Vrije Universiteit Brussel — Belgium

Faculty of Sciences
In Collabor ation with Ecole des Mines de Nantes— France
and

University of Twente— The Netherlands
2001

QERSITE/y
& S, - I

ECOLE DES MINES DE NANTES

$a\09 . VF? 1 S
Rag .

>

h
ﬁ,’

Q/ - -
% K
T Unceres© University of Twente

Adding Systemic Crosscutting and
Super-lmposition to Composition Filters

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange)

By: Patricio Salinas Caro

Promoter: Prof. Theo D’Hondt (Vrije Universiteit Brussel)
Co-Promoters: Lodewijk Bergmans & Mehmet Aksit (University of Twente)

Dedicated to my family.

Table of Contents

CHAPTER 1 : INTRODUCTION

1.1 About the contents of this thesis
1.1.1 Motivation
1.1.2 The contents

1.2 An Example: An Administrative System for Social Security Services
1.2.1 An Administrative System for Social Security Services
1.2.2 The Software System

1.3 System Evolution
1.3.1 Evolution 1: Protecting Documents
1.3.2 Evolution 2: Adding Workflow
1.3.3 Successive evolutions
1.3.4 Evaluation
1.3.5 The proposed model
1.3.6 Subsequent Evolutions

1.4 Problem Statement
1.4.1 Objectives

1.5 Thesis Outline

CHAPTER 2 : BACKGROUND

2.1 Aspect-Oriented Programming
2.1.1 Separation of concerns
2.1.2 Not only related to OOP

2.2 The Composition-Filters Model

CHAPTER 3 : STATE OF THE ART

3.1 Super-imposition and crosscutting
3.1.1 Super-imposition
3.1.2 Crosscutting

3.2 AOP Languages based on Java
3.2.1 Aspectd
3.2.2 HyperJ

3.3 Composition Filters

3.4 ComposeJ
3.4.1 Characteristics
3.4.2 Definitions
3.4.3 Defining a CF-interface

3.5 Super-Imposition and the example problem
3.5.1 The previous model
3.5.2 Applying Super-imposition
3.5.3 Progressive super-imposition

3.6 Summary

CHAPTER 4 : DESIGNING THE LANGUAGE

e

~No oo oh~ b N NN

~N ~

© © ©

10

13

13
13
14

16
16
18

19

20
20
20
20

21
21
21
24

24

25

4.1 The language 25
4.2 Presenting the language 25
4.2.1 The Concern declarations 25
4.2.2 Super-imposition of modules 26
4.2.3 How do we specify the super-imposition? 27
4.3 The Concern grammar 29
4.3.1 Existing Implementations of CF 29
4.3.2 UML-like grammar 29
4.4 The sections of a concern 29
4.4.1 The filterinterfaces section 30
4.4.2 The implementation section 30
4.4.3 The Super-Imposition section 31
4.5 Working out crossing problems 35
4.6 Concernd 36
4.7 Parts of a concern 37
4.7.1 The concern specification 37
4.7.2 Filter-Interfaces 37
4.7.3 Implementation 38
4.7.4 Super-Imposition 38
4.8 Summary 38
4.9 Summary Error! Bookmark not defined.
CHAPTER 5 : THE DESIGN OF THE CONCERNJ TOOL 40
5.1 Producing code 40
5.1.1 ComposeJ Code 40
5.1.2 AspectJ Code 41
5.1.3 HyperJ Code 41
5.1.4 Java Code/Class files 42
5.1.5 Making a Decision 43

5.2 How do we produce the code?
5.2.1 Parsers & Visitors

5.3 The ConcernJ Architecture
5.3.1 The packages distribution
5.3.2 The System structure
5.3.3 Collecting the information
5.3.4 Java Visitors
5.3.5 Applying Concerns
5.3.6 Concern Visitors
5.3.7 Selectors Visitors

5.3.8 Structures after a super-imposition and crossing problems

5.4 Structures in detail
5.4.1 The System
5.4.2 The Core Structure
5.4.3 The Selectors Visitor
5.4.4 Java Visitors
5.4.5 Concern Visitors

5.5 Conclusions

Error! Bookmark not defined.
44

44
44
45
46
47
47
48
49
Error! Bookmark not defined.

51
51
52
52
53
53

Error! Bookmark not defined.

CHAPTER 6 : CONCLUSIONS
6.1 Results versus problem statement

6.2 Further Work

BIBLIOGRAPHY & REFERENCES

APPENDIX A: CONCERNJ GRAMMAR

APPENDIX B: SELECTORS GRAMMAR

55
56

56

57

58

63

Chapter 1 : Introduction

1.1 About the contents of this thesis

1.1.1 Motivation

Programming languages are implemented and based on others following the traditional
parse-eval-display structure, that is, source code is read, evaluated and finally produce
some result. High-level languages have become necessary to model and apply new
paradigms or to simplify tasks than in low-level languages are not trivial or too
cumbersome to implement.

In that context, taking for instance the interpretation that a computer chip does from a
stream of bits coming from some assembler code, let us suppose for a moment that this
stream has come, after several parse-eval-display steps, from a sophisticated high-level
language. Why do not we still program and produce stream of bits instead of encapsulate
them into programs coming from a high-level language?

The response is clear, we need abstraction to focus our efforts in solving another problems
instead of worrying us about bits and bytes.

From this point of view, most languages define new ways for encapsulating knowledge and
making abstractions easy to model and apply. This is the case of current Aspect-Oriented
languages; they define ways for encapsulating concerns though the incorporation of new
specifications and translating them finally into a low-level code.

For instance, Aspect] is an AOP implementation for the Java language. Aspect] comes with
a new set of specifications that after applying them over Aspect] code produces Java code.
The advantage of using Aspect] code instead of directly Java code is the fact that the
abstraction allow us to model a system in such a way that is possible to reach modularity,
decrease complexity and increase reuse. Therefore, we can conclude that abstraction is
necessary.

1.1.2 The contents

Composition-Filters is a technique that allows changing the behavior of objects just by
adding some specification over them in a modular way. However, currently there is no a
systematic way for super-imposing them over an application.

This thesis work is intended to study and design a language, that based on the
Composition-Filters model, allows us the super-imposition of CF-specifications over a
system. In this way modularity is achieved by using the Composition-Filters technique and
abstraction through using a super-imposition technique.

The study of that new/improved language needs an implementation for proving concepts
and without loosing generality, for this thesis work a tool will be created for the super-
imposition of Composition-Filters for the Java language. Nevertheless, there is the
intention to make the design as much as possible language-independent due to the nature
of Composition-Filters, which is a language-neutral model.

1.2 An Example: An Administrative System for
Social Security Services
The example we are about to show is also presented in [BeAk-00], and it is intended to

illustrate the issue of composing and reusing multiple concerns in object-oriented
applications when the requirements evolve.

Also, this example serves as a motivation for showing the necessity of counting with a

technique that enables the superimposition of Composition-Filters definitions over a
system, and thus this thesis work.

1.2.1 An Administrative System for Social Security Services

Assume that a government-funded agency is responsible for the implementation of
disablement insurance laws. As shown in Figure 1-1, the agency implements five tasks:

i
~ - RN e N

/\—) \\\ /%‘\) Output Handler Client

— *’/ =N)

. (Y~ N
Client Request Handler Request Dispatcher N J = K

\l’ Payment

e ™ Bank

Medical Check

Figure 1-1 . Tasks in the example system

Where each task in the System represents:

1. Request Handler: creates an entry for clients (entries are represented as documents)

2. Request Dispatcher: implements the evaluation and distribution of the requests to
the necessary tasks.

3. Medical Check: is responsible for evaluating client’s disablement.

4. Payment: is responsible for issuing bank orders.

5. Output Handler: is responsible for communicating with the clients,

A typical claim is subsequently processed by: RequestHandler, RequestDispatcher,
MedicalCheck, Payment and OutputHandler. Various other interaction scenarios are also
possible.

1.2.2 The Software System
Modeling Client’s Requests

Now let us assume that the system has been implemented as a set of tasks, for each
client’s request a document is created. Depending on the document type and client’s
data, the document is edited and sent to the appropriate tasks using a standard email
system. Each relevant task processes the document accordingly.

ClaimDocument

requestedClaim : Claim Document
claimAmount : Currency
approvedClaim : Currency
requestHandlerData : DocumentData
requestDispatcherData : DocumentData
medicalCheckData : DocumentData
paymentData : DocumentData
outputHandlerData : DocumentData

id : Integer

name : PersonName

handler : PersonName

clientAddress : Address
clientCategory : DisablementCategory

Figure 1-2 . Part of the document class hierarchy, which is used for representing client
requests.

As shown in Figure 1-2, class Document is the root class for all document types. Every
document has 5 attributes:

« id, name and clientAddress are used for storing client’s data;

« handler represents the clerk who is in charge of processing the request;

« clientCategory specifies the classification of the client with respect to the disablement
laws.

Class Document also implements 10 operations, which are not shown here. These are used
for reading and writing the class attributes (‘setters’ & ‘getters’).

Class Document has several subclasses. For example, ClaimDocument is used to represent
the claims of clients. This class declares 8 attributes:

+ requestedClaim represents the type of client’s claim, such as medicine, hospital
costs, etc.;

« claimAmount is the claimed amount of money;

« approvedClaim is the amount approved by the agency.

The remaining attributes are filled in by various tasks while the document is being
processed.

Modeling the Tasks

TaskProcessor

processDocument(aDoc : Document)
startEditorwithDocument(aDoc : Document)
forwardDocument(aDoc : Document, nextTask : TaskProcessor)

T

retrieveClientData(clQ : Query) : Document Payment
archieveClientData(aDoc : Document)

RequestHandler RequestDispatcher

OutputHandler MedicalCheck

Figure 1-3 . Class hierarchy for tasks

As shown in Figure 1-3, TaskProcessor declares the basic operations for all tasks. The
operation processDocument accepts a document as an argument and opens an editor for
the document by calling on startEditorWithDocument. When the document is edited by a

particular task, the operation forwardDocument is called. Both of those operations are
overridden by the subclasses.

Each sub-class of TaskProcessor redefines the operations processDocument and
forwardDocument. They are not shown though, to keep the model simple.

RequestHandler implements the front-end of the office. For example, if a client wants to
issue a claim, this task creates an object of ClaimDocument, retrieves the necessary client
data and opens an editor for the document object.

The responsible clerk should enter the data on the field defined for RequestHandler. When
the task is completed, the clerk selects the next task and calls forwardDocument.

The operation forwardDocurment prepares the document and passes it as an argument to
the operation processDocument on the next task. Subsequently, each clerk in the process
enters data into the appropriate data field and forwards the document according to the
office procedure.

In this system, creating a new workflow process can be realized by creating a new
structural document subclass.

1.3 System Evolution

The following sections are intended to show possible scenarios of evolution and the
possibilities to deal with this evolution that users have with current modeling techniques.

The complete set of evolutions and their fundaments are clearly explained in [BeAk-00].
Therefore, in this case they are going to be briefly explained, just showing only the most
interesting aspects for each evolution.

1.3.1 Evolution 1: Protecting Documents

In the initial system, a clerk could edit any field in a document. A request dispatcher clerk
could, for instance, accidentally edit the medical data field. Therefore, it was found
necessary to protect the documents. We consider two alternatives for enhancing
ClaimDocument for protection: to modify and recompile ClaimDocument or to introduce a
new class and reuse class ClaimDocument through inheritance or aggregation.

Document

Z} Document
ClaimDocument Z}

Z} ProtectedClaimDocument ClaimDocument

ProtectedClaimDocument

Figure 1-4. Two possibilities for adding ProtectedClaimDocument to the current system,
as inheritance (left) and as an aggregation (right).

From the point of view of Software Engineering the option of modifying and recompiling
ClaimDocument is not acceptable, because in a future evolution the implementation or the
requirements for ClaimDocurnent could change, new kind of documents could be added to
the system, etc. making reuse and adaptability difficult to apply.

Figure 1-4 shows the other two possibilities for adding ProtectedClaimDocument to the
system. The inheritance model is shown on the left side and the aggregation model is
shown on the right side.

Only authorized clients should be able to view or modify the document’s content. A
possible solution is adding a new attribute activeTask to ProtectedClaimDocument, in this
way it is possible to know the current task. Therefore, a view-enforcement over the
document can be applied depending on the invoked method.

So, the activeTask field has to be checked before invoking a real method inside
ClaimDocument. Otherwise, if the restrictions over ClaimDocument are not satisfied, an
exception is raised.

When using aggregation, forwarding methods have to be added to the
ProtectedClaimDocument interface, for invoking those methods into ClaimDocument that
are not necessary to be checked.

When using inheritance, forwarding methods are not necessary because they are provided
by the inheritance mechanism.

The advantage of using an aggregation approach is that the ProtectedClaimDocurnent have
a run-time adaptability, because it could change its implementation at run-time just by
changing the aggregated object.

1.3.2 Evolution 2: Adding Workflow

In the previous implementation, the clerks had to decide which task is to be executed
next. To enforce a particular process, a workflow class is introduced called
WorkFlowEngine.

Adding a workflow to the system requires redefinition of forwardDocument for all task
classes. The forwardDocument first calls on selectTask of WorkFlowEngine, which returns
the next task. The operation forwardDocument cannot be implemented at the superciass
level, since every task implements this operation in a specific manner.

This implies that methods of every task class have to be redefined, by applying inheritance
or aggregation.

1.3.3 Successive evolutions
The application could suffer new evolutions, such as:

Adding Document Queues
Adding Logging

Adding Locking

Adding Persistence

A WN R

Each evolution could imply the introduction of new classes and/or the redefinition of
existing ones. When using inheritance or aggregation, methods have to be redefined or
forwarded to the original implementations for reusing existing code.

1.3.4 Evaluation

As is presented in [BeAk-00], the Composition Filters model is one of the most
appropriated approaches for modeling this system, comparing it with classic object-
oriented techniques such as edit & compile, aggregation and inheritance.

1.3.5 The proposed model

The Composition-Filters model will be presented in the following chapter. Nevertheless,
Figure 1-5 shows a symbolic representation when filters are added to objects. In this case,
filters are represented as rectangles and objects as circles.

Filters are applied to objects in a modular way; the object itself does not suffer any
changes, and the interface that contains the filters is in charge of manipulating incoming
and outgoing messages.

protected claim

interface for a
document

Document

Figure 1-5. ProtectedClaimDocument presented as a Composition-Filters interface.

Figure 1-5 shows the proposed version corresponding to the first evolution for a
ProtectedClaimDocument. A Composition-Filters interface, containing filters, is applied to
the original Document class (ClaimDocument). Incoming messages are filtered, depending
on the concext, some methods are forwarded to the original implementation and
exceptions are triggered when corresponds.

