
Vrije Universiteit Brussels – Belgium
Faculty of Sciences

In collaboration with
Ecole des Mines de Nantes – France

Universidade Federal do Rio de Janeiro – Brazil
2000

A contextual help system for assisting OO
designers in using design patterns

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange

project funded by the European Community)

By: Olivier Motelet

Promotor: Prof. Theo D’Hondt (Vrije Universiteit Brussels)
Co-Promotor: Prof. Cabral Lima (Universidade Federal do Rio de Janeiro)

1

A CONTEXTUAL HELP SYSTEM FOR ASSISTING OO
SOFTWARE DESIGNERS IN USING DESIGN PATTERNS

Abstract

Design patterns are very useful and important tools for improving
software design, but they have a complexity cost. Considering that, design
patterns should be applied only when it is really necessary.

This thesis is the result of a research effort and draws the basements of a
contextual help system that assists OO software designers in using design patterns
in a right way. Our system suggests the use of design patterns not only as limited
reusable pieces of design but mainly as a design style proposal which should help
the designer without limiting his creativity.

Our project proposes an original structure for describing design patterns.
On the base of this presentation, it introduces an advanced contextual support for
evaluating the suitability of design patterns and for navigating through them
towards solutions.

Keywords

Design patterns, design style, design patterns learning, design patterns
presentation, navigation through the knowledge, contextual help, open assistant,
creativity, innovative design.

2

ACKNOWLEDGMENTS

This thesis project was the context of one of the most exciting experience
of my life. It was not only a great scientific adventure full of doubts and joy, but
also a significant advancement of my life perceptions.

This period could not have been so beneficial without the support of a so
human environment.

I am particularly thankful for the constant and efficient support of Prof. Cabral
Lima during this thesis. He was very attentive to all my needs and always
succeeded in motivating my enthusiasm. He is sincerely a worthy person.

I am also grateful for the generous welcome of the UFRJ and UENF which
provided me all the necessary accommodations for working in great conditions.

Thanks to my parents and sister who never end to demonstrate their limitless love.

accepted me as I am without any other expectations.

I would like to dedicate this thesis to the sundry winds of Brazil which
offer me so much peace.

3

CONTENTS

1. INTRODUCTION 9

1.1. PROLEGOMENON 9
1.2. MOTIVATION 10
1.3. OBJECTIVES AND APPROACH 10
1.4. THESIS REPORT ORGANIZATION 13

2. STATE OF THE ART - POSITIONS ON THE USE OF DESIGN PATTERNS 15

2.1. WHAT ARE DESIGN PATTERNS? 15
2.2. GENERAL USE OF DESIGN PATTERNS 20
2.3. DESIGN PATTERNS RELATED ACTIVITIES 24
2.4. POSITION ON THE USE OF DESIGN PATTERNS 32
2.5. CONCLUSION 34

3. HELPING THE DESIGNER TO KNOW AND USE DESIGN PATTERNS 35

3.1. INTRODUCTION 35
3.2. LEARNING DESIGN PATTERNS 36
3.3. CHOOSING APPROPRIATE DESIGN PATTERNS 39
3.4. CONCLUSION 43

4. A REORIENTED PRESENTATION OF THE DESIGN PATTERNS 45

4.1. INTRODUCTION 45
4.2. HIGHLIGHTING NEW FEATURES 46
4.3. TOWARDS A COMPLETE DESCRIPTION 59
4.4. GENERAL APPEARANCE OF THE NEW PRESENTATION 64
4.5. CONCLUSION 66

5. A HELP SYSTEM 68

5.1. INTRODUCTION 68
5.2. OVERVIEW OF THE HELP SYSTEM 68
5.3. DESIGN PATTERNS’ EVALUATION 70

4

5.4. THE NAVIGATION 73
5.5. AN OPEN ASSISTANT VERSUS AN INTELLIGENT TUTORING SYSTEM. 83
5.6. TOWARDS A CONTEXTUAL HELP 84
5.7. CONCLUSION 88

6. CONCLUSION AND FUTURE WORKS 90

6.1. MOTIVATIONS AND INITIAL GOAL 90
6.2. SUMMARY AND CONCLUSION 91
6.3. FUTURE WORKS 93

7. INDUSTRIAL AND ECONOMIC IMPACT OF OUR RESEARCH 95

7.1. DESIGN PATTERNS AND SOFTWARE INDUSTRY 95
7.2. OUR HELP SYSTEM 97
7.3. CONCLUSION 97

8. REFERENCES 99

9. FIGURES INDEX 103

10. TABLES INDEX 104

11. ANNEXES 105

5

DETAILED CONTENTS

1. INTRODUCTION 9

1.1. PROLEGOMENON 9
1.2. MOTIVATION 10
1.3. OBJECTIVES AND APPROACH 10
1.3.1. A POSITION ON THE DESIGN PATTERNS’ USE 10
1.3.2. OBJECTIVES 11
1.3.2.1. Intelligent Tutoring System 11
1.3.2.2. Present situation 12
1.4. THESIS REPORT ORGANIZATION 13

2. STATE OF THE ART - POSITIONS ON THE USE OF DESIGN PATTERNS 15

2.1. WHAT ARE DESIGN PATTERNS? 15
2.1.1. SOFTWARE PATTERNS 15
2.1.1.1. Origins 15
2.1.1.2. Patterns’ impacts in the software community 16
2.1.1.3. A Software Pattern Example 17
2.1.2. DESIGN PATTERNS 17
2.1.2.1. Origins 17
2.1.2.2. A Definition 18
2.1.2.3. Available Design Patterns 18
2.1.3. DESCRIPTION OF GOF’S DESIGN PATTERNS 19
2.2. GENERAL USE OF DESIGN PATTERNS 20
2.2.1. A GENERAL ENTHUSIASM 20
2.2.2. USING DESIGN PATTERNS 21
2.2.2.1. Positions on the use of Design Patterns 21
2.2.2.2. Knowing when to use Design Patterns 22
2.2.2.3. Knowing how to use Design Patterns 22
2.2.2.4. Tutorials for learning about design patterns 23
2.2.3. CONCLUSION 24
2.3. DESIGN PATTERNS RELATED ACTIVITIES 24
2.3.1. INTRODUCTION 24
2.3.2. A SPECIFICATION OF DESIGN PATTERNS 25
2.3.2.1. Some Needs for Design Patterns’ specification 25
2.3.2.2. Limitations of Design Patterns’ formalization 26
2.3.2.3. Overview of existing specification languages 27

6

2.3.2.3.1. Specification of the abstract structure of a Design Pattern 27
2.3.2.3.2. Specification of the relationships 27
2.3.2.3.3. Specification of the intent 28
2.3.3. CASE TOOLS FOR DESIGN PATTERNS 29
2.3.3.1. Recognition of Design Patterns in legacy systems 29
2.3.3.2. Insertion of Design Patterns in new systems 30
2.3.3.3. Automatic suggestion for using Design Patterns 30
2.3.4. CONCLUSION 31
2.4. POSITION ON THE USE OF DESIGN PATTERNS 32
2.4.1. DESIGN PATTERNS VS. FRAMEWORK 32
2.4.2. DESIGN PATTERNS ARE NOT CLIP-ARTS 32
2.4.3. DESIGN PATTERNS AS COMMUNICATION MEANS 33
2.5. CONCLUSION 34

3. HELPING THE DESIGNER TO KNOW AND USE DESIGN PATTERNS 35

3.1. INTRODUCTION 35
3.2. LEARNING DESIGN PATTERNS 36
3.2.1. INTERESTING TOPICS OF AVAILABLE LEARNING METHODS 36
3.2.1.1. Highlighting the advantages 36
3.2.1.2. Highlighting the drawbacks 37
3.2.2. ADDITIONAL NECESSARY ITEMS FOR ENHANCING THE LEARNING 37
3.2.2.1. Introduction 37
3.2.2.2. Highlighting the design principles behind the design patterns. 38
3.2.2.3. Highlighting the relationships between design patterns. 38
3.2.3. CONCLUSION 39
3.3. CHOOSING APPROPRIATE DESIGN PATTERNS 39
3.3.1. EVALUATING A DESIGN PATTERN 40
3.3.1.1. Introduction 40
3.3.1.2. Definition of a proper pattern 40
3.3.1.3. Consequences and design principles 40
3.3.1.4. Evaluation of a design pattern 41
3.3.2. TOWARDS A PROPER SOLUTION 42
3.3.2.1. Introduction 42
3.3.2.2. Navigating through the knowledge 42
3.3.2.3. Relationships between Design Patterns 42
3.4. CONCLUSION 43

4. A REORIENTED PRESENTATION OF THE DESIGN PATTERNS 45

4.1. INTRODUCTION 45
4.2. HIGHLIGHTING NEW FEATURES 46
4.2.1. RECURRING PRINCIPLES BELOW THE DESIGN PATTERNS 46
4.2.1.1. The style recommendations of the Gof catalog 47
4.2.1.2. A set of Design Principles 47
4.2.2. EXTRACTING THE CONSEQUENCES OF THE DESIGN PATTERNS 49
4.2.2.1. Consequences of design principles 49
4.2.2.2. About the use of the consequences 49
4.2.2.3. Lists vs. detailed descriptions 50

7

4.2.2.4. Related consequences 51
4.2.2.5. Advantages and Drawbacks 51
4.2.2.6. Consequences in the Design Patterns’ set 52
4.2.3. CHARACTERIZING THE RELATIONSHIPS BETWEEN DESIGN PATTERNS 55
4.2.3.1. Existing works 56
4.2.3.2. Relationships between design principles 56
4.2.3.3. A new taxonomy 56
4.2.4. CONCLUSION 57
4.3. TOWARDS A COMPLETE DESCRIPTION 59
4.3.1. ABOUT THE INTENT OF THE DESIGN PATTERN 59
4.3.1.1. Introduction 59
4.3.1.2. Existing works 60
4.3.1.2.1. A more formal structure of the intent 60
4.3.1.2.2. A taxonomy of the Design Patterns 60
4.3.1.2.3. The variation purpose of the Design Patterns 61
4.3.1.3. Reformulating the intent 61
4.3.2. THE STRUCTURE 62
4.3.2.1. The diagram 62
4.3.2.2. The description of the participants 63
4.3.2.3. The design principles 64
4.4. GENERAL APPEARANCE OF THE NEW PRESENTATION 64
4.5. CONCLUSION 66

5. A HELP SYSTEM 68

5.1. INTRODUCTION 68
5.2. OVERVIEW OF THE HELP SYSTEM 68
5.3. DESIGN PATTERNS’ EVALUATION 70
5.3.1. CONSEQUENCES AS CHECK LISTS 70
5.3.2. TRACING THE EVALUATION 73
5.4. THE NAVIGATION 73
5.4.1. BEGINNING THE NAVIGATION 73
5.4.1.1. Automatic suggestion of a design pattern 74
5.4.1.1.1. Main difficulties to capture the specific user’s problem 74
5.4.1.1.2. Necessity to let open the use of the design patterns. 75
5.4.1.2. Other entry points 76
5.4.1.2.1. Design defaults 76
5.4.1.2.2. Design Patterns’ taxonomy 77
5.4.1.2.3. Design Patterns for variation purposes 79
5.4.1.3. Conclusion 80
5.4.2. A NAVIGATION MAP 80
5.4.2.1. Showing all the relationships 80
5.4.2.2. Displaying the state of the navigation 81
5.5. AN OPEN ASSISTANT VERSUS AN INTELLIGENT TUTORING SYSTEM. 83
5.6. TOWARDS A CONTEXTUAL HELP 84
5.6.1. COMMON BEHAVIOR OF THE USER 85
5.6.2. CONTEXTUAL ASSISTANCE OF THE HELP SYSTEM 85
5.6.2.1. Navigation map 86
5.6.2.2. Additional suggestions 86
5.6.2.3. Sorting of the lists 86

8

5.6.2.4. Aiming to trace the level of the user ‘s knowledge 87
5.7. CONCLUSION 88

6. CONCLUSION AND FUTURE WORKS 90

6.1. MOTIVATIONS AND INITIAL GOAL 90
6.2. SUMMARY AND CONCLUSION 91
6.3. FUTURE WORKS 93

7. INDUSTRIAL AND ECONOMIC IMPACT OF OUR RESEARCH 95

7.1. DESIGN PATTERNS AND SOFTWARE INDUSTRY 95
7.1.1. SOFTWARE REUSE 95
7.1.2. DESIGN PATTERNS: TOOLS OF REUSE 96
7.1.3. DESIGN REVIEWS ABOUT THE DESIGN PATTERNS’ USAGE 96
7.2. OUR HELP SYSTEM 97
7.3. CONCLUSION 97

8. REFERENCES 99

9. FIGURES INDEX 103

10. TABLES INDEX 104

11. ANNEXES 105

9

11.. IINNTTRROODDUUCCTTIIOONN

1.1. Prolegomenon

This thesis project is a partial fulfillment of the requirements for the degree
of Master of Science in Computer Science and for the degree of engineering of
the Ecole des Mines de Nantes. As a part of the EMOOSE exchange project
funded by the European Community, this research was performed with the
collaboration of the Universidade Federal do Rio de Janeiro (UFRJ).

During the first few weeks of this thesis, I was pleasantly welcomed by the
computer science department of the UFRJ, one of the more important university
from Brazil. They offered me all the accommodations necessary for proceeding to
this thesis project.

This thesis was entirely supervised by Pr. Cabral Lima in his quality of
Professor of the computer science department of the Federal University of Rio de
Janeiro (UFRJ).

In this time, Pr. Cabral Lima kept scientific contacts with the Universitade
Estadual do Norde Fluminense (UENF), former member of the Institution
Network of the EMOOSE project. This young university is located in Campos, a
calm and pleasant 500000 inhabitants city of the Rio de Janeiro state. As a matter
of fact, the UENF is really an environment favorable for the development of a
thesis.

 On the kind suggestion of Pr. Cabral Lima, the UENF invited me in their
establishment. Therefore, during the four last moths of this thesis, I could work in
the very pleasant atmosphere of this institution.

10

1.2. Motivation

In the last decade, the significant benefits of software reuse were rapidly
considered by the software community. A lot of efforts were done in order to
develop better programming languages, tools, and techniques: COBOL,
structured analysis and design, then Object Oriented languages and finally Object
Oriented Architecture & Design processes. Those methods demonstrated
especially the importance of patterns, tools primarily introduced in the
architecture domain, as encapsulations of general adaptable solutions to common
problems. In this direction, Gamma and his colleagues [GoFo95] introduced the
design patterns, as descriptions of communicating objects and classes customized
to solve general design problem in a given context.

The software community recognized the communication benefits of design
patterns and their use was rapidly generalized. Presently, design patterns are
significantly widespread and well-known. However, their application is not
simple since they have a complexity cost. Then still today, it is necessary to let
important learning period to the designers in order to avail a correct use.

During our research, we encountered several tools for facilitating the
application and implementation of design pattern, but, it seems that there is no
concrete support for using the design patterns. Then, the choice of a design
pattern for solving an encountered design problem is still completely legating to
the designer’s skills. In response to this appearing deficit, this thesis plans to offer
a support for using the design patterns.

1.3. Objectives and approach

Considering the general enthusiasm of the software community about
design patterns, it may be interesting to notice the deficit of concrete support for
using design patterns. Actually, the problem is quite complex since it involves a
determination of the design patterns’ use.

1.3.1. A position on the design patterns’ use

The positions on this topic are cleaved and are subjects of numerous
discussions in the design patterns mailing lists ([DpLi00], [Wiki00]).
To review the situation, the debate revolves between two extreme positions:

- considering design patterns as strict design solutions to
accurate situations.

- considering design patterns as elusive design models
supporting a refinement of the design.

11

It is essential to give some stable theoretical basements to any practical
work. Then, before starting any study involving the design patterns’ use, it should
be necessary to take a clear position on this point.

Therefore, after analyzing in details various views on the design pattern’s
use, we adopted our own one: we consider design patterns as significant
communication tools but we believe that their use cannot be fixed.

We based rigorously our thesis on this median assertion. This position did
not direct us to obvious technical solutions, since it does not permit any strict and
computable uses of design patterns. However, we believe in the accuracy of this
position and consider it as a substantive way towards reliable results.
Consequently, despite the appearing difficulties, we still carried on in this
direction.

