
Vrije Universiteit Brussel - Belgium
Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes - France
2007

VR
IJE
UN

IVER
SITEIT BRUSSEL

S
C
IENTIA VINCERE T

EN

EB
RA
S

ECOLE DES MINES DE NANTES

CONTROL-FLOW INTERACTION
IN ASPECT-ORIENTED PROGRAMMING

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange)

By: Pablo Daniel Quiroga

Promoter: Prof. Viviane Jonckers (Vrije Universiteit Brussel)
Advisors: Bruno De Fraine and Wim Vanderperren (Vrije Universiteit Brussel)



Abstract

In order to manage the increasing complexity of current software systems, it is necessary
to maintain a clear separation of the involved concerns. At the level of the implementation,
aspect-oriented programming (AOP) offers modularization constructs (aspects) to separate
concerns that crosscut traditional modularization boundaries. Unfortunately, when multiple
aspects are combined, they can interact in an unexpected manner. Even though some support
exist for managing these interactions among aspects, most techniques are only applicable when
the aspects share a common join point. Since other interaction can be very relevant as well,
this dissertation proposes a technique for managing broader, control flow interactions among
aspects. In this technique we employ existing static analyses to produce control flow graphs and
call graphs of the woven result. In addition, we propose a set of predicates, as in predicate logic,
that represent relevant situations in the control flow, as can be observed in the aforementioned
graphs. The aspects can then be documented with control flow policies expressed as logical
formulae that employ these predicates. The policies specify certain control flow relations that
must hold between different aspects, or between the aspects and the base system. Finally,
we provide a light-weight object-oriented logic engine that allows the evaluation of the logic
formulae. As such, the policies can be verified automatically. This provides a complete tool to
the developer for the management of the control flow interactions in a software system.
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1
Introduction

Since object-oriented programming (OOP) appeared in the software development, we have a
different view on how software has to be developed. Nowadays, the developer can work with his
systems as groups of entities and with the interaction between those entities as well. The more
important thing here is that the developer can deal with larger and more complicated systems.
In addition, he can develop them in less time than ever before [O’R04]. Nevertheless, when we
use OOP on large projects, we can have some problems with maintaining their code because it
remains difficult to separate some concerns into modules. An attempt to do a minor change in
the program design may require several updates to a large number of unrelated modules.

In order to solve the problems that some concerns are not cleanly modularized using
traditional abstraction mechanisms such as class hierarchies, aspect-oriented programming
(AOP) provides a better separation of concerns. Typical examples of such concerns are tracing,
synchronization and transaction management. An aspect-oriented language that uses the popular
pointcut/advice mechanism, defines a join point model (JPM). A JPM defines join points that are
points in a running program where additional behavior can be usefully joined. This additional
behavior is known as advice and basically an advice can run before, after and around (i.e. instead
of) join points. Additionally, the AOP language defines a so-called pointcut language to specify
(or quantify) join points. Pointcuts determine whether a given join point matches.

As we know, AspectJ [KHH+01] is an aspect-oriented extension to Java. In AspectJ, an
aspect selects a set of join points in the target application where advices alter the regular
execution. The aspect logic is then automatically woven into the target application. Due to
that, when multiple, perhaps independently developed, aspects are specified, it could produce
unexpected behavior in the system. This problem has been identified as the feature interac-
tion problem. The most commonly considered interaction among aspects is when they specify
behavior at the same join point. For that kind of interaction we have detection and resolution
facilities. On one way, it is possible to detect when two aspects advise the same join point. This
join point could be a method call or a method execution. On the other hand, for resolution
facilities we specify that when aspect A is triggered, aspect B cannot be triggered. This
situation could be tackled with the JAsCo [SVJ03] approach applying a combination strategy as
a solution.

However, interactions can occur without the aspects sharing a joint point, so we have to
consider more than just the shared join points. In this thesis, we propose to verify relations
like the example with aspect A and B from above, but for aspects that are applied on a certain
(static) control flow. For instance, we suppose there are two advices called A1 and A2 (see
figure 1.1). The advice A1 has a pointcut that matches with a method call at the method m2.
In addition, the advice A2 has another pointcut that matches with the same method m2 but in
the method execution. So, now if we call method m2 in a certain method m1, we note that the
m2 method execution is in the control flow of the m2 method call. This is because a method

1



2 CHAPTER 1. INTRODUCTION

call wraps a method execution. However, the state-of-the-art aspect-oriented approaches offer
limited support for explicitly managing the interactions among aspects, when they do not share
a join point. This is unfortunate in this case, because the advices do not share a join point
based on the (arguably arbitrary) distinction between call and execution join points of a method
invocation. In other words, the likelihood of interaction between the advices is probably not
altered because of the fact that one aspect advises the call join point while the other advises
the execution join point. Yet in mainstream approaches, we lose all support for managing any
interactions because of this distinction. As we will show in the problem statement, support for
the detection of control-flow interactions is useful beyond the case of relating call and execution
join points.

For this reason, we propose a detection technique to verify control-flow interactions between
aspects in general. This technique consists of three main parts. The first part uses a tool to
statically analyze the woven result of the system. In this way, we can derive all the possible
control flow paths with the involved aspects. In the second part, a formal documentation of
aspects is defined. This documentation allows us to define, as policies, certain control-flow
relations among aspects and between an aspect and the base program. We use well-known
operators from propositional logic and first-order logic for the definition of these policies.
Finally, we define an algorithm verify policies using the control-flow paths constructed by the
first part of the approach. As such, we are able to detect violations of the policies in the actual
control flow.

Figure 1.1: Interaction example

1.1 Problem Statement

To motivate our approach for managing control-flow interactions among aspects, we will use
examples in the context of the well-know three-tier architecture, as employed in a large number
of contemporary middleware solutions (e.g. JBoss, Spring, etc.).

1.1.1 Basic architecture example

The three-tier architecture is used when an effective client/server design is needed that provides
increased performance, flexibility, maintainability, reusability, and scalability. In the top-most
level of application there is the user interface. This level is called the Presentation tier. The main
function of the interface is to translate tasks and results to something the user can understand.
Afterwards, there is a Logic tier. This layer coordinates the application, processes commands,
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makes logical decisions and evaluations, and performs calculations. It also moves and processes
data between the two other layers. Lastly, the Data tier contains the information that it is stored
and retrieved from a database or file system. The information is then passed back to the logic
tier for processing, and then comes back to the user.

The figure 1.2 shows an example of a three-tier architecture.

Figure 1.2: Three-tier architecture

In order to demonstrate the control-flow in the three-tier architecture, a simple purchasing
module will be presented. In this demonstration, a product catalog is displayed to the user
(Graphical User Interface - GUI). The user can browse through the catalog and purchase
products of interest. When the user chooses some products, the logic tier receives the user’s
choice and it takes decisions such as add all product prices together. Afterwards, the logic tier
passes the user’s selection to the data access objects. So, these objects can execute queries at
the database. After the queries are executed, the control-flow goes back to the objects. Once the
objects get the result from the database, the control-flow goes to the logic tier again. Therefore,
the logic tier can take new decisions about, for instance, which information is shown. Finally,
the control-flow of the example ends when the user interface shows the answer of the purchase
with a message dialog.

1.1.2 Base case with an aspect

Once the functionality of the three-tier architecture was explained we continue with the main
motivation of our approach. In the first place, we present a simple case in which the control-flow
is affected by an aspect. To do this, we use the same example of purchasing previously
explained. In order to begin the example, we suppose that we must administer the resources
that the system offers, and as a consequence allow or not the access them. Therefore, an
authorization aspect is required. In the figure 1.3 we can appreciate that the authorization aspect
is applied in the data tier. This is because the resources in this layer are represented by objects
such as the products of the purchase. Finally, if an authorization aspect is applied to the purchase



4 CHAPTER 1. INTRODUCTION

system, we will be able to guarantee a more sure access to the resources. In this way, no user
could accede to a resource that is not allowed to him.

Figure 1.3: Applying authorization aspect

1.1.3 Case with two aspects depending each other

Another situation that often appears in programming is when several aspects are needed to
apply in a system. This situation can cause problems when these aspects are implemented by
different developers. Therefore, it can affect the behavior of the system, since the aspects could
be related to each other. If this happens, the simultaneous execution of these aspects would have
to be controlled so that the system continues its normal execution.

In order to illustrate the situation mentioned above, we consider an authorization aspect that
determines whether the user is authorized or not to access to the resources. Another aspect
that we use is an authentication aspect. Most of the time these aspects are related because we
need to know if the user is a legitimate user to gain access to one of the resources. So, the
authentication aspect should be applied at the logic tier, because the verification of the user has
to be done before the user obtains permission to access the resource. With the authentication
aspect we can prevent malicious access to a resource. The figure 1.4 shows the combination of
both authorization aspect and authentication aspect.

We can graphically notice that we must invoke the authentication aspect before the
authorization aspect is invoked. In addition, we can see that the aspects are applied at the
same control flow at the purchase example, and they have a dependency on each other as well.

1.1.4 Case with two aspects excluding each other

Last but not least, we present another situation where two aspects exclude each other. In this
case, we want to do caching at the highest possible level (Presentation tier) because we want to
gain the most performance. For instance, the fastness of the purchase by caching the user data
can be improved. This allows us to accelerate the access to the resources such as an acquired
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Figure 1.4: Applying dependency of aspects

product in a previous purchase or the visualization of the information of its account. The
figure 1.5 shows the caching aspect interacting with both authentication aspect and authorization
aspect.

The caching aspect not only improves performance but also helps scalability, by reducing
the average request time of the purchase. We can cache frequently used data applicable to all
users. For instance, if we make caching of a product’s specification, several user could access
more faster to the same product. This caching can cause that the access to the product is not
verified by the authorization aspect, because the product that the user asked was in the cache.
Therefore, the caching aspect would be excluding the execution from the authorization aspect.

Finally, all things considered can help us to observe some possible interactions, that can
occur when we apply several aspects on a certain control flow. Those interactions are the
motivation of the present work and we focus to detect them.

1.2 Objectives

Our main objective in this thesis is to provide support for the management of control-flow
interactions among the aspects deployed in a system. We propose a technique that divides the
objective in three main points that are detailed in the following way:

a. Static analysis of the woven result to reproduce possible control flow. This analysis is
useful to know both all the possible control flows and what aspects are applied inside
those control flows.

b. Formal documentation of aspects to specify what aspects, in the control flow, should be
applied. We define each specification like a policy. For instance, one policy could specify
that an authentication aspect should be executed before authorization aspect does. In
addition, this should happens in the control flow of a certain method.



6 CHAPTER 1. INTRODUCTION

Figure 1.5: Applying exclusion of aspects

c. An algorithm to detect violations of these policies on a certain control flow.

1.3 Outline

In this section, we present how the next chapters are structured. Firstly, we introduce the main
concept of AOP and the state-of-the-art of feature interaction in chapter 2. In chapter 3 we
analyze, with Soot tool, how to tackle the first objective defined in section 1.2. Then, in chapter
4 we specify the formal documentation that represents the policies to be applied. In addition,
we show the algorithm to detect violations to those policies and examples of both. Finally, in
chapter 5 we write down the conclusions of this thesis, and after that we discuss some future
work that remain.



2
Context

In the present chapter, we introduce the main concept of aspect-oriented programming. In
addition, we deal with some approaches of aspect languages. After all, we include a review
of the current state-of-the-art of feature interaction.