For the second evolution, the introduction of a WorkflowEngine, Composition-Filters
interfaces are added over those objects that are part of the workflow. This case is shown in
Figure 1-6.

external4> interface for

object ’—> administering |«
external Workflow
object Engine external
object
external
object
external
object
interface for using interface for using interface for using interface for using interface for using
a Workflow a Workflow a Workflow a Workflow a Workflow
RequestHandler Request OutputHandler MedicalCheck Payment

Dispatcher

Figure 1-6. The proposed Composition-Filters model for the introduction of WorkflowEngine
to the original system.

The objects affected by the introduction of WorkflowEngine are Requesthandler,
RequestDispatcher, OutputHandler, MedicalCheck and Payment. Each CF-interface defines
an external object for applying the workflow mechanism (WorkflowEngine), and each
interface has to be added manually over those involved classes.

Currently, there is no a systematic way to apply interfaces over a large set of classes.

1.3.6 Subsequent Evolutions

The mechanism for avoiding subsequent evolutions such as Logging, Locking, Persistence,
etc. is the application of new CF-interfaces over the objects involved with each evolution.
In this way, filters are added on top of the current object interface.

Figure 1-7 shows the case when adding the Logging interface (black colored) over the
existing ProtectedClaimDocument interface (gray colored). Filters can be added in this way
thanks to the characteristics of the Composition-Filters technique.

Interface for
Logging

Figure 1-7. Adding a Logging mechanism to ProtectedClaimDocument.

In the example, the Logging interface was only added over Document. Nevertheless, it can
also be added over other objects into the system.

1.4 Problem Statement

The Composition Filters model can help to solve the presented problems, by applying filter-
interfaces over the objects that were affected by the evolution of the original
requirements.

However, taking into account the number of interfaces applied to the affected objects,
possible new software evolutions and common tasks performed by applied interfaces,
increases inevitably the complexity of the given solution, making it harder to reuse existing
implementations.

The main key because this technique fails, is the fact that there is currently not a
systematic, modular, explicit and automated way to apply interfaces to a large set of
objects. Although the current Composition-Filters model allows the reuse of already
defined filters, there is no other choice than make and apply interfaces “manually”.

1.4.1 Objectives

The general objective of this thesis work is the study, design and creation of a tool that
will give the user the ability to define and apply CF-interfaces to a set of objects, using a
systematic and modular approach. The work must be based on currently well proven
techniques and tools.

The specific objectives are to investigate, design and create a specification for super-
imposition of Composition-Filters. The grammar for this language will be studied, designed
and presented. Finally an implementation for this specification will be built on the Java
language.

1.5 Thesis Outline

In this chapter a brief introduction to this thesis was presented. Also an example that
shows the necessity of a better approach than using modification, inheritance and
aggregation was presented.

Chapter 2 contains background knowledge consisting of current crosscutting techniques
such as Aspect-Oriented Programming and the Composition Filters model.

Chapter 3 describes the State of the Art of current crosscutting implementation tools, such
as Aspect], Hyper] and Composel. Also, the super-imposition technique is presented and
compared with the other techniques.

Chapter 4 presents the design of a super-imposition language based on the Composition
Filters model. This includes the study and design of the grammar, and the most interesting
aspects of the super-imposition concepts applied over the new language.

Chapter 5 describes the software design for the super-imposition tool. This tool is very
particular and represents the proof of concept of previous chapters. It includes the
possibilities for generating code taking into account existing crosscutting tools.

Finally, chapter 6 contains the conclusions for this thesis, showing the advantages and
drawbacks of the presented tool, and discussing some further work that can be done based
on this thesis work.

Chapter 2 : Background
2.1 Aspect-Oriented Programming

2.1.1 Separation of concerns

The following quote was taken from [HYPJ-01] and explains the concept of “Separation of
Concerns™:

“Separation of concerns is a concept that is at the core of software engineering. It refers to
the ability to identify, encapsulate, and manipulate those parts of software that are
relevant to a particular concern (concept, goal, purpose, etc.).

Concerns are the primary motivation for organizing and decomposing software into
manageable and comprehensible parts. Many kinds of concerns may be relevant to
different developers in different roles, or at different stages of the software lifecycle. For
example, the prevalent concern in object-oriented programming is the class, which
encapsulates data concerns.

Feature concerns like printing, persistence, and display capabilities, are also common, as
are concerns like aspects, roles, variants, and configurations. Appropriate separation of
concerns has been hypothesized to reduce software complexity and improve
comprehensibility;, promote traceability; facilitate reuse, non-invasive adaptation,
customization, and evolution,; and simplify component integration.”

2.1.2 Not only related to OOP

Aspect Oriented Programming [KIC-97], AOP for short, is intended to solve common
“separation of concerns” problems. The following quote was taken from [ACM-01] and
explains the AOP terminology:

“AOP is a new evolution in the line of technology for separation of concerns - technology
that allows design and code to be structured to reflect the way developers want to think
about the system. AOP builds on existing technologies and provides additional mechanisms
that make it possible to affect the implementation of systems in a crosscutting way.

In AOP, a single aspect can contribute to the implementation of a number of procedures,
modules or objects. The contribution can be homogeneous, for example by providing a
logging behavior that all the procedures in a certain interface should follow; or it can be
heterogeneous, for example by implementing the two-sides of a protocol between two
different classes.

As with all other separation of concerns technology, the goal of AOP is to make designs
and code more modular, meaning that the concerns are localized rather than scattered and
have well-defined interfaces with the rest of the system. This provides us with the usual
benefits of modularity, including making it possible to reason about different concerns in
relative isolation, making them (un)pluggable, amenable to separate development etc.”

Technology Key concepts Constructs

Structured programming | Explicit control constructs Do, while and other loops,
blocks etc.

Modular programming Information hiding Modules with well-defined
enforced interfaces

Data abstraction Hide the representation of data | Types...

Object-oriented Objects, with classification and Classes, objects,

programming specialization polymorphism.

As shown, AOP is independent of the paradigm. Nevertheless, Object Oriented
programming is today one of the most used paradigms, intended to model the world with

objects, where each object is intended to model different concerns [ACM-01], allowing
reuse of code, decreasing software-complexity and increasing modularity. So, most
existing AOP implementations are intended for object-oriented languages.

2.2 The Composition-Filters Model

The Composition-Filters model [AKS-92] is an extension to the classical Object-Oriented
model. It is related to Separation of Concerns and Aspect Oriented Programming. Filters
extend the classic object interface, by interfering -not invasively- the object message-
sending mechanism. So, the extension is not at the level of the object itself
(implementation), it is at the level of its interface.

Messages among objects, both incoming and outgoing, are caught by filters. Messages are
inspected and manipulated at runtime. Filters are added to objects in a modular way.
When filters are applied, objects start behaving differently depending on the applied filters
and how they were defined.

This enables the modeling of concerns, increases reuse and maintainability. This is because
classic OO-approaches, such as inheritance and aggregation, are still possible to use, and
with Composition-Filters is possible to apply modularly new features to objects. Finally, we
can say that the Composition-Filters model is a dynamic approach because of its runtime
features.

More extensive explanations about the Composition-Filters model can be found in [AKS-
92], [BERG-94], [SINA-95], [GLAN-95] and [WICH-99].

incoming message

= =

Composed

~ =

outgoing message

Figure 2-1. A Normal object and a Composed object.

Figure 2-1 shows the two approaches, on the left side the classical Object-Oriented model
where messages are received and sent by object itself, and on the right side, the Object-
Oriented model empowered with Composition-Filters, where filters manipulate messages
before they are really received by or sent from the object.

10

n(arerIng me SS@QGS
\dﬁ\A 0 =

filtertype _ filter pattern
|

, rejected messages

)

-

- ;“; //
A {message does not match)

(message continues to next filter)
{message matches)

(message is modified,
continues to next filter)

{message matches)
(message is dispatched)

Figure 2-2. An intuitive schema of message filtering.

Figure 2-2 shows the schema for message filtering, filters can be sequentially applied to an
object acting as a new layers. Each message has to pass the filters one-by-one, until it is
discarded or can be dispatched. So, when adding and defining filters, the order in which
they are applied does matter.

The following filter-definitions are taken from [BeAk-00]:

>

Dispatch filter: When a message is accepted, this filter decides where to dispatch the
incoming/outgoing message, otherwise the message continues with the next filter. If
there are no more filters, an exception is raised. Messages only can be dispatched to a
specified target, the target can be the self object, internals or externals defined in the
applied CF-interface.

Error Filter: When a message is accepted, it continues to the next filter, otherwise an
exception is raised.

Wait Filter: When a message is accepted, it continues to the next filter. The message
is queued as long as the evaluation of the filter expression results in a rejection.

Meta Filter: When a message is accepted, the reified message is sent as a parameter
of another meta message to a named object, otherwise the message continues to the
next filter. The object that receives the meta message can observe and manipulate the
message, then re-activate its execution.

A Composition-Filters specification contains two different modules, the first one defines an
interface, which is language independent, and the second one an implementation that
realizes the interface.

Both the interface and the implementation specifications are shown in Figure 2-3.

11

received
messages

sent
messages

interface declaration

external condition
inputfilters @ declarations declarations

+— filterset — @ @ — filterset —

— internals method outputfilters

~_— declarations

S

methods »
conditions

implementation

instance
variables

Figure 2-3. A schema for representing the incorporation of Composition-Filters over an

object.

Figure 2-3 shows in gray color the interface declaration and the implementation.
Respectively one consisting of the following:

1. A Composition-Filters interface that contains:

internal definitions. Internals are objects that are part of each CF-interface. So,
when an interface is applied over an object, operations can use internals as normal
object attributes. Internals can be instantiated when defining an interface.
external declarations. Externals are also objects that are part of each CF-
interface. The difference with internals is that externals are passed as references
to interfaces when they are applied. Externals cannot be instantiated when defining
an interface.

method declarations. Methods defined inside the CF-interface are intended to
complement and extending the current object interface. They can be
added/removed systematically when CF-interfaces are applied.

condition declarations. Conditions are very specific methods that do not receive
any parameter, return always a boolean value and do not change the object state.
Conditions are used for inspecting the current state of an object.

inputfilters definitions. Filters are defined in this block for inspecting and
manipulating incoming messages.

outputfilters definitions. Filters are defined in this block for inspecting and
manipulating outgoing messages.

2. An implementation-block, that realizes the defined interface:

Method implementations. Corresponds to the implementation of all those
methods that are not implemented by the current object signature.

Condition implementations. Idem as methods, but intended for conditions.
Instance variables. Corresponds to variables that can be used by the defined
methods and conditions, but cannot be used by filters.

When a message arrives, it is inspected and manipulated by input filters. It can be
dispatched to the object itself, internals or externals. When the object sent a message, it is
inspected and manipulated by output filters. It can be dispatched to the real destination or
redirected to self, internals or externals.

Both the interface and the implementation specifications are defined separately; thus the
language-independent part is specified separately from the language-dependent part.

12

Chapter 3 : State of the art

3.1 Super-imposition and crosscutting

Super-imposition and crosscutting are different concepts:

« Super-imposition is the technique for adding code, systematically, by specifying the
places into the application where the new code will be introduced.

« Crosscutting is a characteristic of the super-imposed code. When a crossing concern
is feasible to be modeled separately from main concerns!, and after be applied over
the system by using super-imposition.

3.1.1 Super-imposition
In super-imposition there are four important concepts:

« Who: the modules into a system we want to super-impose. A system contains several
modules, when selecting “who” only those selected modules will be part of a super-
imposition.

« What: the code we want to super-impose. This code is super-imposed over those
modules defined by “who”.

« Where: the places where we want to super-impose the new code. When defining
“*who” we just decide which modules are going to be super-imposed, when defining
“where” we decide the place into those modules we want to put the new code.

« When: the instant of time when the new code has to be executed (with respect the
original code).

A schematic model for super-imposition is presented in the following figure.

super-imposition

specification: m1
"who", "what",

"where" & "when"

Applyin
s@?qqéo? Source Code (system)

Figure 3-1. Identifying Super-imposition concepts.

Figure 3-1 shows a graphical representation for super-imposition, where each shape
represents the following:

1. The rectangle represents the super-imposition specification, which contains the

information related with who, what, where and when.

The cross symbol represents the application of super-imposition.

Oval figures represent a system. In this example they are called modules (m1, m2 and

m3, m4 and m5).

4. Only selected modules into the system will be super-imposed (in black color). The rest
of the modules are not taken into account (in gray color).

2.
3.

In the presented figure, the term “module” was introduced to represent source code. This
is mainly because, depending on the used language, modules are named differently and
have different meanings. For instance, in Java a module is called “Class” and its source
code is defined into a normal file. On the other hand, in Smalltalk a module is also a
“Class” but the concept of file does not mean anything. Another example is when defining

! Main concerns are particular modules in each paradigm, in OOP a main concern is a class, in
functional programming it is a function [ACM-01].

13

constructors, in languages such as Java and C++ a constructor has a meaning, on the
contrary to Smalltalk where a constructor is just another class operation.

A possible result of that super-imposition is shown in Figure 3-2. Each shape in the figure
represents:

1. The arrow symbol represents the result of weaving the super-imposition specification
with the original source code.

2. Oval figures represent the same source code presented in Figure 3-1.

3. The dash-rectangles represent super-imposed code.

weaver tool
(Result Symbol)

Figure 3-2. Result of a Super-imposition.

3.1.2 Crosscutting

When crossing concerns can be modeled into a separate module, and systematically it can
be applied over a system by using super-imposition. In the following figure different
modules are crosscutted by different concerns.

Figure 3-3. Showing the orthogonal characteristic of crosscutting.

Figure 3-3 shows on the left side a concern (a dashed rectangle drawn in black color) that
crosscuts multiple modules (oval shapes), and on the right side a concern that crosscuts
only one module. The dashed rectangles drew in gray color only represent super-imposed
code.

Concerns are very specific modules that represent tasks such as security, persistence,
logging, tracking, etc. The main characteristic of crosscutting is that specifications can be
plugged-in systematically and defined modularly thanks to super-imposition.

When super-imposing several concerns it is also possible to obtain crossing’ code. Figure
3-4 shows this case:

2 When a concern cross-crosscuts another concern or code.

14

| added code | ml | added code m2

| (concern-1) | I (concern-2) |
— B P L L

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3-4. Multiple concerns crosscutting modules and each other.

In Figure 3-4 concerns, represented by dashed-rectangles, crosscut source code and each
other. How does an applied concern have to be added? The following cases are interesting
to take into account:

1. A new concern overrides old code, and thus previous applied concerns. So, it is still
possible to use old code (the code existing before super-imposition).

2. A new concern replaces old code, and thus previous applied concerns. This is a drastic
option, because always the newest super-imposed code is placed instead of the old
existing code.

3. Crossing code has to be explicitly modeled as another concern.

These questions are interesting to be analyzed, even when applying only one concern (the
case when modeling behavior of the applied concern with respect to the original source
code). Concerns are applied by super-imposition, thus these cases have to be specified
implicitly or explicitly depending on the used language.

