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Abstract

More and more programmers use aspect-oriented programming and reflec-
tion in order to make a clean separation of concerns in their programs.
Currently very few tool support is provided for any of those programming
paradigms. It is obvious that good tool support is indispensable for promot-
ing the application of these paradigms.

The goal of this thesis is to provide some tool support for developing
reflective applications. Throughout the research, Reflex is used as a case
study. It is a Java framework that allows a kind of reflection, permitting a
clean separation of concerns in its way.

After a study of the problem environment, we explain the static and
dynamic tool support developed in this thesis. Typically, static tool sup-
port will be used at development time, while dynamic tools will be used at
runtime. At the static level, we help the programmer by easing the Reflex
configurations and by detecting and resolving configuration conflicts. At the
dynamic level we used Reflex itself in order to create a runtime monitor, al-
lowing programmers to dynamically monitor both standard object-oriented
and reflective Java applications built with Reflex.
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Chapter 1

Introduction

Divide et impera! It was Julius Caesar who spoke those words, and applied
them in order to manage the complexity of ruling the Roman empire. It is
the same principle programmers have to practice in order to cope with the
complexity of developing computer programs. The separation of concerns
[33] is at the core of software engineering, as it incorporates the divide and
conquer principle. Using that principle, all the different concerns should
be split up into different modules [59] – separate chunks of code, preferably
self-contained, or as self-contained as possible, which perform a certain task.
This leads to less duplication of code and therefore smaller code which is
easier to read, debug, maintain, improve and extend.

The problem is that in some cases it is very hard to separate all the
different concerns, as we might be faced with crosscutting concerns [52],
which act across many modules. This has led to the invention of many
interesting, and effective, modularization approaches.

One of the most successful approaches is Aspect-Oriented Programming
(AOP) [47], where every concern is modelled as a separate aspect. All
aspects are then automatically composed in order to obtain the requested
program behavior [50, 44, 46].

Another way of implementing a clean separation of concerns is through
reflection [65, 53]. Reflection allows objects to look at their current state or
behavior possibly in order to make some changes to that state or behavior
[70]. These changes permit the programmer to separately implement the
non-functional and crosscutting concerns [76].

The major drawbacks of reflection are its inherent complexity as well
as its assumed cost in terms of performance. This is why partial reflection
is very important as it allows highly selective use of reflection. A Java
framework – Reflex – was developed that allows partial reflection for Java
[72]. It offers appropriate interfaces for static and dynamic configuration of
partial reflection at various levels.

In recent research, reflection has already been compared to AOP. [44]
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classifies reflection into the category of aspectual decomposition paradigms.
In [54], the authors state that reflection interacts with AOP in two main
respects. First, reflective techniques appear among the most promising to
build aspect weavers that would be both general and extensible. Second,
AOP appears as a promising structuring tool for reflection as more and
more facets come into play in reflective descriptions of complex systems and
programming languages. [67] shows how to theoretically implement AOP
using reflection.
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1.1 Problem setting

More and more researchers are finding out the power of explicit separation
of concerns. Because of that, aspect-oriented and reflective programming
are getting quite popular. But – as more developers start using them – the
need rises for good tool support.

At this time, AspectJ is the most popular implementation of AOP and
Eclipse is the most popular Java development environment in research, as
it provides an easy extensible plugin framework, is free of charge and com-
pletely open source. Because of those facts, the AspectJ team is currently
developing an Eclipse plugin: AspectJ Development Tools (AJDT). AJDT
will ease AOP and permit most developers to stay in their known program-
ming environment.

Currently there is still no tool support for Reflex and the partial re-
flection it permits. The only support the developers get, lies in the source
code documentation. This is why we want to provide good tool support for
Reflex. Tool support comes in two dimensions: static support – which is
typically used before the program is started – and dynamic support – which
is used while the program is running. Having both a static and dynamic
part, the tool support should facilitate the use of Reflex.

9



1.2 Goal

The main goal of this thesis is to assist the programmer in the development
of reflective applications using Reflex. For that, we provide both static and
dynamic tool support.

The static support comes in the form of an Eclipse plugin. It provides
the appropriate editors and wizards for configuring Reflex. As conflicts
can arise in such configuration, a mechanism for detecting and resolving
those conflicts had to be established. We contributed in the development of
the Reflex conflict detection and resolution framework. The Eclipse plugin
offers the support for using that framework. Finally it also offers some
IDE support for debugging reflective applications, having a functionality for
stepping through the source code while running the application.

The dynamic support lies in the visualization of the applications ex-
ecution. It is developed as a stand-alone monitor that can either be used
together with or separate from the static part. The monitor provides a great
help for debugging ordinary object-oriented or reflective programs. In ad-
dition to this, it allows the user to observe and/or manipulate the behavior
of an object at runtime to some extent.
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1.3 How to read this thesis

This research work starts with an overview and brief explanation of all the
technologies that were used during the investigation period. As the main
goal of this thesis is to assist the programmer in developing reflective and
aspect-oriented applications, we begin by explaining those two paradigms.
Respectively Chapters 2 and 3 deal with that matter.

The fourth chapter discusses the technologies that had to be used for
implementing the tool support. We start by explaining how Java class load-
ing works. Then we move to Javassist, the heart of the Reflex framework.
As the tool support will be implemented as an Eclipse plugin, we then dis-
cuss Eclipse and the Standard Widget Toolkit (SWT). Also Sun Windowing
(SWING) is discussed as it is used in the dynamic tool support. The chapter
ends by clearing out AspectJ and AJDT.

After that theoretical part, we move to the practical part of this thesis
and more precisely to the development and implementation of the Eclipse
plugin for supporting the developers that are using Reflex. Chapters 6 till
9 each cope with the development explanation of one part of the Eclipse
plugin. Chapter 10 handles the dynamic tool support. It explains how a
runtime monitor was developed and implemented and which functionalities
it currently provides.

We end by evaluating our work, listing some advantages and drawbacks
of our approach, drawing some conclusions and stating possible future work
(Chapters 11 and 12).
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Preliminaries
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Chapter 2

Reflection

The goal of this chapter is to briefly introduce the user in the world of
reflection. For a more detailed explanation, the reader should take a closer
look at [66, 72].

After giving a quick introduction on what reflection is and where it comes
from, we discuss the different existing kinds. We will see that three main
levels of reflection can be discerned.

First of all, we will clarify the distinction between static and dynamic re-
flection, giving an answer to the question when exactly reflection will occur.
Then we will demonstrate the difference between structural and behavioral
reflection, answering what will be reflective. Thirdly we compare introspec-
tion and intercession stating which power the reflection provides. We end
by explaining what behavioral reflection is.

2.1 Introduction

According to the Oxford dictionary, reflection is the act of sending back a
mirror image of something or somebody. Many things can be done with
that image. It could be used, for example, to change a current state, like
wiping that bit of mayonnaise from one’s nose. One can also learn to act
differently using the reflection. Just think about the dancers practicing in
front of a mirror in order to improve their performance.

In order to better understand the concept of reflection, it may be useful
to go back to the studies of self-awareness in artificial intelligence: ”Here I
am walking down the street in the rain. Since I’m starting to get drenched,
I should open my umbrella.” [66] This situation reveals a self-awareness of
behavior and state. Moreover that self-awareness leads to a change in that
selfsame behavior and state.

It would be desirable for computations to avail themselves of these re-
flective capabilities, examining themselves in order to make use of metalevel
information in decisions about what to do next. Reflection allows objects to

13



look at their current state or behavior maybe in order to make some changes
to that state or behavior [70].

In real life we need a mirror (or a reflective material) in order to see
our reflection. The same goes for computation, where an object is typically
observed using some external, metalevel viewpoint. That is why in some
programming languages reflection is a lot more intuitive than in others. For
example in Smalltalk [51], the entire object model is based on entities which
control other entities – metaentities. A Smalltalk class is in fact an entity
which is responsible for managing its instance objects. The class itself is
managed by a metaclass, which manages the class and so on. This way,
a Smalltalk entity can always query its metaentity for information. As we
can see, this architecture allows a very easy implementation of reflection.
In Java, things get more complex as not all the Java entities are managed
by a metaentity. A Java instance will always be able to query its class for
information, but a Java class will not be able to do that, because classes in
Java not implicitly have a metaentity watching over them.

Reflection is a widely ranging concept that has been studied indepen-
dently in many different areas of science. It has long been investigated in
philosophy and formalized to some extent in logic [39]. It arose naturally
in Artificial Intelligence (AI), where it is intimately linked to the end goal
itself. In AI, reflection is viewed as the emergent property responsible, at
least in part, for what is considered an intelligent behavior [28].

Reflection in programming languages has emerged from the studies of
Brian Smith around the foundations of self awareness and self-references,
and his work around the application of these concepts to computer science
[65]. The introduction of reflection to object-oriented programming is due
to the doctoral studies of Pattie Maes [53], in which reflection refers to the
ability of a system to observe and modify its computation. But also in other
sub areas of programming languages, reflection has been applied. In [28] a
fine comparison is given on the different applications of reflection in logic,
functional and object-oriented programming.

2.2 Principles of Reflection

In a reflective system, code at the base level executes under control of code
at the metalevel. The metalevel is acting as an interpreter of the base level,
possibly changing the way the base-level computation is performed. But in
order to allow the metalevel to control the base-level program, that base-
level program must be reified. Reifying a program is providing a mechanism
for modelling that program’s execution state. This state can then be queried
or modified in order to observe or change the corresponding program.

14



2.3 Reflection kinds

2.3.1 Static versus Dynamic

Reflection can be used both at run and development time. Depending on
when the reflection is employed, it is said to be static or dynamic respec-
tively. In static reflection, metalevel information is only used at compile time
to produce class specific code. It does not involve runtime computations.
Dynamic reflection is much more powerful as metalevel objects still exist
at runtime. That way, it allows observing and modifying the base-program
objects at runtime [16].

2.3.2 Structural versus Behavioral

Depending on which part of the base-level representation is accessed, the
part describing the structure of the program, or the part describing its be-
havior, reflection is said to be structural or behavioral [72].

Structural reflection is the ability of a language to provide a complete
reification of both the program currently executed as well as a complete
reification of its abstract data.

Behavioral reflection is the ability of a language to provide a complete
reification of its own semantics (processor) as well as well as a complete
reification of the data it uses to execute that program [9].

2.3.3 Introspection versus Intercession

If a reflective system is observing the behavior of an application and is
coping with answering questions on the state of a program, then we talk
about introspection. When the system can also auto-modify its code, then
we talk about intercession. [21].

Bobrow et al. give a nice definition that summarizes this matter in
[20]. ”Reflection is the ability of a program to manipulate as data something
representing the state of the program during its own execution. There are two
aspects of such manipulation: introspection and intercession. Introspection
is the ability for a program to observe and therefore reason about its own
state. Intercession is the ability for a program to modify its own execution
state or alter its own interpretation meaning.”

2.4 Behavioral Reflection

Behavioral reflection consists in adapting the behavior of applications. In
order to modify the behavior of an application, that application should be
reified, as we have seen in section 2.2. Reification of an object-oriented
application consists in instrumenting the concerning operations with hooks.
Those hooks are interception points that define where delegation to the
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Figure 2.1: Behavioral reflection with metaobjects

metalevel will occur. The link between a base object and a metaobject is
called a metalink, also known as causal connection link.

A reflective object is an object in which some operations (message send,
instantiation, cast, ...) are reified and controlled by a metaobject. When an
instance of a class is reflective, that class is said to be reflective as well.

Whenever control flow reaches a reified operation from a reflective base-
level object, a control flow shift occurs, giving execution control to the met-
alevel (shift up). There, the hooked metaobject takes execution control and
performs the necessary actions. After terminating these actions, another
control shift occurs, giving execution control back to the base-level entity
(shift down). Figure 2.1 clearly shows how behavioral reflection is working.

2.5 Conclusion

We started this chapter by introducing reflection and by stating from which
ideas it has emerged. We saw that reflection was first studied in philosophy
and artificial intelligence and that it was later introduced in programming
languages.

A reflective program typically consists of two levels: the base level con-
taining the base program and a metalevel containing the metaprogram. In
order to let those two levels interact, the base program has to be reified.
Reifying a program is establishing a mechanism in order to model its exe-
cution state in order to observe or modify that state.

There are many different kinds of reflection but basically reflection can
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be differentiated on three criteria: static versus dynamic, structural versus
behavioral and introspection versus intercession. The first criterium involves
when the reflection is taking place; static for reflection at development time
and dynamic for runtime reflection. The second measure is based on which
part of the representation is accessed; structural if the program structure is
concerned and behavioral if the program behavior is affected. The last one
deals with the ability to change the base program (intercession) or to only
observe it (introspection).

This chapter ends by explaining behavioral reflection – adapting the
behavior of applications. In order to do that, base programs must be in-
strumented by hooks to metaobjects, which get control whenever execution
control reaches the reified operation of the reflective object.
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Chapter 3

Aspect-Oriented
Programming

This chapter introduces the paradigm of Aspect-Oriented Programming
(AOP) [46, 63, 13, 14]. Depending on the time on which the separated con-
cerns are recomposed, we can classify the different AOP implementations
into two main categories: static or dynamic implementations, for compile
time and runtime compositions respectively. AspectJ is the most popular
implementation of AOP. The AspectJ Development Tools (AJDT) project
will provide Eclipse platform based tool support for AOSD with AspectJ
[73].

