
Vrije Universiteit Brussel - Belgium
Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes - France

2004

V
R

IJ
E

U

N
IV

ERSITEIT BR

U
S
S

E
L

S
C

IE
N

T

IA
VINCERE TE

N

E
B

R
A

S

SOURCE CODE MINING FOR
CODE DUPLICATION REFACTORINGS
WITH FORMAL CONCEPT ANALYSIS

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange)

By: Roberto A. Riquelme Torres

Promoter: Prof. Dr. Theo D’Hondt (Vrije Universiteit Brussel)
Co-Promotor: Prof. Dr. Kim Mens (Université Catholique de Louvain) and

Dr. Tom Tourwé (Centrum voor Wiskunde en Informatica)

Abstract

Code duplication exists for many reasons, although it is known to be a bad practice. It
may save costs on the development phase, but it surely has a higher cost of maintenance.
What can we do to detect and eliminate those problems?

This document shows how to use the mathematical foundation of Formal Concept
Analysis to detect code duplication.

Formal Concept Analysis allows us to identify concepts, or groupings of elements, that
have common properties. We work with a particular kind of elements and properties:
Methods containing similar Regular Parse Tree Expressions. We classify these concepts
in a certain way to reveal candidates for code duplication refactorings and show them in
an ordered way, so that the user can decide to apply the refactoring when needed.

This work is done as an extension of the existing Delfstof framework for VisualWorks
Smalltalk, which is currently being developed by researchers at CWI 1 and UCL.2

1Centrum voor Wiskunde en Informatica, Amsterdam, Netherlands. http://www.cwi.nl
2Université Catholique de Louvain, Louvain-la-Neuve, Belgium. http://www.ucl.ac.be

i

Acknowledgments

There’s so many people that I would like to thank for this wonderful, yet stressful year.

First of all, my family, specially my parents Roberto and Silvia who always believed
in me, and have always supported me in all my life projects. Also to my best friend
Claudio, who always gave me the energy to continue working.

I would like to thank also my advisors Kim Mens and Tom Tourwé, and specially Andy
for all their help in this research, and all the people at PROG, who always made me feel
at home.

And last, but not least, I would like to thank my girlfriend Karen, who has always
supported me, giving me the energy and understanding needed to go along with this
project.

Thank you all very much!

...we never end implementing our dreams...
Jo. Piquer - DCC - Universidad de Chile

Brussels, Belgium Roberto Riquelme T.
August 23, 2004

ii

Contents

Abstract ii

Acknowledgements iii

Contents v

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 Context . 1

1.2 Duplicated Code . 1

1.3 Why does Code Duplication exist? . 2

1.4 Impact of Duplicated Code . 2

1.5 Position of this Document . 2

1.6 Overview . 3

2 Preliminaries 4

2.1 Refactoring . 4

2.1.1 What is Refactoring? . 4

2.1.2 Brief History . 4

2.1.3 Unit Testing . 5

2.1.4 Bad Smells in Code . 5

2.2 Formal Concept Analysis . 7

2.2.1 Overview . 7

2.2.2 Context . 7

2.2.3 Concepts . 8

iii

CONTENTS iv

2.2.4 Concept Lattice . 9

2.3 Delfstof . 10

2.3.1 Overview . 10

2.3.2 Mining for Source-Code Regularities 10

Choose elements and properties 10

Compute the lattice . 11

Filter the concepts . 11

Classifying the concepts . 11

Combining and annotating concepts 12

2.3.3 Test Cases and Results . 12

Results . 14

2.4 Parse-Tree Expressions . 15

2.4.1 Parse Trees . 15

2.4.2 Abstract Syntax Trees . 16

2.4.3 Regular Parse-Tree Expressions 16

2.5 Related Work . 20

3 Source Code Mining for Refactorings 22

3.1 Elements and Properties . 22

3.1.1 Overview . 22

3.1.2 The Parse-Tree Nodes . 23

3.1.3 Generation of Elements and Properties 24

3.1.4 A First Filter . 25

3.2 Concept Lattice . 26

3.2.1 Building the Lattice . 26

3.2.2 Building the Concepts . 27

3.3 Concept Filtering . 28

3.4 Concept Classification . 28

4 Experiments 30

4.1 Delfstof Experiments . 30

4.1.1 Setup of the Experiment . 30

4.1.2 Results for Delfstof . 30

4.2 Refactoring Browser Experiments . 34

Contents v

4.2.1 Setup of the Experiment . 34

4.2.2 Results for Refactoring Browser 34

5 Conclusion 40

5.1 Summary . 40

5.2 Contribution . 41

5.3 Future Work . 42

Bibliography 45

List of Figures

2.1 Concept Lattice of the Solar system example 9

2.2 Results of Delfstof applied to Delfstof with Substrings 13

2.3 A very simple grammar and parse tree example 15

2.4 Pseudo-code Parse Tree Example . 16

2.5 Difference between a Concrete Parse Tree and an Abstract Syntax Tree . 17

2.6 Example of Regular Parse-Tree Expression with wildcard nodes and its
matches . 19

4.1 Results of Delfstof mining in StarBrowser 31

4.2 Existing Class structure in Delfstof . 32

4.3 Proposed refactoring Delfstof . 33

4.4 Extract Method refactoring . 33

4.5 Results of RefactoringBrowser mining in StarBrowser 35

4.6 Duplicated code in class MenuViewer, IconViewer and CanvasViewer re-
spectively . 36

4.7 Duplicated code in methods of VariableEnvorinment class 37

4.8 Duplicated code in methods of BrowserCodeTool class 38

4.9 Code duplication in the hierarchy of class RBProgramNode 39

vi

List of Tables

2.1 Solar System example. Table T of binary relations 7

2.2 Solar System example. A concept example in Table T 8

2.3 Concepts of the Solar System example 8

2.4 Results of Delfstof applied to Smalltalk source code 12

2.5 Special characters supported by the meta-variables. 18

3.1 FCA table to be calculated. 26

3.2 FCA table with matched methods and trees. 27

vii

Chapter 1

Introduction

1.1 Context

One of the factors that severely complicates the maintenance and evolution of software
systems is code duplication or cloning. It is known to be a bad programming practice,
and we should try to avoid it. Unfortunately this is not always a possibility. Instead,
techniques are necessary to remove this duplication from existing code.

The best way of fixing this problem is proposing refactorings to remove the duplica-
tions. But, in software systems, it is difficult to detect those duplications, but yet more
difficult is to remove them properly.

Our goal is to detect these duplications, and propose the possible refactorings to the
user, and let him or her decide to apply the modifications.

1.2 Duplicated Code

The first question we should answer is: What is duplicated code?. Duplicated code is
the result of copying a code fragment or the structure of a piece of code, and possibly,
performing some minor changes on that copy. Those minor changes can be, for exam-
ple: renaming variables, changing the order of execution of some statements or adding
comments. In this way the developer may reuse an existing structure in the program or
reuse already existing behavior.

Code duplication is also known as cloning [KG03]. This term raises the following
question: which kinds of copies are considered clones?. In most of the cases we cannot
consider the whole code fragments as a duplicate, but only those lines that match. We
want both fragments to have a similar structure or have a sub-part of the code fragment
in common.

Each detection technique is different. One of them considers that a piece of code is
duplicated if they only differ in 10% of the lines. If two fragments of code are considered
clones, we say that a cloning relation exists between them [DRD99].

1

CHAPTER 1. INTRODUCTION 2

1.3 Why does Code Duplication exist?

Code duplication is a widespread technique, although it is known to be a bad practice.
But why does it still exist? There is not a unique answer to this question.

Code duplication generally happens to students or beginner programmers that are
not used to the Object Oriented paradigm and do not know how to use polymorphism
and other Object Oriented concepts in an optimal way. For instance, we may have
duplicated code in a class hierarchy, because we did not know that the superclass already
implemented something similar, or that one of the subclasses already has it implemented,
and we may move it to the superclass.

Cloning also occurs with more experienced programmers, when they quickly need to
implement some functionality, but do not consider creating the proper abstractions, or
making use of functionalities already implemented.

Although code duplication is a bad practice, it still occurs in existing software devel-
opment.

1.4 Impact of Duplicated Code

Code duplication can have a severe impact on the quality, reusability and maintainability
of a software system.

When a programmer copies code which contains errors, the copy will also include the
errors inserted in the code. As mentioned before, in a lot of cases, only the structure
of the duplicated fragment can be re-used. The developer has to adapt the duplicated
code. This process can be error prone and may introduce new bugs in the software.

Code duplication also indicates bad design, lack of a good inheritance structure or
abstraction. This makes it very difficult to reuse part of the implementation in future
projects. It also has an impact on the maintainability of the piece of software.