Figure 3-5 shows the crossing-concerns problem:

concern-1 concern-2
(secutity) (persistence)
crossing concern-3

crossing code

code (logging)

Figure 3-5. Concerns can cross each other.

Concerns are drawn in gray color and crossing modules are drawn in black-color. Let us
transform these questions in real situations, such as, for instance:

What happens when the logging concern crosses the security concern? Does the logging
concern violate security? Does the logging concern have to be applied after security-rules
are checked out?

These kinds of questions are interesting to analyze for a correct modeling, and have to be
worked out at the super-imposition level. This means that when defining the super-
imposition specification, crossing problems have to be explicitly defined with the facilities
that the used modeling tool provides.

When introducing some super-imposition languages later in the next section, these

questions will be pointed out to show how those languages allow users the specification of
this kind of problems.

15

3.2 AOP Languages based on Java

3.2.1 Aspect)

Aspect] is an AOP implementation for the Java language [ASPJ-01]. It allows the
definitions of concerns that are called aspects. A weaver applies aspect definitions over
source code (Java Classes) and creates the woven version, also codified in Java.

Aspects are defined one by one. Several aspects can be applied over a system. Each
aspect contains the following information:

1. Aspect Instantiation: aspects cannot be explicitly instantiated (a new message to a
class). Therefore, when aspects are defined, the instantiation mechanism has to be
specified.

2. Event definitions: in [SAL-00] was presented and proposed that applications have
events that can be specified by pointcut definitions. Those events are basically:

a) Object Instantiations,

b) Method invocations, executions,
¢) Field setters and getters,

d) Exception handlers.

3. Actions: also in [SAL-00] was proposed that the specified events can be caught, and
actions can be applied to take care of them. Those actions are called advices.

4. Introductions: desired code can be added to existing applications at the level of class
definitions, such as, methods, class and instance variables and inheritance.

In Aspect] aspects are modeled as objects. Therefore, they can:

* Be defined abstract,

« Be inherited from another aspect (simple inheritance mechanism),
- Be instantiated?®,

« Have fields and operations.

Some Features in brief

Some interesting features of Aspect] are:

« Source files are woven with aspects at compile time.

« Aspects can be defined to follow the flow of an execution.

« Instantiation of aspects are specified explicitly when specifying the aspect.

« Aspects cannot be defined over another ones (it means that only one dimension can be
defined).

« Aspects cannot be changed at runtime.

« Aspect] runtime-classes must be available for executing a woven system.

Solving crossing problems

When code is super-imposed by an aspect, there are three possibilities for applying it over
previous existing code:

1. The action (advice) is executed before the code that generated the event. For
instance when catching a method execution, the applied advice is executed before
that method is really executed.

® They cannot be explicitly instantiated by sending a new message to the Class where they belong.

16

2. The action is executed after the code that generated the event. For instance when
catching a method execution, the applied advice is executed after that method was
executed.

3. The action is executed around the code that generated the event. For instance when
catching a method execution, the applied advice is executed instead that method.

Those three concepts, before, after and instead are specified when an advice is defined.
When more than one aspect is applied over the system, there is the possibility to have

crossing problems among aspects. In such a case, the user must specify, when defining an
aspect, which aspect dominates the other ones.

Defining an aspect

Aspect] is an AOP implementation for the Java language. Its grammar is very similar to
Java, an aspect definition looks like a class definition. An aspect specification looks as
follows:

Table 3-1 . Definition of an aspect.

(1) aspect aspectName [of aspectinstantiation]
{

(3) pointcut pointcutName: pointcutbefinition; } pointcut definitions
) pointcut pointcutName2: pointcutbDefinition;

(5)

(6) before/after/instead : pointcutExpression

(7) .
(8) // code for advice (to be added where corresponds) an advice
(9)

(10) %

Table 3-1 shows the content of an aspect. The most interesting parts of an aspect are:

« Pointcut definitions can be defined as separate expressions (lines 3 and 4).

« There are operations over pointcuts, specified in the example by pointcutExpression
(line 6). It means that pointcuts can be mixed using some operators.

« When defining an advice (line 6), the before, after or instead have to be specified.

« The instantiation mechanism is defined explicitly by aspectinstantiation (line 1).

Super-imposition concepts in AspectJ

Making a parallel between the super-imposition concepts (shown in a previous sub-section)
and the Aspect] ones, we can notice the following:

Table 3-2. A Parallel between Super-imposition concepts and Aspect].

SI Concept Corresponds to
name of Super-imposition aspect
specification

who aspect and pointcut definitions

what advice implementations and introductions
where aspect & pointcut definitions

when advice definitions (before, after, around)

Table 3-2 shows the comparison between super-imposition concepts with Aspect]
definitions.

17

3.2.2 Hyperl

Hyper] is a Java implementation for Multi-Dimensional Separation of Concerns [HYPJ-01].
Multiple concerns can be defined and applied over the original system and each other at
the same super-imposition level.

Super-imposition and concerns are modeled and specified by defining hyperspaces,
modules, hyperslyces and hypermodules.

A hyperspace contains specifications for dimensions and concerns of importance. A
Concern is a set of modules. In Java modules represent classes, methods, instance
variables, etc. Concerns are grouped into a single definition module so called Concern-
Matrix (a hyperspace).

A Concern-Matrix specifies relations among concerns, identifying integration, encapsulation
and identification of each concern. Each axis represents a dimension of concern and each
point on an axis a concern in that dimension.

The Concern-Matrix is only a declarative specification. There may be modules that are not
specified or not completely specified. A hyperslice is a set of concerns that is declaretively
complete, it declares everything to which it refers. This is important because internally an
hyperslice defines the coupling among concerns and the way to solve overlapping problems
(crossing problems).

An Hypermodule is a set of hyperslices, that indicates the integration mechanism among
each hyperslice, and how they are interrelated.

Some Features in brief

In Hyper] concerns are explicitly specified, hyperslices contains declarations about
concerns and the modules that they affect, also including codification for those concerns.
Crossing problems are specified into hypermodules and hyperslices.

Concerns are woven with system code and are statically applied at compile-time. They are
declaretively applied instead of systematically applied, because they are explicitly specified
indicating the affected modules.

How are crossing problems worked out?

The specification and definition of hypermodules and hyperslices includes also the way for
working out crossing problems (overlapping of concerns).

Hyper] provides a set of specifications for modeling and specifying overlapping problems.
And each specification depends on the level of the overlapping. Levels can be Classes,
Interfaces, Methods, and variables. Some of these specifications are:

1. When overlap appears, it is possible to specify if the involved modules will be mixed,
overridden or not allowed.

2. Equate operations, it means that modules can be modeled even if they are not related
each other.

3. When methods are merged, an order can be given to specify the moment, with respect
to the original method, in which the super-imposed method will be executed.

The set of possibilities is larger than the list presented above. Nevertheless, the presented
set was intended to show that Hyper] provides the facilities for specifying them.

Super-imposition concepts in HyperJ

18

Table 3-3 shows a parallel between super-imposition concepts and Hyper].

Table 3-3. A Parallel between Super-imposition concepts and Hyperl.

SI Concept Corresponds to
name of Super-imposition hyperspace
specification

who hyperspace - concern-matrix
what hypermodule

where concern-matrix

when hyperslice - hypermodule

3.3 Composition Filters

The Composition Filters model can also be considered as an AOP model. Because concerns
can also be modeled by defining and applying CF-interfaces to classes, allowing in this way
the modeling of concerns such as security, logging, persistence, etc.

The drawback of the current model is the fact that a CF-interface can only be applied to
one module (class) each time, this case is shown on the left side of Figure 3-3. Currently
there is no possibility for modeling super-imposition of a CF-interface for several modules.

Figure 3-6 shows a schema for identifying Composition Filters concepts and super-
imposition.

]
1
CF-Class Interface:
+ internals/externals Original
+ methods/conditions Class
+ inputfilters/outputfilters

Figure 3-6. Identifying concepts in Composition Filters.

As shown in Figure 3-6, the specification for super-imposition is defined by the CF-
interface and is attached to the implementation (represented by the original class). The
result is the composed version of the original class.

Solving crossing problems

How crossing problems are worked out in Composition-Filters is a question of a well
definition of filters and interfaces and how filters defines the correct semantic of the
modeled problem.

Super-imposition concepts in Composition-Filters

Table 3-4 shows the relation between super-imposition and CF concepts.

Table 3-4. A Parallel between Super-imposition concepts and Composition-Filters.

SI Concept Corresponds to

name of specification CF class-interface

who class interface (only one source module)
what methods, conditions & filters

where filters definitions (type of filters)

when inputfilters and outputfilters

19

3.4 Composel

Composel is a Composition-Filters implementation for the Java language [WICH-99]. Its
design and implementation are still evolving as part of the Composition-Filters project.

It is a compiled approach for CF in the Java language, mainly because of performance
reasons. There were different versions of implementations for Composition-Filters on
reflective languages such as Smalltalk and Sina. When applying reflection over messages,

some performance penalties appear when creating the corresponding objects. Those
penalties can be avoided when using a compiled approach.

3.4.1 Characteristics
Composel is more than a compiler, it also provides:

« A Graphical User Interface
« An integrated editor for creating and modifying CF projects.

As part of its development, there is the intention for adding:

e Support for other IDE tools.
« A debugging mechanism.

3.4.2 Definitions

To define a Composition-Filters class in Composel], there must be two specifications:

* A class-interface where the user defines: internals, externals, methods, conditions,
inputfilters and outputfilters (a “.cf” file).

« An implementation that realizes the class-interface, a ™“.jwf” file which is a
“.java” file without filters.

Current implemented Filters:

In the current Composel implementation, the following filters are implemented:

1. Dispatch Filter
2. Error Filter

Other new filter types, such as Meta Filter and Wait Filter, are still under development.

3.4.3 Defining a CF-interface

Table 3-5 shows a sample code for a Composition-Filters interface.

Table 3-5. A sample of a CF file specification

(1) class UsvMail interface

(2) 1internals

3 objectdeclaration

(4) MailMessage mail = new MailMessage Q) ;

(5) conditions

(6) private boolean postmanview (Q;

(7 private boolean personalVview (Q;

(8) inputfilters

(9 err : Error = {personalview() =>mail.getContent, true

20

~>mail.getContent};
(10) dis: Dispatch = { mail.* };
(11) end;

As shown in Table 3-5, the internal, external, method and condition sections (lines 3, 4, 6
and 7) have a Java like-grammar. Mainly, because Composel] is an implementation for the
Java language, and these specifications are language dependent (object and method
definitions). The rest is a specific syntax that is language independent.

3.5 Super-Imposition and the example problem
3.5.1 The previous model

The following figure was already presented in Chapter 1. It corresponds to the example
problem and represents the application of several CF-interfaces over some classes in the
system.

Figure 3-7 shows, in a gray color, the affected objects (WorkflowEngine, RequestHandler,
RequestDispatcher, OutputHandler, MedicalCheck and Payment), and black-colored
rectangles represent applied CF-interfaces (for using and administering a workflow).

The problem is that each one of these interfaces was “manually” defined and applied to
each affected class.

external4> interface for

object ’—> administering
external
object external
object
external
A object
external
object
interface for using interface for using interface for using interface for using interface for using
a Workflow a Workflow a Workflow a Workflow a Workflow

Figure 3-7. The application of CF-interfaces over several objects.

From Figure 3-7 we can observe that the interface for using a Workflow is the same for
RequestHandler, RequestDispatcher, OutputHandler, MedicalCheck and Payment. So, there
should be a systematic way to apply that interface over all those objects, without having to
specify and apply it "manually” for each class into the system.

3.5.2 Applying Super-imposition
Super-impaosition

Taking into account Figure 3-7, we can observe the following super-imposition concepts:

21

For the WorkflowEngine class:

« who: WorkflowEngine.

« what: CF-interface for administering the Workflow.

« where: Over the class definition (the class interface changes).

« when: When a document is received from some task, it has to be administered
depending on the sender and the receiver of the document.

For the rest classes:

« who: RequestHandler, RequestDispatcher, OutputHandler, MedicalCheck and Payment.
« what: CF-interface for using the WorkflowManager

« where: Over the class definitions (the class interfaces change).

- when: When sending a document, a workflow has to be applied over it.

Figure 3-8 shows a schema for the applied super-imposition on the modeled system.

Request Medical
Handl Check
andler ec Request Medical
Payment Handler Check
interface for using a ec
W orkflow
Workflow \ \ \ ! —
Engine
interface for 9 ‘ ‘ ‘ ! =
administering
Request Output W orkflow
Output Dispatcher Handler Engine
Request Handler
Dispatcher

Figure 3-8. Identifying super-imposition concepts.

As shown in Figure 3-8, the CF-interface for using a workflow, drawn as a gray rectangle,
is applied over RequestHandler, RequestDispatcher, OutputHandler, MedicalCheck and
Payment (represented by circles). The CF-interface for administering the workflow, drawn
as a white rectangle, is applied over WorkflowEngine. The result of those super-impositions
is shown on the right side by CF-figures.

Modeling concerns

The main concern when applying the workflow interface to all those objects is the
Workflow itself. Internally the interface refers to, as an external object, a
WorkflowManager instance that allows and empowers the workflow modeling.

22

external interface for
object . -
) exte_rnal adminestering

object

Workflow

interface for using Manager

a Workflow interface for using

a Workflow

Figure 3-9. The Workflow Manager as an external object.

Figure 3-9 shows the Workflow Manager (on the right side) as an external object of the
interface for using a Workflow (on the left side, represented by rectangles). In this case,
for keeping the model simple, only OutputHandler and Payment are shown, in gray color,
as affected classes.

As shown, the concern will depend exclusively on how interfaces are applied and how they
are codified.

Super-imposing code

A CF-interface is only a specification; it needs an implementation that realizes method and
condition definitions. Therefore, it is also necessary to super-impose code to complement
methods and conditions.

Figure 3-10 shows the super-imposition of methods and conditions, represented as dashed
rectangles, for realizing already super-imposed interfaces.

interface for
adminestering

interface forusinga | ~~ Manager

Workflow interface for using a | methods and |

W orkflow ! conditions

-

[
I methods and }

\ - | R
| conditions \ | methods and}

, conditions !

Figure 3-10. Super-imposition of methods and contitions.

In this way, as shown in Figure 3-10, the system is super-imposed systematically by
interfaces and implementations.

23

3.5.3 Progressive super-imposition

To support the incorporation of new concerns, such as logging and persistence, super-
imposition of new CF-interfaces can be applied progressively. Finally, the resulting class
has a combination of all applied interfaces. That is possible thanks to the modular nature
of filters.

interface for persistence

interface for logging

interface for workflow

Class

Figure 3-11. Super-imposing several interfaces over the same class.