2.1 Aspect-oriented programming

Before introducing the main concept of aspect-oriented programming, we comment why aspects
are relevant to the software systems. The development of a software system basically comprises
the design and implementation of the basic functionality and other system concerns such
as synchronization, distribution, error handling, caching, and security management. While
functional and object oriented decomposition are well suited for the design and implementation
of the basic functionality, these techniques are not enough to tackle the other aspects. When
using these techniques, the concerns are spread over the system and tangled with the code for
the basic functionality. So, separation of concern is not well supported for such concerns. In
addition, the quality of a software system decreases.

Aspect oriented programming (AOP) [EFB01] aims at supporting the separation of concern
for the above mentioned aspects. AOP is a continuous development of the object oriented
paradigm, and as such it supports aspect oriented decomposition in addition to object oriented
decomposition and functional decomposition. Separation of concerns allows design and code to
be structured to reflect the way developers want to think about the system. In addition, it builds
on existing technologies and provides additional mechanisms that make it possible to affect the
implementation of systems.

Before entering greater detail on AOP, we introduce some terminology to help us understand
the concepts [O’R04].

1. Crosscutting concerns: Aspects of a program which affect (crosscut) other concerns and
often cannot be cleanly decomposed from the rest of the system in both the design and
implementation.

2. Scattering: Term used when some concerns of an application cannot be cleanly
modularized because they are scattered all over the different modules of the system.

3. Tangling: Is the situation where multiple concerns are addressed by the same source
code construct, for instance, when one method in a class takes care of managing database
connections, logging the action to a file on disk, showing the results in a window on the
screen, etc.. In short, tangling makes the source code difficult to develop, understand and
evolve.

7



8 CHAPTER 2. CONTEXT

4. Aspect: A modular implementation of a crosscutting concern using some aspect
mechanism (e.g. pointcut/advice, introductions, etc.).

AOP does not replace existing programming paradigms and languages; instead, it works
with them to improve their expressiveness and functionality. For instance, weaving is required
to execute AO program on ordinary execution platform. Therefore, both the code and aspects
are combined into a final executable form using an aspect weaver. As a result, a single aspect
can contribute to the implementation of a number of methods, modules, or objects. As we can
see, the original code does not need to know about any functionality the aspect has added.

There are different ways to do weaving. First, source-level weaving can be implemented
using preprocessors that require access to program source files like in figure 2.1. However,
Java’s well-defined binary form enables bytecode weavers to work with any Java program in
class-file form. So, bytecode weavers can be deployed during the build process or, if the weave
model is per-class, during class loading.

Figure 2.1: Source-level weaving

In AOP [MW99], we can distinguish two main approaches to aspect language design:
domain specific aspect languages and general purpose aspect languages. By domain specific we
refer to the different concerns. Domain specific aspect languages (DSALs) support one or more
of these concerns, but cannot support other ones than the ones they were designed for. DSALs
are usually more abstract than the base language and they express the domain specific concepts
in a higher level representation. As such, they provide the developer with the usual benefits
of a high-level programming language: e.g. higher productivity and better understandibility
and maintainability. Adaptive programming concerns one example of domain-specific aspect
languages, namely those that handle the description of object traversals.

General purpose aspect languages (GPALs) [MW99] are designed to be used for every kind
of concern. Therefore, they cannot impose restrictions on the base language. They mainly
support the separate definition of concerns by providing aspects. They usually have the same
level of abstraction as the base language and also the same set of instructions, as it must be
possible to express arbitrary code in the aspects. In addition, GPALs are subdivided in three kind
of approach: pointcuts and advices approaches (e.g.: AspectJ, JAsCo, CaesarJ and Reflex), com-
position filters (e.g.: Compose*) approaches and subject-oriented approaches (e.g.: HyperJ).

In order to see a good example of how AOP works, we introduce the most well-known
language called AspectJ. As we said before, this approach is a general purpose aspect language.
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After this, we present some other approaches to see the main concepts of them.

2.1.1 AspectJ

AspectJ [KHH+01] is an aspect-oriented extension to Java. It introduces AOP programming
to Java by adding constructs to support dynamic and static crosscutting. Dynamic crosscutting
modifies the behavior of the modules, while static crosscutting modifies the structure of the
modules. Dynamic crosscutting in AspectJ is based on a set of constructs. In the first instance,
join points are well-defined points in the execution of the program; pointcuts are a means of
referring to collections of join points and certain values at those join points. Next, advice
are method-like constructs used to define additional behavior at join points; and aspects are
units of modular crosscutting implementation, composed of pointcuts, advice, and ordinary Java
member declarations. AspectJ exposes the join points in a system through pointcuts. Pointcut
[FECA05] expressions are built up using AspectJ’s primitive pointcut designators. There are
three kind of designators. The first set of pointcut designators matches based on the kind of join
point (e.g.: method call or access field). The second set of designators matches join points based
on context at the join point. For example, when we are executing an instance of a certain class.
Finally, the third set of designators matches based on scope, which means that the join point
resulting from code within a certain package. The advice constructs provide a way to express
actions at the desired join points. On the other hand, static crosscutting, which can be used
alone or in support of dynamic crosscutting, includes the constructs of member introduction,
type hierarchy modification, compile-time declarations, and exception softening [Lad03].

In order to show a concrete example of dynamic crosscutting in AspectJ, we introduce the
telecom example [Tel03]. There, people can make telephone calls with different connection
types (local and long-distance). The simulation can be executed at different ways. So, we
can use only the calls with the basic functionality needed for making phone calls (call, accept,
hang up etc.). Another simulation could be applying a timing aspect, which keeps track of a
connection’s duration and cumulates a customer’s connection durations. But, a useful simulation
could be with a billing aspect, that it adds functionality to calculate charges for phone calls of
each customer based on connection type and duration. In this way, we are using both aspects at
once.

Figure 2.2: Telephone calls class diagram

The figure 2.2 shows how the classes are related without aspects. The basic objects of the
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telecom simulation comprise the classes Customer, Call and the Connection abstract class with
its two concrete subclasses Local and LongDistance. Customers have a name and a numeric
area code. They also have methods for managing calls. Simple calls are made between one
customer (the caller) and another (the receiver). A Connection object is used to connect them.
Conference calls between more than two customers will involve more than one connection. A
customer may be involved in many calls at one time. Therefore, a Customer has methods call,
pickup, hangup and merge for managing calls. The code in listing 2.1 shows this class.

Listing 2.1: Customer class
1 public class Customer {
2 private String name;
3 private int areacode;
4 private Vector calls = new Vector();
5

6 protected void removeCall(Call c){
7 calls.removeElement(c);
8 }
9 protected void addCall(Call c){

10 calls.addElement(c);
11 }
12 public Customer(String name, int areacode) {
13 this.name = name;
14 this.areacode = areacode;
15 }
16 public String toString() {
17 return name + "(" + areacode + ")";
18 }
19 public int getAreacode(){
20 return areacode;
21 }
22 public boolean localTo(Customer other){
23 return areacode == other.areacode;
24 }
25 public Call call(Customer receiver) {
26 Call call = new Call(this, receiver);
27 addCall(call);
28 return call;
29 }
30 public void pickup(Call call) {
31 call.pickup();
32 addCall(call);
33 }
34 public void hangup(Call call) {
35 call.hangup(this);
36 removeCall(call);
37 }
38 public void merge(Call call1, Call call2){
39 call1.merge(call2);
40 removeCall(call2);
41 }
42 }

Calls are created with a caller and receiver who are customers. If the caller and receiver
have the same area code then the call can be established with a Local connection, otherwise
a LongDistance connection is required. A call comprises a number of connections between
customers. Initially there is only the connection between the caller and receiver but additional



2.1. ASPECT-ORIENTED PROGRAMMING 11

connections can be added if calls are merged to form conference calls. In brief, the Call class is
shown in the listing 2.2.

Listing 2.2: Call class
1 public class Call {
2 private Customer caller, receiver;
3 private Vector connections = new Vector();
4

5 public Call(Customer caller, Customer receiver) {
6 this.caller = caller;
7 this.receiver = receiver;
8 Connection c;
9 if (receiver.localTo(caller)) {

10 c = new Local(caller, receiver);
11 } else {
12 c = new LongDistance(caller, receiver);
13 }
14 connections.addElement(c);
15 }
16 public void pickup() {
17 Connection connection = (Connection)connections.lastElement();
18 connection.complete();
19 }
20 public boolean isConnected(){
21 return ((Connection)connections.lastElement()).getState()
22 == Connection.COMPLETE;
23 }
24 public void hangup(Customer c) {
25 for(Enumeration e = connections.elements();
26 e.hasMoreElements();){
27 ((Connection)e.nextElement()).drop();
28 }
29 }
30 public boolean includes(Customer c){
31 boolean result = false;
32 for(Enumeration e = connections.elements();
33 e.hasMoreElements();){
34 result = result ||
35 ((Connection)e.nextElement()).connects(c);
36 }
37 return result;
38 }
39 public void merge(Call other){
40 for(Enumeration e = other.connections.elements();
41 e.hasMoreElements();){
42 Connection conn = (Connection)e.nextElement();
43 other.connections.removeElement(conn);
44 connections.addElement(conn);
45 }
46 }
47 }

The Connection class models the physical details of establishing a connection among
customers. It does this with a simple state machine (connections are initially PENDING, then
COMPLETED and finally DROPPED). Messages are printed to the console so that the state
of connections can be observed. Connection is an abstract class with two concrete subclasses:
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Local and LongDistance as mentioned above. The Connection class is shown in the listing 2.3.

Listing 2.3: Connection class
1 public abstract class Connection {
2

3 public static final int PENDING = 0;
4 public static final int COMPLETE = 1;
5 public static final int DROPPED = 2;
6

7 Customer caller, receiver;
8 private int state = PENDING;
9

10 Connection(Customer a, Customer b) {
11 this.caller = a;
12 this.receiver = b;
13 }
14 public int getState(){
15 return state;
16 }
17 public Customer getCaller() { return caller; }
18

19 public Customer getReceiver() { return receiver; }
20

21 void complete() {
22 state = COMPLETE;
23 System.out.println("connection completed");
24 }
25 void drop() {
26 state = DROPPED;
27 System.out.println("connection dropped");
28 }
29 public boolean connects(Customer c){
30 return (caller == c || receiver == c);
31 }
32 }

The two kinds of connections supported by simulation are Local and LongDistance
connections. These connections are represented by the code in the listing 2.4.

Listing 2.4: Local and LongDistance connections classes
1 public class Local extends Connection {
2 Local(Customer a, Customer b) {
3 super(a, b);
4 System.out.println("[new local connection from " +
5 a + " to " + b + "]");
6 }
7 }
8

9 public class LongDistance extends Connection {
10 LongDistance(Customer a, Customer b) {
11 super(a, b);
12 System.out.println("[new long distance connection from " +
13 a + " to " + b + "]");
14 }
15 }



2.1. ASPECT-ORIENTED PROGRAMMING 13

After all this basic classes, we continue with the aspects in detail. For instance, the Timing
aspect keeps track of total connection time for each Customer by starting and stopping a timer
associated with each connection. It uses some helper classes like the Timer class shown in the
listing 2.5.