1.3.2. Objectives

The first title of this MSC thesis was “
”. All along this project, we kept our

position on the deign patterns’ use. Then, it appeared progressively that it was
more realistic to consider a help system for using design patterns more as an open
assistant than an intelligent tutoring system ([RLKS98]).

1.3.2.1. Intelligent Tutoring System

An Intelligent Tutoring System (ITS) is globally a collaboration between
three main modules ([Lima92], [Lima97],[Lima98]):

- Domain Knowledge model: it is the base of knowledge of the system.
- Pedagogic knowledge model : it contains the pedagogic skills of the

system.
- User model: it is an encapsulation of the behavior and reasoning of the

user.
The principle of a tutoring system is generally to direct the user towards an

“accurate behavior” and to allow him to acquire knowledge and skill about the
domain of the ITS.

12

Figure 1: Intelligent Tutoring System

The Domain Knowledge Model knows how to solve the problem and owns
a real knowledge representation of the domain. The tutoring is the interface with
the user: it directs the session, develops pedagogical strategies, suggests
exercises, can explain and understand the mistakes of the user. The user must be
also modeled since the system must be able to occur the level of the user’s
knowledge. The main difficulty of such a system is the necessity of representing
the user’s knowledge.

1.3.2.2. Present situation

According to our position, the design patterns’ use cannot be fixed and the
designer must keep the possibility to utilize them for innovative purposes. As a
consequence, an Intelligent Tutoring System for using design patterns could not
identify nor the intention of the user nor an accurate use of design patterns.

Therefore, we decided to develop a prototype of “
”. Our new objectives could

seem less ambitious but they are much more realistic in the specific context of the
design patterns’ use.

Domain Knowledge
Model

Pedagogic
Knowledge Model

User Model

User

intention
of the
user

towards an
accurate

teaching of
the

knowledge

Interface

13

1.4. Thesis Report Organization

In this thesis, we study the way to enhance the learning of design patterns
and the research of design patterns solution to design problems. On those
basements, we propose a prototype of help system for assisting the OO designer
in using design patterns.

In the present chapter, we presented the objectives of this thesis and our
approach. The additional chapter of this report are:

- State of the art - Positions on the use of Design Patterns
This chapter attempts to define clearly design patterns, to present

the proceeding design patterns related activities and to take position on
the design patterns’ use.

- Helping the designer to know and use Design Patterns
According to the position we take in the second chapter, this chapter

discusses the topics susceptible to enhance the design patterns’ use and
learning.

- A reoriented presentation of the Design Patterns
As a result of the discussion of the previous chapter, this chapter

introduces a proposal of new format for describing design patterns
oriented for promoting an easier and more accurate use of design
patterns.

- A help system
This chapter introduces the prototype of help system we have

developed, as a support for the new presentation of design patterns
presented in the previous section, and as a substantial assistant for
helping the designer to use design patterns.

- Conclusion
This section summarizes our research and opens to further

directions to be got for future research projects.

- Industrial and economic impact of our research
This final chapter pretends to expose the significance of our work

in the software industry.

This report contains also the following annexes:

Annex 1 Example of OO Design Pattern: Composite.

Annex 2 Consequences and relationships of Design Principles.

Annex 3 Consequences and relationships of Design Patterns.

14

Annex 4 Intent description of the design pattern.

Annex 5 Shot screens of Design Patterns and Design Principles.

Lists of tables, figure and references can be found at the end of this report.

15

22.. SSTTAATTEE OOFF TTHHEE AARRTT -- PPOOSSIITTIIOONNSS OONN TTHHEE UUSSEE OOFF DDEESSIIGGNN

PPAATTTTEERRNNSS

This first chapter positions our work in the research field of design patterns.
It is divided in four parts.

The first part defines the notion of design patterns as a specialization of the
concept of patterns. Then, a second part presents the general way design patterns
are used by the software community. The third part is a state-of-the-art of the
research in design patterns related activities. Finally, the last part explains our
position on the usage of design patterns.

2.1. What are Design Patterns?

Presently, the Design Patterns are widespread and well-known tools. So
well that the majority of the software community has more or less an idea of
them. However it may be significant to begin this chapter by defining them to
adjust all the thoughts.

On that purpose, we will first talk about the notion of software patterns and
then we will define the Design Patterns themselves.

2.1.1. Software patterns

2.1.1.1. Origins

The architect Christopher Alexander defined for the first time, in
[Alex77], the concept of pattern as :

“Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the solution to that
problem, in such way that you can use this solution a million times over, without
ever doing it the same way twice.”

16

He added few years after in [Alex79]:
“Each pattern is a three part rule, which express a relation between

a context, a problem and a solution.”
The patterns were born as a way to encapsulate general adaptable solutions to
common problems. This notion targeted first the architecture domain. But rapidly,
other domains like management, communication or software extended the
concept to their own use.

2.1.1.2. Patterns’ impacts in the software community

In the early 1990’s the software community began to show interest in the
concept of patterns. The following years, patterns entered to the vernacular as a
result of seminars, conference sessions and journal publications [CoSc95].

Software patterns appeared numerous and various. Consequently, an
exhaustive lists of the existing software patterns should be too large to enter the
scope of this thesis. However, it is interesting to give an overview of the scope of
the software patterns. On that purpose, it is pointed out the most significant
differences between those approaches as:

- apply to different phases of software development
Pattern approaches are not bound to some specific part of the
software development. They can be find in each activity. Patterns
documented today range from those that concern requirement
engineering to those that concern process management or software
architecture. Some approaches also include several phases and are
thus means for transformation.

- have different level of relationships
Some approaches present stand alone patterns that relate to each
other to make up a language or a system. Pattern languages can
serve for example for the user guide of a software. A first pattern
presenting an overview of the system points to other patterns
describing more specific features. Those ones will then point on
patterns presenting still more specific characteristics and so on.

- are more or less domain-specific (dependency)
Some patterns describe problems that are more or less domain-
specific. For example a pattern that describe how to use a database
is far more specific than a pattern that describes how to create a
complex object.

- are described differently (format)
There are numerous forms of describing a pattern. Of course this
depends on which type of problem the pattern addresses – a pattern
that describe how to organize people to manage a software project
will differ from a pattern that describes how to arrange a three

17

layered architecture. But there are also format differences in
patterns that addresses similar problems.

2.1.1.3. A Software Pattern Example

In order to give more consistency to this software patterns’ overview, we
suggest to look at an example: the Software Design Pattern Composite (cf. Annex
1). For positioning Composite in the scope of software patterns, we precise it as a
pattern

- applying to the design phase,
- presenting eventual but not compulsory relationships with other Design

Pattern,
- not domain-specific,
- described in a very specific format.

Composite is a Design Pattern and in those terms, it enters directly into the
concern of this thesis. In the next section, we present more specifically the origins
and the definition of Design Patterns.

2.1.2. Design Patterns

2.1.2.1. Origins

One of the main attraction of the object paradigm is to program in terms
of real entities and so to be able to easily reuse them. However in complex
systems, as E. Gamma said:
“the strict modeling of the real world leads to reflect today‘s realities but not
necessarily tomorrow’s. The abstractions that emerge during design are key to
making a design flexible.”

As a matter of fact, the designers are very often dealing with complex
systems involving several objects. And they desire the reusability of more than
one object but of set of collaborating objects. In this case, the need for flexibility
becomes a complex problem and involve structured interactions between objects.
For a same context and a same problem, we can find many different solutions
depending on the designer’s own style.

The experience has shown that it is difficult to give general rules defining
what is a good style ([Eden98a], [Ga&al96]). Indeed, the criteria which could
make a good design (flexibility, clarity, efficiently...) are often contradictory.
For example, it is generally observed that increasing reusability of several object
will also increase the complexity of the system. Practically it is due to the fact that
increasing the flexibility involve very often the number of objects growing up.
Consequently, the interactions are more numerous and complex which make the
design more difficult to understand.

18

In this example, we could consider that a good solution for a problem should be a
solution increasing the less as possible the complexity of the design in taking into
account the needs for flexibility of the system.

Finally, designing with style is not something that designer can apply in a
cookbook fashion. And it takes generally a long time for novices to learn what
good object-oriented design is all about. What make a good designer is not only
his knowledge about the object-oriented paradigm but also his experience.
Experienced designers will not solve every problem from first principles. Rather,
they reuse solutions that have worked for them in the past.

The idea of Gamma and his colleagues, known a the Gang-Of-Four, was to
capture and formalize those solutions. On that purpose, they introduced the notion
of Design Patterns in the early 1990’s [GoFo95].

2.1.2.2. A Definition

The GoF introduced the notion of design patterns as:
“The description of communicating objects and classes customized to

solve general design problem in a particular context.” [GoFo95]
The design patterns encapsulate reusable strategies of interaction between objects
and describe them with a possible intent in a particular context. They added also
that

“each design pattern lets some aspect of system structure vary
independently of other aspects, thereby making a system more robust to a
particular kind of change.” [GoFo95]
The Design Patterns target some specific type of purpose: enhancing the
reusability. This particular proposal of variation is generally described as their
intent.

They furnished with this definition a set of twenty-three Design Patterns
they described uniformly. Our previous example Composite is one of them.

As a matter of fact, the benefits of Design Patterns appeared not only as a
way to encapsulate design experience but also to provide a common vocabulary
for designers across domain-barriers.

2.1.2.3. Available Design Patterns

Since their introduction, the number of Design Patterns has continuously
increased involving a general confusion which rapidly prejudiced the idea of
common vocabulary. Consequently, the pattern community worked on some rules
to limit the set of Design Patterns. As a result, some researches even critic the
mythic set defined by the GoF [AgCo98].

In this sense, it is inevitable for us to make also a restriction. Indeed, it
could have been harmful to base our work on a so confusing situation.
Consequently, we made some choice in the diversity of design patterns.

19

Despite of the profusion of Design Patterns, we noticed that the GoF’s ones
remain the most widespread and known patterns in the software community. Then
to accord with the majority, we will limit our work to this set of Design Patterns.

2.1.3. Description of GoF’s Design Patterns

The specification of each one of the twenty-three patterns listed in the GoF
patterns catalog [GoF 95] is formatted along a fixed structure, described in
section “Describing Design Patterns” in the Introduction chapter as the following:

- Pattern Name and Classification
 The pattern's name conveys the essence of the pattern

succinctly. A good name is vital, because it will become part of your
design vocabulary. The pattern's classification reflects the scheme we
introduce in Section 1.5.

- Intent
 A short statement that answers the following questions:

What does the design pattern do? What is its rationale and intent? What
particular design issue or problem does it address?

- Also Known As
 Other well-known names for the pattern, if any.

- Motivation
 A scenario that illustrates a design problem and how the

class and object structures in the pattern solve the problem. The
scenario will help you understand the more abstract description of the
pattern that follows.

- Applicability
 What are the situations in which the design pattern can be

applied? What are examples of poor designs that the pattern can
address? How can you recognize these situations?

- Structure
 A graphical representation of the classes in the pattern using

a notation based on the Object Modeling Technique (OMT) [RBP+91].
We also use interaction diagrams [JCJO92, Boo94] to illustrate
sequences of requests and collaborations between objects. Appendix B
describes these notations in detail.

- Participants
 The classes and/or objects participating in the design pattern

and their responsibilities.

- Collaborations
 How the participants collaborate to carry out their

responsibilities.

- Consequences

20

 How does the pattern support its objectives? What are the
trade-offs and results of using the pattern? What aspect of system
structure does it let you vary independently?

- Implementation
 What pitfalls, hints, or techniques should you be aware of

when implementing the pattern? Are there language-specific issues?

- Sample Code
 Code fragments that illustrate how you might implement the

pattern in C++ or Smalltalk.

- Known Uses
 Examples of the pattern found in real systems. We include at

least two examples from different domains.

- Related Patterns
 What design patterns are closely related to this one? What

are the important differences? With which other patterns should this one
be used?

This format is consistent with the definition of design patterns. Indeed, the
design patterns encapsulate some design strategies in a particular context: the
design strategies are described in the sections structure, participants and
collaboration, and the particular context is defined in intent, applicability and
consequences. Some other sections serve more for the understanding of the design
patterns as name, motivation, related patterns and know uses do. Implementation
and sample code attend to facilitate the use of the design patterns.
We notice that this description format is not only attempting to suit to the
definition of the design patterns but also have some learning and use guide
purposes.

2.2. General use of Design Patterns

 The following part discusses the present use of the design patterns. On that
purpose, it first presents the software community’ opinion about the design
patterns. Then it explains more precisely how they are used at present.

2.2.1. A General Enthusiasm

OO Design Patterns became quickly a systematic tool in the OO software
industry. The huge success of the GoF’s book [GoFo95] is a good indicator of
this ebullience1.

1 More than 150,000 copies of the book were sold since its publication. Moreover, the
Gang of Four's contribution to software development was acknowledged at the Software
Development '98 Conference in San Francisco.

21

This phenomenon is quite understandable when we look at the major
benefits that design patterns brought to the software community ([GoFo95],
[AgCo98]):

- They encapsulate design experience and consequently allow the reuse of
general design strategies of quality.

- They provide a common vocabulary for computer scientists across
domain barriers.

- They enhance the documentation of software designs.
Those benefits were supported by numerous reports of successful use of design
patterns in real projects [CoBe96].

The software industry understood rapidly the interest of using the design
patterns. Several industrial experiences revealed that software development
managers ask their employees to use the most as possible the design patterns.
Even if a design pattern not properly used can lead to a very bad design, the
benefits of the design patterns are so well-known in the software community that
the simple fact to use them becomes more and more a testimony of quality. In
fact, the software industry tends to systematize the use of Design Patterns in OO
designs.

2.2.2. Using Design Patterns

Using the Design Patterns means to apply them in the design or the
refactoring of one’s software. However, as we will see in the first part of this
chapter, systematic use can lead to harmful situations. Consequently for using a
design pattern, a designer should know both when to use it and how to use it.

2.2.2.1. Positions on the use of Design Patterns

The general enthusiasm tending to a systematic use of the design patterns
quickly warned the software community. Thus between others, Lutz Prechelt and
Barbara Unger [PrUn98] made a series of experiments on the use of design
patterns to expose clearly the danger of misusing. They arrived to the following
statements:

- a careful documentation of the usage of the design pattern is highly
recommended since it pays off well during the maintenance

- design patterns can be beneficial even when an alternative solution
appears to be simpler but unsuitable application can also be harmful in
other situations.

This last point resulted in a general warning :
“The resulting practical advice calls to apply common sense when using

design patterns instead of using them in a cookbook fashion.”

The design patterns cannot be used systematically but in a reflexive manner
accorded to the specific situation. As Gamma said “Patterns have costs
(indirection, complexity) therefore [one should] design to be as flexible as needed,
not as flexible as possible.”

22

2.2.2.2. Knowing when to use Design Patterns

For using design patterns, the designer must recognize the situations in
which a design pattern should be necessary.

For instance, he should stop each time he encounters a complex
problem and looks at the set of Design Patterns to see if one of them should help
to solve completely his problem. However there is in the sole catalog of the
GoF’s book twenty-three Design Patterns. Considering the size of the description
of one Design Pattern (Annex 1), with the entire set the user faces a very huge
amount of information.

The GoF book furnished a synthetic list of the Design Patterns where they are
described only with their intents. Unfortunately, anyone who has already used this
list, knows that the intent of a design pattern is very often insufficient to say if the
design pattern should solve the problem.

Moreover stopping when one arrives to a complex problem is not
always a reliable method. The design patterns solves general problems which
could be applied at different levels of granularity. Maybe the user should identify
a problem and not find a solution with any design pattern only because the real
problem comes from a higher level of granularity than the one he identified.

Figure 2: Granularity of problems detection

Finally, the really best way remains to know the whole design
patterns’ catalog to recognize directly the situations involving the use of one of
them. It does not mean that the designers should know in details all the design
patterns but that he should have a general knowledge of their application field.
Actually we believe that for applying properly the design patterns, the user needs
to have a synoptic knowledge of the entire set.