The differences between AOP and reflection are also stated in this chap-
ter. While reflection is more powerful, AOP (as in AspectJ) will be less
complex. However, reflection and AOP have a lot in common, as they can
both be used in order to separate concerns. We will even see that we can
implement AOP using reflection.

This chapter ends with a discussion on aspect conflicts and their reso-
lution. Literature provides several solutions for solving the aspect conflicts.
They are compared and discussed in order to solve the equivalent problem
occurring in reflection (as we will see in chapter 9).

3.1 Introduction

Some aspects of system implementation, such as logging, error handling,
standards enforcement and feature variations are notoriously difficult to im-
plement in a modular way. The result is that code is tangled across a system
and leads to quality, productivity and maintenance problems.

AOP is a programming paradigm that is mainly used for coping with that
problem, providing ways for a clean separation of crosscutting concerns. A
concern is said to be crosscutting if it cannot be cleanly separated into a
separate module because it is affecting several modules [37].

18



Figure 3.1: The UML diagram of a simple figure editor.

Consider the UML class diagram for a simple figure editor described
in [37] (see figure 3.1). There are two concerns for the editor: keeping
track of the position of each figure element (data concern) and updating
the display whenever an element has moved (feature concern). The object-
oriented design nicely decomposes the graphical element so that the data
concern is neatly localized. However, the feature concern must appear in
every movement method, crosscutting the data concern. The software could
be designed around the feature concern; but then the data concern would
crosscut concern for display update [50].

AOP aims at separating these different concerns into single units called
aspects. An aspect is a modular unit with a crosscutting implementation.
It encapsulates some behavior that affects multiple classes into reusable
modules.

Aspectual requirements are concerns that introduce crosscutting in the
implementation. Error checking and handling, synchronization, context-
sensitive behavior, performance optimizations, monitoring and logging, de-
bugging support and multi-object protocols are all aspects.

With AOP, each aspect can be expressed in a separate and natural form.
When all aspects are declared, a weaver can be exerted to combine the
aspects set and base-program files into the tangled application code (see
figure 3.2). As a result of this principle, a single aspect can contribute to the
implementation of a number of procedures, modules, or objects, increasing
reusability of the source code.

Depending on the AOP implementation, the weaving can happen at
different times. When it takes place at runtime, we can do both dynamic
and static AOP. When the weaving happens at compile time, only static
AOP is possible.

In order to allow this automatic weaving, from aspect code and base-
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Figure 3.2: E.g. weaver: composing an application using Aspects and base
program.

program code, we need some extra entities. Every AOP language has three
critical elements for coping with this matter: a join point model, a means
of identifying join points, and a way of affecting the implementation at join
points [37, 45].

A join point is a certain point in the program structure or the execution of
the program. The join point model provides the means to describe the joint
points – the points where enhancements should be made. It also provides
a mechanism to express sets and subsets of join points, to express common
behavior.

After the join points are defined, we need to alter the implementation
at those point in order to insert the crosscutting behavior. As we said
above, this is also done by a weaver. The weaver parses the base code and
whenever a join point is detected, it will insert the associated aspect code.
For being able to detect join points, a standard on declaring join points
must be established. For that, each AOP language must have a join point
definition syntax.

3.2 Implementations

Aspect-oriented programming languages have reached an important mile-
stone as developers are beginning to use them to build real commercial
systems [62]. Just like in the early days of Smalltalk, many developers can
get great advantage from using these new technologies despite the rough
edges that are always present in a first-generation technology. But just as in
the early days of object-oriented programming there remain many interest-
ing problems to be solved to further improve the usability and power of this
new technology and to maximize the benefits it can provide to developers.
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3.2.1 Static AOP

Currently AspectJ [4] is the most used AOP language. AspectJ is an aspect-
oriented extension to Java that enables the modular implementation of a
wide range of crosscutting concerns. Each of those crosscutting concerns is
modularized by an aspect. Aspect composition – or weaving – in AspectJ
happens at compile time, only permitting static AOP.

Another Java extension to static AOP is Hyper/J [7]. It supports a
”multi-dimensional” separation and integration of concerns. Just like As-
pectJ, every concern is modelled in a separate entity – a hyperslice. However,
there is a slight difference between aspects and hyperslices, as the latter may
also be used to model non-crosscutting concerns. Just like AspectJ, compo-
sition of the different separated concerns also happens at compile time. [75]
shows an interesting comparison of both.

Most of efforts on AOP are made on the Java platform. This is not
a coincidence, but rather reflects the usefulness of this platform for devel-
oping new programming language technologies in a form that is accessible
to real-world developers. Nevertheless, the lessons learned from designing
these languages on top of Java appear to generalize well to other languages.
They have inspired many other projects which extend languages. AspectR
[5], AspectC [2], AspectC++ [3] and AspectS [6] are AspectJ-like implemen-
tations of AOP for respectively Ruby, C, C++ and Smalltalk. Apostle [1] is
another AspectJ-like aspect-oriented extension to Smalltalk. Obviously the
Smalltalk extensions Apostle and AspectS also provide dynamic AOP, as in
Smalltalk development time is the same as runtime.

3.2.2 Dynamic AOP

Examples of dynamic AOP implementations include Prose (PROgrammable
Service Extensions) [8] and EAOP (Event-based Aspect-Oriented Program-
ming) [35]. Both are Java extensions that allow Java programs modification
at runtime.

In PROSE, aspects are regular Java objects that can be inserted in the
Java Virtual Machine (JVM). Once an aspect has been inserted in a JVM,
any occurrence of relevant events results in the execution of the correspond-
ing aspect advice. If an aspect is withdrawn from the JVM, the aspect code
is discarded and the corresponding interception(s) will no longer take place.

In EAOP, a global monitor keeps track of all base-level events. That
way, the monitor will always be able to execute something extra when a
certain event – operation – occurred. It will also be very easy to keep track
of control flows because all information is centralized. The monitor can in
that way be seen as one big metaobject which is responsible for managing
the execution of the base program and the aspects. An aspect can be seen
as an event transformer. In fact – in EAOP – an aspect is a Java object
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Figure 3.3: The AspectJ model

which takes an event as a parameter, performs some computation or action
(which may modify the argument event), and waits for the next event.

Of course there are a lot more implementations and technologies related
to AOP, but it is not our purpose to list all implementations. We merely
want to give the reader an idea of the current success of AOP and its inte-
gration in different programming languages. Precisely this integration will
be the challenge for all AOP languages despite the fact that its solutions
are likely to be platform specific. Figuring out how best to build usable and
extensible tools is a problem that any serious programming language project
faces – it is impossible to judge the usefulness of a programming language in
the absence of real developers using it, and it is impossible to convince real
developers to use a language without high quality tools. In the next section
we will discuss the available tool support for AOP [41].

3.3 Tool support for AOP

As we could see in the previous section, AOP has been applied to many
programming languages. In general, very few tool support – or none at all
– is provided for any of those AOP implementations. The most interesting
tool support is in fact provided for AspectJ.

3.3.1 AspectJ

AspectJ adds to Java just one new concept, a join point – and that is
really just a name for an existing Java concept. It also adds to a few new
constructs: point cuts, advices, Inter-type declarations and aspects.
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Join points state the points in the base program where we want aspects
to take control. They can be declared on the following operations:

• Method Call

• Class Boundary

• Method Execution

• Access or Modification of member variable

• Exception Handlers

• Static and Dynamic Initialization

Many join points can be assembled to a set of joint points – point cuts. To
each of the point cuts, we then attach an advice, which states the actions
to take when one of the point cuts is reached. The body of the advice
is specified in ordinary Java code. The inter-type declarations allow the
programmer to modify a program’s static structure, namely, the members
of its classes and the relationship between classes. Aspects are the unit
of modularity for crosscutting concerns. They behave somewhat like Java
classes, but may also include point cuts, advice and inter-type declarations.

In AspectJ, compilation is done in two phases. First there is the weaving
phase, in which all aspect code is woven into the base program code at the
appropriate places. This results in new java files which can be used in
an ordinary java compilation. At runtime, when at a certain point in the
execution, a pointcut holds, the attached advice is executed, as we can see
in figure 3.3.

The base code and the aspect code must be written using an external
Java editor, as no editor is included in the distribution of AspectJ. Luckily
things are changing here, as an Eclipse plugin is being developed for easing
AspectJ’s use: The AspectJ Development Tools for Eclipse (AJDT).

3.3.2 AJDT

The goal of AJDT is to deliver a user experience that is consistent with the
Java Development Tools (JDT) when working with AspectJ projects and
resources. This will be accomplished by developing an integration layer be-
tween the AspectJ Development Environment Framework and Eclipse/JDT
extension points. Currently, AJDT provides the tools, explained in table
3.1.

Drawbacks

• By default, AJDT suppresses automatic builds on resource modifica-
tion (for AspectJ projects only) since AspectJ does not yet support
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Tool part Explanation
Popup menus Allowing the user to execute specific actions
Editors Properties File Editor (for specifying the AspectJ

configuration), AspectJ Editor (an ordinary java
editor extended with some keywords (like aspect)

Wizards New AspectJ project, new AspectJ Aspect, new
AspectJ configuration file

Actions Build button, for allowing partial compilation.
Views Event trace view (displaying all events related

with the plugin), Aspect Visualiser Views (none
are really useful yet).

Markers A marker for showing where aspects are applying
Jump Action For going to the impacting aspect advice.

Table 3.1: The tools provided by the AJDT Eclipse plugin

incremental compilation. This will force the programmer to always
compile entire projects and so cause a serious loss of time.

• Currently there is no eager parsing support for AJDT. A consequence
of this is that the editors outline view does not update as you edit, but
instead is updated as a result of performing a build (after each compi-
lation). This might be annoying because simple spelling mistakes will
consequently not be spotted until after compilation.

• Debugging aspect-oriented AspectJ programs is quite hard. One can
set breakpoints in both the base program and aspects. But while
the debugger will be able to stop the programs execution, it is not
yet capable of finding the corresponding source code. Hence stepping
through the program in conjunction with the source is not possible. A
solution for this problem is a high priority item for the AJDT project.

3.4 AOP versus reflection

While AOP [47] enables the modularization of crosscutting concerns, reflec-
tion [65] is commonly recognized as a valuable instrument for separation of
concerns [27] as reflective programming languages have always focused on
the execution and representation aspects of software.

The main benefit of both programming styles lies in allowing program-
mers to actively participate in the implementation choices that were tradi-
tionally only the responsibility of the language implementors. Although re-
flective notions can be introduced in practically all programming languages,
representing all programming paradigms, object-oriented programming itself
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Definition AOP term Reflection term
A point in the program (static
or execution) where some
enhancement should be made.
A reference to a group of
program points.
The action to take when
program points are reached.
The code that implements
the action.

Join point

Point cut

Advice

Advice
body

Hook

Set of hooks

Metaobject

Metaobject
body

Declarations that modify the
static program structure

Inter-type
declarations

Structural
intercession
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ru
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al
R

efl
.

B
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io
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l
R
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Table 3.2: Mapping AOP to reflection

gets a prominent role in the field. Objects provide the necessary structur-
ing tool to organize and manage the complexity of metamodels and their
protocols. Reflective object-oriented models place a clear frontier between
application and descriptive code. The application code appears in the base
level of the standard objects whilst the descriptive one appears at the met-
alevel [54].

So, as we can see, both technologies provide ways to make a clean sep-
aration of concerns and consequently aim at maximizing program modular-
ization and reuse. However, there are some significant differences as well.
While AOP stresses on language support, ease of use and performance, re-
flection focuses on power: it does not only provide a separation of concerns
but also allows dynamic and generic programming [74]. All this power tends
to bring along complexity, which is the main drawback of reflection.

3.5 Implementing AOP with Reflection

In the previous section we have seen that both AOP and reflection are quite
similar, as they can both be used to separate concerns. Knowing that AOP
is all about separating concerns into aspects and then reassembling all that
code again in an automated compilation phase, we know out of intuition
that we can implement aspect-orientation using reflection.

Table 3.2 shows all constructs introduced by AOP, their definitions and
how we can map them to constructs from the reflection world. This way,
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table 3.2 proves how we can implement aspect orientation with reflection.
Join points, point cuts and advices provide ways for adapting the behavior of
an application. They are equivalent to behavioral reflection, while inter-type
declarations are equivalent to structural reflection.

In [29] authors state that a combination of the two should be used in
order to obtain the best of both worlds. The proposed prototype shows
that AspectJ and runtime reflection in Java can be combined together to
support runtime weaving, allowing runtime adaptability. Of course this will
also have some consequences on the program’s performance.

3.6 Aspect conflicts and composition

As we have stated before, implementations of aspect-oriented programming
always incorporate two steps. The first is the decomposition of crosscutting
concerns in aspects. The second is the recomposition of those aspects into
one application. However, problems may rise doing this recomposition, as
conflicts between the separate aspects may occur.