Listing 2.5: Timer class
1 public class Timer {
2 long startTime, stopTime;
3

4 public void start() {
5 startTime = System.currentTimeMillis();
6 stopTime = startTime;
7 }
8 public void stop() {
9 stopTime = System.currentTimeMillis();

10 }
11 public long getTime() {
12 return stopTime - startTime;
13 }
14 }

A Timer object simply records the current time when it is started and stopped, and returns
their difference when asked for the elapsed time. So, after the helper class, the TimerLog aspect,
as shown in the listing 2.6, can be used to cause the start and stop times to be printed to standard
output.

Listing 2.6: TimerLog aspect
1 public aspect TimerLog {
2 after(Timer t): target(t) && call(* Timer.start()) {
3 System.err.println("Timer started: " + t.startTime);
4 }
5 after(Timer t): target(t) && call(* Timer.stop()) {
6 System.err.println("Timer stopped: " + t.stopTime);
7 }
8 }

The Timing aspect, in the listing 2.7, declares an inter-type field totalConnectTime for
Customer to store the accumulated connection time per Customer. It also declares that each
Connection object has a timer. Two pieces of after advice ensure that the timer is started when a
connection is completed and and stopped when it is dropped. The pointcut endTiming is defined
so that it can be used by the Billing aspect.

Listing 2.7: Timing aspect
1 public aspect Timing {
2 public long Customer.totalConnectTime = 0;
3

4 public long getTotalConnectTime(Customer cust) {
5 return cust.totalConnectTime;
6 }
7 private Timer Connection.timer = new Timer();
8 public Timer getTimer(Connection conn) { return conn.timer; }
9

10 after (Connection c): target(c) &&
11 call(void Connection.complete()) {
12 getTimer(c).start();
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13 }
14

15 pointcut endTiming(Connection c): target(c) &&
16 call(void Connection.drop());
17

18 after(Connection c): endTiming(c) {
19 getTimer(c).stop();
20 c.getCaller().totalConnectTime += getTimer(c).getTime();
21 c.getReceiver().totalConnectTime += getTimer(c).getTime();
22 }
23 }

As we see, in the line 11 of the figure 2.7, a pointcut can provide contextual information
about join points to their consumers. A pointcut can declare a formal parameter list of context
it provides, and the contextual values are extracted based on name binding. For instance, in
this line we explicitly want to use a Connection class, but a simple matching join point could
be: after (): call(void *.complete()). In this example, we only show a simple
use of matches certain methods. However, we can specify different pointcuts to matches with
other methods. For example, if we need to control the time between a call and its pickup; so,
we must add new pointcuts like: pointcut startCall(): call(void *.call())
and pointcut acceptedCall(): call(void *.pickup()), and of course, the
corresponding advice that calculates the time of this situation.

Therefore, the Billing aspect (listing 2.8), declares that each Connection has a payer
inter-type field to indicate who initiated the call, and therefore who is responsible to pay for
it. It also declares the inter-type method callRate of Connection so that local and long distance
calls can be charged differently. The call charge must be calculated after the timer is stopped;
the after advice on pointcut Timing.endTiming does this, and Billing is declared to be more
precedent than Timing to make sure that this advice runs after Timing’s advice on the same join
point. Finally, it declares inter-type methods and fields for Customer to handle the totalCharge.

Listing 2.8: Billing aspect
1 public aspect Billing {
2 declare precedence: Billing, Timing;
3

4 public static final long LOCAL_RATE = 3;
5 public static final long LONG_DISTANCE_RATE = 10;
6

7 public Customer Connection.payer;
8 public Customer getPayer(Connection conn) { return conn.payer;}
9

10 after(Customer cust) returning (Connection conn):
11 args(cust, ..) && call(Connection+.new(..)) {
12 conn.payer = cust;
13 }
14

15 public abstract long Connection.callRate();
16

17 public long LongDistance.callRate() { return LONG_DISTANCE_RATE;}
18 public long Local.callRate() { return LOCAL_RATE; }
19

20 after(Connection conn): Timing.endTiming(conn) {
21 long time = Timing.aspectOf().getTimer(conn).getTime();
22 long rate = conn.callRate();
23 long cost = rate * time;
24 getPayer(conn).addCharge(cost);
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25 }
26

27 public long Customer.totalCharge = 0;
28 public long getTotalCharge(Customer cust) {
29 return cust.totalCharge;}
30

31 public void Customer.addCharge(long charge){
32 totalCharge += charge;
33 }
34 }

All in all, with both the Timing aspect and Billing aspect, we can run the simulation. As we
said, we present a simulation to find out how much time each customer spent on the telephone
and how big their bill is. That information is also stored in the classes, but they are accessed
through static methods of the aspects, since the state they refer to is private to the aspect. Before
all else, we show an abstract class that it has the run method to print out the status of the
customer. The AbstractSimulation class is shown in the listing 2.9.

Listing 2.9: AbstractSimulation class
1 public abstract class AbstractSimulation {
2 public static AbstractSimulation simulation;
3

4 public void run() {
5 Customer jim = new Customer("Jim", 650);
6 Customer mik = new Customer("Mik", 650);
7 Customer crista = new Customer("Crista", 415);
8

9 say("Jim calls Mik...");
10 Call c1 = jim.call(mik);
11 wait(1.0);
12 say("Mik accepts...");
13 mik.pickup(c1);
14 wait(2.0);
15 say("Jim hangs up...");
16 jim.hangup(c1);
17 report(jim);
18 report(mik);
19 report(crista);
20

21 say("Mik calls Crista...");
22 Call c2 = mik.call(crista);
23 say("Crista accepts...");
24 crista.pickup(c2);
25 wait(1.5);
26 say("Crista hangs up...");
27 crista.hangup(c2);
28 report(jim);
29 report(mik);
30 report(crista);
31 }
32 abstract protected void report(Customer c);
33 protected static void wait(double seconds) {
34 Object dummy = new Object();
35 synchronized (dummy) {
36 try {dummy.wait((long)(seconds*100)); }
37 catch (Exception e) {}
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38 }
39 }
40 protected static void say(String s){
41 System.out.println(s);
42 }
43 }

Finally, the concrete BillingSimulation class shown in the listing 2.10 implements the report
method that it is used in run method.

Listing 2.10: BillingSimulation class
1 public class BillingSimulation extends AbstractSimulation {
2

3 public static void main(String[] args){
4 System.out.println("\n... Billing simulation 2 ...\n");
5 simulation = new BillingSimulation();
6 simulation.run();
7 }
8 protected void report(Customer c){
9 Timing t = Timing.aspectOf();

10 Billing b = Billing.aspectOf();
11 System.out.println(c + " has been connected for "
12 + t.getTotalConnectTime(c)
13 + " seconds and has a bill of "
14 + b.getTotalCharge(c));
15 }
16 }

As a result, the simulation is executed and it represents two phone calls with its time and
billing values. The output of the execution is shown in the following way.

... Billing simulation ...
Jim calls Mik...
[new local connection from Jim(650) to Mik(650)]
Mik accepts...
connection completed
Timer started: 1184585606643
Jim hangs up...
connection dropped
Timer stopped: 1184585606845
Jim(650) has been connected for 202 seconds and has a bill of 606
Mik(650) has been connected for 202 seconds and has a bill of 0
Crista(415) has been connected for 0 seconds and has a bill of 0
Mik calls Crista...
[new long distance connection from Mik(650) to Crista(415)]
Crista accepts...
connection completed
Timer started: 1184585606846
Crista hangs up...
connection dropped
Jim(650) has been connected for 202 seconds and has a bill of 606
Mik(650) has been connected for 352 seconds and has a bill of 1500
Timer stopped: 1184585606996
Crista(415) has been connected for 150 seconds and has a bill of 0
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To see this output in a clear way, we perform the table 2.1 that it has users, calls, the time
that it is related with each user with its call and the billing for that call. This table shows the
correct interaction among aspects because the precedence is defined in an appropriate way.

Table 2.1: User’s calls with precedence
Call User Time (sec.) Billing

1 Jim 202 606
1 Mik 202 0
1 Crista 0 0
2 Jim 202 606
2 Mik 352 1500
2 Crista 150 0

Nevertheless, if we do not declare the precedence in the Billing aspect then the advice of
this aspect is executed before Timing’s advice. Because, it is defined before in the source code.
For this reason, the billing aspect calculates the payment in an incorrect time. So, the table 2.2
summarizes the results.

Table 2.2: User’s calls without precedence
Call User Time (sec.) Billing

1 Jim 202 0
1 Mik 202 0
1 Crista 0 0
2 Jim 202 0
2 Mik 353 0
2 Crista 151 0

On the other hand, as we said before AspectJ supports static crosscutting as well. First
of all, AspectJ allows the declaration of members. This means that it adds data members and
methods to classes. For instance, the listing 2.11 shows an interface with two methods but
without variables.

Listing 2.11: Tagable interface
1 public interface Tagable {
2 void setTag(String tag);
3 String getTag();
4 }

After, we define an aspect which implements the methods of this interface and it adds a
variable called tag. This aspect is able to use the getTag and setTag methods. For example, we
use the setTag method in the line 12 of the listing 2.12, and the getTag method in the line 15.

Listing 2.12: TagAspect aspect
1 public aspect TagAspect {
2 private String Tagable.tag;
3

4 public String Tagable.getTag() {
5 return tag;
6 }
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7 public void Tagable.setTag(String tag) {
8 this.tag = tag;
9 }

10 declare parents : Employee implements Tagable;
11 before(Tagable t) : target(t) && !within(TagAspect) {
12 t.setTag(thisJoinPoint.toString());
13 }
14 after(Tagable t) : target(t) && !within(TagAspect){
15 System.out.println(t.getTag());
16 }
17 }

In AspectJ, we can declare existing classes to implement an interface or extend a superclass.
Aspects can be made dependent only on a base type or interface. This makes aspects more
reusable. For instance, an Employee class is defined to implement the Tagable class in the line
10 of the listing 2.12.

Another way to make static crosscutting in AspectJ is specifying custom compile time
warnings and errors using pointcuts. These declarations could ensure that system components
follow certain programming practices. For instance, enforce that public access to instance
variables is prohibited or avoid incorrect usages of an API. In a word, we can add the
declarations shown in the listing 2.13 to the aspect.

Listing 2.13: Compile time warnings and errors
1 declare error : set(public * *) || get(public * *)
2 : “Nonpublic access is not allowed.”;
3

4 declare warning : get(* System.out) || get(* System.err)
5 : “Consider using Logger.log() instead.”;

Finally, AspectJ converts a checked exception into a runtime exception. Also called ex-
ception softening. Sometimes it can be inconvenient to have to deal with checked exceptions.
Involves a proliferation of try/catch blocks and throws clauses. For instance, if we have the
advice declaration as in the listing 2.14, and the openOutputFile method throws an IOException.

Listing 2.14: Advice declaration
1 before() : doingIO() {
2 openOutputFile();
3 }

The solution could be add the declaration shown in the listing 2.15.

Listing 2.15: Exception softening
1 declare soft : java.lang.IOException : call(* *.openOutputFile());

After that, we can apply the advice anywhere without handling IOException.
In conclusion, AspectJ is a simple and practical aspect-oriented extension to Java. It

provides a general purpose aspect-oriented programming language. AspectJ also offers a set
of facilities and advantages as:

• Provide few new constructs like aspect, pointcut, after, before, etc..

• Enable two kinds of crosscutting like dynamic and static.

• Cleanly well-modularized implementations of crosscutting concerns.
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• Understandable structure of a crosscutting concern, when written as an AspectJ aspect.