2.2.2.3. Knowing how to use Design Patterns

The use of a design pattern includes also its application on the specific
problem of the designer.
The design patterns are describing design strategies for solving general problem.
As such they are not an implementation we could reuse directly. For solving a
particular problem with a design pattern, the designer needs to adapt the abstract
design structure encapsulated in this design pattern to his specific situation.

Level of granularity on
which the application of a
design pattern should solve
the problem

Problem that the designer cannot solve

23

Applying a design pattern is to implement this design pattern according to a
particular context: the context of the problem.

Consequently, for applying a design pattern, the designer must understand
the role of each object of the abstract design structure and their collaboration.
Afterwards, he should be able to adapt the design patterns to his problem in
identifying the participants of the abstract structure with an actor of his particular
problem. For example, to apply the Composite design pattern (presented in Annex
1), the user needs to understand the role of the objects , and

 and their interactions. Then he should be able to recognize which
object in his specific problem could take the role of , which ones the
role of , and which ones the role of .

For most of the people, this process is still a hard task. Indeed the
designer needs to understand so well an abstract structure that he should be able
to implement it according to its own problem. Because people generally like to
have the feeling to stay in a known context, they find often easier to understand a
concrete application than directly the abstraction. Then the classical mechanism
for the application of a design pattern becomes:

Figure 3: Induction process

In the same manner that a first example will help to understand the
abstract design structure, attending to apply concretely the design pattern will still
more refine the comprehension. Definitely, the understanding of a design pattern
is involved by induction.

Finally, we notice that for being able to apply correctly a design pattern,
the designer needs to see and participate to some concrete experimentation of its
abstract structure.

2.2.2.4. Tutorials for learning about design patterns

From the scope of our research, it seems that the tutorials for learning
about design patterns are limited to books and courses. We did not find any
tutorials using other supports (for ex: electronic).

The books are catalogs of description of design patterns. The two
major ones are the GoF [GoFo95] and the Java tutorial [Coop99]. They use
largely examples to support the descriptions. We have already seen that design

comprehension of a concrete example

comprehension of the abstraction

application on a concrete problem

24

patterns’ descriptions in the GoF book contain two examples: one in the section
Motivation and one in the section Sample Code . The section Implementation is
also available to help the designer to apply the abstraction on his practical
context. The Java tutorial is still more example-oriented since almost each part of
the description is enriched with a concrete example and some Java code.

The courses [Keri00] are based on exercises. They appears often as
supplementary supports to the reference books. The design patterns are presented
in a logical order frequently from the most general to the most specific. The
students experiment each design pattern on their own. Using open questions, the
courses focus on a deep understanding both of the mechanism behind the design
pattern and its application field.

Those tutorials target on the learning of all the design patterns in a whole. They
do not bring any new solutions to apply the design patterns properly and correctly
and accord with the two propositions we discussed previously:

- necessity of a synoptic knowledge of the design patterns’ set,
- necessity of experimenting concretely the design patterns via examples

and applications.

2.2.3. Conclusion

The general enthusiasm in front of the design patterns’ benefits lead to a more
systematize application of these tools. However the design patterns are not
obvious abstraction (that is why they are so useful) and their application still
remains quite complex and requires a good knowledge of the whole set to be done
properly.

Consequently, as described in the next chapter, the research in this field is
now mainly centered on some CASE tools (Computer Aided Software
Engineering) for design patterns.

2.3. Design Patterns related activities

2.3.1. Introduction

In the literature, we found four categories of research in design patterns’
related activities:

Specification: The design patterns was introduced without formal
basements. The specification domain is attempting to the formation of a rigorous
specification language for describing them.

25

Application: This activity works on the automation of the application of
the design patterns. Concretely it aspires to generate source code that implements
a particular design pattern according to the specification of the programmer.

Recognition: Design patterns are also communication means between
designers. In this sense, the Recognition domain aims to track the instances of
specified pattern in the source code of legacy system and then to enhance the
communication.

Suggestion: The use of the design patterns is still a complex task which
requires a good knowledge of these tools. The suggestion activity attempts to
automate the research of design pattern for solving problems.

The first research direction works on the design patterns themselves and the three
others pertain to the ways CASE tools can facilitate the practice of design
patterns.

The next part presents the state-of-the-art of the specification activity.
Then we will analyze the state of the research in the domain of the CASE tools.

2.3.2. A specification of Design Patterns

In this part, we review the point that reaches the research in terms of
specification of Design Patterns. First we will explain the necessity of specifying
the Design Patterns. Then we will discuss the limits of the specification and their
reasons inherent in the Design Patterns themselves. Finally we will describe
briefly the different research works we encountered in this domain.

2.3.2.1. Some Needs for Design Patterns’ specification

As we saw in § 2.2.2.2, the highly detailed descriptions of the Design
Patterns in the GoF’s book are generally inefficient in expressing clearly the
application field. This phenomenon, as claimed by Eden [Eden98a], is not
surprising since Design Patterns are based on textual descriptions which are
inherently ambiguous, and on the induction (via examples) which leads to infinite
directions. Consequently, many ambiguities arise which cannot be resolved
unequivocally.
For example, the patterns mailing lists [DpLi00] often engage in prolonged
discussions whether a particular piece of code manifests an instance of one design
pattern or another. For becoming fundamental elements of software construction,
the abstraction underlying the design patterns must mature to a definite and
unambiguous specification.

Actually this research area attempts to formalize the design patterns to enable
[Eden98a]:

26

- Resolving questions of relationships between patterns, e.g.: Is one pattern
a special case, a variation, or a component of another, and so forth;

- Resolving the question of validation (i.e., does "this piece of code"
implement "this pattern"?)

- Tool support in the activities related to patterns: Application
(implementation) and recognition.

2.3.2.2. Limitations of Design Patterns’ formalization

Design Patterns attempt to solve general design problems. They are by
definition generic tools over the domain barriers. The context in which the design
patterns are applied, is flexible and depends on the particular domain.

The intent of a design pattern establishes a relation between the design
strategy encapsulated by the design pattern and its general application. But in
[GiLo98], Gil and Lorentz highlight that

“the intent transgress the boundaries of exact science, which is limited to
“how” rather than “why” questions.

As any tool, the design pattern must have an intent but this intent should
be broad, open to variation and never inscribed in the tool itself. “

The intent of design patterns cannot be fixed. Because to fix it is to limit
the use of the design pattern to a specific case: the one described by the intent.
The general intent of a screw-driver is to drive screws. However, we do not limit
its use to that sole purpose and do not hesitate to use it as a lever or as other
various thinks.

Ddesign patterns are design strategies, design mechanisms. As such, they
can be used for other purposes than the one described in the intent.

As we show it in previous sections, it is necessary to formalize the
abstraction mechanisms encapsulated in the design patterns. But this
formalization should target the rules that govern the behavior of those abstraction
mechanisms and not their uses. We must formalize the design structures
encapsulated in the design patterns and not their intent.

For instance, the interest of an abstraction mechanism like the inheritance is not
to impose only one kind of use: we know how it works and we apply it to our own
purpose. Obviously, we are aware of the general uses of inheritance: we are not
going to reinvent the wheel every times. However, we are not limited to those
uses because we know the rules governing the inheritance principle and can apply
it for other innovative purposes.

Consequently, the intent cannot be fix inside the design pattern definition. And a
formal and systematic approach of the design patterns cannot include the intent.

27

2.3.2.3. Overview of existing specification languages

2.3.2.3.1. Specification of the abstract structure of a Design Pattern

Numerous works were done in the domain of the specification since the
introduction of design patterns. Most of them present, however, important
limitations.

We notice the work of Helm, Holland and Gangopadhay [HHGa90], which
was not targeting specially the design patterns but which gave interesting basis.
They defined the notion of Contracts: a language extension with representations
for function calls, assignments and relation between them. But Contracts
unfortunately encapsulate only run-time characterizations and not structural
relations as design patterns.

Florijn, Meijers and van Winsen [FMPW97] propose to represent the
design patterns as abstractions of higher-level: the Fragments. A fragment is in
fact a semantic net, or a graph with labeled arcs, whose nodes stand for the
participants and the arcs describe the node’s role in the pattern. Each fragment,
however, represent not a “true” pattern but only a version thereof. Moreover the
fragment model does not suggest any means for reasoning about patterns and their
relationships. Then it does not provide an adequate abstraction.

Eden recently presented a work [Eden99] based on all the previous
researches which finally defines an unambiguous specification of the design
patterns.
He introduced a symbolic logic language for the specification of recurring motifs
in object-oriented architecture like design patterns: LePUS [Eden98b].
LePus is particularly interesting because it can express accurately and concisely
not only fundamental elements of OO architecture, such as inheritance, class or
hierarchy, but also the correlations, such as isomorphisms between methods
classes and hierarchies. Therefore, LePus can be used to describe the structure of
a design pattern in terms of objects, hierarchies and their interactions. The
language is available both in a graphic and textual version.

LePus [Eden99] is presented as a consistent base for achieving the main
goals of this research activity:

- defining a reliable and precise formalism for a more rigorous use of the
Design Patterns

- furnishing a good support in the development of Case Tools.

2.3.2.3.2. Specification of the relationships

Relationships between design patterns were discussed in several
publications. For example, Kim and Benner [KiBe96] discuss variations of the
OBSERVER pattern from the GoF set, and Rohnert [Rohn96] discuss variations of

28

PROXY. The authors of the GoF catalog themselves discussed associations between
the patterns in the chapter “Organizing the Catalog” and “Design Patterns
Relationship” [GoFo95], but the discussion remains very informal. Zimmer
[Zimm96] began to classify those relationships. He divided the relations between
the patterns of the GoF’s catalog in 3 types: “X is similar to Y ”, “X uses Y”, and
“Variant of X uses Y”. Once again, the division was based only on informal skills
and no reliable proofs could support this work.

However, still at present, very often members of the patterns community
debate over questions pertaining to relationships between patterns, such as:

What is the difference, if any, between pattern p1 and p2?
Is pattern p1 a special case (specialization or refinement) of p2?
Does class library L contain an instance of pattern p1 or of p2 (or of

both)?

The relationships are a key notion in the understanding of design patterns
and their utilization. For example, a rigorous description of similarities between
two design patterns leads to a better comprehension of their utilization. Indeed,
the difference between Decorator and Composite is quite subtle. To express
clearly and rigorously this difference should precise the usage of each of them.

However, it is difficult to find a rigorous work available on this domain. On
this subject, the Gang of Four recently declared [DpLi00]:

“When we wrote our book, we were trying to hide something. We were
trying to avoid talking about one pattern being a specialization of another, or one
pattern containing another as a component. We wanted to avoid going meta and
just wanted to talk about patterns. … But the world is different now. People want
to know the relationship between patterns and we need to tell them. The
relationship here is so obvious that we need to emphasize it, not just tuck it away
at the end in the related pattern section.”

With the work of Eden, the formal basements are now available and the
research on establishing clearly the relationships between the Design Patterns is
proceeding (Vlissides and al., 2000) but remains in a very early stage.

2.3.2.3.3. Specification of the intent

As we discussed it in § 2.3.2.2, a formal approach of design patterns can
be achieved only if the intent is disregarded. Consequently, the research in the
formalization of the intent is almost non-existent.

We still notice the work of Gustavsson and Ersson [GuEr99]. They
attempt to classify the intents as they are described in the GoF book, and define
some redundancies between them. They arrive to an interesting division as it
facilitates the use and the understanding of the intents of the GoF. Since their
work remains informal, it just serves as a supplementary support to the GoF
description of the Design Patterns and does not attempt to define a hazardous
relationship with the Design Pattern structure itself.

29

To conclude, we think that the research in the specification of the Design
Patterns reached now interesting basements. But, since the first consistent
specification language for this activity, LePus, was introduced very recently, it is
a domain which remains in its very early stages. Therefore, it remains a large
amount of work to do before being able to use it as a support for the other design
patterns related activities.

2.3.3. Case Tools for Design patterns

Design patterns has been rapidly of a great impact on the software community.
Their benefits were rapidly well-known and designers used them more and more.
To assist this increasing utilization, the software industry is calling for efficient
CASE tools for design patterns.

 In this part, we will make the point on the research into the recognition of
Design Patterns, then into their automatic application and finally into the
automatic suggestion of their use.

2.3.3.1. Recognition of Design Patterns in legacy systems

Automatic detection of design patterns in arbitrary source code is very
difficult. It deals with what the pattern community generally calls the tracing
problem: more Design Patterns are applied, the more difficult it will be to
reorganize the structure of the participating design patterns. This phenomenon
appears specially because the Design Patterns can be applied at different level of
granularity. Some works attended to pass besides this appearing difficulties and
furnished first results in different programming languages.

We notice two interesting works of the early stages of this domain: the

structural patterns of the GoF in C++ source code. They also provide an output in
OMT models and an evaluation of the results by metrics. In the same period,
Brown worked on a version for Smalltalk.

Those two works highlighted the fact that working with the structure of programs
were not sufficient enough to detect design patterns (particularly for non-
structural Design Patterns!). However they demonstrated that working with the
behavior of systems rapidly becomes a very hard task. Indeed the information
about the behavior is not entirely contained in the languages. For example, the
simple fact that Smalltalk has no type make difficult the analyze of the
interactions between objects. For those reasons, to analyze the behavior it is
necessary to test the system and to deduce the behavior from the results of these

30

tests. Such operations involves a mass of information too excessive to be
practically treated. And the detection of Design Patterns needs to go further than
the conventional reverse engineering works and to use some sort of Artificial
Intelligence strategies.

The work of Pinali [Pina99] give some interesti ng basements in this
direction with a code analyzer for Java. But the research still needs to work in this
domain to be able to furnish a reliable CASE tool for detection.

2.3.3.2. Insertion of Design Patterns in new systems

The insertion of the Design Patterns is a developed research domain and
numerous works attempt to that goal. We will briefly describe here the capital
ones.

The first noticeable contribution was the work of Budinsky and his colleagues
who presented a tool that supports the application of design patterns by generating
code in C++. But that tool was limited to a hard generation of code.

On this point, the work of Florijn, Meijers and van Minsen [FMPW97] (see §
2.3.2.3.1) goes further. Indeed, they furnish an extension of Smalltalk in which
the design patterns are considered as abstraction of higher-level: the fragments.
Their platform assists developer in applying Design Patterns in three ways:

- generating program elements for a new instance of a pattern,
- integrating pattern occurrences with the rest of the program by binding

program elements to a role in a pattern,
- checking whether occurrences of patterns still meet the invariants

governing the patterns and repairing the program in case of problems.
This last work was the major and more interesting contribution in this domain.

It may be also noticed an interesting commercial tool TogetherSoft [Toge00]
for Java/UML. It is an integrated CASE tool which gather design and
development phases. They help the user both to apply the design pattern and
furnish a trace of the application in the software itself.

2.3.3.3. Automatic suggestion for using Design Patterns

In regard to our investigations in the literature, the work in the automatic
suggestion of Design Patterns is much more modest than in the previous areas. It
seems that there is no tool which assists really the user. Actually, the research
seems to be limited to the analyze of legacy system and the detection of situations
which should involve the use of a design pattern.

On this last point we notice the recent work of Correa and Werner [Corr99]
which provides a tool for analyzing and detecting defects in the design of system.
The tool, “OODPTool”, works on UML code. About the suggestion of Design
Patterns they took two directions:

31

- Detection of general design defaults that design patterns should solve.
They referred here to the chapter of the GoF’s book [GoFo95] “Design
for change” where some general design defaults are described with a set
of design patterns susceptible to ameliorate the situation. Nevertheless
OODPTool does not succeed in suggesting the proper pattern and
satisfies in just displaying the suggestions of the book. Therefore, this
system do not help in the use of the design patterns but just attempt to
detect some design defect which should involve them.

- Detection of anti-patterns. The anti-pattern are patterns of bad design.
However their number is very small compared to the design patterns’
catalog and only few of them provide a concrete solution expressed as a
design pattern. Practically, OODPTool could recognize the use of not
more than three design patterns using the anti-patterns.

This two directions did not succeed in suggesting efficiently a design pattern as a
solution to a detected problem.

Actually, it seems that the research does not, at present, provide satisfying
results in the field of the automatic suggestion of Design Patterns.

