication mechanisms has been
developed but is not yet available.

II.2.2.3) Subject-oriented programming [OHBS94], [OKK+96], [AW99]

Subject-oriented programming proposes a way to encapsulate in subjects object oriented systems or sub-
systems. Subjects are subjective views on a part of a system. They can be composed to obtain larger subjects.

A subject defines a class hierarchy and its operations. It represents a subjective view of a domain. Inside a

subject, a set of classes is described as in the conventional object-oriented paradigm. Different subjects can be
views of the same domain. The Figure 8 (adapted from [AW99]) shows an example of two subjects (Renting and
Driving License Management). Some of their items are common between the two subjects (Car and
Driver/Renter).

Subjects can be composed to form larger subjects. Composition is automatically realized according to

composition rules specified by the programmer. These rules specify which classes should be mapped, as well as
the way to map them. The programmer defines in fact classes correspondences, methods correspondences,
variables correspondences and methods combinations. Combination of two methods (from two composing

Inner
Object

Interface
Layer

Internal
Objects

External
Objects

Input
Filters

Output
Filters

external
references

incoming
messages

outgoing
messages

 27

subjects) can be done by using only one of them is the composed subject, or by appending one method after the
other. Subject composition can affect code or bytecode, depending on the supporting framework used.

Figure 8 - An example of two subjects

The Figure 9 (adapted from [AW99]) shows an example of a subject (Car renting) resulting from the

combination of the two subjects described in Figure 8. Elements combined from initial elements of the two
composing subjects are distinguished in italic.

Figure 9 - The Car Renting composed subject

Renter

creditCard

check():bool

Car

tagNumber
model
damage

Rental

period

returnItem():aCost

renter

item

Subject: Renting

Car

licensePlate
model

Driver

license

goodDriver():bool

Subject:
Driving License Management

Renter

license
creditCard

check():bool
goodDriver():bool

Car

licensePlate
model
damage

Rental

period

returnItem():aCost

renter

item

Subject: Car Renting

 28

Subject oriented programming provide a good support for separation of concerns. Each concern can be
expressed in a separated subject. A concern will be defined in a subject with a set of methods and variables of
different components. The components expressed in such a subject will be only the components involved by the
concern, and moreover will be expressed only the part of these components affected by this concern. Composing
a concern with some components will be achieved through the subjects composition mechanism. Then an entire
program will be obtained by composing several subjects describing each a concern and several subjects
describing a part of the components of the system.

An experimental support of subject-oriented programming was developed for C++ (as an extension to IBM

Visual Age for C++ 4.0). Some prototypes for Java and Smalltalk also exist but are not yet available.

The subject oriented approach is a particularly interesting support for separation of concerns in distributed

development contexts: different concerns can be developed independently and then an unanticipated composition
of different concerns and components can be realized. The composition mechanisms are really flexible. However
the main drawback of the subject oriented programming approach is that it is not yet based on real-world systems
experiments.

II.2.2.4) Adaptive Programming [Lie92], [LO97]

Adaptive Programming basic aim is to enable developers to express some particular classes behavior in
addition to object-oriented structure description such as class diagrams.

Traversals are defined in [LO97] as navigations through a group of related objects with the purpose of

accomplishing a task. Object oriented programs tend to use many “small” methods used to perform little
computation but mainly to pass information to another method of another object until a method realizes the “real”
computation. The Figure 10, adapted from [LL96], describes a class structure containing a traversal for word
searching: when searching a word in a document, the research is first transmitted to all the paragraphs, that will
then transmit it to all of their lines, that will transmit it to all of their words.

Figure 10 - Adaptive programming traversal example

When classes structures are modified, maintaining these traversals are a difficult task. In most cases the

maintaining of such traversals consists in modifying little pieces of code and can be done straightforward, but it
takes however a lot of time in large class structures.

Document

search(String aString)

Paragraph

search(String aString)

0..*0..*
paragraphs

Line

search(String aString)

0..*
Word

search(String aString)
highlight()

0..*

String
<<Primitive Type>>

lines

0..*
words

0..*

search (String aString) {
 for all paragraphs p
 p.search(aString)
}

search (String aString) {
 for all lines l
 l.search(aString)
}

search (String aString) {
 for all words w
 w.search(aString)
}

search(String aString) {
 if (this.value eq aString)
 highlight()
}

 29

The idea of Adaptive Programming (AP) is to use a language to describes succinctly traversals instead of
developing them as numerous methods in class structures. A traversal is then described with the origin class of
the traversal (in our example Document) as well as the destination class (Word) and with the appropriate code
to execute for the destination objects (the body of the method search() in the class Word). The class structure
is described without any of the methods involved in the traversal.

A composition mechanism will enable to obtain an executable system with traversals fully executed. An

important advantage of adaptive programming is that when modifying the initial class structure, when inserting
new classes involved in traversals, it is not necessary to redefine anything concerning these traversals. The new
classes are inserted in the traversal execution mechanism automatically, and the traversals will be executed
completely with these classes.

As we have a separated language for expressing traversals, it is possible to realize separation of concerns

with adaptive programming. Basic functionalities will be expressed in class structures and separated concerns
will be expressed in distinct traversals description.

Different software have been developed to support the concepts of adaptive programming. Demeter/C++

provides an AP support in C++, and Demeter/Java in Java.

II.2.2.5) Aspect Oriented Programming [KLM+97], [Kic98], [MLTK97]

Aspect Oriented Programming main idea is to decompose any object-oriented system in components and
aspects. Components are basically conventional object-oriented entities encapsulating functionalities. Aspects can
be seen as expression of concerns that cross-cut this components implementation and result in concerns scattered
throughout the components code.

Aspect Oriented Programming abstracts the implementation of concerns from components by expressing

them into separated modules. Aspects modules will then be written in one (or more) specific aspect language.
The two main parts of an aspect are join points and modifications. Join points identify the places in the
components code that will be affected by the aspect, and modifications describes which code modifications will
be realized at these places. The Figure 11 illustrates this aspects/components decomposition of a system. The
edges represent join points expressed in the aspect code.

Figure 11 - Aspects/components interaction

χλασσ Υσερ {
 πριϖατε Στρινγ ναµε;
 Λιβραρψ τηεΛιβραρψ;
 Π ρ ιντερ τηε; Πριντερ

 πυβλιχ Υσερ(Στρινγ ν) { ναµε = ν; }

 πυβλιχ βοολεαν γετΒοοκ (Στρινγ τιτλε) {
 Βοοκ αΒοοκ = τηεΛασδφφφφφφϕηασδφπασοδυφψηιβραρψ.γετΒοοκ(τηισ, τιτλε);
 τηεΠριντερ.πριντ(τηισ,αΒοοκ);
 ρετυρν τρυε;
 }ασδφυ×σαδφυ〈συδφυπασοδιφυποιυασδποφιυπιοασυδπφοιυπαοδισυφοπιυ〈σδφ×98σδφα−9
} πυβλιχ βοολεαν γετΒοοκ (Στρινγ τιτλε) {
 Βοοκ αΒοοκ = τηεΛιβραρψ.γετΒοοκ(τηισ, τιτλε);
 τηεΠριντερ.πριντ(τηισ,αΒοοκ);
 ρετυρν τρυε;
 }
} πυβλιχ Υσερ(Στρινγ ν) { ναµε = ν; }

 πυβλιχ βοολεαν γετΒοοκ (Στρινγ τιτλε) {
 Βοοκδφασγσδφ αΒοοκ = τηεΛασδφφφφφφϕηασδφπασοδυφψηιβραρψ.γετΒοοκ(τηισ, τιτλε);
 τηεΠριντερ.πριντ(τηισ,αΒοοκ);
 ρετυρν τρυε;χξϖβχϖξβ
 }ασδφποιυασδποφιυπιοασυδπφοιυπαοδισυφοπιυ〈σδφ×98σδφα−9
} πυβλιχ βοολεαν γετΒοοκ σδηγσ(Στρινγ τιτλε) {
 Βοοκ τηεΛιβραρψ.γετΒοοκ(τηισ, τιτλε);
 τηεΠριντερ.πριντ(τηισ,αΒοοκ);
 ρετυρν τρυε;
 }

χλασσ Βοοκ {
 πριϖατε Στρινγ τιτλε;
 πριϖατε Στρινγ αυτηορ;αδσυηασδφυησδιαφυηιυηασασδυιφηιυασηδφιυηπυηδϕκδπιψρελγ
 πριϖατε Στρινγ ισβν;
 πριϖαλσκδφλιασψδφλι υψασιδυηλϕσδηαφατε ΠοστΣχριπτ πσ;
 πριϖατε Υσερ βορροωερ;

 πυβλιχ Βοοκ(Στρινγ τ, Στρινγ α, Στρινγ ι, ΠοστΣχριπτ π) {
 τιτλε = τ;
 αυτηορ = α;
 ισβν = ι;
 πσ = ζασϕδφγλασγδφιυψσιυψυψσδφψ ππσαδψφποιψπψσδφαπψπουιψασδφπ;
 }

 πυβλιχ Υσερ γετ_βορροωερ() {ρετυρν βορροωερ;}
 πυβλιχ ϖοιδ σετ_βορροωερ(Υσερ υ) {βορροωερ = υ;}
 πυβλιχ ΠοστΣχριπτ γετ_πσ() { ρετυρν πσ; }
} αυτηορ = α;
 ισβν = ι;
 πσ = ζασϕδφγλασγδφιυψσιυψυψσδφψ ππσαδψφποιψπψσδφαπψπουιψασδφπ;
 }σακδϕλκϕασδηγϕδφησκλϕσδλφκϕγλκϕλξκϕχϖλκϕ

 πυβλιχ Υσερ γετ_βορροωερ() {ρετυρν βορροωερ;}
 πυβλιχ ϖοιδ σετ_βορροωερ(Υσερ υ) {βορροωερ = υ;}
 πυβλιχ ΠοστΣχριπτ γετ_πσ() { ρετυρν πσ; }
}

χλασσ Υσερ {
 πριϖατε Στρινγ ναµε;
 Λιβραρψ τηεΛιβραρψ;
 Π ρ ιντερ τηε; Πλκσαδφ λυψ ιασυφδψκϕηκαλσδφριντερ ΤΗ Ε πριντερ;
ρετυρν τρυε;
}

Π ρ ιντερ τηε; Πριντερ ΤΗ Ε πριντερ;
ρετυρν τρυε;
}ασδφφφφφηλκϕηυυωθπυηπσαδυφηπυηπυαησδφπυηπυα
αδφκσλϕηιοασδψτφ
σαδϕσηδαιοπυησαγ

ασγϕηισουαη
ασγοισυαογηκϕησδφ
δφδφδ

Aspect Code

Components Code

 30

Aspect Oriented Programming provides a mechanism called composition to obtain executable programs out
of this aspects/components modules decomposition. The idea is to apply automatically the modifications
described in aspects to components code. This process of merging components and aspects is called weaving. The
weaver is a kind of pre-processor that identifies join points between aspects and components, and apply the
transformations described in the aspects to the components code. The result is a woven code including into
components the modifications due to aspects. This code can then be classically compiled to obtain executable
programs.

Separation of concerns is then supported by the fact that features cross-cutting components code can be

expressed easily in separated modules that are aspects. An aspect will group in a separated module all the code
related to a given concern as well as the way to apply them to components code.

Different experiments are developed to support AOP. The main one is AspectJ [AJ], developed by Xerox

Parc Corporation (Palo Alto, California) and provides a general-purpose aspect language a weaver to apply them
to Java code. Other experiments are carried out to propose frameworks to support AOP, such as the Smalltalk
framework of Kai Böllert [Kai98], or TyRuBA, the meta logic programming system supporting AOP of Kris De
Volder [DVDH99].

II.2.3) Applying separation of concerns to RECINTERNET

As a web-based three-tiers application, RECINTERNET deals with different complex concerns such as
distribution, different communication strategies, connections control, concurrency... It seems then particularly
interesting to apply separation of concerns techniques to this project. Developing RECINTERNET with
separation of concerns techniques will then be consequently benefic in terms of code understandability, easy
evolution, reusability and complexity decreasing.

As we have just seen in the previous part, many techniques are being developed to support separation of

concerns programming. As this domain is quite new in software engineering research, most of these techniques
are still in definition stages and permanently evolving. It seems then difficult to apply them to real-world
applications development, such as RECINTERNET.

However Xerox Corporation has developed an efficient practical solution to support aspect oriented

programming with Java: AspectJ [AJ]. This tool provides a language to express different kinds of aspects and to
merge them with Java code. The resulting code is usable as any Java code and has the advantage to give detailed
explanations about the way composition between aspects and components has been realized. Plugging in or out
aspects to components code is practically simple thanks to the AspectJ “pre-processor” that composes the output
code. It seems then particularly benefic to develop RECINTERNET with AOP, and to implement it with AspectJ.

As a technique based on components implementation, AOP tools like AspectJ do not provide any support

for designing systems with aspects. Aspect-oriented design is an active domain of software engineering, but time
is needed before it reaches maturation and provides efficient techniques and tools for supporting AOP at design
level. In this context it was particularly important to factor out a way to realize aspect-oriented design that could
be applied to RECINTERNET. We present this point and also give further explanations about AOP and AspectJ
in Section III.

 31

II.3) Architecture alternatives

In web based applications, the internet is used to realize a communication between remote machines.
Particularly, in the case of an application like RECINTERNET, a user runs a client application to retrieve data
from a remote database. This kind of scenario is widely used in applications known as client/server applications.

In client/server applications based on a database access, three parts are generally defined in software

architecture: the User Interface, the Business Logic and the Data Management. User Interface contains the
support for presentation and user interaction. Business Logic groups the processing of the different requests
addressed by the user, and Data Management supports the access to the database.

Different software architectures are possible for dividing these three parts. The following sections present

the existing ones: two-tiers, three-tiers and multi-tiers architectures.

II.3.1) Two-Tiers Architecture [GR96], [C/S], [Hun98]

The two-tiers architecture involves two computers: a client machine and a server machine. These two
remote tiers of the application communicate through the internet. The computing client talks directly to the server
with no other intervening processes. There can be multiple clients using the same server.

In the case of a database application, the client communicates with a data server running a DataBase

Management System (DBMS) that support the database access. The Figure 12 shows the two-tiers architecture.

Figure 12 - Two-tiers architecture for databases applications

The three parts of the software (user interface, business logic and data management) are divided between

these two tiers:

• the client tier application covers the user interface tasks and a part of the business logic tasks
• the server tier application covers the other part of the business logic tasks and the data management

tasks

In fact the client application enables the user interaction and composes the corresponding requests to the

database (generally in a SQL-like language), and then transmit these requests to the server tier. When receiving
the results from the server, the data returned can be manipulated by the client application for further sub-
selection, business modeling, reporting, visualization, etc...

Database

Client

Database

NETWORK

Data

Server

CLIENT SERVER

 32

The server application runs the DataBase Management System (DBMS) in order to processes the clients
requests to retrieve the appropriate data from the database and to support database updating and integrity
checking tasks.

The communication between the client and the server is assured through the internet, and can be realized by

different ways (see Section II.6).

The two-tiers architecture is a simple architecture that is perfectly suitable for many applications. Its main

advantages are that a two-tiers architecture software is developed faster than more complex architecture software.
This kind of architecture is perfectly suitable for applications destined to a few number of users and where there
is no need of elaborated processing between the user interactions and the requests transmission to the server.

However this kind of architecture is often not enough robust for elaborated database applications. First of all

performance deteriorates with high number of users, because clients connect directly to the server. Secondly, the
client application must handle all the processing corresponding to SQL preparation and SQL exploitation, and it
can compromise flexibility since each client application need to use the correct requests corresponding to the
server requests processing management. Finally two tiers architecture are not suitable for elaborated applications
when important processing tasks are required between user interaction and requests transmission to the server,
since client applications would then be complex and maybe difficult to deploy.

II.3.2) Three-Tiers Architecture [Hun98], [GR96], [C/S]

Three-tiers architectures insert one middle-tier between the client and the database server. We will then
have a client application running on a machine and communicating through the internet with one server
application running one another machine. This server will communicate with a database server, potentially
running on another machine. This three-tiers architecture is depicted in the Figure 13.

Figure 13 - Three-tiers architecture for database applications

The middle-tier in three-tiers architecture (that we call server) enables to totally separate the business logic

part of the application form the client tier. In a three-tiers application, the different tasks are cleanly divided as
following between the different tiers:

• The client tier covers the tasks related to user interface
• The server tier covers the tasks related to business logic
• The data server covers the tasks related to data management

Client

NETWORK

Server

Database

DBMS

 33

Concretely the client application supports the user interaction and transmits the resulting demands to the
server. The client application is then more specific than in a two tiers application since it does not realize
processing (or only few) when the user interacts, but just transmit the demand to the server.

The server application manages the demands coming from the different clients and realizes the appropriate

processing corresponding to each of them. The server is also responsible to provide to the clients the data they
asked. Then the server code the corresponding SQL queries and transmit them to the data server and collect the
answers, in order to be able (eventually after processing the results in different ways) to send the appropriate
answer to the client. The client is the totally freed by the different tasks related to database access.

The data server is just running a DataBase Management System (DBMS) and is able to receive the SQL

queries of the server. It processes them and return the appropriate results.

In a three-tiers architecture there are two kinds of communication. The first one is the communication

between the client and the server. This communication is achieved through the internet, potentially with one of
the solutions described in Section II.6.1 (HTTP – HyperText Transfer Protocol, TCP/IP – Transmission Control
Protocol/Internet Protocol, Java RMI – Remote Method Invocation, CORBA – Common Object Request Broker
Architecture, etc...).

The communication between the server and the data server can be done remotely or not. Here are used some

standards for database connections that are concretely achieved through different drivers for the different kinds of
databases used (see Section II.6.2).

Three tiers architectures provide many advantages compared to two tiers architecture. First of all the clear

functional separation between the three tiers can clarify the development process and the modularity,
maintainability and flexibility of the entire system. The use of the middle-tier enables also to have a robust
application since this tier can organize queuing mechanisms. It also increases considerably the efficiency of he
entire system since the client can process other tasks once he had transmit its demand to the server. This one will
be in charge of realizing it and then will re-contact the client with the result. Moreover the client is “lighter” than
in two-tiers architecture since it does not deal with anything specific with database (for example the client never
uses SQL, it just sends parameters to the server that creates the appropriate SQL requests). Finally introducing a
middle-tier enables to process specific computations to react to user interaction, and not only access a database.

All these improvements compared to two-tiers architecture are unfortunately paid by the increased needs for

more network traffic management (two connections instead of only one with two tiers), and even if they increase
robustness of the application, specific developments for client connections (such as queuing systems).

II.3.3) Multi-Tiers Architecture [Hun98], [GR96], [C/S]

Multi-tiers architectures are a particular case of three-tiers architectures: the business logic tasks of the
middle-tier can be realized by more than one server, and with connection to more than one database. Then we
have a n-tiers architecture with multiple (n) servers and/or multiple database servers with their own DBMS. It can
distribute clients demands across multiple servers and can access data in multiple databases. The Figure 14 -
Multi-tiers architecture for database applications presents this architecture.

This architecture derived from three-tiers architecture is used when several databases must be accessed, or

when there must be different servers in order to deal with different kind of requests from clients. It is particularly
interesting to use this kind of architecture to distribute the clients requests between multiple servers in order to
divide the work between the different CPU of the servers (load-balancing).

 34

Figure 14 - Multi-tiers architecture for database applications

§ Server Local Structural Database

We present in this section a specific case of multi tiers architectures. This improvement is interesting only

in certain conditions. The idea is to use a second database that is a structural copy of the classical main database.
This second database will be located on the middle-tier host. Both databases will be accessed by a unique server.
This special multi-tiers architecture is illustrated in the Figure 15.

Figure 15 - Three-tiers architecture using a server local structural database

Client

NETWORK

Server 1

Database 1 DBMS

Server 2

Server 3

Server n

...

Database 2 DBMS

Database 3 DBMS

Database n DBMS

...

Client

CLIENT SERVER

Server

Java
RMI

Local

Structural
Database

Main
Database

DATA SERVER

DBMS

DBMS

 35

The Server Local Structural Database is a “structural” copy of the main database. It means that this database
is stored only the structure of the main database, and not all the entries. As an example, we can imagine that in
the main database there is a table containing a succession of entries called Birth representing respectively the
number of girls and the number of boys born during each of the last 20 years in Brazil. The information copied in
the server local structural database will only be the name of this succession of entries, the two sexes and the 20
years, but not the numbers of each case.

The aim of this second database is a question of efficiency. The mechanism to retrieve data from the main

database is then the following: the client application transmit demands to the server application. This one
accesses only the server local structural database to provide the data requested by the client, except when the data
entries of the main database are needed (then the server connects to the main database to submit its request).

The advantages of this improved architecture is the efficiency of the system. First because we decrease the

number of connections to the main database (this is particularly interesting when this main database is located on
another host than the server), replacing them by local connection. Moreover the local database is smaller than the
main one, so request proceeding in this database is faster than in the main one.

This approach is particularly interesting when the main database is a huge one that can be “structurally

copied”, and when this database suffers from multiple access from many users and different applications. It is of
course interesting if parts of the users requests do not require the data entries only located in the main database.

This approach is subject to several restrictions and can be applied only in specific conditions: as there are

two databases that are supposed to share the same information, the coherence between the two must be
maintained. Concretely it means updating the local structural database when the main one is modified and vice et
versa. When this updating cannot be done dynamically, a careful use must be defined in order to have a coherent
system. Also it needs to install a database on the server host, with a DataBase Management System (DBMS).

II.3.4) RECINTERNET architecture

In the RECINTERNET case, it seems unsuitable to adopt a two-tiers architecture. First because the
interaction of the users require some processing before being translated as database queries. It would mean
including this processing in the client application, what would increase its complexity and decrease its flexible
deployability. Moreover, the connection to the SINTESE database (where are all the data requested by the client)
can only be achieved through particular connections (see Section II.6.2.2), and it is complex to encapsulate them
in a client application distributed through the internet.

The three-tiers architecture seems particularly better in the RECINTERNET case. It enables to encapsulate

the functionality processing related to user interaction in an application separated from the client application. It
also provides the possibility to program efficiently connection strategies (such as clients demands queuing,
database access control...). Finally all the code related to database connection will be totally separated from the
client application.

In the case of RECINTERNET, we will use an ameliorated multi-tiers architecture with one server and two

databases: the main one and a server local structural database4. The RECINTERNET project fulfills all the
specific conditions for using such an architecture. First, the data entries of the main database are only necessary
when the user submits its final request, because the user can use only the structural information contained in the
structural database to compose this final request. Secondly it must be remarked that the RECINTERNET system
is only used to consult data from the SINTESE database, and that it never modifies any data of this database. So
there is no need to check the coherence of the SINTESE database with the local structural one since this last one
is never modified. In the other way, the SINTESE database is only updated rarely, and the updates are planed and
realized at once. Moreover a system (called ADMSINWIN) exists to start an automatic update of these kind of
structural copies of the SINTESE database. It seems then possible to use this ameliorated three-tiers architecture
since the coherence between the two databases can be guaranteed.

4 We should call this architecture multi-tiers architecture, but as it is just a variation of the three-tiers architecture, we will use the term

three-tiers architecture in this report.

 36

II.4) Internet Navigation Design

Hypermedia applications are applications were users can navigate in a system to define the way they want to
organize or “visualize” some multimedia data (such as images, text, video, sounds, etc...). Hypermedia
applications design shares many points with navigational applications such as RECINTERNET, were a user
navigates to organize and visualize some data coming from a database. In this context it is interesting to have a
look on the design methodologies dealing with navigation that were developed for hypermedia applications.

Designers of navigational applications have to face different difficulties such as combination of different

ways to navigate within the same application, appropriate representation of data, navigation efficiency, etc... All
these problems should be solved in a systematic and modular way, through a design methodology separating the
addressed concerns in distinct design activities, each expressed at the proper stage and at the proper level of
abstraction.

In this context were developed hypermedia design methodologies such as RMM – Relationship

Management Design Methodology [ISB95], HDM – Hypermedia Design Model [GSP93], or OOHDM – Object
Oriented Hypermedia Design Method [SRB96]. These methodologies aim to separate hypermedia application
design in distinct stages dealing each with a particular view on the system. This design stage decomposition
enables iterative and incremental development life cycle.

As we will explain it in this part, some principles of the OOHDM methodology can be easily and

beneficially applied to navigational applications such as RECINTERNET. That is the reason why we give an
overview of this method specific to hypermedia applications and also to a hypermedia design patterns system that
can be applied to navigational applications.

II.4.1) OOHDM [SRB96], [SR98]

The Object Oriented Hypermedia Design Method (OOHDM) is a model-based approach that provide ways
to realize a robust and efficient design for large scale hypermedia applications. The idea of OOHDM is to use
classification, aggregation and generalization/specialization mechanisms in an object oriented framework to
allow a concise description of complex information items and in the same time to allow the specification of
complex navigation patterns and interface transformations.

Hypermedia applications are then built in four distinct steps that allow an incremental development process:

conceptual design, navigational design, abstract interface design and implementation. Each step is focused on a
particular design concern, and leads to the building of an object-oriented model or implementation. Table 3,
extracted from [SR98], summarizes the different steps, products, mechanisms and design concerns addressed in
OOHDM.

• In the Conceptual Design step, a conceptual model of the application domain is built using well-known
object-oriented modeling (as OMT or UML) and relation-entities principles. The idea is to represent as neutrally
as possible the domain semantic, with no concern for the types of users and tasks. Finally the conceptual schema
resulting of this design step will be a model created thanks to sub-systems, classes and relationships of the
domain entities that will be used in the application.

• In the Navigational Design step, the hypermedia application is defined in terms of navigational structure.
This navigational structure deals with entities such as navigational contexts, which are induced from navigation
classes such as nodes, links, indexes... This navigational structure takes into account the types of users and their
tasks. Nodes represent logical navigational entities (“windows”, “screen”, “view”) involving conceptual classes
defined during domain analysis. The idea is that different navigational models can be built out of the same
conceptual model, as different views of the same domain. Finally in this step is defined the navigational semantic
in terms of nodes and links.

 37

Activities Products Formalisms Mechanisms Design Concerns

Conceptual

Design

Classes,
sub-systems,
relationships, attribute
perspectives

Object-Oriented
Modeling constructs;
Design Patterns

Classification,
aggregation,
generalization and
specialization

Model the semantics
of the application
domain

Navigational
Design

Nodes, links,
Access structures,
Navigational
contexts, navigational
transformations

Object-Oriented
Views;
Object-Oriented State
charts;
Context Classes;
Design Patterns;
 User Centered
Scenarios

Classification,
Aggregation,
generalization and
specialization.

Takes into account
user profile and task.
Emphasis on
Cognitive aspects.
Build the
Navigational
Structure of the
Application

Abstract
Interface
Design

Abstract interface
Objects,
Responses to external
events,
Interface
transformations

Abstract Data
Views; Configuration
Diagrams;
ADV-Charts;
Design Patterns

Mapping between
navigation and
perceptible objects

Model perceptible
Objects,
Implementing
chosen metaphors.
Describe interface
for navigational
objects. Define lay-
out of interface
objects

Implementation

Running application

Those supported by
the target
environment

Those provided by
the target
environment

Performance,
Completeness

Table 3 - OOHDM development steps

• In the Abstract Interface Design step is built an abstract interface model defining perceptible objects (e.g. a
picture, a city map, a text, etc...) in terms of interface classes. Interface classes are defined as aggregations of
primitives components (such as text fields and buttons) and can also be composed of interface classes. These
classes are used to give an perceptible appearance to the navigational objects defined in the previous step. Events
handling and links between the different interfaces and the navigational objects corresponding define the
interface behavior.

• In the Implementation step interface objects are mapped to concrete programming language objects. A same
interface model can be integrated into different kind of hypermedia applications such as web-sites, client/server
with databases, multimedia guided tours...

This division in four step used in OOHDM is really suitable for huge hypermedia application development.
It provides a way to proceed a incremental development process since each of the four steps used provides a
model covering a clearly separated aspect of the design process. During each step a set of object-oriented models
describing particular design concerns are built from previous iterations.

Moreover the separation of conceptual, navigational and interface design allows to concentrate on different

concerns one by one. It results in modular and reusable designs, encapsulated in a general methodological
framework where designing experience is represented into different modules dealing each with a particular
design concern (conceptual, navigational and interface).

 38

II.4.2) OOHDM design patterns for web-based applications [LRS98], [RSG97]

Design Patterns have known an increasing success in software engineering since they provide a way to
record design experience and to simplify consequently software development through reuse of patterns which are
known as being appropriate design solutions for recurrent problems of software design. In [GHJV94] are named,
explained and evaluated the most famous important and recurrent designs in software systems.

Sometimes it is possible to structure simple patterns in order to develop a pattern language, that is to say a

set of patterns that are often used together in a given application domain. One major idea of the OOHDM method
is that it is possible to define design patterns specially applicable for hypermedia application design.

In this context OOHDM defines a set of simple design patterns that address usual concerns of hypermedia

applications. These specific design patterns are grouped in a pattern language that is basically suitable for the
OOHDM method. These patterns are divided in three groups serving the model decomposition of the OOHDM
method: Patterns for Hypermedia Systems, Navigational Design Patterns and Interface Patterns.

• Patterns for Hypermedia Systems

This group of patterns presents the bases of the OOHDM decomposition. Here are defined which

mechanisms can be used to differentiate conceptual model, navigational model and interface model. These
patterns can be used to build hypermedia applications, or to extend conventional applications with hypermedia
functionality. The initial patterns of this group were: Node as a navigational view, Link as a relationship view,
Anchor, Navigation strategy, Navigation observer, Node class – link class, and Wrapper node.

• Navigational Design Patterns

This group of patterns present the way to design navigational mechanisms. Patterns of this group can be

used for organizing the navigational structure of a hypermedia application in a clear and efficient way. The initial
patterns of this group were: Node as a single unit, Node creation method, Link creation method, Navigational
context and Active reference.

• Interface Patterns

This group of patterns provides solutions to interface design problems. The given patterns are environment

independent but can be used by hypermedia GUI (Graphical User Interface) designers to efficiently organize
graphical interfaces. The initial patterns of this group were: Information on demand, Information-interaction
decoupling, Information-interaction coupling, Behavioral grouping, Behavior anticipation and Process feed-
back.

As an example, the detailed description (from [RSG97]) of the Hypermedia System Pattern named Node as

a Navigational View is given in Annex B. For complete definitions of all the OOHDM patterns, we refer to
[LRS98] and [RSG97].

To put it in a nutshell, OOHDM defines a pattern language (composed of several related patterns applicable

at different design level) and integrates it at the different steps of its design models decomposition (conceptual
design, navigational design and interface design).

OOHDM patterns are particularly interesting since they provide appropriate and proven solutions in

navigational and interface design. Moreover they can be used also in other contexts that pure hypermedia
navigation, because they address problems of domains (navigation structure, interface organization) present in
many software development (GUI design, navigation, etc...).

 39

II.4.3) Applying OOHDM to RECINTERNET

RECINTERNET is incompletely concerned by the OOHDM methodology since it only deals with
navigation and visualization of literal data, and not multimedia items such as images, video, sounds, etc...
Moreover the different navigational units (screens or nodes) that will be used in RECINTERNET navigation are
not purely views on the conceptual entities as defined in OOHDM, but more logical divisions for requests
composition.

However many concepts of OOHDM are totally suitable in the RECINTERNET case. The main

characteristic of RECINTERNET is to be a dynamic interface for the internet. It means that users navigate to
compose as wanted their request. Then OOHDM navigation principles are absolutely adaptable to this navigation.
And even if the RECINTERNET interface does not require multimedia items “visualization”, its graphical aspect
(nodes components appearance, window organization, look, etc...) is important, and requires an appropriate
design methodology such as OOHDM.

That is the reason why we decided to apply the design decomposition proposed in the OOHDM

methodology. The RECINTERNET design will be then separated into a conceptual model (where we represent
the data on which is based the application), a navigational model (where will be defined the navigational structure
and mechanisms) and a interface model (where will be defined the graphical appearance of the application),
independent from the programming environment chosen. This decomposition will be particularly interesting for
addressing separately the different parts of the design cycle, and will provide robust and appropriate models for a
simple implementation of this complex application.

In this context several patterns of the OOHDM patterns language can be used in the RECINTERNET

design. Many of the patterns of each of the three groups (Hypermedia Systems Patterns, Navigational Design
Patterns and Interface Patterns) can be used to simplify the design process and to provide a robust and proven
solution to the RECINTERNET application.

 40

II.5) Some technologies for the three tiers

Many applications are based, as this is the case for RECINTERNET, on a three-tiers architecture
(client/server/shared resources). As we have already explained it clients are characterized by the fact that they are
requesting services, servers by the fact that they are providing services, and shared resources by the fact that they
are used by servers to provide services.

In the case of RECINTERNET, clients are applications ran by users and using the internet to communicate

with a server. This server is situated on another machine and manage the requests of the clients by accessing
databases.

As the number of systems of this type is increasing consequently and quickly, many new related

technologies are also emerging. Anyway few of them are efficiently usable in the case of applications like
RECINTERNET. In this section we will present the main technical solutions existing for implementing each of
the three tiers of applications like RECINTERNET5.

II.5.1) Client

The following sections present the best existing technologies for programming efficiently a client
application that uses the internet to communicate with a server.

II.5.1.1) HTML [Html1], [Html2]

HTML (HyperText Markup Language) was developed at CERN by Tim Berners-Lee, who is now Director
of the World Wide Web Consortium (W3C) at MIT's Laboratory for Computer Science. HTML descends from
SGML (Standard Generalized Markup Language), the ISO standard language for text. SGML is in widespread
use by the US Government and the publishing industry for representing documents.

HTML is not a complete programming language but a simple markup language. An HTML document is an

ASCII text with markups (embedded instructions) that affect text display. It is based on tags (such as ,
) to specify text, hyper links or components format.

Basically a web browser will fetch the HTML document by it’s name (that can be a URL for example),

interpret the HTML and display the document. This process can also involve additional HTML documents
fetching or special areas display that can accept user inputs or involve other HTML documents fetching. Then an
HTML application can be seen as a collection of related web pages managed by a single HTTP (HyperText
Transfer Protocol is the TCP/IP protocol that defines the interaction of WWW clients and servers) server.

Through this language it is possible to visualize elaborated components such as lists, buttons, tables... It is

then possible to handle users interaction such as button click, item selection in a list, etc... Successions of HTML
documents can be accessed through hyper links navigation. In the section II.6.1.1 we will describe how HTML
clients can communicate with servers to handle elaborated users interaction.

The main advantage of programming a client in HTML is platform independence. HTML is supported by all

web browsers since HTML documents displaying is their basic feature. This enable to reduce consequently the
important proportion of developers resources used for developing and maintaining versions of their products for
the different hardware/software platform combinations.

On the other hand programming a client purely in HTML is not really practical. HTML language is limited

in its computational power. Moreover it only provides a set of tags but no possibility of abstraction in data

5 Most of the technologies depicted in this part are based on new or always evolving features of programming languages or

communication systems. Therefore this part of this state of the art is mainly based on recent descriptions, often only available online on
internet, and not formally described in books or papers. Anyway the corresponding references will be provided as precisely as possible.

 41

structures or procedures. Programming in HTML requires then a very low level programming and a laborious
repetition of code modules that leads to complicated high size code files.

Sections II.5.1.3 and II.5.1.4 show that HTML documents are in general used as a support for other kinds of

client programming.

II.5.1.2) Application

Another solution to program a client using the internet is a basic application. It means that the client will be
an application developed in any programming language and ran by the user on a machine.

The chosen programming language can be any programming language that provide possibilities to develop

communication with a server through the internet. The permanent increasing of internet activities led to the
development of internet programming facilities in many programming languages such as internet components for
Delphi 4 [Can98], Distributed Smalltalk [Stk], programming Ada WWW applets [Ada], etc...

In the domain of programming languages targeted at Internet applications, Java is today viewed as the most

appropriate one. Particularly adapted for internet communication (for example through Java Remote Method
Invocation, described in Section II.6.1.3) Java offers important GUI (Graphical User Interface) libraries for client
programming.

Without entering into details specific to each characteristics of each programming language, in the case of

client programming with internet communication, the main problems of most programming languages (except
Java) is platform dependence and immature or complex internet communication facilities (since they are
languages not explicitly developed for internet applications). From this point of view, the use of Java brings
platform independence since Java programs code is compiled in bytecode that can be run in every Java Virtual
Machine.

Anyway, in any case an important disadvantage of using an application developed in a programming

language as client is the fact that it requires a specific deployment in each machine where a client is run.

II.5.1.3) ActiveX [ActX1], [ActX2]

Used extensively across the Internet computing environment, ActiveX controls are being employed as site-
enhancing objects, aids for application development, and standalone programs.

We can define ActiveX as a set of technologies that allows developers to build objects that can interact with

one another in networked environment. These objects are self-contained and become independent from the
programming language in which they had been created (Java, C++ and Visual Basic support ActiveX
programming [ActX1]). ActiveX is built out of two Microsoft technologies:

• DCOM (Distributed Component Object Model) provides the low-level, object-binding mechanism that

lets objects communicate with each other (locally and remotely). Like Java Remote Method Invocation
(RMI), DCOM provides transparent message-passing between objects located in different machines
with different operating systems. [ActX1]

• OLE (Object Linking and Embedding) uses DCOM to provide high-level application services, such as

linking and embedding, to let users create compound documents. Built on the foundation of Component
Object Model (COM, the predecessor to DCOM), OLE is optimized for end-user usability and
integration of desktop applications. [ActX1]

ActiveX controls are the basic elements of this ActiveX technology. They describe themselves through a

binary description file that lists the properties, methods and events that should be exposed. They can be
embedded in web sites and respond interactively to events, providing high level functionality.

 42

In this way ActiveX can be used to program a client communicating with a server through the internet.
ActiveX components will be embedded in HTML documents that can be viewed with web browsers. When these
HTML documents will be fetched from a HTTP server, the ActiveX controls will be downloaded and saved in
the user hard drive and then executed to compute and manipulate data or communicate with other controls.

Programming a client with ActiveX provide a high level interaction functionality and also the possibility to

compose easily specific components (ActiveX controls) to build an entire application. An important advantages
of this technologies is that once the different components of the application have been downloaded, they can be
use very efficiently (in terms of execution speed).