• Reduce redundancy.

2.1.2 Other approaches

As we mentioned above, we introduce some other approaches that are involved with
aspect-oriented programming. We explain the main concepts of these approaches without
focusing too much on the details.

• AspectS: approach to general-purpose aspect-oriented programming in the
Squeak/Smalltalk environment [Hir03]. Based on concepts of AspectJ it extends
the Smalltalk metaobject protocol to accommodate the aspect modularity mechanism.
AspectS supports coordinated meta-level programming, addressing the tangled code
phenomenon by providing aspect related modules. It shows great flexibility by not
relying on code transformations (Smalltalk’s syntax nor its virtual machine) but making
use of metaobject composition instead. In AspectS, aspects are implemented with
classes, so their instances act as regular objects. An aspect is applied to objects in the
image by sending an install message to an aspect instance. The effects of an aspect to the
system are reverted by simply sending an uninstall message to the same aspect instance
that cause the system transformation. In AspectS, a join point denotes targets for the
weaving process to apply computational changes to the underlying base system stated
in advice objects. Join points of a point cut can be enumerated statically, or, due to the
very open and reflective nature of the Smalltalk environment, collected dynamically by
querying the system. AspectS does not introduce a dedicated pointcut language but takes
advantage of the expressiveness of Smalltalk itself. Finally, advice objects associate
code fragments with pointcuts and their respective join points descriptors that describe
targets for the weaver to place these fragments into the system. This code fragments are
represented by blocks, which means instances of BlockContext. AspectS also allows to
execute crosscutting behavior using before and after methods (AsBeforeAfterAdvice),
exceptions (AsHandlerAdvice) and around method (AsAroundAdvice). There another
advice called AsAdviceQualifier that allows the description of dynamic attributes of a
pointcut related to an advice.

Finally, AspectS takes the advantage of Smalltalk like simplicity, elegancy, and its open
architecture.

• CaesarJ: is an aspect-oriented language [AGMO06] which unifies aspects, classes
and packages in a single construct that helps to solve a set of different problems
of both aspect-oriented and component-oriented programming. CaesarJ combines
the aspect-oriented constructs, pointcut and advice, with advanced object-oriented
modularization mechanisms. From an aspect-oriented point of view, this combination
of features is particularly well-suited to make large-scale aspects reusable, we can say, it
enables aspect components. From a component-oriented view, on the other hand, CaesarJ
is addressing the problem of integrating independent components into an application
without modifying the component to be integrated or the application.

CaesarJ has also virtual classes and propagating mixing composition that provide a means
for abstraction, refinement and polymorphism of multi-class components, but they are not
sufficient for integration of independently developed components with different modular
structure. The problem of crosscutting integration of structure and behavior can be solved
by the mechanisms for join-point interception and dynamic object extensions in form
of wrappers. The unification of aspects and collaborations facilitates development of



20 CHAPTER 2. CONTEXT

reusable well-modularized aspects. Finally, in CaesarJ, treating an aspect as a class
enables its free instantiation and flexible control over its scope of application.

• JAsCo: is an aspect-oriented extension to the Java language [JAs05]. This approach
is primarily based upon two existing aspect-oriented software development (AOSD)
approaches: AspectJ and Aspectual Components. Therefore, JAsCo seems to CaesarJ
since it wants to enable aspect components, but CaesarJ separates the interface declaration
from the actual implementation.

JAsCo combines the expressive pointcut declarations of AspectJ with the aspect
independency idea of Aspectual Components. JAsCo does however restrict the joinpoints
that are possible to the public interface of the components, meaning public methods and
fired events. The JAsCo language is kept as close as possible to the regular Java syntax
and concepts. Only a minimal number of new keywords and constructs are introduced.
The JAsCo language introduces two new concepts: aspect beans and connectors. An
aspect bean is a regular Java bean that is able to declare one or more logically related
hooks as a special kind of inner classes. Hooks are generic and reusable entities and
can be considered as a combination of an abstract pointcut and advice. Because aspect
beans are described independently from a specific context, they can be reused and applied
upon a variety of components. Connectors have two main purposes: instantiating the
abstract aspect beans onto a concrete context and thereby binding the abstract pointcuts
with concrete pointcuts. In addition, a connector allows specifying precedence and
combination strategies between the aspects and components. An schematic overview of
JAsCo y represented by figure 2.3.

Figure 2.3: Schematic overview of JAsCo

• Reflex [TN05]: this approach aims at providing a versatile AOP kernel that can support
different aspect languages simultaneously. Reflex supports core semantics, through
proper structural and behavioral models. These models are resembled to introductions
and pointcut/advices in AspectJ respectively. The kernel mediates among different
approaches, detecting interactions among aspects and providing expressive means for
their resolution. In order to reach that objective, the kernel has an architecture that consists
of three layers like in figure 2.4, in which a transformation layer is in charge of basic
weaving, supporting both structural and behavioral modifications of the base program;
a composition layer make detection and resolution of interactions; and a language layer
deal with the modular definition of aspect languages.

In Reflex, an aspect consists of a cut and an action. A cut determines where an aspect
applies, while an action specifies the effect of the aspect. Once again, we can say that
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Figure 2.4: Architecture of an AOP kernel

a cut is resembled to a pointcut in AspectJ. In addition, an action seems to an advice in
AspectJ. Reflex has an explicit link binding a cut to an action. This binding is represented
by different types of links. One type of link binds a structural cut to an action, which can
be either structural or behavioral (a structural link at load time). The second ones, binds
a behavioral cut to an action (a behavioral link at runtime).

The AOP kernel provides means to modularly define aspect languages, either
general-purpose or domain-specific. Due to that programmers can implement aspects with
a good abstraction level. Accordingly, in Reflex, an aspect language can be implemented
by a translator to kernel configuration, called a plugin. A plugin takes as input an aspect
program written in a given language and outputs, either on-line or off-line, the adequate
Reflex configuration: links, metaobject classes, selectors, etc., together with calls to the
kernel API. The SOM (Sequential Object Monitors) and a subset of AspectJ were the
aspect languages developed for the Reflex AOP kernel.

2.2 Feature interaction

Nowadays, the feature interaction term is a known concept. It is not only used in computer
sciences but also in telecommunications. Actually, there is a definition of feature interaction
problem in [PSC+02] on telecommunications domain. It was defined as the unwanted inter-
face between features running together in a software system. In this domain, there are a lot
of examples of features such as forwarding calls, placing callers on hold, or blocking calls
[CV93]. Thinking about efficient and practical techniques for managing these interactions is
really important in order to provide new telecommunications features.

There are different ways to view the feature interaction problem. Because, we can have
several purposes that depend of the domain. In telecommunications [CV93], for instance, one
view is the software life-cycle view where feature interactions are classified according to which
phase of the software life cycle can best manage the interaction. The second view is called the
network configuration view. In this view, feature interactions are classified depending on the
configuration of network components and subscribers. Afterwards, in the casual view, feature
interactions are classified based on the conditions that cause interactions. Then, a view, in which
feature interactions are classified according to a layered architecture such as the open systems
interconnection (OSI) stack is the layered view. Lastly, in the organizational/operational view,
feature interactions are classified according to who is responsible for ensuring that they do not
disrupt in the public network. All these mentioned views could be used by different approaches
and also combine them.

There are several approaches to solving the feature-interaction problem in
telecommunications. To a better understanding of the problem a division can be offered.
In [CV93], the division consists in three classes: avoidance, detection and resolution.
Avoidance looks at ways to prevent undesired feature interactions (e.g.: inadequate design
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process). Detection assumes that feature interactions will be present, and determines methods
for identifying and locating them. So, Resolution assumes that feature interactions will be
present and detected, and looks at mechanisms for minimizing their potential adverse effects.

Once we saw the definition of feature interaction problem in telecommunications, we
introduce the aspect-oriented programming ones. In AOP, the feature interaction problem
appears when multiple aspects are specified and they could produce unexpected behavior in
the system. So, after this, we are able to show which approaches are related to the feature
interaction problem in AOP, and what they provide. Above all, we have to define a structure as
well as in telecommunications. As a result, both detection and resolution sections are created.
As we note, there is no avoidance section. This is because we are not dealing at the high level
in the software development cycle. This thesis is targeted at the implementation level.

2.2.1 Detection

In order to present some approaches that deal with the detection of feature interactions, we
look what approaches are, nowadays, dealing with that detection. As a result, we find some
approaches that can be support this detection and we introduce each of them.

• In [DFS02] approach, they propose a three-phase model to feature interactions. This
model consist of: programming, conflict analysis and conflict resolution. The pro-
gramming phase means that the aspects which are part of an application are written
independently, possibly by different programmers. The conflict analysis phase deal with
an automatic tool to detect interactions among aspects and returns informative results to
the programmer. This is the phase that we want to see in detail in this section. Lastly,
the conflict resolution phase shows that the programmer resolves the interactions using a
dedicated composition language. The result of this phase can be checked once again as
in conflict analysis phase. The solution to this model is based on a generic framework
for AOP, which is characterized by a very expressive crosscut language, static conflict
analysis and linguistic support for conflict resolution. In the framework there is a weaving
as a dynamic monitor, observing the execution of the program and inserting instructions
according to execution states. It defines an observable execution and join points. In
addition, it defines the aspect language, for instance rules like C B I, which C is a crosscut
and I is a program that is executed whenever the crosscut C matches the current join point.

This approach proposes two different analysis detecting aspect interactions as follows.

– Strong independence does not depend on the program to be woven. The aspect are
independent for all programs. The advantage of this property is that it does not
have to be checked after each program modification. In this analysis they use three
definition and then an algorithm checks the strong independence based on the laws
for aspects that are specified in [DFS02].

– Independence with respect to a program takes into account the possible sequences
of join points generated by the program to be woven. The advantage of this property
compared to strong independence is that it is a weaker condition to enforce.

They note that the first analysis is a sufficient but not a necessary condition. If two
crosscuts C and C’ match the same join point but their corresponding I and I’ commute
(i.e., executing I then I’ is equivalent to executing I’ then I) then the woven execution
remains deterministic.

• As we mentioned in the section 2.1.2, Reflex [TN05] support automatic detection of
aspect interactions limiting spurious conflicts. In addition, in that section we saw an
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overview of the approach but now we introduce the proposed detection technique. Reflex
defines two types of interactions such as static and dynamic interaction. They say that two
behavioral links interact statically if the intersection of their hook-sets is not empty. On
the other hand, they say that two behavioral links interact dynamically if they interact
statically and they are both active at the same time. Since link ordering is resolved
statically and activation conditions can be changed dynamically, Reflex adopts a defensive
approach: any static interaction is reported, and must be considered by the developer, so
that a dynamic interaction is never under-specified. As we know, Reflex has two types of
links such as behavioral and structural link. The behavioral link interact was explained
above and we continue with the other ones. So, they say that two structural links interact
if the intersection of their class sets is not empty. They do not discriminate between static
and dynamic interaction, because structural links are applied directly at load time.

Upon interactions, Reflex notifies an interaction listener. The default interaction listener
simply issues warnings upon under-specification, informing the user that specification
should be completed.

• The [DBA06] approach presents a language-independent technique to detect semantics
conflicts among aspects that are applied at the same join point. The term semantic means
the behavior of a component (aspect), rather than its syntax or structure. A semantic
conflict is emerging behavior that conflicts with the originally intended behavior of one or
more of the involved components. This approach introduces a formalization that enables
us to express behavior and conflict detection rules. It is based on a resource-operation
model, also called resource model, to represent the relevant semantics of advice, and
detect conflicts among them.