Figure 3-11 shows the progressive super-imposition of interfaces over an object.
Persistence is applied over Logging, Logging over Workflow and Workflow over the original
class implementation.

Internally interfaces have defined filters, when super-imposing new interfaces over old
applied ones, filters are added sequentially on top of old ones. Figure 3-12 shows this

feature:
incoming message

e ——— L R) persistence
I

filters for logging

filters for workflow

Figure 3-12. Filters acting as sequential modules.

When a message arrives to an object, it is inspected and modified by filters sequentially.
Therefore, when combining interfaces it is possible to make only one version of the filters
specification. When super-imposing already defined modules, such as methods, conditions,
internals, externals, and so on, is a question of solving crossing problems and the solution
will be explained in a following chapter.

3.6 Summary

There are some aspects that are interesting to highlight from this chapter:

« The super-imposition and crosscutting concepts. Super-imposition is used for applying
modeled crosscutting concerns over a defined system.

« Super-imposition concepts what, where, when and who are important and interesting
to identify when studying a system that needs super-imposition modeling.

« Problems with crossing code. When several concerns are applied, overlapping is
possible and there must be ways to avoid these cases.

 How Aspect], Hyper] and Composition Filters are used for modeling concerns and how
they use super-imposition technique.

« How those languages provide ways for solving problems with crossing code. This will
be revisited later on in Chapter 4 : section 4.4 .

24

Chapter 4 : Designing the language

4.1 The language

This chapter contemplates the design of a super-imposition language for the Composition-
Filters model. It is intended to allow the modeling, specification and application of
interfaces and implementation code. Also, the design includes interesting aspects such as
the language grammar and how to solve overlapping/crossing common problems.

Since the language will be based on the Composition-Filters model, the design is intended
to be language independent. Because, in this way, it can be applied to several
programming languages, enables possible heterogeneity among them and it can be seen
as an extension for those languages. UML and OCL grammars have been borrowed and
added to the language specification for being used when defining language independent
code.

Therefore, for this chapter, a neutral approach has been taken, and just for naming
purposes, the name for the super-imposition language will be “"ConcernX”.

4.2 Presenting the language

4.2.1 The Concern declarations

A schematic scenario for super-imposition in the ConcernX language is shown in Figure
4-1. It contains the super-imposition specification, the system and the expected result
after super-imposition is applied.

super-imposition
specification:

+ who
+ what
+ where
+ when

ConcernX
specification

Figure 4-1. A possible scenario for super-imposition of Composition Filters declarations.

As shown in Figure 4-1, on the left side, represented as a rectangle, there is the super-
imposition specification, containing who, what, where and when. In the middle, in gray
color, are shown source files (classes) and on the right side the result of the super-
imposition that may result in several CF-classes.

The Concern-specification file will contain:

« Composition-Filters code (interfaces + implementation code).

« Super-imposition itself, which specifies “what”, “who”, *when” and “where”.

25

4.2.2 Super-imposition of modules

As said before, for obtaining Composition-Filters classes, interfaces and implementation
code have to be super-imposed. Figure 4-2 shows the case when CF-specifications are
defined to be super-imposed as a whole (interface + implementation).

ConcernX specification:

CF-specification-1 CF-specification-2 CF-specification-3
+Interface +Interface +Interface
+implementation +implementation +implementation

Figure 4-2. Superimposing only Composition Filters specifications.

In Figure 4-2 CF-specifications are represented by rectangles. Each specification contains
both the interface and the implementation code. The implementation code is written in
some specific language for realizing interfaces. All the implementation blocks are written in
the same language. The super-imposition specification is represented by a cross symbol (in
gray color).

The problem when super-imposing CF-specifications as a whole, is that interfaces and
implementation are bundled (there are only three possibilities to super-impose CF-
specifications). So, it is not possible to reuse separately either interface or implementation.
Therefore, for reusing some of them, it would be necessary to duplicate the whole CF-
specification and make the corresponding changes over the “reused” code.

A possible solution to work out this problem is shown in Figure 4-3. Interfaces and
implementation are defined separately each other.

ConcernX specification:

+Interface-1 +Interface-2 +Interface-3

+implementation-1 +implementation-2 +implementation-3

Figure 4-3. Separating CF-interfaces definitions from their implementation.

The problem with this approach is that implementations always realize interfaces, so there
can be duplication of methods and conditions inside each implementation block (think
about a method “"m” duplicated into implementationl and implementation2).

A third approach is shown in Figure 4-4. Implementation blocks are mixed into only one
whole block. In this way, duplication of methods and conditions is avoided, and also there
is the possibility to reuse code by choosing the appropriated implementation in each super-
imposition phase.

‘ +interface-1 ‘ ConcernX specification:

Implementation Block
+ methods
+ conditions

‘ +Interface-2 ‘

‘ +Interface-3 ‘

Figure 4-4. Specifying the whole set of implementations that can be used for a super-
imposition.

26

The implementation block represents language-specific code. Therefore, it can be defined
as a separate module. In this way language-dependent code is defined separately from the
language-independent part.

As an example, for a Java approach, the implementation block will be represented as a
Java-Class containing conditions and methods. Also, there is no need for this class to be
executable, because it will be only used as a repository for taking method and condition
implementations. Nevertheless, it also could be super-imposed and used as every class
into the application.

CF-interfaces are not combined into one specification, as we did with the implementation
block. We want to keep them in that way, because they well defined entities. The
completeness and correctness of each interface can be checked before they are super-
imposed (all declared entities are also available in the implementation).

Nevertheless, another approach can be taken. It will be attractive to define multiple
implementation blocks in the same ConcernX specification, in such a way, that the same
module can be used for defining implementation blocks for different programming
languages, for instance:

ConcernX specification:

Implementation Block

JAVA
Implementation Block Implementation Block
SMALLTALK CHt

Figure 4-5. Multiple implementation blocks for implementing methods and conditions in
different languages.

Figure 4-5 shows the case when defining implementation blocks in different languages, so
the ConcernX specification contains everything related with the super-imposition
specification.

Nevertheless, this design was not taken into account when implementing and writing
implementing this thesis work, because this feature was included after finishing the design
and implementation of the ConcernX language.

4.2.3 How do we specify the super-imposition?

For specifying the super-imposition mechanism, the following information must be

provided:

« “who”/ “where™: which classes are going to be super-imposed.

“what”: which CF-interfaces and which implementation will be super-imposed over
the desired classes.

! Since we are working with Composition Filters, the only way to specify “where” is by applying the
super-imposition to the classes specified by “who”.

27

ConcernX specification:

super-
imposition:
who, what,
where

Figure 4-6. Super-imposition specifications.

Figure 4-6 shows, represented as a cross symbol, the specification for super-imposition.
In this way, this specification is included as another block into the ConcernX-specification.
Rectangles in gray color represent the code that will be used for the super-imposition
phase.

Specifying “who” & “where”

Composition-Filters interfaces are applied to objects. In that way, those objects start
behaving differently depending on the applied interface. By selecting determined objects
into the system, we can apply different concerns over objects of the same type. In this
way the approach has more flexibility than just super-imposing over a type in such a way
that all objects pertaining to that type are necessarily super-imposed.

So, in this context, the concept “who” is represented by objects. A consequence of this, is
the fact that the Concern-language will be an object-based approach for super-
imposition. On the contrary to Aspect], for instance, which is a class-based? approach.

A Class-based approach, like Aspect], is based on modifying completely the class definition
at compile time. Aspects are switched-on when compiling the resulting code. So, every
instance of modified classes has the same static behavior.

In order to specify those objects, a grammar has to be designed, that allows the definition
of sets-of-objects.

Nevertheless, in the implementation of the language, class definitions (the types of those
objects) have to be modified in order to incorporate the super-imposition of CF-
specifications over them.

Specifying “which” code has to be super-imposed

Interfaces and the implementation-block offer a large set of specifications® to choose from.
The user must be able to choose which interfaces and which code, in particular, from the
whole set, are going to be super-imposed over the selected objects. In this context,
“which” specifies the selection of implementation and interfaces.

Figure 4-7 shows the case when selecting interfaces and methods/conditions from the
Concern-specification.

ConcernX specification:

super-
+ - . o
| method-1 imposition:
— who, what,
+Interface-3 ‘ + condition-1
+ condition-2 where
|

Figure 4-7. Selecting specific implementations from a concern.

2 In Aspect], the concept “who” is specified by defining the aspect or its pointcuts over classes.
® Interfaces and the implementation block represent the concept “what” in super-imposition.

28

As shown in Figure 4-7, the desired blocks, interfaces and methods & conditions, are
chosen separately from the Concern-specification and will be applied over a set of objects.

In this way, for applying each block separately, the language must provide three different
sub-sections for each super-imposition.

4.3 The Concern grammar

4.3.1 Existing Implementations of CF

Today, there are already existing implementations for the Composition-Filters model, some
of them are:

+ Sina/st: A bottom-up implementation for CF [SINA-95].
« C++/CF: Oriented to work with the C++ language [GLAN-95].
« Composel: Oriented to work with the Java language [WICH-99].

Each one of those implementations has adapted the CF-grammar, based on previous
implementations, to the language where the CF-model is implemented.

This is mainly because the Composition-Filters model, which is language-independent, has
to be applied over a concrete implementation that basically is language-dependent.
Therefore, objects, methods and conditions specifications/implementations are defined
depending on the chosen language.

Moreover, some extra concepts of each language are not available in others. For instance,
concepts like constructors, virtual methods, destructors, package declarations and so on
depend on each language specification.

This problem appears when a user wants to reuse or migrate specifications among CF-
implementations.

Nevertheless, for the ConcernX language grammar, previous language specifications are
going to be revisited and reused. The CF-specification and Filters grammars are the
most interesting to be analyzed, because they represent language independent code.

4.3.2 UML-like grammar

UML stands for Unified Modeling Language [UML-01]. It was introduced a few years ago
and it has been becoming a popular language for designing, specifying and modeling
object-oriented applications. As a modeling language, UML is intended to be language
independent.

One of the benefits of using UML, is the fact that the used OOP language does not matter,
an UML CASE-tool can transform the specification model into it.

The UML grammar has been borrowed for the definition of conflictive language-dependent
specifications, such as object, method & condition declarations. Another interesting aspect
for using UML as a base for specifying those sections is the fact that most users know or

have heard about UML. Therefore, it is preferable to make a tool that can be understood
by many users.

4.4 The sections of a concern

As shown in previous sections, a Concern-specification contains three main blocks for
specifying the following:

1. Interfaces.

29

2. Implementation code (methods & conditions).
3. Super-imposition specification.

Interfaces and implementation code represent the code to be super-imposed and the
super-imposition specification represents the definition of how that code has to be super-
imposed and to which objects have to be super-imposed.

4.4.1 The filterinterfaces section

Each filterinterface represents a Composition-Filters interface. It contains definitions for
internals, externals, methods, conditions, inputfilters and outputfilters. More than one
filterinterface can be applied to a class in the same phase. The order in which those
interfaces are super-imposed represent the behavior of the resulting composed class.

filterinterface-n

Cor_1cern: filterinterface-2
+ filterinterface-1

+ filterinterface-2 filterinterface-1
+ ...
+ filterinterface-n

... rest of the concemn

Figure 4-8. Super-imposing several filterinterfaces over a class definition.

Figure 4-9 shows the super-imposition of multiple filterinterfaces over a class, the result is
the composed version of the original class.

The following aspects are important when super-imposing multiple filterinterfaces:

1. Internals definitions, externals declarations, methods declarations and conditions
declarations can be combined into a single specification without taking care of the
order in which the super-imposition took place.

2. Filter-sets may have different behavior depending on the order in which they were
super-imposed.

Both points, one and two, correspond to solve crossing problems. This will be explained in
section 4.5 .

4.4.2 The implementation section

The implementation block contains method and condition implementations that realize a
filterinterface. Figure 4-9 shows the case when super-imposing methods and conditions
over a class.

Concermn:

+ Implementation
(methods and conditions to oo |
super-impose from)

Figure 4-9. Super-imposition of methods and conditions.

30

Figure 4-9 shows, in dashed-rectangles, the super-imposition of methods and conditions
code, taken from the implementation block, over a class definition.

When super-imposing methods and conditions code, there can be crossing problems.
Mainly because there can be already defined methods with the same signature inside the
original class code.

Again, the way for solving these problems will be presented in section 4.5 .

4.4.3 The Super-Imposition section
In this section, the following specifications are defined:

1. Which objects into the system will be part of a modification. Definining in this way
sets of objects.

2. Which filterinterfaces will be super-imposed to a set of objects.

3. Which methods and conditions will be super-imposed to a set of objects.

So, in this section, there will be three main sub-sections inside the super-imposition block:

1. Selector definitions: for selecting sets of objects.

2. Superimposition of Filter-Interfaces: for selecting filterinterfaces to be applied over
a set of objects.

3. Superimposition of methods and conditions: for selecting methods and conditions
to be applied over a set of objects.

selectors

Selector definitions are intended to specify sets of objects. The following information about
objects can be obtained from a system:

1. Object name and Type,
2. The file/module names where the object is defined, and
3. The file/module name corresponding to the Type definition.

With all this information, a user can specify which objects into the system he/she wants to
take care of.

OCL-like grammar

OCL stands for Object Constraint Language [OCL-01] and is part of the UML specification.
It is intended to define constraints when modeling Object-Oriented applications. These
constraints are basically invariants, pre-conditions and post-conditions.

OCL, as part of UML, is also intended to be language independent. OCL-expressions mainly
return boolean-values and allow definitions of sets and objects. Operations over OCL-
expressions are also allowed.

It is possible to use those definitions and make the OCL specification able to return sets of
objects. So, with this modification, OCL can be used for defining the selectors grammar.

The application of a selector of concern over a system is done at compile time. Selectors
are based on the selection of sets of objects. So, there must be an initial set that contains
all the current objects in the system. In this way, new sets of objects can be defined by
applying sets-operations over the system set.

Let us define this set:

system: A set containing all objects inside the system.

31

The following set of examples is intended to show the capabilities of OCL for defining set of
objects. However, before present the examples let us explain some interesting OCL
operations:

+ select: is a set operation that allows selecting objects with some criteria and returns
another set of objects.

« exists: is a set operation that returns True or False depending on if the given
parameter (an OCL Expression) evaluates to True for at least one element in the
applied set.

 includes: is a set operation that returns True or False depending on the given
parameter (an object) is part of the applied set.

« oclIsKindOf: is an object operation that returns True or False depending on if the
object is an instance or subtype of the given parameter (a Type).

« oclIsTypeOf: is an object operation that returns True or False depending on if the
object is an instance of the given parameter (a Type).