Cloning makes it more difficult to implement new functionalities in the system, or
change existing ones, because it takes extra time to comprehend already existing imple-
mentation and concerns which has to be adapted and which are not necessarily imple-
mented at one location in the code.

Although code duplication seems to simplify the initial development of a piece of
software it has a large impact on the quality of the developed software. It increases the
maintenance cost which is already the biggest cost factor. Code duplication handicaps
the software engineer as well as the maintainer of the software.

1.5 Position of this Document

In this thesis we propose the use of the mathematical technique of Formal Concept
Analysis in order to detect the Code Duplication bad smell using a special kind of Abstract

CHAPTER 1. INTRODUCTION 3

Syntax Tree, and propose a possible refactoring to eliminate the cloning from the code.

The idea of applying Formal Concept Analysis to source code is not new. Our con-
tribution lies in the use of regular parse-tree expressions as properties, which will be
used as input of the FCA algorithm, and classifying the discovered concepts in order to
propose refactorings which may eliminate the duplicated code. In fact, this work is done
as an extension of the Delfstof framework for VisualWorks Smalltalk currently under
development by researchers at UCL and CWI.

Using this technique, we mine a system’s source code to detect code duplication in a
way that is independent of the actual system being analyzed. Depending on the charac-
teristics of each code duplication, particular refactorings can be proposed and applied to
eliminate this bad practice.

Although this approach can be improved in many ways, it allows us to mine Smalltalk
source code to detect code duplication and discover the refactoring possibilities available.

1.6 Overview

The remainder of this thesis is structured as follows. Chapter 2 of this document gives
us the general idea of the tools and theory behind refactorings, a brief introduction to
Formal Concept Analysis, the Delfstof framework and our tree representation known
as Regular Parse-Tree Expressions. In chapter 3 we explain our approach and how we
used formal concept analysis to mine the source code to detect code duplication. Some
experiments with this technique and their results are shown in chapter 4. We conclude
this document in chapter 5, proposing ideas for future work.

Chapter 2

Preliminaries

2.1 Refactoring

2.1.1 What is Refactoring?

Refactoring [FBB+99, MT04b] is the process of changing a software system in such a way
that it does not alter the external behavior of the code yet improves its internal structure.
It is a disciplined way to clean up code that minimizes the chances of introducing bugs.
In essence when you refactor you are improving the design of the code after it has been
written.

This last sentence seems odd at first glance. Programmers are used to “if it works,
don’t fix it”. In our current understanding of software development we believe that we
design and then we code. A good design comes first, and the coding comes second. Over
time the code will be modified, and the integrity of the system, its structure according
to that design, gradually fades. The code slowly sinks from engineering to hacking.

Refactoring is the opposite of this practice. With refactoring you can take a bad design,
and rework it into well-designed code. Each step is simple, even simplistic. You move
a field from one class to another, pull some code out of a method to make into its own
method, and push some code up or down a hierarchy. Yet the cumulative effect of these
small changes can radically improve the design. It is the exact reverse of the normal
notion of software decay.

2.1.2 Brief History

Refactoring was invented in Smalltalk circles in the 1980’s, and the book by Martin Fowler
[FBB+99] is the classic reference. Although refactoring code has been done informally
for years, William F. Opdyke’s 1992 PhD dissertation [Opd92] is the first known paper
to specifically examine refactoring.

Refactoring is such an important concept that it has been identified as one of the most

4

CHAPTER 2. PRELIMINARIES 5

important software innovations by David Wheeler 1

2.1.3 Unit Testing

Unit testing is a method of testing the correctness of a particular module of source code,
generally all methods of a class that do non-trivial things. It is not component testing,
which is interested whether the application behaves generally the way it was intended to.

Because the changes refactoring introduces to the source code by definition do not
affect its behavior, the tests are used to continually ensure the proper working of the
target program.

2.1.4 Bad Smells in Code

Refactoring is not only about esthetics or beautiful code. We have to be clear on when
refactorings should be applied. In [FBB+99], Martin Fowler and Kent Beck enumerate
22 situations where one should refactor. The most important and common ones are:

Duplicated Code. Having the same code in different places is the most common error
found in applications. We can use Extract Method to unify the code in one place. If
however the duplicated code is in two sibling subclasses, we can use Extract Method
and Pull Up Method. In cases when the code in the extracted method has nothing
to do with the class, you may use Extract Class.

Long Method and Large Class. Because complexity increases with every line we add
to a method, the code will be easier to test and maintain if we consider using Extract
Method. Similarly, if a class is too large, first avoid duplicated code. If the class has
too many instance variables, Extract Class can be used to group variables belonging
together in their own class.

Long Parameter List. Long parameter lists are hard to understand and usually deliver
too much (and not necessarily the right) information to the method. With objects,
we can always ask another object to get the needed information. Using Replace
Parameter with Method may be a solution to separate a parameter logically from
the others. Alternatively we could pass a special parameter object (a Value Object
or Transfer Object).

Feature Envy. A method more interested in another class that the one it is in may
indicate feature envy. By using Move Method we can move the method to the class
where the most data used by the method is.

Data Clumps. It is frequent that the same set of variables are spotted together in
various places of the code. Use Extract Class to group together those variables in
their own class.

1http://www.dwheeler.com/innovation/innovation.html

http://www.dwheeler.com/innovation/innovation.html

CHAPTER 2. PRELIMINARIES 6

Speculative Generality. Sometimes handling for special cases are implemented, but
never used. The results are methods which are only called by their own tests
and thus only add to the complexity of maintenance and understanding. Replace
unnecessary delegation with the code of the delegate (Inline Class), Collapse the
Hierarchy if there are abstract classes not doing much. Purge unused parameters,
rename methods, fields and classes to achieve sensible names.

Temporary Field. Temporary variables can be replaced with the expression used to
set the variable (Inline Temp). We could also use Extract Method and move the
expression to a new method, the replace all references to the temporary variable
with a call to the new method Replace Temp with Query. If however we have a
very complex expression, having one or multiple temporary variables is sensible to
ease understanding and maintenance.

Message Chains. If we have code like:

foo.getBar().getFoo().getThis().getThat().doSomething()

we have to consider accessing the target object directly.

Inappropriate Intimacy. Some classes know too much about other classes and should
therefore be broken up (use Move Method and Move Field, or Extract Class to
extract the common code into another class). Subclasses are an example for this
misbehavior, because they always know too much about their parent. In this case,
we can replace inheritance with delegation.

Comments. Comments are not evil by themselves, but are sometimes used as a deodor-
ant to cover bad code. Often we can remove the comments after doing some refac-
torings, because they are not needed anymore. The code should be self-explaining.
However, there are cases when we still should use comments: If we are unsure on
what to do or to explain why we did something.

These are only the most important bad smells that we can find in source code. This
gives us the idea of how badly the coding can be done. The best way to avoid refactorings
is to correctly design and extend your software project, having in mind that changes will
occur.

CHAPTER 2. PRELIMINARIES 7

Planet
Size

Distance Has a
to the Sun moon

small medium large near far moon no moon

Mercury x x x
Venus x x x
Earth x x x
Mars x x x

Jupiter x x x
Saturn x x x
Uranus x x x
Neptune x x x
Pluto x x x

Table 2.1: Solar System example. Table T of binary relations

2.2 Formal Concept Analysis

This section provides an introduction to Formal Concept Analysis [GW99] theory by
means of a practical example.

2.2.1 Overview

Formal Concept Analysis (FCA) [GW99] is a branch of lattice theory that allows us to
identify significant groups of elements (denoted as objects in FCA literature) that have
common properties (denoted as attributes in FCA literature)2.

We demonstrate the concepts and theory of FCA by means of a simple example: the
solar system. In this case, our elements will be the planets (Mercury, Venus, Earth, Mars,
Jupiter, Saturn, Uranus, Neptune, Pluto) and we consider 7 possible characteristics that
identify each one of the elements divided in 3 groups: size (small, medium, large); distance
to the sun (near, far); and possession of moons (moon, no moon). Table 2.1 shows the
relation between the planets and each property.

2.2.2 Context

In order to work, FCA needs a context setup. A context is defined as a triple containing
a set of elements (E), a set of properties (P) and a binary relation R between them (to
check if an element does or does not have a certain property).