When two or more aspects are impacting on the same point of the base
program, an aspect composition should be defined in order to avoid conflicts.
This composition states the way in which the aspects and the base program
are supposed to work together in order to form an application with the
desired behavior.

Imagine that both a logging and an encryption aspect are impacting
on the same program point. For instance, if we would apply the logging
aspect after the the security aspect we could generate a log for system
administrators. If we would apply the logging before the encryption, we
could ensure that logging is encrypted. This example clearly shows why
aspect compositions should be declared by the programmer.

The same kind of problems might occur in reflective programming, as
several metaobjects might be impacting on the same point of the base pro-
gram. The AOP literature provides different solutions for that issue, as we
will see next.

3.6.1 Solutions from the literature

Most of the AOP implementations do not provide a solution for the composi-
tion of different aspects impacting on the same base-program point concerns
or use a very primitive solution for it. Literature shows three main strategies
for coping with problems of that kind: through composition filters, logical
meta programming or through a composition framework.

In Prose [61], JAC [60], Hyper/J [7], composition filters are used for
coping with conflicting aspects. In AspectJ [4] the aspect precedence must
be declared in an aspect composition language.
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EAOP also allows more than one aspect to impact on the same execution
point. The monitor manages a tree whose nodes are composition operators
and leaves are aspects. The composition is done by using a composition
language where the allowed composer operators are: seq, fst, cond and
any, as explained below.

Composition Filters

In [42], Hunleth et al. propose the use of composition filters for composing
different concerns. Composition filters [18, 11, 12] provide a model through
which crosscutting concerns can be encapsulated into separate software mod-
ules. Here, all method invocations are treated as if they were passing mes-
sages. Filters can then be set up to monitor and modify messages depending
on such things as the sender of the message, the recipient, or the contents
of the message. Additionally, filters can be attached to classes as enhance-
ments. Doing this, some aspect code can be introduced when certain mes-
sage sends occur.

The aspect composition is specified by the order to which the filters
are attached to the classes providing only a way of sequentially composing
aspects. The sole notion of aspect precedence is however not sufficient as
we also might want the composition to be more complex (see 9). [17] states
that there is still a lot of research to be done towards possible composition
of crosscutting concerns.

Logical Meta Programming

In [30, 32, 31, 23] a logical metalanguage (SOUL or TyRuBa) is used for
declaring the program points that need to be enhanced. Logical rules are
defined in order to detect the affected join points. When a join point is found,
the needed code (of that aspect) is inserted in the base code. When all rules
have been applied on the base program, the new source code (extended with
all aspects code) is available to be run. Using this idea, one can express
aspects as logical rules and compose them by producing new rules that call
some of the logical rules in a certain sequence.

This is a very powerful approach, but is not applicable in our case as
we do not have any logical language but only Java. Introducing a logical
metalanguage in order to provide concern composition, would be too much
overhead. Even if we would replace the logical metalanguage by a procedural
language (e.g. Java) and apply the same concepts, it would still require a
lot of extensions to the existing Reflex framework.

Composition Language and Framework

In [34] the authors state that normally the user – programmer – is responsible
for solving the possible conflicts. A framework is then presented that helps
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the programmer to solve the conflicts. This is done by using a three phase
model. The first step is to write all the base and aspect code. The second
phase is conflict detection. The last phase includes the conflict resolution.
The second and third phase can be iterated on, till all conflicts are resolved.

A conflict occurs when two (or more) aspects, are interacting with each
other. I.e. if at least one of their crosscuts match the same join points.
But in fact, this definition is too strong. Because it is possible that there is
no conflict at all, and that the aspects could be executed one after another
without affecting each other. Therefore the authors distinguish between
two kinds of independence: strong and weak independence. Two aspects
are said to be strongly independent if none of their crosscuts have com-
mon join points. In that case, they will never impact on the same program
points and never cause any conflicts. Two aspects are said to be weakly in-
dependent if they have crosscuts with common join points but if the aspects
themselves can be composed to a single aspect. In that case, the aspects will
certainly impact on – at least – one common program point. Here, however,
a simple aspect composition could solve the conflict. That composition can
be specified using one of the following composers:

• A1 seq A2: specifies that when both aspects have a common cross
point, A1’s actions will be done and then A2’s actions will be done.

• A1 fst A2: propagates the execution control to A1, and, if and only
if A1 did not detect a crosscut, the execution control is given to A2.

• A1 any A2: propagates the execution control to A1 and A2 in an
arbitrary order.

• A1 cond A2: propagates the execution control to A1, and, if and only
if A1 detects a crosscut, the event is forwarded to A2.

3.7 Conclusion

We started this chapter by introducing the paradigm of aspect-oriented pro-
gramming (AOP). We saw that this paradigm’s goal is to provide a clean
separation of concerns in computer programs. AOP typically incorporates
two steps: the separation of the different concerns and the composition of the
separated concerns into one running application with the desired behavior.

The different implementations of AOP can be classified in two main
categories depending on the kind of AOP they provide: static AOP when
the composition occurs at development time, and dynamic AOP when the
composition is done at runtime. In contrast to the former, the latter permits
new aspects to be introduced when the application is already running.

We saw how AOP is gaining more and more popularity and how it is
being applied to a lot of programming languages. Still, there is a lot that
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still needs to be done, as good tool support is indispensable for convincing
programmers to use AOP, and very few tool support is provided. Recently
AJDT was released. This Eclipse plugin provides good support for de-
veloping aspect-oriented applications. Nevertheless, there are still a lot of
immaturities in this plugin.

The differences between AOP and reflection were then stated. While
reflection is more powerful, AOP (as in AspectJ) will be less complex. Re-
flection and AOP still have a lot in common, though, since they can both
be used in order to separate concerns.

We ended this chapter by discussing the recomposition of the separated
concerns. This recomposition can result in conflicts as some concerns can
be impacting on the same base-program points. For that, a composition
must be defined that states in which way the separate concerns and the
base program are supposed to work together in order to obtain the desired
behavior. The literature provides three different solutions for that matter.
The most primitive solution lies in the use of composition filters, as applied
in In Prose, JAC and Hyper/J. Another solution is provided by using logical
metaprogramming. The third solution lies in the definition of a composition
language and the development of a composition framework, as applied in
EAOP and AspectJ.
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Chapter 4

Study of environment

In this chapter an overview will be given of the technologies that were used
or studied during this research: Java, Javassist, Reflex, Eclipse, SWING
and SWT. The concepts of and relations between these technologies form
the basis of the this thesis. Therefore, we will not try to explain every
small detail of these six technologies, but rather focus on the their concepts,
purposes and basic properties.

4.1 Java

A distinction has to be made between development time, compile time, load
time and runtime. Development time typically is when the programmer
is writing the source code of the program. Compile time occurs when the
source code is compiled into byte code. Java byte code is stored in a binary
file called a class file. Each class file contains one Java class or interface.
When all the code has been developed and compiled, the programmer has
to run his program. Whenever a class is needed, that class has to be loaded
in the memory of the Java Virtual Machine (JVM). That is done by a class
loader at load time. Every JVM has such a class loader, which can be sub-
classed in order to customize the class loading process. Once the class is
alive in the JVM, it is said to be at runtime.

Java already has some basic reflection support. It comes in a stan-
dardized API that we find in the java.lang.reflect package. It makes
dynamic, behavioral and structural reflection possible. Yet, no modifica-
tions can be made to the program behavior, as it only allows introspection
of classes and objects. This permits the programmer to query a Java class
about its properties, methods, constructors, etc... It is Java’s late binding
that permits the reflection, making sure that the names and properties of
functions are available at execution time. Those names are indispensable
for an implementation of reflection [22].
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Figure 4.1: The Javassist architecture

4.2 Javassist

Javassist [26] is a class library for dealing with Java byte code. The goal of
Javassist is to allow intercession – modifications of compiled Java files; class
files – both at compile and load time.

Javassist modifies the class loading process in order to adapt the (byte
code of the) loaded classes before they are really loaded into the JVM. In
order to do that, Javassist has two special entities: a class loader and a
translator. The Javassist class loader loads the classes from a class pool –
a set of classes that is known by the class loader. Given a certain name,
it must be able to localize or generate the data that corresponds with that
class definition.

Before the class is actually loaded into the JVM, the translator gets
notified and reifies the class that is being loaded. The result of that trans-
formation is a CtClass object. CtClass objects offer the same introspection
capabilities than those of the standard reflection API of Java, plus inter-
cession capabilities (e.g., adding/modifying a member, changing the super-
class, altering method bodies... ). 4.1 shows how the entire Javassist class
loading process works.

Using that architecture, Javassist allows the modification of the class files
at load time – before they are actually used. Doing so, we can add some
extra behavior to the classes and even modify the class structure down to
the method definition.
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Figure 4.2: Reflectogram of reflective application: illustration of the evolu-
tion of the control flow in a reflective application.

4.3 Partial Behavioral Reflection for Java: Reflex

As we have seen in chapter 2, in a reflective application, code at the base
level executes under control of code at the metalevel. Both levels are working
together in order to provide the desired application behavior. Because of
that, the execution control of such a program, typically has an execution
graph that always jumps from base level to metalevel and back (see figure
4.2).

4.3.1 Partial Behavioral Reflection

Partial reflection [40] addresses the issue of flexibility versus efficiency by
limiting to the greatest extent the number of control shifts occurring at
runtime. Indeed, shifting to the metalevel is powerful but costly. Such a
shift consists of first reifying the operation occurrence, and then delegating
(at least a part of) its interpretation to the metaobject.

Reification is an important cause for performance degradation. For in-
stance, in the case of a method invocation, reification implies, at least, wrap-
ping all the arguments of the invocation into an array of objects and retriev-
ing a reference to a method object. This data may further be encapsulated
into a unique method call object. From an efficiency viewpoint, it is there-
fore crucial to limit the number of shifts and pay the price of reification only
when effectively needed.

Partial reflection makes it possible to balance the effects of compilation,
which embeds a set of assumptions (a specialization) and reflection, which
retracts some of these assumptions (a generalization). A typical control flow
diagram of a partially reflected base program is shown in figure 4.3. One
can see that a lot less shifts are made between base and metalevel.

Partiality has two dimensions answering precisely what will be reflective
and when it is reflective. The following two subsections explain each of those
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Figure 4.3: Reflectogram of partial reflective application: illustration of the
evolution of the control flow in a partial reflective application.

dimensions.

Spatial selection

Spatial selection consists of precisely selecting what will be reified in an
application and what will not. Note that spatial selection can be done
statically or dynamically. Typically, there are three different levels of spatial
selection:

• Entity selection refers to the selection of the reflective classes and
objects. For instance, specifying that classes A and B, and instance
c of class C are reflective, whereas other classes and objects are left
intact.

• Operation selection refers to the possibility of selecting which oper-
ations are reified, for a given reflective entity (i.e., a class or an object).
For instance we may want to reify message receive and field access for
class A, and only message send for class B.

• Intra-operation selection refers to the possibility of performing
fine-grained selection with respect to a particular operation. This se-
lection may be based on characteristics of specific occurrences; for
instance, we may want to limit message receive reification to message
foo on class A. For caller-side operations, the selection can also be
based on the method or constructor where such occurrence is found;
for instance, we may want to reify only message sending of foo (on
instances of class A) that occur in all public methods of B. This last
one provides a very fine grained control over the reification process,
and makes it possible to significantly improve performance.
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Temporal selection

Temporal selection consists of selecting when reifications are effectively ac-
tive. That way, it is in fact the ability to change the reflective properties
over time with a minimal extra cost.

During the lifetime of an object, the reflective needs may change: a reifi-
cation may have to be turned off so that metalevel behavior does not apply
anymore, or conversely, some external condition may require activating a
reification. Obviously, for temporal selection to be worthwhile, the cost of
a deactivated reification should be less than that of an activated reifica-
tion with an empty metaobject. In [72] some benchmarks show that this
approach has indeed a better performance.

4.3.2 Reflex

Reflex [72] is the first Java extension that fully supports partial reflection
in a portable manner, and that seamlessly integrates load time and runtime
reflection, along with many static optimizations. Because of its concern
with the concrete applicability of behavioral reflection, the concretization
of its architecture takes the form of a portable Java library. Note that its
architecture is dedicated to Java, but the concepts and underlying ideas of
this architecture are language-independent.

Reflex makes classes reflective through byte-code transformation at load
time. It uses the Javassist framework, in order to do that. Before they are
actually loaded into the JVM, the classes are instrumented with a mecha-
nism that allows the metalevel to take control of the execution. Entities of
the metalevel will then be able to reason and act upon base-level computa-
tion. Doing the byte-code modifications at load time, makes sure that Reflex
is applicable to binary components and in settings where all classes are not
known until they are actually loaded (e.g., open distributed systems).

In Reflex, a group of execution points of interest can be put together in a
hookset. Every hookset has a metaobject associated with it. That way they
provide a customizable means to conceptually group execution points, and
manipulate, possibly dynamically, the metaobjects associated with them
[70, 72].