A more extensive explanation about the OCL operations can be found in Appendix B.
Examples:
1. Eventually, all objects into the system.

z = system;

2. Only those objects that are not an instance of classes {A, B, C, D, E} or their
subtypes.

a
b

Set{A, B, C, D, E};))
system->select(v | not a->exists(w | v.oclIsKindof(w)));

3. Only those objects with the type included in {A, B, C, D, E}

a
b

Set{A, B, C, D, E} _
system->select(v | a->exists(w | v.oclIsTypeof(w)))

4. Only those objects with type A or B, which are not an instance of C (C can be a
subtype of A or B)

a
C

set{A, B}
system->select(v | a->exists(w | v.oclIsKindof(w))
and not(v.oclIsTypeof(Q)));

5. Only those objects with name is not contained in {01, 02, 03, 04, 05}

Set{ol, 02, o3, o4, o5} .
system->select(v | not a->includes(v));

a
d
6. Only those objects that their type is A, and their names are not included in {01, 02}

e := system->select(v: A | not Set{ol, 02}->includes(v));

7. Only those objects with type B, and which are not included in "e"

f := system->select(v | v.oclIsKindof(B) and not e->includes(v));

As shown in the examples, the modified version of OCL can be used for selecting objects.
Because both objects and sets can be specified and also operations can be applied over
them.

32

filterinterfaces

For super-imposing filterinterfaces the user must specify:
1. The selector, a set of objects to super-impose.
2. A set of filterinterfaces to be super-imposed over the objects defined by the given
selector. Those filterinterfaces can be taken from the current concern definitions or
from other ones.

Filterinterfaces definitions can also be taken from another concern-specification, allowing in
this way the reuse of code.

methods/conditions

For super-imposing methods & conditions, the user must specify:
1. The selector, a set of objects to be super-imposed.
2. A set of methods & conditions to be super-imposed over the objects defined by the
given selector. Those methods & conditions can be taken from the current concern
definitions or from other ones.

Methods & conditions implementations can also be taken from another concern-
specification.

Superimposing filterinterfaces, methods & conditions

Table 5-5 shows an example of a super-imposition of several filterinterfaces (the example
is also valid when super-imposing methods and conditions).

Table 4-1. Super-imposing definitions over a selector.

selectorl <- { filterinterfacel, filterinterface2, filterinterface3, ... }
selector2 <- { methodl, method2, . .
selector3 <- { conditionl, condition2, condition3, ... }

As shown in Table 4-1, on the left side comes the selector’s name, on the right side comes
the set of definitions that will be super-imposed at the objects defined by the specified
selector, such as filterinterfaces, methods or conditions.

Definitions, such as filterinterfaces, methods and conditions, can be taken from other
concerns. That is also valid for a selector, so in this way a concern may super-impose
definitions over selectors defined in other concerns.

The symbol “<-" represents the application of a super-imposition. It is one of three
different operators; each one intended to solve common crossing problems (explained
before in sections 4.4.1 and 4.4.2). We will explain these using an example.

Suppose that selectorl and selector2 are sefector definitions. They share some objects,
in particular, an object of type Type. When super-imposing different filterinterfaces,
methods and conditions over selectorl and selector2, the result of the super-imposition
may be different depending on the specified application-symbol.

Table 4-2 shows the different symbols for the application of super-imposition over
selectorl and selector2.

33

Table 4-2. Application-symbols for specifying the result of the super-imposition.

<= The result of the super-imposition over Type is the result of combining the applied
super-impositions over selectorl and selector2. Newer super-impositions
(changes) are inserted before older ones.

<X The result of the super-imposition over Type generates different versions for each
applied concern over selectorl and selector2 (not yet implemented).

When there are more than one applied concern, concernl and concern2, there
will be two different versions for Type, one for concernl and another for
concern2.

When there is only one applied concern, the result is the same than applying “<-*
over selectorl and selector2.

In brief this operator generates different Type versions as concerns are applied
over the same object.

<* The result of the super-imposition over Type generates different versions for each
applied concern and each applied selector (not yet implemented).

When there are more than one applied concern, concernl & concern2, and more
than one selector, selectorl & selector2, there will be different versions for Type.

There are some particular cases, that result similar to than applying “<x” or “<-",

In brief this operator generates different Type versions as concerns are applied
over selectors that contains the same object.

The way for modeling and designing each application symbol will be presented in Chapter 6
when showing the implementation of Concernl.

Applying this grammar to an example

Taking into account the example problem presented in Chapter 1 :section 1.2 , and the
modeling presented in 3.5.1 , the following table shows some code for the application of
“interface for a workflow” over Requesthandler, RequestDispatcher, OutputHandler,
MedicalCheck and Payment, and “interface for administering” over WorkflowEngine.

Table 4-3. An example of a concern specification.

concern WorkFlowEngine begin // introduces centralized workflow control

filterinterface useworkrFlowEngine begin // this part declares the
externals // crosscutting code
wfEngine : WorkFlowEngine; // *declares* a shared instance of this
// concern
inputfilters
redirect : Meta = { wfEngine.selectTask(target=forwardbocument) };
end filterinterface useworkFlowEngine;

filterinterface engine begin //defines the interface of the workflow
methods // engine object
selectTask(Message);
setWorkFlow(workFlow) ;
inputfilters
disp : Dispatch = { inner.* }; // accept all methods implemented by
/ myself
end filterinterface engine;

superimposition begin
selectors

34

classes = Set{ RequestHandler, RequestDispatcher, OutputHandler,
MedicalcCheck, Payment};
allTasks = system->select(v| classes->exists(w| v.oclIsTypeof(w)));
filterinterfaces
self <- self::engine;
allTasks <- self::useworkFlowEngine;
end superimposition;

implementation in “WorkFlowEngine.java”;

end concern workFlowEngine;

The useWorkFlowEngine filterinterface represents the interface for using a workflow and
defines a filter of type Meta, which intercepts forwardDocument messages and sends them
in reified form, as the argument of message selectTask, to wfEngine.

The engine filterinterface, represents the interface for administering a workflow, and the
implementation part together implement the workflow engine. Next to some methods for
accessing and manipulating the workflow representation (in this case none of the
implementation methods were shown), it defines the method selectTask. This method
determines the next task that should handle the document, modifies the corresponding
argument of the message object, and then fires the message so that it continues its
original execution-but with an updated argument.

The superimposition clause specifies how the concerns crosscut each other. The
superimposition clause starts with a selectors part that specifies a sets of objects. Concern
WorkFlowEngine defines a single selector named allTasks. This selector is defined by
using an OCL grammar and specifies all objects that are instances of the various classes
that represent tasks.

The selectors part is followed by a number of sections that can specify which objects,
conditions, methods respectively filterinterfaces are superimposed upon locations as
designated by one or more selectors. In this example the filterinterface engine, is
superimposed upon self: this means that instances of WorkFlowEngine will include an
instance of the engine filterinterface. In addition, the useWorkFlowEngine filterinterface
(which can be found in the same concern, as designated by "self:: ") is superimposed upon
all the instances defined by the allTasks selector.

4.5 Working out crossing problems

When applying super-imposition, crossing problems may appear when:
1. Super-imposing code:

a) Super-imposing filterinterfaces with duplicated definitions (filters, internal,
externals, methods and conditions).
b) Super-imposing methods and conditions over already existing ones.

The difference between (a) and (b) is the fact when applying (a) old declarations are wipes
out, therefore they connot be used after a new super-imposition has been applied. When
applying (b) newer super-impositions are placed on top of old ones, and there should be a
way for invoking and executing old code.

Some possible solutions are:

i. Newer definitions replace old ones, keeping the order of super-impositions. This is
the easier approach from the tool’s point of view.

ii. Newer definitions override old ones. This is more complicated to understand and
implement, and it depends on the dynamic capabilities of Composition-Filters, for
changing and invoking, at runtime, overridden definitions such as filters, internals,
externals, and so on.

35

The second point is not part of this thesis work. So, the taken approach for solving
problem (1) will be the first one (i).

2. An object is part of different selectors at the same time.

Figure 4-10. Selectors are sets.

Figure 4-10 shows the intersection between selectors A and B. Both A and B could be
defined in different concerns.

An object can be part of A and B at the same time. Selectors can be super-imposed
differently, by the application of interfaces, methods and conditions.

What should result from the super-imposition of A and B, when different modules were
super-imposed at the same phase over that object?

a) The object will contain a combination of all the super-impositions applied over it
(The same problem as point 1).

b) There will be different versions of the object, depending on the concern that
applied the super-imposition. By using this approach, a problem comes out, which
version to use from all possibilities?

¢) There will be different versions of the object, depending on the selector that it
belongs to. By using this approach, the same problem comes out, which version to
use from all possibilities?

For solving problems (a) and (b), there is the possibility for switching dynamically at
runtime filterinterfaces by invoking certain methods into the super-imposed code. In this
way old existing code can be used when necessary. This depends on the dynamic
capabilities of filters for applying filterinterfaces at runtime depending on the incoming
message.

Nevertheless, the user should be able to choose the version he/she wants to use, and the
compiler should provide the necessary information for solving those problems when they
appear (shown in section 4.4).

Finally, for simplicity reasons, the taken approach for solving problem (2) is (a).

4.6 Concernl

Concernl] represents the implementation for super-imposition of Composition-Filters for the
Java language. Thus Concern], as a language, represents just another Composition-Filters
implementation. It is intended only as a proof of concept for implementing the language
that we have being designing through this Chapter.

The following sections are intended to study step by step the most interesting aspects of
the Concernl design, taking into account facilities and drawbacks that Java provides.

36

4.7 Parts of a concern

The following sub-sections are intended to show the most interesting aspects of the
Concern] grammar. A more extensive specification of it is included in Appendix A.

4.7.1 The concern specification

Table 4-4 shows the grammar of a concern. A concern is the specification for applying
super-imposition in Concernl.

Table 4-4 . The grammar of a concern.

concern ConcernhName begin
filterinterface (Interface-definition)
filterinterface (Interface-definition)
filterinterface (Interface-definition)

implementation (Implementation-code)

superimposition (SuperImposition-specification)
end concern Concerniharie;

As shown in Table 4-4, a concern contains filterinterfaces, an implementation block and a
super-imposition block.

4.7.2 Filter-Interfaces

Table 4-5 shows the grammar of a filterinterface. A filterinterface is a Composition-Filters
interface specification.

Table 4-5 . The grammar of a filterinterface.

filterinterface FilterInterfaceName begin
internals
(WL-T7ke grammar for object definitions)
externals
(WML-T7ke grammar for object declarations)
methods
(WL-T7ke grammar for method declarations)
conditions
(WL-T7ke grammar for condition declarations)
inputfilters
(Sina/st-1ike grammar for fitlers specification)
outputfilters
(Sina/st-1ike grammar for filters specification)
end filterinterface FilterInterfaceName;

As shown in Table 4-5, a filterinterface contain almost the same structure presented in
previous CF-implementations. Each block into the filterinterface is named depending on the
interface specification context (internals, externals, methods, conditions, inputfilters and
outputfilters).

The most interesting aspect of a filterinterface is the incorporation of the UML grammar for
specifying language conflictive* declarations, such as internals, externals, methods and
conditions. This makes a filterinterface a general language independent specification.

By using UML in these blocks, definitions can be easily translated into specific language
code, such as Java, C++, and Smalltalk. In this case, for Concern], UML code will be
translated into Java definitions.

* Conflictive from the point of view of language-dependent declarations, such as objects, methods &
conditions.

37

Both the inputfilters and outputfilters sections maintain their grammar, because they are
based on Composition-Filters specifications and do not depend on the language.

4.7.3 Implementation

Table 4-6 shows the grammar for the implementation block. This block contains language-
dependent code, so it is preferable to define it outside the Concern specification.

Table 4-6. The grammar of the implementation block.

implementation in “module-name”;

As shown in Table 4-6, the implementation block is implemented in another module. In a
Java context, the module is represented as a File that contains a class definition.
4.7.4 Super-Imposition

Table 4-7 shows the grammar for the super-imposition specification. The superimposition
block contains definitions for selectors and superimposition of filterinterfaces, methods
and conditions.

Table 4-7. The grammar of the super-imposition block.

superimposition begin
selectors
(ocL-11ke grammar of selector definitions)
filterinterfaces
(Concerni grammar of super-imposition declarations)
methods
(Concern grammar of super-imposition declarations)
conditions
(ConcernJ] grammar of super-imposition declarations)
end superimposition;

As shown in Table 4-7, each sub-block uses a particular grammar. For selectors, there is
an adapted version of OCL and for filterinterfaces, methods and conditions blocks there is a
new grammar, created specially for the ConcernX language.

4.8 Summary

There are some aspects that are interesting to highlight from this chapter::

« The specification for a super-imposition language using Composition Filters can be
defined as neutral, because of the nature of the CF model.

« The object-based approach of the Concern-language.

« When designing/creating a super-imposition language is important to know exactly
“what”, “where”, “when” and “who".

« Defining a grammar for super-imposition is an important aspect to take care of.

« UML and OCL grammars are used for defining conflicting language-dependent aspects.
The UML grammar is used for defining object declarations, methods and conditions
definitions. In this way, by using UML as a base, these sections are now defined using
a language-independent grammar. The grammar and specification of OCL are used for
defining sets of objects.

« The identification of crossing problems for the ConcernX language. When they appear,
and the facilities that the language provides for taking care of them.

38

« How the grammar helps to take care of crossing problems. When super-imposing
different concerns (or only one) there can be crossing problems. The presented
grammar contains specifications for solving these kinds of problems.

39

Chapter 5 : The Design of the
Concernl tool

The current chapter is intended to show the most interesting aspects of the Concernl
implementation. It is based mostly in the design; thus some implementation details have
been left out because they are not interesting to be shown in this thesis work.

5.1 Producing code

Computer languages always produce code or information that is interpreted by another
module, for instance, the Java compiler produces byte-code that is interpreted by the Java
Virtual Machine (JVM), the JVM produces bits and bytes that are interpreted by the
computer chip, and so on. In this context, for Concern], there are several possibilities for
producing code.

Since Concernl is a language intended for applying super-imposition on the Java language,
there are already existing tools that do the same for Java. This is the case of Aspect],
Hyper] and Composel. Nevertheless, a bottom-up implementation is also feasible.

The following sections are intended for presenting advantages and drawbacks of each
option.

e Producing Composel code
e Producing Aspect] code

* Producing Hyper] code
« A Bottom-up implementation.

5.1.1 Compose] Code

Figure 5-1 shows the schema for producing Composel code. So, when the code is
produced, the Composel tool will apply the super-imposition over the system generating

Java code.
ConcernJ @ Composeld @ Java

compiler compiler,

Figure 5-1. Producing ComposeJ code.

As shown in Figure 5-1, rectangles represent language specifications, and arrows represent
different compilation phases. In this case, Concernl] code is translated into Composel
specifications, and finally into Java code.