In table T, the first column (the names of the planets) is the finite set of elements, and
the first row (the characteristics) is the finite set of properties. The binary relation R is
usually represented as a table T. Here we see, for instance, that Pluto is a small planet,

2In this document we use the terms element and property instead of object and attribute to avoid the
confusion of terms with object-oriented software development

CHAPTER 2. PRELIMINARIES 8

Planet
Size

Distance Has a
to the Sun moon

small medium large near far moon no moon

Mercury x x x
Venus x x x
Earth X X X
Mars X X X

Jupiter x x x
Saturn x x x
Uranus x x x
Neptune x x x
Pluto x x x

Table 2.2: Solar System example. A concept example in Table T

top ({Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto},Ø)
c10 ({Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto},{moon})
c9 ({Mercury, Venus, Earth, Mars, Pluto},{small})
c8 ({Jupiter, Saturn, Uranus, Neptune, Pluto},{far, moon})
c7 ({Earth, Mars, Pluto},{small, moon})
c6 ({Mercury, Venus, Earth, Mars},{small, near})
c5 ({Jupiter, Saturn},{large, far, moon})
c4 ({Uranus, Neptune},{medium, far, moon})
c3 ({Pluto},{small, far, moon})
c2 ({Earth, Mars},{small, near, moon})
c1 ({Mercury, Venus},{small, near, no moon})

bottom (Ø,{small, medium, large, near, far, moon, no moon})

Table 2.3: Concepts of the Solar System example

is far from the sun and has a moon 3.

2.2.3 Concepts

A concept is defined as a pair of sets of elements and properties such that they have
a maximal collection of elements sharing common properties. Graphically, this can be
represented as a maximal rectangle in the cross-table T (2.1). For example ({Earth,
Mars},{small, near, moon}) is a concept, as we can see in table 2.2, whereas ({Earth,
Mars},{small, near}) is not a concept, because it may contain more elements for these
properties, or more properties for these planets (as seen before).

Table 2.3 shows the complete list of concepts. It is important to note that concepts
are invariant against row or column permutations in the cross-table T.

3in fact, it is called Charon

CHAPTER 2. PRELIMINARIES 9

2.2.4 Concept Lattice

The set of all the concepts of a given context forms a complete partial order. With this
partial order, we can define that a concept (X0,Y0) is a subconcept of concept (X1,Y1)
if X0 ⊆ X1 (or, equivalently, Y0 ⊆ Y1)

For example: ({Uranus, Neptune},{medium, far, moon}) is a subconcept of ({Jupiter,
Saturn, Uranus, Neptune, Pluto},{far, moon}).

If we order all the concepts this way, we build the Concept Lattice. Figure 2.1 shows
the Concept Lattice for this example.

Top

9 10

76 8

54321

Bottom

'small'

'Jupiter'
'Saturn''Uranus'

'Neptune'
'Pluto'

'Earth'
'Mars'

'Mercury'
'Venus'

'no moon'

'far''near'

'moon'

'medium'
'large'

Figure 2.1: Concept Lattice of the Solar system example

Applying the concept-subconcept relation to all the concepts, we note that a most
general (concept without any properties) and a most specific (concept with all attributes)
concepts appear. These are called top and bottom concepts. The top concept represents
the Properties that all elements have, and the bottom concept represents the Elements
that have all the properties.

These superconcepts are generally empty. This means there is no element that has all
the properties and no property that all elements have (depending on the characteristics
chosen), or as we can see in table 2.1, in the case of top concept, there is no column with
marks for all the elements and in the case of bottom concept, there is no row with marks
for all the properties in the table.

CHAPTER 2. PRELIMINARIES 10

2.3 Delfstof

2.3.1 Overview

Delfstof 4 [MT04a] is a framework for VisualWorks Smalltalk that allows the creation of
tools to mine a system’s source code automatically and efficiently for relevant concepts
of interest, that are called source-code regularities. These regularities can be concerns
addresses in the code, design patterns, programming idioms, conventions adopted and
where and how they are implemented.

To realize this source code mining, Formal Concept Analysis is used. After executing
the mining, the results are filtered, classified and combined to present them to the user
in a more convenient way.

2.3.2 Mining for Source-Code Regularities

The mining is done following these steps:

1. Choose the elements and properties to compute the concept lattice

2. Compute the lattice

3. Filter irrelevant and redundant concepts

4. Classify the concepts

5. Combine and annotate concepts

The important contribution of this approach is the particular choice of elements, prop-
erties, filters and analyzers, and how they allow us to discover interesting regularities in
source code, independent of the application.

Choose elements and properties

To detect regularities, source-code entities such as classes, methods and method param-
eters are chosen as the elements.

As properties, simple substrings of the names of the source-code entities are generated.
Therefore, the concepts will group entities with similar names 5.

To limit the number of generated properties, not all the possible substrings are consid-
ered. The names of the classes, methods and parameters are split in substrings according

4Delfstof is a Dutch word which designates the result of a delving process. In English, the verb “to
delve” means “to make careful investigation for facts, knowledge, etc.”. Coincidentally, the pronunciation
sounds like the English “delve stuff” which is what the framework does.

5this approach relies firmly on naming conventions

CHAPTER 2. PRELIMINARIES 11

to the capital leters and other separators occurring in them. Also, substrings with mini-
mal conceptual meaning are discarded, such as: ‘with’, ‘from’, ‘the’, ‘object’, as well as
substrings that are too small (less than 3 characters). Colons, plurals and case difference
are also ignored when comparing substrings. For example, the following code:

#unifyWithDelayedVariable: inEnv: myIndex: hisIndex: inSource:

the substrings generated are: ‘unify’, ‘delayed’, ‘variable’, ‘env’, ‘index’, and ‘source’.

Compute the lattice

Applying the FCA algorithm to the elements and properties described before, generates
a very large concept lattice which groups elements that have the same substrings in the
names of their classes, methods and parameters.

Filter the concepts

The number of concepts found by FCA is of the same order of magnitude as the number
of considered elements. Here the number of concepts is reduced eliminating redundancy
and the irrelevant ones applying some filters.

The first one ignores all the concepts that have two or less elements (these concepts
are too small and do not provide relevant information).

Another filter ignores all concepts that share only one property (i.e. substring). This
filter discards some interesting concepts, but it eliminates many more irrelevant ones.

The third filter is more specific. It discards concepts that contain only classes (with
similar name) in the same hierarchy. This filter is based on the convention that classes
belonging to a same hierarchy, often have similar names.

Classifying the concepts

The concepts that remain after the filtering are rather unstructured. In this part, auto-
matic reorganization of the concepts is done for easier understanding and interpretation.
For better comprehension and visualization of the classifications, the remaining concept
lattice is flattened and shown directly in the StarBrowser [WD03], as a tree structure, as
we can see in figure 2.2.

Some groups of concepts are:

1. Single class concepts : groups concepts of which all elements are methods (or pa-
rameters of those methods) belonging to a single class;

2. Hierarchy concepts : groups classes, methods and parameters that belong to a same
class hierarchy;

CHAPTER 2. PRELIMINARIES 12

Case #elements #properties #raw #filtered time (sec)
Delfstof 756 (135) 237 617 126 5
StarBrowser 731 (52) 352 740 115 7
SOUL 1469 (111) 434 1188 281 22
CodeCrawler 1370 (93) 477 1419 327 24
Refactoring Browser 4779 (271) 729 4179 1234 414

Table 2.4: Results of Delfstof applied to Smalltalk source code

3. Crosscutting concepts : groups concepts of at least two different class hierarchies
(different from Object).

These classifications help us to have at first glance a general idea of the structure of
the application analyzed.

Combining and annotating concepts

By organizing the concepts, the structure of the original lattice is lost. Since there is
a lot of overlap between concepts that are nearby in the lattice, when reorganizing the
concepts this may lead to redundancy among concepts that get classified into different
classifications. That is why highly overlapping concepts are recombined into a single
nested one.

In addition, automatic regrouping and annotation is done to present the classifications
in a clearer way: different concepts related to the same class(es) are combined, meth-
ods are annotated to the classes they belong to, and concepts are annotated with their
properties.

2.3.3 Test Cases and Results

This particular application of the framework was applied to five different cases to detect
source code regularities: Delfstof, StarBrowser [WD03], SOUL [MBM03], CodeCrawler
[LD03] and Refactoring Browser [RBJ97], getting the results summarized in table 2.4.

SOUL is an interpreter for a Prolog-like language. Delfstof is the framwork itself.
StarBrowser and Refactoring Browser are advanced Smalltalk browsers and CodeCrawler
is a language-independent reverse engineering tool, which combines metrics and software
visualization.

The columns #elements gives the size of each case, i.e. the number of classes and
methods of each case. The number in parenthesis is the number of classes.

The column #properties is the number of substrings generated from the elements.

The column #raw shows the total number of concepts discovered by FCA, and column
#filtered shows the remaining concepts after applying the filters explained in 2.3.2.

CHAPTER 2. PRELIMINARIES 13

Figure 2.2: Results of Delfstof applied to Delfstof with Substrings

CHAPTER 2. PRELIMINARIES 14

Results

Delfstof applied to the cases shown before, discovered programming idioms, a basic level
of code duplication (and refactoring opportunities), and some design patterns [GHJV95].