This thesis is based on Reflex 1.0. In this version, partiality is provided
by the use of configuration files for static configurations and by the use
of a runtime API as some aspects may have to be configured while the
application is running. For instance, the program assembler may know that
a given reification needs to be activated all the time. On the contrary, a
metaprogrammer may want to activate some reification on runtime events.
Because Reflex is based on byte code manipulations, it only provides static
spatial selection, only allowing the user to specify what will be reified in
an application before the program is started. Reflex provides an activation
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Figure 4.4: The Reflex model: In this example, three hooksets (two of which
are activatable) are represented with their associated metaobjects.

mechanism in order to overcome this limitation, as explained below.
In figure 4.4, we see how a metaobject is attached to some execution

point(s). For doing that, one has to assemble all the execution points of
interest into a hookset. This is done in the assembler configuration file
(as we will see in the next section). To that hookset, we then attach a
metaobject. When the programs execution reaches a point that has a hook
to a metaobject, the control is given to the attached metaobject.

In both of the configuration files, metaobject attributes can be given.
The six available attributes are presented in table 4.1. The metaobject acti-
vation clause is an intermediate layer, whose advantages are twofold. First
it permits us to activate some hooksets at some time and deactivate them
later (at runtime), making a real partial behavioral reflection possible. The
second advantage lies in the performance, since the performance overhead
of a deactivated metaobject is a lot smaller then an activated one. So when
reflection is not needed anymore for a certain hookset, we can turn it off to
win on performance.

4.3.3 Reflex configuration

In Reflex, four different roles were defined in the development process of a
reflective application [71]. While the base and metaprogrammer have to im-
plement respectively the base and the metalevel of the reflective application,
the metalevel architect and the assembler are each specifying a part of the
static configuration of the framework. The metalevel architect, specifies the
structure of the metalevel and the assembler has to compose the results of
the previous three, for example by specifying where which metaobjects must
be applied, and when.

Separating the static configuration in two levels, can be useful in the
following way. The architect level can be used to impose some constraints
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attribute values description
control befored specifies the semantics of the meta-

after object, that is, if it acts before
before-after and/or after operation occurrences
replace or if it replaces them.

scope objectd specifies the scope of the metaobject,
class that is, if the metaobject is instance-,
hookset class-, or hookset-specific.

mintype list of enforces type compatibility rules over
qualified metaobjects: when setting a metaobject
class/inter- reference, the Reflex runtime ensures
face names that the given metaobject is compatible

with the specified types.
updatable trued specifies whether a metaobject reference

false can be changed at runtime or not.
activation disabledd specifies whether the underlying reifica-

startOn tions of a hookset can be activated and
startOff deactivated dynamically. If activation

is enabled, one must specify whether the
hookset starts as activated or not.

d = default value

Table 4.1: Reflex metaobject attributes
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to the metalevel, to which the assembler has to comply in his assembler
level configuration. This configuration can for example be used to impose
a security framework [25], or to provide a common metaobject composition
framework [71, 58].

Architect configuration file

This is the configuration file for the metalevel architect. The main purpose of
this file is to allow the metalevel architect to define the operations which can
be reified. It also allows the architect to declare or enforce some metaobject
attributes.

For an operation to be reifiable, the metalevel architect must associate
a static operation class with a corresponding operation name, and a reifica-
tion component, which is the code transformation entity capable of reifying
such an operation. For instance, the following XML code properly declares
support for two operations, cast and message send:

<operations>
<operation

class="reflex.operation.MsgSend"
name="MsgSend"
reificationComponent="reflex.reifcomp.MsgSendRC"/>

<operation
class="reflex.operation.Cast"
name="Cast"
reificationComponent="reflex.reifcomp.CastRC"/>

</operations>

Assembler configuration file

Through this file, the assembler is allowed to define hooksets, and, optionally,
class selector sets.

A hookset consists of hookset parts. Every part specifies the events that
the metaobject is interested in by stating a class selector and operation se-
lector (respectively responsible of defining which classes and which operation
occurrences that are to be be reified). Also the control of the part – stating
whether the metaobject is given control before, after, before and after an
operation occurrence or if it can replace it – is related to such specification
(as we might want to declare parts with a different control) and can therefore
be included in the parts definition.

Theoretically, a hookset specifies a set of hooks which are pieces of code
that are inserted into a base entity. They define a reification of an occurring
operation and make sure the associated metaobject gets control whenever
that target operation gets executed. The metaobject attributes (see table
4.1 are declared in this configuration file and may not be conflicting with
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enforced attributes declared in the architect configuration file. If none are
declared, the default attributes from the architect configuration file are used.

A class selector set states which classes must be reified at which con-
dition. They provide a mechanism for allowing partiality, stating which
classes must be reified and which not. The undermentioned code shows the
definition of an assembler configuration XML file.

<reflexConfig-assembler>
<classSelectorSet id="CSset1">

<classSelector name="ClassSelectorA"/>
<classSelector name="ClassSelectorB"/>

</classSelectorSet>
<hookset id="hookset1">

<part
id="part1"
operation="reflex.operation.MsgSend"
classSelector="CSset1"
operationSelector="OpSelectorA"/>

<part
id="part2"
operation="reflex.operation.Cast"
classSelector="ClassSelectorC"
operationSelector="OpSelectorB"/>

<metaobject>
<definition

setter="MetaobjectSetterA"/>
<attributes

control="before"
activation="startOn"/>

</metaobject>
</hookset>

</reflexConfig-assembler>

4.3.4 Applications

Behavioral reflection has been applied to many domains, in particular dis-
tributed systems [56, 24, 48], adaptable mobile object systems [49, 69, 19],
concurrent systems [55] and fault tolerant systems [38]. The main strength
of behavioral reflection is to provide the means to achieve a clean separation
of concerns [33, 59], including dynamic ones, and hence to offer a modular
support for adaptation in software systems [19, 64].
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Figure 4.5: The Eclipse platform user interface

4.4 Eclipse, SWING and SWT

The Eclipse Platform is designed for building Integrated Development En-
vironments (IDEs) that can be used to create applications as diverse as web
sites, embedded Java programs, C++ programs, and Enterprise JavaBeans.
SWING is a Java library that copes with the graphical issues of making or-
dinary Java applications. The Standard Widget Toolkit (SWT) is a SWING
equivalent library. But as Eclipse is made using SWT, it is mandatory to
use SWT in order to create Eclipse plugins.

4.4.1 Eclipse

The Eclipse platform is an IDE for anything, and for nothing in particular.
Figure 4.5 shows a screen shot of the main workbench window as it looks
with only the standard generic components that are part of the Eclipse
platform.

Although the Eclipse platform has a lot of built-in functionality, most
of that functionality is very generic. It takes additional tools to extend the
Platform to work with new content types, to do new things with existing
content types, and to focus the generic functionality on something specific.

The Eclipse platform is built on a mechanism for discovering, integrat-
ing, and running modules called plugins. A tool provider writes a tool as
a separate plugin that operates on files in the workspace and surfaces its
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tool-specific User Interface (UI) in the workbench. When the Platform is
launched, the user is presented with an integrated development environment
composed of the set of available plugins. Even the Java Development Tools
are developed as an Eclipse plugin.

The quality of the user experience depends significantly on how well the
tools integrates with the Platform and how well the various tools work with
each other.

Eclipse is open source, free of charge and easy to extend because of its
plugin framework and because it is written in Java. Those reasons make
Eclipse the far most popular Java development platform in the research
community.

4.4.2 Sun Windowing, SWING

A common issue in widget toolkit design is the tension between portable
toolkits and platform integration. The Java AWT (the Abstract Window
Toolkit) provides platform integrated widgets for lower level widgets such as
lists, texts, and buttons, but does not provide access to higher level platform
components such as trees or rich text. This forces application developers into
a ”least common denominator” situation in which they can only use widgets
that are available on all platforms.

The Swing toolkit attempts to address this problem by providing non-
native implementations of high level widgets like trees, tables, and text. This
provides a great deal of functionality, but makes applications developed in
Swing stand out as being different. Platform look and feel emulation layers
help the applications look more like the platform, but the user interaction
is different enough to be noticed. This makes it difficult to use emulated
toolkits to build applications that compete with shrink-wrapped applications
developed specifically for a particular OS platform.

4.4.3 Standard Widget Toolkit, SWT

The Standard Widget Toolkit (SWT) is a widget toolkit for Java develop-
ers that provides a portable API and tight integration with the underlying
native Operation System GUI platform. It is equivalent with SWING, but
is specifically used for making Graphical Eclipse plugins. Even Eclipse itself
was developed using SWT.

Many low level UI programming tasks are handled in higher layers of the
Eclipse platform. For example, the plugin.xml markup for UI contributions
specifies menu and toolbar content without requiring any SWT program-
ming. Additionally, JFace viewers and actions provide implementations
for the common interactions between applications and widgets. However,
knowledge of the underlying SWT architecture and design philosophy is
important for understanding how the rest of the platform works.
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Internally, the SWT implementation provides separate and distinct im-
plementations in Java for each native window system. The Java native li-
braries are completely different, with each surfacing the APIs specific to the
underlying window system. Because no special logic is buried in the natives,
the SWT implementation is expressed entirely in Java code. Nevertheless,
the Java code looks familiar to the native OS developer. Any Windows
programmer would find the Java implementation of SWT for Windows in-
stantly familiar, since it consists of calls to the Windows API that they
already know from programming in C. Likewise for a Motif programmer
looking at the SWT implementation for Motif. This strategy greatly sim-
plifies implementing, debugging, and maintaining SWT because it allows
all interesting development to be done in Java. Of course, this is of no di-
rect concern for ordinary clients of SWT since these natives are completely
hidden behind the window system-independent SWT API.

4.5 Conclusion

In this chapter we introduced all the needed technologies for making the
Reflex plugin, as stated in the thesis goals. We saw how class loading works
in Java, and how that Javassist modifies this process in order to provide
load-time behavioral reflection for Java.

We have seen how partial behavioral reflection limits the control shifts
occurring at runtime, and so making reflective programs more efficient. Re-
flex uses Javassist to make load-time byte-code modifications in Java pro-
grams. Doing so, Reflex provides functionality to do partial, dynamic and
behavioral reflection for both introspection and intercession.

Reflex separates four roles in the development process. The base-level
and metalevel programmer respectively implement the base and metalevel
source code. The metalevel architect designs the metalevel, possibly im-
posing some limits. The assembler uses the production results of the three
former ones, in order to composes a partial reflective application. Both the
architect and the assembler are supposed to define their configurations into
two separate XML configuration files.

At this time, Eclipse is the most popular tool for Java development.
SWT and SWING are both Java libraries for the development of graphical
applications. The main difference between both lies in the target environ-
ment of the application being developed. While SWING is perfectly suited
for general user interfaces, it is mandatory to use SWT for the development
of Eclipse plugins, as Eclipse itself is developed using SWT.
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Part II

Static tool support
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Chapter 5

Introduction

The Reflex tool support can be divided up in two major parts. First there
is the static tool support, that is used at development time. Second there is
the tool support that is to be used at runtime. This part explains what the
static part incorporates and how it was developed. The next part will cope
with the dynamic tool support.

5.1 Why Eclipse?

In section 4.4.1, we have seen that Eclipse is written in Java, which suites
Eclipse’s extensibility well. The Eclipse project oversees development of
the Eclipse IDE platform and the Java Development Tooling (JDT) – a
Java development environment built on the Eclipse platform. It also sets
the code and specifications for the plugin development environment and
provides enough documentation for doing that.

Eclipse is not the best, though the cheapest Java Development Tool,
as it is free of charge. Next to that, it is open source, which is very much
appreciated in the research community. These two facts make Eclipse a very
frequently used Java development environment for researchers. As Reflex is
a framework which is currently still targeting the research group, it was an
obvious choice that the tool support for it also had to target that same user
group.

These two motivations made us choose Eclipse as the environment for
which to develop the Reflex tool support.

5.2 Plan of attack

The Reflex development phase incorporates four main fazes. First the met-
alevel architect designs the reflective application. Then, both base- and
metalevel code should be implemented. Thirdly, the assembler specifies how
the base and metalevel have to work together in order to provide the desired
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application behavior. The last faze of the development process consists in
testing and debugging the new application.

The plugin can be divided into four parts, each providing support for
some faze(s) of the development process. Each part will be discussed in one
chapter.

Chapter 6 discusses the plugin part responsible for the management of
the static configuration files – the files in which the architect and assembler
specify their part. It will incorporate wizards and editors for the correspond-
ing tasks of the configuration creation and modification. In Chapter 7, we
discuss the ability to launch (run or debug) Reflex programs.

The final two chapters of this part (8 and 9) explain how we will assist the
programmer in understanding and configuring their applications properly.
First we provide and explain the functionality of detecting where hooks
are inserted in the base program. Then we explain how conflicts in those
impacting hooksets are detected and how they are to be resolved.
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Chapter 6

Configuration files

Reflex uses two levels of static configuration. After explaining both levels
and their associated configuration files, we explain why and how we devel-
oped the tool support for creating and modifying those files. Sections two
and three give a detailed overview on the working of respectively the wizards
and editors.