The main drawbacks are security risks and portability. There is no limitation to actions realized by ActiveX

controls. They can use functionality of the machine on which they are run, and then security issues are absolutely
not assured. ActiveX system only uses "cryptographic" techniques to make sure that an application comes from
its supposed point of origin, and that it has not been altered by any party along the Internet's string of host-to-host
connections. From the portability standpoint, the ActiveX binaries are only runnable in Windows environments.
This is a particularly important drawback of this technology.

II.5.1.4) Java Applet [DD97a], [FC97], [Applet]

Java applets are Java programs intended not to be run on their own, but rather to be embedded inside
another application. The Java bytecode corresponding to the applet can be loaded from a remote machine in
order to run it on any Java Virtual Machine accepting applets.

Java applet code is compiled into Java bytecode. This bytecode can be embedded in a HTML page (thanks

to the <APPLET> HTML tag). In this case the bytecode files are stored with the HTML document file on the
HTTP server. When a web browser will load this HTML page from the HTTP server, the classes described in the
applet bytecode will be loaded in the Java Virtual Machine of the web browser. Web browser will then start the
applet execution in its Java Virtual Machine. When new classes are required for the applet execution, they are
loaded automatically from the HTTP server. In this way we obtain an application easily deployable in any web
browser.

Applets are implemented in Java and must respect standard methods needed for any web browser to run

them. The Applet class provides a standard interface between applets and their environment, in order to manage
user interaction, communication with other applets, information providing for the web browsers. Java GUI
libraries (such as Abstract Window Toolkit or SWING) are then available to develop through applets really
efficient web applications.

Security aspects are assured by the fact that applet execution is limited to the web browser Java Virtual

Machine. Web browsers running applets must ensure some security restrictions in applet execution:

• Applets cannot read or write in local files
• Applets cannot start a communication session with another machine that the one from where they have

been downloaded
• Applets cannot call executable applications on the user machine

Finally applets provide a good way to program client using the internet since they can be easily downloaded

through HTML documents and they provide the functionalities of the Java language.

The main advantages of programming client with Java applets are platforms independence and easy

deployment. As applets bytecode are interpreted in web browsers Java Virtual Machine they can be executed on
any platform with any operating system only with a web browser recognizing the Java language version used.
Easy deployment is provided through embedding in HTML documents (as simply as images). Applet way
provide then easy application loading through classical HTTP downloading process.

 43

A drawback in applet approach is that the applet bytecode must be downloaded each time the HTML page
containing it is reload in the browser since there is no caching for applets loading in web browser. This
mechanism is sometimes long and so initialization of an applet can take time.

II.5.1.5) Choice of a client technology for RECINTERNET

One crucial issue in the choice of the technology for RECINTERNET client programming was easy
portability. It means being able for a new user to run the client whatever its platform and operating environment
could be, and through an easy deployment.

This easy deployment constraint excludes the possibility of using a basic application for the client side,

since application requires an installation process. Moreover evolutions of clients as applications require re-
distribution to all the users and re-installation for each new version. Non Java applications also involve important
work for providing versions for different platforms.

The concept of giving a user the possibility to run the client application only with a web browser on any

platform with any operating system is particularly convenient for the RECINTERNET project. ActiveX is then
excluded because of its restriction to Windows environments.

Applets provide more programming potentiality than HTML. They seem then particularly adapted also for

communication with the server as we will describe it with Java RMI in Section II.6.1.3. They provide also the
GUI facilities of Java and can really be used with the most used web browsers6 (HotJava, Internet Explorer or
Netscape).

RECINTERNET will then use a Java applet for its client side. It will then be possible to use Java

programming facilities and library for creating clients that can interact in appropriate way with users and
communicate efficiently with server, keeping in the same time an easy deployment mechanism for any platform
or operating system.

II.5.2) Server

Before presenting the different ways to program a server, we need to open a special parenthesis about HTTP
servers. In fact we have seen in Section II.5.1 that client applications can be embedded in HTML documents, and
then downloaded through the HTTP protocol. This requires in the server part a HTTP server. This server will be
contacted through a given URL and then provide to the different users the HTML documents and embedded
applications requested. All the necessary files (HTML pages, images or applications embedded in these HTML
pages) will be stored on this HTTP server, and then downloaded from it when necessary.

In addition to this HTTP server, another server will be needed for communication. The basic functionality

of this server is to provide services to clients. Often these services require access to databases. That is the reason
why the choice of the technology used for a server depends on the technologies chosen for clients (Section II.5.1)
and databases (Section II.5.3), as well as the technologies used for client/server communication (Section II.6.1)
and for server/database communication (Section II.6.2).

We will present in the following sections the best existing technologies to program a communication server

that can efficiently communicate with clients and database and realize required computations.

II.5.2.1) CGI and Scripts [Cgi], [ND98], [Wil95]

CGI (Common Gateway Interface) provides a way to manage clients/servers application through the web.
The CGI mechanism enables through HTTP protocol clients to request server services. In the current section we
will only present the server side used with CGI: how can be programmed servers with CGI scripts.

6 At the moment where this thesis took place, the version 1.2 of JDK was not supported by all the recent versions of the commonly

used web browsers. It was then possible to fix this problem simply by downloading and installing the version 1.2 of Java Runtime
Environment (http://java.sun.com/products/jdk/1.2/jre/) on these web browsers.

 44

A CGI script is a program that is stored on the HTTP server and executed on this server in response to a
request from a user (Section II.6.1.1 provides more details). A CGI script file is written in a programming
language and can be compiled to run on this server (in languages such as C, C++, Visual Basic, Ada...[ND98]) or
interpreted on this server (in languages such as Perl, JCL: Job Control Language, JavaScript...).

Clients can then start the execution of CGI scripts, and also provide these scripts some parameters through

different mechanisms (see Section II.6.1.1). In this way, for each new request of a client, a new process executing
the appropriate script is started on the server with the given parameters. If needed a HTML page can be returned
to the client through the classical HTTP protocol (for example to show some results, or to say that the action was
correctly executed).

It seems then that CGI scripts could be appropriate to program server side of applications such as

RECINTERNET. However there are some important disadvantages in using CGI. First each action (like a button
click, an item selection, etc...) of the user must be related to a script on the server, even if the corresponding
action (provoked by this user interaction) is just a minimal one that should not request the server work. Then all
the computational processes corresponding to all the users interaction are done on the server CPU. When dealing
with an important number of clients, this can lead to performances worst than with other systems than CGI.

Secondly an important disadvantage comes from the fact that CGI transactions are absolutely stateless. It

means that once a user has requested a service through CGI to a server, the server totally “forgets” everything
about this user. If the server needs to do some computations related to each client that requests it, then if the same
user requests several times the server, the server will have to redo these computations each time.

II.5.2.2) Applications

Another alternative for programming the server side of an application like RECINTERNET is to use an
application running on the server machine. The server application will be developed in a given programming
language and then ran on the server machine7. Its functions will be to communicate with clients (receive requests
and return answers), to eventually compute some actions necessary for the service requested, and to communicate
with databases to proceed some requests in these databases and receive the appropriate results. The interface used
in this server can be very basic since it should require only few configurations and only compute actions for
services requested by clients.

Developing the server side as an application requires a programming language satisfying some particular

constraints. The first of them is an appropriate support to communicate through the web with the clients.
Moreover the clients can be developed in a programming language, and then a particular solution should be
found.

In this context the CORBA standard proposes a solution enabling communication between remote

applications developed in heterogeneous languages (Java, C, C++, Smalltalk...), as it will be described in Section
II.6.1.4. Thanks to CORBA, it is then possible to program in a transparent way the server application
communicating with the clients one. The Java alternative to CORBA is Java RMI (described in Section II.6.1.3)
that provides the same facilities of remote communication between a Java client and a Java server. It is then
possible to choose to program the server application in a programming language providing some appropriate and
easy solutions for communication with the client. The Section II.6.1 about client/server communication will bring
more elements for this choice.

So a particular attention must be paid to the ability to support a multi-clients system on a same server. Since

the server can be requested by many clients in the same time, the chosen programming language must provide an
efficient way to execute a new process for each new client request, in other words it must support a safe
multithreading mechanism. As described in [GmG95], multithreading is supported in most of the languages
through added libraries for threads programming. A critical point is then thread safety, i.e. being sure that locks

7 If the clients are Java applets downloaded from a HTTP server, it is necessary that the communication application server (to which are

addressed the requests from clients) is located on the same machine than the HTTP server. In fact this restriction comes from the security
restrictions of applets, that cannot open communication sessions with another host than the HTTP server from where they were downloaded.

 45

can always be freed, even in case of threads abnormal termination. The Java Virtual Machine and the Java
language are particularly adapted for multi-threads support through a sophisticated set of synchronization
primitives and threads class, as well as a robust run-time threads management.

At last another point is crucial for the programming language choice: communication with the database. The

chosen language must provide good support for database accessing. The main way to retrieve some data from a
database is achieved with some SQL-like requests. In this context it is important to have an efficient gateway
between the programming language used and these SQL-like mechanisms. A good point is that however
numerous are the different kinds of databases, industrial standards are adopted to simplify programming, such as
JDBC (Java DataBase Connectivity), ODBC (Open DataBase Connectivity) or OLE DB (Object Linking and
Embedding DataBase). Then specific drivers are developed and available for most of the existing databases in
many programming language (C++, C, Java). When choosing the programming language for the server
application, it is important to know what are the facilities with the databases that will be used. More details about
server/database connection are in Section II.6.2.

To conclude this section about applications, we could say that different programming languages provide

some elaborated and robust support for the important aspects required when developing the server
(communication with the client or the database, multi-client management). The choice of one language in
particular depends of course of the technologies used for both databases and clients, but also of the specific
constraints of the system.

II.5.2.3) Servlets [Servl1], [Servl2], [Zeig99]

Java Servlets provide through the simple and flexible Servlet API interesting features for request/response-
oriented web programming. The Servlet API group the necessary technologies for such systems server side
programming. Servlets can be seen as a considerable improvement in CGI-like web programming since they
provide web developers particularly appropriate and adapted functionalities in server programming.

The main functionality of servlets is to provide a way for servers to respond to clients requests. A servlet is

basically an executable Java code that will be run on the server when a client requests it, like CGI scripts. A
servlet is described in a Java class that is loaded, instantiated and initialized in the executing environment of the
server. The server is then able to call the different methods of this object when needed. The easy loading and
unloading of a servlet on the HTTP server is supported through the basic Java methods used for servlets
(init() and destroy()).

A client will then download some HTML documents from the HTTP server (the different servlets are

running also on this server). When the user will interact through some elements of the HTML documents (such as
clicking a button, selecting an item, navigating through a hyper link...), this interaction is transmitted to the HTTP
server to create a request thread. This thread is given as a parameter of the appropriate method to the appropriate
servlet. The servlet computes then the appropriate actions in the server execution environment and can return as a
result a new HTML page to the client. In this way we can obtain dynamic answers to client interaction.

When receiving a request thread from a client (through the HTTP server), the servlet can know different

information such as the different parameters corresponding to the request in the HTML document of the user, the
name of the remote host where the client application is executed and the name of the server that received the
request. The request is also transmitted to the servlet with an output “reference” that will be used to provide in the
appropriate format the possible answer of the servlet to the client, such as a new HTML document.

It has to be noticed that unlike CGI scripts where a new script is executed for each client request, only one

servlet is run on the server and will be in charge of responding to all the client requests, that will be queued and
passes as requests thread to the servlet methods. A servlet can then support multiple requests concurrently and
control the different clients access.

Being explicitly written in Java, servlets can use many features of the Java language. It is possible to

develop servlets communicating together, for example to forward requests to different servlets in a load balancing
system. It is also possible to use all the facilities of Java to access databases. Written in Java, servlets can also use

 46

RMI or CORBA facilities to communicate with clients through the internet. As all Java code, servlets are
platform independent and easily deployable.

A important advantage is also the fact that all the basic functionality used for servlets are included in Java

classes and interfaces providing all needed to deploy efficiently servlets on a server. It is then easy to subclass
these classes and interfaces in order to create more specific functionality to servlets.

Anyway the main restriction to servlets is that, even providing many programming facilities and

potentialities, they are still limited to a CGI-like web programming. It means that servlets methods are executed
each time a client submit a request through a classical HTTP communication mechanism (such as activating a
component of a HTML document, or navigating to a new HTML document), but only for this kind of request. If
the interaction of the user is embedded into a Java Applet for example, servlets methods can only be called
through other communication protocols, such as Java RMI. This is possible but then the interest of using servlets
is considerably decreased.

Finally, given this restriction, servlets provide an easy way to enhance consequently servers, thanks to their

particularly simple and flexible use and thanks to the fact that they provide a way to use all the powerful features
of Java.

II.5.2.4) Choice of a server technology for RECINTERNET

The main function of the RECINTERNET server is to be able to receive requests from the RECINTERNET
clients, and thanks to connections and requests to the two databases (the local structural one and the SINTESE
one), to return the required answered. Because of that the technology choice for the server depends a lot on the
technology used for the client side (Java Applet) and on the technology used for client/server communication (see
Section II.6.1).

CGI technology seems too restricted because of its “stateless” quality, and mainly because of the necessity

of having a script executed on the server for each simple interaction of the user. It would be unnecessarily costly
(in term of remote connections client/server) to access the server and execute a script on it each time the user
interacts on the client application.

An application seems a good solution for the RECINTERNET server, and particularly a Java application

since it presents all the facilities needed in the RECINTERNET case: appropriate communication protocol with
the clients, appropriate communication protocol with the database and efficient multithreading support for multi-
clients support. Appropriate developing environments are also available to program efficiently such a server
application.

As explained before, servlets provide important server programming facilities but are basically conceived to

respond to clients requests transmitted through the classical HTTP communication protocol. It seems them not
particularly interesting in the RECINTERNET case to use servlets, because it would mean restrict the client
interaction to interaction in HTML documents, and not in embedded applications such as Java applets.

An interesting alternative should have been to realize the server using both servlets and a classical Java

server application, where the used servlets would have been able to communicate with the server application.
Some controls on users connections or some load-balancing between several servlets should have been
implemented through the facilities brought by the servlets way of programming, and also to use the Java
applications facilities for communicating with clients. In the given time we focused our work only in developing
the server side of RECINTERNET as a Java application

 47

II.5.3) Database

Many companies that decide to realize three-tiers applications through the web where the third tier is a
database generally reuse their own database, and do not construct a new database from scratch for this new
application.

This way of doing avoids two important tasks necessary to create a database from scratch. First designing

the database, which is a non-trivial task, and secondly re-computerize all the entries of the existing database, a
potentially very fastidious task.

This is the case in the RECINTERNET project. As explained in Section II.3.4, two databases will be used.

The first one is the local structural database. This database is located on the same machine than the server, and
contains all the information necessary to compose the final request of the user. The second one is the SINTESE
database, located on the DATAPREV intranet. This database will be remotely accessed by the server to get the
results of the final request submitted by users.

The local structural database was designed for the RECSINWIN project, and can be reused for the

RECINTERNET project since in both cases this database is used for the same kind of requests.

The SINTESE database is a very huge one, used since a long time by several distinct applications. The

RECINTERNET system is basically designed for accessing this database, and it cannot be modified since its size
is too important and since it is also used by other applications.

 48

II.6) Communication between the three tiers

Web based three-tiers applications use a server tier in order to provide a layer between a client and a third
tier (databases, printers, files, high-powered processors...). Requests of clients are processed by the server using
the third tier resources (in this case databases). Consequently appropriate solutions have to be found in order to
support communication between clients and server, and between server and databases.

II.6.1) Client/Server communication

The following sections present the main existing technologies to support communication between client and
server in web-based three-tiers applications.

II.6.1.1) HTTP communication protocol [ND98], [Wil95], [Servl1]

HyperText Transfer Protocol (HTTP) is used to support communication through the internet related to
HTML documents. From a client to a server or reciprocally, this protocol is used to transmit different kind of
files (such as HTML pages, images, mails...) or parameters.

Thanks to a web browser, the user requests a document through a URL (Uniform Resource Locator). The

corresponding HTTP server receives this request and will send to the client web browser the appropriate
document (that is stored on the HTTP server) in a MIME (Multipurpose Internet Mail Extension) format8. The
document is received by the web browser and displayed for the client.

This first mechanism is achieved through the GET method of the HTTP protocol. This method is sent by the

web browser to ask for a document. When using this method, the browser must specify different parameters such
as the name of the requested file, the version of HTTP used, the MIME format it will accept in return and
different characteristics describing itself. The HTTP server receives this GET request and sends to the user the
code representing the MIME document with different parameters such as information on the server, the protocol
used, the document.

Another mechanism exists for files transfers. It is achieved through the POST method of the HTTP protocol.

HTML proposes some tags to include in HTML pages some components to enable user interaction (like text
fields, text areas, buttons, radio buttons, etc..). This enable to present to the user some forms he can fill (for
example some different text fields to enter personal information: name, age, city, etc...). When the form is
complete, it is submitted by the client and then the POST method is used. As the GET method this method is sent
to the HTTP server with some parameters, and amongst them are included the different values entered in the
form. The server receives it and passes it to some server programs (like CGI scripts, servlets) that can treat it in
order to compute an action and eventually returns a MIME document to the user, generally a HTML page.

These two mechanisms (POST and GET) are the base of any HTTP transfers through the internet. With the

description of these mechanisms we can note that the HTTP communication protocol is particularly conceived for
a certain type of client and server.

Using HTTP is particularly suitable for users interacting in a HTML document and its components.

Appropriate servers for this kind of HTTP communication are basically CGI-like servers, where the server can
address the requests received through GET and POST methods to some given programs (or scripts) running
independently on the server, like CGI scripts or Java servlets.

The advantages of such a protocol are mainly that it is universally used by all the internet community, since

it is one of the basic communication protocol standard on which is based the internet. The fact that the
communication with the HTTP protocol is efficient and rapid is also a great advantage for using HTTP between a

8 The MIME format groups many formats used in web transfer such as ASCII and non ASCII text files, GIF, JPEG image files, MPEG

video files, WAV audio files, etc...

 49

client and a server. Finally HTTP is also interesting since it is a protocol that does not suffer any restrictions for
firewalls crossing.

The critical limitation of this protocol is that it is by definition limited to its two classical communication

mechanisms (GET and POST). These two mechanisms are very efficient but do not provide adequate support for
more elaborated exchanges between entities of two remote applications. Finally HTTP is an efficient
communication protocol, but limited by its too low-level communication mechanisms.

II.6.1.2) Socket-based communication [DD97b], [MAB+98]

Another alternative for the client/server communication is the use of sockets. Different programming
languages provide sockets support for networking (C++, Visual Basic, Java...). Sockets exchanges are based on
the TCP/IP (Transmission Control Protocol/Internet Protocol) suite of protocol and provide a way to transfer data
between two parties through streams connection.

TCP/IP is the suite of protocols that defines the Internet. It is named as TCP/IP for its two most important

protocols TCP and IP. Originally designed for the UNIX operating system, TCP/IP software is now available for
exchanges between many heterogeneous environments. TCP and IP are some layers used in the multi-layers
systems used to achieve connection between remote machines. TCP/IP protocols provide "low-level" functions
needed for networked applications.

As in Java, most programming languages supporting sockets provide sockets manipulation through I/O

streams: a program can read from a socket or write to a socket as if it was a file. A socket represents a connection
between two processes, potentially on remote machines. The protocol used for the transmissions in these
connections is TCP/IP.

There are principally two kinds of sockets used: stream sockets and datagram sockets. Stream sockets are

“connection-oriented” sockets since they provide a connection between two processes through a continuous
stream. It can be compared to a phone call protocol, where once the two parts have establish the communication,
the connection is maintained until the end. This kind of connection is realized through the TCP protocol.

The second kind of sockets are datagrams sockets. Datagrams sockets are “connectionless” since exchanges

are realized through packets sends and receptions with no continuous connection between the two processes. It
can be compared to the mail post service protocol, where letters are sent from to an address. This kind of
connection is realized through the UDP (User Datagram Protocol) protocol, which is one of the TCP/IP suite of
protocols.

Programming languages generally provide some classes (java.net package in Java) or libraries (netinet and

socket in C++) grouping the needed elements to realize applications using sockets. The most common methods
used in sockets management are for sockets creation, socket allocation, socket connection, waiting for a socket
connection, accepting a socket connection, stream send and receive, closing a socket.

Then programming client/server communication with sockets is suitable for both client and server

applications (or embedded applications such as Java applets or ActiveX controls) developed into a programming
languages supporting it.

The advantages of using sockets for client/server connection is that as they are based on TCP/IP protocols,

they can be used between applications running on heterogeneous environment. Moreover the good sockets
support in Java and C++ for example enable to program efficiently connections between remote applications, but
also to really control all the details of these connections since sockets provide a certain “low-level”
communication control.

This “low-level” characteristic of sockets management is also a disadvantage since programming real

exchanges between applications requires complex and elaborated communication scenario. In fact the sockets
layer is generally covered by a high level layer that enable to program communications between applications
more transparently.

 50

II.6.1.3) Java RMI [Jdk], [Rmi]

One particularly interesting alternative for remote communication between applications is the Java RMI
(Remote Method Invocation). Java RMI is used to interlink objects that are distributed throughout a network and
physically reside on different machines (and running in different Java Virtual Machine). This is realized through
a support for call of remote methods. From the application's point of view, a remote method and a local method
are invoked in the same manner using the same semantics. RMI takes care of the details at a lower level.

In the distributed object model used in RMI, the methods of a class that can be called remotely are described

in a RMI interface9. This interface lists the remotely accessible methods signatures. A remote object is then
known by other objects as a Java interface. Concretely, the class of this object must implement all the methods
that are described in the RMI interface. Through this interface mechanism, calls to local or remote objects
methods are programmed with the same syntax.

Java programs with RMI use a specific RMI compiler (rmic, which is part of the Java Development Kit).

For each class implementing RMI interfaces, this compiler generates two files: a stub and a skeleton. The stub
resides on the client machine and the skeleton resides on the server machine. The stub and skeleton are comprised
of Java code that provides the necessary link between potentially remote objects, and use object serialization to
marshal and unmarshal parameters needed when realizing a remote invocation.

When executing a Java program using RMI, when a client object invokes a server method, the Java Virtual

Machine looks at the stub to do type checking (since the class defined within the stub is an image of the server
class). The request is then routed to the skeleton on the server, which calls the appropriate method on the server
object. This method is executed in the server Java Virtual Machine. To put it in other words, the stub acts as a
proxy to the skeleton and the skeleton is a proxy to the actual remote method. The Figure 16 illustrates this
mechanism.

Figure 16 - RMI transport in distributed applications

Java RMI package provides different services. To only name the main ones, there is the bootstrap naming

service, that is used to provide the concrete reference of server remote objects out of their given name10, and there
is also a security manager service, that define a default security policy

9 Actually a class can implement several RMI interfaces when it is needed for providing distinct sets of methods remotely accessible.
10 This lookup is achieved in the RMI registry that is managed (creation, update, destruction) on the server side. Server objects are

referred in this registry by a name associated to the concrete reference that can be used for RMI transport.

RMI
Stub

RMI
Skeleton

CLIENT SERVER

RMI
Transport

Client
Application

Client object
calling the

remote method

Server Application

Server object
method

RMI

Interface

 51

Java RMI is particularly suitable for client/server communication when both client and server are
programmed as Java applications. The main advantage of using Java RMI is that it enable to work in Java
environments in client and server side. Moreover the communication between the two sides is realized
transparently since once the references of remote objects are known, local or remote calls are coded exactly in the
same way. There are no restriction on the type of objects that can be transferred, and there is no special coding
before sending or after receiving a remote method invocation. The Java packages defining Java RMI provide the
basic functionality for remote communication and can be easily extended to more specific policies.

In heterogeneous environments, the fact to have to use Java on both client and server sides can be a

disadvantage (for example when parts of a system are already existing in another programming language).
Moreover using Java RMI in web browser embedded applications is not possible in all web browsers. It requires
to install some plug-in onto the web browser in order to obtain the compatibility. Finally Java RMI
communication can be refused by certain firewalls.

II.6.1.4) CORBA [Omg], [GGM97], [ACW98]

The Common Object Request Broker Architecture (CORBA) has been defined by the Object Management
Group (OMG)11 in its first version in 1991. Its aim is to define a standard answer to the need for interoperability
among the rapidly proliferating number of hardware and software products available today. CORBA allows
heterogeneous applications to communicate through a network within a specific implementation of an Object
Request Broker (ORB).

Using the ORB middleware, an object of a client application can invoke transparently a method of an object

of the server application, even when these two applications are running on different machines. In fact the ORB
intercepts all the method calls and is in charge of finding the appropriate server object, passing to it the
corresponding parameters and starting the appropriate method to return the result to the client.

As in Java RMI, methods that can be invoked remotely are described in interfaces. For CORBA these

interfaces are defined in the Interface Declaration Language (IDL). This language, specified by the OMG, is
independent from programming languages but offers a vocabulary common to the different existing programming
languages. The interfaces described in IDL can then be mapped to the programming language used in the
application. These interfaces are compiled and a stub (client side) and a skeleton (server side) are created. These
stub and skeleton will be used when a remote method is called in order to transfer this call to the appropriate
server object through the ORB (or through several ORBs linked together).

It is then possible to program distributed applications where different parts are developed in heterogeneous

environments, even with different programming languages. The client object calling a remote method does not
have to be aware of where the server object is located, its programming language, its operating system, or any
other system aspects that are not part of an object's interface. Through the mapping of IDL with the most popular
programming languages (such as Java, C++, C, Smalltalk...), and through the management of all the aspects of
the distribution by the ORB, it is then possible to program remote clients and server in a totally transparent way.
CORBA is then particularly suitable when programming client/server applications in heterogeneous
environments and different programming languages.

The Figure 17 presents the general CORBA architecture used for communication between distributed

applications.

11 The Object Management Group (OMG) was founded as a consortium in April 1989 to promote the adoption of industrial standards

for managing distributed objects. The OMG groups several important companies such as 3Com, Canon, Sun Microsystems, Unisys, Hewlett-
Packard...

 52

Figure 17 - CORBA ORB architecture

The Dynamic Invocation Interface (DII) provides an alternative to the classical requests through the IDL

stubs. It enables a client to dynamically addresses requests without requiring IDL interface-specific stubs to be
linked in.

The Dynamic Skeleton Interface (DSI) is the server side's analogue to the client side's DII. The DSI allows

an ORB to deliver requests to an object implementation that does not have compile-time knowledge of the type of
the object it is implementing.

The Object Adapter assists the ORB with delivering requests to the object and with activating the object.

The main advantages of using CORBA for client/server programming are the fact that it provides robust

standard industrial technologies for distributed applications which are divided into modules potentially in
different environments and developed in different programming languages. The remote access is then assured in a
transparent way for the user, thanks to different technologies and services (such as the Naming Service, to find
the reference of an object from its name, the Trading Service, to find the objects based on their properties) of the
ORB.

The main limitation for using CORBA is that its complex deployment. Using CORBA requires the

installation and configuration of a middleware (the ORB), and involves some specific configurations before using
the remote invocations transparently. In the case of clients and server applications using the same language, it
seems better to use another technology that can be deployed and programmed more easily. As the Java RMI
technology, using CORBA for communication between distributed applications can be limited by certain
firewalls.

CLIENT

SERVER

Server
Object Reference

arguments in

arguments out + return value

Method()

DII IDL Stub

ORB Core

IDL
Skeleton

DSI

Object Adapter

 53

II.6.1.5) Others

In this section we will just give a brief overview of other existing ways of realizing client/server
communication. These technologies do not provide the adequate support for applications such as
RECINTERNET. For further information on these technologies, consult the given references.

• COM/DCOM [Dcom]

The Distributed Component Object Model (DCOM) is a Microsoft protocol that enables components of

distributed applications to communicate over a network. DCOM uses the Microsoft Component Object Model
(COM) and can be used over different network transport protocol such as HTTP to achieve communication
between active components (such as Java applets and ActiveX) embedded in applications. The crucial restriction
of this technology is that it can be used only for Windows environment.

• RPC [Tan89]

Remote Procedure Call (RPC) systems provide a way to realize remote calls in procedural languages. Using

client and server stub as proxy, a remote procedure can be called across a network. All the management of the
communication through sockets and TCP/IP protocols are hidden to the user. As this kind of systems is designed
for procedural languages (such as C, FORTRAN, Ada), it seems not interesting in object-oriented applications.
RPC can be seen as the ancestor of object oriented equivalent such as Java RMI or CORBA.

II.6.1.6) Choice of the client/server communication technology for RECINTERNET

In the RECINTERNET case, an elaborated technology for client/server communication must be chosen
since the RECINTERNET interface must provide important interaction possibilities to the user. It seems also that
the best way to implement the client and the server side is an application, or an embedded application into HTML
documents (as explained in Section II.5.1 and Section II.5.2). As a result the chosen technology for client/server
communication must be adapted to this kind of solutions.

The HTTP protocol is limited to basic communication mechanisms, only supporting basic interaction of a

limited set of components used in HTML programming. That is the reason why it seems laborious to use it in the
RECINTERNET case. It would mean coding all the client side in HTML, with only a few set of components
allowed in HTML documents, and also to program the server side only with CGI scripts or Servlets. Adopting
HTTP seems then too constraining for the client/server communication.

Using a socket-based system for this communication seems also not adequate. Sockets programming

involves a “low-level” programming where remote call needs decomposition in different stages such as treatment
before and after the communication in order to able to transfer messages in packets or into streams. As there are
some more elaborated solutions that add a layer to this socket mechanism and provide transparent remote call, the
socket way was not chosen for RECINTERNET.

Java RMI and CORBA seem to provide an appropriate solution since they enable to program remote

method call inside applications in a transparent way. Both of these technologies provide a flexible and robust
solution to distributed application. But Java RMI is particularly easily usable and deployable when both client
and server are developed in Java. On the contrary the CORBA system is more dedicated to cases where
programming languages used in client and server are different, because it requires the deployment of a set of
CORBA components that seems a bit exaggerated when some features of the shared programming language can
be used more simply. That is the reason why we chose Java RMI to realize the client/server communication of
RECINTERNET.

 54

II.6.2) Server/Database communication

This section will be focused on three-tiers applications were the third tier is a database. We will then present
the best existing solutions for accessing a relational database through SQL (Structured Query Language) queries
expressed at programming language level.

However, as we have seen in Section II.3, a good alternative for three tiers architectures (specifically in the

case of RECINTERNET) is to use two databases. One will be located on the same host than the server, and will
be a structural copy of the main database. The main database contains all the data entries and can be located on
another machine.

In the case of RECINTERNET, the communication protocol between the server and the main database

(SINTESE database) is particular and specific. That is the reason why we will separate this analysis about
server/database communication into two parts: one for the access to a “normal” database (using SQL queries),
that can be applied to the server/local structural database communication in RECINTERNET, and one to describe
the particular communication between the server and the SINTESE database in RECINTERNET.

II.6.2.1) Server/ “normal” database communication

The feature depicted in that section is the integration of the server program with the DataBase Management
System (DBMS) of the local structural database. It means describing the technologies available for making the
link between the programming language used in the server and the SQL system that concretely access the entries
of the database.

Given the high number of different relational database products (to only name few of the main vendors12,

there are Oracle, IBM, Sybase, SAS, Borland, etc...), standards had to be adopted in order to provide some
common programming-level interface for communicating with databases. Drivers specific to each kind of
relational databases have to be developed in order to support the connectivity mechanism described in these
common interface standards. The two most popular standards are ODBC, the Microsoft's Open Database
Connectivity standard, and JDBC, the Java DataBase Connectivity standard.

In this context, “connectivity vendors” take really care of providing for each kind of relational database the

appropriate drivers in order to be compliant with the main standards.

• ODBC [Odbc]

The Microsoft’s Open DataBase Connectivity standard is an API (Application Programming Interface)

widely accepted for database access. It as been adopted as an industrial standard to provide a common interface
for connectivity with relational databases at programming language level. ODBC can be used for almost any PC
database and with different programming languages (such as C, C++, Visual Basic, Smalltalk, Java).

ODBC is based on the specifications for databases APIs (called CLI: Call-Level Interface) defined by ISO

and X/Open. ODBC uses SQL for expressing relational queries for database access. It then provides a way to
simply call SQL queries on a database inside programs written in most of the programming languages.

ODBC link with DataBase Management Systems (DBMS) is achieved through drivers specific to each kind

of databases and to the platform running the application using ODBC. These drivers are installed on the machine
running the application and provides the underlying layers for processing the SQL requests express through the
ODBC interface. Since ODBC is the most used connectivity interface standard, all the relational database
products vendors have developed their specific drivers for ODBC, and generally they can be freely downloaded
from the internet.

12 The main vendors are enumerated in: Integrating Databases with Java via JDBC. Rawn Shah. Javaworl 1996
http://www.javaworld.com/javaworld/jw-05-1996/jw-05-shah.html

 55

Moreover many programming environments (such as JBuilder for Java, Borland C++) have an adapted
support for ODBC since they provide some ODBC components that group all the ODBC functionality in simple
units responsible of the different aspects of the database access (such as database connection, database tables,
statement for supporting the SQL query, etc...).

The main advantage of ODBC is that as it has been adopted as an industrial standard widely used, all the

database products vendors provide the different supports to be compliant with it. Unfortunately, the main
disadvantage of ODBC is that it involve deployment restrictions since the drivers used with it are platform
dependent.

• JDBC [Jdk]

Java DataBase Connectivity (JDBC) standard is as ODBC an API for providing a common interface at
programming level for database access. Its specificity is to be usable only with the Java language. Given the Java
“fever” in application development, the JDBC standard is becoming more and more widely accepted by the
industrial community. It is also “the” standard for all Java applications using database access, and it would be
particularly stupid to not adopt it in a Java application.

JDBC is similar in concept to ODBC since it is also based on the X/Open Call-Level Interface (CLI)

specifications for Structured Query Language (SQL). It also provide a simple way to include database access in
Java code by a specific support at language level for SQL queries. The java.sql package provides the necessary
classes for the basic functionalities required for database access.

As with ODBC, the link between the language interface provided by JDBC and the DataBase Management

System (DBMS) is supported by drivers specific to each kind of relational databases. A main distinction between
ODBC and JDBC is that these drivers are not platform dependent. They are independent from the chosen
platform and moreover are loaded dynamically at application runtime. In fact drivers for JDBC are represented as
Java classes that are dynamically loaded by the standard DriverManager class of Java at runtime. The fact to
have JDBC drivers written all in Java involve true platform independence and easy deployment. Moreover the
Java Deployment Kit (JDK) provides a set of common JDBC drivers for the most used kind of databases that can
be chosen and used dynamically.

An important feature of JDBC is that JDK proposes some bridges between JDBC and ODBC, in order to be

able to use ODBC drivers with Java.

The basic scenario used in Java programs to read from a database is the following:

• The driver corresponding to the used relational database is loaded dynamically as a Java diver class
• A connection object is created to represent the connection to the database (defined through a database

URL address, that can be local or remote)
• A statement object is created. This statement will use a SQL String to execute the SQL query
• The result of the processing of the SQL query in the database is loaded into a result set object
• This result set object can be exploited as wanted with different methods (next, getString...)
• The result set, statement and connection objects are closed

There are also different functionalities for modifying the database.

Finally the JDBC standard is very useful and simple to use within Java programs, mainly because a set of

Java classes groups all the required functionalities. The main advantage of using JDBC is the fact to be able to
load dynamically platform independent drivers, and mainly that JDBC is “THE” reference for accessing
databases with Java.

 56

§ RECINTERNET case

The strategy for the RECINTERNET case was to choose a standard API for the connectivity with the local

structural database, so that it would be easy and simple to include database access code in the server application
code.

The major parameter in this choice was the fact that the server side of RECINTERNET was developed in

Java. Then using the JDBC standard was the logical choice for realizing the connection to this database. JDBC
was then a good choice because it was possible to use the existing Java classes to insert easily in the code
databases access. Moreover it was possible to insert Java variables directly in the SQL strings used for database
queries.

The local structural database developed and used for the RECSINWIN project was reused for the

RECINTERNET project. This database is a Interbase database of approximately 22 MBytes, working with the
DataBase Management System (DBMS) InterServer. All-Java drivers for JDBC/Interbase are available for free13,
and provided all the needed functionalities for the database connection.

The choice of JDBC for the RECINTERNET project simplified also the database access programming

thanks to many reusable examples and to the good documentation provided by Oracle14 freely.

II.6.2.2) The particular case of server/SINTESE database communication

It would have been particularly interesting to also use a standard like JDBC to realize the communication
between the RECINTERNET server and the main database containing all the entries (the SINTESE database).
Unfortunately this was not possible because the SINTESE database is inserted into the SINTESE system that uses
a particular DataBase Management System (DBMS) that is not based on SQL queries.

As explained before it was not possible to modify the SINTESE system and so we were obliged to adapt the

RECINTERNET project to this system. We will now describe briefly the specificity of the communication with
this SINTESE database, and the way we used it in the RECINTERNET project.

The SINTESE database is a DMSII database of approximately 20 GBytes, located in the CTRJ (Centro de

Tratamento de Informações do Rio de Janeiro – Information Treatment Center of Rio de Janeiro), on a high-
powered storing computer. This computer is part on the intranet where are connected the different machines of
DATAPREV headquarters and other centers.

To access this database, a user must first connect to the SINTESE system, through a TCP/IP protocol (LCW

gateway). He can then use the functionality of the system through a terminal. In order to retrieve data form the
SINTESE database, he must use a particular syntax which is very different from the SQL syntax since it was
specifically defined for the access to this database. The way to retrieve some entries of the database is to combine
some command lines describing the way to organize the lines and columns of the table showing the resulting
serie. The Figure 18 illustrates this specific syntax:

- LI ESP ESTADO (* REGIAO SE)
- M $SUB.CONTRI ANO 97 98 99 POSTO FA3056
- M $DOLAR.C MES 0199 0299 0399 0499 0599 0699

Figure 18 - Example of the SINTESE request syntax

These three command lines represent a request to the SINTESE database. In the first line of this example is
specified that the lines of the results sheet will be all the states of the region Sudeste. The second line specifies
that in the columns will be the serie referenced as Sub.Contri for the years 1997, 1998 and 1999, for the Posto

13 Drivers downloadable on the Interbase Site: http://www.interbase.com
14 JDBC documentation and examples: http://www.oracle.com/java/codesamples/jdbc/index.html

 57

referenced as FA3056. The third line specifies that in other columns of the same sheet will be the serie referenced
as Dolar.C for the months 01/1999 to 06/1999.