The various programming idioms found were:

• Accessing methods, discovered thanks to the naming conventions. Although
most of them were discarded due to the application of the first filter.

• Polymorphic methods, that have the same name, in different classes, but in the
same hierarchy.

• Chained messages, group methods with its auxiliary methods in the same con-
cept. These chains are recognized by FCA since the auxiliary methods often have
a name that is similar to that of the originating method.

• Delegating methods, which delegate responsibility by calling a method with the
same name, even in the same class.

Some code duplication was also detected: several concepts contained methods that not
only have a similar name, but also a similar implementation. These are typical cases of
copy & paste code reuse. The way a concept containing duplicated code is classified, can
provide useful hints about which refactorings to apply. For example, for the concepts
classified as a single class concept, the duplication occurred in a single class, and an
extract method refactoring is appropriate; for the concepts classified in the hierarchy
concepts, a combination of extract method and pullup method refactorings seems more
suitable.

And finally, also thanks to naming conventions, some design patterns [GHJV95] were
found. For example, the Visitor pattern uses the convention that each visit method
defined by a visitor class encodes the name of the class being visited. As several other
patterns use similar naming conventions, Delfstof also detected occurrences of the Ab-
stract Factory, Builder, Observer, and Decorator design patterns.

CHAPTER 2. PRELIMINARIES 15

2.4 Parse-Tree Expressions

The process whereby a computer compiler takes parts of human written source code and
produces an internal structure that represents the correct parts of a program that can
be executed is what we call Parsing [Ken03]. We can represent this parsing in infinite
ways. In the following sections the most common will be discussed.

2.4.1 Parse Trees

A Parse Tree is a grammatical structure represented as a tree data structure.

The grammatical structure of a language 6 is a set of rules governing the use of the
language. Specifically, programming languages are considered formal grammars which
conform precisely to a grammar generated by a pushdown automaton with arbitrarily
complex commands. Note that there are an infinite number of grammars for any single
language and hence, every grammar will result in a different parse tree from a given input
sentence because of all the intermediate rules.

A tree data structure 7emulates a tree structure with a set of linked nodes. Each node
has zero or more child nodes. The node of which a node is a child is called its parent
node. A child has at most one parent; a node without a parent is called the root node.
Nodes with no children are called leaf nodes.

Parse trees contain the full input stream (i.e. code and comments), and they can be
navigated as a normal tree data structure to extract information about the source code.

Figure 2.3 is an example of a very simple grammar and its parse tree representation.
And in figure 2.4 we have an example of a parse tree representation of piece of pseudo-
code.

S -> NP VP
VP -> V NP
NP -> NAME
NP -> ART N

NAME -> Aliens
V -> attacked
ART -> the
N -> earth

S

NP VP

NAME V NP

Aliens

ART N

attacked the earth

Figure 2.3: A very simple grammar and parse tree example

6Any language: human, non-human and/or formal
7In graph theory, an acyclic graph

CHAPTER 2. PRELIMINARIES 16

statement
sequence

statement
sequence

statement

assignment

identifier := expression

identifier

1

a

; statement

iteration

WHILE condition DO statement

id rel id

b != a

assignment

identifier := expression

id

a

a op

+

id

1

 a := 1
 WHILE b != a
 DO a = a + 1

Figure 2.4: Pseudo-code Parse Tree Example

2.4.2 Abstract Syntax Trees

An Abstract Syntax Tree is a data structure representing the structure of a parsed sen-
tence in some language, often used as a compiler or interpreter’s internal representation
of a computer program while it is being optimized and from which code generation is
performed. The range of all possible such structures is described by the abstract syntax
[BYM+98].

This kind of tree is a far superior intermediate form precisely because of its insensitivity
to the grammar that produced it and because it highlights the structure of the language,
not the grammar. For example, it does not contain layout information or code comments
(as does the parse tree).

We can see the differences between these two parse trees in the example of figure 2.5.

2.4.3 Regular Parse-Tree Expressions

The Regular Parse-Tree Expressions are our own kind of Abstract Syntax Tree, to work
with code duplication detection.

These expressions are an adaptation of the parse trees that Smalltalk’s Refactoring
Browser [RBJ97] generates to work with Smalltalk source code.

Using the visitor design pattern, we can create parse trees that accommodate to our
needs. This personalization includes our own kinds of assignments, blocks, cascade mes-

CHAPTER 2. PRELIMINARIES 17

expression

expression

term

"+" term

factor

int_constant

"2"

"*"term

factor

int_constant

"3"

factor

int_constant

"4"

Add

"2" Mult

"3" "4"

Concrete Parse Tree Abstract Syntax Tree

Figure 2.5: Difference between a Concrete Parse Tree and an Abstract Syntax Tree

sages, arrays, literals, messages, methods, returns, sequences and variables.

We are going to build standard method trees, but with some internal changes, such as
leaving the variable, the literal and the statement nodes of the tree as wildcards instead of
giving them fixed values as in a regular AST. This is because to detect code duplication,
we need to compare structure of the methods, not the values. These wildcards have a
special generic syntax used by the refactoring browser code matcher, in order to match
the regular parse-tree expression nodes with the actual parse-tree nodes from the source
code.

All the varying parts of the patterns (the wildcards) will be converted to meta-variables.
Each meta-variable must begin with a ` character. Immediately following the ` character,
other character can be inserted to specify what type of node this meta-variable can match.
After all the special characters have been introduced, you must give a valid variable name.
The special characters currently supported are listed in table 2.5.

When matching a statement or statements, it will be necessary to match a whole
sequence node that includes both the temporaries in that sequence node as well as the
other statement nodes.

For example, if we want to parameterize the following code:

aDictionary at: key ifAbsent: [aDictionary at: key put: value]

we will need to make meta-variables for the dictionary, key, and the object added to
dictionary, since these are the only parts that can vary. Since all of these objects can
be a single variable or a sequence of messages sent to a variable, we need to use the @
character in their names. Also, since we should look for more matches inside each node,

CHAPTER 2. PRELIMINARIES 18

Character Type Comment Examples
` recurse whenever a match is found, “` ` @object foo”

into look inside this matched matches foo sent to any
node for more matches object, plus for each match

found look for more matches
in the ` ` @object part

@ list when applied to a variable node, “| ` @Temps | ...”
this will match a literal, variable, matches a list of temps
or a sequence of messages sent
to a literal or variable “` @.Statements”

matches a list of statements
when applied to a keyword in a
message, it will match a list of “` @object” matches any
keyword messages (i.e. any message node, literal node
message send) of block node

when applied with a statement “foo ` @message:` @args”
character, it will match a list of matches any message sent
statements to foo

. statement matches a statement in a “` .Statement” matches
sequence node a single statement

literal matches only literal objects “` #literal” matches any
literal (#(), #foo, 1, etc.)

Table 2.5: Special characters supported by the meta-variables.

CHAPTER 2. PRELIMINARIES 19

we also need to use the ` character. This results in the ` `@ prefix added to each name
(the first ` means a meta-variable). Besides these conditions, we also have to remember
that the at: ifAbsent: message may have temporary variables, and other statements
in the ifAbsent: block. Using this prefixes, we get the following expression:

` ` @aDictionary at: ` ` @key

ifAbsent:

[| ` @Temps |

` ` @.Statements.

` ` @aDictionary at ` ` @key put:` ` @value]

Some example representations of these trees is shown in figure 2.6 with some respective
matches for each pattern.

RBMessageNode(‘@x0 isNil ifTrue: [‘@x10 := ‘@x2 defaultStringValue])
Matches:
affiliation1 isNil ifTrue: [affiliation1 := self defaultStringValue]
and

 author isNil ifTrue: [author := self defaultStringValue]

RBAssignmentNode(‘@x1 := ‘@x2 parseStatements: ‘@x3)
Matches:

 node := self parseStatements: false
and

 leaf := self parseStatements: true

Figure 2.6: Example of Regular Parse-Tree Expression with wildcard nodes and its
matches

This parametrization is used because it has all the necessary elements to detect basic
code duplication cases:

• Extract Method,

• Pullup Method,

• Extract Class in Same Hierarchy, and

• Extract Crosscutting Class

We should note that this is not the only parametrization possible. An even more
advanced one is possible, that can give us a finer grained detection of code duplication.
It includes parametrization not only of the statements, variables and literals, but also
of the messages, assignments, blocks, and method nodes available in the Refactoring
Browser.

CHAPTER 2. PRELIMINARIES 20

2.5 Related Work

In the last few years, many researchers have been working with the subjects that we
mention: Code Duplication Detection, Refactorings and Formal Concept Analysis applied
to Software Engineering. We will reference some of the work already done.