6.1 Introduction

Each time a class is loaded by the Java Virtual Machine, Reflex has to de-
termine which hooksets are associated to that class by applying the class
selectors. Then it has to see where to insert hooks in the class byte code by
applying the operation selectors (see also section 4.3. The static configura-
tion of Reflex is done through two configuration files, one for the metalevel
architect and one for the assembler.

First, the metalevel architect has to specify the structure of the met-
alevel through some global parameters, some of them directly related to the
configuration file of the assembler. For instance, the configuration attributes
for the metaobjects can be enforced here. Also the different operations that
will possibly be reified must be declared in this file 4.3.3.

On the second level (the assembler level) the hooksets and their parts are
declared 4.3.3. It is on that same level that the programmer will be allowed
to define the hookset part compositions using the composition language, as
we will see in Chapter 9. Also the class selectors are to be declared in this
level. They are provided as a convenient way to group various class selectors
under a unique identifier, which can then be used in the hookset definitions.
They provide ways to state the partiality of the reflection, as seen in section
4.3.1.

The configuration of each level has to be defined in a separate XML file.
Theoretically there is no name constraint on those files. But in order to ease
the identification of the configuration files, we propose the name convention
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Config file File name
Architect configuration whatever-name.arc
Assembler configuration whatever-name.asc

Table 6.1: Reflex configuration file name convention

stated in table 6.1.
In order to facilitate the definition of the configuration in the two XML

files, we chose to develop both configuration wizards and editors. Each
one has its strengths and weaknesses, so we want to leave the choice to
the programmer, which one to use. While the wizards are a lot more user
friendly, the editors will be a lot faster to work with. So at the beginning,
a programmer might feel more secure working with the wizards. But after
gaining some experience, the editors might probably be preferable.

A common advantage of both editors and wizards lies in the automatic
XML code generation. All know it is quite painful to program in XML, as
it requires a lot of self-discipline for avoiding bugs. Using the wizards or
editors, the programmer will avoid these inconveniences and ensure that no
mistakes are made against the XML schema. The automatic code generation
also makes sure that the same layout format (same amount of tabs, spaces
and returns, etc.) is used in all produced configuration files, bringing along
better comprehensibility.

6.2 Configuration wizards

A wizard is a series of structured dialog boxes that ask questions. The
answers to these questions produce the unique desired result. Wizards are
designed specifically to accomplish a task. Learning may be a product of
a wizard – but not its main goal, because that is the accomplishment of
the task itself. Studies claim that wizards enhance user’s performance and
reduce the time to complete a task. They also reduce training time, since
the knowledge to complete a task is embedded in the wizards, and the user
may no longer need to know or be trained in that knowledge [15].

As we have seen in the introduction of this chapter, there are two dif-
ferent kinds of configuration files in Reflex. Consequently two wizards were
developed in order to assist the programmer in creating the architect and
assembler configuration files. Figure 6.1 shows a screen shot of the architect
configuration wizard in action.

While the wizards are perfectly suited for starting out a configuration
file, editors are obviously better suited for modifying existing configuration
files.
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Figure 6.1: Screen shot of the architect configuration wizard.
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6.3 Configuration editors

Once the programmer is feeling familiar enough with the configuration file
syntax, he can start using the tools editors. They provide a faster and still
graphical way of modifying or creating the static Reflex configuration files.
As there are two different kinds of configuration files, two different editors
were developed.

The editors use tabs for separating the different parts of the configuration
data. The architect configuration file editor is the easiest, as it only has two
tabs. The first tab shows a graphical overview on the enforced and default
attributes, the reified operations, and the reification supervisor (as defined
in [72]). Text fields, radio buttons, tables and drop down boxes are used to
represent the configuration data. The second tab shows the XML code that
is equivalent to the graphical configuration specified in the first tab.

The assembler configuration file editor is a bit more complicated, as every
assembler configuration file must be related to some architect configuration
file, specifying some constraints for the first. Because of that, the assembler
configuration file editor has four tabs. The first tab contains a graphical
representation of all the data related to the hooksets and their parts. The
second tab contains all data on defined class selectors. The third tab contains
the data on the associated architect configuration file. The fourth – and last
– tab contains the associated XML source code of that configuration file.
Again text fields, radio buttons, tables and drop down boxes are used to
represent the configuration data.

When the user opens a certain assembler configuration file for the first
time, he will be asked for the reference to the associated architect configu-
ration file. This reference is needed in order to verify the correctness of the
assembler file, as the architect file might impose some constraints to which
the assembler file must comply. The information on the associated architect
configuration file is stored in a file on disk (in the same directory as the
edited file) in order to avoid that – every time the programmer opens an
assembler file – the question would be raised asking for the reference to that
file. The user will be able to modify this association through the third tab
of the assembler editor.

The editors are implemented in such a way, that the source code will
always be up to date with the graphical representation. Thanks to that, the
user might change the configuration in the graphical part, and the corre-
sponding XML code will be automatically updated. The other way around,
it also works.

Every time a user changes tabs, his changes are checked and if not cor-
rect, a warning message containing more details on the mistake is displayed
to the user. The user is then asked to correct the mistake before the tab-
change will be permitted. Figure 6.2 shows a screen shot of the assembler
editor in action.
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Figure 6.2: Screen shot of the assembler configuration editor.

Due to time constraints, Undo/Redo information is not maintained. The
editor makes use of a temporary file (containing a copy of the original file)
for allowing the user not to save the changes made. When opening a file
for editing, the temporary file will be automatically created in the same
directory as the edited file. When closing the edited file, the temporary file
will be automatically removed. If the user does not wish to save his changes,
the contents of that temporary file are placed in the real file. That way, the
original information is preserved.

6.4 Conclusion

The Reflex configuration can be divided up in two levels: the architect and
assembler level. On the architect level, the metalevel architect is defining
which operations that will be reified, and stating the default and enforced
attributes of the metaobjects. On the assembler level, the cooperation be-
tween the base and metalevel is specified.

For each of the two different levels there is one XML configuration file,
specifying the configuration of that level. We presented both a wizard and
editor for each level, responsible for aiding the user in declaring and adapting
the configuration file of that level.

The configuration wizards, are best suited for insecure users that are
starting to work with the Reflex framework. They provide clean and user
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friendly ways of declaring configuration files. The configuration editors pro-
vide a fast and clear way for modifying existing configuration files. Both
wizards and editors make sure that the resulting XML files will never con-
flict with the XML schemas. They will also ensure that always the same
layout is used in the produced configuration files, increasing their readability
and comprehensibility.
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Chapter 7

Launcher and debugger

The ability to launch (run or debug) code under development is fundamental
to an Interactive Development Environment (IDE). But because Eclipse is
more of a tools platform than a tool itself, Eclipse’s launching capabilities
depend entirely on the current set of installed plug-ins. This chapter de-
scribes how we built a launcher and debugger for the Reflex framework. It
is based on [68], an article which was indispensable for the development of
this part of the plugin.

7.1 Introduction

A launcher is a set of Java classes that live in an Eclipse plug-in that performs
launching. A debugger is an equivalent set that allows the programmer to
run his applications in debug mode (step-by-step running, jumping into a
method call, return, etc.). Support for that kind of debugging is in fact also
a part of the dynamic support the plugin provides.

The first rule of implementing a launcher is to reuse as much as possible.
As the Reflex launcher and debugger extend the Java launcher and debugger
respectively, there is a large amount of code – that is part of the public
Eclipse API – that may be reused.

7.2 Defining the launch configuration type

The first step in creating our launcher is declaring a configuration type, as
shown in the following XML snippet from our plug-in’s plugin.xml file:

<extension
point="org.eclipse.debug.core.launchConfigurationTypes">
<launchConfigurationType

name="Reflex"
delegate=
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"reflex.edt.launcher.ReflexLaunchConfiguration"
modes="run, debug"
id="reflex.edt.launchconfig">

</launchConfigurationType>
</extension>

The most important part of this declaration is the delegate attribute
which specifies the fully qualified name of a class implementing the launch
method, which launches a specified config. ReflexLaunchConfiguration
extends the AbstractJavaLaunchConfiguration delegate and overwrites
only the launch method, which is called by Eclipse when the programmer
asks to run an application of the reflex.edt.launchconfig configuration
type.

The modes attribute specifies both run and debug, as we want this con-
figuration to be used for both the launcher and the debugger.

7.3 Defining tab groups

The most important piece of User Interface to consider when developing a
new launcher is the ’tab group’. A tab group specifies a number of tabs
which will each hold some part of the configuration data. The user will be
able to reach the new tab group as can be seen in figure 7.1.

The following XML code declares the tab group in the plugin.xml file.

<extension point=
"org.eclipse.debug.ui.launchConfigurationTabGroups">

<launchConfigurationTabGroup
type="reflex.edt.launchconfig"
class="reflex.edt.launcher.ReflexTabGroup"
id="reflex.edt.launchConfigurationTabGroup">

</launchConfigurationTabGroup>
</extension>

All that this declaration really does is associate a tab group implemen-
tation with a configuration type. Any time a config of the specified type is
selected by the user, the class named by the class attribute will be used to
provide the content of the tabbed folder.

The ReflexTabGroup declares a group of tabs that will be included in
the tab group associated to Reflex applications. It reuses all Java tabs:

• JavaMainTab containing the general info on the application E.g. its
project and its main class

• JavaJRETab holding the path to the Java Runtime Environment which
is to be used for running the application
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Figure 7.1: Screen shot of the Reflex launch Tab group
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• JavaClasspathTab housing the class path information

• JavaSourceLookupTab containing the information where the attached
source code is to be found

• CommonTab providing extra configuration possibilities

The only new tab is theReflexConfigTab. And still, that tab extends the
standard JavaArgumentsTab. We only overwrote some of its methods for
covering with two new fields: the name of the Architect Configuration file
and the name of the Assembler Configuration file.

7.4 Defining launch shortcuts

As useful as the configuration tabs are, there are many times when users
do not want to bother with them. They simply want to launch a program.
This is where launch shortcuts come in. A launch shortcut allows users
to identify a resource in the workbench (either via selection or the active
editor) and launch that resource with a single click without bringing up the
configuration tabs. Launch shortcuts are useful when the user is happy with
default values for all config attributes and wants to launch in a hurry. This
will therefore only work when there are an architect and assembler file –
which are following the naming convention – specified in the same directory
as the application the user wants to run.

As the previous paragraph stated, it is not mandatary to have launch
shortcuts, but it is clear that they make user’s live easier by allowing them
to create a config, set all attributes to default values and launch that config
in a single mouse click. The following XML code gives an idea on how the
declaration of the Reflex shortcuts in four perspectives looks like.

<extension point="org.eclipse.debug.ui.launchShortcuts">
<shortcut

label= "Reflex"
icon= "icons/reflex.bmp"
helpContextId= "launcher.launch_shortcut"
modes= "run, debug"
class= "ReflexLaunchShortcut"
id= "reflex.edt.reflexShortcut">

<perspective id="JavaPerspective"/>
<perspective id="JavaHierarchyPerspective"/>
<perspective id="JavaBrowsingPerspective"/>
<perspective id="DebugPerspective"/>

</shortcut>
</extension>
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Figure 7.2: Screen shot of the Reflex launch Shortcuts

ReflexLaunchShortcut is a Java class that implements the interface
ILaunchShortcut. It has twelve methods that cope with the fast launch-
ing of a Reflex application. Figure 7.2 shows a screen shot of the Reflex
Shortcuts. The icons were also developed and linked to the Reflex launcher
using the plugin.xml file. The related XML code is not included here, but
is available in the open source code of the plugin. Shortcuts for debugging
just work in a similar way and are therefor also left out of this written
document.

7.5 Conclusion

This chapter discussed the different steps that were taken for developing
a launcher and debugger for Reflex. A launcher is a set of Java classes
that live in an Eclipse plug-in that performs launching. A debugger is an
equivalent set that allows the programmer to run his applications in debug
mode (step-by-step running, jumping into a method call, return, ...).

This can be split up in three steps. First we must define the new launch
configuration type. Secondly, we must define the tab group of the launcher.
This tab group presents a graphical interface for allowing the user to state
his launching configuration. The last step is an optional step which we chose
to take in order to provide a better service to the user. It consists in defining
launch shortcuts, which are useful if the user is in a hurry.
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Each of those steps is executed in two phases. In the first phase, we must
define the extension points in the plugin.xml file – as always in developing
an Eclipse plugin. These declarations always refer to some Java classes,
which are implemented in the second phase.
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Chapter 8

Hook detection

This chapter explains the part of the Eclipse plugin that makes it possible for
the user to automatically detect the points where hooks will be inserted in
the base code. It also allows the user to jump to the metaobjects associated
with the detected hooks.

8.1 Introduction

A Reflex application typically has three program layers. First there is the
base level, then there is the activation level, and finally there is the metalevel
8.1. While the base level houses the ordinary program, the metaclasses are
defined on the metalevel. The remaining and intermediate level – the activa-
tion level – is used for allowing temporal selection. The activation API offers
services to control the activation of reifications during execution (provided
that they have been declared as activatable in the static configurations).