To conclude this study of the CASE tools for design patterns, it appears
that this research field is today well established. Recognition and Insertion of
Design Patterns arrived to interesting practical results. However, about an
automatic suggestion of design patterns, the results are still unsatisfying. Taking
position on the use of the Design Patterns in the next chapter, we will see why we
think this domain is limited by the definition of the Design Patterns itself.

2.3.4. Conclusion

The formalization of the Design Patterns made a recent improvement with the
introduction of a rigorous specification language : LePus. Except for the intent of
the Design Patterns which remains the burning part of them, we believe that this
language should serve as a basement towards a general specification of the
Design Patterns and their relationships and should rapidly improve this research
area.

Similarly, the research in Case tools for the insertion and the recognition
should consider this work as a good support to arrive finally to consistent and
more generic results. However, like the formalization of the intent, the automation
of the suggestion of Design Patterns remains a burning and unsatisfying domain.

32

2.4. Position on the use of Design patterns

In this chapter, we will clear up our position on the use of the design pattern.
In a first part we will expose the difference between design patterns and
frameworks. Then we will explain why we think that design patterns cannot be
considered as clip-arts. Finally we will discuss the communication purpose of the
design patterns.

2.4.1. Design Patterns vs. Framework

Design patterns are description of design strategies which solve some general
design problem. Like frameworks, they encapsulate design decisions in reuse
purpose. But over this similarity, the GoF book highlighted the differences
between the Design Patterns and the frameworks in three major way [GoFo95]:

- Design Patterns are more abstract than frameworks.
- Design Patterns are smaller architectural elements than frameworks.
- Design Patterns are less specialized than frameworks.

In contrast with framework, the design patterns are not executed and reused
directly but have to be implemented each time they are used. Since design
patterns encapsulate a way of designing, the designer has a lot to learn from them.
A Design Pattern is a solution to a general problem and the designer will certainly
use it in a specific context related to the problem solved by the pattern. But their
use could be still more useful if we consider them also as abstraction mechanisms
that should inspire the user.

2.4.2. Design Patterns are not clip-arts

We think that design patterns are not only like clip-arts as some researchers
affirm. If we stay in the domain of the painting, a better metaphor to design
patterns than clip-arts should be the painting techniques themselves. Indeed, the
first time a painting technique is used and encapsulated, it is because it solves a
known problem. But does it mean that the painters over the centuries never went
out of those fixed purposes? What make innovation and creativity was to apply
those techniques for new purposes and to combine them with other painting
techniques.

It is clear that the first time a designer will use a design pattern, he will use it
for the general goals described in the pattern itself.
As we explain in the part “Knowing how to use design patterns” (see § 2.2.2.3),
all the times that a designer apply a design pattern are occasions for learning and
understanding more about this pattern. After a certain amount of uses, the user
will really understand the abstraction mechanism. Then he will be able to excel
the common use of the design pattern to new goals and associations with other
design patterns. As Chris Pehura [Pehu00] said “ the best design should be the

33

realization of the combination of at least three design patterns ”. But such
combinations will deeply depend on the context and will certainly ask for
innovative uses of the design patterns.

It may be considered that the intent is one of the major benefits that design
patterns offered to the software industry: patterns becomes solution to general
problems. However we believe that this intent should remain a support and not
limit the design patterns to a fixed field of uses.

2.4.3. Design Patterns as communication means

The work of Ellen Agerbo and Aino Cornils, “How to preserve the benefits of
Design Patterns” [AgCo98], attempts to insure the three general benefits of the
design patterns:

- they encapsulate experience,
- they provide a common vocabulary for computer scientists across domain

barriers,
- they enhance the documentation.

On this purpose they restrict the set of the design patterns by defining some
criteria towards a quality of the design patterns. They also work on a library of
design patterns. About that, they declared that “ design patterns will be fixed, in
the sense that it will not be possible to adapt it in other ways than were foreseen
when making the LDP [a Library Design Pattern is a design pattern which suits
with the restricted criteria they defined] ”.

To establish limits on the set of design patterns may be beneficial but it is
contradictory with the fact that design patterns cannot be fixed: they are not
frameworks. The general benefits of the design patterns should not be limited to
enhancing the communication between designers but be also considered as a way
of communicating an abstraction mechanism.

Design Patterns are useful for communication purposes for design. However,
they are not clip-arts: their use should not be limited to a fixed intent. Design
patterns should help the designer and influence his style. But they cannot dictate
the design and limit their use to rigid purposes.

Therefore, the automatic suggestion of design patterns is a delicate task.
Indeed, how to automate the suggestion of design patterns, without fixing their
intent. However, an help system for assisting the designer in choosing the design
patterns may be interesting. But this assistant should insist on presenting the
design patterns also as communication tools of abstraction mechanisms.

34

2.5. Conclusion

Since their introduction, Design Patterns have known a real success. The
industry is generally enthusiast by their benefits and tends to use them more and
more. But their use and understanding is still a complex task for the designer not
comfortable with the set of design patterns.

Consequently, several works were done in the direction of CASE tools for the
application and recognition of design patterns. These research area knew recently
the introduction of formal basements which are certainly going to improve the
consistence of the results.

Nevertheless, if we want to take entirely benefits of the design patterns, their
use still remains a subtle task which seems to be far from being systematize. The
design patterns appear as very useful tools of communication for design
particularly if they are not dictating the design with a fixed use. It is why the task
of helping the user in using the set of design patterns is hard.

In the next chapter, we will discuss which directions we must take to help the
user without limiting the benefits of the design patterns.

35

33.. HHEELLPPIINNGG TTHHEE DDEESSIIGGNNEERR TTOO KKNNOOWW AANNDD UUSSEE DDEESSIIGGNN

PPAATTTTEERRNNSS

3.1. Introduction

We described in §2.2.2 the way by which design patterns should be used.
We retain that a reliable use of the design patterns results from two directions:

- to use them properly,
- to use them correctly.

We saw that to achieve those purposes, the user needs
- to have a synoptic knowledge of the set of design patterns
- to understand really the abstraction mechanism encapsulated by the

design pattern.

In fact, a reliable use of the design patterns is closely related to a good
understanding of the design patterns’ set. Therefore helping the designer to use
the design patterns should mean also to facilitate the understanding and learning
of the design patterns’ set.
However an help system should not be limited to that aim and should also assist
the user in choosing the design pattern appropriate to his problem. This system
should help both the novice which does not own a synoptic view of the set, and
the expert which wants to see as clearly as possible if a design pattern should fit
to his purposes.

This chapter highlights the criteria we think necessary to assist the
designer in using Design Patterns. In a first part, we discuss the features
enhancing the learning and understanding process of a design patterns. Then we
will study how to make a user choosing a design pattern in the entire set.

36

3.2. Learning Design Patterns

This part highlights the mechanisms and features that make the user learn
about design patterns.

As we saw in § 2.2.2.4, the existing Design Patterns tutorials are all based on
the same principle: to use accurately the design patterns the designer needs a good
understanding of them and a synoptic knowledge of the entire set. As such, those
tutorials can also be seen as learning methods.
Here we are first going to review which are the interesting topics of the available
learning methods. Then we will discuss other points that, on our opinion, are also
necessary to reach an efficient learning and good understanding of the design
patterns.

3.2.1. Interesting topics of available learning methods

The existing learning methods are based mainly on the induction. They
are based on the principle that the best way to understand an abstraction
mechanism is to experiment it in a concrete situation.
Indeed, as explained in § 2.2.2.3, a first example presents the abstraction in a
concrete way. Then the practice helps to certify the understanding.

Both example and practice are useful because they present the design
patterns in a context well-known by the designers: some practical pieces of design
or code. In such a familiar context the designer is more able to see and recognize
the design strategies belonging to the design patterns and their advantages.

3.2.1.1. Highlighting the advantages

In a world where the notion of time becomes a predominant factor, we
generally like to know the reasons for which we are spending our time. Therefore,
before learning a new thing, we need to know what should be the benefit to spend
time on it. We believe from our own experience that the same phenomenon
appears when using the design patterns.

Of course, some people simply base their trust in design patterns’
celebrity, but we believe that to present clearly the advantages of design patterns
will stimulate the attention of the majority. Indeed, we begin to be really
motivated to learn a design pattern when we have the sensation that it will bring
us real benefits.

Example and practice put the design patterns in a practical context with
which the designers are familiar. In such a context, they are more able to see the
advantages because they can compare the results with their experience. The
benefits of design patterns being more explicitly exposed, the attention and the
interest of the designer are motivated.

37

The available tutorials utilize for this purpose the examples in the design patterns’
description. But they also discuss distinctly the advantages of the design patterns
all along the description of the patterns and in some more specific sections like
“Consequences” in the GoF’s book.

3.2.1.2. Highlighting the drawbacks

It is really important to highlight distinctly the advantages of a design
pattern to motivate the learning of the design mechanism, but it is as much
important to show its drawbacks. Just to know about the advantage of a tool is
like to drive a race car without knowing there is no brakes: you will go ahead
enjoying the power of the engine but how you will look like if you encounter an
obstacle which should force you to stop.
It is always significant to allow the user to have a critic look at the tool to be able
to use it correctly and properly.

As they do it with the advantages, the tutorials described also the
drawbacks of the design patterns. They expose them with some examples and
exercises and more distinctly all along the description of the Design Patterns as
well as in the “Consequence” section of the GoF’s book [GoFo95].

From our analyze of the Design Patterns tutorials, we retain the necessity
to highlight both advantages and drawbacks for making understand completely
the design patterns.

The consequences of the design patterns are really a key point of their
understanding. The opening questions suggested in the courses about Design
Patterns [Keri00], serve in showing the effects, positive or negative, of their
application under different viewpoints.

3.2.2. Additional necessary items for enhancing the learning

3.2.2.1. Introduction

“When we wrote our book [GoFo95], we were trying to hide something.
We were trying to avoid talking about one pattern being a specialization of
another, or one pattern containing another as a component. We wanted to avoid
going meta and just wanted to talk about patterns.” E. Gamma.

In all books and tutorials, design patterns are presented as patterns.
However, if the pattern presentation presents numerous advantages (known
approach, oriented for reuse...), it has also the effect to show the design patterns
as blocks. Therefore the design patterns became for the majority of the users
revered design black boxes. The progresses in tools for automating the use of
design patterns will certainly contribute to increase this phenomenon.

38

The formalization of the patterns attempts to the necessary work of
demystifying the design patterns. To enhance the comprehension of design
patterns, it may be essential to finally expose their cores.

3.2.2.2. Highlighting the design principles behind the design
patterns.

The abstraction mechanism encapsulated by a design pattern is the
composition of basics design rules. To understand an abstraction, we have two
possibility:

- to reason about particular facts, the induction. This is the approach we
analyzed previously.

- to reason directly about the mechanism itself.

If we take the example of a mathematical theorem, we have the same two
directions to understand it. It is possible to learn it in applying it in different
problems, then you will know by the practice the scope of the theorem.
Another method should be to show the demonstration of the theorem. Once you
understand the demonstration, you can really grasp the scope of the theorem.
Revealing its origin, the theorem is demystified. It can no more frighten because
it appears as it is really: a simple combination of small rules you had already
integrated. Then the theorem becomes a part of you and ameliorates your
knowledge without limiting you to some fixed uses. Now the theorem could
increase your creativity.

Of course, design patterns are not mathematical theorems and we are not
going to demonstrate them. But we believe that design patterns should be shown
also as the combination of other design principles as inheritance, composition,
interfacing and so on.
We do not mean that patterns are the design principles themselves: they are the
results of applying them in practice to specific real world problems. The patterns
teach us more that the deep workings of those design principles. That is what
make their singularity.
But we believe that if we allow the user not only to understand the uses of a
design pattern but its depths, we offer him the possibility to integrate it and so let
him increase his creativity more than limit him to fixed applications.

3.2.2.3. Highlighting the relationships between design patterns.

 Going more deeply inside design patterns, as said in §2.3.2.3.2, it appears
obvious relationships between the design patterns themselves. The GoF book
presents them informally in the “related pattern” at the end of the pattern.

The relationships are very useful in a learning purpose. When two tools
are very similar, to see the difference between the two is a way to highlight their
subtleties. For example, we take two wines from the same vine but not the same
year. We know the wine coming from this vine since a long time and the

39

differences between the two are very small. But, it is certain that if we get the
subtle differences between them, we will know more about each of them; we will
recognize their own personality.
To confront two Design Pattern very closed is a way to see new subtleties in the
two.

In this sense, the relationships between design patterns must be clearly
highlighted. Each relationship is an opening question for the designer: Why this
two design patterns are related? What make their difference? Do I really
understand the mechanism of the two?

To conclude, we claim that the design patterns tend to appear like magic
black boxes because of the format in which they are described in the available
tutorials. This phenomenon is very often leading to confusions in their use. On the
opposite, we believe that highlighting the design principles constituting the design
patterns and their relationships is an interesting way towards a complete
understanding of the design patterns.

3.2.3. Conclusion

In order to enhance the comprehension of design patterns, it may be
necessary to show clearly:

- their consequences,
- the design principles which compose them.

Moreover it may be considered that the relationships with other design patterns
constitute an efficient support for assuring a reliable comprehension.

This part defines some important features we should highlight for
attempting to a better understanding of the design patterns. We want also to help
the designer to use the design patterns, that is to say to choose a design pattern or
a set of design patterns which could fit to its problem. Thus, in the next part, we
will discuss the necessary topics to consider for choosing properly the design
patterns.

3.3. Choosing appropriate Design Patterns

Solving a design problem with a design pattern is
- to identify the appropriate design pattern in he design patterns’ set
- to apply it.

It is easy to identify the already-known design patterns. Indeed, it can be
evaluated rapidly if they are appropriate or not. Unhappily there are not so many
people who know the twenty-three design patterns defined in the GoF’s book.
Consequently, it may be interesting to help the designers to choose a design
pattern in the whole set.

40

Choosing a design pattern is to find it inside the set and to evaluate it to assure its
suitability. Therefore to help a designer to choose a design pattern means both:

- to help him to evaluate the design patterns according to his specific
problem

- to help him to head for a proper solution (a design pattern or a set of
Design Patterns)

3.3.1. Evaluating a Design Pattern

3.3.1.1. Introduction

“Patterns have costs (indirection, complexity) therefore [one should]
design to be as flexible as needed, not as flexible as possible.” E. Gamma

As discussed in § 2.2.2.1, to apply a design pattern not properly can be
harmful. Under this viewpoint, the designer must take care of evaluating the
design pattern he is planning to use, and so to assure that it will bring him more
benefits that inconveniences.

3.3.1.2. Definition of a proper pattern

A proper design pattern offers interesting benefits without creating
undesired situations. Therefore to determine if a design pattern is proper, is to
know if you are ready to accept its drawbacks for taking benefits of its
advantages.

Consequently a proper pattern should both:
- offer interesting benefits
- not result in undesired situations.

3.3.1.3. Consequences and design principles

All the abstraction mechanisms described in design patterns are based on
the OO paradigm: they are combinations of basic principles like inheritance,
composition and so on. We notice that those principles carry their own effects.
And that those effects will influence directly the consequences of the design
patterns.
For example, one of the advantages of Composite [GoFo95] is to allow the
addition of new features dynamically. However it may be noticed that this feature
is not particularly belonging to the design pattern itself, but by the composition
principle which is used in the design of Composite. In the same way, you should
critic the fact that Composite is heavy because is leading to create a lot of small
objects. But similarly, this drawback comes from the composition principle.
The design patterns inherit the effects of the design principles which compose
them.

41

Design Patterns are, however, much more than the design principles they
use: they are a specific organization of design principles. Consequently, their
effects are more that the sum of the effects of the design principles themselves.
For example, the fact that Composite allows

is inherent in Composite itself.

The design patterns results in
- some consequences coming from the design principles which compose it,
- some consequences belonging to the design patterns as particular

organizations of design principles.

It may be considered that for choosing properly a design pattern, it is necessary
to highlight this phenomenon. Indeed to apply Composite only for getting the
effect of a consequence directly related to the composition principle, results in
implementing an useless heavy structure. To avoid undesired complexity, the
designer should know what are the consequences really owned by the design
pattern itself.