First, let’s mention the work done in the Refactoring area. The first reference that we
should mention when talking about Refactorings is the book written by Martin Fowler
[FBB+99], which is considered as the most important book in the area, because it shows
almost all the possible bad smells available and the best way to refactor them out, but
always at a theoretical level, with some examples. All the work related to refactoring
includes this reference, including the important survey [MT04b].

In this subject, one of the most important tools available is the Smalltalk’s Refactoring
Browser [RBJ97], that already has the ability of refactoring Smalltalk source code, if you
know what to do and where to do it.

Our refactoring work starts with the overview of existing research in this field, and
the existing work on code duplication detection, such as [KG03] that gives a general
taxonomy on clone detection, but does not give any detail on what kind of duplication
was detected or how to refactor it out. The same happens in [Rys02] which compares
clone detection techniques with fingerprints8.

One approach tries to detect clones in a way that is independent from the language in
which we are working [DRD99], not depending on parsers, only using strings.

We know that there’s no unique way to detect clones. So the question on which one
is better arises. This document [RC03] compares the techniques simple line matching,
parameterized matching, and metric fingerprints, getting the following results:

• Simple line matching is best suited for a first crude overview of the duplicated code

• Metric fingerprints work best in combination with a refactoring tool that is able to
remove duplicated subroutines

• Parameterized matching works best in combination with more fine-grained refac-
toring tools in the statement level

The paper [BYM+98] shows us how to detect exact and near miss clones over arbitrary
program fragments in program source code using abstract syntax trees, but do not suggest
practical means to remove the detected clones. They claim that since their method oper-
ates in term of the program structure, clones could be removed by mechanical methods
producing in-lined procedures or standard macros.

In the Formal Concept Analysis field, an application described in [Buc03] uses FCA
to detect software patterns, which may help to rediscover design patterns and allow
redocumentation of existing systems. This approach is similar to the one in [MT04a],

8Fingerprints are unique identifiers for each method. The more similar the identifiers are, the more
duplicated code exists between them

CHAPTER 2. PRELIMINARIES 21

where FCA is used to detect source code regularities: concerns addresses in the code,
design patterns, programming idioms and coding conventions, and where they have been
implemented.

This last document is the base to our work, since it introduces the Delfstof framework,
that we extend to work with regular parse-tree expressions, and detect code duplication.

We may note that despite all the research available in the different areas (Refactoring,
FCA and Code Duplication), none of them includes all three.

Our approach takes the best of FCA, to detect code duplication and propose possible
refactorings, as we will see in the following sections.

Chapter 3

Source Code Mining for
Refactorings

This section will explain step by step the process of customizing the Delfstof framework
for our purpose. And also, it will explain step by step how this extension works. As
an extension, we have to follow the predefined steps that the framework executes to
create the Elements and the Properties, calculate the Concept Lattice; Filter, Classify
and Combine the concepts, and accommodate them to achieve our goal.

3.1 Elements and Properties

3.1.1 Overview

To execute the Formal Concept Analysis algorithm and calculate the lattice, we need to
create Elements and Properties of some kind.

Since our goal is to detect code duplication in Smalltalk source code, we will work with
Regular Parse-Tree expressions, as seen in section 2.4.3.

As elements we choose all the methods of all the classes in a certain software project,
and as properties we choose the regular parse-tree expressions of those methods.

The idea is to group in a certain concept all the methods that have similar regular
parse-tree expressions. Our motivation to use this kind of technique is because Smalltalk
has a very good management of its structure, specially the parse trees of the Refactoring
Browser which we can reuse and accommodate to our needs.

We may note the first difference with the other existing application of the Delftsof
framework, our approach does not rely on any naming convention, since the comparison
takes place at structure level, and not by names and strings.

22

CHAPTER 3. SOURCE CODE MINING FOR REFACTORINGS 23

3.1.2 The Parse-Tree Nodes

The elements that we can create are of only one kind. The methods are always the same
in the respective software project, and have the same fixed parse-trees. Our variable
part are the properties that we generate. Depending on the type of generic parse-tree
expression generated, the results will be different in some way. The Refactoring Browser
allows us to use the Smalltalk tree structure through a visitor pattern, that gives us the
possibility to personalize various types of nodes of the parse-trees. They are:

Assignment Node. This is the particular node of an assignment:

identifier := expression

where the identifier can be an instance variable, class variable, temporary variable
that will refer to the object answered by the expression.

Variable Node is the identifier part of the Assignment node. In other words, the left
part of an assignment, which can be of the instance, the class or temporary.

Block Node is the tree representation of Smalltalk’s blocks of code between square
brackets ‘[]’ which are used to build control structures.

Cascade Node expressions are a series messages separated by semicolons (;), all of
which are sent to the “receiver”

Literal Nodes are constant expressions such as numbers, characters, strings and sym-
bols.

Literal Array Node is the abstraction of an array of literals, represented by #(literal1

literal2 ... literalN).

Message Nodes are the nodes of Unary (no arguments), Binary (one argument) or
Keyword (one or more arguments and use keywords followed by colon before each
argument) messages sent to Smalltalk objects.

Method Node is the most generic node 1. It contains the nodes for the entire method
definitions.

Optimized Nodes are some control-flow messages which match certain patterns. those
are:

• ... ifTrue: [...]

• ... ifFalse: [...]

• ... ifTrue: [...] ifFalse:[]

• ... ifFalse: [...] ifTrue:[]

• ... and: [...]

1In our case, the parent node of each tree

CHAPTER 3. SOURCE CODE MINING FOR REFACTORINGS 24

• ... or: [...]

• [...] repeat

• ... timesRepeat: [...]

• ... to: ... do: [:index | ...]

• ... to: ... by: ... do: [:index | ...]

• [...] whileTrue: [...]

• [...] whileFalse: [...]

Return Node is the message that returns a value to the expression that called it. By
default it is self, but it can be overridden by placing a caret (ˆ) symbol in front
of a statement.

Sequence Node are expressions separated by periods which are executed in sequence.
They are usually used to mark end of statements in Smalltalk. Its representation
is:

expressionSequence ::= expression(.expression)∗(.)opt

The names of the nodes give us the first idea of tree representation. A node may
contain zero, one or more children nodes. For example, a method node can contain a
variable node, which can be an assignment node and a block node, which can also have
a block, a variable, and a return node.

Our personalization includes making some of these nodes wildcards to match them with
any piece of code that has a similar structure, but that has any string in the respective
node. The Refactoring Browser has its own representation of these wildcards, as we saw
on section 2.4.3, and in table 2.5.

Of the available nodes from the Refactoring Browser, we see that most of them refer
to structure, which is exactly our point of comparison. The nodes that we will make
wildcards are the Variable, and Literal nodes, leaving all the others fixed. We want
the fragments of code to be similar, except for the literals and identifiers used. Also, we
do not consider the non-functional information, such as comments, for the comparisons.
Note that this is our approach for the comparison. More advanced comparisons can be
made leaving other nodes of the tree variable and/or fixed.

3.1.3 Generation of Elements and Properties

In Delfstof, everything starts with a context. Before the execution you set all the param-
eters where you wish to execute the source code mining. They include the source code
itself, the elements, the properties, some attribute filters, concept filters, basic analyzers,
and classifications.

The first step we need to do is collect all the methods of all the classes of the particular
Smalltalk source code that we want to mine. We give as a parameter to the framework

CHAPTER 3. SOURCE CODE MINING FOR REFACTORINGS 25

the name of the respective Package or Bundle to be analyzed. Given this parameter, the
framework starts initializing the elements and the properties we will use in our mining
process.

Smalltalk has a straightforward way of collecting this information. The createObjects2

function of the AttributeCreation3 class does all the work:

createObjects

^ (OrderedCollection withAll: self consideredClasses)

addAll: self consideredMethodDefinitions;

yourself

Here self refers to the package or bundle in which we are working. We collect
all the classes, and of all those classes we take its methods, and we add them to the
OrderedCollection.

Once all the methods have been collected, we go over all of them one more time and
build the possible parse-trees for these methods. These parse trees will contain the wild-
card nodes with the notation mentioned in section 2.4.3, and in table 2.5. To avoid
confusion, every wildcard node has a number assigned incrementally, to differentiate
them from each other. For example

RBAssignmentNode(` @x1 := ` @x2 implementingClass parseTreeFor: ` @x3 selector)

and

RBReturnNode(^ ` @x4 traverseNode: ` @x5 inClass: ` @x6 implementingClass)

are representations of two statements. The first one is an assignment, and the second
a Return statement, each one with three variable parts.

The process putting together all the elements and properties ends when all the methods
and its respective regular parse-tree expressions have been generated.