As explained before, when a base level class is loaded, Reflex verifies
whether that class must be reified. If yes, hooks to the metalevel are inserted
in the base code. When the program execution reaches such a hook, the
activation of that hook is checked, and – if activated – program execution
is given to the associated metalevel object.

Figure 8.1: The different Reflex program layers
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The places in the base program where the hooks are inserted, are crucial
to the programmer. As the program execution might shift to the metalevel
at those points. Therefore it would be very useful if we could mark those
points and provide a way for the programmer to jump to the impacting
metaobject code. These functionalities are similar to the ones provided by
AJDT, where the join points are marked and a jump action is provided for
jumping to corresponding advices 3.3.2.

8.2 Detecting hooks

Detecting hooks in a base program is implemented by an Eclipse action.
The action defines a new menu item and an icon, and the actions that have
to be taken when the action is selected for execution.

8.2.1 Declaring the Eclipse action

As always in developing an Eclipse plugin, we are starting by declaring the
extension in the plugin.xml file. The following XML extract shows how
the ”show hooks” action was declared.

<extension point="org.eclipse.ui.actionSets">
<actionSet label="Reflex Hookset Parts"

visible="true"
id="reflex.edt.xmleditor.actionSet">

<menu label="Reflex" id="ReflexMenu">
<separator name="ReflexGroup"></separator>

</menu>
<action

label="&amp;Find Reflex hooks"
icon="icons/find.bmp"
tooltip="Show points where hooks are inserted"
class="reflex.edt.actions.ShowHooks"
menubarPath="ReflexMenu/ReflexGroup"
toolbarPath="ReflexMenu"
id="reflex.edt.actions.ShowHooks">

</action>
</actionSet>

</extension>

Above code correctly declares a new popup menu item and an icon, on
which the user can click in order to execute the action ShowHooks. Next
subsection discusses which algorithm is applied in the ShowHooks class.
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Figure 8.2: Screen shot of a hook detection.

8.2.2 Defining the associated detection code

When the user wants to detect hooks, he must first select some Java entities
(classes, packages or projects) for which he wants to perform such detection.
Then the user has to click on the actions icon or menu item in order to start
the looking process.

The detection process starts with the generation of a list that contains
all the classes that occurred in the selected entities, theTypes. Because
hook detection depends on which configuration files are used, a question
asking for a reference to both configuration files will be raised before actual
detection is started. This is the point where the screen shot – shown in 8.2
– is taken.

The application will always try to suggest the use of some configuration
files depending on which Java entities were selected by the user before start-
ing the looking process. For instance, if a package was selected, and the
package contained Reflex configuration files, they will be suggested.

Reflex has support for specifying a hook collector : an object that will be
informed whenever a hook is detected. We use that functionality for plugging
a hook collector called AllHookCollector into the Reflex framework. While
running the application, and whenever a hook is to be inserted in the base
code, the newHook() method of this HookCollector is called. That method
will collect all the available data of the hooks and store it for later use.

As hooks are inserted when a class is loaded, we can only detect them
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Reflex parameters Explanation
theArchitectFilePath The path to the architect

configuration
theAssemblerFilePath The path to the assembler

configuration
reflex.edt.actions.ClassLoader The main class of

the base level application
theTypes The list of all class names

to load

Table 8.1: Reflex configuration for hook detection.

at that time. Therefor we must make sure that all the classes for which we
want to detect hooks are actually loaded. The ClassLoader class has one
main method. It takes in a list of class names and tries to load the associated
class for each of those class names. Using that class as the main class of
the base level application, and passing the theTypes list to it, ensures that
all the classes that were selected by the user, get loaded. Consequently all
hooks of those classes are also detected and their information stored in the
AllHookCollector. Table 8.1 shows the Reflex configuration for detecting
hooks in certain classes.

When the Classloader finishes loading all classes that were passed to
it, the application finishes. At that point, the AllHookCollector contains
all information of the hooks that had to be inserted in the selected – and
loaded – classes. This information can then be used for marking the lines
in the base program code where hooks occurred, as we will see in the next
section.

8.3 Marking hooks in the source code

The Eclipse workbench has a central mechanism for managing resource an-
notations. They are called markers. A marker is like a yellow sticky note
stuck to a resource. It can record information about a problem. First we
have to define the new marker we will be using. Then we associate an image
to the defined marker to state how it will look like. Then we extend the
standard Java editor with the needed behavior for handling the markers.
And finally, we declare a view that will be able to list all markers of our new
type. Figure 8.3 shows a screen shot of the marked hooks and the view that
is listing all the detected hooks.
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Figure 8.3: Screen shot of the detected hooks.

8.3.1 Defining new markers

The definition of a new marker happens in the plugin.xml file. It holds
information o its attributes. Attributes contain information that is held by
the marker. The following code defines a new marker type extending the
standard bookmark type.

<extension id="HooksetPartMarker"
point="org.eclipse.core.resources.markers">

<super type="org.eclipse.core.resources.bookmark" />
<attribute name="PartId"></attribute>
<attribute name="MetaLevelSourceLocation"></attribute>
<persistent value="false"></persistent>

</extension>

As our new HooksetPartMarker extends the marker of type bookmark, it
inherits all its attributes. The attributes MetaLevelSourceLocation and
PartId and will be respectively used for storing the hookset part ID to which
the hook belongs and the location of the associated metaobject source code.

The false persistent tag defines that the platform will not save the mark-
ers state between sessions. If one declares a markers’type as persistent,
the state of markers of that type will automatically be saved and restored
between sessions by the platform.
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8.3.2 Associating an image to the marker

As markers are items to graphically assist the programmers, it is appropriate
to provide a good image that explains what the marker stands for. The
following XML snippet of the plugin.xml file declares the image that will
be associated with markers of type HooksetPartMarker.

<extension point="org.eclipse.ui.markerImageProviders">
<imageprovider

markertype="reflex.edt.HooksetPartMarker"
icon="icons/hook.gif"
id="reflex.edt.HooksetPartMarkerProvider">

</imageprovider>
</extension>

8.3.3 Extending the Java editor

In order to cope with the markers behavior (displaying them and jumping
to the metalevel code), it is needed to declare a new editor or extend the ex-
isting Java editor. The following code declares the new editor and associates
files with the ”.java” extension to it.

<extension point="org.eclipse.ui.editors">
<editor

name="Reflex Java Editor"
default="true"
icon="icons/jcu_obj.gif"
extensions="java"
contributorClass="editors.MultiPageEditorContributor"
class="reflex.edt.javaEditor.ReflexJavaEditor"
symbolicFontName

="org.eclipse.jdt.ui.editors.textfont"
id="reflex.edt.javaEditor.ReflexJavaEditor">

</editor>
</extension>

The ReflexJavaEditor extends the CompilationUnitEditor (the standard
Java editor). Because displaying markers is already supported by the stan-
dard Java editor, no new definition of an editor would be needed if no jump-
ing behavior would be required. But – as we will see in the next section –
we need to reference this editor for providing the jumping behavior.

8.3.4 Listing all markers in a view

In the Eclipse platform a view is typically used to navigate a hierarchy of
information, open an editor, or display properties for the active editor. We
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will use the Eclipse view to list all the detected markers and its associated
hooks information.

<extension point="org.eclipse.ui.views">
<category name="Reflex" id="reflex.edt"></category>
<view

name="Hooks/Conflicts in code"
icon="icons/find.bmp"
category="reflex.edt"
class="reflex.edt.views.HooksetPartsView"
id="reflex.edt.views.HooksetPartsView">

</view>
</extension>

The above stated code snippet from the plugin.xml file correctly declares
the new view. The HooksetPartsView is responsible for declaring the view’s
behavior. As the behavior is just the same as the standard bookmark viewers
behavior, the definition is not that complicated. The only difference lies in
the information that is displayed in the list, as we can see in figure 8.3.

8.4 Jumping from marker to associated code

When the user has detected all the impacting hooks in his base code, he can
right click the markers to jump to the impacting metalevel code. This is
a practical option for both developing and debugging purposes. In Eclipse,
such a functionality is established by the use of an editor action. The fol-
lowing plugin.xml code shows how we associated the extra action to the
ReflexJavaeditor – which we defined in the previous section.

<extension point="org.eclipse.ui.editorActions">
<editorContribution

targetID="reflex.edt.javaEditor.ReflexJavaEditor"
id="reflex.edt.javaEditor.HooksetPartRulerActions">
<action
label="ImpactingHook"
class="reflex.edt.javaEditor.

HooksetPartActionDelegate"
id="reflex.edt.HooksetPartActionDelegate" />

</editorContribution>
</extension>

When the user right clicks in the ruler (the left margin of the editor,
where the markers are situated) the HooksetPartActionDelegate takes
control. It has two important methods. The first one – menuAboutToShow()
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Figure 8.4: Screen shot of a user who is about to jump to one of the im-
pacting hooks associated code.

– is called to see if this action delegate wants to influence the menu before
it is displayed. In the case of our plugin, we have to check if there is a hook
marker affecting on the line in which the user has right clicked. If there is
one, we add an ’affected by ’ line to the context submenu that will appear.

By going through the submenu and selecting an impacting hook, the
user will force the editor to jump to a particular file and location – as the
run() method will be invoked by that. First we will use the information of
the MetaLevelSourceLocation attribute for building a Jump marker that
can be passed to openEditor() to force Eclipse to open the right source file
and jump to the right location in that file showing the exact method that is
impacting. Figure 8.4 shows a screen shot of a user which is about to jump
to one of the impacting hooks associated code.

8.5 Conclusion

This chapter explained the development of the plugin part that is responsible
of detecting the impacting hooks in the base code. We started out motivating
that this part of the plugin is really useful for a programmer to see where
the metalevel will take control.

After that, we explained how we manage the impacting hook detection.
First we declared a new Eclipse action, which can be executed to start up the
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lookup process. Then we explained how the marking is done, using newly
defined markers. The discovered hooks are also listed in a view, showing the
information that is held by the hooks marker.

Finally we explained that the users are able to jump to the metaobject
code which will be executed when that hook is reached. This option is
proved to be useful, as it fastens up both debugging and development.
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Chapter 9

Conflict detection and
resolution

This chapter starts by introducing what hookset conflicts are. After that,
we present the solution we provide for coping with them. We tackle the
composition problem by defining a language and framework that allow pro-
grammers to compose conflicting hooksets. This solution was borrowed from
the literature, as we could see in Chapter 3.

This chapter ends by explaining the part of the tool support that im-
plements the detection of configuration conflicts and provides support for
resolving them.

9.1 Introduction

Hooksets are a reference to a group of specific points during a program
execution where you wish to take some extra metalevel action, as we have
seen in 4.3.2. It might occur that – at some point in the program – several
hooks are to be inserted at the same place. In such a case conflicts might
occur and a correct hook composition should be established for avoiding
unexpected application behavior. For coping with that, we contributed in
the development of a composition framework and language.

The tool support for doing the composition lies in the detection of con-
flicts and the suggestion of a composition rule for coping with the conflict.
This chapter ends with an explanation on how the conflicts are detected and
how we support resolving them.

9.2 Theoretic approach

In section 4.3.3, we have seen that hooksets are composed of hookset parts.
It is on that level of granularity that we will detect and solve conflicts.

66



9.2.1 Hookset conflicts

Just like in [34], two parts are said to be conflicting if they are impacting
on the same program point. This definition might be too strict, because it
might easily occur that two hookset parts that are impacting on the same
point are not resulting in a real conflict at all. Imagine we have two hookset
parts that are impacting on the same operation e.g. cast. While the first
one is adding some behavior before the cast, the second is adding some extra
behavior after the cast. In such a case, there is not really a conflict. Though,
our approach would still see this as a conflict. But that is not bad, because
it is perfectly possible that the programmer might want to specify a special
composition in such a case: only adding the behavior before the cast, only
adding the behavior after the cast, adding both behaviors or adding none.

9.2.2 Hookset composition

We chose to develop a composition language and framework, because this
solution was already successfully applied in the literature (see 3.6) and it lies
the closest to our needs. The programmer will be able to use the composition
language in the static configuration files in order to resolve hookset conflicts.

The composition language

Appendix A shows the complete grammar of the composition language as it
now exists. Next to this, the basic keywords – if and then should be used
in the rules for separating the condition and the action parts of the rule.

The IF part of the rule states an identifier declarator : a list of hooksets
and/or hookset parts that must be impacting for the rule to apply. The
shape of identifying a hookset part is: h4$p1. As the $ symbol is used as a
separator, it might not be used in the hookset nor part id’s.

The THEN part of the rule states an expression: a composition of the
impacting hookset parts. Table 9.1 shows which operators might be used in
the composition language. The THEN part might also reference a Java class
which is implementing the Composer interface. In that case, that class will
be responsible of solving the occurring conflict. Its resolve method takes in
a Composition object and outputs an adapted Composition object. That
object typically holds three lists of hookset part id’s, which are all impacting
on the affected operation. While the first list holds the id’s of the parts
impacting before the operation, the second one has holds the id’s of the
parts that are impacting after the operation. The third list holds the part
id’s which metaobjects are going to replace the affected operation.