Once he has submitted its command lines combination, the user can visualize the result table on his terminal

screen. Thanks to a special SINTESE command, the user can retrieve the result as an ASCII text file.

In order to be able to access the SINTESE database with the RECINTERNET server, we needed some

specific measures. First of all the connection to the remote SINTESE system will be done thanks to a specific
Java API that simulates the terminal connection using the TCP/IP protocol.

Then we needed to use the specific syntax to express queries to the SINTESE database. In fact in the

RECINTERNET system, the user compose dynamically a final request through a navigation and accesses to the
server and the local structural database. This final request is structurally described by the different navigational
choices done by the user. The different parameters of this request are chosen by the user in the different
navigation screens. Finally there are only few different structural request-types, that need to be filled in with the
specific choices of the user. So we just needed to express the structure of these request-types in the SINTESE
request language, and then complete them with the SINTESE code of the different parameters.

Finally when the user has composed his final request, the RECINTERNET server passes the corresponding

command lines structure completed with the user parameters to the SINTESE simulated terminal, calls the special
command to receive the ASCII results file, and then parses it to create an exploitable Java object that will be sent
to the client.

By this mechanism we can then use the specific SINTESE system to access the SINTESE database from the

RECINTERNET server.

II.7) Conclusions

To conclude this analysis of the main technologies and techniques usable in the design and implementation
of the RECINTERNET project, we will sum up the different choices we did for RECINTERNET.

We will use some concepts and patterns of the Object Oriented Hypermedia Design Method (OOHDM)

since it enables to adopt robust and proven solutions to recurrent navigational applications design problems. The
design decomposition in conceptual design, navigational design and interface design seems particularly suitable
to address in different steps the different concerns of the application design. Using the set of hypermedia design
patterns of OOHDM will also be very benefic since it will enable to organize the different mechanisms used in
RECINTERNET in coherent and efficient ways.

Our study of the architectural possibilities for an application like RECINTERNET highlighted that three-

tiers architectures are particularly suitable for web-based applications involving shared resources such as
databases. In the case of RECINTERNET we will use a variation of three-tiers architectures. A server local
structural database will be used to increase requests preparation efficiency since only final requests will be
addressed to the main SINTESE database.

Then we chose different technologies for the three-tiers of this dynamic internet database interface and the

communication between the three-tiers. The client part of RECINTERNET will be programmed in a Java applet,
embedded in a HTML page downloadable with any web-browser. This is the best solution we found to provide
an easy way for users to reach an efficient application from any web-browser. The server part of RECINTERNET
will be programmed as a Java application running on the server host. It seems the appropriate solution to
implement the different functionalities of RECINTERNET and to support simple communication protocol with
the client and simple databases access. Client/server communication will then be realized with Java RMI since it
provides a transparent way to realize method calls between remote objects of different Java applications.
Structural database access from the server application will be achieved through the JDBC standard and the
corresponding drivers, that enable to construct SQL queries and exploit queries results into Java code. The access

 58

to the SINTESE database will be done through the simulation of a terminal of the SINTESE DataBase
Management System (DBMS) with a remote connection by TCP/IP protocol. The constraint of using this existing
database and its associated DBMS is then included into the RECINTERNET project.

The Figure 19.presents a summary of the different technologies used in the RECINTERNET project for the

three tiers and for the communication between them.

Figure 19 - Summary of the chosen technologies for RECINTERNET

Finally we will also program the whole system with separation of concerns. It seems particularly suitable to

enable an efficient and flexible programming for different concerns used in RECINTERNET such as connection

User Web Browser

HTML Page

Java Applet

CLIENT SERVER

HTTP
Download

Java Server
Java
RMI

Local
Structural
Database

JDBC

DATABASE HOST

SINTESE
Database

SINTESE Connection

HTTP
Server

 59

control, user interaction, synchronization... Out of the different techniques existing to support separation of
concerns, Aspect-Oriented Programming (AOP) provides the appropriate mechanisms and technology to
efficiently express complex concerns cross-cutting the code into separated modules. By using the AspectJ tool it
is possible to implement aspects that will be automatically woven with Java components code.

The following sections of this thesis will present the way we developed the RECINTERNET project with

the different techniques and technologies. Our research is particularly focused on one of these techniques: AOP.
We will present in Section III our approach for designing with aspects for web-based three-tiers applications. We
will illustrate this way of programming in a comparison between a conventional object-oriented design and an
aspect-oriented one for the RECINTERNET case in Section III, and present the way to implement these two
solutions in Section IV.

 60

III - APPLYING SEPARATION OF CONCERNS IN WEB-BASED
THREE-TIERS APPLICATIONS DESIGN

III.1) Introduction

In this introduction we will go further in the descriptions of separation of concerns and Aspect Oriented
Programming (AOP) given in the Section II.2. We will also state the interest of using these techniques for web-
based three-tiers applications and present the objectives of their application at the design level of an application
such as RECINTERNET.

III.1.1) Separation of concerns

As we have seen it in Section II.2.1, the separation of concerns paradigm aims to define programs in terms
of components and concerns. Components are entities that can be encapsulated in traditional object oriented
structures to express the basic functionality of a program, and concerns are more complex entities that cannot be
encapsulated in components structures because they are cross-cutting the basic functionality code. The idea of
separation of concerns is to have separated modules for each new concern.

Now we explain in details the composition/decomposition mechanisms involved by this way of

programming:

• Decomposition

The aim is to decompose a system into different concerns and components. The decomposition in

components is done in the classical way of dividing a system into objects. Then concerns are defined for cross-
cutting entities, for example for concurrency control, remote communication strategy, real-time constraints,
security. Concretely the idea is to define in separate modules all the modifications that will be done to the
components code for one concern.

Each different technique for realizing separation of concerns have its own mechanism for identifying and

expressing concerns, but all of them try to provide a way to express a set of modifications to the basic
functionality code into separated modules. Each concern is closely related to the design and eventually to the
implementation of the components of the system. The way to express a concern is also specific to the technique
chosen. It can be specific aspects languages (in aspect oriented programming), meta-level code (in meta-
programming), behavioral specifications (in adaptive programming), or special entities such as filters classes (in
composition filters), or subjects (in subject oriented programming). As this is a quite new and active research
domain, there is not definitive and precise methodology to realize decomposition.

• Composition

The different concerns and components resulting from the decomposition are expressed in different ways

and cannot be compiled or ran like that. That is the reason why the different techniques for separation of concerns
try to define a composition mechanism in order to obtain a compilable or executable system out of the concerns
and components as they are expressed.

These composition mechanisms are also specific to each technique and can work either at source code level,

either at compiled code level, or at both levels. In aspect oriented programming composition is realized by an
aspect weaver taking code as input and producing code as output. In subject oriented programming, automatic
composition of code or bytecode of some subjects are realized with composition rules. Meta-programming way
is to compose concerns and components by modifying meta object protocols. Composition filters use a modified
way to evaluate message passing in order to add the concerns functionality. Adaptive programming generates

 61

code in classes involved in traversal strategies. The idea is too realize automatically this composition for the
user.

By these mechanisms the separation of concerns paradigm provides important improvements to the classical

object oriented software development. For many kinds of applications it provides ways to reduce program
complexity and to ameliorate flexibility, reusability, maintainability and evolutivity.

III.1.2) Aspect Oriented Programming

Aspect Oriented Programming (AOP) is the base of the work presented in Section III and IV about applying
separation of concerns in web-based three-tiers applications design and implementation. That is the reason why
we extend now the definition given in Section II.2.2.5 with further details.

III.1.2.1) Concepts

There are “AOP-specific” terms that are independent from the concrete solution chosen to support AOP. We
will define these terms in this part. A system and its implementation can be decomposed into components and
aspects.

• Component

“A component can be cleanly encapsulated in a generalized procedure (i.e. object, method, procedure,

API). By cleanly, we mean well-localised, and easily accessed and composed as necessary. Components tend to
be units of a system’s functional decomposition, such as image filters, bank accounts, service providers, GUI
widget.” [KLM+97]

• Aspect

“An aspect cannot be cleanly encapsulated in a generalised procedure. Aspects tend not to be units of the

system’s functional decomposition, but rather to be properties that affect the performance or semantics of the
components in systemic ways. Example of aspects include memory access patterns and synchronisation of
concurrent objects.” [KLM+97]

• Decomposition

Decomposition in AOP is the definition of a system in terms of components and aspects. Aspects must be

cleanly separated from components, and aspects must be separated from each other. At design level the choice is
done between what will be expressed in components, and which aspects will be used. Aspects are then expressed
in a specific language (or in distinct specific languages15) that enable to define efficiently concerns in relation
with involved components already defined in the classical programming language used16. Aspects are always
based on components implementation.

• Granularity

An important characteristic in AOP is the granularity of the aspects. It means on what level of granularity do

the aspects affect the components code. In object-oriented languages, aspects can reach methods and variables of
a class. It means that generally, aspects are allowed to add new methods and variables to a class, but also to wrap
an existing method of a class with further code, that will be executed before or after the normal body of the
method. Anyway this generally assumed granularity level can be different depending on the aspects languages
used.

15 For example, in the D Framework [LK97], two aspects languages are used: Ridl, to express remote access strategies and Cool, to

express threads coordination.
16 Even if the main research work on AOP is applied to object-oriented languages, AOP principles are also valid for other paradigms, as

specified in [KLM+97]. For example aspects can be defined on procedural systems, or aspects can even be used to express entities cross-
cutting aspects.

 62

• Join point

Join points are used to identify the different locations of the components code that aspects will affect.

Expressing aspects is dealing with two issues: expressing modifications that will be applied to components and
specifying where these modifications will take place. More details about this decoupling can be found in [Beu99].
The last of these two feature is in fact expressing join points. Aspects languages provide specific semantics for
defining join points, and some join points abstractions to express for example “all the methods of a class”17.

• Weaving

The aim of AOP is to provide an automatic mechanism of composition. Aspects and components will be

composed to create a usable system (by usable, we mean a system that can be compiled or directly run). It means
that the aspects will be taken one by one and applied to the components code. This mechanism is assured by an
aspect weaver, which is a kind of pre-processor that takes as input components and aspects expressed in given
languages to produce as output a woven code. This woven code represents the components plus the different
aspects modifications added.

III.1.2.2) AspectJ

AspectJ [AJ] is an general-purpose aspect-oriented extension to Java developed by the Xerox Parc
Corporation in Palo Alto. AspectJ provides an aspect language that enables to express aspects applicable to
classical Java code. As explained in Section II.2, AspectJ is the most advanced solution for efficiently
programming with aspects. Moreover it works with Java, that we were using for the RECINTERNET project, and
is easily usable. We worked then with the version 0.3.0 beta 3 release, that can be downloaded freely from the
AspectJ Home Page [AJ].

More details will be presented about concrete implementation with AspectJ in Section IV, but it is

interesting to present in this section few characteristics of AspectJ that will influence the way to design with
aspects.

The Figure 20 presents the global mechanism of the AspectJ weaver. Components Java code and aspects

code (expressed according to the AspectJ semantic) are combined statically by the AspectJ weaver (that can be
seen as a pre-processor). The output is some woven Java code that can be compiled as classical Java code to
produce executable Java bytecode18. It has to be noticed that the input aspects and components files are not
modified by the weaver. The output is created in distinct files.

The interest of such a mechanism is the flexibility obtained for plugging in or out aspects. Plugging in a new

aspect is done by weaving it with the components code. Plugging out an aspect is done simply by taking the
initial component code that has been left unmodified by the previous weaving.

Without entering in the details of the AspectJ weaver, we can describe the weaving mechanism as

following: the weaver takes the aspect files one by one, then analyses the aspect to solve the join points
considering the components code. Taking the solved join points one by one, it then writes the corresponding
modifications in the different output files with some comments to describe the realized modifications. Weaving
errors can stop the weaving process (such as incorrect join points), and they are then reported by the aspect
weaver.

17 With AspectJ [AJ], it is possible for example to express “all the public methods of the Java class Point” with this syntax: public

* Point.*(..) (for more details about the syntax, we refer to [AJPrimer]).
18 Actually it is possible to directly obtain the Java bytecode corresponding to the Java woven code compiled. An option of the AspectJ

weaver enables to weave the aspects and components and directly call the classical Java compiler to provide to the user the final woven
bytecode.

 63

Figure 20 - AspectJ weaving mechanism

Finally in AspectJ we can see the expression of aspects as directives for the weaver to insert pieces of code
into components code. The following section will give more details about the way to express these directives and
what can be reached with these directives.

III.1.2.3) Expressing aspects with AspectJ

This section is mainly based on the explanations given by the AspectJ team in [AJPrimer]. In this section we
will speak of aspects in the specific context of AspectJ. It is important to clearly understand what can be
expressed with aspects, in order to be able to design aspects effectively realizable with AspectJ.

The idea of AspectJ is that aspect declarations are similar to Java class declarations:

aspect MyAspect {
 ...
}

The different members declared in an aspect can be variables, constructors and methods (as in Java class

declarations), but also introduce weaves and advice weaves. Weaves designate where code will be inserted
(through designators) and what Java code to insert. We will now define these different terms involved in aspect
declarations:

• Designators

Designators are used to define the aspects join points. They point to one or more methods or constructors of

one or more class. For example:

class User {
 private String name;
 Library theLibrary;
 Printer the; Printer

 public User(String n) { name = n; }

 public boolean getBook (String title) {
 Book aBook = theLibrary.getBook(this, title);
 thePrinter.print(this,aBook);
 return true;
 }
}

class Book {
 private String title;
 private String author;
 private String isbn;
 private PostScript ps;
 private User borrower;

 public Book(String t, String a, String i, PostScript p) {
 title = t;
 author = a;
 isbn = i;
 ps = p;
 }

 public User get_borrower() {return borrower;}
 public void set_borrower(User u) {borrower = u;}
 public PostScript get_ps() { return ps; }
}

Components
Java Code

(.java)

class User {
 private String name;
 Library theLibrary;
 Printer the; Printer THE printer;
return true;
}

private User borrower;
My little girl is beautiful (28/07/99)
 public Book(String t, String a, author = a isbn
= i;

Aspects
Code

AspectJ
Weaver

class User {
 private UserID id;
 Library theLibrary;
 Printer thePrinter;

 public User(String n) { id = new UserID(n);
}

 public boolean getBook (String title) {
 BookID aBook=null;
 try{
 aBook = theLibrary.getBook(id, title);
 } catch (RemoteException e) {}
 try {
 thePrinter.print(id, aBook);
 } catch (RemoteException e) {}
 return true;
 }
 public UserID get_uid() { return id; }
}

class UserID {
 private String name;

 public UserID(String n) { name = n; }
 public String get_name() { return name; }

interface LibraryInterface extends Remote {
 public BookID getBook(UserID u, String title) throws RemoteException;

 public PostScript getBookPS(BookID bid) throws RemoteException;
}

class Library extends UnicastRemoteObject implements LibraryInterface {
 Hashtable books;
 Library() throws RemoteException {
 books = new Hashtable(100);
 }
 public BookID getBook(UserID u, String title)
 throws RemoteException {
 System.out.println("REQUEST TO GET BOOK " + title);
 if(books.containsKey(title)) {
 Book b = (Book)books.get(title);
 System.out.println("getBook: Foun d it:" + b);
 if (b != null) {
 if (b.get_borrower() == null)
 b.set_borrower(u);
 return b.get_bid();
 }
 }
 return null;
 }
 public PostScript getBookPS(BookID bid)
 throws RemoteException {
 if (books.containsKey(bid.get_title())) {
 Book b = (Book)books.get(bid.get_title());
 if (b != null)
 return b.get_ps();
 }
 return null;

Woven
Java Code

(.java)

 64

public void Point.setX(int x)

points to the method setX method of the class Point that takes an integer as parameter and has a void return.
The idea is the same for constructors. It is also possible to use packages in class reference.

It is possible to use specific characters. The “*” is used to say that anything can replace it. It can be used

for package name, class name, return type, constructor name or method name. The “..” is used to specify that
the parameters of a method (or a constructor) can be anything. The “!” character enables to express some
conditions on the modifiers. For example:

public !abstract void MyPackage.*.set(..)

refers to all the public set methods (with any kind of parameters) of all the classes of the package MyPackage
which are not abstract.

With this syntax it is then possible to refer to multiple methods or constructors in the same time.

• Introduce weaves

The introduce weaves are used to insert in one or more classes variables, methods or constructors. The place

where they will be inserted is defined by one or more designators. The body (or initializer) of the introduce
weave will be the body (or initializer) of the methods or constructors (or variables) introduced. For example:

introduce public int Point.getX() { return x; }

will introduce the method getX with the appropriate body in the class Point.

And, for the variable introduce weave, for example:

introduce private Color Point.color = new Col or(0,0,0);

will introduce the variable color and its initializer to the class Point.

It is also possible to define a weave that introduce several methods:

introduce public String Point.getName()
 public static String Line.getName()
 protected String Square.getName() {
 return name;
 }

• Advise weaves

Advise weaves are used to insert code into methods or constructors. As introduce weaves they use

designators to point to the wanted methods or constructors.

The before advise weave will insert some code before the body of the initial method. For example:

 65

advise public void Point.setX(int _x) {
 static before { if (!assertX(_x)) return; }
 }

means that the given body will be executed just before the setX body, each time the setX method will be
executed.

The after advise weave is the same but will be added at the end of a method body.

The catch advise weave is used to add a “try-catch” wrapping the entire body of a method. For example:

advise public void Point.setX(int _x) {
 static catch (Exception e) { System.out.println(e); throw e; }
 }

will add the given behavior to execute when exception are raised in the setX method of the class Point.

The finally advise weave is used to add a “finally” wrapping the entire body of a method body. For example:

advise public void Point.setX(int _x) {
 static finally { releaseResources(); }
 }

will add the given behavior to execute at the end of the setX method of the class Point, even if exceptions are
raised.

As for introduce weaves, an single advise weave body can be expressed for several designators.

• Aspects variables, constructors and methods

As for any Java class, an aspect declaration can contain some variables, constructors and methods. The

syntax is the one used in Java classes. These aspect variables, constructors and methods can be called or used
from within this aspect. For example:

aspect MyAspect {
 private static int countPointInstances = 0; // The aspect variable

 advise Point(..) {
 static after { countPointInstances++; }
 }
}

will increment the countPointInstances variable of the aspect MyAspect after each time a constructor of
the class Point is executed.

• Specific variables

Specific variables can be used in aspects. They are used to hold references solved at run-time:
§ thisObject: this variable holds the reference to the current object (equivalent to the “this” in

Java).
§ thisJoinPoint.methodName : holds the name of the current method on which the current advise

weave is being executed.
§ thisJoinPoint.className : holds the name of the current class containing the method on which

the current advise weave is being executed.

 66

§ thisResult: holds the return value of the method on which the current advise weave is being
executed, if any.

• Remarks

In the latest versions of AspectJ19, some new features related to non-static weaves have been added. It is

possible to instanciate aspects in the same way than classes instantiation (by calling an aspect constructor).
Aspect instances can then be associated with objects (being referenced by an instance variable of the object) and
objects to aspects (through an aspect domain that holds references to associated objects).

To support these features, AspectJ provides some new specific variables and methods, in order to be able to

“manipulate” these associations. It is then possible to have references to aspects from objects and automatic
references to objects from aspects (through their domain). These new features enable some “non-static”
exploitation of aspects and components weaving. We will not provide further information about these features
since we decided to not use them for our design with aspects. In fact they are quite recent in the AspectJ
development and should evolve consequently in the near future. Moreover most of these new features can be
obtained with the “classical” AspectJ features.

Another point is the particular use of Java interfaces. Normally a Java interface only defines methods

signatures that must be defined in classes implementing this interface. In AspectJ, a join point referencing a
method of an interface will in fact reference all the implementations of this method in the classes implementing
this interface. This enable to factor out some modifications on methods of several classes.

For further details about this aspect language, we refer to [AJPrimer].

Now that we have explained more in details AOP and AspectJ, it is possible to understand what can exactly

be expressed in aspects, and the way it will affect the components code. Finally AspectJ provide an appropriate
tool for programming with aspects as well as a powerful language that provides a wide range of possible actions
on components code.

III.1.3) Objectives

In the following sections we will present the different stages of our research process. The principal idea was
to apply separation of concerns (and particularly aspect-oriented programming) in web-based three-tiers
applications development.

Aspect oriented programming is an emerging way of programming that provides many improvements in

application development. Unfortunately as a new technique, a clear methodology to be efficient and to take all
the benefits of it is missing.

Moreover aspect oriented programming, and particularly aspect oriented programming with AspectJ, is a

technique mainly based on implementation stage. Aspects are defined relying on basic components
implementation. However inserting aspects at design level is a motivating challenge since it provides important
advantages such as composition conflicts solving or better reuse to name only few.

That is the reason why we will present in the following sections how we did to design a web-based three-

tiers application with aspect. We will compare this approach with a classical approach (without aspects). This
comparison will take place in the concrete case of the RECINTERNET project.

We will present in Section III.2 what are the motivations, the difficulties and a technique to realize aspect

oriented design in web-based three-tiers applications. The idea is then to draw a comparison between a design
without and with aspects for this kind of applications, and particularly in the concrete case of the
RECINTERNET applications. For this purpose we will present in Section III.3 the design without aspects that we
realized for RECINTERNET, and in Section III.4 a design with aspects for the same application. The Section

19 Previous to the version 0.3.0 beta 3 release.

 67

III.5 will then draw a comparison and these two approaches in this concrete case and we will give the conclusions
of this research for the design level in Section III.6.

III.2) Designing web-based three-tiers application with aspects

Web-based three-tiers applications design is a particularly complex stage of their development cycle since
this kind of systems involve distinct machines with different technologies for each part of the system. Complex
concerns are then scattered throughout the code of the different components of the system. An aspect oriented
design of such systems is then particularly interesting.

III.2.1) Motivations for designing web-based three-tiers applications with aspects

III.2.1.1) Aspect-oriented applications (AOP)

Using AOP in any kind of applications development provides several advantages. Most of them are highly
related, but we can separate the main advantages of using AOP as following:

• Modularity

With AOP it is possible to express aspects in separated modules from components code. Moreover it is

possible to express different aspects in separated modules. Then an important advantage is that an application
will be programmed in distinct modules, each of them corresponding to a clearly defined concern. This
modularity is a important advantage during design stage, where it is possible to concentrate on one concern at a
time, but also at implementation stage, where it is easier to implement concerns one by one than all together in a
same module.

• Size

As we have seen with AspectJ, it is possible to express very succinctly in one aspect some modifications

affecting several components code locations in the same time. For this reason, code duplication is avoided, and it
is possible to express in few lines of an aspect some modifications corresponding to a high number of
components code lines. For this reason using aspects in applications development generally decreases programs
size.

• Complexity

The modularity provided by AOP is an important factor of complexity decreasing. Understanding an aspect
oriented program is easier than understanding a conventional one. Even if the program is divided into several
modules (corresponding to the different aspects and components), as each concern is addressed distinctly from
the others, it is easier to better realize the impact of each concern on the code than if this concern was scattered
throughout the code and mixed with several other concerns. Moreover aspect oriented programs small size
increases their understandability.

• Flexibility

Aspect oriented programs are particularly flexible since, as in AspectJ, it is possible to plug-in or plug-out
aspects easily. The aspect weaver support these two mechanisms in such a way that replacing an aspect by
another one is a simple operation involving just a static re-weaving and a compilation of the woven code. By this
way it is possible to obtain easily distinct programs with modules addressing different issues out of a basic
program structure by the way of plugging-in or out aspects. It can then be realized without modifying all the
code, even if these different issues involve entities tangling the basic functionality code in many places.

 68

• Maintainability

With AspectJ, the executable Java bytecode is obtained by the compilation of the woven Java code. For this

reason, aspect-oriented programs errors are difficult to track since they refer to the woven code and not to the
initial aspects and components Java code modules. However the woven Java code is carefully commented by the
weaver in order to describe clearly from where is coming the code. Moreover, since separated concerns are
addressed in distinct modules, it is possible to maintain separately parts of a system corresponding to distinct
concerns. Locating the involved modules is then a simple task.

• Reusability

Reusability issues are particularly well addressed with AOP. Reusing an existing aspect-oriented system can

be seen as a matter of plugging-in new aspects and plugging-out non necessary old aspects. Moreover
understanding the reused system is a crucial part of reuse, and this is consequently simplified thanks to systems
complexity and size decreasing due to AOP. Finally the modular design of aspect oriented systems is an
important advantage for their reuse.

III.2.1.2) Aspect-oriented web-based three-tiers applications

Involving multiple tiers and multiple technologies, web-based three-tiers applications deal with several
complex concerns that can beneficially be expressed through aspects. This makes the aspect oriented approach
particularly interesting for their development cycle. Here is a non-exhaustive enumeration of some particular
features of web-based three-tiers applications that are consequently interesting to develop with aspects.

• Remote communication

Web-based applications rely on remote communication between a client and a server. As stated in Section

II.6.1, solutions like Java RMI can be adopted for this communication. However programming this remote
communication concretely cross-cuts the functionality components code (with stub and skeleton management
code, remote interfaces code, remote exceptions handling and so on). It is then particularly powerful and brief to
express this remote communication feature in aspects.

• User interaction

As explained in Section II.5.1, internet provides different possibilities to support applications dedicated to

user interaction handling. In the Java applet solution, user interaction is managed through events handling. The
web browser react to events such as mouse actions (click, moves...), windows events (close, minimize...) and so
on, and these events must be converted into the appropriate method call to realize the needed actions. It can be
much simple to implement this user interaction scheme with aspects.

• Server functionality

In web-based three-tiers applications, the middle-tier (the server) can implement different functionalities.

The fact to deal with multiple users require some multi threading policies that are involving elements in different
parts of the server code, and then can be encapsulated efficiently in aspects. Moreover in a multi-tiers application
with multiple servers, the different elements related to the load balancing feature cross-cut the basic components
of the server application. For this concern it is also interesting to use AOP.

• Database access

In the same way, the code related to database access (database connection, SQL strings creation, results

exploitation...) can involve many entities of the server code, and also several features which are specific to the
kind of databases used in the application. Expressing this code in aspects can avoid code tangled throughout
components code but also reduce efficiently code complexity by expressing in distinct modules specific concerns
of different kind of databases access.

 69

III.2.1.3) Motivations for defining aspects at design level

As explained in [Aop]: “Like objects, aspects are intended to be used in both design and implementation.
During design the concept of aspect facilitates thinking about cross-cutting concerns as well-defined entities.
During implementation, aspect-oriented programming languages make it possible to program directly in terms of
design aspects, just as object-oriented languages have made it possible to program directly in terms of design
objects”.

Then, even if aspects are based on components implementation, define them at design level can enhance in

many ways the development cycle.

First of all, defining aspects at design level will help designers to separate systems in different modules

related to distinct concerns. This mechanism will enable to address one concern at a time and to design it almost
independently from the other concerns. It means that designing the aspect encapsulating all the elements of a
concern will be easier than designing these elements into the entire system without aspects since everything
related to this concern will be expressed in only one module, and almost independently from the other concerns.

Another advantage of defining aspects at design level is that it is then possible to define some pluggable

aspects. In fact aspects can also be seen as pluggable modules that can be added or removed to a system to
support different functionality.

For instance we can imagine a system where some clients access as a remote server. A strategy could be that

if the connection is not realized after a given time limit, an error message is displayed to inform the client that the
connection is not possible. Another strategy could be that when this time limit is reached, the client request is
automatically transferred to another server. These strategies could be expressed each in one aspect. Then
choosing a server policy could be done by plugging-in the wanted aspect and eventually plugging out the
previous one. These alternatives are chosen before the code is compiled, and it can be very useful. These kind of
pluggable functionalities must be defined at design level, since they affect consequently the whole system
implementation.

An important decision in developing aspect-oriented systems is choosing what to put in aspects and what

not. The boundary is often difficult to define at implementation level. It is then important to have defined during
the design of the system which concerns will be addressed in aspects, and then the different elements involved in
the given concerns can be extracted from the basic functionality components code to be expressed in aspects.
Finally the implementation will have to follow closely what the design expressed and then aspects will be defined
more clearly and in a homogeneous way since they respect the aspect decomposition policy defined during
design.

An aspect is based on components implementation. It will be woven to components code to add some code

into these components, but there can be some composition conflicts. For instance if two aspects define some code
addition on the same join point, the result can be different from excepted since the pieces of code added by the
two aspects can be incompatible. Expressing clearly the join points of aspects and the modifications involved at
design level can enable to detect these kind of composition conflicts.

Finally defining aspects at design level enable to efficiently organize design in separated concerns. It will

result in systems where each feature has been clearly and separately defined. Implementing such a design will
then be facilitate and composition conflicts can be avoided. Finally a clear structure will be provided for design
models. Reusing these design models will then be easier since they will be more structured and more
understandable through a clear separation of concerns.

 70

III.2.2) Difficulties of aspect design

III.2.2.1) An emerging programming paradigm

Separation of concern is one of the most active research domain of software engineering. But as a new
paradigm, related techniques are quite new. AOP is one of these emerging techniques to realize separation of
concern. Thus AOP is in a maturation phase where it evolves a lot and where it is not yet an efficient and
generally adopted way of programming. Many improvements and propositions have to be done before an
efficient way to design with aspects is defined and accepted as standard.

In this context Xerox Parc Corporation decided to develop AspectJ. As a beta version, AspectJ is evolving

permanently and new features are added in frequent new releases. It evolves to provide new features requested by
its users in an efficient way and to solve the problems of the previous versions. Important modifications also
involve different ways to design a system, in order to be able to implement it with AspectJ.

As an example, the version 0.1.0 of AspectJ was supporting two aspect languages to provide only

mechanisms for concurrency control (COOL) and remote communication (RIDL). For more details on these
languages, see [LK97]. The version 0.2.0 aims to support general-purpose cross-cutting mechanisms.
Consequently using one version instead of another modifies not only the way to implement a system, but also the
way to design it.

Moreover many frameworks for AOP are using some specific-purpose aspect languages, and then use a

specific methodology for decomposing a system into aspects and components. It is then difficult to speak of a
global methodology to design systems with general-purpose aspect languages frameworks.

Currently there is not a standard methodology to design with aspects. This is a domain of software

engineering that will require maturation and experiments in order to be able to abstract some efficient way to
design with aspects. In Sections III.2.3 and III.4 we explain a way to realize an aspect-oriented design and to
represent it for web-based three-tiers applications and we illustrate it with the concrete design of
RECINTERNET.

III.2.2.2) Decomposition challenge

The AOP decomposition mechanism – separating a systems into different components and aspects – must
be defined at design level for the reasons we explained in Section III.2.1.3. However this is a difficult challenge
for which no standard methods are defined.

The first difficulty is in choosing what should be expressed in aspects and what should not. Web-based

three-tiers applications have been and can be totally designed and implemented in a conventional object oriented
way. In an degenerated view we can also imagine such an application where any entity that cross-cut just a bit the
components structure is expressed in an aspect. Then we would have a proliferation of aspects with a very poor
components structure. It seems that an intermediate solution between these two extremities should be found in
general. The pending question is then: until what point should we put cross-cutting entities into aspects?
Obviously the answer depends on the kind of application. We try to answer this question in the case of web-based
three-tiers applications in the following parts.

Another difficulty is that aspects are based on components implementation. At design level components are

not yet implemented and then it can be a hard task to clearly define aspects at this moment of the development
cycle. Join points are a particularly important feature in aspects expression. It is then important to define as
clearly as possible these join points between aspects and components, even at design level. We try to explain the
way to express these join points in an appropriate way at design level for web-based three-tiers applications in the
following parts.

 71

III.2.3) How to design web-based three-tiers applications with aspects

In this section we describe a step by step methodology to support aspect-oriented design in web-based three-
tiers applications by proposing some guidelines to structure the aspects/components decomposition, as well as a
clear way to define aspects/components interactions. We finally propose a table representation for
aspects/components decomposition design.

This methodology and representation will be used and illustrated in details in Section III.4 in the concrete

case of RECINTERNET. In fact we propose a way to design based on a step by step decomposition and
characterization that we created for the RECINTERNET case.

III.2.3.1) Step by step aspects design

The process we propose to design a system with aspects is divided in different steps organized in four parts.
It has to be noticed that it is difficult to strictly follow this method step by step since many steps are closely
involved, and sometimes defining a step will modify another step previously defined and then all the intermediate
steps will have to be re-done. The basic idea of this methodology is to decompose the designed system by
characterizing the different elements of its two dimensions (the aspects dimension and the components
dimension), and to clearly define the interactions between these two dimensions.

⊗ POINT I: ASPECTS IDENTIFICATION

⊕ Step I-1: Aspects Areas Identification

In this first step are defined the different characteristics of a given system that address some concerns that

will surely cross-cut components implementation and that could be beneficially expressed with aspects. These
aspects areas are then named and a brief description of the kind of aspects of such areas is defined. In Section
III.2.1.2 we have named some of these areas that can be used in web-based three-tiers applications aspect design
(shared resources, user interaction, remote communication, server functionalities, database access...).

In the case of a web-based three-tiers application, we can pick up for example the following aspect area:

shared resources. We can describe it briefly the potential aspects of this area as following: the aspects of this
area will express all the code modifications related to methods synchronization or shared variables access
synchronization.

⊕ Step I-2: Aspects Identification

In this step, taking one by one the previously described aspects areas, we will try to point out all the aspects

of the area. We will then identify precisely what each of these aspects is supposed to provide. This point is the
answer to the question: what is this aspect concretely concerned with? This should be explicitly described for
each of the identified aspects. This description is not directly concerned with components, but address the
principal objectives of an aspect. For example we could have an aspect Database Access Synchronization which
could be described by: realize the synchronization of all the threads requiring access to the database.

⊕ Step I-3: Aspect Type

We propose two characterizations for aspects: type and plugging constraints.

• Type: an aspect is either a required or an optional one. A required aspect will be woven to the
components code to produce an executable code. The original components code cannot be run without
being woven with such an aspect. An optional aspect represents an option that can be plugged or
unplugged to the system. The system can work without the plugging of such an aspect. Weaving such an
aspect to the system can add a particular feature to the system.

 72

• Plugging constraints: this characterization of aspects enables to specify the way aspects or groups of
aspects can be plugged. We have identified two kinds of plugging constraints, but it is not an
exhaustive list. The first one is that an aspect can be used only when another aspect (or several others
aspects) are also plugged on the system. The second one is that only one aspect out of a group of
aspects can be plugged on a system

As an example we can have two optional aspects of cannot be plugged together: the first one will be used to

specify that a user will receive an error message after a time-limit for the connection to the server, and the second
one that the request of the user will be re-directed to another server after the connection time-limit.

So in this step we will describe for each aspect its type (required or optional), and if it is involved in

plugging constraints, we will specify the different constraints and other aspects involved.

⊕ Aspects Definition Representation

We can use a table to summarize the results of this first part. As an example we take a table used in the

aspects design of the client application of RECINTERNET from Section III.4.2.

User Interaction Support Navigation Support

Aspects Areas Aspects related to user interaction
and direct consequences of user
interaction

Aspects related to navigation
actions or tasks required for
navigation

Events Handling Dynamic Node Loading

Aspects Defining components interactibility
and linking interaction events to the
appropriate methods

Searching or creating required
nodes when navigating

Type Required Required
Plugging Constraints No No

⊗ POINT II: COMPONENTS DESIGN

Designing the components of the system is done in the conventional object oriented way. Based on the

application specifications, the system is decomposed into functional entities (classes and objects). The specific
point due to AOP is that the designer must be careful to definitively not address in this functional decomposition
of the system any feature related to some concerns that have been defined to be treated in aspects. It is important
to take one by one the identified aspects to check that there is nothing related to them in the components model.

⊗ POINT III: ASPECT CHARACTERIZATION

At this point of our step by step decomposition, we have designed the components and also identified and

briefly defined the aspects that will be used. It is now possible to characterize these aspects:

⊕ Step III-1: Aspect description applied to components

Based on the aspect description realized in Step I-2: Aspect Identification, and using the components

designed, we can refine the aspect description by precisely expressing the modifications involved. In this step we
try to apply the first description realized to the designed components. For example if in a web-based three-tiers
application a database is accessed through a given set of methods, the Database Access Synchronization aspect
could be redefined as: all the methods accessing the database X will be synchronized using a lock on which they
will be queued.

 73

⊕ Step III-2: Involved components

With this description and with the components model, it is possible to track for each aspect the involved

components. This point is the answer to the question: what are the components involved that are affected (i.e. will
require some modifications) by something in the description of this aspect?

⊕ Step III-3: Join points Definition

In this step we will explicitly name the join points for each aspect and for each component involved. We

will then name them one by one, without generic naming (such as the possibility to use wildcards in AspectJ20).
We will use the Java signatures of methods, constructors and variables to define join points. In a case where the
join point does not exist in the component (for example when adding a variable to a class), the join point will be
the new member name (for example Point.shadow in the case of adding the variable shadow to the class
Point). This step is the answer to the question: Where will each component involved with an aspect be
modified?

Taking one by one the join points previously defined, we will define their type. This point is the answer to

the question: what kind of modifications will this aspect do on the given join point? There can be several
modifications for a same join point, and in this case we will do as if there were two distinct join points. There are
pre-defined modification types (that are strongly related to the aspect language used). We give these modification
types as a base for aspects expressed with AspectJ: variable adding, constructor adding, method adding, before
wrapping, after wrapping, catch wrapping, finally wrapping in reference to the aspect expression possibilities of
AspectJ described in Section III.1.2.3.

⊕ Join Points Representation

We can then use a table to summarize the definitions of this part. As an example we take such a table from

the aspects design of the client application of RECINTERNET, presented in Section III.4.2.

Component Join Point Involvement Description

RINode3 new()
For adding listeners to the
“interactable”components created
in this constructor

Transformation void action(String name) For defining the targetNode
variable accessed in this method

NavigTransformation void specificAction(String name) Idem

IntraTransformation void specificAction(String name) Idem
ExtraTransformation void specificAction(String name) Idem

RIPrevNextTransformation void specificAction(String name) Idem

⊗ POINT IV: ASPECT MEMBERS DEFINITION

⊕ Step IV-1: Aspect Members Identification

For each aspect described before we will try to group all the join points that will be treated in the same way

by the aspect. It means if the same piece of code will be added at the end of several methods, these methods can
be grouped. Join points can be grouped only if they have the same type. A join point included in two distinct
modifications should be seen as two join points. We call the obtained group aspect members, because they will
represent the different parts in the aspect implementation.