3.1.4 A First Filter

As you may notice, if we consider all the methods of all the classes of a certain software
project, and of all those methods we generate all the possible parse-tree expressions, we
get an extremely big collection of elements, and an even bigger collection of properties.

The first filter that we implement in our application is that we do not generate all the
possible parse trees. We consider that only methods with two or more statements are
worthy of having their parse-tree built. This filter leaves out some interesting parse-trees,
but we consider that they do not interfere with our goal of code duplication detection.

2Object refers to the Elements
3Attribute refers to the Properties

CHAPTER 3. SOURCE CODE MINING FOR REFACTORINGS 26

RPTE-1 RPTE-2 · · · RPTE-N

Method1
Method2

...
MethodN

Table 3.1: FCA table to be calculated.

For example, it leaves out accessing methods, that only initialize a variable or return its
value.

Our tradeoff is that this filter eliminates more useless things than it leaves useful
things, and our number of properties considerably decreases, making our lattice smaller
and decreasing the time that takes to calculate it, as we will see in the following section.

3.2 Concept Lattice

3.2.1 Building the Lattice

Once we have created the elements and the properties, we use them as input for the
Formal Concept Analysis algorithm in VisualWorks Smalltalk4. In one hand, we have
the methods of the classes of the respective software project, and on the other hand we
have a collection of regular parse-tree expressions (or RTPE) which we have to check
with the available methods.

The algorithm will fill table of binary relations similar to table 3.1. In an efficient way,
what this algorithm does is check every tree with every available method and see if they
match in the abstract structure of the regular parse-tree expression.

For example, the following methods:

displayOverridden MethodsConceptsForDrawingEditor

| ctx |
ctx := ConceptContext fromBlocksForObjects: [self applicationClassesFrom:

Refactory.HotDraw.DrawingEditor]

relations: [:class | self overriddenMethodsIn: class].

SCG.Classifications.ExtentionalClassification root

add: ctx createConcepts createView

displayOverriddenMethodsConceptsForFigure

| ctx |
ctx := ConceptContext fromBlocksForObjects: [self applicationClassesFrom:

Refactory.HotDraw.Figure]

relations: [:class | self overriddenMethodsIn: class].

4Implemented by Fred Spiessens: fsp@info.ucl.ac.be

CHAPTER 3. SOURCE CODE MINING FOR REFACTORINGS 27

RPTE-1 RPTE-2 · · · RPTE-N

Method1 X X
Method2

... X
MethodN X X

Table 3.2: FCA table with matched methods and trees.

SCG.Classifications.ExtentionalClassification root

add: ctx createConcepts createView

displayOverriddenMethodsConceptsForDrawing

| ctx |
ctx := ConceptContext fromBlocksForObjects: [self applicationClassesFrom:

Refactory.HotDraw.Drawing]

relations: [:class | self overriddenMethodsIn: class].

SCG.Classifications.ExtentionalClassification root

add: ctx createConcepts createView

match the following regular parse-tree expressions:

RBMessageNode(` @x8 root add: ` @x9 createConcepts createView)

RBAssignmentNode(` @x1 := ` @x2 fromBlocksForObjects:

. [` @x3 applicationClassesFrom: ` @x4]

. relations: [:` @x5 | ` @x6 overriddenMethodsIn: ` @x7])

and it will mark the field where the method and its abstract representation meet.

The first result that the algorithm will give us is a table similar to 3.2, where we have
all the methods with their matching regular parse-tree expressions.

3.2.2 Building the Concepts

After filling the table with all the matches between methods and trees, the algorithm
builds the maximal groups of elements and properties, known as concepts.

In a group, every element of the concept has a particular property, and every property
of a concept belongs to a certain kind of elements. We are looking for maximal groups
of elements. This means that in a concept, no other element (outside the concept) has
those same properties, and that no other property (outside the concept) is shared by all
the elements.

As we can imagine, this process gives us a very large number of concepts. The next
step is to filter them to start the classification.

CHAPTER 3. SOURCE CODE MINING FOR REFACTORINGS 28

3.3 Concept Filtering

As we will see in our tests of section 4, the number of concepts discovered by the Formal
Concept Analysis algorithm, before applying any filtering, is of the same order of magni-
tude as the number of considered elements. This means, that very few elements share the
same properties at first, and if we gave the information like that, the software engineer
would have to look at a significant number of concepts in order to try and understand
the source code.

Fortunately, there is a lot of redundancy and useless concepts, or ‘noise’. To reduce
some of this noise, and reduce the number of useless concepts, we apply some simple
filters.

The first filter we apply to the concept lattice generated ignores all the concepts that
contain one or zero elements, since these concepts are generally too small to provide
relevant information. For code duplication, we need concepts that have at least two
elements or methods sharing some parse-tree. It is useless to have a concept with one
method, since it is not duplicated with any other one.

A second filter applied ignores all the concepts that share only one property (in our
case, one regular parse-tree expression). If we are interested in detecting code duplication,
we are looking for code with more than one parse-tree structure duplicated, not only one
statement, which can be duplicated by coincidence, like a variable assignation, a message
or a return statement.

Notice that these two filters are independent of the kinds of elements being analyzed.
We customized them as a first step to getting the best results possible in our goal of
discovering code duplication.

3.4 Concept Classification

After building the elements (all the methods), the properties (the regular parse-tree
expressions), and applying the first filters, we get simple sets of rather unstructured
concepts. Therefore, we need to reorganize these remaining concepts automatically in a
way that is easier for the software engineer to interpret and analyze.

The idea of classifying the concepts is similar to flattening the remaining concept
lattice, so it can make more sense to the person analyzing it.

The concept classifications are shown represented as a tree in the StarBrowser[WD03].

Our classifications are based on four main possible code duplication refactorings, ar-
ranging together all the concepts that can be refactored in the same way. They are:

Extract Method. This classification groups all the concepts which have all the similar
parse-tree expressions in different elements or methods, and belong to the same
class. These concepts can be fixed with the Extract Method refactoring.

PullUp Method. Here we group the concepts in which we have a similar method, with

CHAPTER 3. SOURCE CODE MINING FOR REFACTORINGS 29

the same name, belonging to different classes but in the same hierarchy, and that
does not exist in the respective superclass. This is the case we can fix with the
PullUp Method refactoring.

Extract Class in Hierarchy. This concept is similar to the PullUp Method refactoring,
with the difference that the method already exists in the superclass, and it cannot
be pulled up. In this case, we can refactor it out using Extract Class in Hierarchy,
where we create an auxiliary class containing the duplicated methods, and adding
the calls to the methods using it, avoiding the duplication.

Extract Crosscutting Class. In this classification, we group together all the concepts
that have similar methods, but belong to two different hierarchies. We explicitly
require two or more different hierarchies to be involved. We verify this requirement
checking that the most specific common superclass of the considered classes is
Object and that none of the methods in the concept are defined on the Object

class itself (or it would be included in the Extract Class in Hierarchy classification).

This taxonomy allows the software engineer to understand and clearly see what kinds
of code duplications exist in the current software system, and better yet, know what kind
of refactoring to apply to them, so he or she can get a better and more understandable
software system.

Chapter 4

Experiments

This section will show some practical applications of our tool, explained in section 3.

We will analyze two experiments made with existing Smalltalk source code: the Delfstof
framework and the Refactoring Browser. After analyzing the results, we will discuss the
steps to follow to apply the refactorings.

4.1 Delfstof Experiments

This experiment will analyze the Delfstof framework itself, that is still under development,
looking for code duplication to improve its design and understandability.

4.1.1 Setup of the Experiment

As we saw in chapter 3, we have to create a context where we will execute our mining.
In this example, the only difference with the general code duplication mining context
explained in section 3.1.1 is the package of the Smalltalk image where we will work.
The name of the package in this case is ConceptLattices, which includes all the Delfstof
framework and the Formal Concept Analysis source code, and is considered to be a
small/medium sized package.

4.1.2 Results for Delfstof

The results of executing the mining in the Delfstof framework, are the following:

• Number of Elements: 663 methods (in 163 classes)

• Number of Properties: 241 parse-trees

• Number of raw Concepts found: 156

• Number of Filtered Concepts found: 6

30

CHAPTER 4. EXPERIMENTS 31

• Time of execution: 1.6 seconds

We can see the results tree show in StarBrowser in figure 4.1

Figure 4.1: Results of Delfstof mining in StarBrowser

In this case, the tool found code duplication that fitted in three of the four classifications
available for code duplication refactoring possibilities:

• Extract Class In Same Hierarchy (1 concept)

• Extract Method (3 concepts), and

• Extract Crosscutting Class (2 concepts)

Looking inside these classifications, we get the results described as follows.