3.3.1.4. Evaluation of a design pattern

Evaluating a design pattern means to estimate which will be the benefits
and the negative side effects of the design pattern when applying it in the specific
problem of the designer. This estimation is closely related to the user’s context.
The user must be able to express his needs: which are the advantages he requires
and which are the drawbacks he really cannot accept.

On that purpose, a help system must clearly the advantages and the
drawbacks of design patterns. On this base, the user will be able to identify which
advantages he needs and which he does not, which drawbacks he does not want
and which he is ready to accept. This identification will allow him to evaluate the
design patterns as appropriate or not appropriate.
For example, a user considers that he needs all the advantages of a design pattern.
Moreover, looking at the drawbacks of this design pattern, he does not identify
any one which could prejudice the main specifications of his system. Therefore,
the user can certainly claim that this design pattern is proper to solve his specific
problem.

The check of the consequences of design patterns,
- advantages needed / not needed,
- drawbacks not accepted / accepted,

participates in their evaluation.

In conclusion, the examination of the design patterns’ consequences
participates in their evaluation. But, in order not to misuse them, the designer
should always know which consequences are related to the design patterns itself
and which ones are related to the design principles which compose it.

42

3.3.2. Towards a proper solution

3.3.2.1. Introduction

It is necessary to close the scope of solutions to offer concrete results to
the user. Evaluating the design patterns, the designer can distinguish which are
the appropriate design patterns for his problem. The evaluation participates in
closing the scope of solutions towards the proper one.

But this closing movement is likely not sufficient to help the designer to
choose a design pattern. He also requires to be lead towards the proper design
patterns. Thus, we must not only close the scope of solutions but also open it.

3.3.2.2. Navigating through the knowledge

Certainly because of the dependency on the time, most of the people have
this bad reflex of fixing the scope of their researches towards solutions in their
already-acquired knowledge. The help system must consider this factor and open
its entire knowledge to the user without limiting him to it. The idea is to meld the
knowledge of the design patterns’ set with the user’s own experience.

For accessing the knowledge, the user needs some gates. One very
consistent entrance is the knowledge itself: the navigation through the knowledge
allows to learn, to evaluate and to discover it in the same time. In our case,
navigating through the knowledge means to navigate through the design patterns,
to go from one to another towards a solution.

3.3.2.3. Relationships between Design Patterns

Design Patterns offer a mean to navigate between them: their
relationships. One design pattern can be reached from another one with a
relationship. For example, Strategy can be see as an alternative of Decorator.
This relationship could lead to explore Decorator whereas we were studying
Strategy.
With the relationships, it is possible to open the scope of solutions, that is to say
to offer new suggestions of design patterns to the designer. Then each design
pattern becomes in the same time a possible solution and a portal towards new
potential solutions.

Each design patterns has a set of relationships with other ones. In the
context of the navigation through the knowledge, these relationships may be seen
as gates towards other design patterns. However, the purpose is not to make the
user navigating through the whole set, but to show new directions which are
susceptible to interest him.

43

Consequently, we must give the user the potentiality to differentiate the directions
which are susceptible to lead him towards a solution from the others. It is the
nature of those relationships which will allow the user to evaluate the usefulness
of the directions. For example, the user evaluates a design pattern and identifies
that he needs some of its advantages but cannot accept some of its drawbacks. In
this case, a relationship susceptible to help him, would be certainly an alternative
to the undesired drawback more than, for example, an association with another
design pattern.
Therefore the relationships between the design patterns can be considered as a
useful way of navigating towards a solution if their nature is explicitly exposed.

It may be considered that the navigation through the knowledge could
efficiently help the designer of all levels to head towards a suitable solution for
his problem. On this purpose, it is necessary to present explicitly the relationships
between the design patterns.

In conclusion, for helping a designer to choose a appropriate design
pattern to his specific problem, a help system must support the evaluation of
design patterns and the navigation through them towards possible solutions. Then
the designer could find a satisfying solution considering a positive evaluation and
an absence of other possibilities.

3.4. Conclusion

For assisting the designer in using the design patterns, we must help him both
to learn and understand consistently the design patterns and to find a solution in
the design patterns’ set.

In order to enhance the comprehension of design patterns, it appears
necessary to express clearly their consequences and the design principles that
compose them.

We saw also, in the last part, that helping the designer to find an appropriate
solution in the design patterns’ set results from a double movement:

- closing the solutions’ scope in evaluating the design patterns,
- opening the solutions’ scope in directing the user towards other design

patterns susceptible to be suitable.
For making possible this process, it is essential to expose explicitly the
consequences of design patterns and the nature of their relationships.

This analyze concludes that for enhancing the learning and understanding
of design patterns and the research of solution in the design patterns’ set, the
following features of design patterns must be highlighted:

- their advantages and drawbacks,
- the design principles which compose them,

44

- the relationships with others.

In this sense, it may be interesting to reorient the classical viewpoint on the
design patterns in the direction of those new features. Therefore we should
exchange the classical format used for describing the design patterns for a new
presentation highlighting efficiently those necessary but disregarded topics.
On that purpose, in the next chapter, we will introduce a reoriented presentation
of some design patterns of the GoF’s set.

45

44.. AA RREEOORRIIEENNTTEEDD PPRREESSEENNTTAATTIIOONN OOFF TTHHEE DDEESSIIGGNN PPAATTTTEERRNNSS

The presentation of the GoF’s design patterns set is becoming a standard in
this field of research. However, as we claimed in the early chapter, in order to
help consistently the designer in using design patterns it may be necessary to
reorganize the design patterns in function of new criteria.

This chapter introduces a new presentation of design patterns issuing from a
reorganization of the common ones. A first part presents some basements for our
work, then a second part discusses practically the new necessary criteria
highlighted in the third chapter. The third part explains how we must reorganize
the other information to conserve a complete presentation of the patterns. Finally,
we expose the general aspect of this new presentation.

4.1. Introduction

Before all, it may be considered that our work will not use the specification
language LePus [Eden98b]. It is certain that it should give us some consistent
basements, but LePus is too young and using it, we should stand surely in front of
enormous studies2 out of the scope of this thesis. By consequence, our work will
not take advantages of this formalism.

Whatever, our purpose is to verify the validity of our previous analyze. We
aimed to develop a prototype to examine if enhancing the learning of design
patterns and navigating through the knowledge should be some reliable basements
for a help system to assist the designer in using design patterns.

2 We think particularly about the specification of the relationships which just begin to be
studied by Vlissides and his colleges (see §2.3.2.3.2: Specification of the relationships).

46

To obey the restricted timetable of this thesis, we did not use the whole
set of design patterns but a restriction of the set shared by the GoF’s book. But,
we try to make this restriction to be as much as possible representative of the
entire set of design patterns.
On that purpose, we based our choice on two taxonomies of the design patterns,
the classic one suggested by the GoF [GoFo95] and the classification of Kardell
[Kard97]. These taxonomies define some strict categories in the design patterns’
set. We selected a restricted set of design patterns in attempting to encounter the
most various categories as possible.
We were also influenced by the course about the design patterns of Kerievsky
from Industrial Logic [Keri00]. He define an order in which learning design
patterns. This sequence is based

- on the importance of the design patterns: it begins by the more
fundamental ones.

- on the relationships between them: the relationships offer logical links for
restructuring coherently the course.

Based of those criteria, we groped for a permissible restriction and arrived on the
following selection:

- Decorator
- Strategy
- Template Method
- Composite
- Chain of responsibility
- Factory Method

Finally, we notice the fact that this new presentation of design patterns will be
based on an electronic support. As such, it will not be limited to a linear
description like in the book tutorials. We will see in this chapter how we took
benefits of this significant advantage.

4.2. Highlighting new features

In the third chapter, we drew out some design patterns’ features necessary
to highlight for enhancing their learning and facilitating their use. In this part, we
will expose those features in each design pattern of our restricted set.

On this purpose, we will first study the recurring design principles below
the design patterns, and then their consequences. Finally, we will characterize
precisely the relationships between the design patterns.

4.2.1. Recurring principles below the design patterns

In this part, we will study the design principles which compose the design
patterns. First we will analyze the style guidelines of the GoF’s book which
describe the main recurring design principles of design patterns. Then we will
identify concretely the design principles used in our set of Design Patterns.

47

4.2.1.1. The style recommendations of the Gof catalog

In the section “How to solve design problems” of the GoF’s book
[GoFo95], they introduce two design rules:

- Program to an interface, not an implementation.
- Favor object composition over class inheritance.

Design patterns were introduced for giving design solutions to general problems
of flexibility. The style guidelines of the GoF’s book recommend flexible design
methods over the common but more rigid ones.

For example, programming to an interface will give more flexibility to the code.
Indeed, the clients manipulating interfaces are not identifying a specific object but
a type of object. Similarly, using the composition for adding responsibilities to an
object is more flexible than to use the inheritance. Composition can be dynamic
when inheritance works at compile-time. However, the use of composition
complicates the code in increasing the number of objects and their interactions.
On the opposite, the inheritance is much easier to understand in a legacy system.
The book discusses more in details the advantages and drawbacks of those
guidelines.

Those style recommendations have for main goal to produce flexible
code. However, the flexibility results usually in an increase of the complexity.
Thus, those design rules are not imperative and like the design patterns, they
cannot be applied in a cookbook fashion.

We still notice that the design patterns targeting flexibility, those
guidelines appear generally as a leitmotiv in their design.

4.2.1.2. A set of Design Principles

On the base of the previous style recommendations and of our analyze of
the design patterns’ set, we identified some recurring design principles. We listed
five general ones:

- Composition:
Assembling or composing objects to get more complex behavior.

- Inheritance:
A relationship that defines one entity in terms of another. Class
inheritance defines a new class in terms of one or more parent
classes. The new class inherits its interface and implementation from
its parents.

- Interface:
The set of all signatures defined by an object's operations. The
interface describes the set of requests to which an object can
respond.

48

- Abstract class:
A class whose primary purpose is to define an interface. An abstract
class defers some (in opposition to an Interface) or all (like an
Interface) of its implementation to subclasses. An abstract class
cannot be instantiated.

- Direct implementation:
In opposition to Interface and Abstract class which defer the
implementation to other classes.

Those design principles influence the characteristics of the design patterns they
compose. For example, looking at Composite (Annex 1), we can identify that it
uses in its solution the composition: the object aggregates its children
as objects conforming to the interface . is also the parent
abstract class of the classes and (object without child). Finally,
Composite uses in its solution composition, interface and abstract class .
Composite is a combination, a specific arrangement of those design principles.
Consequently these last ones affect largely the results of Composite on a design.
The dynamic aspect of Composite is due to the dynamic aspect of the
composition. Similarly, thanks to the interface principle, Composite can
encapsulate the children as black-boxes and so can treat similarly the
objects and the objects.

The design patterns results are definitely influenced by the design
principles which compose them. In the design patterns of our restricted set, we
identify the following combinations:

Table 1: Design principles in design patterns

X uses Y in its
solution Composition Inheritance Interface Abstract Class

Decorator X X

Strategy X X

Factory Method X X

Template Method X X

Composite X X X

Chain of
Responsibility

X X

49

4.2.2. Extracting the consequences of the design patterns

In this section, we specify the consequences of each design pattern of our set.
For achieving this purpose, we first studied the different kinds of consequences
belonging to the design patterns and their organization.

Consequently, in a first part, we will discuss the consequences of design
principles and their influence on the design patterns. Then, we will explain our
position on the use of the consequences and their organization. Next, we will
highlight the relations between the consequences seen as advantages and the
ones seen as drawbacks. Finally, we will refine each design pattern of the set to
reveal clearly their consequences.

4.2.2.1. Consequences of design principles

As we discussed it in § 3.3.1.3, the design principles have discernible
consequences. For example, we already saw that composition allows to add
dynamically responsibilities to an object but that it also results in some complex
interactions between the objects.

We explained in the previous part that the design patterns are largely
influenced by the design principle. This influence can be interpreted as an
inheritance of the consequences of design principles in the result of the design
pattern. For example, the consequences of composition will be inherited by
Composite: as composition, Composite will add dynamically responsibilities (in
this case some component) to an object (in this case).

The consequences of design principles are inherited by the higher-level
structures: the design patterns, and so become also consequences of design
patterns.

In this discussion about the consequences, both design patterns and
design principles will be now named design abstractions . Moreover we will
distinguish consequences and inherited consequences. A design pattern owns

- some inherited consequences, inherited from the design principles used
in its solution,

- and some consequences which belong to the specific combinations.

4.2.2.2. About the use of the consequences

The consequences of a Design Pattern are its general effects on the code
and design in which it will be used. The intent is the description of the particular
design issue or problem that the design pattern addresses. As such, the intent is
closely related to the consequences: the intent is achieved thanks to the
consequences of the design pattern on the system in which it is applied.

50

Therefore there is some consequences of the design pattern which solve
specifically the particular problem described in the intent. But the intent remains
in a higher level than the consequences since it relies on them.

The consequences are the reflects of human experiences and as such are
very important benefits of the design patterns. But like the intent, the
consequences depend on a context. The most obvious evidence is the fact that we
are able to distinguish advantages and drawbacks. For example, it is commonly
accepted as positive that the Composition principle leads to more flexibility: it is
easier to customized. However to increase the flexibility will let a more abstract
implementation which will be more difficult to understand and learn. Then a same
consequence can be seen as an advantage or a drawback depending on the point
of view of the user.
In §2.3.2.2, we explained that the intent cannot be fixed and should stay open to
variation for letting the possibility of innovative uses. Here we affirm that for the
same reasons, the set of consequences of a design pattern cannot be exhaustive
and could be extended.

Finally, the consequences are very useful tools to evaluate and understand a
design pattern but, as the intent, they must not be fixed and the set of
consequences of design patterns should stay open to extensions.

4.2.2.3. Lists vs. detailed descriptions

The consequences in the available tutorials, GoF or Java, are informal and
detailed. They are spread all along the description of the Design Patterns, even if
a special chapter is generally dedicated to them, like the chapter “Consequences”
in the GoF’s book.

In an article about a method for enhancing the creativity (TRIZ), Rantanen
[Rant99] discusses about the notion of list. He claimed that “lists are more
psychological or pedagogical than rigid formulations ”. It is indeed much easier to
look at a list than to a formulated explanations. Lists give a more synoptic view of
the situation thus, they are easier to retain and synthesize.
From our experience, we observe it is common to abandon the study of the
different consequences described as soon as we get a first interesting one: “Why
to spend my time in going on searching further: I’ve already got what I need”.
Doing that, we miss some other advantages and specially some other drawbacks.

We believe that for a more reliable use of design patterns, their
consequences should be presented in lists. However, it is noticeable that because
in lists, the consequences’ descriptions become smaller, they could be also less
explicit. Consequently, it may be necessary to conserve the possibility to display
more complete formulations of the formulation. Thanks to the electronic support,
this option can be easily included in the lists as hyperlinks between the condensed
descriptions and some more complete ones.

51

4.2.2.4. Related consequences

If we take for example the Chain of responsibility design pattern, we found
from the tutorials description the following consequences:

•
•
•
•
•

These consequences are just a listing of what is described more rigidly in the
tutorials. We observe that all this consequences are related: they are all effect of a
same mechanism seen under different points of view.

The consequences are the reflects of human experiences with the design
patterns. The communication of this experience is significant for the designers.
But, we need to give a minimum of directions to our work to avoid getting long
lists of consequences full of recurrences.

It is interesting to expose several consequences as soon as they relate different
point of view on the effect of design patterns. However, the lists do not have to
contain useless redundancies.
Concretely, in the previous example, it may be noticed a repetition between:
“ ” and “ ”.
Those two consequences describe a same viewpoint: the coupling. The difference
is that one is more general than the other. It seems more useful to keep the more
specific since it is closer from the design abstraction itself.
On the opposite, the consequences “

” and “ ” may not be
considered as redundant. There are very closed since they deal both with the
handling of the request by different objects and so the flexibility. But, we still
believe that the similarity is not enough obvious to make this redundancy useless.
Indeed, the user should take benefits of the two explanations. Maybe to see “

will not be retain the attention of the designer
who is planning to distribute the handling of messages when the other will
certainly do it. Similarly, “

” could be too specific to the designer who looks for a variation
possibility.