At the end of the composition definitions, the programmer must specify
a default rule. Again in that rule, the programmer is free to use the compo-
sition language or to refer to a Java class. The only difference is that this
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Function Definition
seq(H1,H2) First apply H1, then apply H2
skip(H1) Don’t do H1’s actions – implicit:

we can just drop H1 from the THEN part
wrap(H1,H2) Wraps the actions of H1 around the

actions of H2. This is only useful if
they are of a before-after control

rule(H1,H2) Apply the action of the rule that
handles H1 and H2

Table 9.1: Hookset composition functions and their explanations

rule should cover all possible conflict cases, as it will be applied in case no
other rules matched the conflict situation.

The composition framework

It is on the assembler level that we will allow the programmer to declare
hookset part compositions using the composition language.

The compositions can be declared in simple rules – using the composi-
tion language – or by referring to a Java class that will be responsible for
the composition. Next code sample shows the XML code of a composition
example. The most specific matching rule in a conflict situation will be ex-
erted. If no matching rule was found, the default composition rule will be
applied. The programmer must make sure that this rule covers all possible
conflict situations. If not, the standard seq operator will be used and a
warning will be shown to the user.

<composition>
<rule

if="h1,h2$p2"
then="SEQ(h1, h2$p2)" />

<rule
if="h6$p1, h7, h8, h9"
then="SEQ(h6$p1, WRAP(h7, h8, h9))" />

<rule
if="h1,h2$p2,h3"
then="SEQ( WRAP( RULE(h1, h2$p2), h1), h3)" />

<rule
if="h1$p1, h2"
then="h1$p1" />

<default composer="test.conflict.MyComposer"/>
<composition>
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The above example shows the declaration of four basic rules and one
default rule. The condition part of the rules lists a number of occurring
hooksets (e.g. h1) and/or hookset parts (e.g. h6$p1). h6$p1 refers to the
hookset part with id p1 from the hookset with id h6. Knowing that, we can
easily deduce that the first rule implies something like:

”If the second part of hookset h2 and any part of hookset h1 are im-
pacting on the same point of execution, then we first execute the code of the
metaobject associated with the part of h1 and then the associated code of the
metaobject of the second part of h2.”

Once all composition rules are declared in the configuration file, the
programmer can start his reflective program. When a class is needed for
the first time, it gets loaded and instrumented with the impacting hooks
(see 4.3). When several hooks have to be inserted at the same point, a
Composition object is created. It has three lists: a before list, a replace list
and an after list as we can see below.

Composition {
before: h1$p1, h2$p2
replace:
after: h1$p1, h2$p2

}

Basically this object says that there is a conflict between h1$p1 and h2$p2.
Then the composition rules are exerted. When there is a rule that matches
the conflicting entities, that rule gets executed over the Composition object.
It returns an adapted Composition object with three ordered lists, stating
how the hooksets parts have to be composed. The resulting Composition
object will be used for generating the hook code which will be inserted in
the class before it gets actually loaded for use. Doing so, once the class is
loaded, the composition is fixed and cannot be modified anymore.

When the execution control reaches that particular point, the related
metaobjects will be given control of the execution in the order specified by
the lists of the Composition object. First the metaobjects from the before
list are given execution control. When they finished their execution, the
same is done for the metaobjects from the replace list and the after list.
The return value of the last executed replace metaobject body will be the
return value of the reified operation.

In case a reference to a Java class is made in the then part of rule (as in
the last rule of the example), that object will be responsible for solving the
matching conflicts. Therefore, it must implement the Composer interface.
That interface has a resolve method which takes a Composition object as
input, modifies that Composition object, and outputs the modified object,
which will be representing the new composition.
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9.3 Support for conflict detection

Conflict detection is implemented as an Eclipse action, just like hook detec-
tion. Indeed, conflict detection is an extension of the hook detection process
presented in section (back ref). This extension aims at signaling conflicting
hooks (i.e. acting on the same program point). Just like the detection of the
hooks, the user will have to press a button in order to start the detection.
Because the conflicts are detected by running the reflective program, first
the Reflex configuration should be stated by referencing the two configu-
ration files. Once that is done, the reflective program starts running and
all the conflicts that are found are stored using a hook collector (as seen in
section 8.2). On termination, the base-program points where conflicts occur
are marked by conflict markers.

<extension point="org.eclipse.ui.actionSets">
<actionSet label="Reflex Hookset Parts"

visible="true"
id="org.reflex.ui.xmleditor.actionSet">

<menu label="Reflex" id="ReflexMenu">
<separator name="ReflexGroup"></separator>

</menu>
...
<action

label="&amp;Find Reflex conflicts"
icon="icons/findC.bmp"
tooltip="Show all conflicting hooks"
class="reflex.edt.actions.ShowConflicts"
menubarPath="ReflexMenu/ReflexGroup"
toolbarPath="ReflexMenu"
id="reflex.edt.actions.ShowConflicts">

</action>
</actionSet>

</extension>
<extension id="HooksetPartConflictMarker"

point="org.eclipse.core.resources.markers">
<super type="org.eclipse.core.resources.bookmark"/>
<attribute name="AssemblerFileLocation"></attribute>
<persistent value="false"></persistent>

</extension>

The previous XML snippet shows how the action and marker or defined.
The three dots indicate the place where the previous defined action should
be stated. The ShowConflicts class implements the behavior of detecting
the conflicts and of marking the points in the base code.
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Figure 9.1: Screen shot of a user who is about to resolve one of the detected
conflicts.

Just like all the impacting hooks, all the detected conflicts are listed in
an Eclipse view. For that we use the same view as defined in section 8.3.4.
Only the image that comes with every listed item is different as we can see
in figure 9.1.

9.4 Support for conflict resolution

Conflicts can be resolved by using the developed composition framework
presented earlier in this chapter. In that framework the user is expected to
declare a composition rule in the assembler configuration file using the de-
fined composition language. For allowing the user to do that, the assembler
editor was extended.

9.4.1 The assembler editor

Until now, the assembler editor had four tabs (the hooksets tab, the class-
selectors tab, the configuration tab and the source code tab). Each of them
allows the assembler to cope with one of his tasks. As of now, the assembler
has the extra task of defining the composition rules, an extra tab – the
composition tab – was provided. It consists of a number of basic rules and
of one default rule. Figure 9.2 shows a screen shot of the composition tab
of the enhanced assembler editor.
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Figure 9.2: Screen shot of the enhanced assembler editor.

9.4.2 The marker action

Every conflict marker has an action attached to it. Executing that action,
will open the assembler configuration file in the appropriate editor. Figure
9.1 shows a screen shot of a user who is going to resolve a detected conflict.

A new rule will be suggested to the user covering all the hooks that were
conflicting at that point. The user can either accept that rule and save the
new assembler configuration file, or modify the rule using the composition
language defined earlier in this chapter. Figure 9.2 shows the rule that was
suggested for resolving that conflict.

9.5 Conclusion

This chapter started by introducing what hookset conflicts are. Basically,
when more then one hook has to be inserted at the same point of the base
program, we say we have a hookset conflict.

Resolving those conflicts consists in providing hookset compositions,
stating the order in which the different hooks are inserted. A composi-
tion language (containing four composition operators) was defined and a
composition framework was developed for allowing the programmer to de-
clare those compositions and for letting the system act properly upon those
declarations.

Finally, we explain the part of the tool support that implements the
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detection of those configuration conflicts and provides support for resolving
them. Detecting the conflicts is implemented as an Eclipse action, which can
be executed to start up the lookup process. The conflicts are then marked
in the source code and listed in the adequate view.

Every conflict marker has an action attached to them for resolving that
conflict. When the user chooses to resolve a certain conflict, a composition
rule is proposed. The user can then accept that rule or modify it according
to his needs.
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Part III

Dynamic tool support
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Chapter 10

Runtime monitoring

This chapter consecutively discusses the motivation for, the requirements of
and the development of a runtime monitor. The monitor is able to observe
both standard object-oriented and reflective applications.

10.1 Introduction

Modern software development is inconceivable without tools to inspect run-
ning programs. Runtime inspection covers not only exhaustive querying of
program state but also controlling its execution, e.g., pausing and resuming.
Tools range from debuggers, tracing, test, and monitoring tools to program
comprehension and reverse engineering tools. This chapter discusses the de-
velopment of a tool that is able to monitor running programs. This dynamic
monitor is able to observe both basic and Reflex programs.

10.2 Requirements for runtime inspection

An interactive environment for runtime inspection has several requirements
related to software visualization issues [43]. Although the core of this chapter
is not about visualization itself (these aspects would require more research),
we believe at least two important issues deserve early consideration: visual
load, and synchronization.

As soon as we are interested in realistic applications, a tough issue in
visualization is the control of the visual load, that is, the possibility to
ensure that not too much information is displayed at a given time, so that
the user cognitive charge is not excessive and the user can avoid getting
lost. A user should be able to select what exactly is of interest to him and
possibly be given the chance to adjust the visualization layout. Another
important requirement deals with the synchronization between the executing
application and the inspection environment. Our approach is based on a
synchronous means of control [57]. The idea here is to provide the user
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with a feeling of direct interaction with the running application, offering
the possibility to suspend execution, to adjust settings or interact with the
application, before resuming execution. To sum up, it seems fundamental
to provide a very fine-grained control over what is inspected, along with a
high-level of interactivity.

10.3 Monitoring an object-oriented program

According to the above-mentioned requirements, we are convinced that Re-
flex is particularly well-suited to provide an interactive environment for
runtime inspection. In order to back up that statement, we developed a
monitoring tool that uses Reflex for allowing runtime inspection.

Visually, the user gets confronted with a Graphical User Interface (GUI
hereafter). This multi-windowed system permits visual load to be controlled
(e.g. windows can be minimized, resized, closed and moved). Through
the GUI, the user can interact with the runtime API of Reflex. Among
other things, this API can be used to dynamically assign new activation
conditions to hooksets and to change metaobjects associated with hooksets
both at the desired granularity level (i.e., object, class, hookset, or global).
In addition to static configuration files, this makes it possible for the user
to precisely control, down to the finest granularity level, which parts of the
system and which particular execution points will be observed/manipulated.
In Reflex, those points are grouped into hooksets. To every hookset we
attach a small control window which, at present, simply offers terminal-
like output and basic interaction features. As of now, these features include
inspection of hookset arguments and control over the activation of a hookset
(at the various levels: object, class, hookset and global). We can simply
activate or deactivate a monitor, but we can also make the activation depend
on the activation of the underlying level (hereafter, SUB). For instance, if the
activation of a class-scope hookset is set on SUB, the activation of each class
– affected by that hookset – will be evaluated in order to decide whether
hooks in that class are active. It is even possible to make activation totally
custom, as one can specify its own activation object on a certain level.

For each hookset, we have a window responsible of monitoring its oper-
ations. Depending on the scope of the hookset, we are using different types
of windows.

• For a hookset-scope hookset, the window is a simple hookset-scope
window that monitors all operations affected by the hookset.

• For a class-scope hookset HS, we use a window containing a class-
scope window for each of the class C affected by that hookset. Every
one of those windows is assigned to monitoring the operations of in-
stances of the corresponding class C affected by hookset HS.
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Figure 10.1: Monitoring an object-oriented program

• For an object-scope hookset HS, there are three levels of nested win-
dows. The hookset-scope window contains a class-scope window for
each affected class C, which contain a object-scope window for each
instance O of class C. Those windows monitor all operations of the
corresponding object O, which are instances from a matching class C
affected by the hookset HS.

Closing a window on a certain level closes all its nested windows and
stops the monitoring of that hookset, class or object. This allows visual
load to be limited as the user can really select what he wants to monitor.
Figure 10.1 shows how the interface looks like. Obviously, further versions
could illustrate program dynamics in a more elaborated fashion.

Synchronization between the user and the running application can be
controlled thanks to the fact that base-level operations are reified in order
to give control to the metalevel. At the base level, we are running the Java
program we want to monitor. At the metalevel, there is one metaobject for
each hookset which is responsible for the monitoring of the set of operations
specified by that hookset. Every time an operation – we want to monitor –
occurs at the base level, the execution control will be passed to the corre-
sponding metaobject. When that metaobject gets control, it monitors the
base level operation and gives back the control to the base level. That way
– whenever an operation occurs we are monitoring – the interactive envi-
ronment can synchronize with the running application. For instance, if the
user asks to suspend the program execution, this suspension will take effect
upon the next entrance to the metalevel – that is to say when a monitored
operation occurs.

10.4 Monitoring a reflective application

As we have seen before, Reflex main goal is supporting separation of concerns
(SOC) through behavioral reflection. Indeed, it can serve as a generic plat-
form for aspect-oriented development as argued in [72]. In such a case, an
application runs at the base level while crosscutting and/or non-functional
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Figure 10.2: Monitoring an aspect-oriented program

concerns are implemented modularly as metalevel entities (SOC metaob-
jects).

In order to help in the prototyping, development, and debugging of such
a concern metalevel, our approach to runtime inspection could provide a
valuable support. In such a scenario, the inspection environment actually
runs at the meta-metalevel, allowing for the manipulation of the metalevel
10.2. The interaction with the runtime API of Reflex would then be much
more powerful than in standard application inspection, since it would not
simply include hookset activation and basic synchronization features, but
would also provide the means to dynamically change the bindings between
base-execution points and SOC metaobjects.