Extract Class In Same Hierarchy. Here we find a hierarchy of three subclasses and
a superclass that have the same method definition #acceptMethodNode: which

CHAPTER 4. EXPERIMENTS 32

CloneRefactoringAttributeVisi
tor

#acceptMethodNode:

AttributeGeneratorVisitor

#acceptMethodNode:

GenericLeafAttributeGenerat
or

#acceptMethodNode:

DeepParseTreeAttributeVisit
or

#acceptMethodNode:

Figure 4.2: Existing Class structure in Delfstof

belongs to the visitor we use to create the parse trees. We can see the representation
in figure 4.2.

The implementation of the method in the subclasses is exactly the same, so we can
think about applying the PullUp Method refactoring, but the method already exists
in the superclass AttributeGeneratorVisitor with an implementation different
from the subclasses.

The Class Extraction in Same Hierarchy refactoring proposed in this case, is in-
tended to create an auxiliary class, so we can move the implementation to it and
make the calls (send the messages) to the new implemented method, as we see in
figure 4.3. This class contains the implementation of the methods, and the sub-
classes will have to change to call the unique method implementation, to avoid the
duplication of code.

In this first case, we successfully detected the code duplication, and proposed a
refactoring that could be applied at any time to eliminate the existing duplication

Extract Method. The second classification detected three cases of possible method
extraction.

In the first case, also in the AttributeGeneratorVisitor class, the algorithm
found three methods that have a similar implementation, only differing in one
parameter. The refactoring proposed by [FBB+99] in this case is Extract Method
with the different parts of the differing statements passed to the new method as a
parameter, and referenced by the existing ones, as we can see in figure 4.4

This is one of the most common refactorings, and also one of the easiest to imple-
ment.

The case detected in the SourceCodeReasoning class is different to the one just
mentioned. The methods found, despite having the same structure, each one of
them depend on different instance variables, which would make the Extract Method
refactoring inappropriate. This is the reason why we show the refactorings in this

CHAPTER 4. EXPERIMENTS 33

CloneRefactoringAttributeVisi
tor

#acceptMethodNode:

AttributeGeneratorVisitor

#acceptMethodNode:

GenericLeafAttributeGenerat
or

#acceptMethodNode:

DeepParseTreeAttributeVisit
or

#acceptMethodNode:

AuxiliarClass

#acceptMethodNodeImplemented:

Figure 4.3: Proposed refactoring Delfstof

AttributeGeneratorVisitor

#nextLiteralVariableName
#nextStatementVariableName
#nextVariableName

AttributeGeneratorVisitor

#nextLiteralVariableName
#nextStatementVariableName
#nextVariableName

#nextNameGenerator: type

Figure 4.4: Extract Method refactoring

CHAPTER 4. EXPERIMENTS 34

way, to see that code duplication may exist, but not always it is possible to refactor
it out.

Extract Crosscutting Class. This classification includes two of the found concepts.

One of the concepts found duplicated code from twenty methods in ten different
classes, and the other found three methods from three different classes. In section
3.1.1, we mentioned that we only built the regular parse-tree expressions for those
methods with two or more statements. This is the case with two statements that
would need a finer filtering. The algorithm detected all these classes that had two
statements in common, but all where lazy initializations, and a return statement
at the end of the methods.

The first twenty methods had the RBAssignmentNode(` @x10 := ` @x11 new) and
the RBReturnNode(^` @x16) nodes in common, meanwhile the other three had
the RBAssignmentNode(` @x1 := ` #x2) and the RBReturnNode(^` @x16) nodes
in common.

In this case, refactoring is not a good idea, but at least we found the duplications
as an idea on how to make finer filtering in the future.

4.2 Refactoring Browser Experiments

This experiment will analyze the Refactoring Browser source code, looking for code du-
plication, to see that even in a tool that has been designed to work with refactorings, has
its own problems of code duplication.

4.2.1 Setup of the Experiment

In this experiment, our setup includes a context that is similar to the one seen in chapter
3, but including the source code of the Refactoring Browser. The name of the package
is RefactoringBrowser, and includes all the source code of this application, which is
considered to be of large size.

4.2.2 Results for Refactoring Browser

The results of executing this application in the Refactoring Browser, are the following:

• Number of Elements: 4503 methods (in 271 classes)

• Number of Properties: 3718 parse-trees

• Number of raw Concepts found: 2499

• Number of Filtered Concepts found: 189

CHAPTER 4. EXPERIMENTS 35

• Time of execution: 2 minutes and 37 seconds

We can see the results tree show in StarBrowser in figure 4.5

Figure 4.5: Results of RefactoringBrowser mining in StarBrowser

In this experiment, the tool found cases of all four possible code duplication classifica-
tions:

• Extract Class In Same Hierarchy (17)

• Extract Method (17)

• PullUp Method (6), and

• Extract Crosscutting Class(51)

Since the Refactoring Browser is a very large application, we will explain some of
the discovered and classified concepts, as well as the possible refactorings applicable to
improve the design of the application.

CHAPTER 4. EXPERIMENTS 36

Extract Class In Same Hierarchy. This classification found some code duplication
in different classes in the same hierarchy, which cannot be pulled-up, but can be
extracted to an auxiliary class. An example is the method #editorClass of the
classes MenuViewer, IconViewer, and CanvasViewer as we can see in figure 4.6.
They share the same implementation, differentiating only in one parameter. This
difference can be passed as a parameter to the new function called, similar to the
diagram 4.3 shown in the previous example, but with a parameter of the different
part.

Figure 4.6: Duplicated code in class MenuViewer, IconViewer and CanvasViewer respec-
tively

Extract Method. In this bigger project we find two different possibilities of applying
the Extract Method refactoring. We have classes with methods that are exactly the
same, and classes with methods that share some of its statements.

Both cases can be refactored extracting an auxiliary method including the dupli-
cated code and adding a call to that method in the right position of the existing
method, where the cloning occurs.

In the class VariableEnvironment, we have three methods that are exactly the
same, maybe because they have similar behavior, but in that case, we should cen-
tralize the implementation. These methods are: #addClass: instanceVariable:,
#addClass: instanceVariableReader:, and #addClass: instanceWriter:, as

CHAPTER 4. EXPERIMENTS 37

we can see in figure 4.7. The bodies of these methods, as in the previous experiment,
can be replaced by a call to another method that contains the full implementation,
avoiding the duplication of code.

Figure 4.7: Duplicated code in methods of VariableEnvorinment class

Something a little different occurs in class BrowserCodeTool, where the methods
#createInstVar, #inlineParameter, #renameTemporary, #removeParameter, and
#bindTight, where the methods share two large statements, which can be perfectly
refactored in another method. We can see them in figure 4.8.

Note that these methods depend on a temporary variable node, that we can move
together with the statements to another method, since it is only used between them.

PullUp Method. As we saw in the previous example, these classification includes sim-
ilar method of in different classes in the same hierarchy, and also the method does
not exist in the super class. That is the case for the method #postcopy, shown
in figure 4.9. This methods exists in the classes RBMessageNode, RBBlockNode,
and RBMethodNode, in the hierarchy of class RBMethodNode. This method could be
moved to this last class, and when called, it will look in the hierarchy of the classes,
finding it in the superclass, avoiding the existing copy.

Extract Crosscutting Class. For this classification, something particular happened.
All the possible methods that could be extracted in crosscutting classes, first had
to be refactored using ExtractMethod in all the classes involved, then the method
could be extracted in an auxiliary class which would replace the duplicated code.

This behavior is common in almost all the classifications. We find code that is not
completely duplicated between different methods in different classes of the same
or different hierarchies. According to Martin Fowler in [FBB+99], the correct way
to refactor the code is by steps. First extract the duplicated code in an auxiliary
method, then extract that method to the respective auxiliary class, which can be
called by all the others that need the extracted implementation.

CHAPTER 4. EXPERIMENTS 38

Figure 4.8: Duplicated code in methods of BrowserCodeTool class

CHAPTER 4. EXPERIMENTS 39

Figure 4.9: Code duplication in the hierarchy of class RBProgramNode

We group the code duplications directly in the ultimate classifications, to clearly
have the idea of what is that we want to refactor, and to see the goal of applying
the refactorings.

Chapter 5

Conclusion

In this chapter, an overview of this document and the future work is provided. The main
investigation questions are revisited, and the methodology used is discussed, analyzing
the contribution of this approach. Finally, directions for future work are presented.

5.1 Summary

In this document, an approach for code duplication detection and classification for propos-
ing refactorings is given and demonstrated with examples.

This work is done as an extension of the existing Delfstof framework, for VisualWorks
Smalltalk, which uses the theory of Formal Concept Analysis for code duplication detec-
tion.

This formalism groups sets of elements according to some kinds of properties. In our
case the elements are the methods of a particular software project, meanwhile for the
properties we choose a special kind abstract syntax tree with the identifiers and literals
nodes as wildcards. We call it regular parse-tree expression.