Now, we show in figure 2.5 the semantic analysis process and the relationships to the base
system and advice that they propose in [DBA06].

Figure 2.5: Overview approach

The figure 2.5 shows some aspects that contain advices and Pointcut Designators (PCD)
at the top level. After that, we see that a base system and aspects are inputs of the Point-
cut Designatos Analysis phase. At this level, all PCDs are evaluated with respect to the
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base system and returns a set o join points with advices that are applied at the same join
point. In the next level, the abstraction phase is executed. This phase has another input
represented by the resource model. During the abstraction phase, the sequence of advices
are transformed into sequences of resource-operation tuples per shared join point. To
clarify the term resource-operation, they mention that a resource is in essence an abstract
data type. On the other hand, an operation could be a read operation when, for instance,
a logging advice accesses the arguments.

Finally, the Conflict Detection phase has two inputs: the operation sequences for resource
per shared join point and the conflict detection rules. A conflict detection rule is a
requirement on a resource. This is specified as a matching expression on the sequences
of operations per resource. This rule can either be an assertion pattern, a combination
of operations that must occur on a resource, or as a conflict pattern, a combination of
operations that must not occur. So, this phase passes a verdict, i.e. whether a conflict is
present or not, for each shared join point and for each combined sequence of operation
per resource.

• AspectJ approach provides some visualizations to detect interactions as well. For
instance, if we have a pointcut such as the listing 2.16.

Listing 2.16: Pointcut example
1 pointcut relevantPoints(): call(* *.get*(..));

After this, we specify two different advises that are applied at the same join point. As a
result, AspectJ detects this interaction and something is printed out on the screen at the
corresponding methods are executed. In addition, each advice has an arrow saying that it
applies with a method, and what method as well.

2.2.2 Resolution

In this section, we present the resolution of feature interactions that were found in some
approaches. Some of them are the same that we found in the detection of feature interactions.
For this reason, we do not explain in detail the approaches again.

• As we said in section 2.2.1, the [DFS02] approach can deal with resolution of feature
interactions. To provide this, the approach proposes some linguistic support. One is to
specify how to compose inserts at the aspect level and the other ones is allows the user to
control visibility of inserts by restricting the scope of aspects. The occurrences of rules
of the form C B (I1 on I2) indicate potential interactions. They propose parallel operators
of the form ||f to indicate that whenever a conflict occurs in the composition A ||f A’,
the corresponding inserts must be composed using f. Indeed, when inserts commute in a
conflict, the inserts can be executed in any order (I1 commute I2) to allow the analyzer
to produce an arbitrary sequence of I1 and I2. In addition, in order to control visibility,
they propose a notion of scope for aspects. For instance, the command: scope id Idset
A declares an aspect A with name id which can match only join points coming from an
aspect whose name belongs to Idset.

• In this section, we present how the [TN05] approach applies resolution when there are
aspect interactions. Above all, Reflex has the possibility to apply ordering and nesting.
For instance, if links are mutually exclusive, specifying their ordering is not necessary.
Otherwise, ordering must be specified by behavioral links. The interaction between two
before-after aspects can be resolved in two ways: either one always applies prior to the
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other (both before and after), or one "surrounds" the other, although AspectJ only supports
wrapping. These alternatives can be expressed using composition operators dealing with
sequencing and wrapping. Considering aspects that can act around an execution point
(such as a caching aspect), the notion of nesting as in AspectJ appears: a nested advice
is only executed if its parent around advice invokes proceed. In Reflex, link composition
rules are specified using composition operators. The rule seq(l1,l2) uses the seq operator
to state that l1 must be applied before l2, both before and after the considered operation
occurrence. The rule wrap(l1,l2) means that l2 must be applied within l1, as clarified
hereafter.

User composition operators are defined in terms of lower-level kernel operators. There
are two kernel operators, ord and nest which express respectively ordering and nesting of
link elements. In figure 2.6 we can see the sequencing and wrapping defined as follows:
seq(l1,l2) = ord(b1, b2), ord(r1,r2), ord(a1,a2) and wrap(l1,l2) = ord(b1,b2), ord(a2,a1),
nest(r1,b1), nest(r1,r2), nest(r1,a2)

Figure 2.6: Ordering and nesting scenarios

Reflex makes it possible to define a handful of user operators for composition on top of
the kernel operators. For instance, Seq and Wrap are binary operators that implement the
seq and wrap operators.

Finally, when detecting link interactions, Reflex generates a hook skeleton based on the
specified composition rules, similarly to figure 2.6. The hook skeleton is then used for
driving the hook generation process: taking into account how link elements have to be
inserted, with the appropriate calls to metaobjects. In order to support nesting of aspects
with proceed, Reflex adopts a strategy similar to that of AspectJ, based on the generation
of closures. So, in order to be able to do proceed, a metaobject is given an execution point
closure (EPC) object, which has a proceed method, as well as methods for changing the
actual arguments and receiver of the replaced operation. Accordingly, for each interaction
scenario with nesting, Reflex generates closures embedding the composition resolution
of the following nesting level, so that calling proceed on the EPC object results in the
execution of the links at the nesting level below. This is done down to the deepest level
where proceed results in the execution of the replaced operation. The top-level weaving
points on figure 2.6 represent hooks, while nested weaving points represent closures.

• JAsCo provides a partial solution for the feature interaction problem. So, we suppose that
multiple aspects are applied upon the same join point of an application, and in some way
we need to order the execution of their behaviors. JAsCo partly addresses this open issue
in AOSD by the specification of the advice executions in the connector. All advices of
hooks that are triggered, are executed in the sequence specified in the connecter. If no
explicit sequence is specified, they are executed in the order the hooks are instantiated.
The precedence of the advices is enforced at run-time.
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In comparison to AspectJ, JAsCo allows a more fine-grained control on the order in which
aspects should be executed. For instance, some combinations of aspects require to specify
that when aspect A is triggered, aspect B cannot be triggered. To this situation, JAsCo
uses combination strategy that works like a filter on the list of hooks that are applicable at
a certain point in the execution. Each combination strategy needs to implement the vali-
dateCombinations method, which filters the list of applicable hooks and possible modifies
the behavior of individual hooks. Combination strategies can also be employed to change
some properties of the hooks depending on dynamic conditions.

2.3 Summary

In this chapter we presented the main concepts of AOP and some approaches that are most
well-know. We show a structured division of those approaches for a better understanding.
Afterwards, we introduced the state-of-the-art of feature interaction. In that section we separated
the feature interaction problem in two main sections such as detection and resolution. That is
because not all approaches provide both detection and resolution. In general, all approaches
encountered are focused at the interaction with aspects applied at the same join point.



3
Analysis with Soot tool

In this stage of the thesis, we already saw the problem statement that explains the main
motivation of what we want to solve, and the context of feature interactions. So, at this time,
we are able to focus in the first step of the objectives that we mentioned in the section 1.2.
Therefore, we wish to do a static analysis of the woven result to reproduce possible control flow.
This analysis is useful to know both all the possible control flows and what aspects are applied
inside those control flows.

In order to tackle the mentioned analysis, we use a well-known tool called Soot [SOO07].
Therefore, in this chapter, we explain the main concepts of this tool and how it can help us with
our objectives.

3.1 Overview of Soot

Soot [LLH04] is a byte-code analysis and transformation framework. Originally, Soot was a
framework to experiment with analysis and optimizations of Java bytecode, and to provide a
common infrastructure to compare results. However, nowadays, Soot allows analysis results to
be encoded as class file annotations for use by other tools.

3.1.1 Functionality

One of the main advantage of Soot is that provides four different Intermediate Representa-
tions (IR) for analysis purposes. Of course, they provide different levels of abstraction when
analyzing. These representations are described as follows:

• Baf is a streamlined stack-based representation of bytecode. Used to inspect Java
bytecode as stack code. Baf is useful for bytecode based analyses, optimizations and
transformations.

• Jimple is the principal representation in Soot. The Jimple representation is a typed,
3-address, statement based intermediate representation, which is suitable for analysis and
transformations. In addition, Jimple has less instructions than Java bytecode. Jimple
representations can be created directly in Soot or based on Java source code and Java
bytecode.

• Shimple is a Static Single Assignment (SSA) form version of the Jimple representation.
SSA form guarantees that each local variable has a single static point of definition which
significantly simplifies a number of analyses. Shimple is almost identical to Jimple with
the main exception of this single static point of definition. Therefore Shimple can be
treated almost in the same way as Jimple.

27
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• Grimp is similar to Jimple, but allows trees of expressions together with a representation
of the new operator. In this respect Grimp is closer to resembling Java source code
than Jimple is and so is easier to read and hence the best intermediate representation for
inspecting disassembled code by a human reader. In addition, Grimp is a good starting
point for decompilation.

In addition, Soot builds the following data structures during its analysis:

• Scene class represents the complete environment the analysis takes place in. Through
it, you can set e.g., the application classes (The classes supplied to Soot for analysis),
the main class (the one that contains the main method) and access information regarding
interprocedural analysis (e.g., points-to information and call graphs).

• SootClass represents a single class loaded into Soot or created using Soot. SootMethod
represents a single method of a class.

• SootField represents a member field of a class.

• Body represents a method body and comes in different flavors, corresponding to different
IRs (e.g., JimpleBody).

These data structures are implemented using object-oriented techniques, and are designed
as suitable and extensible abstractions.

In order to show an overview of the Soot framework [VRGH+00], we illustrate the complete
workflow in the figure 3.1. As we see, many different compilers can be used to generate the class
files. In addition, the framework takes the original class files as input, and produces optimized
class files as output. These optimized class files can be used as input of Java interpreters,
Just-In-Time (JIT) compilers, adaptive execution engines and Ahead-of-Time compilers.

Figure 3.1: Soot overview

3.1.2 How to run Soot

Soot can be used as a stand-alone tool and executed either using command line or the Eclipse
plugin. But, we choose to use the command line because it provides a more independent way
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to use this tool (although it is a more complex). Soot can be invoked from the command line as
follows:

java [javaOptions] soot.Main [sootOptions] classname
where [javaOptions] are general options for the Java Virtual Machine that executes Soot.

Next, [sootOptions] represent the various options Soot accepts and classname is the class
to analyze. In addition, Soot distinguishes among three kinds of classes: argument classes,
application classes and library classes. First, the argument classes are the classes we specify
to Soot. Secondly, the application classes are the classes to be analyzed or transformed by
Soot, and turned into output. Finally, library classes are those classes that are refereed to
by application classes but are not application classes. They are used in the analyses and
transformations but are not themselves transformed or outputted.

As we mentioned above, there is another way to execute Soot using the Eclipse plugin like
in the figure 3.2. In this plugin we must take the decision of what options represent the same
meaning of the command line arguments.

Figure 3.2: Soot run example

As we note, we just select which class we want to analyze and then choose every option
to the analyses and transformations. For instance, if we choose the option w in the command
line then we must click in the option Whole-program mode in the Eclipse plugin. The figure 3.3
shows a frame with the options.

Figure 3.3: Soot options

Soot provides several modules to realize analyses and transformations, but we just take the
advantage of the control flow graphs, call graphs and points-to analysis. These three important
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modules provide to us nice results that we can combine them to solve our problem statement. In
the following sections we explain each of them and finally we combine them.