Advantages & Drawbacks

The advantages of using this approach are:

v" It provides a modular approach. So, there can be improvements in each compilation
phase, and the system will be still functioning.

v" Itis possible to use incremental compilation. This is directly related with the first point.

v' The effort for making this tool could be small. Producing Composition-Filters
specifications from Concern] and translate them into Composel ones is
straightforward. Besides, Composel] will produce the final Java code.

40

The drawbacks of using this approach are:
x The modularity makes debugging difficult. There will be three different translation
phases to debug.

x Currently, Composel only works with a Graphical User Interface, so it will be necessary
to adapt its implementation to support the interaction with Concernl.

5.1.2 Aspect] Code

Figure 5-2 shows the schema for producing Aspect] code. So, when the code is produced,
the Aspect] tool will apply the super-imposition over the system generating Java code.

Concernd @ Aspectd @ Java

compiler compiler,

Figure 5-2. Producing AspectJ code.

As shown in Figure 5-2, rectangles represent language specifications, and arrows represent
different compilation phases. In this case, Concern] code is translated into Aspect]
specifications, and finally into Java code.

Advantages & Drawbacks

The advantages of using this approach are:

v Aspect] is currently a good approach to solve some crosscutting problems. There is a
big effort in its project team, and a lot of people using it and giving feedback for its
improvements and evolutions.

It is a modular approach. This is the same case as with Composel.

It is possible to use the debugging facilities of Aspect]. Aspect] already provides
debugging capabilities.

AN

The drawbacks of using this approach are:

x Because Aspect] is constantly evolving, it is difficult to make a design based on the
current implementation, because the specifications may change from one version to
another one.

x For debugging, the user should know both the Composition Filters and Aspect] ideas.

x There is another grammar to take care of. There will be several grammars in the tool,
such as Java, Composition-Filters, Concern] and Aspect].

x Currently there is no a public and official Aspect] grammar.

5.1.3 Hyper] Code

Figure 5-3 shows the schema for producing Hyper] code. So, when the code is produced,
the Hyper] tool will apply the super-imposition over the system generating Java code.

Concernd @ HyperJ @ Java

compiler compiler,

Figure 5-3. Producing HyperJ code.

41

As shown in Figure 5-3, rectangles represent language specifications, and arrows represent
different compilation phases. In this case, Concern] code is translated into Hyper]
specifications, and finally into Java code.

Advantages & Drawbacks

The advantages of using this approach are:

v" Hyperl] is currently a good approach for applying multiple concerns. Different concerns
can be defined and applied at the same compilation phase.
v' It is a modular approach. This is the same case as with Composel.

The drawbacks of using this approach are:

x For debugging, the user should know both the Composition-Filters and the Hyper]
models.

x There is no an official release of Hyperl. Hyperl] is still a beta product.

x There is another grammar to take care of. There will be several grammars into the
tool, such as Java, Composition-Filters, Concern] and Hyper].

5.1.4 Java Code/Class files

Figure 5-3 shows the schema for producing directly Java code. Concern] will apply both,
super-imposition of Composition-Filters and the translations of interfaces onto the Java

language.
Concernd @ Java

compiler

Figure 5-4. Producing directly Java code.

As shown in Figure 5-4, rectangles represent language specifications, and the arrow
represents a compilation phase. In this case, Concern] code is translated directly into Java
code.

Advantages & Drawbacks

The advantages of using this approach are:

v The integration of ideas, between Super-Imposition and Composition Filters. There is
no dependence on third-party software.

v' It is possible to reuse the design from current Composition-Filters implementations. In
particular the design and implementation of Composel.

v" For debugging, the tool will only depend on itself.

v" Code optimization and improvements on the same tool. There is no need for depending
on third-party software. It can be considered as a drawback as well.

The drawbacks of using this approach are:
x Code optimization and improvements on the same tool. Because the whole tool has to
be redesigned when evolving.

x It can be considered as an advantage as well.
x It will need a complete implementation for the Composition-Filters model.

42

5.1.5 Making a Decision

Considering advantages and drawbacks for each presented option, the most suitable is the
first and one, because:

>

Translating specifications from Concern] to Composel is almost straightforward. In this
case, Concern] will not implement the application of filters over classes, and thus will
use the current facilities of Composel.

There are not too many grammars to take care of. Only grammars for ConcernJ and
Java will be needed.

Composel may evolve separately from Concern]. So, when leaving both the
Composition-Filters and the super-imposition modules as separated modules it is
possible for each tool to evolve separately.

Third-party software. There is no direct dependence on other software, such as Aspect]
or Hyperl, for applying the super-imposition part.

As a proof of concept for this thesis work, this option is the easiest one.

5.2 Producing the code

The current Concernl design is intended to produce code as follows:

ConcernJ @ Composel @ Java @ Byte-code

compiler compiler compiler

Figure 5-5. ConcernJ will produce ComposeJ code.

Figure 6-1 shows an schema where:

Concern] specifications (concerns + implementation) are translated into Composel
code.

Composel code (CF-interfaces + implementation) finally is translated into Java code.
Java code is compiled and classes are generated, by using a traditional Java-compiler.

There are several ways to translate Concernl specifications into Composel ones:

1.
2.
3.

By producing code that can be parsed by Composel.
By producing ASTs?! that can be interpreted by Composel.
By modifying Compose] to enable it to deal with super-imposition.

Solutions (1) and (2) are very similar from the point of view of compilers, because the only
difference between them is that by using solution (2) it is not necessary to parse the code
generated from Concern], because it uses the already parsed and generated ASTs
(solution (1)).

Solution (3) is not suitable for this thesis work, because it will require modifying a large set
of modules into the Composel system. That makes this option not affordable.

Therefore, for this thesis work, as a proof of concept, solution (1) or (2) are acceptable for
generating code.

! AST stands for Abstract Syntax Tree

43

5.2.1 Parsers & Visitors
The parsers

Parsers are used for translating source code onto structures that programs can later
analyze. They are defined by grammars that contain internally tokens and productions.
They represent very specific and particular software, because when something changes
into the grammar specification, the whole parser has to change some degree.

Generally, the structures generated by Parsers are Abstract Syntax Trees (AST for short).
An AST is a tree composed by nodes, each internal node represents a production into the
grammar, and each leaf represents a terminal. Typically, terminals are tokens (this
depends directly on the used parser).

Today, it is not necessary and not very common to build a parser from scratch. Compiler-
Compilers are software that build parsers by using only a grammar specification. They
transform those specifications, tokens and productions, into a parser written in some
programming language. That program is able to parse source files and translate them into
structures that can be lately analyzed by a program. Commonly, these structures are
Abstract Syntax Trees (AST for short).

Because Concern] has to work with two kinds of source code (Java files and Concernl
specifications), there is the need to generate two parsers. It is possible to borrow the Java
compiler from Composel and use it for parsing Java files.

In this way, it is only necessary to define and create the Concern] parser. The tool used for
creating it was JavaCC [JCC-01]. JavaCC only creates parsers, it is necessary to use
another tool for creating ASTs, that tool was JJTree [JJT-01] (that comes with the JavaCC
distribution).

Visitors

The Visitor design-pattern [GAMM-95] can be used to help to analyze ASTs. Among its
features, the most interesting to highlight from is that it enables modularity between
algorithms and data. In this way, it is possible to define different tasks (algorithms) such
as pretty printing, type checking, evaluation, etc. and apply them, in different phases, to
the main structure (the AST)

From the point of view of parsers, in particular the Concern] one, the data is represented
by ASTs, and the algorithms (also called visitors) represent the logic of the language (they
are used for checking correctness, completeness, evaluation of expressions, etc.).

5.3 The Concernl] Architecture

5.3.1 The packages distribution

Figure 6-2 shows the Concernl’s package structure.

- r]

system core parser visitors

Figure 5-6. The ConcernJ package structure.

Each “folder” represents a particular package, where:

44

« system: contains the Classes for specifying and reading all the files that belongs to a
particular system.

« core: contains the Classes for modeling systems, using the predefined hierarchical
architecture of Java, that is Files, Classes and Objects.

- parser: contains the Classes for reading Concernl-specification files and transform
them onto AST structures.

« visitors: contains the Classes for visiting the ASTs of Java and Concernl.

5.3.2 The System structure

The system-package is intended for modeling systems and for taking information about
them at compile time. Concernl is a language intended for Java, so in this case a system is
represented by a set of files. Those files must be explicitly specified because since Java is a
compiled language, where classes have to be inspected before applying any super-
imposition, i.e, it contains a Meta-level’ representation of the programs.

The inspection of classes is also needed for selecting objects. The objects have to be
known before concerns are parsed, because when parsing selector-definitions it is
necessary to evaluate which objects are inside the system, their types and the files they
are defined from.

Several systems can be defined, and several concerns can be applied over them. However,
each time that a system is defined all the information has to be collected at compile-time.
If some source file changes, the system has to be regenerated for actualizing all the Meta-
information information.

The most interesting information from a system is:

« Which Files are included into the system,

« For each file, package name, imports and classes defined into it. Package name and
Imports information is necessary for specifying types and for computing sub-typing.

« For each class, class name, superclass name, interface names and objects it necessary
to collect information about typing.

« For each object, its associated types (the same object name can be associated with
several types in the same class).

With all that information, it is possible to compute selectors, apply CF-interfaces to classes,
apply super-imposition of methods & conditions over classes, apply changes over clients
that use super-imposed types, compute super-typing, etc.

There are some interesting aspects to take into account when collecting all this
information:

1. Source files have to be parsed and visited.
2. When applying super-imposition, some files have to be modified. So, there is some
trade-off to take into account:
a) Do those files have to be re-parsed for applying the changes over them?
b) If the ASTs corresponding to those files are kept into memory when parsing the
System, do we know before hand how many files and size of each one, and
therefore the amount and size of ASTs, a System will contain when parsing it?

There is no oracle for telling us which files must be really needed for being kept into
memory. Mainly, because not only direct classes® are changed when super-imposing
interfaces and code, other files have to be changed as well. Those files are known as
clients, and they also are part of a super-imposition, because when super-imposing a
Type, certain objects have to be modified, thus their type, at compile-time in all the places
where instances of that object are created.

2 When using Meta-level we meant an abstract representation of the program, and we are not talking
about reflection at all.
® The files corresponding to the types that have been superimposed.

45

The trade-off is:

» To save memory space, or
» To sacrifice speed & performance.

Computers have been becoming faster year after year, and memory also has been
becoming higher and cheaper year after year. The true is that does not matter which

option to choose, because from each point of view each option is acceptable.

For the current Concernl implementation, Abstract Syntax Trees are kept into memory just
for simplicity. Although source files can be re-parsed as long as they are really needed. In
this way, modifications over source files are sequentially made and saved once the whole
super-imposition process has finished.

5.3.3 Collecting the information

The Core Structure

System files are specified in such a way that it is possible to know beforehand all the
information related with a system. Each file is parsed and visited for collecting the needed
information. That is done before any concern is applied.

Figure 5-7 shows the created structure when all the information is collected.

CoreFile

CoreSystem

allFiles : Hashtable
allClasses : Hashtable
allObjects : Hashtable

corePackage : String
coreClasses : Vector
corelmports : Vector
name : String

path : String

CoreClass

addCoreFile()
getAllFiles()
getAllClasses()
getAllObjects()
getAllCoreClasses()
getAllCoreObijects()

getCoreSystem()
getName()

getPath()
getCorelmports()
getCorePackage()
getASTCompilationUnit()
addCorelmports()
setCorePackage()
setASTCompilationUnit()

coreExtends : String
coreObjects : Hashtable
name : String

coreFile : CoreFile

CoreObiject

getCoreFile()
getName()
getCoreObjects()
getCoreExtends()
addCoreObject()
setCoreExtends()

name : String
coreClass : CoreClass
coreTypes : Vector

getCoreClass()
getName()

getCoreTypes()
addCoreType()

Figure 5-7. The Core structure, used for collecting all the information related with a

system.

Figure 5-7 shows the following classes:

« CoreSystem contains all the information related with Files, Classes and Objects.

« CoreFile contains all the information related with a File, that is package name, imports
and classes defined into the file.

« CoreClass contains all the information related with a Class, that is class name, super-

type, interfaces that it implements and objects it has internally defined.

« CoreObject contains all the information related with objects/variables, that is,
variable name and the types it has defined into the current class.

Each class contains a reference to the corresponding hierarchical Core-type. In this way, it
is possible to know immediately for a class the file where it belongs to or the system where

it is defined.

46

5.3.4 Java Visitors

Java source files are parsed into memory by using the Java-Parser borrowed from
Composel. The parsing of each file results into an AST, each AST can be visited by using
specific visitors such as pretty printing, type checking, evaluation, etc.

To create the Core structure is necessary to apply to each created AST a visitor that walks
through it and collects the information by creating the appropriated Core structures.

Figure 5-8 shows the Java-visitors class model:

BaseVisitor

T

CoreVisitor PrinterJavaVisitor TypeChangeVisitor

Figure 5-8. Java-Visitors class model.

Figure 5-8 shows the following classes:

« BaseVisitor: is an abstract class (a visitor) that implements default actions for each
production into the Java AST.

« CoreVisitor: is intended to create the Core structure shown in Figure 6-3.

« PrinterJavaVisitor: is intended for applying pretty printing over parsed files.

« TypeChangeVisitor: is intended for changing type of objects over clients affected by
a super-imposition (this visitor will be explained later on).

5.3.5 Applying Concerns
Once the System structure has been created, it is possible to start applying concerns over
the system. Concerns are applied in order, one after one. When a concern needs

information from another one, such as selectors, interfaces, methods & conditions, these
concerns are parsed but not applied.

In this way, infinite recursion when applying concerns are avoided, because only
definitions are parsed and the rest is not evaluated.

Figure 5-9 shows the structure created for storing information related to concerns:

47

Concern
name : String
selectors : Hashtable
ast : ASTCompilationUnit
ConcernSet astConcern : ASTConcernPart]
concernSet : Hashtable

getASTConcernPart()
getConcern() getASTImplementation()
putConcern() getSelector()
getSelectors()
putSelector()
setASTConcernPart()
setASTImplementation()

Figure 5-9. The Concern Structure for storing inforrmation related with concerns.

Figure 5-9 shows the following classes:

« ConcernSet contains all the parsed concerns, some of those could already have been
applied and the rest not.

+ Concern contains all the relevant information related to a Concern, such as concern
name, the selectors environment (it will be explained later on), and both the
implementation and the concern ASTs.

« VariableSet contains all objects related to a certain selector. This class is drawn in
gray because it will be explained later on.

« Variable contains all the relevant information about a particular object. This class is
also drawn in gray.

Again, when parsing concerns, there is no an optimal solution for solving this problem.
That means, if concerns ASTs have to be kept in memory or re-parsed whenever they are
needed again. Nevertheless, for this thesis work, the AST were kept in memory.

5.3.6 Concern Visitors

Concerns specifications are parsed in memory using the parser defined by the Concernl
grammar (see Appendix A for a more detailed version of this grammar). After concerns are
parsed and transformed onto AST structures, they can be visited and operations can be
applied over them.