Finally, we retain that because they results from the same mechanism, all the
consequences are often akin. But, the diversity may be substantial to conserve the
real benefits of the consequences. Then we will not try to limit the set by some
drastic criteria but just with the common sense.

4.2.2.5. Advantages and Drawbacks

A consequence can be seen as an advantage or a drawback depending on
the situation. Because we want to help the user to evaluate the design

52

abstractions, we must present him as much as possible the two sides of the
consequences.

For example, here is the list of the consequences of the composition
principle we were able to extract from the GoF book:

We analyzed each item of this list to define if it is an advantage or a drawback.
We arrive to the following conclusions:

- This consequence is an explicit advantage as
soon as we do not prefer to add the features statically.

- It can be seen both as an advantage and a drawback. We
can consider it as an advantage since it makes easier the customization,
but also as a drawback since it makes the structure more complex and so
harder to learn.

- Similarly, it may be considered as an
advantage since it makes lights hierarchies but also as a drawback since
the behavior depends on interrelationships.

- We believe that this feature is not a
consequence of the composition but more the description of the
mechanism itself.

- It can be seen as an advantage since it keeps
encapsulation, but also as a drawback since it requires well-defined
interfaces.

It appears that all consequences can be considered as an advantage and as a
drawback. Therefore it is necessary to expose the two sides when they are not
explicit. For example, for , and , we must
present them both as advantage and as drawback. On the opposite, in some other
consequences like , the advantage side as the drawback
are explicit: the advantage is to be dynamic and the drawback is obviously to be
not static. We will not express clearly the other side of such consequences since it
results from the common sense.

4.2.2.6. Consequences in the Design Patterns’ set

Finally, it may be necessary for each design abstraction to specify explicitly
their consequences as lists. It should appear clearly in those consequences both
the advantageous and disadvantageous sides.

53

In our set of Design Principles, the following results occur:

Table 2: Consequences of design principles

Design Principle Consequence Advantage / Drawback

Composition add features dynamically Explicit advantage

Composition flexibility easy to customized / hard to learn

Composition Lots of small objects are created light hierarchies / behavior depends on interrelationships

Composition "black box" reuse keeps encapsulation / requires well-defined interface

Interface
The client is not aware of the specific type

of the objects
more transparency / objects are constrained to the interface

Interface
The client is not aware of the specific

implementation of the objects more transparency / objects are constrained to the interface

Inheritance add features at compile-time easy to customize and to modify the implementation / not
dynamic

Inheritance "white-box" reuse
keeps benefit of the features of the super class / inherits an

implementation maybe not adapted to the new problem
domain

Abstract class provide only the generic implementation
direct the behavior of the subclasses / could be not adapted to

the new problem

Direct Implementation easy to learn Explicit advantage

Direct Implementation Unflexibility Explicit drawback

54

Similarly here are the consequences of the design patterns of our restricted set.
We notice that the consequences inherited from the design principles are not
included in this list since they were described in the previous table.

Design Pattern Consequence Advantage / Drawback

Composite compose objects into tree structures to
represent part-whole hiearchies Explicit Advantage

Composite lets client treat individual objects and
compositions of objects uniformly

Explicit Advantage

Composite make vary the structure and composition of an
object

Explicit Advantage

Composite difficult to restrict the nature of the composant
in function of the parent

Explicit Drawback

Composite composed children do not know their parent Explicit Drawback

Composite children are not ordered Explicit Drawback

Chain of Responsabilities
 give more than one object a chance to handle

the request. Explicit Advantage

Chain of Responsabilities make vary object that can fulfil a request Explicit Advantage

Chain of Responsabilities avoid coupling the sender of a request to its
receiver

Explicit Advantage

Chain of Responsabilities Receipt is not guaranteed Explicit Drawback

55

Table 3: Consequences of design patterns

4.2.3. Characterizing the relationships between Design Patterns

In § 3.3.2, we explained that the navigation through the design patterns set
should help the designer to find solutions in the set. On that purpose, the
relationships between the design patterns appear as efficient gates towards the
solution provided that their nature is explicitly exposed.

This part characterizes the most clearly as possible the relationships between
design patterns. First, we will review the available works of this field. Then we
will explain that the relationships could also be extended to the design principles
and not only limited to the design patterns. Finally, we will introduce a new
taxonomy of the relationships between design patterns.

Design Pattern Consequence Advantage / Drawback

Decorator change skin of an object and not the guts Explicit Advantage

Decorator add responsabilities Explicit Advantage

Decorator make vary object responsabilities Explicit Advantage

Strategy change guts of an object and not the skin Explicit Advantage

Strategy eliminate conditional statements Explicit Advantage

Strategy
lets the algorithm vary independently from clients

that use it Explicit Advantage

Strategy
communication overhead if different granularity of

algorithm (parameters) Explicit Drawback

Factory Method create objects knowing only when but not what Explicit Advantage

Factory Method lets a class defer instantiation to subclasses Explicit Advantage

Template Method defers steps of algorithms to subclasses Explicit Advantage

Template Method
requires to know which method to override and

which not
Explicit Drawback

56

4.2.3.1. Existing works

As we discuss it in § 2.3.2.2, the relationships between the design patterns
remain a fuzzy domain. The research in this activity have just begun to have
consistent basements thanks to the recent specification language LePus
[Eden98b]. But, this activity is still too undeveloped to enter the scope of this
thesis. Therefore, we will run on the informal works done in this domain. We
will, however, go ahead in clearing up as far as possible these relationships.

It is interesting to notice on this domain, the taxonomy introduced by Zimmer
[Zimm96]. He highlighted three types of relationships between the design
patterns:

- X uses Y in its solution
- X is similar to Y
- X can be combined with Y.

We notice also that the GoF’s book introduces the notion of alternatives. This
other relationship may be significant for navigating through the design patterns in
the research for solutions. For example, in the “Related Patterns” part of the
Decorator description, we find Strategy as an alternative design pattern.
This alternative is described relatively to a specific consequence of the design
pattern. In our example, this consequence is that Decorator

when Strategy
.

4.2.3.2. Relationships between design principles

We believe also that relationships could be extended to the design principles.
For example, the alternative relationships is obvious between composition and
inheritance: the two of them are dealing with specialization and reuse.
Moreover, by definition of the design principles, it may be considered relations
like “ Composite uses composition in its solution” as explained in § 4.2.1. As a
matter of fact, the relationships “ X uses Y” can be applied between design
patterns and design principles.

Therefore the relationships could be define for the design abstractions in
general, that is to say indistinctly design patterns and design principles.

4.2.3.3. A new taxonomy

Finally our analyze leads us to extend the Zimmer’s taxonomy
- to the relationships between design abstractions and not only design

patterns,
- in including the notion of consequences.

We obtained the following statements:

57

- X uses Y means that X will share the consequences of Y.

For example, in the case of “ Composite uses composition in its solution” ,
Composite will inherit the consequences of composition. The “use of”
relationships between the design patterns of our restricted set and the design
principles we identified were already presented in table 1 (§4.2.1.2).

- Y is an alternative to X means that Y owns a consequence which is an
alternative to a particular consequence of X.

We added this relationship since it is very useful to the navigation: when a
consequence is not satisfying, the user have the possibility to study another
alternative design pattern and to compare the two.

- X is similar to Y means that X is very closed to Y but that it defers
sufficiently not to be the same one.

We believe that this category is very closed to the next one. A similar
design pattern can also be considered as an alternative, but a specific kind of
alternative. This relationship is also very important for the navigation. As we
claim it in § 3.2.2.3: “ Highlighting the relationships between design patterns. a
similarity between two design patterns is an opportunity to refine the
comprehension of each ones.

- X can be associated with Y means that it is common to use the feature
of one to improve the other

This relationship describes some common association between design
patterns.

We applied these new taxonomy on the set of design patterns and the set of
design principles. The detailed results are available in Annex 2 and Annex 3.
It may be noticeable that the relationships are associated to some consequences.
For example, Decorator changes the skin of an object when Strategy changes the
guts. Then this alternative relationships will be associated to the consequence of
Decorator “changes skin of an object and not the guts”. In the same way, the
similarity between Decorator and Composite could be associated with the
consequence “add responsibilities” since the two of them allow to add
responsibilities but for distinct purposes.

4.2.4. Conclusion

Our presentation should separate the advantages from the drawbacks and
organize those consequences in list. Moreover, the relationships between design
patterns can be associated with one of their consequences and so displayed in the
list.

58

Consequently we arrive to the following presentation (here with Decorator):

Figure 4: List of consequences

The consequences of the design principles which compose the design pattern
are displayed as or which
can be optionally extending.

In taking advantage of the electronic support, this presentation offers a
synthetic description of the advantages and drawbacks of a design pattern. In
addition to that, it highlights explicitly the difference between the

and the of design patterns. The relationships
between the design abstractions are presented as hyperlinks related to a
consequence. Those hyperlinks lead to brief descriptions of the related
relationships. For example, for the alternatives related to the “add feature
dynamically” consequence of composition, we get:

Figure 5: Relationship description window

59

This presentation exposes also the implementation advice related to some
consequences. Like the relationships, they are accessible with an hyperlink which
leads to their description. For example for Template Method:

Figure 6: Implementation advice description window

4.3. Towards a complete description

In regard to the conclusions of §3, the previous part introduces a new
presentation of design patterns’ consequences.

Towards a complete description of design patterns, this part exposes the way
by which our presentation includes some other essential items.

First, we present a new structure for the intent. Then we discuss the insertion
of the diagram, the participants description and the examples in our design
patterns’ presentation.

4.3.1. About the intent of the design pattern

4.3.1.1. Introduction

In §2.4, “Position on the use of Design patterns ”, we concluded that the design
patterns are the reflects of human experiences: they are communication tools. As
such, their intent must be consider as a significant part. But, the design patterns
are first communication tools of a design strategy, of an abstract mechanism. So
to take entirely benefits of them, the intent must not be fixed and has to stay open
to variations.

The GoF’s book define the intent section of a design pattern as:
A short statement that answers the following questions: What does the

design pattern do? What is its rationale and intent? What particular design issue
or problem does it address?

60

The intent as it is defined in the GoF’s bo ok is essential in the description
of design patterns as communication tools of human experiences. However,
design patterns have to be first considered for the design mechanism they
encapsulate. Consequently, the intent cannot be the center of the description of
the design patterns.

As for the consequences, the intent is described in a rigid formulation in the
GoF’s book. We think necessary to clarify this description and to present it in a
more structured way.

First, we study how some existing works could help us in structuring the
intent. Then we propose a new consistent format for its description.

4.3.1.2. Existing works

4.3.1.2.1. A more formal structure of the intent

Gustavsson and Ersson [GuEr99] have worked on the formalization of the
intent of design patterns. From their work we retain some formal structures they
introduced for describing the intent of the design patterns.

For creational patterns, they highlighted the following sections:

Create Entity Action Force Supplementary information

For structural patterns:

Action to apply Entity Outcome Result

For behavioral patterns:

Objective Course of action or proceedings Result

This study presents the interest to give a first approach of how to structure
the intent of a design pattern. However we believe it is insufficient to clarify
really the intent. Specially, it should be necessary to get a sole structure, even
more general, for all the design patterns. Indeed, since the designer needs to be
accustomed with the structure of the intent for taking really benefits of it, this
structure must be consistent from one design pattern to another.

4.3.1.2.2. A taxonomy of the Design Patterns

To helping the designers to he use of design patterns, Magnus Kardell
introduced a new taxonomy [Kard97]. His work is interesting because it should
give some direction to classify and clarify the intent of the design patterns.

61

He arrived to four general fields of classification in which he analyzed
some subcategories:

- applies to: object / object families / related object families

- purpose: instantiation /functionality / interface /
communication / physicality / access / state

- scope: static / dynamic

- application time: building /reusing

We believe in the usefulness of such a classification compared with the more
classic but less complete one of the GoF’s book: creational / behavioral /
structural.

4.3.1.2.3. The variation purpose of the Design Patterns

“Each design pattern lets some aspect of system structure vary
independently of other aspects, thereby making a system more robust to a
particular kind of change.” [GoFo95]

The GoF’s book highlights concretely this common feature with a list of
associations between design patterns and their variation purposes. We believe that
the variation purpose of a design pattern is an important part of its intent and that
it should clearly highlighted in our description.

4.3.1.3. Reformulating the intent

We wanted to get a structure of the design pattern which could be related
closely to the taxonomy of Kardell. Influenced by the formalization of
Gustavsson and Ersson, we arrive to the following structure:

- applied to (entity nature)
- purpose
- mean (collaboration)
- result
- scope
- variation

For example, here is the intent of Decorator as described in the GoF’s book:
“Attach additional responsibilities to an object d ynamically.

Decorators provide a flexible alternative to subclassing for extending
functionality.”

With our structure, we obtain for Decorator:

62

Table 4: Intent structure

This structure of the intent includes all the information of the original intent
excepted the idea of . However, this last point is
an alternative relationship and is not really essential in the intent description.

This presentation adds the Mean by which the design pattern attempt to its
purpose. The Mean deals more with the description of the abstract mechanism
itself than the intent. However it is sometimes present in the intent description of
the GoF’s book. Indeed, it gives some useful information for understanding the
design patterns’ use. Consequently, it may be interesting to include it in our intent
structure.

We notice also in our structure the Variation item. Its purpose is to offer
another viewpoint on the design patterns’ intent: the one of the variation. We
believe that to see the intent from two viewpoints increases the understanding and
goes ahead with the idea that the intent should not be fixed.

The Annex 4 presents the description of all design patterns of our set accorded
with our new format.

4.3.2. The structure

4.3.2.1. The diagram

In the available tutorials, the structure of the abstract mechanism
encapsulated in the design patterns is presented with a diagram and explained
with an informal description of collaborations.

The diagram is done with the OMT/UML notations which is a widespread
vocabulary. A detailed description of the role of the participants and their

Category Description

Category Description

Purpose Functionnality add responsabilities

Applied to Object an object

Scope Dynamic

Variation make vary object responsabilities

Mean (collaboration) by forwarding requests to the composant

Result delivers a flexible extending mechanism

63

collaborations is necessary to complete the information offered by the diagram.
However, the graphical explanation has the advantage to be expressive and
synthetic and remains the center of the description of the structure. Similarly, in
our presentation, it may be essential to represent the structure with such a
diagram.

4.3.2.2. The description of the participants

It may be necessary to provide a weightless presentation of design patterns,
more attractive and easier to understand in a glance. However, for remaining
consistent and not disregarding some information, we must take benefit of the
electronic support.

The diagram synthesizes the structure of the design strategies encapsulated in
design patterns. The descriptions of the participants of the structure are additional
explanations of the diagram. As such, they are directly related to the diagrams and
are meaningless when standing alone. Indeed, it is the study of the structure of the
diagram which brings to require more details about the roles of the participants.

Consequently, it may be interesting to use the diagram itself as a portal towards
the participants’ descriptions. Practically, we use hyperlinks towards the
descriptions on the diagram. This method is largely used on the internet and we
think that the people are generally comfortable with it. Thus, a mouse click on
one of the object pictured in the diagram will display its description. For example,
here in Factory Method, to click on the actor Creator results in the display of a
description window.

Figure 7: Participants description window

64

4.3.2.3. The design principles

We claimed, in § 3, the necessity to highlight the design principles composing
design patterns for enhancing their understandability. We highlighted this
composition in the description of the consequences but we believe that it should
also appear clearly in the structure itself. The diagram should show the design
principles.

Practically we used colors to highlight the design principles in the structure
diagram of a design pattern. Here in Strategy, we obtain:

Figure 8: Highlighting of design principles in the diagram

4.4. General appearance of the new presentation

From our experience, the graphical representation of a design pattern is
generally the first think that a designer will look at. The designers work very
often with such diagrams. Therefore they are generally more comfortable with
diagrams that with more weighing textual presentations. Of course, the diagram
might not be sufficient to understand in details a design pattern. But it should
stand as the center of the tool.

65

A design pattern will therefore have the following general appearance, here
for Template Method:

Figure 9: Design pattern description window

We have already discussed the benefits of an example for understanding an
abstraction and it may be significant to provide such a textual support in our
presentation. Therefore, we provide an hyperlink towards an example with the
button .