20 Like * Point.*(..) to refer to all the methods of class Point.

 74

We also try to express the join points of an aspect member through generic expression using the particular
characters of AspectJ syntax, as for example: public !abstract * set(..), * *.get(Strin g
name), which means all the non abstract public set methods of any class and all the get methods of any class
taking a String as parameter.

For each aspect member we will also explain what modifications will be realized on the corresponding join

points. This step has the objective to provide enough information for the implementation of the given aspect. It
answers to the question: What modification should be implemented for this group of join points? For example, in
the case of a debugging aspect that is used to print a message each time a variable of the class Point is
modified (through a mutator), we could have the following description for the post-method wrapping on the join
points Point.setX(..) and Point.setY(..): print the following message on console window: “a
variable of the class Point has been modified”.

Finally we also specify the type of each aspect member. This type is the type of all the join points of an

aspect member. It is one of the types given in Step III-3: Join Points Definition.

⊕ Step IV-2: Aspectual Members

With AspectJ it is possible to have variables, constructors and methods inside an aspect. They can be called

from within the different members of the aspect and should be specified in the design since they can be important
in the realized modifications to components code. We call them aspectual members

These aspectual members should also be clearly identified. We will use the same way than for components

join points to identify them. The “component” will be the aspect concerned, and the “join point” will be the
signature of the given aspectual member.

Aspectual member type will be specified. It can be one of the following: aspect variable, aspect constructor

and aspect method. We also need to give a brief definition of these aspectual members.

⊕ Aspectual Members Representation

As we have represented join points, we can represent aspectual members in a table. The following table,

extracted from Section II.4.2, represents three aspectual members (methods):

Aspect Member Description

Events_Handling_RINode3 Boolean dispatch(Event evt) Dispatch an event to the
appropriate method of the node 3

Node createNode(String name) Create a new node out of its name

Dynamic_Node_Load
Node getNode(String name)

Call the getNode method of the
context. If the node is not found,
call the createNode method

III.2.3.2) Aspects design table

Based on this two-dimensions (components and aspects dimensions) step by step decomposition we propose
a way to represent aspects at design level. The idea is to represent the characterization of each aspect in a table.
This table contains different parts representing the different elements addressed in the previously explained
decomposition. Some parts of the tables can be extended (specifying more information about some given points)
or collapsed (to not use some information that could not be useful in the design).

The Table 4 presents a simple example of such a table in the case of a debugging aspect. In this example all

the table parts are entirely shown.

 75

Debugging(a)

Aspects dealing with debugging stuff
Area

VarAccessShowing (b)

Show all the accesses to the variables of the classes Point
And Circle

Optional Aspect – No Plugging Constraints

Aspect

Read member(c) Write member

Display a message telling that a
variable has been read

Display a message telling that a
variable has been modified

Aspect member

After wrapping After wrapping Modification type

Components Join Points No(d) No Generic join points

GetX()(e) (f) (g)

GetY()

SetX(int x)
Point(h)

setY(int y)

getCtr()
getRay()
setCtr(int c)

Circle

setRay(int r)

Table 4 - Aspects design table: simple example

In this table, we present how the VarAccesShowing aspect can be described at design level. The

following notes explain some specific points. This example is used to present the main idea of the aspects design
table.

(a) When a new aspects area is added in a table, the table is extended horizontally with a new column.

(b) When a new aspect is added into an aspects area, a new sub-column is added into the column corresponding
to this area.

(c) The names given to the aspect members are just used to distinguish them. These names are not used in
AspectJ implementation.

(d) These cells are filled in when some syntax of AspectJ (using ‘*’ or ‘..’) can be used to define several join
points of the corresponding member in one expression.

(e) When a new join point must be added for a component, a new sub-line is created in the appropriate
component line. One join point can be involved in several aspects members. Here we do not show the entire
signature of the different join points (for space reason).

(f) A colored cell means that the corresponding join point is involved in the corresponding aspect member.

(g) A non colored cell means that the corresponding join point is not involved in the corresponding aspect
member.

(h) When a new component must be added, a new line is created.

 76

III.2.3.3) A specific use of the aspects design table: detecting composition conflicts

The aspects design table can be used to track some kind of composition conflicts. A composition conflict
appear when the weaving of an aspect will provoke some errors or some interference with already implemented
code. There can be composition conflicts between aspects and components or between different aspects. In this
part we will focus only on aspects composition conflicts. This kind of conflicts will appear when weaving an
aspect is defining some modifications on components code that will interfere with some modifications defined in
another aspect (or in other aspects). The composition will then create some problems that will maybe be specified
by the weaver, but maybe the problems generated will not be detect and then will create some problems at
execution.

These conflict generally arise because two distinct aspects can be developed independently, only based on

the components implementation. Many distinct composition conflict types can exist. Some of them are very
subtle, or specific to each application. Anyway some of them can be detected and then corrected at design level.
The aspects design table provide a simple visual way to track some types of conflict.

The conflicts addressed in this visualization with the aspects design table are some conflicts due to the fact

that some join points can be involves in different aspect members (potentially from different aspects). So all the
join points that are present in several aspects members are potentially conflict sources. With the aspects design
table we can simply identify such join points. These are all the join points represented by the lines where several
cells are colored. The Table 5 shows an imaginary example where the join point Point.init() is used by two
distinct aspect members. The line corresponding to this join points is colored in two cells, corresponding to the
two columns of the involved aspect members. This potential composition conflict source is then easily visualized
thanks to the aspects design table21.

Resources Management Area

A Resource management All resources
creation Aspect

Release Resource A Reset Resource A Creation Aspect member

After wrapping Before wrapping Method Adding Modification type

Components Join Points Point.init(..) No No Generic Join Points

init()

init(int i)

getX(int x)
Point

setX(int x)

Table 5 - Detecting potential composition conflicts

All the join points involved in several aspect members are potentially sources of composition conflicts and

should be carefully checked at design level. However, there are cases where we can precise the composition
conflict type, depending on the modification type of the different members involving the same join point. The
Table 6 shows these composition conflict types. In this table are presented what kind of conflicts can happen due
to the modification types of two aspect members involving the same join point. The colored cells define cases
that cannot happen because of the syntax used for join points (for example it is not possible to use a join point
expression that will reference both a variable and a constructor. The explanations in the cells present possible

21 In this case there is effectively a composition conflict since the aspect member Creation objective is to define a new method
init() in the class Point. Either the method already exist in the component implementation and then it cannot be redefined (this is a
component-aspect composition conflict), either it does not exist yet, and in this case the aspect member Creation must be woven to the
components code before the aspect member Release Resource A (that makes some modifications on this method), unless there will be a
composition conflict.

 77

causes for possible composition conflicts. It has to be noticed that here are only presented potential conflicts
sources directly involved by two modifications types mix. The possible conflicts due to the composition of a
single aspect member with some components are not included in this table.

 Aspect

method
Aspect

constructor
Aspect
variable

Finally
wrapping

Catch
wrapping

After
wrapping

Before
wrapping

Method
adding

Constructor
adding

Variable
adding

Variable
adding Duplicate

definition
Constructor

adding Duplicate
definition

Method
adding

Weaving
order

problem (a)

Weaving
order

problem (a)

Weaving
order

problem (a)

Weaving
order

problem (a)

Duplicate
definition

Before
wrapping Compatible

types
Compatible

types
Compatible

types
Compatible

types

After
wrapping Compatible

types
Compatible

types
Compatible

types

Catch
wrapping

Weaving
order

Problem (b)

Duplicate
catch for the
same error

type

Finally
wrapping Incompatible

types (c)

Aspect
variable Duplicate

definition

Aspect
constructor Duplicate

definition

Aspect
method

Duplicate
definition

Table 6 - Modification types compatibility

(a) It happens when an aspect member references a method that has been added to a component by another aspect
member. In this case the aspect member defining the method adding should be woven first.

(b) A modification type conflict can occur if there is a finally wrapping aspect member related to a catch
wrapping aspect member and if this catch wrapping aspect member was not woven before the finally wrapping
aspect member.

(c) Adding two “finally” clauses around the same method without any “catch” clause between is not possible.

It is then possible to easily visualize some possible sources of composition conflicts due to a delicate mix of

two or more aspect members dealing with common join points. Moreover as the aspects design table is based on a
very simple principle (decomposition of a system in two dimensions: a dimension for aspects and a dimension for
components), it does not seem complicated to implement a little program that will identify the join points of the
table that can be sources of composition conflicts22. Anyway there are composition conflicts that are subtle that
require a careful track to be detected.

III.2.3.4) Conclusions

We have presented in this section the some guidelines to realize aspect-oriented design as well as a simple
way of representing this design. Our step by step design process decomposition provide an efficient way to
structure and organize aspects and components.

Important characteristics of this decomposition can be represented in aspects design table. The

decomposition is then shown in two dimensions (aspects and components dimensions). Each entity of both
dimensions is described and carefully identified. The aspects design tables provide a simple way to concretely

22 In a software package such as Microsoft Excel, a macro can easily be defined for that. It will localize the join points involved in

several aspect members (they can be colored in a specific color), and according to the Table 6 it can show some messages about potential
composition conflict reasons.

 78

visualize aspects/components interactions. An important point is that these interaction can be visualized in both
ways: from a given component it is possible to track all the concerns (aspects) in which it is involved, and from a
given aspect it is possible to find all the involved components. This is a powerful issue of our proposition since a
clear identification of aspects/components interactions at design level provide possibilities to efficiently separate
concerns without having problems in the final composition after implementation.

Aspects design tables can provide a good support for detecting simple composition conflicts between

aspects. Identification of shared join points between distinct aspects is an important step in solving composition
conflicts. This can be done very easily with the aspects design tables.

Finally we have proposed some guidelines and a way of representing aspects at design level. We illustrate

their utility and present further use examples in the concrete case of the aspect-oriented design of
RECINTERNET in Section III.4.

 79

III.3) Web-based three-tiers application conventional object-oriented design –
Application to the RECINTERNET case

In the following sections we draw a comparison between conventional object-oriented and aspect-oriented
design. This comparison takes place in the context of web-based three-tiers applications, and is applied to the
RECINTERNET concrete case. It is organized in three parts: the current section which presents the conventional
object-oriented design of RECINTERNET, the Section III.4 which presents the same design but with an aspect-
oriented approach, and finally the Section III.5 which draw a comparison of these two approaches.

So we begin in this section with the different parts of our object-oriented design for RECINTERNET. We

present and explain the different design models we realized. Our design is separated into the navigational client
application design and the entire system design including client, server and database.

III.3.1) Client application design

The design of the client side of RECINTERNET is realized according to some parts of the OOHDM
methodology presented in Section II.4. This methodology divides the development cycle of hypermedia
navigations into four incremental steps: conceptual design, navigational design, interface design and
implementation. We apply partially this methodology for our design, and we also use some of the navigational
design patterns described in the OOHDM methodology.

III.3.1.1) Conceptual model

In the OOHDM methodology, the first step of the development cycle is the definition of the conceptual
model. It means representing in a model the different entities that are specific to the domain of the developed
application. These specific entities can be defined in relational object oriented diagrams, in order to visualize
easily the different relationships between the concerned entities.

We have decided to apply this conceptual model step of OOHDM in the RECINTERNET design. In the

case of RECINTERNET, the entities specific to the application domain are all the entities stored in the databases.
So we had to model the different entities stored in the databases. As explained before we reused exactly the
databases of the RECSINWIN application (the local structural database as well as the SINTESE database). That
is the reason why we reused the model that had been done for the RECSINWIN database. This model, that
describes closely the tables structure of the local structural database, can be found in Appendix A.

In fact we reused this model to define different classes describing the different entries stored in the

databases. Finally we defined an object oriented relational model, which is a UML (Unified Modeling Language)
class diagram used to show the relationships between the classes describing the common behavior of the different
domain-specific entities of the RECINTERNET application. The Figure 21 shows this conceptual model.

Without explaining all the details of this model, we will briefly present its main elements:

• Serie, Group and Area

Series are the basic entities of the SINTESE database (we refer to the previous definition of SINTESE series
in Section I.3.1). The hierarchical organization used is the following: there are different interest areas, which can
contain series or groups, where groups can then contain series. The idea of RECSINWIN and RECINTERNET is
to compose a visualization of some entries of one or more series. Entries of a series are expressed in a unit
(Unit).

• Temporal_unit

Series entries are organized in four dimensions. The first one is the temporal dimension. The entries of a
serie are expressed for different temporal elements (for example different years, different months, etc...).
Conversions between the different time units exist.

 80

Figure 21 - RECINTERNET conceptual model

• Space and Space_unit

The three other dimensions of a serie are three “spatial” dimensions. The term spatial must not be taken

literally, it is used to specify that a dimension can be expressed in three other dimensions than the temporal
dimension. So the space represents the dimension (for example geographic dimension), and the space units are
the different elements of a space (for example the different states of Brazil). Conversions can exist between the
different space units.

Type
operation
signification

Unit
type
name

Event
description

Temporal_Unit
name

conversion

Area
mnemonic
name

Situation
name
description

User_type
name

Sector
sigle
name

Institution
sigle
name

0..1

0..*

0..1

0..*

Aptitude
mnemonic
name
description

Client
mnemonic
description 0..*

1

0..*

1

Group
mnemonic
name
description
concept
creation_date
maintain_date
access

0..*

0..1

0..*

0..1

0..*
1

0..*
1

Serie
mnemonic
name
description
concept
criteria
agreggation
base_year
decimals
security
propagation
period
phase_delay
source
actualization
first_data
last_data
creation_date
maintain_date
actualization_date

0..1

0..*

0..1

0..*

0..*

1

0..*

1

0..*

1

0..*

1

0..*0..* 0..*0..*

0..*

1

0..*

1

composition

0..*

1

0..*

1

0..1

0..*

0..1

0..*

Space
sigle
code
abreviation
description

0..*

1..*

0..*

1..*

User
mnemonic
name
address
CEP
city
phone
UF
password_type
password_value
groups_use
spaces_use
security
creation_date
maintain_date

0..*1..* 0..*1..*

0..*

1

0..*

1

0..*

1

0..*

1

0..*

0..1

0..*

0..1

0..* 0..10..* 0..1

0..*
1

0..*
1

1..*

0..1

1..*

0..1

0..*

1..*

0..*

1..*

Spatial_Unit
mnemonic
name
description
access
creation_date
maintain_date

0..*
1..3

0..*
1..3

1..*

1

1..*

1
0..*

1..*

0..*

1..*

conversion

 81

• User and Client

Each user has some permissions to access some information of the database. His access on series groups,

spaces, space units can be limited. A group of users having the same access permissions is called client.

III.3.1.2) Navigational model

In the OOHDM methodology, the navigational model is based on the entities of the conceptual model. A
navigational node proposes a specific view on entities of the conceptual node. Some relationships between
classes of the conceptual model can be abstracted in the navigational model as navigational links between nodes.

For RECINTERNET we do not realize the navigational model in the same way. A navigational node in

RECINTERNET will not be a view on some entities of the conceptual model (as in OOHDM), but a logical unit
proposing some choices in the organization for the visualization of entities of the conceptual model.

• Navigational Sequences

The first task of the navigational design was to define the different ways to navigate in the RECINTERNET

client application. This first step was adapted from the navigation in the RECSINWIN application.

The term navigational sequence describes the different navigation realized by a user from the moment he

enters the application to the moment he visualize the results of his request. In Section I.3.2.4 we described how
the navigational sequences of RECSINWIN are modeled. Navigational sequences in RECSINWIN and
RECINTERNET are similar since both of them lead to the same result (the visualization of an organized view on
a SINTESE serie). However, as RECINTERNET proposes this navigation in an “internet” way, adaptations had
to be done. The idea was to not have more than 3 or 4 main nodes in a navigational sequence, in order to have a
simple internet navigation. In the same time the different nodes had to be clear enough (i.e. not contain too many
elements) to be easily understand by any user. As in RECSINWIN, a navigational sequence uses around 15
nodes, we had to re-structure the navigation. The Figure 22 presents a description of the navigational sequences
in RECINTERNET.

• Navigational nodes

Navigational nodes are perceivable navigational units. Navigation exists when the user goes from a node to

another one. A node contains elements used to show information and navigate. An intra node is related to a
navigational node. It is used to present more information about some elements of the navigational node. When
navigating to an intra node from a navigational node, the intra node must be closed to allow the use of its
navigational node. An extra node can be accessed from a navigational node. The navigational node and the extra
node can be used then in parallel, independently. The typical use of extra nodes is for contextual help.

The RECINTERNET navigation is then organized as following:

§ Node 0 (Welcome) presents some general information about DATAPREV, about RECINTERNET and how
to use it. The user enters its login and password23 and can then navigate to the Node 1.

§ Node 1 (Series Selection) enables the user to select the series he would like to visualize. Once this choice
realized, he can choose to organize the visualization temporally (the lines of the series visualization table will
then be used for the temporal dimension) or spatially (the lines will be used for one of the “spatial”
dimensions). The navigation is then processed either to Node 211, either to Node 221.

§ Node 211 (Lines Composition – Spatial way) enables the user to select the “spatial” dimension he wants to
use for the lines of the results table. He will then choose the elements to place in these lines. He can then
navigate to Node 212.

23 With no appropriate login/password, this user will only have some default access rights to SINTESE database.

 82

Figure 22 - RECINTERNET navigational sequences

§ Node 221 (Lines & Columns Composition – Temporal way) enables the user to select a time unit and some
temporal elements for the line of the results table. The user also specifies the columns of the results table (the
columns will be different years). He can then navigate to Node 222.

§ Node 212 (Columns & Sub-Columns Composition – Spatial Way) gives the possibility to organize the
columns of the results table (columns will represent different temporal elements), and also the sub-columns
(sub-columns will represent different elements of the two lasting “spatial” dimensions). The user can then
navigate to Node 3.

§ Node 222 (Sub-Columns Composition – Temporal Way) enables the user to select the “spatial” elements that
will be used in the sub-columns of the results table. He can then navigate to Node 3.

§ Node 3 (Results Visualization) presents to the user the table showing the selected series in the way
corresponding to his composition.

§ From all these nodes it is also possible to navigate to the Help Node which presents some contextual help
about each node.

§ From Node 1 it is possible to navigate also to the intra node Node 1C (Compatibility Details) which presents
some extra information about the compatibility between the selected series of the Node 1.

§ From Node 3 it is possible to navigate also to the intra node Node 3D (Details) which presents some extra
information about the columns selected in the Node 3.

Node 0
Welcome

Node 1
Series Selection

Node 211
Lines Composition

Spatial Way

Node 212
Columns & Sub-Columns

Composition
Spatial Way

Node 221
Lines & Columns

Composition
Temporal Way

Node 222
Sub-Columns
Composition

Temporal Way

Node 3
Result Visualization

Help
Node

Node 1C
Compatibility Details

Node 3D
Results Details

Navigational Node

Intra Node

Extra Node

 83

It has to be noticed also that for all the navigational nodes, some extra information (like localization in the
navigational sequence) and some extra functionality (like re-starting the composition, exit the application,
navigate backwards or forwards, navigate to help) are added through a decorator. A decorator is a kind of “mask”
that is applied on a node to add some functionalities to this node. The advantage of using a decorator is to factor
out some elements existing in different nodes.

• Navigational framework

Based on these navigational sequences and navigational nodes definitions, we had to define a generic

framework to support such navigations. For this task we applied some of the navigational design patterns
described in the OOHDM methodology. The design patterns (or adaptations of them) we used for our
navigational design are:

§ Anchor: an anchor represents a link into a node and is responsible for this link activation. The link is then

independent from any means to activate it.

§ Navigation Strategy: proposes a solution to decouple links from the way their target are obtained.

§ Navigation Observer: use of an History object (we will use the term context) to record the information about
navigation.

§ Node class: abstract the behavior of similar nodes. This class will be sub-classed to define the concrete
nodes used in the application.

§ Link class: abstract the behavior of similar nodes. This class will be sub-classed to define the concrete links
used in the application.

§ Wrapper node and Navigational context: the idea is to decorate nodes with some wrapper nodes (we will
use the term decorator) providing some more interaction or information possibility to the node, eventually
depending on the navigational context.

§ Node as a single unit: a node encompass a self-contained “unit” of information that make sense for users
performing a set of tasks in a given domain. All data that are relevant to this set of tasks should be included
in this node.

For detailed descriptions of these design patterns, we refer to [LRS98] and [RSG97].

The navigational framework we designed is language independent and can be extended for several

navigational applications requiring support for concepts such as decorators, navigational, intra and extra nodes,
anchors, links, target and transformations or context. The Figure 23 presents this framework. A complete
description of the elements of this class diagram is given in Appendix C.

 84

Figure 23 - Navigational framework class diagram

• Navigational model of RECINTERNET

We extended the navigational framework described previously to support the navigation of the

RECINTERNET client application. We present in the Figure 24 a class diagram of the RECINTERNET client
application navigational elements. The prefix “RI” in the class name is for RECINTERNET. It shows that this
class is specific to the RECINTERNET application. The classes without the “RI” prefix are part of the
navigational framework presented in Figure 23. The different nodes and decorators will be described later.

It has to be noticed that we extended the classes CacheContext, Transformation and

DynamicTarget in order to support forward (next) and backward (previous) navigation. It is possible to
navigate this way between two navigational nodes without re-initializing the target node. The context keep a
reference to know until which navigational node it is possible to navigate forward. The method nextAllowed
check this reference to know if the forward navigation is allowed.

FrameNode

frame : Frame

showFrame()
closeFrame()
addComponent()

NavigTransformation

specificAction()

IntraTransformation

specificAction()

ExtraTransformation

specificAction()

Anchor

proceedLink()

Target

target : String

getTarget()

Component

show()
hide()
activate()
desactivate()

Link

navigate()

1..*

1..1

1..*

1..1

1..*

1..*

1..*

1..*

Decorator NavigNode

show()
hide()

IntraNode

show()
hide()

CacheContext

currentExtraNode

addNode()

1..1

1..*

1..1

1..*
1..1

0..*
1..1

0..*

ExtraNode

show()
hide()

1..1

0..*

1..1

0..*

Panel

name : String

show()
hide()
activate()
desactivate()
reset()
addComponent()

1..1

1..*

1..1

1..*

DynamicTarget

defineTarget()
getTarget()

Transformation

action()
specificAction()

1..*

1..1

1..*

1..1

Node

reset()
resetComponents()
addDecorator()

1..1

0..*

1..1

0..*

NodesManager

getNode()
createNode()

Context

getCurrentNode()
init()
setCurrentNode()
getNode()

1..*

1..1

1..*

1..1

0..*

1..1

0..*

1..1

0..*
1..1

0..*
1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

 85

Figure 24 - Navigational framework extension for RECINTERNET

III.3.1.3) Interface model

The last step of the OOHDM hypermedia application design is the interface design. The aim of this step is
to define all the elements of the graphical interface in classes, using the navigational model. The event handling
and the organization of these elements will define the behavior of the interface.

In this part we use some components types that describe the kind of component (for example: button, text

field, list, arborescent list, etc...). For the implementation these types will have to be mapped to the components
existing in the libraries of the chosen programming language.

To define this graphical interface we designed each node and decorator. For that we defined which graphical

components should each node (or decorator) contain. We defined then how would each node be organized (how
to place the different components). For each component we described its characteristics and the way the user can
interact with it (or not). We described also what should happen each time the user interact with a component.
This description of the RECINTERNET interface can be found in Appendix D.

Based on this description we completed the design of the classes presented in Figure 24 to obtain the

concrete elements that will be used in the interface. In the Figure 25 are presented these modifications. We do not
present all the components of each node, but only the main characteristics of their anchor, as well as the different
methods that will be used to handle user interactions24.

24 The concrete way these methods are called when the user interacts depends on the programming language as well as the technology

used for the client application.

NavigNode

RINode0 RINode1 RINode211 RINode212 RINode221 RINode222 RINode3

IntraNode

RINode1C RINode3D

ExtraNode

RIHelp

CacheContext

RIContext

nextIndex : int

nextAllowed()

Decorator

RIDecorator0

NodesManager

RINodesManager

Transformation

RIPrevNextTransformation

specificAction()

DynamicTarget

RITargetNext

defineTarget()

RITargetPrev

defineTarget()

 86

Figure 25 - RECINTERNET interface extension

Finally with this decomposition in three levels (conceptual, navigational and interface) for the client

application design, we provide some design models that cover the different requirements of the concrete
implementation of the client side of RECINTERNET. Moreover these models are basically language
independent, and are also based on a navigational framework which is application independent. These points
provide solid bases for future design reuse.

RINode0

reset()

RINode1

themeUpdated()
serieUpdated()
selectPressed()
unselectPressed()
downloadPressed()
selectedSeriesUpdated()
compatibilityPressed()
spatialWayPressed()
temporalWayPressed()
reset()

RINode211

dimensionUpdated(int dim)
selectPressed()
elementsUpdated()
select1Pressed()
unselect1Pressed()
selectedElemenstUpdated()
continuePressed()
reset()

RINode212

timeUnitUpdated()
daysUpdated()
monthsUpdated()
yearsUpdated()
selectPressed()
unselectPressed()
selectionUpdated()
spaceUnitUpdated(int dim)
elementsUpdated(int dim)
select1Pressed(int dim)
unselect1Pressed(int dim)
selection1Updated(int dim)
submitPressed()
reset()

RINode221

timeUnitUpdated()
monthsUpdated()
yearsUpdated()
selectPressed()
unselectPressed()
selectionUpdated()
continuePressed()
reset()

RINode222

spaceUnitUpdated(int dim)
elementsUpdated(int dim)
selectPressed(int dim)
unselectPressed(int dim)
selectionUpdated(int dim)
submitPressed()
reset()

RINode3

columnSelectionUpdated()
detailsPressed()
downloadPressed()
reset()

RINode1C

downloadPressed()
okPressed()
reset()

RINode3D

downloadPressed()
okPressed()
reset()

RIHelp

okPressed()
reset()

RIDecorator0

startPressed()
nextPressed()
prevPressed()
helpPressed()
exitPressed()
reset()

ANCHORS:

Start - Target (static): RINode1
- NavigTransformation

Next - RITargetNext
- RIPrevNextTransformation

Prev - RITargetPrev
- RIPrevNextTransformation

Help - Target (static): RIHelp
- ExtraTransformation

Exit - Target(static): RINode0
- NavigTransformation

RINodesManager

createNodes()

ANCHORS:

Compatibility - Target (static): RINode1C
- IntraTransformation

Spatial_Way - Target (static): RINode211
- NavigTransformation

Temporal_Way - Target (static): RINode221
- NavigTransformation

ANCHORS:

Continue - Target (static): RINode212
- NavigTransformation

ANCHORS:

Submit - Target (static): RINode3
- NavigTransformation

ANCHORS:

Continue - Target (static): RINode222
- NavigTransformation

ANCHORS:

Submit - Target (static): RINode3
- NavigTransformation

ANCHORS:

Details - Target (static): RINode3D
- IntraTransformation

 87

III.3.2) RECINTERNET entire system

We have summarized in Section II.7 the different technologies used for RECINTERNET. The client
application is implemented as a Java applet running in a web browser. The server is a Java application running on
the server host. The client/server communication is realized through Java RMI (Remote Method Invocation). The
server local structural database on the server host is accessed with SQL queries through JDBC (Java DataBase
Connectivity). The SINTESE database on the SINTESE host is accessed with queries in SINTESE syntax
through a local terminal simulation connected to the SINTESE host with a TCP/IP protocol.

However the design we propose for the entire RECINTERNET system is quite generic and could be used

with other technologies. The specifications we followed for the design were: the client and the server are
applications running on different hosts. The client/server communication is done through some API providing
transparent remote references (such as Java RMI or CORBA). The access to the server local structural database is
done with execution of SQL queries on a database connection. The access to the SINTESE database is done with
SINTESE syntax on a simulation of a terminal providing queries execution possibilities.

We have described the client application design in the previous part. The following sections present the

design for the other parts of the RECINTERNET system.

III.3.2.1) Client/Server communication

We designed the client/server communication for any middleware that provides a transparent way to realize
remote method calls, by the way of remote invocations interfaces (such as RMI interfaces with Java or IDL
interfaces with CORBA). We designed the different interfaces that will be necessary to support user interaction
transmission to server as well as server answer. The requests will be submitted by the nodes objects of the client
application to a unique dispatch manager object of the server application. The Figure 26 shows these interfaces.

Figure 26 - RECINTERNET remote interfaces

DispatchManager

I_RIDecorator0

r_new_user_init_n1(String access, Object[] areasStruct)
r_init_n1(Object[] areasStruct)

<<interf ace>>

RIDecorator0

I_RINode1

r_get_series(String[][] seriesAndDetails)
r_get_compatibility (String[][] compatibility)

<<Interface>>

RINode1

I_RINode211

r_get_elements(Object[] eltsStruct)

<<interf ace>>

RINode211

I_RINode212

r_get_elements(String[] elts)
r_init_n3(Object[] results)

<<interface>>

RINode212

I_RINode222

r_get_elements(String[] elts)
r_init_n3(Object[] results)

<<Interface>>

RINode222
I_RINode3

r_init_n3d(Object[] colDetails)

<<Interf ace>>

RINode3

I_DispatchManager

new_user_init_n1_d0(decorator0, login, pwd)
init_n1_d0(decorator0, access)
get_series_n1(node1, access, area)
get_compatibility_n1(node1, access, selectedSeries)
get_elements_n211(node211, access, selSeries, selUnit)
get_elements_n212(node212, access, selSeries, spaceUnit)
init_n3_n212(node212, access, selSeries, linUnit, linElts, colElts, subColUnits, subColElts)
get_elements_n222(node222, access, selSeries, spaceUnit)
init_n3_n222(node222, access, selSeries, linElts, colElts, subColElts)
init_n3d_n3(node3, access, colName)

<<Interface>>

 88

III.3.2.2) Server

The server application receives the clients requests through its dispatch manager object. This one creates a
new client thread (independent process running on the server) for each client new request. There is a client thread
class for each possible request type, as shown on Figure 27.

Figure 27 - Client threads class diagram

These client threads are used in the way presented in Figure 28. The server creates a new thread for each

client request. This thread will be responsible for everything related to database queries. It means query creation:
using pre-defined queries sentences (in SQL or in SINTESE syntax), entire queries are created by inserting the
parameters given by the client into these pre-defined query sentences. The thread is also responsible for passing
the query to a database manager (responsible for the database connection) and receives the appropriate result. The
thread will then send back the result to the client object after having computed it (so that it could be directly
usable by the client). It has to be noticed that the concurrent accesses to the databases are synchronized in the
DBManager class, described in the next part.

ClientThread
access : String
dbManager : DBManager

constructQuery()
submitQuery()
answerClient()
start()

Thread

start()

ClientThreadSQL
results : ResultSet

submitQuery ()

ClientThreadSINTESE
results : File

submitQuery ()

ThNewUser
d0 : I_RIDecorator0
login : String
pwd : String

constructQuery ()
answerClient()

ThInit1
d0 : I_RIDecorator0

constructQuery ()
answerClient()

ThGetSeries1
n1 : I_RINode1
area : String

constructQuery ()
answerClient()

ThGetCompatibility1
n1 : I_RINode1
series : String[]

constructQuery ()
answerClient()

ThGetElements211
n211 : I_RINode211
series : String[]
unit : String

constructQuery ()
answerClient()

ThGetElements212
n212 : I_RINode212
series : String[]
unit : String

constructQuery ()
answerClient()

ThGetDetails3
n3 : I_RINode3
col : String

constructQuery ()
answerClient()

ThGetElements222
n222 : I_RINode222
series : String[]
unit : String

constructQuery ()
answerClient()

ThInit3_222
n222 : I_RINode222
series : String
linElts : String[]
colElts : String[]
subColElts : String[]

constructQuery ()
answerClient()

ThInit3_212
n212 : I_RINode212
series : String
linUnit : String
linElts : String[]
colElts : String[]
subColUnits : String[]
subColElts : String[]

constructQuery ()
answerClient()

 89

Figure 28 - RECINTERNET request scenario

III.3.2.3) Database access

We designed the databases management in order to concentrate all the related features in the class
DBManager. This class synchronizes the different threads requesting database access. All the issues of database
connection and queries processing are addressed by this class. This class will be sub-classed into classes specific
to each kind of database access. The different methods of these classes will address the particular operations for
the connection to their specific kind of database.

One instance of
the following
classes:
- RIDecorator0
- RINode1
- RINode211
- RINode212
- RINode222
- RINode3

clientObject :
Panel

serverDispatchManager :
DispatchManager

clientThread :
ClientThread

dbManager :
DBManager

desactivate

request

One of the following
requests (the suffix of
each method shows the
origin of the request):
- new_user_init_n1_d0
- init_n1_d0
- get_series_n1
- get_compatibility_n1
- get_elements_n211
- get_elements_n212
- init_n3_n212
- get_elements_n222
- init_n3_n222
- init_n3d_n3

There is a
corresponding
thread class for
each kind of
client request

createThread

startThread

constructQuery

SQL or SINTESE
query

One instance of the
following classes:
- RIDBManagerSQL
- RIDBManagerSINTESE

submitQuery
proceedQuery

queryResult

computeResult

"Arrange" the result
so that it could be
used by the client

answer

destroy

Thread
destruction

activate

Answering is done by calling an
accept method of the client
object that made the request

 90

We designed two sub-classes (RIDBManagerSQL and RIDBManagerSINTESE) for managing
respectively the access to the structural database and to the SINTESE database, as it can be seen in Figure 29.

Figure 29 - RECINTERNET databases management

It has to be noticed that the results of a query processed by a database manager are returned in their basic

form (SQL result set with JDBC for example, or a single stream with SINTESE), but after a cast to a generic
class (in Java the class Object). These results will then be “arranged” by the corresponding threads.

III.3.3) Conclusions

We have presented in this section different design models that cover the different aspects of the
RECINTERNET system. Following the OOHDM methodology and applying some of its design patterns for the
client application, we have provided different models and description which are concrete and efficient supports
for implementation, for each level of the application: conceptual, navigational and interface.

We have also specified design models describing the web-based three-tiers architecture of the

RECINTERNET system, as well as the interactions between the three tiers: client, server and database. With
UML diagrams we have defined the main characteristics of the different classes that will be implemented for the
RECINTERNET system.

It has to be noticed that we proposed a language-independent framework providing sufficient abstraction to

be reused in applications similar to RECINTERNET, basically web-based three-tiers applications. We specified
this framework in order to provide an appropriate support for RECINTERNET implementation, but it seems
possible to realize simply this extension for other applications.

To conclude this section about conventional object-oriented design of RECINTERNET, we can say that we

have created different models covering the main needs of RECINTERNET implementation, but that also provide
an appropriate support for future modifications of this system, as well as enough abstraction to reuse our
framework or parts of it in different contexts.

In the following Section (III.4), we present the same design but with an aspect-oriented approach. These two

design approaches are compared in Section III.5.

RIDBManagerSINTESE

<<SYNC>> proceedQuery ()
initializeConnection()
closeConnection()

RIDBManagerSQL
databaseURL : String
driverName : String

initializeConnection()
<<SYNC>> proceedQuery ()
closeConnection()

DBManager
login : String
password : String

proceedQuery()
initializeConnection()
closeConnection()

 91

III.4) Aspect-oriented web-based three-tiers application design –
Application to the RECINTERNET case

III.4.1) Introduction

We have explained in Section III.2 how separation of concerns and particularly aspect-oriented
programming can be interesting for web-based three-tiers applications development, and especially at design
level. We also explained in this section how an aspect-oriented design decomposition can be structured and
represented with aspects design tables. We will now present the concrete case of an aspect-oriented design, in
which we applied this decomposition methodology to the case of RECINTERNET.

We have divided the aspect-oriented RECINTERNET design into four parts: client application, server

application, client/server communication and database. In each part we tried to identify cross-cutting concerns
that could be expressed in aspects, mainly in the areas presented in Section III.2.1.2: sharing resources, user
interaction, server functionalities, remote communication and database access. An important point is to express
in aspects only features that improve design and implementation by being encapsulated in an aspect.

The following design is based on the possibilities of AspectJ since the aspects described were created to be

composed with components by the AspectJ weaver. As AspectJ uses Java, we will often use some Java code in
our design description. Moreover many parts of the design are very close to the conventional object-oriented
design of RECINTERNET presented previously. We will refer to some parts of the conventional object-oriented
models in order to avoid fastidious model descriptions repetition. Finally having previously designed the system
in a conventional object oriented style helped us to identify better which concerns were cross-cutting
consequently the code and should be beneficially expressed in aspects.

In the following sections we describe how we applied our aspects/components decomposition methodology

(Section III.2.3) in each part of the RECINTERNET system. For the following explanations we will follow the
three parts of this methodology: aspects identification, components design and aspects characterization. Once
again it has to be noticed that these three parts are often overlapping each other and so their definition is often
done in parallel. However we present them in this order. We will also used aspects design tables to represent the
different entities of the RECINTERNET design.

III.4.2) Client application

For this section we will detail each step of the decomposition:

⊗ POINT I – ASPECTS IDENTIFICATION

⊕ Step I-1: Aspect areas identification

The main features of the client application in RECINTERNET are: user interaction support, graphical

interface and navigation support. User interaction support covers all the concerns dealing with user interaction
events creation, handling and consequences. User interaction events mechanisms are involving many components
such as different nodes of the navigational system. It seems to us that concerns of this area could beneficially
expressed with aspects. Concerns addressed by the graphical interface feature are mainly visualization of data
and interaction possibilities. It appears that these concerns can cleanly be encapsulated into object oriented
structures, using GUI libraries such as Java AWT (Abstract Windowing Toolkit), and do not require specific
concerns cross-cutting components implementation. Then we will not take the graphical interface feature as an
aspects area. And finally the navigation support feature deals with concerns involving many components of the
client application, such as nodes, anchors, links, context, etc... That is the reason why the concerns of the
navigation support area should be better developed with aspects. So finally we will focus our aspects
identification on the two aspects areas user interaction support and navigation support.

 92

⊕ Step I-2: Aspects identification

Taking one by one these two aspects areas, we have identified the following aspects:

⇒ User interaction support aspects area:
⇒ Event handling aspect: defining components interactability (register listeners associated to components

which will create events for each user interaction) and associating interaction events (button click,
selection, etc...) to the appropriate methods calls.

⇒ Navigation support aspects area:

⇒ Dynamic node loading aspect: searching existing nodes or creating non-existing ones when a client
requests a navigation towards a node.