Figure 5-10 shows the class model for concern visitors.

BaseVisitor

ConcernVisitor FITranslatorVisitor PrinterSlIVisitor SelectorsVisitor

Figure 5-10. The Concern Visitors class model.

As shown in Figure 5-10, classes are modeled in UML, and respectively:

« BaseVisitor: is an abstract class (a visitor) that implements default actions for each
production into the concern-AST.

« ConcernVisitor: is intended for creating the structure shown in Figure 6-5. Concern
files are visited and the Concern-structure is created.

48

 FITranslatorVisitor: is intended for translating Concern)’s CF-interfaces into
Composel’s CF-interfaces. This is because the specifications for Composition-Filters
interfaces are different in each language.

« PrinterSIVisitor: is intended for applying pretty printing over parsed concern files, for
storing purposes.

+ SelectorsVisitor: is intended for interpreting selectors, and for creating the
VariableSet structure (shown in gray color in Figure 5-9).

5.3.7 Selectors Visitors

When concern ASTs are visited with ConcernVisitor, the selectors sub-section
(corresponding to the superimposition block) is visited and interpreted separately for
keeping modularity.

When selector-visitors walk through the selectors-subsection, they create the following
structure:

Variable
selectors : Hashtable VariableSet name : String

objects : Vector type : String
files : Vector coreObject : CoreObject
fileTypes : Vector

getName()
getObjects() getType()
getFiles() getCoreObject()
getFileTypes() setName()
addVariable() setType()

setCoreObiject()

Figure 5-11. The selectors structure.

Figure 5-11 shows the same UML class model drawn in Figure 6-5. The relevant model was
this time drawn in black.

Each concern file defines a selectors-block, selectors are interpreted and stored into a kind
of “Environment” that contains objects and sets of objects. Lately, this environment is
used for taking selector definitions and applying super-imposition over the objects they
contain.

5.3.8 The effects of processing super-imposition

When super-imposition is applied the types of the objects referred to by the selector, have
to be modified. Different super-impositions may affect the same object, and thus its type,
at the same super-imposition phase. Let us call that type Type, so since not all objects
into the system with type Type have to be super-imposed (because of selectors), there
must exist a way for keeping their original behavior (their type), for the not affected
objects, and enabling at the same time, for the affected objects, the super-imposed CF-
specifications.

For solving this problem, there are two possibilities:
> Static approach: Based on checking and changing its type or instantiation method* at

compile-time, for every object part of a super-imposition. So, at runtime those objects
behave as composed objects.

* A new message to the Class.

49

> Dynamic approach: Interfaces, and thus their filters, are applied to the object at run-
time. The type of a super-imposed object is changed in such a way that when a
message comes to the object, it can be inspected and depending on the super-
imposition specifications the message is dispatched to the corresponding super-
imposed filters.

Static approach

Composed and not composed objects share their type. So, an explicit type relation among
them must exist. Figure 5-12 shows a proposed class model for solving the type-relation
problem.

ClassName

7

ClassName_original ClassName_Concernl| | ClassName_Concern2| | ClassName_Concern-n

Figure 5-12. Class model for super-imposed classes.

As shown in Figure 5-12, classes are modeled into UML, and each one represents:

« ClassName is an abstract class (the original type name), which contains shared
definitions for all its sub-types.

« ClassName_original is the original implementation for ClassName.

+ ClassName_Concernl is the original implementation plus the modifications applied
by Concernl.

« ClassName_Concern2 is the same than ClassName_Concernl, but applied to
Concern2.

« ClassName_Concern-n is the same than Classname_Concernl, but applied to
Concern-n.

The different versions of ClassName are related with the approach for solving crossing
problems shown in the last chapter. How different versions of super-imposition are
explicitly specified will depend on the used “application” symbol. In any case, only one
application symbol, when all the concerns are mixed, has been implemented. Nevertheless,
for the rest symbols, the procedure and problems for applying those changes into the
source code are almost similar.

For applying the changes to all those objects part of a super-imposition, the instantiation
methods have to be replaced to the corresponding super-imposed classes. In this case, the
object can change its implementation, and thus its composed class-version, just by
invoking the corresponding instantiation class method.

When doing that a problem arises, to know at compile time whether a instantiation
methods corresponds to certain composed object or not. This is because clients outside the
system cannot be checked for changing all the needed instantiations, or because there can
be really complex expressions that make type checking difficult to apply.

Dynamic approach

This second approach needs features that are not currently available on the traditional
reflection capabilities of Java®. For applying CF-interfaces there must be at least a way for
knowing the name of an object at runtime, and only the JVM knows that information.

5 Reflection in Java is more similar to introspection.

50

Nevertheless, this solution is based on applying a general CF-interface over a Type. When
every object is instantiated gets the same interface (Type). This implies that there is no
modification of client code, which is a great feature. When messages are sent to objects,
the CF-interface decides depending on the object name and the super-imposition
specification which version to apply (some of the super-imposed versions or the original
one).

Figure 5-13 shows an schema for representing the Dynamic approach.

received
messages

Super-imposition
information:

selectors, methods,
conditions, filterinterfaces

Figure 5-13. Dynamic approach using Compositon-Filters.

As shown in Figure 5-13, when a message arrives to the interface of Object (of type
Type), it is inspected and depending on its name and the super-imposition information
(represented as a dashed rectangle) the corresponding filterinterfaces, and thus their
filters, are applied to the incoming message (in the example filterinterfaces are
represented by F1, F2 and F3). In the example also methods (M1 and M2) and conditions
(C) are kept into a modular way inside the general CF-interface.

Mainly because of the lack of better current reflection capabilities of Java, for
instance it is not possible to know the name of an object at runtime, the taken
option is the static approach.

5.4 Structures in detail

5.4.1 The System

For defining systems there are the following possibilities:

1. To define a project file specifying each file that pertains to the system.
2. Do not define a project file, but read all the needed files taking into account their
package names and import statements.

Option (1) seems to be the most suitable approach, because systems are statically
defined. Therefore, a user can specify which files are part of the system and which are not,
decreasing the complexity of the super-imposition and the modification of clients
programs. In this way, the user has more fine-grained control for defining the scope of
super-imposition®.

¢ Aspect] and Hyper] also define project files, where users specify a system.

51

5.4.2 The Core Structure

When visiting Java ASTs with a CoreVisitor, the following information is relevant and
collected from each file:

+ File Name

« Package name

e Import names

+ Class names

« For each class: extends name and implements names

« For each class: objects and their types (an object name can have associated several

types).
Objects are identified within the following parts:

» Field declarations,
* Method Parameters, and
+ Local declarations

With all this information it is possible to build the Core-Structure. On the other hand, only
classes with source files are allowed for being visited. This is because the lack of reflection
capabilities of the Java language (only fields and methods are possible to know from a
compiled class).

5.4.3 The Selectors Visitor

When a SelectorsVisitor walks through a selectors-declaration, it builds an Environment
structure containing the interpretation for each OCL expression (a selector). The
Environment is a hashtable containing as a key the selectors name and as a value the
evaluation of the OCL-expression. Figure 5-14 shows the Environment structure.

name | value
Boolean
/

ol veour |
|z —{—)1 Variable ‘

\Ltem VariableSet

Environment

Figure 5-14. The Environment Structure.

Possible values that are accepted into the Environment hashtable are:

« Boolean values: for OCL-operations that return true or false.

« String values: for literal values, like class names.

« Variable values: for representing an object into the system.

« VariableSet values: a set of Variable objects.

« Vector values: a set of literal values. It is intended to represent an OCL Set.

With all those values is possible to evaluate OCL expressions. Only the following subset of
operations, from the shown operators in Appendix B, is currently correctly implemented.

« Operations over Sets: select, exists.
« Operations over Objects: oclIsTypeOf.

Only those operations where implemented because with that small set it is possible to

specify selectors. Which proves the concept that OCL-expressions are suitable for defining
sets of objects.

52

Nevertheless, there are operations that are difficult to implement like oclIsKindOf; it
needs more effort because it is necessary to compute super-types using extends,
implements, imports and packages information from classes definitions (all this information
is possible to obtain from the Core-Structure).

Another interesting aspect of selectors is the fact that when a selectors-block is visited
there is already a VariableSet in the Environment. This set represents the system itself
with all the objects defined into it and is called “system”.

5.4.4 Java Visitors

The most important visitors included in this package are the CoreVisitor (already
explained) and the TypeChangeVisitor. TypeChangeVisitor applies changes to clients that
use objects affected by super-imposition.

The approaches for modifying clients were already explained in section 4.4 . So,
TypeChangeVisitor is intended basically for changing object instantiations’. This is done by
making a Table for super-imposed objects and their types. When instantiations are
performed, the table is checked to see if corresponds a change on the instantiation method
or not.

5.4.5 Concern Visitors

The most interesting visitor from this package is ConcernVisitor. Several features and
characteristics were already shown in previous sections but some relevant details have not
been explained yet.

When a ConcernVisitor walks through a Concern-AST, some checking can be done over
each block inside the concern, such as:

« The correctness and completeness of each Composition-Filters interface.
« The correctness of the implementation block.
« The current concern completeness.

Currently, none of the activities take place, but it is interesting to take them into account
for future improvements of Concernl.

Since Concernl produces Composel code, it creates three kinds of files:

» CF-specifications: When concerns are applied over source files; they create modified
versions of class declarations, by applying over them CF-interfaces

» JWF-files: When concerns are applied over source files; they create modified versions
of class declarations, by applying over them methods and conditions.

» JAVA-files: When program clients need to be modified because they contain super-
imposed objects (this would not be necessary in the case of creating a dynamic
approach for super-imposing interfaces and code over types).

All those files are kept in memory in the structure ModifiedFiles. Which contains the
corresponding ASTs for each modified type and client. When the super-imposition process
finishes, all those files are saved to disk or passed directly as ASTs to Composel] for being
translated into Java code.

7 Currently this visitor is not completely built, because when checking object instantiations, there may
be in between of the object and its instantiation really complex Java expressions that make their
evaluations not a trivial work for a compiler (this is not a main goal for this thesis work).

53

5.5 Summary

The most important aspects to highlight from this chapter are:

The possibilities for producing code. Several possibilities were studied for producing
code, such as Aspect], Hyperl and Composel. These tools currently apply super-
imposition on the Java language.

Making a decision for the most suitable option for producing code. The most interesting
aspects of each super-imposition languages were studied and a decision was made,
based on presented advantages & drawbacks.

The concept of System. Files into the system are explicitly specified, so a user can
specify whether a file is interesting for a modeling or not.

The Core Structure for collecting all the information related with a system. It is
necessary to know before applying concerns all the objects inside the specified system.

How information is collected and what is interesting for collecting from. Object
information is collected from Fields, Local declarations and methods signatures.

The Concern structure for collecting all the information related with concerns. When a
concern is evaluated a concern-structure is created for keeping information about
already applied concerns.

Concerns are applied explicitly. When a concern is parsed, it will not necessarily be
applied. Concerns are also parsed when collecting information about selectors and
application of filterinterfaces, methods and conditions.

The Environment structure for storing selectors. When the selectors sub-section is
parsed, OCL expressions are evaluated and stored into an Environment structure. That
structure is lately inspected when applying super-imposition.

Approaches for modifying and applying the super-imposition to objects. When super-
imposing objects, their types have to be modified. For applying those modified types
there are two approaches, a static one based on a compile-time approach and a
dynamic one based on reflection.

54

Chapter 6 : Conclusions

The present thesis work was intended to study the main aspects of the design and
implementation of a tool that could apply super-imposition of Composition-Filters to a
system, in a modular and systematic way.

Super-imposition is a technique that several tools and languages, such as Aspect], Hyper]
and Composel adopt and implement for generating code.

Also, those tools were presented and studied as examples for showing the super-
imposition concepts. Moreover, they were presented as possible solutions for applying
super-imposition of Composition-Filters in the Java language.

Relevant aspects of super-imposition were presented (Chapter 2):

« The identification of “who”, “what”, “when” and “where” when doing super-
imposition.
« The identification of crossing problems (overlapped super-imposition).

How they are related with current tools using super-imposition and how common problems
in those tools are worked out.

Also, when designing a language that uses super-imposition, is important:

« The grammar,

 How it is related with super-imposition (identifying correctly who, what, where and
when), and

* How crossing problems are avoided by using the grammar.

Later, when implementing the tool:

* How super-impositions concepts are included,

« The design and implementation of structures to enable super-imposition concepts.

« How crossing problems are worked out, taking into account the objective programming
language, its features and capabilities.

All those concepts and aspects that involves super-imposition are important to analyze
when defining a language.

On the other hand, in this thesis work we tried to make a language-independent
specification to make a language that uses super-imposition for applying Composition-
Filters specifications. Thanks to the nature of the Composition-Filters model that was
possible. The Concern] implementation was intended to apply all collected concepts on the
Java language.

Based on the expressed above and the contents of this thesis work, the following aspects
are important to conclude:

» The majority of the chosen approaches were static, mainly because they were simply
to implement or there were not the facilities to implement those approaches
dynamically.

» UML and OCL were useful for super-imposition of Composition-Filters. UML for defining
interfaces and OCL for specifying selectors. The main reason for using them is they are
well proven and defined approaches, with a lot of people improving it design and with
a heterogeneous grammar.

» The main reason for using only a subset of OCL is its expressiveness for selecting
objects. Nevertheless, we can extend it later for adding new existing OCL features.

» Only was implemented a small subset of the OCL operators, they can be extended later

55

» Specifications of super-imposition for Composition-Filters can be ported to a new
implementation on another language.

6.1 Results and problem statement

We intended to design and implement a language for supporting the super-imposition of
Composition-Filters specifications. We base our design on base an example problem.
Nevertheless we tried to make a very general specification. We focused out efforts mostly
in the design part, however an implementation of that design was made for the Java
language.

A consequence of this design is the specification of a Language independent grammar for
the language. It is based on previous implementations of Composition-Filters and the
incorporation of UML for defining language dependent sections. Also, another contribution
of this design was the incorporation of OCL for the definition of selectors (sets of objects).

Several crosscutting tools were considered for inspecting its implementation and also for
generating super-imposition. Nevertheless, none of them was considered for generating
code.

Another contribution of this thesis work, although it is only a proof of concept, is the
implementation of Concernl, the super-imposition language for Java. The design of the
structures is based mostly on static approaches. Nevertheless, we hope that in future
improvements dynamic approaches can be included.

6.2 Further Work

Some concepts, such as abstract classes and class interfaces were not taken into account
when we defined and designed the structure of the super-imposition language.

There is the need to change the naming of some sections in the current grammar
specifications. For instance, when defining a filterinterface, it may result confusing relate
concepts as interface and filters, because the concept interface, in Object-Oriented
languages, is oriented to express the signature of a class. On the other hand, filters are
intended for declaring Composition-Filters definition.