The comprehensibility of our presentation is based on the separation of the
different parts of the design patterns description. In dividing the information, the
different features of design patterns become more easily accessible. Then the
presentation can offer a more synoptic view of the whole.

The common descriptions take care of describing the design patterns in a
logical and structured way detailing the connections between each items. Our
presentation takes benefits of the electronic support and skips those heavy
connections existing between the different parts of the description.

It may be considered that our new presentation could be beneficial for the
users. It displays clearly the substance of design patterns in both a consistent form
and a restricted field. However, we know that a textual support could be

66

reassuring for the users: in such descriptions, the connections between the
different parts are explicitly done and the users have just to let themselves be
carried by the speech. Our presentation furnishes an access to such a textual
description with the button.

Some shot-screens of this new presentation are available for all the design
patterns and design principles of our set in Annex 5.

4.5. Conclusion

We have introduced in this chapter a new presentation of design patterns.

Since the research field of the design patterns’ specification is just
beginning to present interesting results, our presentation could not have been
based on a strict formalism. However, we proceeded available works about the
design patterns description and their relationships towards a new coherent format
of design patterns.

This new presentation attempts to reorient the design patterns’ description
in the direction of essential but too disregarded features: the design principles
which compose design patterns, the consequences of design patterns and their
relationships. The result is the introduction of an explicit list of consequences for
each design pattern. This list make a clear separation between the advantages and
the drawbacks of the design pattern. It discerns explecitly the consequences of the
design principles which compose it, from its own consequences. Finally, it
presents, associated to the consequences, some relationships with other design
patterns.

For being consistent, this presentation includes also the description of the
intent and the structure. The intent is reformulated according to a complete and
coherent pattern. The structure is displayed as a diagram which becomes the
center of the presentation. All this new presentation is the portal towards
complementary information like the description of the participants in the structure
or a textual description of an example.

In taking benefits of the electronic support, the new presentation skips
some nonessential parts of the description: the informal transitions surrounding
each items. Consequently, it furnishes a compact outlook of the design pattern.

Finally, we succeeded in producing a compact but coherent and
comprehensible original display of design patterns’ descriptions. Moreover it puts
forward the features identified, in the third chapter, as necessary for enhancing the
design patterns’ use. So, it may be considered as a consistent base for a help
system.

67

In regard to our new presentation, the next chapter proposes a help system
for assisting the designer in using design patterns.

68

55.. AA HHEELLPP SSYYSSTTEEMM

5.1. Introduction

In the second and third chapters, we highlighted some characteristics of
design patterns which could help the designer to use them. We arrived to the
necessity to enhance the comprehension and the learning of the design patterns as
well as the navigation through the set of design patterns.

After this analyze, we worked on how to reformat the description of design
patterns according to these new considerations. We obtained an electronic
presentation of design patterns.

Our purpose now is to introduce a system to help practically the designer to
find a solution to its problem in the set of design patterns. This system will
support the navigation through the knowledge in taking benefits of the new
presentation we defined.

The first part, presents an overview of our help system. Then a second and
third detail how this help system integrates the two principles we introduced
previously: the evaluation process and the navigation. Afterwards a fourth part
discusses the advantages and drawbacks of our open assistant. Finally, a last part
presents some conceptual features which enhance the efficiency of our help
system.

5.2. Overview of the help system

Our help system attends to assist the designer for using design patterns. As
an assistant, it should be the most transparent as possible and the design patterns

69

should remain the center of the system. Typically, the system must be a support
for displaying judiciously design patterns.

On this purpose, we constructed a system with two windows. The main one
displays the design patterns, the design principles, the entry points, the
relationships descriptions, i.e. all the knowledge of the system. It is in this
window that the user will evaluate the design abstractions.
The second window will display the state of the navigation. As such, it can let
continuously the designer know about the results of his evaluations and the trace
of the knowledge he already explored.

Figure 10: Help system‘s main window

70

Figure 11: Help system’s navigation board window

5.3. Design Patterns’ evaluation

In § 3.3.1, we concluded that the design patterns’ evaluation must be
based on the check of their consequences:

- advantages needed / not needed
- drawbacks not accepted / accepted.

This part discusses the integration of this principle in the help system. First, it
explains how to consider the consequences as check lists. Then, it presents how
the help system traces those evaluations.

5.3.1. Consequences as Check Lists

The consequences are a mean of evaluating design patterns. Our help system
allows the users to evaluate each consequence in presenting the consequences’
sets as check lists.

We distinguished the consequences considered as advantages from the ones
considered as drawbacks. The evaluation is based on the following rules:

71

- checking an advantage means to need effectively this feature for solving
the problem,

- checking a drawback means to reject this inconvenient in the particular
context of the problem.

Figure 12: Checking of consequences

For example, the previous figure is showing the advantages and drawbacks of
Template Method . The designer selected the advantage named

. Then, he expressed his needs for making vary some parts of
an algorithm. He checked also the drawback named

Doing that, he expressed the fact that he is not ready to accept a
solution which is . This drawback belongs to the inheritance principle
as shown on the list. Actually, to reject this drawback means to refuse the use of
inheritance which is static. The help system is consistent and then each time that
the user will encounter the consequences of inheritance (in another design pattern
or in the description of this design principle itself), he will retrieve the rejected
drawback.

72

Figure 13: Consistence of the checking of consequences

 is the drawback side of the consequence
. This consequence of inheritance can also be seen as an advantage since it

involves that in the system it will be
. It is important to notice that the user cannot take benefit of a

consequence as an advantage if he cannot accept it as a drawback. To avoid it, if
he attends to check both the advantage and drawback sides of a same
consequence, the system will warn him.

Figure 14: Warning window of contradictory checking

Finally, the check of the design patterns’ consequences enables their
evaluation. But the help system must be consistent. Then if, for example, one
advantage of composition is checked, this advantage must be selected in all the
design patterns in which this design principle participates.
Moreover, it is necessary to prevent the user from making some contradictory
checks. Thus, the system refuses to check in the same time a drawback and an
advantage related to the same consequence.

73

5.3.2. Tracing the evaluation

It may be considered to trace the results of the evaluations that the user did
during his navigation. On that purpose, we use a visual indicator: some colors.
For example, if the user is checking some advantages of Decorator, the
background color of all the hyperlinks towards this design abstraction will turn in
blue. Practically, all the buttons in the map, in the relationships’
descriptions, in the design abstractions’ descriptions and in the entry points to the
navigation will be blue. This color will have a saturation depending on the rate of
advantages checked: it will be more saturated if more advantages are selected.
Similarly, to refuse some drawbacks will color the background of the related
design abstractions in yellow.

Figure 15: Board of evaluations’ results

In addition to those indicators, it may be interesting to display a summary of
the evaluations’ results which could serve as a reference board for the user. We
included this board in the navigation window. This table orders the results in two
columns: one for the advantages and one for the drawbacks. For each design
pattern displayed, it indicates the rate of advantages or drawbacks checked.

5.4. The Navigation

This part presents the principal feature of our system to help the user to
discover a solution: the navigation through the knowledge.

A first part introduces the devices of our help system which allow to begin
the navigation. Then a second part explains the significant advantages of
supporting the navigation with a map.

5.4.1. Beginning the navigation

Our system attends to help the designer to use the design patterns. We can
imagine two main use cases of the help system:

- the user wants to apply a design patterns and needs to verify his choice . It
is the most common use of the design patterns. The designer is in a
situation that reminds him a design pattern he has already used or heard
about. He will look at the description of this design pattern for verifying if
it is really proper and for studying the abstraction mechanism to be able to
apply it.

74

- The user has a problem and imagine that a design pattern could help him .
For example, the designer is in front of a design problem which involves
the flexibility of the code or a separation of concern. Since he learnt from
his experience that design patterns could solve these kinds of situations, he
will try to find a solution in the set of design patterns.

In the first case, the user already knows the design pattern and just requires for
an easy and fast access to this pattern. On that sense, the help system holds a
menu containing the design patterns’ list.

In the second case, the situation is more problematic: the user does not yet
know which design pattern to use for solving his problem.

5.4.1.1. Automatic suggestion of a design pattern

For leading the designer towards a solution when he only knows the fact that
he has a problem, we should, at first glance,

- capture and analyze his problem
- try to find an appropriate design pattern.

Unfortunately that puts us in front of two hard obstacles:
- the main difficulties we have to capture the problem of the user,
- the necessity to let open the design patterns’ use.

5.4.1.1.1. Main difficulties to capture the specific user’s problem

First we need to know how to capture the specific problem or the attention of
the designer. We saw in § 2.3.3.3 that the research into the design patterns
suggestion from a problem recognition in legacy systems gives really unsatisfying
results.

A recent work [Corr99] is attempting to recognize common design defaults in
legacy systems. But the design patterns cannot be used in a cookbook fashion and
this work is not sufficient to suggest efficiently a solution in terms of design
patterns.
Moreover, the use of design patterns does not always make good design. The
design patterns can also lead to useless complexions of systems. And the design
patterns’ application must take into account some requirements which are not
included in the design itself like “ ” or “

”.

We claim that a defaults’ detection in legacy systems like Correa did [Corr99],
could be much more efficient if it was not limited to the analyze of the design or
code but if it was also asking precise questions to the user. On that purpose, this
system should certainly use some artificial intelligence techniques.

Such a system is applicable only at refactoring time. Thus, it should be also
interesting to find a way to help the user to communicate his specific problem
even without concrete support like a code or a design. As for the refactoring, the

75

system should ask precise questions to the designer to try to help him to define
and model his problem.

Those systems are particularly complicate to implement because as we
explained in § 2.2.2.2, the design patterns can be applied at different levels of
granularity. Then the system should be able to detect a situation involving the use
of design patterns without any indications of the level of granularity at which the
problem resides.
In the case of the refactoring, a possible way may be to analyze systematically all
the possibilities until finding situations susceptible to be a problem. But this
calculation should run very high techniques of artificial intelligence to keep a
reasonable use of resources.
In the other case, the solution is more complicate. First the system must know if
the user is describing the problem at the right level of granularity. Indeed, maybe
the problem is hanging out at a higher level that the one visualized by the
designer. To solve such a situation, the system should be sufficiently intelligent to
deduce from its interactions with the user if the problem resides at another
granularity or not.

Those two directions involve the state-of-art of artificial intelligence. As
such, they constitute interesting research directions but could not be defended in
the limited scope of this thesis. Moreover, as we will explain in the next part,
these directions should not be sufficient to help really the designer in using design
patterns.

5.4.1.1.2. Necessity to let open the use of the design patterns.

In the previous paragraph, we proposed some directions to automate the
suggestion of design patterns. The principle is to detect a problem that is solvable
with a design pattern. Such problems enter, by definition, the scope of the intent
of design patterns: the intent is the only concrete relation between the abstraction
mechanism encapsulated in the design patterns and a context of application. It is
why the intent is one of the main benefits of the design patterns.

However as we claimed it in § 2.4, design patterns are also abstract
mechanisms and should not be limited to the use described by the intent. A design
pattern should be able to solve a problem which is not identified by its intent.
Moreover, as Chris Pehura [Pehu00] said “ the best design should be the
realization of the combination of at least three design patterns ”. But the use of a
combination of design patterns is already out of the scope of the intents of all
those design patterns.

Therefore, to conserve all their benefits, the design patterns cannot be
limited to the use described in their intent. But since the intent is the only mean to
associate design patterns to some practical problems, an automatic suggestion will
definitely restraint the interest of the design patterns. Thus, a consistent help

76

system to assist the designer in using design patterns cannot be restricted to an
automatic suggestion tool.

5.4.1.2. Other entry points

Our previous conclusions lead us to the necessity to find other entry points in
the navigation. These entry points are not conducting obligatory to an appropriate
solution but they will certainly suggest a first design pattern, from which the
designer could begin his navigation towards a solution.

5.4.1.2.1. Design defaults

The GoF’s book furnished a list of generally encountered design defaults.
A design default should be for example “ ” or “

”. The list suggests for each
design default a set of design patterns susceptible to solve the problem. It may be
considered that the designer could find, in this list, some situations related to his
problem and so could begin the navigation.
Moreover, by definition, this list gives some very useful style recommendations.
It provides also an interesting overview of the design patterns’ scope of action
since it described some concrete problems they solve. Thanks to that, the designer
should be more aware of why and when to use the design patterns.
In checking the list, the designer will learn that some design habits could be
considered as defaults like “ ”.
Even if this point does not correspond exactly to his problem, the next time he
will need to create a class in his design, he will certainly think about that and look
for using a design pattern.

Finally, this list is very advantageous in the context of an help system: it
could serve at an efficient entry point in the navigation and furnishes some
essential style advice for OO designers. Therefore, we will integrate this list in
our help system. A system of research by keywords was implemented to facilitate
the use of the list.

77

Figure 16: Common design problems description window

5.4.1.2.2. Design Patterns’ taxonomy

Some taxonomies were defined for helping the designer to use the design
patterns. They classify the patterns in explicit categories which reflect their
application scope. On this subject, it is interesting to notice two major works.

The first taxonomy was introduced in the same time that the design patterns by
the GoF [GoFo95]. It remains at present the most known classification of the
design patterns. They defined two fields divided in few categories:

- Purpose: structural / behavioral / creational

- Scope: class / object

With this classification, they could highlight some families of design patterns and
so give a general view of their domain of application.

This classification could be very useful as an entry point in our system. However
we prefer use the more recent work of Kardell [Kard97] who made a interesting
taxonomy.

He presented four general fields of classification in which he analyzed
some subcategories:

- applies to: object / object families / related object families

78

- purpose: instantiation /functionality / interface / communication
physicality / access / state

- scope: static / dynamic

- application time: building /reusing

The subcategories are exclusive: in a same field a design pattern cannot belong to
two categories. This feature is fundamental because it approves the consistency of
the classification. If a design pattern could be found in two categories of a same
field, it will signify that the categories are not strict enough to classify the design
patterns but are just indications.

Such a classification can be very useful in our system. It defines a rigorous
organization of the design patterns’ set which could help the user to begin the
navigation. For example, a user wants to be able to change an object at run-time.
Then, he will look at the category scope – dynamic and get a first selection of
design patterns.

Then he will certainly look at one of these design patterns. This design pattern
will be exhibited as belonging to one specific category for each field of the
classification as shown in the previous figure. We think that such a presentation
should question him on the signification of the other categories. So, for example,
he would try to know with which type of entities his specific problem deals
() or which is its general purpose (

). Those steps will certainly lead to a first
design pattern susceptible to interest the designer. From this first entry, the user
will be able to start a navigation towards an appropriate solution.

79

Figure 17: Design patterns classification window

5.4.1.2.3. Design Patterns for variation purposes

According to their definition, all the design patterns can be considered design
strategy with a variation purpose. The GoF’s book provides a list associating
design patterns and their variation purposes. We also believe that this list could be
an efficient entry point in the design patterns set. Indeed, if the user analyzes his
problem under the viewpoint of the variation (for ex. “

”), he will certainly find a solution in this list.

Figure 18: Variation purposes window

80

5.4.1.3. Conclusion

It may be considered that an automatic suggestion of design patterns requires to
limit the use of design patterns to fixed situations. Moreover, it should certainly
involve some artificial intelligence practices that should lead us far out from the
scope of this thesis. Therefore, such a solution cannot practically replace the work
we did in this thesis.

For beginning the navigation, our help system provides some classical but
significant entry points:

- the design patterns list,
- a taxonomy,
- a list of variation possibilities offered by the design patterns
- a list of design defaults that the design patterns should help to solve.

5.4.2. A navigation map

For navigating, a map is an efficient guide. Indeed, it offers a synoptic view of
the set of entities present in the environment and the way they are connected. In
our case, we are going to navigate in an environment of entities much more
abstract than cities and roads. But we believe that a navigation map could be an
interesting practical support to guide the designer in the design patterns’ set.

A first part introduces our navigation map where the relationships are shown as
routes towards other design patterns. Then we discuss how to take benefit of this
map to trace the path of the user.