⊕ Step I-3: Aspects type

⇒ Event handling
⇒ Type: required25
⇒ Plugging constraints26: no

⇒ Dynamic node loading

⇒ Type: required
⇒ Plugging constraints: no

⊕ Aspects Definition Representation

User Interaction Support Navigation Support

Aspects Areas Aspects related to user interaction
and direct consequences of user
interaction

Aspects related to navigation
actions or tasks required for
navigation

Events Handling Dynamic Node Loading

Aspects Defining components interactibility
and linking interaction events to the
appropriate methods

Searching or creating required
nodes when navigating

Type Required Required
Plugging Constraints No No

⊗ POINT II – COMPONENTS DESIGN

We use the same design for the client application that in the conventional object-oriented approach. The

different models of this client application can be seen in Section III.3.1. Few specifications for aspects support
must however be explained:

• Event handling aspect: defining component interactability is achieved in Java by adding a listener to the

wanted component. Once this listener will have been added to the component, an event will be created when this
component is interacted. So, in the components design, the listeners adding must be totally not taken into
account. Linking interaction events to the appropriate methods can be done in Java with some objects that receive

25 As explained in Section III.2.3.1, required aspects need to be woven to components code to have a executable system., in distinction

with optional aspects, which are not necessary to have an executable system.
26 As explained in Section III.2.3.1, plugging constraints are used to express plugging dependencies between different aspects, such as

necessary aspects to specify other aspects that are necessary in order to plug the current aspect, or incompatible aspects to define a group of
aspects in which only one can be plugged to the system (like a set of options where only one can be chosen).

 93

all the application events, test their origin and call the appropriate method. The components design must not take
into account such components.

• Dynamic Node Loading: in the conventional approach, the getNode(String name) of the

CacheContext class is used to look for a node. This method delegates the search to a NodesManager
object that looks for the node in the cache context and if it does not find it, creates a new one. For the aspect
oriented approach, we need to define these points differently since everything will be defined in the aspect. So
there will be no more NodesManager class, and no more getNode(String name) in the Context
class. We will just add a instance variable targetNode to the Transformation class. This variable will be
used each time the target node must be called. The Dynamic Node Loading aspect will be responsible for what
holds this variable. The Figure 30 presents the differences with the conventional model presented in Figure 23.

Figure 30 - Components involved in the Dynamic Node Loading aspect

⊗ POINT III - ASPECTS CHARACTERIZATION

⊕ Step III-1: Aspect description applied to components

⇒ Events handling: each method where a component that can be interacted is created and added to a node (or a
decorator) will be wrapped to also add a listener to this component. This listener will define that when the
component is interacted, a method of the aspect must be called with the created event. This aspect method
will make the dispatch to the appropriate node (or decorator) method. For length reasons, we will define one
aspect for each node (or decorator) events handling. We only describe the aspect for the RINode3 class, for

public void action(String target) {
 specificAction(target);
 targetNode.show();
}

NavigTransformation

specificAction()

protected void specificAction(String target) {
 context.getCurrentNode().hide();
 context.setCurrentNode(targetNode);
 context.getCurrentNode().reset();
}

IntraTransformation

specificAction()

protected void specificAction(String target) {
 context.getCurrentNode().desactivate();
 targetNode.reset()
}

ExtraTransformation

specificAction()

protected void specificAction(String target) {
 targetNode.reset();
}

RIPrevNextTransformation

specificAction()

protected void specificAction(String target) {
 context.getCurrentNode().hide();
 context.setCurrentNode(targetNode);

Transformation

targetNode : Node

action()
specificAction()

Context

getCurrentNode()
init()
setCurrentNode()

 94

the other classes (RIDecorator0, RINode1, RINode211, RINode212, RINode221, RINode222,
RINode1C, RINode3D, RIHelp) the decomposition principles are the same.

⇒ Dynamic Node Load: each method where the targetNode variable of the Transformation class is
used will be wrapped so that this variable refers the correct node. This reference definition will be done
through two methods, one for searching nodes in the context and one for creating non-existing nodes.

⊕ Step III-2: Involved components

⇒ Events Handling RINode3:

⇒ RINode3 (for listeners adding and for events/method linking)

⇒ Dynamic Node Load:
⇒ Context (for nodes search)
⇒ Transformation (for targetNode access)
⇒ NavigTransformation (for targetNode access)
⇒ IntraTransformation (for targetNode access)
⇒ ExtraTransformation (for targetNode access)
⇒ RIPrevNextTransformation (for targetNode access)

⊕ Step III-3: Join points definition

⇒ Events Handling RINode3:

⇒ RINode3.new() – after wrapping

⇒ Dynamic Node Load join points:

⇒ Node Context.getNode(String name) – method adding
⇒ void Transformation.action(String name) – before wrapping
⇒ void NavigTransformation.specifcAction(String name) – before wrapping
⇒ void IntraTransformation.specificAction(String name) – before wrapping
⇒ void ExtraTransformation.specificAction(String name) – before wrapping
⇒ void RIPrevNextTransformation.specificAction(String name) – before wrapping

⊕ Join points representation

Component Join Point Involvement Description

RINode3 new()
For adding listeners to the
“interactable”components created
in this constructor

Transformation void action(String name) For defining the targetNode
variable accessed in this method

NavigTransformation void specificAction(String name) Idem

IntraTransformation void specificAction(String name) Idem
ExtraTransformation void specificAction(String name) Idem

RIPrevNextTransformation void specificAction(String name) Idem

 95

⊗ POINT IV – ASPECTS MEMBERS DEFINITION

⊕ Step IV-1: Aspect members identification

⇒ Events Handling RINode3:

⇒ Adding listeners member:
⇒ Join points: RINode3.new(..)
⇒ Type: after wrapping
⇒ Description: add the appropriate listener to all the components of this node that have to be

interacted. This listener calls the methods dispatch(Event evt) of the aspect when reacting.

⇒ Dynamic Node Load:

⇒ Target node access member:
⇒ Join points: protected !abstract void *.specificAction(..), public void

Transformation.action(..)
⇒ Type: before wrapping
⇒ Description: call the aspect method to get a node out of its name

⇒ Cache searching member:
⇒ Join points: Node Concept.getNode(String name)
⇒ Type: method adding
⇒ Description: in this method the three vectors (navigNodes, extraNodes and intraNodes)

of the context are browsed to look for a node having the given name. The node is returned if found,
null if not.

⊕ Step IV-1: Aspectual members

⇒ Events handling RINode3:
⇒ Events dispatching member:

⇒ Identification: boolean Events_Handling_RINode3.dispatch(Event evt)
⇒ Type: aspect method
⇒ Description: call the appropriate method of the class RINode3 depending on the origin component

of the event evt.

⇒ Dynamic Node Load:
⇒ Node creation member:

⇒ Identification: Node Dynamic_Node_Load.createNode(String name)
⇒ Type: aspect method
⇒ Description: create a new node out of its name

⇒ Searching Node member:
⇒ Identification: Node Dynamic_Node_Load.getNode(String name)
⇒ Type: aspect method
⇒ Description: call the getNode method of the context. The node is returned if found, and if not the

result of the createNode method of the aspect will be returned.

 96

⊕ Aspectual Members Representation

Aspect Member Description

Events_Handling_RINode3 boolean dispatch(Event evt) Dispatch an event to the
appropriate method of the node 3

Node createNode(String name) Create a new node out of its name

Dynamic_Node_Load
Node getNode(String name)

Call the getNode method of the
context. If the node is not found,
call the createNode method

⊕ Components/Aspects Interaction Representation

 User Interaction Navigation Area

 Events Handling Node3 Dynamic Node Load Aspect

 Adding
listeners

Event
dispatching

TargetNode
access

Cache
searching

Node
creation

Searching
node Member

Component (or
Aspect) Join Point After

wrapping
Aspect
method

Before
wrapping

Method
adding

Aspect
method

Aspect
method

Member
Type

RINode3 new()
Context getNode()

Transformation action()
Navig

Transformation specificAction()

Intra
Transformation specificAction()

Extra
Transformation specificAction()

RIPrevNext
Transformation specificAction()

Events Handling
Node3

dispatch()

getNode() Dynamic Node Load createNode()

III.4.3) Client/Server communication

In the previous section we have described in details the aspects/components decomposition steps. For the
following sections we will only present the main results of our step by step decomposition, highlighting only
some important details.

⊗ POINT I – ASPECTS IDENTIFICATION

Client/server communication is based in RECINTERNET on Java RMI. The unique feature of this part of

the system is remote calls. We consider it as an aspects area because it is a typical case of cross-cutting concern
(components of the server and of the client).

We identified one aspect in this area. We called it the distribution aspect. It deals with all the modifications

due to the difference between a local method call from a remote method call. We used a specific feature for this
aspect, inspired from the RIDL language of [LK97]. The idea is to pass as parameters to remote methods only
parts of an object and not all the object. This enables to not have to pass entire objects (that can contain
unnecessary variables) in remote methods call. This aspect is a very wide one since it involves all the

 97

communications between all the nodes (or decorators) and the server. Then we only present the mechanisms
involved in the concrete case where the user click on the compatibility button in Node 1. These mechanisms can
be applied to all the interactions requiring a communication with the server in the same way.

Remote Calls
Aspect Area

Aspects related to method calls on remote objects

Distribution
Aspect Express all the modifications due to the fact that methods are called remotely and specify

which objects parts will be passed to remote methods

Aspect Type Required

Plugging
Constraints No

⊗ POINT II – COMPONENTS DESIGN

We use the same design for the client/server communication than in the conventional object-oriented

approach. The different models of this client application were presented in Section III.3.1. However there are
some modifications due to the Distribution aspect.

No remote objects must be defined in any node class of the client or in any client thread class of the server.

No remote call must be written in any method. No specific syntax (as declaring that a method throws some
remote exception, or as catching such exceptions) must be added to any method. To illustrates these directives,
we present in Figure 31 the involved methods of the classes concerned by the compatibility clicked interaction.

Figure 31 - Components involved in the Distribution aspect

RINode1

RINode1()
compatibilityClicked()
r_get_compatibility()

Normally the reference to the dispatch manager
remote object should be done in this node
constructor: RINode1().
In this case, it will not be done here anymore.

The call to the get_compatibility_n1() method of
the remote dispatch manager is not done in this
method anymore.

These methods are defined as if they were
methods invoked by local objects (i.e. no remote
exception throwing)

DispatchManager

get_compatibility _n1()

ThGetCompatibility1

answerClient()

The call to the r_get_compatibility() method of the
remote node 1 object is not done in this method
anymore.

 98

Java RMI interfaces are defined as components, but they are defined with no methods. For all the remote
calls, the parameters passed will be the entire objects, such as a node or a context, even if there are many
informations in these objects that are not useful for the remote call. In the case of the compatibility interaction,
the parameters passed to the remote call will be only the context object (this object contains references to any
nodes where some information could be needed for this interaction).

⊕ Components/Aspects Interaction Representation

 Remote calls Area

 Distribution (1/2) Aspect

 Ref. Creation Add do-request Call Add Answer Call

The definition of
the reference to the
remote dispatch
manager is added

Add the call the
aspectual method for
“preparing” the
parameters
(do-request)

The effective call of the
remote method of the
node 1 object is added

Member

 No No No Generic Join
points

Component Join Point After wrapping After wrapping After wrapping Member Type

new()
RINode1 compatibility_

clicked()

ThGet
Compatibility1

answer_
client()

 Remote calls Area

 Distribution (2/2) Aspect

 Adding do-request Remote answer
method Remote request method

Extract the necessary
elements (access and
selected series) from
the parameters object
(node1 and context)
and call the remote
method
(compatibility_
request) only with
these parameters.

The method receiving
remote answers is
added. The answer is
just passed to
another method of the
node
(r_get_
compatibility).

The method receiving
remote requests is
added. The request
parameters are just
passed to another
method
(get_
compatibility_
n1).

Member

 No No No Generic Join
points

Component (and
Aspect) Join Point Aspect method Method adding Method adding Member Type

I_Dispatch
Manager

compatibility_
request()

I_RINode1 compatibility_
answer

Distribution do_request

 99

III.4.4) Server

⊗ POINT I – ASPECTS IDENTIFICATION

Many features could be expressed with aspects in a server application, such as connections control, multi-

threading concurrency control. We decided to focus specially on the server policies. This area includes the
different strategies that can be used in the server to “control” the client connections. We designed four aspects in
this area:

The displaying server messages aspect groups all the modifications required to display in the client

application messages coming from the server.

The time bound aspect includes all the modifications to add a time boundary to client request satisfaction.

Basically it means that once a client has connect the server to submit a request, if the server cannot answer before
a given time threshold, a message will be return to the client to tell him that his request was taking too much time
on the server.

The size bound aspect limits the results answer addressed to clients in size. If this size is over a given

threshold, a message will be return to the client to tell him that the result size is too high.

The connection bound aspect is used to define a maximum number of client threads running on the server.

Passed this limit, new client requests are not allowed and a message will be return to the client to tell him that the
server is busy.

Connection Control

Aspect Area
Aspects used to express different connection control policies of the server

Displaying
Server Messages Time Bound Size Bound Connection Bound

Aspect

Modifications
required to
display on client
application some
messages coming
from the server.

Express all the
modifications
needed to include a
time threshold to
satisfy client
requests before an
error message is
returned.

Express all the
modifications needed to
include a size threshold
for the results answer to
the client. An error
message is returned if
the threshold is
overcome..

Express all the modifications
needed to define a maximum
number of client threads
running on the server. If this
number is over, an error
message is returned to each
new client request.

Aspect Type Optional Optional Optional Optional

Plugging
Constraints No

Displaying Server
Messages aspect

required

Displaying Server
Messages aspect

required

Displaying Server Messages
aspect required

⊗ POINT II – COMPONENTS DESIGN

We use the same components design for the server application than in the conventional object-oriented

approach. This design was explained in Section III.3.2.2.

The client application design differs lightly from the conventional object-oriented approach. In fact a client

thread of the server calls a client object method to send him the results of its request. For the aspect-oriented
approach we add a parameter to all these methods that are called by the client threads of the server to send back

 100

results to clients object. This parameter is a String which is by default empty. This String parameter has to
be added to all the methods used to receive answers in the client application27, which are:

• RIDecorator0.r_new_user_init_n1(..)
• RIDecorator0.r_init_n1(..)
• RINode1.r_get_Series(..)
• RINode1.r_get_compatibility(..)
• RINode211.r_get_elements(..)
• RINode212.r_get_elements(..)
• RINode212.r_init_n3(..)
• RINode222.r_get_elements(..)
• RINode222.r_init_n3(..)
• RINode3.r_init_n3d(..)

For example the new signature of the method r_get_compatibility of the class RINode1 used to

receive the answer to the request to get compatibility between series is:

public void r_get_compatibility(String[][] compatibility, String message);

⊕ Components/Aspects Interaction Representation

 Connections Control Area

 Displaying Server Messages Aspect

 Test for Showing Messages Showing
Messages

A test is done to see if the message
parameter of the method is empty. If so, the
normal body is executed. If not, there is a
call to the show_message method of this
aspect, and the end of the method is not
executed.

This method
shows a string to
the user in a new
frame.

Member

 No No Generic Join
points

Component (and
Aspect) Join Point Before wrapping Aspect Method Member Type

r_new_user_init_n1() RIDecorator0
r_init_n1()

r_get_series()
RINode1

r_get_compatibility()

RINode211 r_get_elements()

r_get_elements()
RINode212

r_init_n3()

r_get_elements()
RINode222

r_init_n3()

RINode3 r_init_n3d()

Displaying
Server

Messages
show_message(String)

27 It also means adding this String parameter in the RMI interfaces definition. This must be carefully check in the Distribution

aspect.

 101

 Connections Control Area

 Size Bound Aspect

 Size Limit Constant Checking result
size Results size check behavior

Adding the size limit
constant that will be
used as a parameters
in client threads
answers to client
objects

This method tests
if the size of the
ResultSet
results is more
than a given
threshold.

This member call the result
size test, and if the results is
to large, answer the client
with the special parameter
SIZE_LIMIT

Member

 No No Yes28 Generic Join
points

Component (and
Aspect) Join Point Variable adding Method adding Before wrapping Member Type

SIZE_LIMIT29 ClientThread
SQL check_Size_

Limit()

Panel SIZE_LIMIT

ThNewUser answerClient()

ThInit1 answerClient()

ThGetSeries1 answerClient()

ThGet
Compatibility1 answerClient()

ThGet
Elements211 answerClient()

ThGet
Elements212 answerClient()

ThGet
Elements222 answerClient()

ThGetDetails3 answerClient()

28 The generic join point expression is: * !abstract answerClient(..)
29 The entire signature of this variable is in Java: static final String SIZE_LIMIT = “Size Limit” . It is also valid for

the size limit variable added to the Panel class.

 102

 Connections Control Area

 Time Bound (1/2) Aspect

 Time Limit
Constant

Answer
Synchronizer

Locking Answer
Synchronizer

Destroying
Lasting
Threads

Adding the
time limit
constant that
will be used as
a parameters
in client
threads
answers to
client objects

This variable is
used to synchronize
the access to the
answerClient
method by a thread
or its
corresponding
count down thread

This method is
synchronized. If
the
sync_answer
variable is false,
then it is changed
to true. Else the
calling thread is
put to wait.

This
synchronized
method
destroys the
corresponding
client thread
and the count
down thread.

Member

 No No No No Generic Join
points

Component (and
Aspect) Join Point Variable

adding Variable adding Method adding Method adding Member
Type

TIME_LIMIT30
sync_answer31
before_Answer()

ClientThread

after_Answer()

Panel TIME_LIMIT

 Connections Control Area

 Time Bound (2/2) Aspect

 Calling
before_answer

Calling
after_answer Starting Count Down

The method
after_asnwer is
called.

The method
after_asnwer is
called.

Inner class
CountDown
definition. This inner
class is instantiated and
started.

Member

* !abstract
answerClient(..)

* !abstract
answerClient(..) No Generic

Join points

Component Join Point Before wrapping After wrapping Before wrapping Member
Type

ThNewUser answerClient()

ThInit1 answerClient()

ThGetSeries1 answerClient()
ThGet

Compatibility1 answerClient()

ThGet
Elements211 answerClient()

ThGet
Elements212 answerClient()

ThGet
Elements222 answerClient()

ThGetDetails3 answerClient()

ClientThread start()

30 The entire signature of this variable is in Java: static final String TIME_LIMIT = “Time Limit ”. This is also the

signature for the time limit variable added to the Panel class.
31 The entire signature of this variable is in Java: protected boolean sync_answer = false .

 103

• Remark about the inner class CountDown:

This inner class extends the Java Thread class. The idea is to have a thread running in parallel of each

client thread which will limit this client thread maximum execution time. This can avoid server CPU overflow by
limiting threads taking too much time to complete their tasks. The CountDown class is instantiated when the
start method of a client thread begins. The resulting thread is also started at this moment. This thread will wait a
given time (a constant of the class CountDown) and then call the answerClient method of its corresponding
client thread, with a special parameter (TIME_LIMIT) which indicates that the maximum time before the server
answers is over. If this method call is executed before the normal one happening when a normal answer is sent to
the client, the client will know that the time limit is over, and the client thread of the count down object will be
destroyed, letting free the resources for the other client threads.

 Connections Control Area

 Connection Bound (1/2) Aspect

 Clients Count Reference Dispatch
Manager

Initialization of the Dispatch
Manager Reference

This integer represents
the number of client
threads running
currently on the server.

This public static
variable holds the
reference to the
dispatch manager

The static variable of the
class ClientThread is
assigned to the new dispatch
manager object.

Member

 No No No Generic
Join points

Component Join Point Variable adding Variable adding After wrapping Member
Type

clientsCount
DispatchManager

new()

ClientThread dspchManager

 Connections Control Area

 Connection Bound (2/2) Aspect

 Count Increment Count Decrement Server Busy
Constant

In a synchronized block (on
clientsCount), if a given
threshold is over, call the
answerClient method
with the SERVER_BUSY
parameter. If not, increment
clientsCount.

The method will be
a synchronized
block (on
clientsCount)
where this variable
is decreased.

Adding the Server
Busy constant that
will be used as a
parameters in
client threads
answers to client
objects

Member

 No No No Generic Join
points

Component Join Point Before wrapping Method adding Variable adding Member
Type

start()

destroy() ClientThread

SERVER_BUSY

Panel SERVER_BUSY

 104

III.4.5) Database

⊗ POINT I – ASPECTS IDENTIFICATION

The main feature that can be addressed in the database access part of RECINTERNET is the specificity of

the databases. We can then define an aspect area called Database Specificity that groups the aspects that deals
with concerns including issues specific to the kind of database used.

In this aspects area we have decided to address two aspects. One is the Structural Database Connection

aspect, which deals with opening and closing the connection with the structural database. The other one is the
SINTESE Database Connection aspect, which deals with opening and closing the connection with the
SINTESE database.

Database Specificity
Aspect Area

Aspects used to express concerns involving the specificity of the databases used

Structural Database Connection SINTESE Database Connection
Aspect All the specific actions for opening and closing

a connection with the structural database.
All the specific actions for opening and closing a
connection with the SINTESE database.

Aspect Type Required Required
Plugging

Constraints No No

⊗ POINT II – COMPONENTS DESIGN

We use the same idea than in the conventional object-oriented approach: having a database manager object

responsible for proceeding the requests sentences (class DBManager). We will also have two subclasses of this
class, one for each database (RIDBManagerSQL and RIDBManagerSINTESE). The concurrent access to the
databases by clients threads will be managed by synchronizing the methods proceedQuery of the two sub-
classes. In all these classes nothing related with opening or closing connections will be defined. The Figure 32
shows these classes definition.

Figure 32 - Components involved in the Database Connection aspects

RIDBManagerSINTESE

<<SYNC>> proceedQuery ()

RIDBManagerSQL

<<SYNC>> proceedQuery ()

DBManager

proceedQuery()

 105

⊕ Components/Aspects Interaction Representation

 Database Connection Area

 Structural Database Connection (1/2) Aspect

Database

URL
Variable

Driver
Variable

Open
Connection

Close
Connection

This variable
will hold the
address of
the
structural
database.

This variable
will hold the
name of the
driver class to
use with the
structural
database.

In this
method are
realized all
the
operations
for the
connection.

In this method
are realized all
the operations
for closing the
connection.

Member

 No No No No Generic Join
points

Component Join Point Variable
adding

Variable
adding

Method
adding Method adding Member Type

DatabaseURL

DriverName

open_connection()
RIDBManagerSQL

close_connection()

 Database Connection Area

 Structural Database Connection (2/2) Aspect

 Calling Open
Connection

Calling Close
Connection Login Variable Password

Variable

A call to the
open_
connection
method is added.

A call to the
close_
Connection
method is added.

The login
variable used
for the
connection is
added.

The password
variable used
for the
connection is
added.

Member

 No No No No Generic
Join points

Component Join Point After wrapping Before wrapping Variable
adding

Variable
adding

Member
Type

new(..)

login RIDBManagerSQL

password

Server32 stop(..)33

We will not represent the components/aspects interaction for the SINTESE Database Connection aspect

since the same aspect members are used than in the Structural Database Connection aspect. The body of the
different methods are changing, but the aspects design table is the same. It has to be noticed that the Driver
Variable aspect member is not used any more for this aspect since it is specific to the connection to the structural
database.

32 This class is in fact the class that is responsible for starting and stopping the server.
33 This method is in fact the method where the server will be stopped.

 106

III.4.6) Conclusions

In this section we have explained our aspects/components decomposition in the RECINTERNET design. In
this aspect-oriented approach, components design is represented through conventional object-oriented diagrams
(such as UML class diagrams), and aspects design as well as aspects/components interactions are represented
with aspects design tables. These different models and tables provide then a good support for the
RECINTERNET implementation.

It has to be noticed that in this aspect-oriented design of RECINTERNET, most parts of the components

design are similar to the conventional object-oriented design presented in Section III.3. We have just extracted
from the components level the different features related to concerns that can be beneficially expressed in aspects.
We can see the aspect-oriented approach as a two-dimensions decomposition, with one dimension for the
components definition and one for the aspects definition. With aspects design tables we address particularly these
two dimensions representation and structuration as well as the interactions between them. In fact we believe that
using this two-dimension decomposition is an appropriate way to view aspects design.

An important remark is that our aspects definition is quite dependent from the current AspectJ possibilities,

and consequently from Java. This provides a close support to aspects implementation, but can be a limit to this
design reuse with new versions of AspectJ, or even for design reuse with other aspect languages and other
programming languages. During this design, we have been also bound by a specific characteristic of AspectJ.
When several aspects are woven to components code in a same weaving, it is not possible to specify the order in
which the aspects are taken to apply their modifications to the code. For instance, for two aspects realizing both
an after-wrapping modification on the same method, the order of these two aspects weaving can be very
important. A solution is to realize two weavings, with only one aspect at each time, or to detect the possible
conflict and solve it in another way. It has to be noticed that for this second solution the design aspects table
helped us consequently.

An important improvement in using aspects in web-based three-tiers applications design is that it is possible

to express in aspects some functionalities (as seen with the different aspects used in the RECINTERNET server
application) that will be simply added to the application by plugging in the corresponding aspect to the
components code. This is a specific feature of aspect-oriented programming that plays an important role in
application design.

For this aspect-oriented design we had chosen only to develop few aspects in each part of the application.

Anyway there were several conflicts between the different aspects and components. Using aspects design tables
helped us to structure this design and to track some of the conflicts. In this section we only presented the result of
our design, but of course, this had been achieved with many modifications and after many errors.

 107

III.5) Comparison between object-oriented and aspect-oriented designs

In this section we draw a comparison of the conventional object-oriented design of RECINTERNET
presented in Section III.3 and the aspect-oriented design of the same application presented in Section III.4. This
comparison is organized into distinct points: first we look at the two approaches in terms of design process, that is
to say how is realized the design. Then we highlight the separation and relationships between components and
concerns, before comparing the way these two designs support implementation. We finish this comparison with
some specific points for the two approaches. In all these sections we will highlight some important points that
were revealed during the design realized for the two approaches.

III.5.1) Design process

Object-oriented design methodologies have been and still are an important field of software engineering
research. This field as been largely exploited and maturated. There are many examples of object oriented real-
world systems design, using different methodologies and representations to achieve efficient design models.
Many tools, representation and techniques are available for the different stages of object-oriented design.

In the case of RECINTERNET, we used for the client application the OOHDM methodology [SRB96],

[SR98], some design patterns [GHJV94], [LRS98], [RSG97], and some existing way of programming object-
oriented systems proven as good and reusable solutions (three-tiers architectures, distributed programming with
object-oriented interfaces, etc...). We could use some well-defined design language (UML34), as well as efficient
tools supporting design and automatic code generation (Rational Rose35). So there was a wide range of
technologies and techniques usable for a conventional object-oriented design.

AOP [Aop] is an emerging programming paradigm, and then is not yet well structured and supported as the

object-oriented one. Frameworks to support aspects implementation and weaving are often developed just as
experiments (such as [Kai98] or [DVDH99])and are not appropriate for real-world applications development.
AspectJ is one of the most developed tool for implementing aspects, but it is still available as a beta version
evolving permanently, and AspectJ users for large applications are considered as software engineering pioneers!
As AOP is basically related to components implementation, designing with aspects is still a very broad research
area, where methodologies, representations and tools are missing. In comparison with the numerous existing
object-oriented design supports, the aspect-oriented design support possibilities were quite not existing, and we
had to create our own way to design and to support our design. In this context we developed an original approach
to aspects design illustrated with this concrete aspect-oriented design.

We developed our step by step decomposition and the aspects design table in order to provide the

appropriate support for implementation. With this quite basic technique we provided an appropriate support for
RECINTERNET implementation. Finally, an important difference between the object-oriented and the aspect-
oriented design approaches used was the difference of available technologies for design support, that we tried to
compensate by creating new support for aspect-oriented design.

Another important point of the design process for the comparison of these two approaches is the way to

design specific concerns cross-cutting the basic functionality components structure. In the object-oriented
approach there was no possibility to use any abstraction to express cross-cutting concerns such as events handling
for instance. We were then obliged to design the different components involved by this concerns in respect to it,
inserting methods or variable that will be used for this concern. It was particularly complex when different
concerns were involving same components, because these components had to be designed to support all these
different concerns in the same time.

The main advantage of AOP is to be able to express cross-cutting concerns in separated modules. By only

identifying join points with components, it is possible to cleanly express complex concerns in distinct aspects
separated from components and from other aspects. This has been a great advantage in the RECINTERNET
design compared to the object-oriented approach. And this modifies consequently the design process. It is

34 UML Resource Center. Home Page: http://www.rational.com/uml
35 Rational Rose 98. Rose Enterprise Evaluation Edition. See Rose Home Page: http://www.rational.com/rose

 108

possible to concentrate on complex concerns one by one, and almost independently from other ones. Anyway
aspects composition as to be carefully foreseen at design level. It was possible with the aspects design tables, that
clearly identify the aspects/components interactions and enable to efficiently track conflicts between different
aspects. In this way the design process in the aspect-oriented approach was clearly more structured than in the
object-oriented approach.

Finally we had less support for the aspect-oriented design than for the object-oriented one, but because of

the possibility of separating concerns with AOP and to structure components/aspects decomposition with aspects
design table the aspect-oriented approach provided an efficient and more structured design.

III.5.2) Components/Concerns

As we have briefly introduced it in the design processes comparison, an important point of web-based three-
tiers applications design is the separation and the relationships between components (conventional object-
oriented entities) and concerns (functional or non-functional ones, such as distribution, events handling, server
functionalities, etc...).

In conventional object-oriented approaches, such concerns are flatten into components structure. As a

consequence concerns are scattered throughout components code, and moreover we have all concerns and
components expressed in the same code. In applications such as RECINTERNET it can lead to complex design
and complex implementation. At design level it is then difficult given a component to recognize which parts of it
are associated to which concern. In the other way it is also difficult to find out all the components associated to a
given concern.

On the other hand, the aspect-oriented approach can be seen as adding a dimension in the design process:

we will have the components dimension (as in the conventional object-oriented approach) and the aspects
dimension. Links between the entities of these two dimensions are expressed with join points identification. The
design process is then simplified because it is possible to abstract some complex concerns from the components
dimension by expressing them in the aspects dimension. We then have a clear separation between concerns
definition and their related components, and a localized definitions of the links between them in join points. Once
again, the different aspects design tables shown in Section III.4 provide the appropriate support for representing
this aspects/components separation and relationships.

In the classical aspect-oriented approach, join points are defined in order to link aspects to components. It is

then possible to track the different components involved in each aspect. With aspects design tables we go one
step further since we provide a way to concretely visualize aspects/components interaction in two ways: given a
component, it is possible to know in which concerns it is involved, and given an aspect it is possible to know
which components it involves.

To put it in a nutshell, the aspect-oriented approach support a clear separation of concerns which is not

possible with conventional object-oriented approaches. This is a consequent improvement in software design
process, and particularly in complex applications involving several complex concerns such as web-based three-
tiers applications and particularly RECINTERNET. Moreover with aspects design tables, separation of concerns
can be cleanly organized and visualized. The different aspects/components interactions can also be simply
developed and visually addressed in these aspects design tables. For these reasons the aspect-oriented design can
be considered as more efficient than object-oriented design for systems involving complex concerns.

III.5.3) Implementation support

Some tools exist for linking conventional object-oriented design to implementation automatically. For
instance with Rational Rose it is possible to automatically generate code (for Java, CORBA, C++...) out of design
models. This a great advantage in the conventional object-oriented approach since it simplifies consequently the
implementation stage, and it enables to have an implementation respecting closely the design.

 109

With the aspect-oriented approach, we can use the same techniques to link the components design to their
implementation. Anyway there is no equivalent technology or tools for linking aspects design to their
implementation. The entire implementation of aspects must be done manually. As AOP is an emerging technique,
there is not appropriate support for such automatic linking. This is an important drawback when comparing the
conventional object-oriented and the aspect-oriented designs.

On the other hand, as we decided to use AspectJ, we had to design our aspects concretely in function of the

possibilities of AspectJ, and to define their interaction with components through join points described in Java. For
this reason our aspects design depends on the programming language used for join points, but also provides a
closer support for implementation, as it can be seen in Section IV.3.

The decomposition principle of the aspect-oriented approach involves a modularization of the

implementation code (distinct modules for aspects and components, and distinct modules for different aspects).
As a result the number of modules used in the aspect-oriented approach is higher than in the conventional object-
oriented case. In the case of the RECINTERNET design, the Table 7 shows the number of modules (classes or
classes and aspects) for the two approaches. Even if the way large aspects are split into several smaller ones
modifies consequently such numbers, this table illustrates the tendency of modules number increasing with
aspect-oriented design.

 Object-Oriented Approach Aspect-Oriented Approach Increasing

Client application 35 (36) 34+10 = 44 (37) 29%

Client/server communication 7 7+1 = 8 14%

Server application + Database Access 16 16+6 = 22 38%

TOTAL 58 57+17 = 74 28%

Table 7 - Modules number in RECINTERNET design

In counterpart to this modules number increasing with the aspect-oriented approach, there is a consequent

decreasing of classes size, and moreover of the total size of the application. Even if it is not possible to measure it
at design level, we can explain it simply. In comparison to conventional object-oriented design, the aspect-
oriented approach, features of specific concerns are “extracted” from the components code to be put in aspects.
As a first result we then have a decreasing of the components size. Moreover, because it is possible to specify for
one aspect member a generic join point referencing several members of components, same modifications in
different components can be expressed only once. So finally the total size of the implemented application will be
decreased with the aspect-oriented approach.

With these advantages of the aspect-oriented approach comes unfortunately an additional problem:

composition conflicts. These conflicts happen in the aspects weaving after implementation of aspects and
components. They can be very complex and difficult to detect. The aspects design table provides good ways to
track and detect such conflicts because of its clear representation of components/aspects interaction, but also
common components (through their join points) involved in distinct aspects. When defining the RECINTERNET
design with the aspect-oriented approach, we represented aspects with the aspects design table and detected some
basic composition conflicts. Anyway there can be subtle composition conflicts that will only be detected when
evaluating the application. In this case the aspect-oriented approach creates with composition conflicts new kind
of problems (new compared to the object-oriented approach) that cannot always be solved at design level.

Finally we have seen that the object-oriented design provides a good support for implementation. The

aspect-oriented one is not as well supported and there is not appropriate design/implementation links. Anyway
even if new problems arise because of aspects/components decomposition (composition conflicts) design,
modularization and size decreasing are a concrete amelioration for the implementation of an aspect-oriented
design of a system.

36 Number of classes.
37 Number of classes + number of aspects.

 110

III.5.4) Specific Points

• Evolution

Systems designed with conventional object-oriented techniques are difficult to evolve because several

concerns can be involved in a single component. For instance if we have several complex concerns all involving
an important class of a system. If this system has to evolve by sub-classing this important class for adding new
functionality for example, the fact to have several concerns involved can make this evolution design very
complex (we can think of some synchronization of methods in the important class that will have to be carefully
re-done with the methods of the sub-class).

With the aspect-oriented design, as we have a clear separation between components and concerns, it is

easier to make them evolve. Particularly it is simple to make evolve features of a concern (expressed in an aspect)
without modifying at all any components design nor implementation. However for components evolution,
involved aspects has to been tracked in order to see if they should be modified also or not. This tracking is
particularly improved with aspects design table, where we can find easily all the aspects involving a given
component. As an example of system evolution, we can imagine that one day the RECINTERNET system will
use another kind of structural database (than Interbase) compliant with JDBC. This implies a modification of the
different variables (driver name, database URL...) used for the database connection. With the aspect-oriented
approach, this can be done simply by modifying the appropriate database connection aspect, but without
modifying any components.

For the same example with the object-oriented design we would have to create a new subclass reusing some

methods of the initial classes and overriding other ones. Modifications due to this evolution would then be
scattered through different methods of this new class and we would have a complicated collaboration between
redefined methods and methods of initial classes.

• Reuse

Conventional object-oriented design is sometimes difficult for the same results: several concerns can be

mixed in the same component. This is a concrete handicap for system understanding as well as system extending
or modifying. With the aspect-oriented design, understandability is increased thanks to clean modularization, and
simplification of the different modules. This a first advantage for reuse.

Aspects reuse in different systems is quite difficult because they are based on components implementation.

However with a clear definition of the role of the different components involved in an aspect and of the objective
of each aspect member as with the aspects design table, it is possible to “extract” an aspect from its “components
context”. For instance the mechanisms for realizing events handling design in aspects could be applied to other
applications than RECINTERNET.

It is also possible to reuse some design of a set of related aspects and components in different applications.

As an example we could imagine to reuse the database manager classes and their corresponding aspects of
RECINTERNET in other applications dealing with database access.

• Flexibility

Flexibility is an important advantage of the aspect-oriented approach compared to the conventional object-

oriented one. Designing with aspects provides a way to develop flexible systems that cannot be obtained simply
with conventional object-oriented design. With AOP, and particularly with AspectJ, aspects weaver involves
plugging facilities that can be used to obtain great flexibility. Plugging in or out an aspect from a system is then
simply realized. With different aspects expressing different functionalities for a same system, it is possible to
simply add or remove functionality of this system.

In comparison, with a conventional object-oriented approach, “plugging out” a concern requires first to

identify the different components it involves, and to remove from the components the related features, after

 111

verifying the consequences of such changes. We have seen in the RECINTERNET design with aspects that
different functionalities (time bound, size bound and connection bound) can be easily added or removed to the
server application.

III.5.5) Comparison conclusions

To generalize to any kind of application some points of this comparison of a conventional object-oriented
and an aspect-oriented one for the RECINTERNET application, we can first insist on the fact that AOP is an
emerging paradigm that is not yet as mature as the object-oriented one. As a result there are is a huge difference
between the technologies, techniques and tools available for design in the two approaches.

Anyway AOP provides concrete support for separation of concerns that cannot be done in object-oriented

paradigm. The resulting aspects/components modularization in design (and consequently in implementation) is an
important advantage for systems understandability, complexity and size decreasing, reuse, maintenance and
evolution.

Moreover, important drawbacks of the aspect-oriented design process such as the lack of design

representation tools or composition conflicts detection can be consequently ameliorated by designing components
and aspects as well as representing them with aspects design table.

Finally the emerging aspect-oriented paradigm is highly promising with its interesting concepts for software

engineering, but needs a phase of maturation so that appropriated and efficient tools, technologies and techniques
could be developed for an appropriate support at any stage of software development cycle.