3.2 Elements of the Analysis

3.2.1 Control flow graphs

Soot provides several different Control Flow Graphs (CFGs). The base class for these kinds of
graphs is UnitGraph, an abstract class that provides facilities to build CFGs. There are three
implementations of this abstract class: BriefUnitGraph, ExceptionalUnitGraph and TrapUnit-
Graph.

• BriefUnitGraph is very simple in the sense that it does not have edges representing control
flow due to exceptions being thrown.

• ExceptionalUnitGraph includes edges from throw clauses to their handler (catch block,
referred to in Soot as Trap), that is if the trap is local to the method body. Additionally,
this graph takes into account exceptions that might be implicitly thrown by the virtual
machine (VM) (e.g., ArrayIndexOutOfBoundsException). For every unit that might
throw an implicit exception, there will be an edge from each of that units predecessors
to the respective trap handler’s first unit. Normally, this is the CFG used when performing
control flow analyses.

• TrapUnitGraph like ExceptionalUnitGraph, takes into account exceptions that might be
thrown. There are three major differences:

1. Edges are added from every trapped unit (i.e., within a try block) to the trap handler.

2. There are no edges from predecessors of units that may throw an implicit exception
to the trap handler (unless they are also trapped).

3. There is always an edge from a unit that may throw an implicit exception to the trap
handler.

For reasons of simplicity, we use the BriefUnitGraph implementation in our approach: at
this point, we do not consider exceptions as a part of our analysis. Our intention is to focus on
the aspects that are applied in that control flow. So, to build a CFG for a given method body
we simply pass the body to the CFG constructors, e.g., BriefUnitGraph ctrlFlowGraph = new
BriefUnitGraph(body). After that, Soot provides a graph structure that is created with the source
code shown in the listing 3.1.

Listing 3.1: Control flow graph creation
1 SootMethod src =
2 Scene.v().getSootClass("Application").getMethodByName("main");
3 ExceptionalUnitGraph dgraph = new
4 ExceptionalUnitGraph(src.getActiveBody());
5 CFGToDotGraph gr = new CFGToDotGraph();
6 DotGraph viewgraph = gr.drawCFG(dgraph,src.getActiveBody());
7 dgraph.getBody().getUnits();
8 viewgraph.plot("dotCFG.dot");

The listing 3.1 shows the control flow creation upon a main method in the system called
Application. So, the listing 3.2 shows the Java code that we need to analyze.
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Listing 3.2: Application system
1 public class Application {
2 public static void main(String[] args) throws IOException {
3 Shopping s = new Shopping();
4 s.doStuff(2);
5 }
6 }

Finally, the graph is created in the line 8 (listing 3.1) through a dot file representation. In
order to visualize this file, we use a graphic tool called Graphviz. The result of this graphic tool
is shown in the figure 3.4 and then we can have an idea that how the control flow graph looks
like.

Figure 3.4: Control flow graph created by Soot

As a conclusion, we can say that Soot provides a detailed representation of the control flow
inside of a method. However, when a virtualinvoke method appears in the control flow, it could
be implemented by several classes. Since the dispatch to one of this implementation occurs
based on the dynamic type of the receiving object, we are not able to know which one is the
correct implementation. We will tackle this problem in section 3.2.3, using points-to analysis.

3.2.2 Call graphs

Soot includes a whole-program analysis framework for constructing call graphs [LLH04]. The
information analyzed by this framework can be particularly useful to help developers understand
their code and find bugs in it. In Soot, when a call graph is available (only in whole-program
mode), it can be accessed through the environment class (Scene) with the method called getCall-
Graph. The simplest call graph is obtained through Class Hierarchy Analysis (CHA), for which
no setup is necessary. CHA is simple in the sense that it assumes that all reference variables can
point to any object of the correct type. The following listing 3.3 is an example of getting access
to the call graph using CHA.

Listing 3.3: Call graph construction
1 Options.v().set_whole_program(true);
2 // Code for setting up which classes to us as application classes.
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3 CHATransformer.v().transform();
4 CallGraph cg = Scene.v().getCallGraph();

A call graph in Soot is a collection of edges representing all known method invocations.
These invocations could be: explicit method invocations, implicit invocations of static
initializers, implicit calls of Thread.run(), implicit calls of finalizers, implicit calls by
AccessController, etc..

Each edge in the call graph contains four elements: source method, source statement (if
applicable), target method and the kind of edge. There are different kinds of edges, e.g. static
invocation, virtual invocation and interface invocation. The call graph has methods to query
for the edges coming into a method, edges coming out of method and edges coming from
a particular statement (edgesInto(method), edgesOutOf(method) and edgesOutOf(statement),
respectively). Each of these methods return an Iterator over Edge constructs. Soot provides
three so-called adapters for iterating over specific parts of an edge.

• Sources iterates over source methods of edges.

• Units iterates over source statements of edges.

• Targets iterates over target methods of edges.

So, in order to iterate over all possible calling methods of a particular method, we could use
the code in the listing 3.4.

Listing 3.4: Call graph use
1 public void printPossibleCallers(SootMethod target) {
2 CallGraph cg = Scene.v().getCallGraph();
3 Iterator sources = new Sources(cg.edgesInto(target));
4 while (sources.hasNext()) {
5 SootMethod src = (SootMethod)sources.next();
6 System.out.println(target + " might be called by " + src);
7 }
8 }

Not only control flow graphs have dot file representation but also call graphs. The figure
3.5 shows an example of a dot file representation of a call graph. Since the call graph can
become very large, we have removed some of branches and edges in order to keep the graph
understandable.

Figure 3.5: Call graph created by Soot (abridged)

In addition, Soot supports more specific information to analyze the code. It provides two
more constructs for querying the call graph in a more detailed way: ReachableMethods and
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TransitiveTargets. The ReachableMethods object keeps track of which methods are reachable
from entry points. The method called contains(aMethod) tests whether aMethod is reachable
and the listener() method returns an iterator over all reachable methods. The second object
called TransitiveTargets is very useful for iterating over all methods possibly called from a
certain method or any other method it calls (traversing call chains). The constructor accepts
(aside from a call graph) an optional Filter. A Filter represents a subset of edges in the call graph
that satisfy a given EdgePredicate. This EdgePredicate is a simple interface of which there are
two concrete implementations such as ExplicitEdgesPred and InstanceInvokeEdgesPred.

3.2.3 Points-to analysis

In this section we present two additional frameworks for doing points-to analysis in Soot, the
Soot Pointer Analysis Research Kit (SPARK) and Paddle frameworks. The goal of points-to
analysis is to determine the set of objects pointed to by a reference variable or a reference
object field. By computing such points-to sets for variables and fields, the analysis constructs
an abstraction of the run-time memory states of the analyzed program. This is necessary in
order to do many other kinds of analysis like alias analysis or for improving the precision of,
for instance, a call graph. In our case, we are interested in improving the call graph because, as
explained before, the virtual method calls have to be resolved.

Soot provides the PointsToAnalysis and PointsToSet interfaces which any points-to analysis
should implement. The PointsToAnalysis interface contains the method called reachingOb-
jects(Local loc) which returns the set of objects pointed to by loc as a PointsToSet. PointsToSet
contains methods for testing for nonempty intersection with other PointsToSets and a method
which returns the set of all possible runtime types of the objects in the set. These methods are
useful for implementing alias analysis and virtual method dispatching. The current points-to set
can be accessed using the Scene.v().getPointsToAnalysis() method.

To create the current points-to interface Soot provides three implementations: CHA, SPARK
and Paddle. The first implementation was explained above, so we continue explaining briefly,
the others implementations.

• SPARK (Soot Pointer Analysis Research Kit) is a framework for experimenting with
points-to analysis in Java and supports both subset-based and equivalence based points-to
analyses and anything in between. SPARK is very modular which makes it excellent
for benchmarking different techniques for implementing parts of points-to analysis. This
framework provides the following options:

– verbose which makes SPARK print various information as the analysis goes along.

– propagator SPARK supports two points-to set propagation algorithms, a naïve
iterative algorithm and a more efficient worklist based algorithm.

– simple-edges-bidirectional if true this option makes all edges bidirectional and
hence allows an equivalence based points-to analysis.

– on-fly-cg if a call graph is created on the fly which in general gives a more precise
points-to analysis and resulting call graph.

– set-impl describes the implementation of points-to set. The possible values are
hash, bit, hybrid, array and double. Hash is an implementation based on the Java
Collections hash set. Bit is implemented using a bit vector. Hybrid is a set, which
keeps an explicit list of up to 16 elements and switches to bit vectors when the set
gets larger. Array is implemented using an array always kept in sorted order. Double
is implemented using two sets, one for the set of new points-to objects which have
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not yet been propagated and one for old points-to object which have been propagated
and need to be reconsidered.

– double-set-old and double-set-new describes implementation of the new and the
old set of points-to objects in the double implementation and double-set-old and
double-set-new only have effect when double is the value of set-impl.

• Paddle is of comparable accuracy to SPARK for context-insensitive analysis, but also
provides very good accuracy for context-sensitive analysis. In addition, it is implemented
using Binary Decision Diagrams (BDD). The use of BDDs promises efficiency in terms
of time and space, since BDDs provide a more compact set representation than the ones
used in SPARK and other frameworks. Similar to SPARK, Paddle is equipped with a large
set of options for configuring the analysis. The options verbose, set-impl, double-set-new,
and double-set-old are the same as for SPARK. The q option determines how queues are
implemented, and enabled option needs to be true for the analysis to run. The propagator
option controls which propagation algorithm is used when propagating points-to sets, we
leave it up to Paddle to choose and set it to auto. The conf option controls whether a
call graph should be created on-the-fly or ahead of time. The implementation of Paddle
is subset-based but equivalence-based analysis can be simulated by setting the simple-
edges-bidirectional option to true. The last four options are the most essential for the
working of Paddle so we describe them in some detail.

– bdd option toggles BDD on or off. If true then use the BDD version of Paddle, if
false do not. Default is false.

– backend option selects the BDD backend. Either buddy (BuDDy), cudd (CUDD),
sable (SableJBDD), javabdd (JavaBDD) or none for no BDDs. Default is buddy.

– context option controls the degree of context-sensitivity used in the analysis.
Possible values are: insens, 1cfa (1-control flow analisys), kcfa, objsens, kobjsens
and uniqkobjsens. Therefore, with insens Paddle performs a context-insensitive
analysis like SPARK. The 1cfa value performs a 1-cfa context-sensitive analysis.
kcfa performs a k-cfa context-sensitive, where k is specified using the k option.
objsens and kobjsens values makes Paddle perform a 1-object-sensitive and
k-object-sensitive analysis respectively. Finally, the uniqkobjsens value makes
Paddle perform a unique-k-object-sensitive analysis. Default is insens.

– k option specifies the maximum length of a call string or receiver object string
used as context when the value of the context option is either of kcfa, kobjsens,
or uniqkobjsens.