Another section to take care of is the implementation-section, because the grammar is not
clear enough to express that the implementation is defined in a separated module.

New implementation-blocks can be added to the concern specification. Each one can be
written in a distinct programming language.

When super-imposing different specifications over an object, the dynamic approach could
be the most appropriated for solving this kind of problems. Because it allows a non
invasive approach for applying Composition-Filters interfaces over classes (only “servers”
are changed and not “clients”).

56

Bibliography & References

[ACM-01]

[AKS-92]

[ASPI-01]

[BeAk-00]

[BERG-94]

[GAMM-95]

[GLAN-95]

[HYP3-01]

[JCC-01]

[KIC-97]

[OCL-01]

[SAL-00]

[SINA-95]

[UML-01]

[WICH-99]

Aksit, Mehmet. Kiczales, Gregor. Lieberherr, Karl. Ossher, Harold. “A
Discussion on Aspect-Oriented Programming. Frequently-Asked Questions”,
Publications of the ACM - not yet published. October 2001.

Aksit, Mehmet. Bergmans, Lowewijk. Vural, S. “An Object-Oriented
Language-Database Integration Model: The Composition-Filters Approach”,
Proceedings of ECOOP 92, LNCS 615, Springer-Verlag, 1992, pp. 372-395.

“Aspect]: Aspect-Oriented Programming for Java”, Aspect] Web Site,
http://www.aspectj.org, 2001.

Bergmans, Lodewijk. Aksit, Mehmet. “Composing Multiple Concerns Using
Composition Filters”, TRESE Group, Computer Science Department,
University of Twente, The Netherlands, 2000.

Bergmans, Lodewijk. “Composing Concurrent Objects”, Ph.D. Thesis,
Computer Science Department, University of Twente, The Netherlands,
1994,

Gamma, Erich. Helm, Richard. Johnson, Ralph. Vlissides, John. “Design
patterns, Elements of Reusable Object Oriented Software”. Addison-Wesley,
1995.

Glandrup, M.H.J. “Extending C++ using the concepts of Composition Filters”,
Master of Science thesis, Computer Science Department, University of
Twente, The Netherlands. November 1995.

“HyperJ: Multi-Dimensional Separation of Concerns for Java”, IBM Research
Web Site, http://www.research.ibm.com/hyperspace/Hyperl/Hyperl.htm,
2001.

*JavaCC - The Java Parser Generator",
http://www.webgain.com/products/metarmata/java_doc. html.

Metamata Inc., 2000.

Kiczales, Gregor. Lamping, John. Mendhekar, Anurag. Maeda, Chris. Videira-
Lopes, Ciristina. Loingtier, Jean-Marc. Irvin, John. “Aspect-Oriented
Programming”,
http://www.parc.xerox.com/csl/projects/aop/selectedPapers.shtml. June
1997.

“Object Constraint Language Specification”, Klasse Objecten Web Site,
http://www.klasse.nl/ocl/index.html, 2001.

Salinas, Patricio. “"How to use Aspect]”, Capita Selecta report, EMOOSE
exchange program, Ecole des mines de Nantes, France. December 2000.

Koopmans, Piet. “On the Definition and Implementation of the Sina/st
Language”, Master of Science thesis, Computer Science Department,
University of Twente, 1995.

“The Unified Modeling Language”
Wichman, J.C. "Compose], The development of a preprocessor to facilitate
Composition Filters in the Java Language”, Master of Science thesis,

Computer Science Department, University of Twente, The Netherlands.
December 1999.

57

Appendix A: Concernl grammar

The objective of the present appendix is explaining each part of the Concern] grammar,
used to define concerns for the Composition-Filters model.

Because we are trying to explain a grammar, it could be useful to remember some
interesting BNF rules:

[] : It means that everything inside brackets is optional (zero or one time).

O* : It means that everything inside parentheses can appear zero or more times.

O+ : It means that everything inside parentheses can appear one or more times.

OLIST : 1t is a shortcut for (elementl, element2, element3, ...), a set of elements
separated by comma. In this document a LIST will contain at least one
element.

A Concern:

A concern will define the behavior of one or more objects inside the system or application,
it contains 3 interesting blocks:

CONCERN =

<concern> CONCERN_NAME <begin>
(FILTERINTERFACE)*
[IMPLEMENTATION]
[SUPERIMPOSITION]

<end> [<concern> CONCERN_NAME];

Where:

CONCERN_NAME: Represents the name of the current concern.

FILTERINTERFACE: Represents a CF-interface specification.

IMPLEMENTATION: Represents an implementation-block (a class containing methods
and conditions).

SUPERIMPOSITION: Represents the super-imposition specification.

A concern can contains several filterinterface-declarations, at most one
superimposition declaration and one implementation block.

The Filter-Interface Block:

A filterinterface block contains the same definitions of a CF-interface (internals, externals,
methods, conditions, inputfilters and outputfilters).

FILTERINTERFACE =
<filterinterface> FILTERINTERFACE_NAME <begin>
[INTERNALS]
[EXTERNALS]
[CONDITIONS]
[METHODS]
[INPUTFILTERS]
[OUTPUTFILTERS]
<end> [<filterinterface> FILTERINTERFACE_NAME] ;

Where:

58

FILTERINTERFACE_NAME: Represents the name given to this CF-interface definition. It
will be used for being identified and super-imposed over source code.

The Internals sub-block:

INTERNALS=
<internals>
(VARIABLE_SET <:> TYPE <;>)*

VARIABLE_SET=
VARIABLE_NAME |
VARIABLE_NAME <,> VARIABLE_SET

As shown, variables are defined in UML-style. A Type may contain the package name,
separated by double-colons (currently not supported).

Another interesting aspect is the fact that variables cannot be instantiated directly in this
block. They have to be instantiated directly into the source code, or by calling a method.

The Externals sub-block

EXTERNALS=
<externals>
(VARIABLE_SET <:> TYPE <;>)*

VARIABLE_SET=
VARIABLE_NAME |
VARIABLE_NAME <,> VARIABLE_SET

As shown, variables are defined in UML-style. A Type may contain the package name,
separated by double-colons (currently not supported).

The Conditions sub-block

CONDITIONS=
<conditions>
(CONDITION_NAME <;>)*

Conditions are defined without specifying their type. This is because conditions can only
return as a value a boolean.

The Methods sub-block

METHODS=
<methods>
(METHOD_NAME <(> [ARGUMENT_SET] <)> [<:> TYPE <;>]D*

ARGUMENT_SET=
ARGUMENT_DEF (<;> ARGUMENT_DEF)*

ARGUMENT_DEF=
[VARIABLE_NAME (<,> VARIABLE_NAME)* <:>] TYPE

Method signatures are defined by using an UML-like grammar. Also, as explained for
internals, a Type can be specified with a package name, but it is not implemented.

59

The Input-Filters sub-block

INPUTFILTERS=
<inputfilters>
(FILTER_NAME <:> FILTER_TYPE <=> <{> FILTER_SET <}> <;>)*

FILTER_SET=
[CONDITION FILTER_OP] OBJECT_SET
[CONDITION FILTER_OP] OBJECT_SET COMPOSITION_OP FILTER_SET

FILTER_OP=
<=>> | <~>>

COMPOSITION_OP=

<>

OBJECT_SET=
<{> OBJECT (OBJECT_OP OBJECT)* <}> |
OBJECT

OBJECT=
[TARGET <.>] SELECTOR [<(> [<TARGET> <=> TARGET1l <,> <SELECTOR> <=>

SELECTOR1]

OBJECT_OP=

<>

SELECTOR=
METHOD_NAME [<(> TYPE (<;> TYPE)* <)>]

TARGET=
<inner> | OBJECT_NAME

This block represents the classic CF-interface. A better explanation about this block can be
found at [WICH-99].

The Output-Filters sub-block

The outputfilters grammar is almost the same than the inputfilters one, only changes the
token for specifying this block.

The implementation block:

IMPLEMENTATION=_ _
<implementation> <in> <”> MODULE_NAME <”> <;>

This block specifies the location of the implementation block.

The Super-Imposition Block:
This block is the most interesting of this work, because it will define the behavior of our

applications, how filter-interfaces will interact each other, how classes in our applications
will be affected directly or indirectly, etc.

60

SUPERIMPOSITION =
<superimposition> <begin>
[SELECTORS]
[CONDITIONS]
[METHODS]
[FILTERINTERFACES]
<end> <superimposition>;

Where:

SELECTORS: Represents the block for defining set of objects.

CONDITIONS: Represents the block for defining super-imposition of conditions.
METHODS: Represents the block for defining super-imposition of methods.
FILTERINTERFACES: Represents the block for defining super-imposition of Composition-
Filters interfaces.

The selectors sub-block:

SELECTORS =
<selectors>
(SELECTOR_NAME <:=> OCL_EXPRESSION <;>)*

Where:
SELECTOR_NAME: The name of the current selector definition.

OCL_EXPRESSION: An OCL expression that generates a set of objects (more information
in Appendix B)

The methods sub-block:

METHODS =
<methods>
([CONCERN_NAME1l <::>] SELECTOR_NAME <<-> METHOD_NAME_SET <;>)¥*

METHOD_NAME_SET =
METHOD_NAME | <{> (METHOD_NAME)LIST <}>

METHOD_NAME =
([CONCERN_NAME2 <::>]METHOD_NAME_ID) |
([CONCERN_NAME2 <::>]FILTERINTERFACE_NAME <::> <*>

CONCERN_NAME=
<self> | IDENTIFIER

Where:

CONCERN_NAME1::SELECTOR_NAME : Represents a specific selector with name
SELECTOR_NAME defined into CONCERN_NAME1.

METHOD_NAME_SET: Represents a set of possible methods that will be superimposed
over the specified selector.

METHOD_NAME: Represents specific methods taken from the implementation block
defined into CONCERN_NAMEZ2. If CONCERN_NAME?2 is not given, the default concern will
be the current one (self).

If FILTERINTERFACE_NAME is specified, all the methods defined into that interface will
be taken from CONCERN_NAME2 and super-imposed over the selector.

Several method super-impositions can be defined in this block.

61

The Conditions block:

CONDITIONS =

<conditions>
([CONCERN_NAME1l <::>] SELECTOR_NAME <- CONDITION_NAME_SET ;)*

CONDITION_NAME_SET =
CONDITION_NAME | <{> (CONDITION_NAME)LIST <}>

CONDITION_NAME =
([CONCERN_NAME2 <::>]CONDITION_NAME_ID)LIST |
([CONCERN_NAME2 <::>]FILTERINTERFACE_NAME <::> <*>

CONCERN_NAME =
<self> | IDENTIFIER

The CONDITIONS block is almost the same than the METHODS one, but it is intended for
super-imposing conditions over selectors.

The filter-interfaces sub-block:

FILTERINTERFACES=

<filterinterfaces>
([CONCERN_NAME1 <::>]SELECTOR_NAME <<-> FILTERINTERFACE_SET <;>)*

FILTERINTERFACE_SET=
[CONCERN_NAME2 <::>]FILTERINTERFACE_NAME
<{> ([CONCERN_NAME2 <::>] FILTERINTERFACE_NAME)LIST <}>

The FILTERINTERFACES block is almost the same than the METHODS one, but it is
intended for super-imposing Composition-Filters interfaces.

62

Appendix B: Selectors grammar

Mainly a selector represents a set of objects related with certain criteria; OCL has
operations over collections, specifically Sets. Some of its interesting operations are:

SETS
Set
A Set is a mathematical-set. It contains elements without duplicates.

Declaration

set = Set{ elements } // a comma list of elements.
Operations over a Set

Union: The union of set and set2:
set->union(set2 : Set(T)) : Set(T)
Equal: Evaluates to true if set and set2 contain the same elements.
set = (set2 : Set(T)) : Boolean

Intersection: The intersection of set and set2 (i.e. the set of all elements that are in both
set and set2).

set->intersection(set2 : Set(T)) : Set(T)
Minus: The elements of set, which are not in set2.
set - (set2 : Set(T)) : set(T)
Including: The set containing all elements of set plus object.
set->including(object : T) : Set(T)
Excluding: The set containing all elements of set without object.
set->excluding(object : T) : Set(T)

Symmetric Difference: The sets containing all the elements that are in set or set2, but
not in both.

set->symmetricDifference(set2 : set(T)) : set(T)

Select: The subset of set for which expr is true.

set->select(expr : OclExpression) : Set(T)

Reject: The subset of set for which expr is false.

set->reject(expr : OclExpression) : Set(T)

63

Operations over collections (a Set is a sub-type of Collection):
Let’s call collection an instance of Collection.
Size: The number of elements in the collection collection.
collection->size : Integer
Includes: True if object is an element of collection, false otherwise.
collection->includes(object : 0OclAny) : Boolean
Excludes: True if object is not an element of collection, false otherwise.

collection->excludes(object : 0OclAny) : Boolean

Count: The number of times that object occurs in the collection collection
interesting).

collection->count(object : OclAany) : Integer
Includes all: Does collection contain all the elements of c2 ?
collection->includesA11(c2 : collection(T)) : Boolean
Excludes all: Does collection contain none of the elements of c2 ?
collection->excludesA11(c2 : collection(T)) : Boolean
Is empty: Is collection the empty collection?
collection->isEmpty : Boolean
Is not empty: Is collection not the empty collection?
collection->notEmpty : Boolean
Exists: Results in true if expr evaluates to true for at least one element in collection.

collection->exists(expr : OclExpression) : Boolean

(not

For all: Results in true if expr evaluates to true for each element in colflection; otherwise,

result is false.

collection->forAll(expr : OclExpression) : Boolean

Results in true if expr evaluates to a different value for each element in collection;
otherwise, result is false.

collection->isUnique(expr : OclExpression) : Boolean

Iterate: Iterates over the collection. See “Iterate Operation” on page 7-25 for a complete
description. This is the basic collection operation with which the other collection operations

can be described.

collection->iterate(expr : OclExpression) : expr.evaluationType

64

OBJECTS:

Equal: True if object is the same object as object2.
object = (object2 : oclAny) : Boolean
Not equal: True if object is a different object from object2.

object <> (object2 : OclAny) : Boolean

Is kind of: True if type is one of the types of object, or one of the supertypes (transitive)
of the types of object.

object.oclIsKindof(type : OclType) : Boolean

Is type of: True if type is equal to one of the types of object.

object.oclIsTypeof(type : OclType) : Boolean

Operations over types:

Name: The name of type. .
type.name : String

Super-type: The set of all direct supertypes of type.
type.supertypes : Set(oclType)

All Super-types: The transitive closure of the set of all supertypes of type.

type.allSupertypes : Set(0cl1Type)

All instances: The set of all instances of type and all its subtypes in existence at the
snapshot at the time that the expression is evaluated.

type.allInstances : Set(type)

65