III.6) Conclusions

We have then presented how it is possible to apply separation of concerns into web-based three-tiers
applications design. Based on the characteristics of AspectJ to support aspect-oriented programming, we have
proposed guidelines to realize aspects/components decomposition in a step by step process. This design
decomposition can be efficiently represented in aspects design tables.

In a second time we have presented two different approaches for web-based three-tiers applications design:

a conventional object-oriented one and an aspect-oriented one. These two approaches have been developed for
the concrete case of the RECINTERNET system. We have then draw a comparison between these two
approaches for this concrete case. The interesting feature was that we draw this comparison for a concrete
industrial system which involves different complex concerns, and illustrates then the benefits of an aspect-
oriented approach.

The first conclusion we can draw from this section is about the methodology and representation we propose

for aspects design. This step by step way of decomposing the aspects design enables a clear identification and
organization of the different entities of an aspect-oriented design. Aspects/components interactions are clearly
expressed, and in both ways: from an aspect to its components and from a component to its involving aspects.
Aspects design tables contain the important information related to this decomposition, and provides an efficient
way to visualize them. The clear aspects/components interaction visualization provides then a good support to
detect eventual composition conflicts.

We have illustrated the interest of using these decomposition guidelines and aspects design tables for the

aspect-oriented design in the concrete case of the RECINTERNET application. By comparing this aspect-
oriented approach to a conventional object-oriented one in this same concrete case, we have shown the great
interest of the aspect-oriented paradigm for web-based three-tiers applications, even with the important drawback
that AOP needs maturation in order to be supported by efficient tools and techniques, particularly at design level.

Based on these two approaches to realize web-based three-tiers applications design, we present in the

following section (IV) how to realize the RECINTERNET implementation.

 112

IV - RECINTERNET IMPLEMENTATION

IV.1) Introduction

We have previously drawn a state of the art of the different technologies and techniques applicable to
applications such as RECINTERNET (Section II). We have also realized the design of such an application with
two different approaches (Section III): an object-oriented one and an aspect-oriented one.

In the current section we present how to implement a web-based three-tiers application such as

RECINTERNET. It would have been a good point to extend to implementation stage the comparison realized for
design between the conventional object-oriented approach presented in Section III.3 and the aspect-oriented one
presented in Section III.4. Given the time constraints of this thesis it was not possible to implement the two
approaches.

From the DATAPREV standpoint, the objectives of this thesis were to achieve efficient design models that

could provide an appropriate support for the RECINTERNET implementation, and then to implement and
evaluate entire parts of the system. Then the project could be completed by the other members of the
RECSINWIN/RECINTERNET DATAPREV team, based on appropriate design models as well as entire
implemented and tested parts of the system.

According to these objectives we decided then to begin with the implementation corresponding to the

conventional object-oriented design of RECINTERNET38. This decision was motivated by the need of a concrete
result in the given time, and mainly by the fact that main parts of this implementation could be reuse afterwards
for an implementation of the aspect-oriented approach. As a result we implemented and evaluated parts of the
RECINTERNET system based on our conventional object-oriented design. Then we left sufficient design models
and guidelines in order that the RECINTERNET project could be efficiently finished by the other members of the
team, as it is explained in Section V.1.

For the second approach (aspect-oriented) it was not possible to implement in the time of this thesis our

aspect-oriented design of RECINTERNET. Anyway we developed some guidelines for explaining how to
implement and deploy this approach. These guidelines and the aspects design tables presented in Section III.4
provide an appropriate support for a future implementation of an aspect-oriented version of RECINTERNET.

Finally in the current section we present how we implemented the conventional object-oriented design of

RECINTERNET in Section IV.2, and how to implement the aspect-oriented one in Section IV.3. These sections
provide a concrete illustration of the different points developed in this thesis: analysis of the technologies and
techniques applicable in the RECINTERNET project and RECINTERNET design with two approaches: a
conventional object-oriented design and an aspect-oriented one.

IV.2) Conventional object-oriented implementation of RECINTERNET

We have seen in Section II how the Java language provides an appropriate support (through different
features such as Java applet, RMI, etc...) for the programming of the whole RECINTERNET system. Then the
different parts of RECINTERNET were all implemented in Java, based on the version 1.2 of the Java
Development Kit (JDK39). We used the JBuilder40 Client/Server Suite Version 2.0 to develop our Java program,
since this programming environment provides an efficient drag and drop support for GUI and simple JDBC
support.

38 This decision was approved by the RECSINWIN/RECINTERNET project responsible (Dr. Emmanuel Passos) and by our advisor

from (Dr. Cabral Lima from UENF).
39 Documentation and free download available online. Java Home Page. Sun Microsystems. http://www.java.sun.com
40 Borland JBuilderTM Client/Server Suite Version 2.0. Borland International. http://www.borland.com

 113

IV.2.1) Client

We have chosen to implement the client tier of RECINTERNET as a Java applet embedded in an HTML
page, as explained in Section II.5.1.5. It means that the HTML page referencing the Java applet class bytecode
and the different compiled Java classes needed in this applet will be stored on the HTTP server. When a user will
request this HTML page to the HTTP server through a given URL, his web browser will receive the HTML code
of this page as well as the compiled classes Java bytecode. The web-browser is then able to execute the applet.

We developed then a Java applet as a support for node visualization. We implemented the different classes

presented in the conventional object-oriented design to support navigation and user interaction. We also
implemented the different nodes and decorators of RECINTERNET, and we used the Java Abstract Windowing
Toolkit (AWT) of Java for the most part of the graphical components of each node (buttons, lists, labels, text
areas...).

As RECINTERNET had to be accessible by any kind of user, using any kind of the most popular web

browsers, we tested our applet with the most used web browsers (Microsoft Internet Explorer, Netscape and Hot
Java). An important issue was to be able to execute the applet with different versions of these browsers. To solve
this problem (without entering into details), we used a Java tool called HTML converter41 that enables to modify
the HTML code for the embedded applet so that Java Plug-In42 is used to choose a compatible Java Runtime
Environment43 (JRE) where the applet can be normally executed. If these web-browser extensions are not
available on the user machine, the user will be asked to accept their download and installation before continuing.
This solution enables to execute the RECINTERNET applet in most part of used web-browsers. We evaluated
our Java applet by testing successfully its functionalities with different sets of data, on different web-browsers.
Finally we realized completely the RECINTERNET client tier implementation. The following figures present few
screens of the RECINTERNET applet.

Figure 33 - Node 1 and Node 1C screen

41 HTML Converter. Available for free online: http://java.sun.com/products/plugin/1.1.2/converter.html
42 Java Plug-In is a Java tool that enables to choose the Java Virtual Machine used to execute an applet from any web browser.

Available for free online: http://java.sun.com/products/plugin/download/windows.html
43 Java Runtime Environments (JRE) are Java Virtual Machines compatible with a given JDK version. The JRE for JDK 1.2 is

available for free online: http://java.sun.com/products/jdk/1.2/jre/download-windows.html

 114

Figure 34 - Node 221 screen

Figure 35 - Node Help screen

 115

IV.2.2) Server

The server part of the RECINTERNET system was implemented as a Java application, as we explained it in
Section II.5.2.4. This application will be started on the server host. This application will be executed in the Java
Virtual Machine of the server host. The Java classes of the server application use the version 1.2 of JDK, and
then a compatible Java Virtual Machine must be available on the server host.

It has to be noticed that this server application must be running on the same host (the same IP address) from

where the client applet where downloaded. This is due to the security restrictions of Java applets: an applet
cannot realize a remote communication with another host than the one from where it has been downloaded. So
the server application will be run on the same machine than the HTTP server.

We implemented a main class, that can be started to initialize the different parts of the server (Java RMI

registry, database manager objects). The most part of the server application implementation was the definition of
the different client threads classes, as well as the dispatch manager class (which receives requests from clients
and creates and starts the appropriate client thread) and the database manager classes. All this classes
implementation was closely supported by the object-oriented design that we presented in Section III.3.2.

There was no particular need for graphical interface for this server application. So we just implemented an

application that can be launched with a Java command line and that prints few informations about the server
states on the control window.

We have tested this server application by simulating some client requests coming from client applets. We

made tests with requests corresponding to each kind of client threads classes that can be executed on the server.
The execution of these threads was at the end carried out on the server without problems. So finally this part of
RECINTERNET was cleanly implemented and tested.

IV.2.3) Client/Server communication

As we have shown it in Section II.6.1.6, we chose to realize the client/server communication with Java
RMI. This technology enables to call methods of objects running in Java Virtual Machines of different machines
in a transparent way.

To realize the implementation of this communication part, we mainly defined the RMI interfaces (that

describes the methods that can be called remotely), according to the design presented in Section III.3.2.1. We
then have added the required modifications to the classes of the server (DispatchManager) and of the client
(the different nodes and decorators) that had to implement these interfaces.

These classes implemented the RMI interfaces had to be compiled with the Java command rmic, in order

to create the appropriate RMI stubs and skeletons that will be used to call the remote objects. When starting the
server application, the RMI registry must also be started so that the dispatch manager object can be registered in
the Java RMI registry and called by client applets. It has to be noticed that the IP address of the host on which is
running the server application must be known from the client applets. These applets can then create the
appropriate references for the remote server dispatch manager and call some of its methods correctly.

We only had the possibility to test the RMI deployment of RECINTERNET on the DATAPREV intranet. It

was however not possible to test the system on any HTTP server and then the RMI features with the Internet. A
HTTP server will only be available when the whole RECINTERNET system will have been implemented and
will be ready to be opened to the public. Anyway we have validated locally the main functionalities of the RMI
communication between the client Java applets and the server application.

 116

IV.2.4) Database access

We have described in Section II.6.2.1 and II.6.2.2 the way the RECINTERNET databases are accessed. The
access to the server structural database is done using the JDBC standard. It is then possible to insert database
exploitation with SQL queries inside Java code.

The server structural database must be installed on the server host. It is an Interbase database, that is

managed by Interbase server, which must be started on the server machine. Specific JDBC drivers for Interbase44
must be installed on the server machine in order to be able to realize the database connection.

The SINTESE database is hosted on a remote machine connected to the server host by the DATAPREV

intranet. The database server on this remote machine is normally accessed through terminals connection. With
Java it is possible to simulate such a terminal and to pass to it command lines (in SINTESE syntax) through
TCP/IP protocol. Then it is possible to submit from the server application some requests to the SINTESE
database.

We implemented the DatabaseManager classes described in Section III.3.2.3 to provide the appropriate

structure for databases access, but for time reason we did not implemented the detailed finalization of databases
connection nor results exploitation. Anyway we clearly defined the RIDatabaseManagerSQL and the
RIDatabaseManagerSINTESE classes structure and the way to achieve their implementation.

Finally, based on our state of the art of possible technologies and on our conventional object-oriented

design, we have implemented and tested most of the parts of the RECINTERNET system. Client applet and
server application were totally implemented and were successfully tested. Client/server communication with Java
RMI was entirely implemented but only tested locally, without a complete Internet deployment. Database access
was partially implemented, and will be completed by the other members of the RECINTERNET team, according
to the DATAPREV the definition of our thesis work objectives in the given time.

IV.3) Guidelines for the implementation of the aspect-oriented design

We did not have time to implement the aspect-oriented design of RECINTERNET we presented in Section
III.4. However we present here briefly how to realize in Java this aspect-oriented implementation with AspectJ.

IV.3.1) Aspect-oriented implementation with AspectJ

The implementation mechanism with AspectJ can be decomposed as following: components
implementation, aspects implementation and components/aspects composition.

• Components implementation is realized by implementing Java components classes in the same way than

in a conventional object-oriented implementation. Java classes of the different components are implemented
according to the different designs models presented in Section III.4 (most parts of these components
implementation are the same than in the conventional object-oriented implementation). The result is a set of
classes expressed in Java code (.java files).

• Aspects implementation is done in the same way than components implementation. Based on the aspects

design tables presented in Section III.4, aspects are expressed in the AspectJ language presented in Section
III.1.2.3. Aspects are defined as Java classes in modules, with different aspect members using the Java syntax.
The result is a set of aspects expressed in AspectJ language (concretely these aspects are stored also in .java file,
even if they are not expressed in conventional Java code).

44 The all-Java JDBC driver for Interbase can be downloaded for free from the Interbase Home Page: http://www.interbase.com

 117

• Components/aspects composition is automatically done with the AspectJ weaver. Once AspectJ is
installed, after having set the different source and class paths (as explained in the AspectJ installation
documentation), it is possible to use the ajc command to start the aspects/components weaving. This command
take as parameters all the java files (.java) of the aspects and components to be woven. Given the options chosen,
it is either possible to obtain the woven Java code either to obtain directly the corresponding compiled Java
bytecode45. It has to be noticed that this obtain Java code (or bytecode) is created in new files (.java for Java code
or .class for Java bytecode), and then the initial aspects and components code is not modified.

It is possible to plug-in or plug-out some aspects on the obtained woven Java code in a simple way. For

instance, to plug-in a new aspect on a woven Java code, it is just needed to weave this aspect with the woven Java
code. To plug-out one aspect, it is just needed to take back the initial components code that were left unmodified
by the previous weaving and weave them again if needed. The Figure 36 presents one example of these plug-in
and plug-out mechanisms.

Figure 36 - Plug-in and plug-out mechanisms

45 If this option is chosen, the weaver creates the woven Java code and calls the normal Java compiler (javac) to compile it and create

the corresponding Java bytecode.

Aspect1.java Aspect2.java Component1.java Component2.java

Weaving

WovenCode1.java WovenCode2.java

Weaving

WovenCode1’.java WovenCode2’.java

NORMAL WEAVING
PLUGGING-OUT
ASPECT1.JAVA

Aspect3.java

Weaving

PLUGGING-IN
ASPECT3.JAVA

WovenCode1’’.java WovenCode2’’.java

 118

IV.3.2) RECINTERNET implementation

The aspects design tables presented in Section III.4 and the components design models of Sections III.4 and
III.3 provide a good support for the implementation of the aspects and components of this approach, as we
explain it in the current section.

With an aspect-oriented decomposition of RECINTERNET into components and aspects, the components

implementation process is the same that in a conventional object-oriented approach. However, specifications
about the components involved in different aspects must be carefully respected. For the aspects implementation,
it is possible to closely follow the information of the aspects design table, that identify properly the different
members, join points and intentions of an aspect. As an example, we give the implementation of the Dynamic
Node Load aspect, presented in details in Section III.4.2. The summary of the aspects design table for this aspect
is given in Table 8.

 Navigation Area

 Dynamic Node Load Aspect

 TargetNode access Cache
searching

Node
creation

Searching
node Member

 Yes46 No No No Generic Join Point

Component (or
Aspect) Join Point Before wrapping Method

adding
Aspect
method

Aspect
method Member Type

Context GetNode()
Transformation Action()

Navig
Transformation SpecificAction()

Intra
Transformation SpecificAction()

Extra
Transformation SpecificAction()

RIPrevNext
Transformation SpecificAction()

GetNode() Dynamic Node Load
CreateNode()

Table 8 - Dynamic Node Load aspects design table

The Figure 37 presents our Java implementation of the different classes involved in this aspect. Their

implementation has been done according to the specifications given in Section III.4.2 about the Dynamic Node
Load aspect, and also about the conventional object-oriented models presented in Section III.3.1.

46 The generic join point expression is: protected !abstract void * specificAction(..), public void

Transformation.action(..).

 119

RIContext.java
package Rec_Internet;
/** This class is used to represent the navigation informations */
public class RIContext
 extends CacheContext {
// We don’t present the code of this class since it is not used for this aspect example
}

Transformation.java
package Rec_Internet;
/** This class is used to contains the necessary methods and variables to describe navigation actions */
public abstract class Transformation {

 /** Class variable: the context */
 protected static RIContext context = null;

 /** Instance variable: reference of the target node of a navigation */
 protected Node targetNode = null;

 /** Class method context mutator */
 public static final void setContext(RIContext context_) { context = context_; }

 /** context accessor */
 public RIContext getContext() { return context; }

 /** Template method to define the structure of a navigation action */
 public void action(String target, Object args[])
 throws RIException {
 specificAction(target, args);
 targetNode.show(); }

 /** Abstract method for specific actions depending on the type of navigation */
 protected abstract void specificAction(String target, Object args[])
 throws RIException; }

NavigTransformation.java
package Rec_Internet;
/** This class is used in the case of a normal navigation between two navigational nodes */
public class NavigTransformation
 extends Transformation {

 /** In the case of a normal navigation between two navigational nodes, we need to hide the origin node, to
reset the target node, and then set in the context the current node index and the next index */
 protected void specificAction(String target, Object args[])
 throws RIException {
 context.getCurrentNode().hide();
 context.setCurrentNode(targetNode);
 context.setNextIndex(target);
 targetNode.reset(args); } }

IntraTransformation.java
package Rec_Internet;
/**This class is used in the case of a navigation from a navigational node to an intra node */
public class IntraTransformation
 extends Transformation {
 /** For a navigation to an intra node, we desactivate the navigational no de, and reset the target node */
 protected void specificAction(String target, Object args[])
 throws RIException {
 context.getCurrentNode().desactivate();
 targetNode.reset(args); } }

ExtraTransformation.java
package Rec_Internet;
/** Used for a navigation from a navigational node to an extra node */
public class ExtraTransformation
 extends Transformation {
 /** In the case of a navigation to an extra node, we just need to reset the target node */
 protected void specificAction(String targe t, Object args[])
 throws RIException {
 targetNode.reset(args); } }

RIPrevNextTransformation.java
package Rec_Internet;
/** To describe previous and Next navigation */
public class RIPrevNextTransformation
 extends Transformation {

 /** In the case of a previous or next navigation, we hide the origin node and set in the context the
target node as current node. We don’t reset the target node */
 protected void specificAction(String target, Object args[])
 throws RIException {
 context.getCurrentNode().hide();
 context.setCurrentNode(targetNode); } }

Figure 37 - Components code for the Dynamic Node Load aspect

 120

The Figure 38 presents the code of the Dynamic Node Load aspect. This aspect has been implemented
according to the corresponding aspects design table.

AdynamicNodeLoad.java

package Rec_Internet;

/** This aspect defines all the necessary modifications related to dynamic node search a nd
creation when navigating */
aspect ADynamicNodeLoad {

 /** Node Creation member:
 This method dispatch the creation request to the appropriate node constructor */
 public static Node createNode(String name)
 throws RIException {

 if (name.equals("Node0")) return new RINode0();
 if (name.equals("Node1")) return new RINode1();
 if (name.equals("Node211")) return new RINode211();
 if (name.equals("Node212")) return new RINode212();
 if (name.equals("Node221")) return new RINode221();
 if (name.equals("Node222")) return new RINode222();
 if (name.equals("Node3")) return new RINode3();
 if (name.equals("Node1C")) return new RINode1C();
 if (name.equals("Node3D")) return new RINode3D();
 if (name.equals("Help")) return new RIHelp();

 // Throw an exception for other names
 throw new RIException(name, UNKNOWN_NODE);
 }

 /** Searching Node member:
 This method organize the node search/creation. First it calls the method to search the
node in the context, and if it is not found, call the method t o create it */
 public static Node getNode(String name, RIContext context)
 throws RIException {
 Node result = context.getNode(name);
 if (name == null) {
 return ADynamicNodeLoad.createNode(name); }
 else return result;
 }

 /** TargetNode Access member:
 We add the targetNode initialization before all the methods where this variable is used */
 advise protected !abstract void *.specificAction(..),
 public void Transformation.action(..) {
 before { targetNode = ADynamicNodeLoad.getNode(target, co ntext); }
 }

 /** Cache Searching member:
 We introduce in the RIContext class the method to search a node */
 introduce public Node RIContext.getNode(String target) {
 for (int i=0; i<navigNode.size(); i++) {
 Node node = (Node) navigNode.elementAt (i);
 if (node.getName().equals(target))
 return node; }
 for (int i=0; i<intraNode.size(); i++) {
 Node node = (Node) intraNode.elementAt(i);
 if (node.getName().equals(target))
 return node; }
 for (int i=0; i<extra.Node.size(); i++) {
 Node node = (Node) extraNode.elementAt(i);
 if (node.getName().equals(target))
 return node; }
 return null;
 }
}

Figure 38 - Dynamic Node Load aspect

 121

The weaving of these components with the aspect can then be done as explained in the previous part. We
can plug-in or plug-out as wanted the different aspects of the aspect-oriented RECINTERNET system. We then
obtain automatically different woven Java files (.java) that can be normally compiled to produce an executable
Java bytecode (.class). The Appendix E presents the resulting code of the weaving of this aspect and its related
components.

It has to be noticed that once the weaving mechanism has been achieved, when compiling the obtained code,

the compilation errors refers to the woven code, and not to the initial components or aspects code. Then with a
compilation error and the line where it happened, the debugger needs to track from which component or aspect
the code is coming. This is facilitate by the comments generated by the aspect weaver, but however it make
debugging process more difficult. In the same way run-time exceptions are shown with a line number, which
refers to the woven code and not the initial one.

Another problem encountered with AspectJ is that it is not possible to specify in which order the given

aspects will be woven to the components code. When weaving a set of components and aspects files, AspectJ
takes the aspects one by one in a random order and weave them to the components code. There is no way to
specify an aspect weaving order. The only solution when two aspects must be woven in a given order is to realize
a first weaving with only the first aspect, and then a second weaving with the second aspect on the obtained
woven code. Anyway it add on level of “weaving indirection” for debugging the obtained code, which can be
problematic.

Anyway AspectJ provides an efficient way to implement aspect-oriented programs. RECINTERNET can

then be implementing by following closely the aspects design tables of Section III.4 and the components
description of Section III.4 and III.3.

IV.4) Conclusions

Given the time constraints it was not possible to extend to a complete implementation the two approaches
(object-oriented and aspect-oriented) we used for RECINTERNET design. We started then with the
implementation of our conventional object-oriented design and achieved most parts of this implementation. For
the aspect-oriented approach we only give guidelines to explain how it could be done.

We have then presented in this section the way we realized our object-oriented implementation of the

RECINTERNET system. To briefly give a synthesis of the achievement we reached in this implementation, it can
be said that most parts of the RECINTERNET system have been wholly implemented: the client applet, the
server application as well as the client/server communication features are entirely coded. For the database access
part we have only implemented it partially. It must also be noticed that for each of these parts implemented we
realized corresponding evaluation by testing their execution with sample sets for the different functionality they
had to provide. Finally we have developed most parts of the RECINTERNET system according to the design we
had conceived and represented in design models. We explain in Section V.1 how our implementation will be used
by the RECSINWIN/RECINTERNET team to finalize the development of the RECINTERNET project.

We have also presented in the current section some guidelines for realizing the implementation of the

aspect-oriented approach. For this purpose we described precisely the weaving mechanism of AspectJ to
compose automatically aspects with components code. We explained also the way to develop aspects code with
the support of our aspects design tables. We finally illustrated these guidelines with an implementation example
of one aspect we described in our aspect-oriented design: the Dynamic Node Load aspect.

To conclude this section, we can say that by developing the implementation (or explaining how to realize it)

of the RECINTERNET whole system with the object-oriented and aspect-oriented approaches, we gave a
concrete illustration of the different research aspects developed in this thesis.

 122

V - CONCLUSIONS AND PERSPECTIVES

In this section we draw conclusions about the work realized and we analyze the perspectives it involves. In
Section V.1 we analyze the state of the RECINTERNET project at the end of this thesis and explain how it will
evolve. We give in Section V.2 conclusions about the two approaches we used for developing the
RECINTERNET project: the object-oriented and the aspect-oriented approaches. We finish in Section V.3 with
conclusions and perspectives about our original approach for aspect-oriented design organization and
representation.

V.1) The RECINTERNET project

From the industrial standpoint of DATAPREV, the work realized during this thesis had to reach different
objectives. Based on the RECSINWIN project we had to conceive the RECINTERNET system, that is to say a
web-interface that enables users to compose dynamically a request to the SINTESE database of DATAPREV and
then visualize its results. The given objectives were to browse the existing technologies and techniques in order to
create appropriate design models and to implement and evaluate most parts of the RECINTERNET system.

In this thesis we realized an analysis of the techniques, technologies and tools suitable for the

RECINTERNET development. For design stage we analyzed particularly the architectural possibilities, the way
to design dynamic web-interfaces and the techniques to realize separation of concerns. For implementation stage
we focused on the technologies available for implementing each of the three tiers of RECINTERNET: client,
server and database. We also studied some possibilities to realize the communication between these three tiers.
Finally we also analyzed the existing technologies to support implementation with separation of concerns.

As a result of this analysis we proposed the following choices for the RECINTERNET development.

RECINTERNET can be programmed according to the principles of separation of concerns, and particularly with
Aspect Oriented Programming (AOP). In a more conventional object-oriented way, RECINTERNET can be
developed according to the Object Oriented Hypermedia Design Methodology (OOHDM) and its associated
design patterns. This two possibilities have been the starting point of the development of RECINTERNET with
two approaches and their comparison.

We have also chosen for RECINTERNET a three-tier architecture with a specific characteristic: using a

server local structural database mirroring the structure of the main SINTESE database of DATAPREV in order to
make the requests composition faster and to only connect to the SINTESE database for final requests.

Our analysis led us to choose to program the client part of RECINTERNET as a Java applet embedded in a

HyperText Markup Language (HTML) page, so that it can be executed within any web-browser. The server part
is a Java application running on a server host and communicating with the client applets with Java Remote
Method Invocation (RMI). The access to the server local structural database is achieved through the Java
DataBase Connectivity (JDBC) standard, and the access to the remote SINTESE database is done through a
simulation of a terminal connection to the SINTESE DataBase Management System (DBMS) with a
Transmission Control Protocol/Internet Protocol (TCP/IP).

Based on these choices we realized the RECINTERNET development with two approaches: a conventional

object-oriented one and an aspect-oriented one. We applied the OOHDM methodology to design the client
application of RECINTERNET, as well as some of its design patterns. We also designed carefully the other parts
of the system: server, client/server communication and database access. As a result we provided a set of object-
oriented design models that cover the different parts of the RECINTERNET system and provide an appropriate
support for its implementation.

For the design of the aspect-oriented approach we decomposed the different parts (client, server,

client/server and database access) of the RECINTERNET system into aspects and components. The components
design reused parts of the conventional object-oriented design models and add some modifications in order to

 123

support aspects. Aspects design was realized with a step by step decomposition methodology we developed.
Finally we represented this aspects/components design with some aspects design tables that organize the
decomposition and enable a clear visualization of aspects/components interactions.

We then realized the implementation of the conventional object-oriented implementation design models. We

implemented and evaluated completely the client part of RECINTERNET, as well as the server application. For
the client/server communication part, we implemented it totally but only tested it locally47. We provided a
partially completed implementation of the database access part. Given the time constraints, for the
implementation of the aspect-oriented approach we only proposed some guidelines on the way to do it, as well as
example of aspects implementation.

Finally we have realized partially two approaches for the RECINTERNET development. For both

approaches we have developed a set of design models covering the different parts of the system and providing
appropriate implementation support. In the object-oriented approach we left to the project team most of the parts
of the RECINTERNET system totally implemented and evaluated and guidelines to finalize the lasting parts
implementation and deployment. In the aspect-oriented approach we left to the RECSINWIN/RECINTERNET
project team guidelines to achieve the RECINTERNET implementation from our design models as well as
illustrative examples.

• Evolution of the RECINTERNET project

Based on the work realized during our thesis, and according to what had been foreseen about this work with

DATAPREV, the members of the RECSINWIN/RECINTERNET project team will finalize the RECINTERNET
development.

In a first step they will finalize the conventional RECINTERNET implementation. Based on the parts

already implemented and on our design models, they will finish the implementation of the database access part.
They will then continue with some tests on this implementation before carrying out the whole deployment of the
entire RECINTERNET system: installing the required applications, database and files on the HTTP server and
testing the internet access and the whole system execution.

The RECSINWIN/RECINTERNET team agreed to use our aspect-oriented approach to become more

familiar with the aspect-oriented way of programming that they had never used previously. They were
particularly interested in the possibility to program some server functionalities (client thread execution time
control, results size control and number of client threads running on the server control) with easily pluggable
aspects as we proposed in our aspect-oriented approach.

At this point of the project we also have some concrete propositions for the enhancement of the

RECINTERNET system:

A first improvement in the soon evolution of RECINTERNET should be to realize its Brazilian version (in

Portuguese language). It means that any information appearing in the client applet should be written in
Portuguese. Actually the client applet implementation we realized is only in English and then cannot be deployed
to a large Brazilian public. Even if the data provided by the databases are all in Portuguese language (such as the
name of the states of a serie, the months where a serie is defined and so on), the graphical and navigational
informations of the client applet are in English (such as continue, exit, help, etc...). We can imagine to modify
these words hard-coded in the client applet implementation. Another idea should be to develop some “language”
aspects (English, Portuguese aspects, or even more) that can be plugged to the client applet code to define
language variables (and their corresponding values which will be the words in the given language) that will be
read each time a word must appear to the user in the applet. By plugging-in one of these aspects it could be then
simple to obtain a different language version of the client applet.

47 As we explained in Section IV.2.3, it was not possible to realize complete tests because we did not have the possibility to use an

HTTP server.

 124

As an ulterior evolution we propose to extend the RECINTERNET system in order to provide web-users the
possibility to define their requests in a different way. As it is possible in the RECSINWIN system, it could be
possible to express requests to the SINTESE database in natural language. The web-user could then write a
request with his own words or choose between a set of pre-defined sentences. The same approach than the one
used in RECSINWIN could be used to filter and correct such sentences and translate them in to SINTESE
queries. It has to be noticed however that this extension should modify consequently the RECINTERNET system
since it requires some language dictionaries where are referenced the different words that can be used. A good
solution could be to store these dictionaries on the server host and to access them with Java RMI from the client
applet.

We propose also an improvement in the database access part of the RECINTERNET system. The idea

should be to light up the connections to the SINTESE database by using a kind of cache mechanism. We thought
about storing in the server local structural database not only the structure of the SINTESE database but also the
series entries that are requested by users very frequently. In fact there are series of the SINTESE database that are
requested more frequently than others, and so it could ameliorate consequently the requests answering
mechanisms to only consult the server local structural database for very common requests. Moreover as the
SINTESE database is only updated in given period, all at a time, updating the server local structural database for
these cached series entries would not require more specific attention than in the actual updating mechanism.

A last enhancement that we propose as an ulterior modification for RECINTERNET aims to address the

problem of server overflow. If RECINTERNET becomes used by a high number of clients, the unique CPU of
the server where client threads are running can be rapidly insufficient. As a solution we can propose to replace
the middle tier (the server) of RECINTERNET by several identical servers, running on different hosts. The
architecture will then evolve to a multi-tiers architecture. All the client request would still be addressed to a
unique server with Java RMI, but a load-balancing functionality will be defined to choose to execute the
corresponding client thread on the “less busy” of the different servers.

To conclude this part we can say that we have carried out the most part of the development of a first version

of RECINTERNET, which will be finalized by the RECSINWIN/RECINTERNET team and be ameliorated and
modified in future versions.

V.2) Object-oriented and Aspect-oriented approaches of RECINTERNET
development

We have also explained in this thesis how we realized the RECINTERNET project with two approaches: a
conventional object-oriented one and an aspect-oriented one.

In the conventional object-oriented approach we have split the RECINTERNET system into four parts:

client, server, client/server communication and database access. Using parts of the OOHDM methodology we
have decomposed the RECINTERNET client application into functional units. These units are encapsulated in
objects, which are described by their classes. We have described these classes using conventional design models
for object-oriented programming: class diagrams and state diagrams in UML, classes descriptions. These models
are language independent. They describe different parts of the client application, such as the structure of the
entities of the databases that will be used (conceptual model), classes framework for navigation, extension of this
framework for RECINTERNET (navigational model) and graphical representation (interface model).

We also described the other parts of the RECINTERNET system (server, client/server communication and

database access) with these conventional object-oriented design models. The main particularities of this design
are the use of Java RMI interface for describing remote calls between client and server, the use of client threads
classes representing each kind of client requests, the fact that these client threads directly communicate with the
client object to send back the results of a request and the fact that the two databases are only accessed through a
database manager object. All these points are concretely described in the different language independent UML
diagrams and explanations that we provided for the object-oriented approach.

 125

Based on these design models, the object-oriented implementation of RECINTERNET can be characterized
by the fact that we could automatically generate an important part of the code from the design models with the
Rational Rose tool. All our implementation was done in Java, using the programming facilities of JBuilder such
as graphical interface development facilities and debugging.

For the aspect-oriented approach we realized a decomposition of the RECINTERNET system into different

aspects and components, based on the possibilities of the AspectJ tool, which works with components expressed
in Java. In order to realize this decomposition at design level, we followed a methodology we developed to
organize aspects conception. We reused several parts of the conventional object-oriented design models to define
the different components of the aspect/components decomposition. We realized some modifications in these
design models in order to support the different aspects of this decomposition. So the components design of this
approach were described with conventional object-oriented language independent design models, with few
comments specific to Java in order to specify some points for aspects support.

Aspects design was achieved through our step by step decomposition. We identified some aspects in the

different parts of the RECINTERNET system (client, server, client/server communication and database access).
We designed aspects for dynamic node loading, event handling, distribution, server functionalities (client threads
execution time limit, results size limit and number of client threads running on the server limit) and database
connection. To represent them we introduced our aspects design tables, which enable to clearly structure aspects
and components and to visualize aspects/components interaction. Finally we modeled the aspect-oriented design
with conventional object-oriented diagrams for components and with aspects design tables for aspects and
aspects/components interaction.

We provided elements to guide the implementation of the aspect-oriented approach. Components

implementation can be done in the same way than in the conventional object-oriented approach, using for
example automatic code generation from design models. Aspects can be implemented with AspectJ by following
closely the aspects design tables. However there is no automatic aspects implementation support nor facilities
such as debugging as in object-oriented implementation.

We compared these two approaches in the case of RECINTERNET development, mainly for the design

stage. We highlighted that AOP is an emerging paradigm that need time to maturate in order to support more
efficiently design and implementation processes with appropriate tools and techniques. For this point object-
oriented design and implementation is clearly supported in a better way with appropriate tools and design
techniques. In this context we illustrated the benefits of our aspects design tables for aspects implementation
support.

On the other hand we insisted on the advantages of the aspect-oriented approach, and particularly for

RECINTERNET and web-based three-tiers applications. By supporting separation of concerns programming,
AOP is clearly advantageous compared to object-oriented programming. To sum up the advantages we
highlighted for aspect-oriented design and implementation of RECINTERNET, we can say that AOP introduces a
notion of high modularity (distinguish components and aspects as well as aspects between themselves) that is
cruelly missing in object-oriented programming. This modularity improves consequently programs complexity
and size decreasing, understandability, flexibility and reuse.

Finally we have shown that AOP presents important advantages compared to object-oriented programming.

It is then an interesting and promising emerging paradigm, which needs time in order to reach maturation and to
be supported by efficient tools and techniques for each stages of software development.

V.3) Aspects design tables and step by step aspects design

As aspects are mainly based on components implementation it is difficult to clearly express them at design
level. Moreover as AOP is an emerging programming technique, when developing the RECINTERNET project
with the aspect-oriented approach, we were confronted to a lack of appropriate techniques and representation for
aspects design.

 126

In this context we developed an original approach for organizing and representing aspects design. The main
idea is to decompose a system design in two dimensions: a components dimension and an aspects one. We
proposed a step by step methodology to structure this decomposition, divided in four points: aspects
identification, components design, aspects characterization and aspect members definition.

The different steps of this methodology gives an appropriate support to characterize and organize these two

dimensions of a design, as well as clearly define the interactions between these two dimensions. Through a clear
identification and description of join points between aspects and components, it is then possible to define
precisely the way these two dimensions collaborate. Aspects intention is carefully described through explanations
of their aspect members objectives and the way they involve components.

Aspects design tables sum up the main information of aspects/components decomposition with this

methodology. Aspects are represented in table columns and components in table lines. In a further level aspect
members are represented in sub-columns and components join points in sub-lines. Aspects/components
interactions are represented in the crossing of these sub-columns and sub-lines. Aspects design tables also
contains additional information such as aspect type and plugging constraints, member type and generic join
points expression and several descriptions of the different entities of the two dimensions.

We have illustrated that this simple way of representing aspects design presents several advantages for
design realization as well as implementation support.

A first advantage comes from the visualization possibilities of aspects design tables. The decomposition in

two dimensions and the way these two dimensions are linked can simply be visualized with aspects design tables.
Interactions between aspects and components can be easily identified in lines and columns crossing. These
interactions are defined at components members48 and aspects members49 level. An important characteristic is
that aspects design tables provide interaction visualization in both directions: from a given component it is
possible to simply find the different aspects where it is involved, and from a given aspect it is possible to find the
components it involves. Moreover this simple interactions visualization goes one step further since it is also
applicable to the level of components members and aspects members.

Another important advantage of aspects design tables is for detecting aspects composition conflicts. Aspects

conflicts can appear when two or more aspects are woven to the same component code but describes some
incompatible code modifications. Aspects interferences can be very subtle, but aspects design tables enable to
track and detect simply some of them. Shared join points between aspects can be a source of composition
conflicts since they represent different modifications at the same place of components code. Components
involvement in aspects can be efficiently visualized with aspects design tables, and then it is easy to track shared
join points and to localize potential conflicts between aspects members.

Last, but not least, aspects design tables provide an efficient way of representing aspects design and then an

appropriate support for aspects implementation. All the important informations for implementing aspects are
represented in aspects design tables and can be closely followed during aspects implementation. Columns and
sub-columns describe closely the different aspects modules as well as the aspects structure (the different
members of an aspect) and the components code modifications that will be defined in aspects members.

We illustrated the applicability and the benefits of our methodology and representation in the concrete case

of RECINTERNET design. All the aspects of the system were conceived with our methodology and represented
in aspects design tables. Finally we illustrated the way aspects design tables provide a good support for
implementation by implementing one of the aspects of the RECINTERNET design (the Dynamic Node Load
aspect) out of its aspect design table.

• Possible improvements of our methodology and its aspects design tables

The step by step aspects/components decomposition process and its aspects design tables we proposed are

just a simple way to organize and visualize aspects design. However it presents consequent advantages and we

48 Component members are the variables, constructors or methods of a class.
49 Aspects members are the variables, constructor, methods, introduce members or advise members of an aspect.