The regular parse-tree expressions are matched to the methods, looking for similar
structures. If a method matches a particular parse-tree expression, we see that it has the
same structure, and can be grouped in a single concept by the formal concept analysis
algorithm.

After executing the formal concept analysis algorithm, a finer filtering is necessary to
group similar concepts together. What we looked for is grouping together the different
concepts that share the same possible kind of code duplication refactorings, such as
Extract Class in Same Hierarchy, Extract Crosscutting Class, PullUp Method, and Extract
Method. These concept classifications can be shown flattened as a tree structure in
VisualWorks Smalltalk’s StarBrowser.

This approach was tested on two software projects: Delfstof itself and the Refactoring
Browser. With the filters implemented, interesting code duplications of the four men-
tioned kinds were found. They were not applied, just proposed in case that some software

40

CHAPTER 5. CONCLUSION 41

engineer would like to improve the design and understandability of them.

Although the filtering and the property generation can be improved in many ways, this
gives us a very good first look at duplicated code in existing software projects, which we
can improve by applying refactorings to eliminate the code duplication bad smells.

5.2 Contribution

Software engineering and Formal Concept Analysis have been working together since
a long time. We have seen it applied to reengineer class hierarchies, to analyze object-
oriented framework reuse,to support software maintenance and object-oriented class iden-
tification tasks, and to detect regularities in source code. In this last application, some
of the regularities are a basic level of code duplication.

Our contribution applies the mathematical technique of Formal Concept Analysis to
software engineering, using it to detect code duplication not at the usual string level, but
at a higher structural level. We have a very special and particular way in which we create
the elements and the properties to use as input for the formal concept analysis algorithm,
and also a unique way to filter the concepts and group them together automatically
to show them ordered in a way that is easier for the software engineer to see where
the duplications take place, and also facilitate the possibility of applying the proposed
refactorings.

This approach is better than other we have seen, such as the other tool made for the
delfstof framework, which looks for regularities in source code. That approach depends on
strings and coding conventions, and in general, string based techniques, and ours depends
only on comparing similar structures, even using the same framework to do the process.
Other approaches have also tried to detect code duplication using as a parameter the
Duplicated Lines of Code (DUPLOC), but since they work with Lines of Code, they can
be tested only in languages that save their source code in text files, such as Java, C and
C++, and not in languages like Smalltalk that works with a full environment image.

As we can see, our approach does the work it should, and it does it very well auto-
matically finding things that to a programmer could take many hours or even days to
detect

CHAPTER 5. CONCLUSION 42

5.3 Future Work

The important aspects where this approach can be improved are improving the filtering
of the concept classifications found, make it more fine grained so that we can get even
better results and maybe apply them automatically, without asking the user to execute
it.

We also see that is perfectly possible to apply this approach to other programming
languages, such as Java, C or C++, since they also have working environments that can
be read from Smalltalk and analyzed to detect duplicated code.

A very interesting possible future work application that has to do with code duplication
is the detection and refactoring of Aspects [KLM+97] as we can see in [Hir02], in [Lad03]
and in [vDMM03].

Bibliography

[Buc03] Frank Buchli. Detecting software patterns using formal concept analysis. Mas-
ter’s thesis, Institut für Informatik und angewandte Mathematik, September
2003. 20

[BYM+98] Ira Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lor-
raine Bier. Clone detection using abstract syntax trees. In Proceedings of
ICSM’98. IEEE, November 1998. 16, 20

[DG03] Uri Dekel and Yossi Gil. Revealing java class structure with concept lattices.
Master’s thesis, Israel Institute of Technology, February 2003.

[DRD99] Stéphane Ducase, Matthias Rieger, and Serge Demeyer. A language indepen-
dent approach for detecting duplicated code. IEEE International Conference
on Software Maintenance, page 109, September 1999. 1, 20

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Object Technology.
Addison-Wesley, 1999. 4, 5, 20, 32, 37

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley,
1st edition, 1995. 14

[GW99] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical
Foundations. Springer-Verlag, January 1999. 7

[Hir02] Robert Hirschfeld. Aspect-oriented programming with aspects. Technical
report, DoCoMo Communications Laboratories Europe, April 2002. 42

[Ken03] John Kennedy. Parse trees. Technical report, Mathematics Department,
Santa Monica College, 2003. 15

[KG03] Cory Kapser and Michael W. Godfrey. Toward a taxonomy of clones in source
code: A case study. Technical report, Software Architecture Group (SWAG),
School of Computer Science, Univertisy of Waterloo, 2003. 1, 20

[KLM+97] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented program-
ming. In Mehmet Akşit and Satoshi Matsuoka, editors, Proceedings European

43

BIBLIOGRAPHY 44

Conference on Object-Oriented Programming, volume 1241, pages 220–242.
Springer-Verlag, Berlin, Heidelberg, and New York, 1997. 42

[Lad03] Ramnivas Laddad. Aspect oriented refactoring series. http://www.

theserverside.com/articles/, December 2003. 42

[LD03] Michele Lanza and Stephane Ducasse. Codecrawler - lessons learned in build-
ing a software visualization tool. In 7th European Conference on Software
Maintenance and Reengineering, pages 409 – 418. IEEE Computer Society,
2003. 12

[MBM03] Wolfgang De Meuter, Johan Brichau, and Kim Mens. SOUL Manual. Pro-
gramming Technology Lab, Vrije Universiteit Brussel, draft edition, Decem-
ber 2003. 12

[MT04a] Kim Mens and Tom Tourwé. Conceptual code mining - mining for source-
code regularities with formal concept analysis. to be published in ESUG 2004
Journal, 2004. 10, 20

[MT04b] Tom Mens and Tom Tourwé. A survey of software refactoring. IEEE Trans-
actions on Software Engineering, 30, February 2004. 4, 20

[Opd92] William Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Uni-
versity of Illinois at Urban-Champaign (UIUC), 1992. 4

[RBJ97] Don Roberts, John Brant, and Ralph Johnson. A refactoring tool for
smalltalk. In Theory and Practice of Object Systems, vol. 3, no. 4, 1997.
12, 16, 20

[RC03] Filip Van Rysselberghe and Serge Cemeyer. Evaluating clone detection tech-
niques. Technical report, Lab On Re-Engineering, University of Antwerp,
2003. 20

[Rys02] Filip Van Rysselberghe. Detecting duplicated code using metric fingerprints.
Master’s thesis, University of Antwerp, 2002. 20

[TCBE03] T. Tilley, R. Cole, P. Becker, and P. Eklund. A survey of formal concept
analysis support for software engineering activities. In Gerd Stumme, editor,
Proceedings of the First International Conference on Formal Concept Analysis
- ICFCA’03. Springer-Verlag, February 2003. to appear.

[Ton04] Paolo Tonella. Formal concept analysis in software engineering. In 26th
International Conference on Software Engineering (ICSE), pages 743–744.
IEEE, May 2004.

[vDMM03] Arie van Deursen, Marius Marin, and Leon Moonen. Aspect mining and
refactoring. Technical report, Software Evolution Research Lab - CWI and
Delft Univ. of Technology, September 2003. 42

http://www.theserverside.com/articles/
http://www.theserverside.com/articles/

BIBLIOGRAPHY 45

[WD03] Roel Wuyts and Stéphane Ducasse. Unanticipated integration of development
tools using the classification model. In Journal of Computer Languages, Sys-
tems and Structures, pages 63–77, 2003. 11, 12, 28

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Duplicated Code
	Why does Code Duplication exist?
	Impact of Duplicated Code
	Position of this Document
	Overview

	Preliminaries
	Refactoring
	What is Refactoring?
	Brief History
	Unit Testing
	Bad Smells in Code

	Formal Concept Analysis
	Overview
	Context
	Concepts
	Concept Lattice

	Delfstof
	Overview
	Mining for Source-Code Regularities
	Choose elements and properties
	Compute the lattice
	Filter the concepts
	Classifying the concepts
	Combining and annotating concepts

	Test Cases and Results
	Results

	Parse-Tree Expressions
	Parse Trees
	Abstract Syntax Trees
	Regular Parse-Tree Expressions

	Related Work

	Source Code Mining for Refactorings
	Elements and Properties
	Overview
	The Parse-Tree Nodes
	Generation of Elements and Properties
	A First Filter

	Concept Lattice
	Building the Lattice
	Building the Concepts

	Concept Filtering
	Concept Classification

	Experiments
	Delfstof Experiments
	Setup of the Experiment
	Results for Delfstof

	Refactoring Browser Experiments
	Setup of the Experiment
	Results for Refactoring Browser

	Conclusion
	Summary
	Contribution
	Future Work

	Bibliography