Note that plugging a metalevel on top of an existing metalevel does not
raise any problem since metaobjects are implemented with standard Java
classes, and are thus also subject to the selective Reflex reification.

10.5 Conclusion

In this chapter we first motivated why runtime monitoring is indispensable
for good software development. We have seen that the requirements for a
good monitoring tool, are twofold. First there is the visualization aspect,
and secondly, there is the synchronization aspect. In order to develop a
good tool, both aspects must be taken into account.

Then we saw how the developed tool copes with the above mentioned
aspects. Visualization can be controlled by allowing the user to open, close,
resize and minimize the different monitor windows. That way he can pre-
cisely choose what information is displayed, and what is not. Synchroniza-
tion is established by allowing the users to pause, continue – at a chosen
speed – and step through monitored applications.

Finally, we have shown that the recursivity of the model of behavioral
reflection makes it possible to apply such a graphical tool to inspect a met-
alevel layer implementing crosscutting and/or non-functional concerns. This
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would certainly prove highly useful in assisting the prototyping, development
and debugging of applications making use of runtime SOC.
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Part IV

Evaluation and Conclusion
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Chapter 11

Evaluation

In this thesis, tool support was developed for assisting programmers in the
process of creating and testing dynamic and reflective programs. In this
chapter we evaluate the problems and limitations of our work. Note that
while Java – and in particular Reflex – was used for the case study, the
underlying thesis concepts are language-independent.

11.1 Static tool support

The static tool support was created in the shape of an Eclipse plugin, as
Eclipse is the most used Java interactive development environment in the
research community. This part of the tool support incorporates both wiz-
ards and editors for coping with the Reflex configuration. Both editors and
wizards have their advantages and drawbacks. While the wizards are more
easy to use, the editors provide faster ways to modify or create configuration
files.

11.1.1 Configuration editors

When the user is modifying a configuration file and is changing between
two editor tabs, following algorithm is followed to ensure that the resulting
configuration will never be inconsistent.

The first step consists in making backups of all the configuration data:
the hooksets, the classSelectorSets, the composition rules and the corre-
sponding XML code. This is done as a security measure for being able to
cope with possible problems later on. Then, we generate the XML code that
is equivalent to the graphical configuration, and save it to disk.

At that time we want to verify that the resulting configuration is not
conflicting, so we parse the configuration file using the appropriate Reflex
parser. If it manages to finish without any conflicts, all the widgets of the
target tab are recreated and filled with the new configuration data. Note

81



that the recreation of all widgets is needed as it is possible that the number of
items (Hooksets, ClassSelectorSets or Composition rules) may have changed,
modifying the amount of widgets to be created on that tab page.

If the parser does not finish parsing successfully, we restore the configura-
tion data from the backups we made and warn the user that a configuration
error was detected. Using this algorithm, the user will not be able to change
between tabs until the error was corrected.

Currently, the widgets themselves are used to store the configuration
data. This has a serious drawback, as it makes us update all tabs and their
widgets, on every page change. Obviously this has a negative impact on the
performance of the editors. However, adding an external model for storing
the configuration data, would make us create new parsers or at least change
the existing Reflex parsers.

11.1.2 Hook detection

Another dimension of the static support lies in the automatic detection
of the places where shifts from the base to the metalevel will occur. At
those points, the user can follow a link that leads to the source code of the
associated metaobject, allowing faster development and debugging.

In order for being able to mark the detected hooks, the hook collector
needs to obtain the localization information of those hooks. Sometimes
– if the reified operation does not implement the LocalizableOperation
interface – that information is not available to the hook collector. In that
case, the user gets warned that there was a certain number of hooks with
an unknown location. The user is also told that the reified operations he
uses should implement the LocalizableOperation interface in order to be
localizable. That interface, part of the Reflex framework, has four methods
which are each able to retrieve some localization information on the location
of the reified operation occurrence:

• getFileName() returns the simple file (without the full path) name of
the file where the operation occurs (or null if not available)

• getLineNumber() returns the line number in the file where the oper-
ation occurs (or -1 if not available)

• getPackageName() returns the name of the package where the opera-
tion occurs

• getSimpleClassName() returns the simple (without package) name of
the class where the operation occurs.

In Reflex, a certain hook always has a metaobject attached. Yet in some
cases, a metaobject setter is assigned to initialize this metaobject at load
time (e.g. the factory design pattern). In such a case, it is not possible to
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statically jump to the associated metaobject – as it is not known at develop-
ment time. In that case we allow the user to jump to the metaobject setter
definition. Nevertheless, more could be done for helping the programmers
in this regard. In some simple cases, we might be able to determine the ap-
propriate metaobject definition (e.g. if the metaobject setter systematically
creates the same metaobject). However, such a task would require some
kind of program analysis, out of the scope of this thesis work. Further-
more, in most cases, the metaobject will be retrieved dynamically, making
it impossible to know statically what it will be.

11.1.3 Conflict detection and resolution

The last aspect of the static support is the hookset conflict detection and
composition. In our approach, conflicts are said to occur when two or more
hooks are to be inserted at the same point in the base program. This is an
overstrict definition, though, as it is perfectly possible that those hooks will
not raise a real conflict as we have seen in chapter 9. But of course, you are
better off locating all potential conflict situations, and being able to make
adjustments when it is still possible, than finding too few and being faced
with unexpected behavior at runtime.

Nonetheless, the detection algorithm could be significantly enhanced so
that it would no longer detect such border cases as actual conflicts. In [34]
the authors distinguish strong and weak independence of concerns. Two
concerns are said to be strongly independent if none of their hooksets have
common hooks. Two concerns are said to be weakly independent if they
have hooksets with common hooks but if the concerns themselves can be
composed to a single concern. Using the same approach, we can redesign the
metalevel and hookset definitions – maybe joining some of them – in order
to avoid conflicts from being detected among weakly dependent concerns.

11.2 Dynamic tool support

The developed dynamic support lies in monitoring reflective, or ordinary
object-oriented applications. For that we developed a runtime monitor us-
ing Reflex itself. The monitor copes with the two main criteria for runtime
monitoring, which are coping with the information overload problem and
ensuring synchronization between the monitor and the monitored applica-
tion.

The information overload problem is countered by two features. The first
feature is allowing the user to precisely declare what to monitor and what
not. This will make monitoring a lot faster and stop unwanted information
to be shown. Secondly, the users can organize the different monitor windows
which are each monitoring some aspect of the application. Not a lot atten-
tion was given to the look-and-feel and the graphical layout of the monitor
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as it is a preliminary exploratory version which focussed more on function-
ality issues. Still, for improving the user experience, a good look-and-feel is
indispensable.

Synchronization is permitted whenever a monitored operation occurs
in the base program. So when a program is executing, and no monitored
operation occurs, the monitor can never synchronize with the monitored
program. This might seem as like drawback, but then, one can assume that
the programmer should reconfigure the monitor for making it follow up on
more operations.

Currently, the monitor does not have a lot of functionalities for allowing
intercession on reflective applications as only the metaobject activation is
controllable (permitting activation or deactivation of certain metaobjects).
The development of an extended GUI that interacts with the Reflex runtime
API would be very useful to that extent, as it would bring along more
functionalities for runtime intercession in reflective applications.
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Chapter 12

Conclusion and future work

12.1 Conclusion

The main goal of this thesis was to provide ways for assisting the programmer
in the development of reflective applications using Reflex. For that, both
static and dynamic tool support were provided.

The static support comes in the form of an Eclipse plugin and has four
major parts, each providing assistance for some phases of the development
process: base- and metalevel design, base- and metalevel implementation,
assemblage of both levels and application tests. The plugin provides the
appropriate editors and wizards for configuring Reflex and so assisting in
both the first and third phase of the development process.

The second part of the plugin, provides a launcher and debugger for Re-
flex applications. A launcher is a set of Java classes that live in an Eclipse
plug-in that performs launching. A debugger is an equivalent set that allows
the programmer to run his applications in debug mode (step-by-step run-
ning, jumping into a method call, return, ...). This part provides support
for the testing phase in the development process.

The third part of the plugin provides some support for both the imple-
mentation and testing phase, as it has functionalities for detecting hooks in
base-level code and for jumping between base and metalevel objects where
those hooks occur.

As conflicts can arise in this configuration, a mechanism for detecting
and resolving those conflicts had to be established. We contributed in the
development of the Reflex conflict detection and resolution framework. The
last part of the Eclipse plugin offers the support for using that framework,
assisting the programmer in the assemble phase.

The dynamic support was partially developed in the Eclipse plugin and
partially as a stand alone monitor. The dynamic support of the Eclipse
plugin lies in the debug functionality it provides in its second part. The other
part of the dynamic tool support lies in the visualization of the applications
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execution. It is developed as a stand alone monitor that can either be used
together with or separate from the static part. The monitor provides a
great help for debugging ordinary object-oriented or reflective programs. In
addition to this, it allows the user to observe and/or manipulate the behavior
of an object at runtime to some extent.

Throughout this thesis, Reflex was used as a case study. By using it,
providing tool support for it and comparing it to AspectJ, some bugs and
shortcomings came up. Correcting those bugs, providing the tool support
and extending the Reflex framework wherever needed, resulted in a more
stable framework, with more covered programming features and with good
tool support for helping Reflex users to develop and debug reflective appli-
cations.

12.2 Future work

As Reflex is an ongoing research, it was modified a lot during this research
period. Those modifications lead to a new version, that will be presented at
OOPSLA 2003 [72]. In the new Reflex version, the assembler configuration
will have changed significantly. Both the wizards and the editors should
be adapted for coping with those changes. The rest of the developed tool
support is not affected by those changes.

Regarding the dynamic support, there are also some extensions we want
to suggest for future work. Currently, the monitor offers some support for
changing the behavior of the running application. This is rather limited,
though, as it only consists in activating or deactivating metaobjects. Of
course, Java does not permit a lot of changes to a running program, but
more research could maybe show ways for doing that. Also the GUI of the
runtime monitor can possibly be improved. More research on that topic will
have to demonstrate any further possible applications.

Also, an implementation of partial behavioral reflection in Smalltalk
would open many doors, as Smalltalk is better suitable for runtime changes.
It would allow a very powerful runtime monitoring with a lot of possibilities
for runtime modifications. Another application of this Smalltalk framework
would lie in the runtime management of web services, permitting mainte-
nance of web services without taking them offline.

Currently, the composition of conflicting hooks is done at load time.
Providing ways for doing that at runtime would provide yet another way to
dynamically modify the behavior of a running application. More research
on that topic must demonstrate the further applications.
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Appendix
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Appendix A

Composition language
grammar

Helpers
letter = [’a’..’z’] | [’A’..’Z’] | ’_’;
digit = [’0’..’9’];
non_zero_digit = [’1’..’9’];
letter_or_digit = letter | digit;

Tokens
blank = (’ ’ | ’\t’)+;
comma = ’,’;
l_par = ’(’;
r_par = ’)’;
dollar = ’$’;
star = ’*’;
seq = ’SEQ’;
wrap = ’WRAP’;
rule = ’RULE’;
skip = ’SKIP’;
identifier = letter letter_or_digit* ;
identifier2 = letter_or_digit+;

Ignored Tokens
blank;

Productions
expression =

{name} name |
{function} function;
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name =
{hookset} identifier |
{hookset_part} identifier dollar [identifier2]:identifier;

function =
{wrap} wrap l_par parameter_declarator r_par |
{seq} seq l_par parameter_declarator r_par |
{skip} skip l_par identifier_declarator r_par |
{rule} rule l_par identifier_declarator r_par;

identifier_declarator =
{identifier} name |
{comma} identifier_declarator comma name;

parameter_declarator =
{expression} expression |
{comma} parameter_declarator comma expression;
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Appendix B

Paper on the ASARTI
workshop (held at ECOOP
2003)

ASARTI stands for Advancing the State-of-the-Art in Run-Time Inspection.
Citing the workshop organizers [10]: ”Modern software development is

inconceivable without tools to inspect running programs. Runtime inspec-
tion covers not only exhaustive querying of program state but also control-
ling its execution, e.g., stopping and resuming. Tools range from debuggers,
tracing, test, and monitoring tools to program comprehension and reverse
engineering tools. New applications incorporate runtime inspection as a pro-
gramming concept in the style of event-condition-action rules. Configurable
software, generative programming, plug and play components, and internet
software such as web pages, applets or the WebServices standard emphasize
the need to deal with runtime information at different levels of abstraction
and the need to integrate heterogeneous runtime information. Lacking well-
established models for representing and accessing program dynamics, tools
must use ad hoc mechanisms. This limits reuse and interoperability. De
facto standards for runtime inspection such as the Java Platform Debug-
ger Architecture (JPDA) have clearly contributed to improve the situation
but do not cope with all requirements. Implementors seeking to create de-
bugging environments for ubiquitous computing are faced with even greater
difficulties. The workshop seeks to identify best practice and common re-
quirements, to specify conceptual data and control models for runtime in-
spection and to discuss practical issues such as standardized APIs and data
exchange formats.”
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