 127

thought about few improvements that could make it more benefic in aspect-oriented software development. We
also stay open to any comments and suggestions for improving our methodology and representation.

A simple first enhancement could be to simply color differently the cell corresponding to the crossing of a

component join point with an aspect member which creates a new component member (one of the aspect member
types we defined as variable adding, constructor adding and method adding). This would provide more direct
information of components structure modifications (i.e. members adding), but would mainly highlight
composition conflicts happening if aspect weaving is not realized in the appropriate order. For instance if an
aspect A1 add a new method M in a component C and another aspect A2 realizes modifications on this method M
(such as an after wrapping modification for example), the aspect A1 must be woven to the component C code
before the aspect A2. If not there will be a composition conflict since the aspect A2 describes modifications on an
non-existing method. Coloring specially the cell corresponding to the crossing of method M line and the
corresponding aspect member of aspect A1 column would provide an efficient way to detect this kind of conflicts
with aspects design tables.

Another improvement we propose is to express inside the crossing cells the different methods or variable

calls that will be done in the corresponding aspect member. For instance we can imagine that we have an aspect
A1. This aspect has an aspect member A1 that add a method M1 to a component C1. In the description of this
method M1 is explained that there will be a call to a variable V1 of a component C2 and a call to a method M2 of
the aspect A1. Then we can write in the corresponding cell (C1.M1:A1.AM1) the name of the involved calls that
we represented for this example by C2.V1 and A1.M2. This provides one more level in information of what will
be coded in aspect members, and also one more level for composition conflicts detecting. This proposition will in
fact refine the possibility to track the different modifications involved by an aspect and to potentially detect more
subtle composition conflicts.

For the RECINTERNET design case, we have developed this methodology and representation specifically

for the Java language and the AspectJ tool and its associated aspect language. An interesting extension could be
done to be independent of components languages but also (as much as possible) independent from aspect
languages. This last point could be done by extending the range of aspect members type to the new kind of
modifications involved by other aspects language than AspectJ, as well as new possibilities for join points
expression.

As ulterior improvements, we also thought of automatic potential composition conflicts detection. With

computerized aspects design tables it seems possible to develop a small application that browses the different join
points of a design and the type of the aspect member in which they are involved. Taking one by one the
components members represented in an aspects design table, this tool could search for the different aspects
members involving this join point and eventually check the type compatibility of the found aspects members. The
developer could then be automatically warned for each join point involved in several aspect members, with
particular warning messages about the possible incompatibility problems due to the involved aspects members
type (as we described it in the table50 representing the possible conflicts related to aspect member types).

The last enhancement we propose is more ambitious. The idea is to automatically generate aspect code out

of the information contained in aspects design tables. In the case of AspectJ, we can imagine a tool that browses
the different aspects of the table and creates the code corresponding to the aspect declaration, and also the
structure of its aspect members (declaring in this aspect introduce or advise members, or aspects methods,
variables and constructors) with the expression of their join points. This would provide an efficient way to
simplify the transposition of aspects design to aspects implementation.

In the short period of this thesis it was unfortunately not possible to realize these different improvements for

our aspect-oriented development support. However by keeping in touch with the members of the
RECSINWIN/RECINTERNET project team, and by following the future evolutions of the RECINTERNET
project we will continue on working and ameliorating the original support we provided for aspect-oriented
development.

50 Table 6 in Section III.2.3.3

 128

To put it in a nutshell we have developed a methodology and its associated representation to simply
organize the two dimensions (aspects and components) of an aspect-oriented design. We illustrated its benefits
for design and implementation in the concrete case of an industrial application development. This simple
proposition is bound to evolve in order to provide an efficient solution for designing and implementing systems
in the emerging aspect-oriented paradigm, as this one is concretely based on components implementation and
does not provide yet efficient techniques and tools for design.

To conclude, even with the particular constraints of realizing this thesis in the same time as a Master of

Science thesis and as an industrial engineering project, we have achieved an intensive and important work during
these 6 months of thesis. We believe that this thesis was realized adopting a rigorous scientific process so that we
could conciliate in a same “real-world” project research aspects resulting in original propositions and concrete
industrial development for a project which will be continued and also useful for Brazilian social welfare.

 129

FIGURES INDEX

FIGURE 1 - RECSINWIN GLOBAL ARCHITECTURE ...13
FIGURE 2 - TRANSLATED EXTRACT OF THE RECSINWIN NAVIGATIONAL MODEL ...15
FIGURE 3 - TRANSLATED EXTRACT OF RECSINWIN PROCEDURES DESCRIPTIONS...16
FIGURE 4 - BOOK LOCATORS (1): SIMPLE CODE EXAMPLE ...23
FIGURE 5 - BOOK LOCATORS (2): EXAMPLE WITH CONCURRENCY CONCERN ..23
FIGURE 6 - BOOK LOCATORS (3): EXAMPLE OF THE CONCURRENCY CONCERN EXPRESSED IN THE D LANGUAGE24
FIGURE 7 - OBJECT ELEMENTS IN THE COMPOSITION FILTER MODEL ..26
FIGURE 8 - AN EXAMPLE OF TWO SUBJECTS..27
FIGURE 9 - THE CAR RENTING COMPOSED SUBJECT..27
FIGURE 10 - ADAPTIVE PROGRAMMING TRAVERSAL EXAMPLE ..28
FIGURE 11 - ASPECTS/COMPONENTS INTERACTION ...29
FIGURE 12 - TWO-TIERS ARCHITECTURE FOR DATABASES APPLICATIONS...31
FIGURE 13 - THREE-TIERS ARCHITECTURE FOR DATABASE APPLICATIONS..32
FIGURE 14 - MULTI-TIERS ARCHITECTURE FOR DATABASE APPLICATIONS ...34
FIGURE 15 - THREE-TIERS ARCHITECTURE USING A SERVER LOCAL STRUCTURAL DATABASE................................34
FIGURE 16 - RMI TRANSPORT IN DISTRIBUTED APPLICATIONS ..50
FIGURE 17 - CORBA ORB ARCHITECTURE ...52
FIGURE 18 - EXAMPLE OF THE SINTESE REQUEST SYNTAX..56
FIGURE 19 - SUMMARY OF THE CHOSEN TECHNOLOGIES FOR RECINTERNET..58
FIGURE 20 - ASPECTJ WEAVING MECHANISM ...63
FIGURE 21 - RECINTERNET CONCEPTUAL MODEL...80
FIGURE 22 - RECINTERNET NAVIGATIONAL SEQUENCES ...82
FIGURE 23 - NAVIGATIONAL FRAMEWORK CLASS DIAGRAM ...84
FIGURE 24 - NAVIGATIONAL FRAMEWORK EXTENSION FOR RECINTERNET..85
FIGURE 25 - RECINTERNET INTERFACE EXTENSION ..86
FIGURE 26 - RECINTERNET REMOTE INTERFACES...87
FIGURE 27 - CLIENT THREADS CLASS DIAGRAM ..88
FIGURE 28 - RECINTERNET REQUEST SCENARIO...89
FIGURE 29 - RECINTERNET DATABASES MANAGEMENT..90
FIGURE 30 - COMPONENTS INVOLVED IN THE DYNAMIC NODE LOADING ASPECT ..93
FIGURE 31 - COMPONENTS INVOLVED IN THE DISTRIBUTION ASPECT...97
FIGURE 32 - COMPONENTS INVOLVED IN THE DATABASE CONNECTION ASPECTS ...104
FIGURE 33 - NODE 1 AND NODE 1C SCREEN...113
FIGURE 34 - NODE 221 SCREEN ...114
FIGURE 35 - NODE HELP SCREEN ...114
FIGURE 36 - PLUG-IN AND PLUG-OUT MECHANISMS ..117
FIGURE 37 - COMPONENTS CODE FOR THE DYNAMIC NODE LOAD ASPECT...119
FIGURE 38 - DYNAMIC NODE LOAD ASPECT...120

 130

TABLES INDEX

TABLE 1 - COMPANIES_BENEFITS SERIE VISUALIZATION BY MONTH AND COMPANY SIZE11
TABLE 2 - COMPANIES_BENEFITS SERIE VISUALIZATION BY MONTH, SECTOR AND STATE12
TABLE 3 - OOHDM DEVELOPMENT STEPS ...37
TABLE 4 - ASPECTS DESIGN TABLE: SIMPLE EXAMPLE ..75
TABLE 5 - DETECTING POTENTIAL COMPOSITION CONFLICTS ..76
TABLE 6 - MODIFICATION TYPES COMPATIBILITY ...77
TABLE 7 - MODULES NUMBER IN RECINTERNET DESIGN ..109
TABLE 8 - DYNAMIC NODE LOAD ASPECTS DESIGN TABLE..118

 131

REFERENCES

Separation of Concerns and Aspect Oriented Programming

[AJ] AspectJTM Home Page. Xerox Parc Corporation
 http://www.parc.xerox.com/spl/projects/aop/aspectj

[AJPrimer] The AspectJTM Primer. A Practical Guide for Programmers. Xerox Parc Corporation
 http://www.parc.xerox.com/spl/projects/aop/aspectj/primer

[Aop] Aspect Oriented Programming Home Page. Xerox Parc Corporation
 http://www.parc.xerox.com/spl/projects/aop

[AT98] M. Aksit and B. Tekinerdogan, Solving the Modeling Problems of Object-Oriented Languages by
Composing Multiple Aspects Using Composition Filters, AOP'98 workshop position paper, 1998.

[AW99] Veronica Argañaraz and Thomas Wallet. Aspect Oriented Programming vs. Subject Oriented Programming,
in Separation of concerns workshop, organized by Carine Lucas, for the EMOOSE Master. Nantes, February
1999.

[Ber94] L. Bergmans, The Composition Filters Object Model, Dept. of Computer Science, University of Twente,
1994.

[Beu99] Antoine Beugnard. How to make aspects re-usable, a proposition. Published in proceedings of ECOOP’99.
Lisbon, June 1999

[Cza98] K. Czanercki. Generative Programming: Principles and Techniques of Software Engineering Based on
Automated Configuration and Fragment-Based Components Models (Chapter 7). Ph.D. Thesis, Technische
Universität Ilmenau. Germany, 1998

[DVDH99] Kris De Volder and Theo D’Hondt. Aspect-Oriented Logic Meta Programming. Published in proceedings of
Reflection’99, St Malo, July 1999.

[FS99] Andrés Farías and Mario Südholt. Definition of the security aspect in Java. Thesis report of the EMOOSE
Master. Ecole des Mines de Nantes, August 1999.

[HL95] Walter L. Hürsch and Cristina Videira Lopes. Separation of Concerns. Northeastern University technical
report NU-CCS-95-03, Boston, February 1995

[Kai 98] Kai Böllert. Aspect-Oriented Programming. Case Study: System Management Application. Diplom-
Wirtschaftsinformatiker (FH) Thesis. Flensburg University. November 1998.

[Kic98] Gregor Kiczales. Aspect-oriented Programming: Going Beyond Objects for Better Separation of Concerns
in Design and Implementation. Aspect-Oriented Programming talk, 1998

 (http://www.parc.xerox.com/spl/projects/aop/invited-talk)

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Christina Videira Lopes, Jean-Marc
Loingtier, John Irwin. Aspect Oriented Programming. Published in proceedings of ECOOP’97, Finland,
June 1997.

[Lam99] John Lamping. The role of the base in aspect oriented programming. Published in proceedings of
ECOOP’99, Lisbon, June 1999

[Lie92] Karl J. Lieberherr. Component Enhancement: An Adaptive Reusability Mechanism for Groups of
Collaborating Classes, in Component Enhancement: Information Processing ’92, 12th World Computer
Congress, pages 179-185, J. Van Leeuween. Madrid, 1992.

[LK97] Christina Videira Lopes and Gregor Kiczales. D: A Language Framework for Distributed Programming.
Xerox Palo Alto Research Center. Technical report SLP97-009, P9710044. February 1997.

[LL96] Christina Videira Lopes and Karl J. Lieberherr. AP/S++: Case-study of a MOP for Purposes of
Software Evolution. Published in proceedings of Reflection’96.

[LO97] Karl J. Lieberherr and Doug Orleans, Preventive Program Maintenance in Demeter/Java (Research
Demonstration), in International Conference on Software Engineering, pages 604-605, ACM Press. Boston
1997.

 132

[MLTK97] K. Mens, C. Lopes, B. Tekinerdogan and G. Kiczales. Aspect Oriented Programming. In Jan Bosch and
Stuart Mitchell, editors. ECOOP 97 Workshop Reader, Lecture Notes in Computer Science, pp 483-496.
Springer Verlag 1997.

[OHBS94] Harold Ossher, William Harrison, Frank Budinsky, and Ian Simmonds, Subject-Oriented Programming:
Supporting Decentralized Development of Objects, Proceedings of the 7th IBM Conference on Object-
Oriented Technology, July, 1994

[OKK+96] H. Ossher, M. Kaplan, A. Katz, W. Harrison, V. Kruskal, Specifying Subject-Oriented Composition, Theory
and Practice of Object Systems, volume 2, number 3, 1996, Wiley & Sons

[SW96] R.J. Stroud and Z. Wu. Using Metaobject Protocols to Satisfy Non-Functional Requirements, Technical
Report 533, Department of Computing Science, University of Newcastle upon Tyne, 1995.

Three-tiers architectures

[C/S] Client/Server Software Architectures – An Overview. Software Engineering Institute. 1999
http://www.sei.cmu.edu/str/descriptions/clientserver_body.html

[GR96] J. Gallaugher and S. Ramanathan. Choosing a Client/Server Architecture. A Comparison of Two-Tier and
Three-Tier Systems. Information Systems Management Magazine. 1996

[Hun98] Ching-Ho Hung. The Implementation of Web-Databases by the Approach of Java Database Connectivity:
JDBC. (Chapter 2: Components and Architecture of Web Database). Master Thesis. Knowledge Systems
Institute. Illinois, 1998

Hypermedia Navigation

[GHJV94] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns. Elements of Reusable Object-Oriented
Software. Addison Wesley. 1994

[GSP93] F. Garzotto, D. Schwabe, P. Paolini. HDM – A Model Based Approach to Hypermedia Application Design.
ACM Transaction on Information Systems. Vol. 11, pp 1-26. 1993

[ISB95] T. Isakowitz, E. Stohr and P. Balasubramaniam. RMM, A methodology for structured hypermedia design.
Comm ACM., pp 34-48. August 1995

[LRS98] F. Lyardet, G. Rossi, D. Schwabe. Using Design Patterns in Educational Multimedia Applications.
Proceedings of EDMedia'98. Freiburg, Germany, 1998

[RSG97] G. Rossi, D. Schwabe and A. Garrido. Pattern Systems for Hypermedia. Proceedings of PLOP'97 -
University of Illinois, USA, 1997

[SRB96] Daniel Schwabe, Gustavo Rossi and Simone D. J. Barbosa. Systematic Hypermedia Application Design with
OOHDM. Proceedings of Hypertext’96. Washington DC, USA, 1996

[SR98] Daniel Schwabe and Gustavo Rossi. Developing Hypermedia Applications using OOHDM. Workshop on
Hypermedia Development Processes, Methods and Models. Hypertext'98. Pittsburgh, USA, 1998

Technical solutions for Three-tiers Architectures

[ActX1] ActiveX Controls. Microsoft COM Technologies Home Page. Microsoft Corporation.
http://www.microsoft.com/com/tech/activex.asp

[ActX2] ActiveX. Active Group Home Page.
 http://www.activex.org

[ACW98] David Aries, Laurent Cailleteau and Thomas Wallet. CORBA et la Migration d’Objets (CORBA and Object
Migration). Computer Sciences Formation Transversal Project. Ecole des Mines de Nantes. Nantes, 1998

[Ada] Ada and the Web and Java. Home page. Kempe Software Capital Enterprises (KSCE).
http://www.adahome.com/Resources/Ada_Java.html

[Applet] Applets. JavaTM Technology Home Page. Sun Microsystems, Inc.
http://www.javasoft.com/applets/index.html

[Can98] Marco Cantu. Dominando o Delphi 4.0 – A Bíblia (Mastering Delphi 4.0 – The Bible), Chapters 23
(Programação para Internet) e 24 (Programando WEB no lado do servidor). Makron Books; São Paulo,
1998.

[Cgi] A guide to HTML and CGI scripts. Mike Smith. University of Brighton. July 1995.
http://snowwhite.it.brighton.ac.uk/~mas/mas/courses/html/html.html

 133

[Dcom] DCOM. Microsoft COM Technologies Home Page. Microsoft Corporation. 1999
http://microsoft.com/com/tech/DCOM.asp

[DD97a] H. M. Deitel and P. J. Deitel. JavaTM How to Program. Chapter 1: Introduction to Computers and Java
Applets, pp 2-59. Published by Prentice-Hall International, Inc. ISBN 0-13-286163-1. New Jersey, 1997.

[DD97b] H. M. Deitel and P. J. Deitel. JavaTM How to Program. Chapter 16: Networking, pp 816-859. Published by
Prentice-Hall International, Inc. ISBN 0-13-286163-1. New Jersey, 1997.

[FC97] Jim Flynn and Bill Clarke. Visual J++TM – Programando em JavaTM. Parte III: Construindo Programas em
Java, pp 141-167. Published by MAKRON Books do Brasil Editoria Ltda. ISBN 85-346-0805-9. São Paolo,
1997

[GGM97] Jean-Marc Geib, Christophe Gransart and Philippe Merle. CORBA : Des concepts à la pratique (CORBA:
From concepts to practical use). Published by Editions Masson. ISBN 2225830460. Paris, France, October
1997

[GmG95] James Gosling & Henry McGilton. The Java(tm) Language Environment: A White Paper. (Multithreading
chapter). Sun Microsystems, Inc. 1997

 http://www.pas.com.au/java/doc/javawhitepaper_1.html

[Html1] W3C Home Page for HyperText Markup Language.
http://www.w3.org/MarkUp

[Html2] HTML Tutorial. Tim Clinton and CultureNet, March 1995
http://www.ffa.ucalgary.ca/cnet/html-course/contents.html

[Jdk] JDKTM 1.2 Documentation on Javasoft Home Page. Sun Microsystems, Inc. 1999
 http://www.javasoft.com

[MAB+98] Martin Murhammer, Orcun Atakan, Stefan Bretz, Larry Pugh, Kazunari Suzuki, David Wood. TCP/IP
Tutorial and Technical Overview. IBM Redbook GG24-3376-05. Part I: Architecture and Core Protocols, pp
1-93. ISBN number 0738412007. 1998

[ND98] Robert Niles and Jeffry Dwight. CGI em Exemplos. Translated from CGI By Examples by Eduardo Nunes.
Makron Books. São Paulo, 1998.

[Odbc] ODBC. Microsoft ODBC Technologies Home Page. Microsoft Corporation. 1999
http://www.microsoft.com/data/odbc

[Omg] Object Management Group Home Page. Object Management Group, Inc. 1998
 http://www.omg.org

[Rmi] RMI. The JavaTM tutorial. Sun Microsystems, Inc. 1999
http://java.sun.com/docs/books/tutorial/rmi/index.html

[Servl1] Servlets. The JavaTM tutorial. Sun Microsystems, Inc. 1999
http://java.sun.com/docs/books/tutorial/servlets/overview/index.html

[Servl2] Java Web Server. JavaServer Group Home Page. Sun Microsystems, Inc. 1999
 http://jserv.javasoft.com/index.html

[Stk] HP Distributed Smalltalk. Hewlett-Packard Company Home Page.
http://www.hp.com

[Tan89] Andrew S. Tanenbaum. Computer Networks (Chapter 10). Published by Prentice Hall. ISBN 0-13-162959-
X. New Jersey, 1989

[Wil95] Arthur Wilson. An introduction to CGI Scripts and HTML Forms. Workbook. University of Edinburgh.
November 1995

[Zei99] Stefan Zeiger. Servlets Essentials. April 1999
http://www.novocode.com/doc/servlet-essentials

Miscellaneous

[Lim95] J. C. M Lima. Knowledge representation in software packages aimed to know about their users. In
"Advances in Database and Expert Systems". IIAS Editions, ISBN 0921836228, Windsor, Canada, pp 110-
114, 1995.

 134

[Lim97] J. C. M. Lima. Teaching intelligently by computers: a formal model based on an object notation.
Universidade Estadual do Norte Fluminenese, Centro de Ciência e Tecnologia, Research report 12. 97,
Campos, Brasil, 1997.

[RLKS98] A. Romanczuck-Requile, J. C. M. Lima, C. Kaestner, E. Scalabrin. A Contextual Help System Based on
Intelligent Diagnosis Processing Aiming to Design and Maintain Object-Oriented Packages. In "Lecture
Notes in Computer Science", ISBN 3-540-65460-7 1543, Springer-Verlag, pp. 64-65, 1998.

[RSW99] Projeto Lógico/Físico de Modernização do Sintese para Windows (Logical/Physical Project of the Sintese
Modernization for Windows). Internal Technical Report. DATAPREV. Brazil, January 1999.

 135

APPENDIX A – RECSINWIN GRAPHICAL RELATIONAL MODEL

This appendix presents the graphical relational model used to describes the tables structure used for the
local structural database of the RECSINWIN application (adapted from [RSW99]).

 P R O P A G A Ç Ã O

 S É R I E

 G R U P O - I D

 Á R E A - I D

 S É R I E - I D

 N O M E

 C O N C E I T O

 C R I T É R I O S

 A G R E G A Ç Ã O

 U T E M P O - I D

 G R U P O

 G R U P O - I D

 M N E M Ô N I C O

 N O M E

 D E S C R I Ç Ã O

 C O N C E I T O

M N E M Ô N I C O

D E S C R I Ç Ã O

 S I T U A Ç Ã O - I D

 A C E S S O

 S I T U A Ç Ã O

 S I T U A Ç Ã O - I D

 N O M E

 D E S C R I Ç Ã O

 A C E S S O

 T IPO_ ID

 P R O P A G A Ç Ã O

 V A L I N E X I S T E

 U N I D A D E - I D

 D E C I M A I S

 S E G U R A N Ç A

 D E F A S A G E M

 F O N T E

 S I T U A Ç Ã O - I D

 A T U A L I Z A D O R

 D T - C R I A Ç Ã O

 D T - M A N U T E N Ç Ã O

 D T - A T U A L I Z A Ç Ã O

 P R I M - D A D O

 U L T - D A D O

 A N O - B A S E

 U N I D A D E - I D

 N O M E

 T I P O - I D

 O P E R A Ç Ã O

 S I G N I F I C A D O

 P E R ÍO D O

 D T - C R I A Ç Ã O

 D T - M A N U T E N Ç Ã O

 U S U Á R I O

 C L I E N T E - I D

 U E S P A C I A L - I D

 U S U Á R I O - I D

 Púb l i co

 Rest r i to

 P

 R

 S

 N

Propagáve l

Não Propagável

 S

 N

 Z e r o

 I g n o r a d o

 Á R E A

 Á R E A - I D

 N O M E

 C O M P O N E N T E S

 A G R E G A D A - I D

C O M P O N E N T E - I D

 U T E M P O R A L

 N O M E
 C O N V E R S Ã O

 U T E M P O - I D

 U T E M P O - I D

 S É R I E - U E S P A C I A L

 S É R I E - I D

 U E S P A C I A L - I D

 U T E M P O - I D

G R U P O - U S U Á R I O

 G R U P O - I D

U S U Á R I O - I D

 O P E R A Ç Ã O - I D

 A G R E G A Ç Ã O

 O P E R A Ç Ã O

 O P E R A Ç Ã O - I D

 N O M E

 Á R E A - G R U P O

 G R U P O - I D

 Á R E A - I D

 N

 S E L E M E N T A R

A G R E G A D A

 L E G E N D A :

 T A B E L A S D O B D S I N W I N E S T R U T U R A S
I N T E R N A S D E P R O G R A M A S

 F ig . 2 .1 .1

M N E M Ô N I C O

 S É R I E - I D

 E V E N T O - I D

 E V E N T O

 E V E N T O - I D

 D E S C R I Ç Ã O

 S I T U A Ç Ã O

 S I T U A Ç Ã O - I D

 N O M E

 D E S C R I Ç Ã O

 U N I D A D E

 V A L I N E X I S T E

 T I P O - S É R I E

 A T U A L I Z A Ç Ã O

 S É R I E _ E V E N T O

 T I P O

 136

 UESPACIAL

 UESPACIAL-ID

 MNEMÔNICO

 NOME

 DESCRIÇÃO

 DT-CRIAÇÃO

 DT-MANUTENÇÃO

 ESPAÇO

 UESPACIAL-ID

 ESPAÇO-ID

 SIGLA

 ABREVIAÇÃO

 DESCRIÇÃO

 ACESSO

 ACESSO

 UECONVERSÃO

 UEORIGEM

 UEDESTINO

 ECONVERSÃO

 UEORIGEM

 EORIGEM

 SÉRIE-UESPACIAL

 SÉRIE-ID

 UESPACIAL-ID

 P

 R

 PÚBLICO

 RESTRITO

 UESPACIAL_USUÁRIO

 UESPACIAL_ID

 USUÁRIO_ID

 CLIENTE

 USUÁRIO

 Fig. 2.1.2

 UEDESTINO

 EDESTINO

CLIENTE_ID

 UESPACIAL_ID

 ESPAÇO_ID

USUÁRIO_ID

 UESPACIAL_ID

 ESPAÇO_ID

 CLIENTE

CLIENTE_ID

 UESPACIAL_ID

 ESPAÇO_ID

 USUÁRIO

USUÁRIO_ID

 UESPACIAL_ID

 ESPAÇO_ID

 CÓDIGO

 137

 UESPACIAL

 UESPACIAL-ID

GRUPO-USUÁRIO

 GRUPO-ID

 USUÁRIO-ID

 CLIENTE

 UESPACIAL-ID

 CLIENTE-ID

 MNEMÔNICO

 DESCRIÇÃO

 USUÁRIO

 CLIENTE_ID

 UESPACIAL_ID

 USUÁRIO_ID

 MNEMÔNICO

 NOME

 ENDEREÇO

 CEP

 CIDADE

 TELEFONE

 UF

 SENHA

 USOGRUPO

 USOESPAÇO

 SITUAÇÃO_ID

 SEGURANÇA

 DT_CRIAÇÃO

 DT_MANUTENÇÃO

 TIPO_ID

 INSTITUIÇÃO_ID

 SETOR_ID

 UESPACIAL-USUÁRIO

 UESPACIAL-ID

 USUÁRIO-ID

 USOGRUPO

 USOESPAÇO

 ESPAÇO

 UESPACIAL-ID

 ESPAÇO-ID

USUÁRIO-APTIDÃO

 USUÁRIO-ID

 APTIDÃO-ID

 APTIDÃO

 APTIDÃO-ID

 MNEMÔNICO

 DESCRIÇÃO

 SENHA

 VALOR SENHA

 SITUAÇÃO-USUÁRIO

 SITUAÇÃO-ID

 NOME

 DESCRIÇÃO

 TIPO-USUÁRIO

 TIPO-ID

 NOME

 SETOR

 INSTITUIÇÃO-ID

 SETOR-ID

 SIGLA

 NOME

 INSTITUIÇÃO

 INSTITUIÇÃO-ID

 SIGLA

 NOME

 SITUAÇÃO-ID

 SITUAÇÃO-CLIENTE

 SITUAÇÃO-ID

 NOME

 DESCRIÇÃO

 S

 N

TODOS OS GRUPOS

 ALGUNS GRUPOS

 S

 N

TODOS OS ESPAÇOS

 ALGUNS ESPAÇOS

 ESPAÇO_ID

 ESPAÇO_ID

 S

 N

COM SENHA

SEM SENHA

 Fig. 2.1.3

 NOME

 138

APPENDIX B – THE NODE AS A NAVIGATIONAL VIEW
HYPERMEDIA SYSTEM PATTERN

This description is extracted from [RSG97].

Node as a Navigational View

• Problem: How to add navigation capabilities to the components of an object-oriented (OO) application,
therefore adding hypermedia functionality to the application ?

• Forces:

• We want to add hypermedia functionality to existing applications
• Original interface behavior must be preserved, and hypermedia behavior must be added
• Modifications of objects in the original application is undesirable
• Redefining the original GUI to include hypermedia capabilities (bookmarks, backtracking, history

maintenance, to name a few) is undesirable and many times unfeasible
• It is difficult to include dynamic links to the existing interface

• Solution: Define a navigational layer between the application to be enhanced and its graphical interface,
build up of objects’ observers are called nodes. Implement the navigational behavior in nodes. Then define
each node’s GUI adding means of activating node’s behavior.

This solution implies defining a hypermedia node as dependent of an object or group of objects, thus

separating hypertext functionality from the behavior of the application and its interface.

• Known uses: The OOHDM methodology defines the concepts of Node as a navigational view over a
conceptual model [Schwabe96]. In [Bieber95] the authors present an architecture for adding hypertext
functionality, where nodes are defined as representations of the objects of interest to the application. A
similar approach has been used in the Devise Hypermedia Model [Gronbaek94b].

• Related patterns: Navigation is performed by links (Link as a Relationship View pattern) and activated by
anchors (Anchor pattern). Nodes are Observers [Gamma94].

• References:

[Bieber95] M. Bieber and C. Kacmar. “Designing Hypertext Support for Computational Applications”.
Communications of the ACM 38 (8), August, 1995

[Gamma94] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns. Elements of Reusable

Object-Oriented Software. Addison Wesley. 1994

[Gronbaek94b] K. Gronbaek. “Composites in a Dexter-Based Hypermedia Framework”. Proceedings of the

European Conference on Hypermedia Technology, ECHT’94, Edinburgh, Scotland,
September 1994, pp. 59-69.

[Schwabe96] Daniel Schwabe, Gustavo Rossi and Simone D. J. Barbosa. Systematic Hypermedia

Application Design with OOHDM. Proceedings of Hypertext’96. Washington DC, USA,
1996

 139

APPENDIX C – NAVIGATIONAL FRAMEWORK CLASSES DESCRIPTION

This appendix describes the classes of the navigational framework presented in Part III.3.1.2. Some methods
are described in Java to explain how they should be implemented (even if it could be in another programming
language).

Panel class

This abstract class is used to model a frame that contains

some components.

Class Variables

• context: a public Context. Will be used by the instances of
the subclasses (Node and Decorator) for their initializing.

Instance Variables

• components[]: a private Vector of Component. Used to
reference the different components of the Panel.

• name: a public String

Methods

• reset(): a public abstract method that will be overridden in he
subclasses to provide a way to initialize (or re-initialize) the
elements of the container.

• show(): a public abstract method which will be overridden to
make visible the panel

• hide(): a public abstract method which will be overridden to
make invisible the panel

• activate(): a public method used to make accessible the panel.
The body of this method depends of the programming
language and of the interface kind.

• desactivate(): a public method used to make inaccessible the
panel. The body of this method depends of the programming
language and of the interface kind.

• AddComponent(Component c): a public method used to add a
component to the panel.

•
Node class

This abstract subclass of Panel is used to model

perceivable navigational units. A node will contain different
components or decorators.

Instance Variables

• decorators[]: a private Vector of Decorator. Here are
stored the different decorators applied to the node.

Methods

• reset(): this public template method is used to initialize or re-
initialize the elements composing the node (decorators and
components), thanks to the context.

•
public void reset() {
 for (int i=0, i<decorators.size(), i++)
 decorators[i].reset(); //
Decorators initialisation
 }
 componentsReset(); // Components
initialisation
}

• resetComponents(): this abstract public method will be
overridden in the subclasses to describe the way the
components of the node are initialized.

• addDecorator(Decorator d): this public method is used to add

a decorator to the node.

Decorator class

This abstract subclass of Panel is used to model node’s

decorators. This class will be sub-classed for each new kind of
decorator.

NavigNode class

This abstract subclass of Node is used to model the

navigational nodes. This class will be sub-classed in the application
for each new navigational node.

Methods

• show(): a public method which make visible the navigational
node. The body of this method depends of the programming
language and of the interface kind.

• hide(): a public method which make invisible the
navigational node. The body of this method depends of the
programming language and of the interface kind.

FrameNode class

This abstract subclass of Node is used to model both intra
and extra nodes. Concretely these nodes will appear as a new frame
on top of the current navigational node.

Instance variable

• frame: a private Frame used to show the node

Methods
• showFrame(): a protected method used to show the frame.

Will be called by the subclasses show method. s
• closeFrame(): a protected method used to close the frame.

Will be called by the subclasses hide method.
• addComponent(Component c): a public method used to add a

component to the frame

IntraNode class

This abstract subclass of FrameNode is used to model the

intra nodes. This class will be sub-classed in the application for
each new intra node.

Methods
• show(): a public method which makes visible the intra node.

The body of this method depends of the programming
language and of the interface kind.

• hide(): a public method which make invisible the intra node.
The body of this method depends of the programming
language and of the interface kind.

 140

ExtraNode class

This abstract subclass of Node is used to model the extra

nodes. This class will be sub-classed in the application for each
new extra node.

Methods

• show(): a public method which makes visible the intra node.
The body of this method depends of the programming
language and of the interface kind.

• hide(): a public method which make invisible the intra node.
The body of this method depends of the programming
language and of the interface kind.

Component class

This abstract class is used as a super class of all the different

graphical components that will be used.

Methods
• show(): a public method to make visible the component.
• hide(): a public method to make invisible the component.
• activate() : a public method to make available the component.
• desactivate(): a public method to make unavailable the

component.

Anchor class

This subclass of Component is used to encapsulate a

navigational link. It will be instantiated for each new anchor of
each node.

Instance Variables

• link: a private Link

Methods

• proceedLink(): a public method that calls the navigate
method of the link.

Link class

This class is used to model navigational links. Each link of

an anchor will be a new instance of this class, with its own target
and one of the possible transformations.

Instance Variables

• target: a private Target
• transformation: a private Transformation

Methods

• navigate(): a public method used to define the navigation.
void navigate(){
 String targetName = target.getTarget();
 transformation.action(targetName);
}
Target class

This class is used to define the target of a navigation.

Instance Variables

• target: a private String which is the name of the target.

Methods

• getTarget(): this public method return the name of the target.
DynamicTarget class

This abstract class is used to model a Target whose target
name will be define dynamically in the navigation time. This
dynamicity generally requires to use the context. This class will be
sub-classed for each new dynamic target.

Class Variables

• context: a private static Context. It will be used to define
dynamically the target name.
Methods

• getTarget(): public template method

public String getTarget() {
 defineTarget();
 return target;
}

• defineTarget(): public abstract method that will be overridden

for each specific dynamic target. Here should be defined the
way a target is dynamically created.

Transformation class

This abstract class is used to model the actions to do for a

navigation between two nodes.

Class Variables

• context: a private static Context. It will be used in the
different actions.

Methods

• action(String target): a template public method.
•
public void action(String target) {
 Node targetNode =
context.getNode(target);
 specificAction(target);
 targetNode.show();
}

• specificAction(String target): an abstract protected method

that will be overridden to define actions specific to some
kinds of transformations.

NavigTransformation class

This class represents transformations happening when
navigating from a navigational node to another one.

Methods

• specificAction(String target): this method describes the
specific actions realized for this kind of navigation:

protected void specificAction(String target)
{
 context.getCurrentNode().hide();

context.setCurrentNode(context.getNode
(target));

context.getCurrentNode().reset();
}

IntraTransformation class

This class represents transformations happening when
navigating from a navigational node to an intra node.

Methods

 141

• specificAction(String target): this method describes the
specific actions realized for this kind of navigation:

protected void specificAction(String target)
{
 context.getCurrentNode().desactivate();

context.getNode(target).reset()
}

ExtraTransformation class

This class represents transformations happening when
navigating from a navigational node to an extra node.

Methods

• specificAction(String target): this method describes the
specific actions realized for this kind of navigation:

protected void specificAction(String target)
{

context.getNode(target).reset();
}

Context class

This class is used to model the navigational context. This

class will be instantiated once for each new user. This object will
encapsulate all the needed information about the user’s navigation.

Instance Variables

• currentNode: a private Node that refers the current node of
the navigation.

• nodesManager: a private NodesManager that will be used
to create new nodes.

Methods

• getCurrentNode(): a public method that return the current
node.

• init(): a public method used to initialize the context.
• setCurrentNode(node n): to set the current node.
• getNode(String target): this method will call the getNode

method of the nodes manager.

CacheContext class

This class is used as a navigational context but also as a
cache for nodes. Instead of always creating new nodes, they are
cached in this context

and simply re-initialized when needed.

Instances Variables

• navigNodes[]: a public vector of Node. Here are referenced
the navigational nodes that have been created.

• intraNodes[]: a public vector of Node. Here are referenced
the intra-nodes that have been created.

• extraNodes[]: a public vector of Node that references the
extra nodes.

• currentExtraNode: a private ExtraNode that reference the
last extra node reached.

Methods
• addNode(Node n): a public method used to add a node in the

cache context. This method uses the class of the node to add it
to the appropriate vector (navigNodes, intraNodes or
extraNodes).

NodesManager class

This abstract class is used to manage nodes demands. It is

used to find an existing node or to create a new node. This class
will be overridden to define the nodes creation for a specific
application.

Instance Variables

• context: a private Context.

Methods

• getNode(String node): a public method to get a node out of its
name. If the context is not a CacheContext, this method
just calls the createNode method. If it is, it will look for
the appropriate node in the three nodes vectors of the cache
context (navigNodes, intraNodes or extraNodes)
to find the wanted node. If this node does not exist, the
createNode method will be called.

• CreateNode(String node): a protected abstract method that
will be overridden to define the creation of nodes out of their
name (which is specific to each application).

 142

APPENDIX D – RECINTERNET INTERFACE DESCRIPTION

In this appendix we present the different nodes and decorators used in RECINTERNET. The drawings
shows the different elements as well as the way they are organized. The final appearance of the implemented
interface can be different from these drawings since we use them just to identify the different components of each
node and organize them. The description of each node gives the characteristics of all its components (type,
behavior, etc...).

Decorator 0

This decorator will be added to all the navigational nodes. It factor out some more functionalities and

information.

• (D.1) Location element: this element shows the user where he is in his navigation. For that it shows the name of
the navigational nodes, and differentiates the current node from the others.

• Type: text area
• Modification: impossible
• Visible: always

• (D.3) Help anchor:
• Type: anchor
• Visible: always
• Available: always
• Modification: click
• Target: static: Help extra-node.
• What for: provide appropriate help to the user
• On click: navigation to the Help extra-node with the information corresponding to the current context. Search by

topics and navigation are possible into this help system node.