After all things considered, we saw that it is rather complicated to setup the two frameworks.
In addition, the SPARK framework and Paddle framework provide a more accurate analysis
at the cost of more complicated setup and speed. Nevertheless, we decide to use SPARK to
analyze the virtual method calls because it supports them through the Variable-Type Analysis
(VTA). The implementation of VTA [Kwo00] in Soot is based on the VTA algorithm presented
in [SHR+00]. This implementation is almost the same but it has minor changes to improve
precision. Therefore, VTA uses the name of a variable as its representative. For instance, when
we analyze Jimple code, we have three kinds of references and they receive representative names
in [SHR+00]. These names are: ordinary references, field references and array references. After
that, this algorithm builds a type propagation graph where nodes represent variables and edges
references flow of types due to assignments, including the implicit assignments due to method
invocation and method returns. The type propagation graph contains at most one node for each
variable with an object (reference) type. Once all of the nodes have been created, the algorithm



3.3. COMBINATION OF CFGS AND CGS 35

adds edges for all assignments that involve assigning to a variable with an object type. These
may be either explicit assignments via assignments statements, and implicit assignments due to
method invocation and returns. Finally, VTA is useful for further reducing the size of the call
graph, and in getting more compaction by removing additional methods.

3.3 Combination of CFGs and CGs

In order to be able to see a complete and detailed control flow of a certain method, we need to
combine both CFGs and CGs. The combination of these graphs can be realized with different
techniques. These techniques are presented in the following sections.

3.3.1 Technique 1: Inlining

In this technique, a simple solution to combine CFGs and CGs is applied [RHS95]. So, we
suppose that a CFG called P() has an invocation to another CFG called Q(). And for every call
to Q(), inline the CFG of Q(). The advantage of this technique is that it distinguishes between
different calls to the same function. Nevertheless, if there is several calls to e.g. Q(), we loose
efficiency because the CFG grow up exponentially. Another disadvantage is when infinite graph
is created in case of a recursive call.

3.3.2 Technique 2: Connecting

Another technique can be making a new "supergraph" [RHS95]. To this technique we assumed
the same example that in the first technique. In this case, we have to replace each call from P()
to Q(). In order to satisfy this replacement two main additions have to be done:

• Add an edge from point before the call (call point) to Q’s entry point.

• Add an edge from Q’s exit point to the point after the call (return point).

The main advantage of this technique is that a graph of each function included exactly once
in the "supergraph". In addition, the "supergraph" works for recursive functions (although local
variables need additional treatment). Once again, there is still a problem with this technique
called the unrealizable paths problem, where dataflow facts can propagate along infeasible
control paths. This means that one CFG could transfer its control to another CFG and then
goes to another CFG that it is different to the first one. The figure 3.6 shows an example of this
situation.

Figure 3.6: Unrealizable path
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As we note in the figure 3.6, the CFG of P() calls Q(). After the execution of Q(), the control
flow can return to the CFG of R(), instead of P(). In this way, the result of the analysis can be
wrong (the unrealizable path is represented by red line).

3.3.3 Technique 3: Connecting + labelling

In order to solve the problem discussing above, in which unrealizable paths could occur, we
introduce a technique that adds labels to the combination between CFGs and CGs [RHS95].
Taking the figure 3.6 as base case, we must add additional labels for each call i. For instance,
when P() calls to Q() a label (1 has to be added and when its return appears a label )1 has to
be added. Therefore, to the next call we use the labels (2 and )2 and so on. Finally, the adding
result is shown in the figure 3.7.

Figure 3.7: Valid paths

Once we have these additional labels, we make sure that when a label (i is stacked, it must
to be followed by a label )i. Otherwise, any other combination of labels is not allowed and the
path is discarded.

3.3.4 Practical Realization

As we note during the practical realization, Soot does not provide the combination of CFG and
CG directly. So, above all, we must change the Soot’s source code and re-compile it again.
This change is necessary to avoid some lack of information. The problem is that Soot resets
some important structures when we use both CFGs and CGs. Therefore, the code line Pack-
Manager.v().writeOutput();, in the method called run at the Main class, has to be commented.

After all considered, we focus on our implementation with respect to the combination
between CFGs and CGs. To do this, we use Soot as a stand-alone tool and we execute it
using command line. Therefore, when we use command line, we must pass the arguments
to Soot. Afterwards, Soot makes analyses and transformations, depending of those arguments.
The arguments are:

• -src-prec class. Sets source precedence to class files.

• -f jimple. Set output format for Soot. In our case, we produce jimple files.

• –keep-line-number. Keep line number tables.

• -d /Users/pabloquiroga/Documents/workspace/CallGraph/sootOutput/. Store output files
in a given directory.
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• -app. Run in application mode.

• -w. Run in whole-program mode.

• -p cg.spark on. Set SPARK option to on.

• -p cg.spark vta:true. Set VTA option to true.

• Caller. The class to analyze.

In addition, we use an extra argument such as -Xmx400m to the virtual memory. Afterwards,
we create the main method to invoke Soot tool. The listing 3.5 shows the main method.

Listing 3.5: Combination between CFGs and CGs
1 public class Main {
2 public static void main(String[] args) throws IOException {
3 soot.Main.main(args);
4 SuperGraph sg = new SuperGraph("SuperGraph.dot");
5 HashSet<String> tgtCallReturn = new HashSet<String>();
6 sg.cfg(args[args.length-1], "main", tgtCallReturn, 0);
7 sg.closeSuperGraph();
8 }
9 }

As we note, in the line 3 (listing 3.5), Soot’s modified class is called with the arguments
detailed above. This call executes Soot tool and its results are used in our SuperGraph class.
This class is in charge of the combination’s creation. It has a variable called dsg that represents
a DotSuperGraph object. The DotSuperGraph object represents a dot file and manipulate all
the graph’s nodes and the connectors among them. In the line 6 (listing 3.5), we create the first
control flow graph with the main method. Afterwards, the recursive cfg method goes through
the control flow looking for an invocation statement. If there is such invocation, we create a
new control flow graph whose origin is connected with the invocation of the first control flow.
In addition, we add a connector between the end of the control flow created at the second time,
and the return of the control flow which made the invocation.

Finally, in the line 7 (listing 3.5), we finish the graph’s combination closing the dot file
representation. This file is shown in the figure 3.8.

All in all, we can see a detailed control flow graph that shows the possible paths in the
main method of a certain class. Of course, inside of this control flow could appear some
aspects that are woven with the base code. In addition, every possible path has to start at
the ClassName.ENTER.MethodName node and finishes at the ClassName.EXIT.MethodName
node.

3.4 Summary

In this chapter, we have presented an overview of Soot tool. In addition, we saw some
advantages provided by Soot like control flow graphs, call graphs and point-to analysis. These
are not the only ones but the more important to our dissertation. Afterwards, when we tried to
combine CFGs with CGs, we encountered some difficulties and then we showed how to solve
them. Finally, we present our implementation about the combination of those graphs.



38 CHAPTER 3. ANALYSIS WITH SOOT TOOL

Figure 3.8: Combination between CFGs and CGs



4
Formal Documentation

In this chapter we present a formal documentation of aspects to specify in what control-flow
configuration these aspects should be applied. We define each specification as a policy. For
instance, one policy could specify that a login aspect should be executed in every control flow
path of the main method.

In order to express those policies in a general manner, we use predicate logic in our
approach. As we know, predicate logic is considered a knowledge representation language
[Mag05]. It allows us to represent complex facts about the world, and to derive new facts in a
way that guarantees that, if the initial facts were true then so are the conclusions. In addition,
predicate logic is a well understood formal language, with well-defined syntax, semantics and
rules of inference. For instance, we are able to build up complex expressions by combining
atomic propositions with the logical connectives. The figure 4.1 shows each of them.

Table 4.1: Logical connectives
Symbol What it is called What it means
¬ negation ’It is not the case that. . .’
& conjunction ’Both. . . and . . .’
∨ disjunction ’Either. . . or . . .’
→ conditional ’If . . . then . . .’
↔ biconditional ’. . . if and only if . . .’

In addition, we are allow to use quantifiers like for all and exists that are represented by the
symbols such as ∀ and ∃ respectively.

4.1 Policy language

In our approach, we use some predefined predicates that represent knowledge relevant to our
problem domain, i.e. control flow, methods, advices, etc. Policies can then be expressed as
logical formulae that employ these predicates, as well as the standard logical connectives and
quantifiers.

4.1.1 Predefined predicates

In order to represent some knowledge about our problem domain we predefine certain
predicates. These are:

• path(<method>,<path>). This predicate holds when <path> is a path from <method>.
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• member(<method>,<path>). This predicate holds when <method> is on <path>.

• matches(<methodpattern>,<method>). This predicate holds when <method> is matched
by a certain <methodpattern>.

• adviceof(<method>,<aspect>). This predicate holds if <method> is an advice method
defined in <aspect>.

A <path> argument represents a sequence of methods. For instance, a <path> =
{methodA,methodB} represents a control flow path through methodA and methodB, i.e. the
methodA method calls to the methodB method (see figure 4.1).

Figure 4.1: Example argument. (path={methodA,methodB})

In order to select methods, we will use the well-known method patterns from AspectJ’s
pointcut language. This means that, as an argument <methodpattern>, we are able to use
statements according to the grammar of 4.1. The matching semantics of these method patterns
(as embodied by the predicate matches/2) is also reused from AspectJ.

Listing 4.1: AspectJ’s pointcut language (method patterns)
1 <methodpattern> ::= [<modifierspattern>] <typepattern>
2 [<typepattern> "."] <idpattern> <formalspattern>
3 [<throwspattern>]
4 <modifierspattern> ::= ["!"] <javamodifier> (<modifierspattern>)*
5 <typepattern> ::= <idpattern> ["+"] ("[]")*
6 | "!" <typepattern>
7 | <typepattern> "&&" <typepattern>
8 | <typepattern> "||" <typepattern>
9 | "(" <typepattern> ")"

10 <idpattern> ::= (<letter>)+ ["*"] ["."] [<idpattern>]
11 <formalspattern> ::= <typepattern>
12 | ".." ("," <formalspattern>)*
13 <throwspattern> ::= THROWS <typepattern> ("," <typepattern>)*
14 <javamodifier> ::= PUBLIC | PRIVATE | PROTECTED | STATIC
15 | SYNCHRONIZED | FINAL
16 <id> ::= <letter> (<letter> | <digit>)*
17 <letter> ::= "A" .. "Z"
18 | "a" .. "z"
19 <digit> ::= 0 .. 9

Based on these predicates, other higher level predicates can be built, in order to facilitate the
definition of policies.

4.1.2 Derived predicates

As we mentioned above, the policies help to the developer to specify what aspects should be
applied. Nevertheless, a policy could specify a more general case without aspects. For instance,
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if we want to say that a certain method A must apply in the control flow of another method B,
we express this situation as follows:

must(<methodpattern>,<methodpattern>)
The must predicate is developed with the combination of the predefined predicates. In

addition, we use the quantifiers like ∀ and ∃. So, the new predicate specify that the A method
must apply in the control flow of the B method.

must(A,B) ↔ ∀ X: matches(B,X) → [∀ P: path(X,P) → (∃ Y: matches(A,Y) →
member(Y,P))]

This policy checks if there is a certain method A inside the control flow of method B. This
verification has to be realized for every path that starts from method B.