• (D.4) Previous anchor:
• Type: anchor
• Visible: always
• Available: in Node 211, 212, 221, 222, 3
• Modification: click
• Target: dynamic: from Node 211 and Node 221, the target is Node 1. From Node 212, the target is Node 211.

From Node 222, the target is Node 221. From Node 3, the target is either Node 212 or Node 222, depending of
the node where the user was previously.

• On click: navigation to the previous node (as specified in Target). When leaving the origin node, the states of all
the elements of the node are stored in a context object. When reaching the target node, the user finds the
elements of this node exactly how they were when he quitted this node.

• (D.5) Next anchor:
• Type: button
• Visible: always
• Available: only from a node that has been reached with the Previous navigation.
• Modification: click
• Target: dynamic: from Node 1, the target is either Node 211 or Node 221, depending of the node where the user was previsously. From

Node 211, the target is Node 212. From Node 221, the target is Node 222. From Node 212 or Node 222, the target is Node 3.
• On click: navigation to the next node (as specified in Target). When reaching this target node, the user finds the elements of this node

exactly how they were when he quitted this node (with the previous anchor).

• (D.6) Start anchor:
• Type: button
• Caption: “Start” in Node 0, “Re-start” in Node 1, Node 211, Node 212, Node 221, Node 222 and Node 3.
• Visible: always
• Available: always
• Modification: click
• Target: static: Node 1
• On click: navigation

• (D.7) Exit anchor:
• Type: button
• Visible: always
• Available: always
• Modification: click
• Target: static: Node 0
• On click: navigation

 143

Node 0 – Welcome

This is the welcoming node.

• (0.1) SINTESE Information element: this element provides information about SINTESE
• Type: text area
• Node 0 init: visible
• Modification: impossible

• (0.2) Company Information element: this element provides information about the company (logo...)
• Type: text area
• Node 0 init: visible
• Modification: impossible
•
• (0.3) Help element: Description of how to use the different commands of the decorator
• Type: text area
• Node 0 init: visible
• Modification: impossible
•
• (0.4) Login/Password element: this element enables the user to write his login and his password
• Type: text field + password field
• Node 0 init: visible
• Node 0 default value: empty and empty
• Modification: write
• Available: always

 144

Node 1 – Series Selection

In this node, the user will be able to choose a subset of

series.

Data elements

• (1.1) Themes Structure Tree element: this element is an
arborescent list of the different themes of series. They are
organized in directories grouping themes of series. This
structure is extracted from the database of the web server.

• Type: arborescent list
• Node 1 init: visible
• Node 1 init values: the different directories grouping themes

of series
• Node 1 init expansion: collapsed
• Modification: extend or collapse directory, selection
• Available: always
• Selection: one item or one directory
• On selection update:
• If a directory is selected, the Available Series element (1.2) is

set to empty.
• If an item is selected, the Available Series element (1.2) is

filled in with the available series corresponding to the selected
theme.

• (1.2) Available Series element: in this element appear the
different series available for the theme selected in the Themes
Structure Tree element (1.1).

• Type: list
• Node 1 init: visible
• Node 1 init values: empty
• Modification: selection
• Available: when not empty
• Selection: one item

• On selection update: the First, Second, Third Dimension
Space Unit elements (1.3 to 1.5), the Time Unit element (1.6),
the First Data element (1.7) and the Last Data element (1.8)
are filled in with the information corresponding to the
selected serie.

• (1.3 to 1.5) First, Second and Third Dimension Space Unit
elements: these element provides the space units of the
selected serie

• Type: 3 text fields
• Node 1 init: visible
• Modification: impossible

• (1.6) Time Unit element: this element provides the time unit

of the selected serie
• Type: text field
• Node 1 init: visible
• Modification: impossible

• (1.7) First Data element: this element provides the date of the

first data of the selected serie
• Type: text field
• Node 1 init: visible
• Modification: impossible

• (1.8) Last Data element: this element provides the date of the

last data of the selected serie
• Type: text field
• Node 1 init: visible
• Modification: impossible

• (1.9) Selected Series element: in this element appear the

different series that the user have chosen.
• Type: list

 145

• Node 1 init: visible - empty
• Modification: selection
• Available: when not empty
• Selection: one item
• On selection update: nothing

Functional elements

• (1.10) Select Serie element:
• Type: button
• Node 1 init: visible
• Modification: click
• Available: when a serie is selected in the Available Series

Element (1.2)
• On click: the selected serie of the Available Series element

(1.2) is added to the Selected Series element (1.9) if it was not
already in.

• (1.11) Unselect Serie element:
• Type: button
• Node 1 init: visible
• Modification: click
• Available: when a serie is selected in the Selected Series

Element (1.9)
• On click: the selected serie of the Selected Series Element

(1.9) is removed.

• (1.12) Download element:
• Type: button
• Node 1 init: visible
• Modification: click
• Available: when the Available Series Element (1.2) is not

empty.
• Function: provide the user a text file containing the list of the

available series for the selected theme.

• On click: starts a web browser classical downloading process.
Intra-navigational elements

• (1.13) Detail Compatibility element:
• Type: anchor
• Node 1 init: visible
• Modification: click
• Available: when the Selected Series Element (1.9) is not

empty.
• Target: static: Node 1 + Series Compatibility
• On click: navigation

Navigational elements

• (1.14) Spatial Way element:
• Type: anchor
• Node 1 init: visible
• Modification: click
• Available: when the Selected Series Element (1.9) is not

empty, and when we have space compatibility between the
selected series

• Target: static: Node 211
• On click: navigation

• (1.15) Temporal Way element:
• Type: anchor
• Node 1 init: visible
• Modification: click
• Available: when the Selected Series Element (1.9) is not

empty
• Target: static: Node 221
• On click: navigation

Node 1C – Series Compatibility Details

This intra node shows some extra information about the
compatibility of the selected series.

(1C.1) Compatible Time Units element: this element shows

which are the compatible time units for the selected series
• Type: set of text fields
• Node 1C init: visible
• Modification: impossible

• (1C.2) to (1C.4) Compatible First, Second and Third

Dimension Space Units elements: these elements show which
are the compatible space units for the selected series

• Type: 3 sets of text fields
• Node 1C init: visible
• Modification: impossible

•

• (1C.5) Download element:
• Type: button
• Node 1C init: visible
• Modification: click
• Available: always
• Function: provide the user a text file containing the

compatibility information of the selected series
• On click: starts a web browser classical downloading process.
•
• (1C.6) OK element:
• Type: button
• Node 1C init: visible
• Modification: click
• Available: always
• On click: exit from this node to go back to the Node 1

 146

Node 211 – Lines Composition – Spatial Way

In this node the user defines what spatial elements will

appear in the lines of the result sheet.

Data elements

• (211.2) to (211.4) First, Second and Third Dimension Units
elements:

• Type: linked lists
• Node 211: visible
• Node 211 init values: for the available element(s), the units

(in the corresponding dimension) for which the set of selected
series are defined.

• Node 211 init selection: none
• Available: for the element(s) corresponding to the dimensions

for which the set of selected series are defined, always. For
the other(s), never.

• Modification: selection
• On selection update: when the user selects something in one

of the three lists, the two others are set to no selection.

(211.5) Selected Unit element: this element shows the unit

chosen by the user.
• Type: text field
• Node 211 init: visible
• Node 211 init default value: nothing
• Modification: impossible

• (211.6) Arborescent List of Available Elements element: this

element provides the user different possibilities of selections
related to the selected unit of the Selected Unit element(211.5)

• Type: arborescent list
• Node 211 init: visible
• Node 211 init values: nothing
• Modification: extend or collapse directories, selection
• Available: when not empty

• Selection: multiple selection of items of a same directory.
Multiple selection of items from different directories is not
possible. Selection of directories is not possible.

• On directory collapse: nothing
• On selection update: nothing
• On directory extension: the directory is open and the items

corresponding to the directory (from the web server database)
appear

• (211.7) Selected Elements element: in this element appear the
different elements chosen by the user

• Type: list
• Node 211 init: visible
• Node 211 init values: empty
• Modification: selection
• Available: when not empty
• Selection: one item
• On selection update: nothing

Functional elements

• (211.8) Select Unit element:
• Type: button
• Node 211 init: visible
• Modification: click
• Available: when a unit is selected in one of the First, Second

and Third Dimension Units elements (211.2 to 211.4)
• On click:
• If the unit of the Selected Unit Element (211.5) is the same

that the unit selected in the First, Second and Third
Dimension Units elements (211.2 to 211.4), nothing happens.

• Else:

 147

• The Selected Unit element (211.5) field is set to the name of
the selected unit in the First, Second and Third Dimension
Units elements (211.2 to 211.4)

• The Arborescent List of Available Elements element (211.6) is
initialised with the items corresponding to the selected time
unit and organised in parts (let’s suppose for these
explanations that the selected time unit is Posto), and by
default all the directories are collapsed:

• Part 1: this part contains only the item “All the Postos of
Brasil”.

• Part 2: this part contains a directory called “Postos of
Brasil”. The items of this directory are all the Postos of
Brasil, ordered alphabetically.

• Part 3, 4, 5...: the unit Posto can be converted into bigger
units (like Estado, Regiao...). There will be one part for each
of this converted units. Each of these parts will contain one
directory. Its name will be for example “All the Postos of an
Estado”. The items of this directory will be the different
Estados. If the user selects for example the state “Rio de
Janeiro” in this directory, it means the lines will be all the
Postos of the state Rio de Janeiro, one per line.

• When a directory contains more items than a defined limit,
this directory will appear, but it will not be possible to open
this directory to select some items.

• The Selected Elements element (211.7) is set to empty

• (211.9) Select Element element:
• Type: button
• Node 211 init: visible
• Modification: click
• Available: when at least one element is selected in the

Arborescent List of Available Elements element (211.6)

• On click:
• If the Selected Elements element (211.7) was empty:

• The selected elements of the Arborescent List of Available
Elements element (211.6) are added to the Selected Elements
element (211.7)

• Else:
• If the elements of the Selected Elements element (211.7) are

from the same directory than the selected elements of the
Arborescent List of Available Elements element (211.6):

• The selected elements of the Arborescent List of Available
Elements element (211.6) that are different from the elements
of the Selected Elements element (211.7) are added to the
Selected Elements element (211.7)

• Else:
• The Selected Elements element (211.7) is set to empty, and

then the selected elements of the Arborescent List of
Available Elements element (211.6) are added to it.

•
• (211.10) Unselect Element element:
• Type: button
• Node 211 init: visible
• Modification: click
• Available: when an element of the Selected Elements element

(211.7) is selected
• On click: the selected serie of the Selected Elements element

(211.7) is removed.

Navigational elements

• (211.11) Continue element:
• Type: anchor
• Node 211 init: visible
• Modification: click
• Available: when the Selected Elements element (211.7) is not

empty
• Target: static: Node 212
• On click: navigation

 148

Node 212 – Columns & Sub-Columns Composition – Spatial Way

In this node the user defines how will be organized the

columns and sub-columns of the result sheet.

Data elements

• (212.3) Time Unit element: this element provides the user the
possibility to choose between the time units available for the
selected series (that are included in: day, week, decade,
fortnight, month, bimestre, trimestre, quadrimestre, semestre,
year).

• Type: List
• Node 212 init: visible
• Node 212 init default selection: none
• Node 212 init values: the time units for which the set of

selected series is defined
• Available: always
• Modification: select one element
• On selection update:
• If the selection is “year”:
• The Days element (212.4) and the Units element (212.5) are

set to invisible.
• The Selected Units element (212.7) is initialised to empty.
• Setting of the Years element (212.6):
• Values: years of the union of the periods for which the

selected series are defined.
• Selection: none

• Else If the selection is “day”:
• Setting of the Days element (212.4):
• Visible: yes
• Values: integers from 1 to 31
• Selection: none
• Setting of the Units element (212.5):
• Visible: yes
• Caption: months

• Values: the names of the 12 months of the year
• Selection: none
• Setting of the Years element (212.6):
• Values: the years of the union of the periods for which the

selected series are defined.
• Selection: none
• The Selected Units element (212.7) is initialised to empty.
•
• Else:
• The Days element (212.4) is set to invisible.
• The Selected Units element (212.7) is initialised to empty.
• Setting of the Units element (212.5):
• Visible: yes
• Caption: name of the time unit selected
• Values: integers from 1 to MAX, where MAX is the number of

the time unit selected in a year.
• Selection: none
• Setting of the Years element (212.6):
• Values: the years of the union of the periods for which the

selected series are defined.
• Selection: none
•
• (212.4) Days element:
• Type: list
• Node 212 init: invisible
• Available: always
• Modification: selection (one item)
• On selection update: nothing
•
• (212.5) Units element:
• Type: list
• Node 212 init: invisible
• Available: always
• Modification: selection (one item)
• On selection update: nothing

 149

•
•
• (212.6) Years element:
• Type: list
• Node 212 init: visible
• Available: always
• Modification: selection (one item)
• On selection update: nothing
•
• (212.7) Selected Units element: in this element appear the

different units instances chosen by the user.
• Type: list
• Node 212 init: visible
• Modification: selection
• Available: when not empty
• Selection: one item
• On selection update: nothing

• (212.8) to (212.9) Second and Third Dimension Units elements:
• Type: lists
• Node 212 init: visible
• Node 212 init values: for the available element(s), the units

(in the corresponding dimension) for which the set of selected
series are defined + the item “no selection”

• Node 212 init selection: item “no selection”
• Available: only for the element(s) corresponding to the

dimensions for which the set of selected series are defined.
• Modification: selection
• On selection update: the corresponding Xth Dimension

Elements element (212.10 or 212.11) is filled in with the
elements of the web server database corresponding to the
selected unit + an item “all elements”.

•
• (212.10) to (212.11) Second and Third Dimension Elements

elements: lists of the available elements corresponding to the
selected unit

• Type: lists
• Node 212 init: visible
• Node 212 init values: nothing
• Available: when not empty, and only for the element(s)

corresponding to the dimensions for which the set of selected
series are defined.

• Modification: selection
• On selection update: nothing
•
• (212.12) to (212.13) Second and Third Dimension Selected

Elements elements: lists of the elements chosen by the user for
each dimension

• Type: list
• Node 212 init: visible
• Modification: selection
• Available: when not empty, only for the element(s)

corresponding to the dimensions for which the set of selected
series are defined.

• Selection: one item
• On selection update: nothing

Functionnal elements

• (212.14) Select Unit element:
• Type: button
• Node 212 init: invisible
• Modification: click

• Available: if the elements Days element (212.4), Units
element (212.5) and Years element (212.6) that are visible
have each one item selected.

• On click: a composition of the selection of the Days element
(212.4) (if it is visible), the selection of the Units element
(212.5) (if it is visible) and the selection of the Years element
(212.6) is constructed and added to the Selected Units element
(212.7) if it is a valid composition. A composition is valid
when the selected day effectively exists in the given month
(Months with 30 or 31 days, February with 28 or 29 days).

•
• (212.15) Unselect Unit element:
• Type: button
• Node 212 init: invisible
• Modification: click
• Available: when an element of the Selected Units element

(212.7) is selected
• On click: the selected serie of the Selected Units element

(212.7) is removed.
•
• (212.16 to 212.17) Second and Third Dimension Select Element

elements:
• Type: buttons
• Node 212 init: visible
• Modification: click
• Available: if one item is selected in the corresponding Xth

Dimension Elements element (212.10 or 212.11), and only for
the element(s) corresponding to the dimensions for which the
set of selected series are defined.

• On click: the selected element of the corresponding Xth
Dimension Elements element (212.10 or 212.11) is added to
the corresponding Xth Dimension Selected Elements element
(212.12 or 212.13) if it was not already in.

•
• (212.18 to 212.19) Second and Third Dimension Unselect

Element elements:
• Type: buttons
• Node 212 init: visible
• Modification: click
• Available: when an element of the corresponding Xth

Dimension Selected Elements (212.12 or 212.13) is selected,
and only for the element(s) corresponding to the dimensions
for which the set of selected series are defined.

• On click: the selected element of the corresponding Xth
Dimension Selected Elements 212.12 or 212.13) is removed.

Navigational Elements

•
• (212.20) Submit Request element:
• Type: anchor
• Node 212 init: visible
• Modification: click
• Available: if:
• The Selected Units element (212.7) contains at least one item
• For each available dimension in the Sub-Columns Part:
• The corresponding Xth Dimension Selected Elements element

(212.12 or 212.13) contains at least one element, except if the
selection of the corresponding Xth Dimension Units element
(212.10 or 212.11) is “no selection”.

• Target: static: Node 3
• On click: navigation

 150

Node 221 – Lines & Columns Composition – Temporal Way

In this node the user defines what temporal elements will

appear in the lines and the columns of the result sheet.

Data elements

• (221.2) Time Unit element: this element provides the user the
possibility to choose between the time units available for the
selected series (that are included in: day, week, decade,
fortnight, month, bimestre, trimestre, quadrimestre, semestre,
year).

• Type: list
• Node 221 init: visible
• Node 221 init default values: the time units for which all the

selected series are defined
• Node 221 init default selection: none
• Available: always
• Modification: select one element
• On selection update:
• If the selection is “year”:
• Setting of the First Element element (221.3):
• Visible: yes
• Values: the years of the unions of the periods for which the

selected series are defined.
• Selection: the first of these years.
• Setting of the Quantity element (221.4):
• Visible: yes
• Values: integers from 1 to 999
• Selection: 1
• All the elements of the Columns Part are set to invisible.
•
• If the selection is not “year”:
• If the selection is “day”:
• The First Element element (221.3) and the Quantity element

(221.4) are set to invisible.
• The Months element (221.5), Selected Units element (221.7),

Select element (221.8) and Unselect element (221.9) are set to
visible.

• Setting of the Years element (221.6):
• Visible: yes
• Values: the years of the unions of the periods for which the

selected series are defined.
• Selection: the first of these years.
•
• If the selection is not “day”:
• Setting of the First Element element (221.3):
• Visible: yes
• Values: integers between 1 and MAX, where MAX is the

number of the time unit selected in a year.
• Selection: 1
• Setting of the Quantity element (221.4):
• Visible: yes
• Values: integers from 1 to 999
• Selection: MAX
• The Months element (221.5) is set to invisible.
• The Selected Units element (221.7), Select element (221.8)

and Unselect element (221.9) are set to visible.
• Setting of the Years element (221.6):
• Visible: yes
• Values: the years of the unions of the periods for which the

selected series are defined.
• Selection: the first of these years.

• (221.3) First Element element:
• Type: list
• Node 221 init: visible
• Node 221 init default value: none
• Available: when something different from “day” is selected in

the Time Unit element (221.2)
• Modification: selection
• On selection update: nothing

• (221.4) Quantity element:
• Type: list

 151

• Node 221 init: visible
• Node 221 init default value: none
• Available: when something different from “day” is selected in

the Time Unit element (221.2)
• Modification: selection
• On selection update: nothing

• (221.5) Months element:
• Type: list
• Node 221 init: invisible
• Node 221 init default values: the 12 months of the year
• Node 221 init default selection: none
• Available: always
• Modification: selection (one item)
• On selection update: nothing

• (221.6) Years element:
• Type: list
• Node 221 init: visible
• Node 221 init default values: none
• Node 221 init default selection: none
• Available: when something different from “year” is selected

in the Time Unit element (221.2)
• Modification: selection (one item)
• On selection update: nothing

• (221.7) Selected Units element: in this element appear the

different units instances chosen by the user.
• Type: list
• Node 221 init: visible
• Modification: selection
• Available: when not empty
• Selection: one item
• On selection update: nothing

Functional elements

• (221.8) Select Unit element:
• Type: button
• Node 221 init: visible
• Modification: click
• Available: if the elements Months element (221.5) and Years

element (221.6) that are visible have each one item selected
• On click: a composition of the selection of the selection of the

Months element (221.5) (if it is visible) and the selection of
the Years element (221.6) is constructed and added to the
Selected Units element (221.7) (if not already in).

• (221.9) Unselect Unit element:
• Type: button
• Node 221 init: visible
• Modification: click
• Available: when an element of the Selected Units element

(221.7) is selected
• On click: the selected serie of the Selected Units element

(221.7) is removed.

Navigational elements

• (221.10) Continue element:
• Type: anchor
• Node 221 init: visible
• Modification: click
• Available: when an item is selected in the Time Unit element

(221.2) and:
• If the Years element (221.6) is available, the Selected Units

element (221.7) must not be empty
• Target: static: Node 222
• On click: navigation
•

 152

Node 222 – Sub-Columns Composition – Temporal Way

In this node the user defines how will be organized the sub-

columns of the result sheet.

Data element

• (222.3) to (222.5) 1st, 2nd and 3rd Dimension Units elements:
• Type: lists
• Node 222 init: visible
• Node 222 init values: for the available element(s), the units

(in the corresponding dimension) for which the set of selected
series are defined + the item “no selection”

• Node 222 init selection: item “no selection”
• Available: only for the element(s) corresponding to the

dimensions for which the set of selected series are defined
• Modification: selection
• On selection update: the corresponding Xth Dimension

Elements element (222.6, 222.7 or 222.8) is filled in with the
elements of the web server database corresponding to the
selected unit + an item “all elements”.

• (222.6) to (222.8) 1st, 2nd and 3rd Dimension Elements
elements: lists of the available elements corresponding to the
selected unit

• Type: lists
• Node 222 init: visible – values: nothing
• Available: when not empty
• Modification: selection
• On selection update: nothing

• (222.9) to (222.11) 1st, 2nd and 3rd Dimension Selected

Elements elements: dimension elements lists chosen by the user
• Type: list
• Node 222 init: visible
• Modification: selection
• Available: when not empty
• Selection: one item
• On selection update: nothing

Functional elements

• (222.12 to 222.14) 1st, 2nd and 3rd Dimension Select Element:
• Type: buttons
• Node 222 init: visible
• Modification: click
• Available: if one item is selected in the corresponding Xth

Dimension Elements element (222.6, 222.7 or 222.8)
• On click: the selected element of the corresponding Xth

Dimension Elements element (222.6, 222.7 or 222.8) is added
to the corresponding Xth Dimension Selected Elements
element (222.9, 222.10 or 222.11) if it was not already in.

• (222.15 to 222.17) 1st, 2nd and 3rd Dimension Unselect
Elements:

• Type: buttons
• Node 222 init: visible
• Modification: click
• Available: when an element of the corresponding Xth

Dimension Selected Elements element (222.9, 222.10 or
222.11) is selected

• On click: the selected element of the corresponding Xth
Dimension Selected Elements element (222.9, 222.10 or
222.11) is removed.

Navigational Elements

• (222.18) Submit Request element:
• Type: anchor
• Node 222 init: visible
• Modification: click
• Available: If for each available dimension the corresponding

Xth Dimension Selected Elements element (222.9, 222.10 or
222.11) contains at least one element, except if the selection
of the corresponding Xth Dimension Units element (222.6,
222.7 or 222.8) is “no selection”.

• Target: static: Node 3
• On click: navigation

 153

Node 3 – Results Visualization

The aim of this node is to present to the user the result of the
request he submitted.

Data elements

• (3.1) Results Array element: this element is an array that
formats the answer given to the request submitted by the user in
the Node 212 or 222.

• Type: array
• Node 3 init: visible
• Modification: column selection (one)
• Available: always
• On selection update: nothing
•

Functional elements
•
• (3.2) Download element:
• Type: button
• Node 3 init: visible

• Modification: click
• Available: always
• Function: provide the user a text file containing a text

translation of all the information of the results array.
• On click: starts a web browser classical downloading process.
•

Intra-navigational elements

• (3.3) Details element:
• Type: anchor
• Node 3 init: visible
• Modification: click
• Available: when a column is selected in the Results Array

element (3.1)
• Target: static: Node 3 + Details
• On click: navigation
•

 154

Node 3D – Results Details

• This node presents some extra details about the column

selected in the results table.

• (3D.1) Name element: this element provides the name of the
serie of the selected column

• Type: text area
• Node 3D init: visible
• Modification: impossible

• (3D.2) Description element: this element provides the

description of the serie of the selected column
• Type: text field
• Node 3D init: visible
• Modification: impossible

• (3D.3) Concepts element: this element provides the concepts

informations of the serie of the selected column
• Type: text field
• Node 3D init: visible
• Modification: impossible

• (3D.4) Events element: this element provides the events

informations of the serie of the selected column
• Type: text field
• Node 3D init: visible
• Modification: impossible

• (3D.5) Mnemonic element: this element provides the

mnemonic of the serie of the selected column
• Type: text field
• Node 3D init: visible
• Modification: impossible

• (3D.6) Unit element: this element provides the unit of the

serie of the selected column
• Type: text field
• Node 3D init: visible
• Modification: impossible

• (3D.7) Period element: this element provides the period of the

selected column
• Type: text field

• Node 3D init: visible
• Modification: impossible

• (3D.8 to 3D.10) First, Second and Third Space elements:

these element provide the three spaces of the serie of the
selected column

• Type: 3 text fields
• Node 3D init: visible if the serie is defined for the

corresponding dimension
• Modification: impossible

• (3D.11 to 3D.13) First, Second and Third Dimension Details

elements: these element provide details about the three spaces
of the serie of the selected column

• Type: 3 text fields
• Node 3D init: visible if the serie is defined for the

corresponding dimension
• Modification: impossible

• (3D.14 to 3D.16) First, Second and Third Dimension

Description elements: these element provide descriptions of
the three spaces of the serie of the selected column

• Type: 3 text fields
• Node 3D init: visible if the serie is defined for the

corresponding dimension
• Modification: impossible

• (3D.17) Download element:
• Type: button
• Node 3D init: visible
• Modification: click
• Available: always
• Function: provide the user a text file containing the details

about the selected column
• On click: starts a web browser classical downloading process.

• (3D.18) OK element:
• Type: button
• Node 3D init: visible
• Modification: click
• Available: always
• On click: exit from this node to go back to the Node 3

 155

Help Node

This extra node provides some contextual help about the current navigational node.

• (H.1) Help Text element: this element contains the help description
• Type: text field
• Node H init: visible
• Modification: impossible

• (H.2) OK element:
• Type: button
• Node H init: visible
• Modification: click
• Available: always
• On click: close this node

Help Text

(H.1)

OK (H.2)

 156

APPENDIX E – WOVEN CODE OF THE DYNAMIC NODE LOAD ASPECT

ExtraTransformation.java

package Rec_Internet;
/** Used for a navigation from a navigational node to an extra node */
public class ExtraTransformation extends Rec_Internet.Transformat ion {
 /*
 * This is the orginal method body for
 * protected void specificAction(java.lang.String target, java.lang.Object[] args) throws
RIException
 * it is now called from there inside of any advise weaves.
 */
 protected final void Rec_Internet_ExtraTransformation$specificAction(java.lang.String
target, java.lang.Object[] args) throws RIException {
 targetNode.reset(args);
 }

 /** In the case of a navigation to an extra node, we just need to reset the target node */
 /*
 * The body of this member was replaced by aspectj
 * At the core of this code is a call to
 * protected final void Rec_Internet_ExtraTransformation$specificAction(java.lang.String
target, java.lang.Object[] args) throws RIException
 * which holds the original method body.
 * Around this call is the code for all advise
 * weaves that apply to this member.
 */
 protected void specificAction(java.lang.String target, java.lang.Object[] args) throws
RIException {
 {
 /*
 * Generated by aspectj
 * This implements the before advice protected void specificAction()
 * weave from the aspect ADynamicNodeLoad. (ADynamicNodeLoad.java:35)
 */
 {
 java.util.Enumeration _enumeration = _aspects.elements();
 while (_enumeration.hasMoreElements()) {
 java.lang.Object _thisAspect = _enumeration.nextElement();
 if (_thisAspect instanceof Rec_Internet.ADynamicNodeLoad) {
 final Rec_Internet.ADynamicNodeLoad thisAspect =
(Rec_Internet.ADynamicNodeLoad)_thisAspect;
 {
 targetNode = Rec_Internet.ADynamicNodeLoad.getNode(target);
 }
 }
 }
 }
 Rec_Internet_ExtraTransformation$specificAction(target, args);
 }
 }
}
IntraTransformation.java

package Rec_Internet;
/**This class is used in the case of a navigation from a navigational node to an intra node */
public class IntraTransformation extends Rec_Internet.Transformation {
 /*
 * This is the orginal method body for
 * protected void specificAction(java.lang.String target, java.lang.Object[] args) throws
RIException
 * it is now called from there inside of any advise weaves.
 */
 protected final void Rec_Internet_IntraTransformation$specificAction(java.lang.String
target, java.lang.Object[] args) throws RIException {
 context.getCurrentNode().desactivate();
 targetNode.reset(args);
 }

 157

 /** In the case of a navigation to an intra node, we need to desactivate the navigational
node, and to reset the target node */
 /*
 * The body of this member was replaced by aspectj
 * At the core of this code is a call to
 * protected final void Rec_Internet_IntraTransformation$specificAction(java.lang.String
target, java.lang.Object[] args) throws RIException
 * which holds the original method body.
 * Around this call is the code for all advise
 * weaves that apply to this member.
 */
 protected void specificAction(java.lang.String target, java.lang.Object[] args) throws
RIException {
 {
 /*
 * Generated by aspectj
 * This implements the before advice protected void specificAction()
 * weave from the aspect ADynamicNodeLoad. (ADynamicNodeLoad.java:35)
 */
 {
 java.util.Enumeration _enumeration = _aspects.elements();
 while (_enumeration.hasMoreElements()) {
 java.lang.Object _thisAspect = _enumeration.nextElement();
 if (_thisAspect instanceof Rec_Internet.ADynamicNodeLoad) {
 final Rec_Internet.ADynamicNodeLoad thisAspect =
(Rec_Internet.ADynamicNodeLoad)_thisAspect;
 {
 targetNode = Rec_Internet.ADynamicNodeLoad.getNode(target);
 }
 }
 }
 }
 Rec_Internet_IntraTransformation$specificAction(target, args);
 }
 }
}
NavigTransformation.java

package Rec_Internet;
/** This class is used in the case of a normal navigation between two navigational nodes */
public class NavigTransformation extends Rec_Internet.Transformation {
 /*
 * This is the orginal method body for
 * protected void specificAction(java.lang.String target, java.lang.Object[] args) throws
RIException
 * it is now called from there inside of any advise weaves.
 */
 protected final void Rec_Internet_NavigTransformation$specificAction(java.lang.String
target, java.lang.Object[] args) throws RIException {
 context.getCurrentNode().hide();
 context.setCurrentNode(targetNode);
 context.setNextIndex(target);
 targetNode.reset(args);
 }

 /** In the case of a normal navigation between two navigational nod es, we need to reset the
target node, and then set in the context the current node index and the next index */
 /*
 * The body of this member was replaced by aspectj
 * At the core of this code is a call to
 * protected final void Rec_Internet_Navig Transformation$specificAction(java.lang.String
target, java.lang.Object[] args) throws RIException
 * which holds the original method body.
 * Around this call is the code for all advise
 * weaves that apply to this member.
 */
 protected void specificAction(java.lang.String target, java.lang.Object[] args) throws
RIException {
 {
 /*
 * Generated by aspectj
 * This implements the before advice protected void specificAction()

 158

 * weave from the aspect ADynamicNodeLoad. (ADy namicNodeLoad.java:35)
 */
 {
 java.util.Enumeration _enumeration = _aspects.elements();
 while (_enumeration.hasMoreElements()) {
 java.lang.Object _thisAspect = _enumeration.nextElement();
 if (_thisAspect instanceof Rec_Internet.ADynamicNodeLoad) {
 final Rec_Internet.ADynamicNodeLoad thisAspect =
(Rec_Internet.ADynamicNodeLoad)_thisAspect;
 {
 targetNode = Rec_Internet.ADynamicNodeLoad.getNode(target);
 }
 }
 }
 }
 Rec_Internet_NavigTransformation$specificAction(target, args);
 }
 }
}
RIContext.java

package Rec_Internet;
/** This class is used to represent the navigation informations */
public class RIContext extends Rec_Internet.Ca cheContext {
 /*
 * Generated by aspectj
 * This implements the introduce public Node getNode(java.lang.String target)
 * weave from the aspect ADynamicNodeLoad. (ADynamicNodeLoad.java:38)
 */
 public Node getNode(java.lang.String target) {
 org.aspectj.runtime.JoinPoint thisJoinPoint = null;
 for (int i = 0; i < navigNode.size(); i++) {
 Node node = (Node)navigNode.elementAt(i);
 if (node.getName().equals(target)) return node;
 }
 for (int i = 0; i < intraNode.size(); i++) {
 Node node = (Node)intraNode.elementAt(i);
 if (node.getName().equals(target)) return node;
 }
 for (int i = 0; i < extra.Node.size(); i++) {
 Node node = (Node)extraNode.elementAt(i);
 if (node.getName().equals(target)) retur n node;
 }
 return null;
 }
}
RIPrevNextTransformation

package Rec_Internet;
/** To describe previous and Next navigation */
public class RIPrevNextTransformation extends Rec_Internet.Transformation {
 /*
 * This is the orginal method body for
 * protected void specificAction(java.lang.String target, java.lang.Object[] args) throws
RIException
 * it is now called from there inside of any advise weaves.
 */
 protected final void Rec_Internet_RIPrevNextTransformation$specificAction(java.la ng.String
target, java.lang.Object[] args) throws RIException {
 context.getCurrentNode().hide();
 context.setCurrentNode(targetNode);
 }

 /*
 * The body of this member was replaced by aspectj
 * At the core of this code is a call to
 * protected final void
Rec_Internet_RIPrevNextTransformation$specificAction(java.lang.String target,
java.lang.Object[] args) throws RIException
 * which holds the original method body.
 * Around this call is the code for all advise

 159

 * weaves that apply to this member.
 */
 protected void specificAction(java.lang.String target, java.lang.Object[] args) throws
RIException {
 {
 /*
 * Generated by aspectj
 * This implements the before advice protected void specificAction()
 * weave from the aspect ADynamicNodeLoad. (ADynamicNodeLoad.java:35)
 */
 {
 java.util.Enumeration _enumeration = _aspects.elements();
 while (_enumeration.hasMoreElements()) {
 java.lang.Object _thisAspect = _enumeration.nex tElement();
 if (_thisAspect instanceof Rec_Internet.ADynamicNodeLoad) {
 final Rec_Internet.ADynamicNodeLoad thisAspect =
(Rec_Internet.ADynamicNodeLoad)_thisAspect;
 {
 targetNode = Rec_Internet.ADynamicNodeLo ad.getNode(target);
 }
 }
 }
 }
 Rec_Internet_RIPrevNextTransformation$specificAction(target, args);
 }
 }
}
Transformation.java

package Rec_Internet;
/** This class is used to contains the necessary methods and variables to describe navigation
actions */
public abstract class Transformation extends java.lang.Object {
 /** Class variable: the context */
 protected static Rec_Internet.RIContext context = null;
 /** Instance variable: reference of the target node of
 a navigation */
 protected Node targetNode = null;
 /** Class method context mutator */
 public static final void setContext(Rec_Internet.RIContext context_) {
 context = context_;
 }

 /** context accessor */
 public Rec_Internet.RIContext getContext() {
 return context;
 }

 /*
 * This is the orginal method body for
 * public void action(java.lang.String target, java.lang.Object[] args) throws RIException
 * it is now called from there inside of any advise weaves.
 */
 protected final void Rec_Internet_Transformation$action(java.lang.String target,
java.lang.Object[] args) throws RIException {
 specificAction(target, args);
 targetNode.show();
 }

 /** Template method to define the structure of a navigation action */
 /*
 * The body of this member was replaced by aspectj
 * At the core of this code is a call to
 * protected final void Rec_Internet_Transformation$action(java.lang.String target,
java.lang.Object[] args) throws RIException
 * which holds the original method body.
 * Around this call is the code for all advise
 * weaves that apply to this member.
 */
 public void action(java.lang.String target, java.lang.Object[] args) throws RIException {
 {
 /*

 160

 * Generated by aspectj
 * This implements the before advice public void action()
 * weave from the aspect ADynamicNodeLoad. (ADynamicNodeLoad.java:35)
 */
 {
 java.util.Enumeration _enumeration = _aspects.elements();
 while (_enumeration.hasMoreE lements()) {
 java.lang.Object _thisAspect = _enumeration.nextElement();
 if (_thisAspect instanceof Rec_Internet.ADynamicNodeLoad) {
 final Rec_Internet.ADynamicNodeLoad thisAspect =
(Rec_Internet.ADynamicNodeLoad)_thisAspec t;
 {
 targetNode = Rec_Internet.ADynamicNodeLoad.getNode(target);
 }
 }
 }
 }
 Rec_Internet_Transformation$action(target, args);
 }
 }

 /** Abstract method that should describe some spec ific actions depending on the type of
navigation */
 protected abstract void specificAction(java.lang.String target, java.lang.Object[] args)
throws RIException;

 protected java.util.Vector _aspects = new java.util.Vector();
 public java.util.Vector getAspects() {
 return _aspects;
 }
}
AdynamicNodeLoad.java

package Rec_Internet;
class ADynamicNodeLoad extends java.lang.Object {
 public static Node createNode(java.lang.String name) throws RIException {
 if (name.equals("Node0")) return new RINode0();
 if (name.equals("Node1")) return new RINode1();
 if (name.equals("Node211")) return new RINode211();
 if (name.equals("Node212")) return new RINode212();
 if (name.equals("Node221")) return new RINode221();
 if (name.equals("Node222")) return new RINode222();
 if (name.equals("Node3")) return new RINode3();
 if (name.equals("Node1C")) return new RINode1C();
 if (name.equals("Node3D")) return new RINode3D();
 if (name.equals("Help")) return new RIHelp();
 throw new RIException(name, UNKNOWN_NODE);
 }

 public static Node getNode(java.lang.String name, Rec_Internet.RIContext context) throws
RIException {
 Node result = context.getNode(name);
 if (name == null) { return Rec_Internet.ADynamicNodeLoad.createNod e(name); }
 else return result;
 }

 private java.util.Vector _objects = new java.util.Vector();
 public java.util.Vector getObjects() { return _objects; }

 public void addObject(Rec_Internet.RIPrevNextTransformation object) {
 if (!_objects.contains(object)) {
 object.getAspects().addElement(this);
 _objects.addElement(object);
 }
 }

 public void removeObject(Rec_Internet.Transformation object) {
 object.getAspects().removeElement(this);
 _objects.removeElement(object);
 }
}