4.2 Problems Revisited

As we have seen in the section 1.1 our motivation introduced several cases of interactions. First
of all, we presented a simple case in which the control-flow is affected by an aspect. So, to
provide support to this case, we will add a new predicate to our approach such as mustAp-
ply(<methodpattern>, <method>). This predicate express that an aspect that is selected from
the pattern <methodpattern> must apply in the control flow of a certain method. Therefore, the
predicate mustApply can be expressed with the policy language as follows:

mustApply(A,B) ↔ ∀ X: matches(B,X) → [∀ P: path(X,P) → (∃ Y: adviceof(Y,A) →
member(Y,P))]

In short, this policy checks that for every path that starts from the method B, the advices of
aspect A must be applied (if there is some one). Secondly, we introduced an interaction where
two aspects are depending each other. In this case, we consider a predicate with three arguments
to specify the aspects that are involved and the method where the control flow starts:

mustDepend(<methodpattern>, <methodpattern>, <method>)
Therefore, as we said before it is possible to express this new predicate with the policy

language as follows:
mustDepend(A1,A2,B) ↔ ∀ X: matches(B,X) → [∀ P: path(X,P) → (∃ Y: adviceof(Y,A1)

→ ∃ Z: adviceof(Z,A2) & member(Y,P) & member(Z,P))]
The mustDepend policy checks the same paths that the previous policy. But, in this case, it

looks for a certain advice of an aspect in the control flow and then it tries to find advices of the
dependent aspect. Finally, the last interaction of our motivation was related on the use of two
excluded aspects each other:

mustExclude(<methodpattern>, <methodpattern>, <method>)
Therefore, the policy is represented as follows:
mustExclude(A1,A2,B) ↔ ∀ X: matches(B,X) → [∀ P: path(X,P) → (∃ Y: adviceof(Y,A1)

→¬ ∃ Z: adviceof(Z,A2) & member(Y,P) & member(Z,P))]
As we noted, this policy is similar to the previous one with the different that it must not

apply the second aspect when the first one is applied.

4.3 Implementation of a light-weight logic engine

At this time we know that policies can express what should occur in the control flow of a certain
method. To help the developer, these policies have to be analyzed to determine whether are true
or false (i.e. whether they are honoured or violated). Therefore, we create a light-weight logic
engine to evaluate the logic formulae that make up the policy. To better understand the design
of our logic engine we have developed a graphical diagram. Following this, the main concepts
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are explained such as general concepts, goals and predicates of the logic engine. Of course, we
include some illustrations of its functionality as well.

4.3.1 Proposed engine

In order to evaluate the logic formulae, we present an overview of a logic engine that involve
predicates, connectives and goals. The figure 4.2 shows the main classes that are involved in the
design of this engine. We will explain each of the concepts below.

Figure 4.2: An overview of a logic engine

4.3.2 General concepts

One of the main concepts of our logic engine is based on the environments. An environment
provides a mapping from a certain set of variables to values. We use strings to represent vari-
ables and regular objects to represent values.

In order to be able to show different possible environments, we use an auxiliary structure to
iterate through the environments. Therefore, the figure 4.2 shows this structure as the generic
Iterator<E> class (E represents the type of elements that can be iterated). By the same token,
an environment is represented by Env class.

4.3.3 Goals

A goal represents something that we want to verify. It can be satisfied starting from an initial
environment, and it produces an extended environment for each encountered solution. The
figure 4.2 shows the Goal interface.

The bindings in the initial environment represent the a priori assumptions that we use
when satisfying the goal. In contrast, the bindings that are added in the extended environment
represent the additional (a posteriori) assumptions that are necessary in order to obtain a
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solution. If the assumptions from the initial environment already prohibit a solution, than
no environments are returned. As an example, consider the goal female(X). Given an initial
environment that is empty, this goal can be satisfied in a large number of ways, represented
by different resulting environments: X=maria, X=analia, etc. Given an initial environment
X=rosa, this goal can only be satisfied in one way, namely the initial environment. And given
the initial environment X=pablo, the goal cannot be satisfied, so no resulting environments are
produced.

The logical connectives can be modeled as new kinds of goals that can each be defined in
terms of their subgoal(s). So, new kinds of goals are defined as the And, Or, and Not classes.
We briefly explain each of them:

• The And goal is satisfied if and only if both subgoal are satisfied. This goal tries to satisfy
the first subgoal, and for each encountered solution, it tries to satisfy the second subgoal
as well. The resulting environments represent solutions for both subgoals, so these will
be returned by the resulting iterator of the And goal (or an empty iterator if there is no
common solution).

• The Or goal is satisfied if and only if either one of the subgoal is satisfied. To obtain
these solutions, the resulting iterator first returns the solutions of the first subgoal, and
afterwards the solutions of the second subgoal.

• The Not goal returns the original environment if and only if the subgoal cannot be satisfied.
Otherwise the empty iterator is returned.

4.3.4 Predicates

A predicate represents a goal that is parameterized with formal arguments. Some examples
are: male/1, female/1, parent/2, etc. where the number after the name represents the number of
arguments. In our engine, we use the interface Predicate1 for a predicate with one argument,
Predicate2 for a predicate with two arguments, etc. (in figure 4.2 only Predicate1 is shown).
The implementation of the interfaces has to provide a way to satisfy the predicate based on the
possible state of the arguments. In case of one argument, that argument can either be "open"
(i.e. unknown or uninstantiated) or "closed" (i.e. known). The interface therefore includes a
method satisfy_o(), for the case where the argument is open: in that case possible argument
values will be generated. In case the argument is closed, the interface provides the method
satisfy_c(Object), which takes the argument value as a parameter, and which will return an
iterator of the meaningless type (Void) to indicate if there are solutions.

We distinguish two kinds of implementations for the Predicate interface. Built-in predicates
will be implemented in Java, and will, in the context of this thesis, employ the Soot analysis in
order to determine their result. On the other hand, the derived predicates are implemented by
employing some goal as their definition, and by stating the formal arguments that are used in
their definition. A derived predicate with one argument is modeled as the call GoalPredicate1:
it will provide an implementation of the methods satisfy_o() and satisfy_c(Object) by calling
the satisfy method of the defining goal with an environment where the argument is respectively
unbound or bound to the given argument value. In order to show an example of GoalPredicate1
predicate, we define the predicate macho/1 using the goal represented by the conjunction of
male(X) and latin(X). Therefore, the arguments of the new predicate will be named with X. So,
the predicate defined by another goal will be macho(X).

Finally, when a predicate is called with certain arguments values, this call constitutes another
kind of goal (recall the example female(X) that we employed previously). In case of a
predicate that takes one argument, this is represented by the class Predicate1Call. It will
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implement the satisfy method of the Goal interface by employing the satisfy_o and satisfy_c
method of the predicate. If the argument value is unbound in the initial environment, satisfy_o
is employed; otherwise satisfy_c is called.

4.4 Summary

In this chapter, we have presented a formal documentation of aspects to specify what aspects
should be applied. In order to be able to provide this documentation we took the concept
of predicate logic. Thus, we could use logical connectives and quantifiers to have more
expressiveness in our approach. Afterwards, a policy language was defined. In this language,
an example of a policy definition was explained with own predicates. As we know, a policy has
to be verified whether is true or false. Therefore, a light-weight logic engine was created. This
engine is able to accept new goals to extend its functionality. Finally, the logic engine helps us
to know whether a certain policy was violated or not.
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Conclusions

The main goal of this dissertation is to provide support for the management of control-flow
interactions among the aspects deployed in a system. We have shown different interactions
that motivated this dissertation. Starting with a simple aspect applied at the control-flow and
continuing with aspects that are depending or excluding each other. After we explained the
motivation we take a look at the state-of-the-art of feature interaction. We found that, in most of
the cases, all approaches encountered focus on the interactions with aspects applied at the same
join point. In order to support broader, control flow interactions a technique was proposed in
chapters 3 and 4. Section 5.1 below, presents an evaluation of the applied technique. Afterwards,
contributions of this dissertation are shown. Finally, we conclude with some future work.

5.1 Evaluation of the Technique

The technique involves a number of consecutive steps, each with its own objectives. The
objectives of the different steps were solved in a successful manner. In each stage we could
of course find a possible solution and with its advantages and disadvantages. So, we display the
conclusions of each step below.

5.1.1 Static analysis

One of the points of our technique consisted in a static analysis of the woven result to reproduce
possible control flow. This analysis was successful because we are able to create all the possible
control flows, and we can see what aspects are applied inside those control flows as well. This
success was possible with the support of Soot tool. We took control flow graphs and call graphs
from Soot, because we think that they provide good representations and a detailed analysis. We
used these graphs to provide a combined graph that holds all possible control flow. However,
Soot does not provide the combination of both graphs by itself. Therefore, this combination was
a big challenge.

5.1.2 Formal documentation

Another point of our technique required a formal documentation of aspects to specify what
aspects should be applied in a certain control flow. This allows the developer to document
his assertions about the aspects in a system, in order to avoid unexpected interactions. To
express this documentation we employ the concept of predicate logic. As such, a powerful and
general language is available to write complex control-flow policies. In addition, we remark that
this technique is not restricted to aspect systems alone, it could be applied in a standard (e.g.
object-oriented) software system.
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5.1.3 Logic engine

Finally, the last point of the technique was to create an algorithm to detect violations of the
policies on a certain control flow. Since we use logic formulae from predicate logic to express
the policies, we need to be able to evaluate these logic statements in order to determine their
truth value. To this end, a light-weight object-oriented logic engine was created. This engine
allows the definition of built-in predicates in order to employ the results of the static analysis.
Additionally, users can build their own predicates on top of existing ones, in order to abstract
and reuse complex definitions.

5.2 Contributions

In this section, we comment all the contributions of this dissertation. Above all, we propose a
technique for managing control-flow interactions between aspects in a software system, an area
that has not been considered before (to the best of our knowledge). This technique involves
a static analysis of the woven result, using existing, well-know tools (i.e. Soot [SOO07]). We
combine different analysis results, namely control flow graphs and call graphs, in order to obtain
a result suitable for our purposes. Moreover, we propose a set of predicates, as in predicate logic,
that represent relevant situations regarding the control-flow relations of methods and advices.
For instance, with these predicates, we can specify that we must apply certain aspects in the
control flow of all methods matched by a certain method pattern. In addition, we are able to
define several complex policies because we can combine previous policies with each other. Last
but not least, we present an application made in Java that implements the logic engine. This
application checks if each policy defined by the user is satisfied. As such, the developer obtains
a complete tool for the management of control flow interactions between aspects in his software
system.

5.3 Future work

Following the investigations described in this dissertation, we think that there are several lines
of research arising from this work which still require further investigation:

• The combined graph visualization, as we described in section 3.3 has still some scalability
issues. As we have seen in the figure 3.8, resulting visualizations are overloaded
in information on every node of the graph. This might be solved by presenting the
information in a more useful way. For instance, we could separate certain relevant
information such as the method name that is invoked, its arguments, to what class belongs
this method, etc.

• The static analysis of the woven result could be improved. In the case where we introduce
the interaction on two aspects that depend on each other, an aspect could cut part of the
flow control of another aspect (Although we have found both aspects in this control flow).
We could solve this problem by doing the static analysis before and after applying the
aspects. Afterwards, we would have to compare both control flows to determine whether
this interaction occurs.

• Results of the static analysis currently do not consider exceptions. Therefore, we could
add these exceptions with implementations that Soot tool provides.

• The logic engine shown in section 4.3 could be implemented with another language
different from Java. Since our policies are expressed using predicate logic, it would be
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possible to be implemented it by means of a full-blow logical programming language such
as PROLOG. This would allow for advanced techniques, such as cutting of the search tree,
or retraction of assertions, etc.

• Evaluate on a large case study, e.g. J2EE applications, it could be a more powerful way
to use our approach.
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