5.4.2.1. Showing all the relationships

Our purpose with a map is to offer a synoptic view of the design patterns’ set.
It should show all the design patterns and their relationships.
We analyzed four different types of relationships between the design patterns:

- use of
- alternative
- similarity
- association.

A map becomes unreadable if we show all the relationships in once. But
since our support is electronic, the map can be displayed under different angles
with a simple switch. Then, it may be possible to define a clean map for each
relationships. But the practice showed that using different colors, two different
types of relationships in once still let a map comprehensible.
Therefore our help system provides a navigation map of the design patterns’ set
accessible from two different points of view:

- use of & associations
- alternative & similarities

81

Figure 19: Navigation map

In such a navigation map, if the user looks at the relationships “ use of”, he
can easily identify the design principles composing each design pattern. In the
example of the figure, Composite is selected (it signifies that the “reoriented
description” of Composite is displayed in the same time). It may be interesting to
notice that the map highlights the relationships related to the design abstraction
selected. It appears clearly on the map that Composite uses interface, composition
and abstract class in its solution. There is also displayed an association with
Decorator. Similarly if we display the map from the other angle, we will see the
alternatives and similarities of Composite.

5.4.2.2. Displaying the state of the navigation

It may be pertinent to show also in our navigation map the state of the
navigation. We mean by state of navigation the path already explored by the user
and where he is at the moment.

As explained in § 5.4.1, the most current use of design patterns is to recognize
directly during the design a situation which involves a well-known design pattern.
For example, most of the designers knows the MVC design pattern.
Consequently, the majority have the tendency to apply it when constructing an
interface. That is the same process with the other design patterns: the best way to
use a design pattern is still to recognize its usefulness directly at design time.
Therefore a contextual help system for the use of design patterns must provide a
friendly way for the designer in order to increase the number of design patterns he
acquired.

In this sense, it may be essential to assist the user in his navigation allowing
him to explore freely the design patterns. We mean by freely that the user should
not have the apprehension of loosing his first goal.

82

It may be considered to keep trace of what the user did: the relationships and the
design abstractions he explored, the design abstractions he evaluated. All of this
should be explicitly displayed in our navigation map. Then only he will be
tempted to explore new directions.

For example, a designer can evaluate Composite as proper for his situation. There
is a common association between Composite and Decorator. He explores also this
way for the case it could be useful for its situation. In looking at the description of
Decorator, he discover that Strategy is an alternative of Decorator. Then only by
curiosity, he could give a rapid glance at Strategy. Thus, he goes back easily to
Decorator since it was traced on the map.
All this process could have been done in very few time since he has only
proceeded five hyperlinks between Composite and Strategy. In this case, this
navigation gave no additional benefits to the research of the solution, but now the
designer knows more about Decorator and Strategy. At first glance, this
navigation could seem useless but it allowed the user to extend his knowledge of
the design patterns’ set.

Therefore, the map will let appear clearly the path explored by the designer
and the results of his evaluations. Practically, all the hyperlinks towards design
abstractions will indicate with a particular color of the text if

- it was already explored,
- it is at present displayed and activated in the main windows,
- it was not yet explored.

On the same purpose, the relationships will be stipple as long as they will not be
explored.

It may be considered that to display the path of the user allows him not
only to keep trace of its analyze but also to see clearly what he did not yet
explore.
For example, the designer could evaluate Decorator and consider it as
appropriate. Looking at the map of the , he notices that
he did not yet explore a similarity with Decorator: the design pattern Composite.
He could look at this relationship and try to understand the reasons that make
Composite and Decorator similar. Doing that, he will certainly discover subtleties
in the two of them 3 and so improve his global knowledge of the set. And we
should even imagine that he will discover that actually Composite is more
appropriate to his problem.

This example illustrates that it could be useful for the user to see the path
he did not do. And that this feature is as necessary for assisting the navigation that
to display the path he did.

3 We discuss this phenomenon in §3.3.2.3: Relationships between Design Patterns.

83

Figure 20: Tracing of the user route on the navigation map

Finally, the navigation map increases the visibility of the design patterns’
set. It highlights the route of the user giving a trace of his activity: what he did
and by the same way what he did not. Consequently it invites the designer to learn
new design patterns and participates actively to the search for solution. For those
reasons, we believe that the map enhances considerably the navigation.

5.5. An open assistant versus an intelligent tutoring system.

Our help system can be qualified of open assistant since it assists the user
to find a solution more than it gives a solution. At first glance, it always seems
better to have a system which provides practically some solutions. The user will
be reassured: he does not have to make the effort to learn the design patterns. The
project manager will just have to give his trust in a stable automatic tool and will
not have anymore to repeat weekly that the use of the design patterns should be
increased. This solution is effectively better at short term.

However, we believe that design patterns are design experiences that the
designer should not only reuse as clip-arts but that they must influence his own
style. Considering that the research into the automatic application of design
patterns is already offering satisfying results, with a strict problem solver, the
style belonging to the design patterns will progressively be skipped for the profit
of concrete and immediate results.
But the design patterns participate in the formation of the designer. They increase
his knowledge and enhance his technique. At long term, the designer will be
better and consequently more efficient.

Moreover, to use a strict problem solver as an Intelligent Tutoring System
could be, requires to determine explicitly the design patterns use cases. Indeed,
such a system should know for each design pattern some appropriate uses (see

84

§1.3.2.1). However, the design patterns are design abstractions. As such, they
could be used in situations that might not have been imagined by their creators.
An help system should let some place to innovative uses of the design patterns.

The openness of our system is a strength since it lets some room for the
user to imagine innovative uses of design patterns. As explained in [ZlZu91] a
scientific paper considering creativity and pedagogy, Boris Zlotine defines some
necessary conditions for developing the creativity:

- presence of uncertainty : a problem that can no be solved by known
methods

- the freedom to work without instruction as how the work should be done
in what order, etc.

- the dependence of the results on the particular individual: his experience,
intuition, will power, etc.

A rigid system is going against those three principles when our help system is
entering those criteria.

- presence of uncertainty : the help system is just a guide and do not give
solution.

- the freedom to work without instructions : The help system do not direct
by force in any directions. It is just assisting the communication and the
comprehension of the knowledge.

- the dependence of the results on the particular individual: The solution
remains the choice of the user; the help system guides, gives some advice
but does not impose anything.

The help system presents a positive environment for enhancing the creativity of
the designer: it just guides him and never commands him.

It should serve to meld the knowledge of the design patterns’ set with the
experience of the user. Actually, we can consider our help system as a bridge
between the subjective style of a designer and the approved style of design
patterns.

Our help system offers the possibility of a double movement. On one hand, the
designer’s techniques will be enhanced by the influence of the design patterns. On
the other hand, the design patterns’ use should be excelled by the creativity of the
designer. We believe that such a system should make

- better designers, with more skills
- and better solutions, more adapted to the specific problems and not

only classical applications of the design patterns.

5.6. Towards a contextual help

We believe in the fact that making our help system contextual should
improve its benefits. Indeed, our help system can assist (without forcing) the

85

designer in fighting against natural reflexes which limit his knowledge of the
design patterns’ set. In a first part we are going to analyze those reflexes. Then we
will see how a contextual help system could correct such a behavior.

5.6.1. Common behavior of the user

The time pressure leads most of the people to be satisfied with their acquired
knowledge. Before good solutions, people look for rapid solutions which could let
them more time for solving other problems.

For example, we can imagine that a designer finds that Decorator could more
or less suit to his present problem. He is not needing all the advantages of this
design pattern for his particular problem but modifying a little bit the structure he
should get an acceptable and light solution. The designer likes particularly
Decorator because he have already used it several times and he is now very
comfortable on it. He is so comfortable that he begins to make large variations on
its structure to fit to his new problems, letting his creativity adapting the thinks.
It was one of our purpose to let the creativity of the user: this designer really
integrated Decorator. However, he is so comfortable on it that he is not looking
for other solutions: “why to spend more time on this problem?”. But the fact is
that in his particular problem Composite was much more adapted to his problem.
The role of the help system should be to suggest him to have a look to this other
design pattern similar to Decorator.

It is important to remind that one of the benefits of the design patterns is to
provide a common vocabulary between designers. As we discussed in § 2.4, we
believe that this purpose should not limit the use of the design patterns to the one
described in the intent. However, we believe that if a solution was already listed
in the design patterns’ set, this solution should be used because the design
patterns enhance the communication and comprehension of the design.

Consequently, it may be considered that a help system should encourage the
designer to learn always a little bit more about the design patterns’ set and not to
stay satisfied with his acquired knowledge.

5.6.2. Contextual assistance of the help system

In reaction to the common behavior of the users, a help system should invite
him to learn each time a little bit more about the design patterns’ set. This part
presents that this purpose is achieved thanks to the navigation map, some
additional suggestions and a special sorting of the lists. Finally, we discuss how to
trace the level of the user to make possible such features in our system.

86

5.6.2.1. Navigation map

We have already discussed the benefits of the navigation map in § 5.4.2. It
increases the visibility of both the set and the route of the user. Doing that, it
invites to learn new design patterns and so participates actively in our aim of
fighting against the reflex of being contented by one’s present skills for solving
problems.

5.6.2.2. Additional suggestions

It may be necessary to suggest, from time to time, the user to explore some
relationships. For example, after a certain rate of acceptation of the advantages of
a design pattern, the system could highlight some associations the user did not
explore yet.

Figure 21: Suggestion window

Similarly, our help system will suggest some unexplored similarities. It will do
the same with some unexplored alternatives after a certain rate of drawbacks.

Nevertheless, we think that those suggestions cannot be systematic or the
system will very quickly begin to be heavy. The user must be assisted in finding a
solution and in knowing more the set but he must never be forced in any
directions. Of course, it was only suggestions, but a suggestion which is
systematic appear like a constraint for the user.

Therefore we believe in the necessity to make those suggestions randomly and
especially depending of the knowledge level of the user. Indeed, if the user
already knows some relationships, it is maybe not useful to remind him their
existence by a suggestion, even if he did not yet explored them in this session. At
least, in such a situation, the random rate of suggestions should be decreased.

5.6.2.3. Sorting of the lists

It may be considered that to change the appearance of design patterns’
descriptions could entice the designer into looking at unknown features.

The cognitive domain gives us a good example to illustrate this phenomenon:
the restaurants. In most of the restaurants, the people are always doing the same
kind of actions: they look to a waiter, indicate the number of persons and then

87

they sit. It is a so common habit that we applied it in all the restaurant without
really paying attention to the type of restaurant it is. Actually, we will very often
begin to look at the restaurant after those formalities. However if something
special happen in the restaurant when you entered, a chicken flying or the cook
hunting a cat, we will have immediately a different look at this restaurant and will
remark some details of the atmosphere (the ceiling, the color of the ground...) we
should not have observed in a classical context.

In this sense, it may be necessary to change the lists’ ranking of our help
system depending of the trace of the user. The elements (consequence, entry point
description) already evaluated or explored by the user should be relegate to the
end of the list. Similarly, unknown elements should be first in the list. It may be
considered that such small modifications should be interesting for encouraging
the user to look at new knowledge.
For example, a designer used several times Strategy. Each time, the order of the
lists of advantages and drawbacks were the same. When inspecting it once again,
the user will certainly only look at the first elements of the lists which will remind
him the use of Strategy as he understood it previously. However, if this order is
changed, he will encountered elements that he was certainly aware of but that he
has maybe never really took into account.
Showing design patterns under different fluctuating angles, a help system could
entice the designer into reconsidering always his knowledge of the design
patterns’ set.

5.6.2.4. Aiming to trace the level of the user ‘s knowledge

To make such a contextual help, the system needs to know the level of the
user’s knowledge.

Each session of our system should be dedicated to a specific problem. Indeed,
the navigation map and the evaluations become useless if the system is used for
solving two problems in the same time. For example, a question could be how to
recognize evaluations corresponding to one specific problem. Therefore, for each
problem, a new session should be initialized.

However, the level of the user changes from a session to another: at each
session the designer will acquire a little bit more of knowledge about the design
pattern’ set. Consequently, the level of the user will depend also of his
experiences with the help system.
Then, it should be necessary to trace the history of the user i.e. to record the
design abstractions and the relationships he already explored, with the number of
times, if they were evaluated and when was the last time. This data will be useful
to try to adapt the system to the user’s characteristics.
For example, a user is evaluating positively Decorator but the system knows,
from the user’s history file, that until now he never looked at Composite nor at the

88

similarity between Composite and Decorator. In this case, it will be very
interesting to suggest this relationship which he is certainly not aware of.
Similarly, the log data could indicate that the user have already evaluated
Composite several times and that he explored the relationships between the two
design patterns few time ago. Then the suggestion could be really superficial.

Some history file about each user are useful for knowing his level and than
being able to give a proper help. However, it may be difficult to know about the
level of the user’s knowledge when he has never used the system. Here we
believe that a list of judicious questions could give an initial overview of his
knowledge. It could begin by some general questions on his knowledge of the set.
For example, we should ask for each design pattern of the set if he

- has never heard about,
- knows the existence,
- has already used it,
- perfectly dominates it.

Then some more subtle questions could give information about his knowledge of
the relationships. For example, “

”. Then we should attend to see if he is aware of the
main relationships between the design patterns he has already used.

Finally, to trace the level of the user’s knowledge seems technically
attainable. However, in the scope of this thesis, we did not find the time to include
it in our prototype. But it may be a significant feature which should lead to
interesting studies about artificial intelligence techniques to be able to guide the
user without making a rigid system.

5.7. Conclusion

In this chapter, we presented a prototype of a help system. Our system
appears as an advanced support for the displaying the design patterns’ catalog
since it furnishes a consistent help to the research of solution.

First, the system perm its a coherent evaluation of design patterns by
checking the consequences. It keeps trace of the evaluations in changing the
colors of design patterns and with a visual summary of the results.

Moreover, the help system supports efficiently the navigatio n through the
design patterns’ set. It provides various and effective entry points in the set. A
navigation map helps to increase the visibility of the set and highlight the route of
the user. Doing that, it keeps up the constant learning of design patterns and
facilitates the research for solution.

89

Finally it was discussed the fact that an open help system, as we did, gives
substantial benefits compared with a strict problem solver into the context of this
application. It improves the designer style and knowledge and increases the
suitability of the solutions.

Nevertheless we give contextual directions that may be considered to
encourage the user to learn each time a bit more about the design patterns’ set.

90

66.. CCOONNCCLLUUSSIIOONN AANNDD FFUUTTUURREE WWOORRKKSS

In this chapter, we discuss the results of our research work. In order to be
more explicit in this conclusion part, we reformulate our aims and motivations.
Afterwards, we summarize our approach and finally, present the perspective
works for this thesis.

6.1. Motivations and initial goal

The first steps at the origin of this thesis were in the direction of guiding
the design patterns’ use in legacy systems. Design patterns are beneficial tools but
it is important to note that they have a complexity cost. So, their use cannot be
easily systematize. Some initial investigations in the literature exposed rapidly
that design patterns’ related activities are numerous and various. However, the
design patterns’ use appears as being a burning point.

- First, we noticed a general confusion about the “right” way to use design
patterns,

- secondly, it seems that there is no available tool to assist effectively the
designer in using design patterns.

Therefore, this first analyze directed this thesis towards the study and
development of a prototype of Intelligent Tutoring System (ITS) for teaching
design patterns’ use.

For achieving this purpose, it was first necessary to emerge of this general
literature disorientation about design patterns’ use. Then we defined our position
on this topic: the design patterns are significant communication tools but their
use that cannot be fixed.
Because of design patterns particular characteristics, it was essential to find some
technical ideas in order to develop the tutoring system. On this purpose, we
continued our explorations in the literature.

91

This analyze demonstrated that an ITS was a hard goal to attain in the
context of the design patterns’ use. Indeed, we consider that the design patterns’
use cannot be fixed. Indeed, it is difficult to determine an “accurate” use of design
patterns on which base a practical ITS. Consequently, it was more realistic to
work in the direction of a contextual help system to assist the designer in using
design patterns. Moreover, with regard to our investigations in the literature, it
appeared that such a work could be effectively relevant for our research field.

6.2. Summary and conclusion

This thesis report relates the results of our researches about the design
patterns’ use and learning by OO software designers. On those basements, it
presents also our prototype of a contextual help system for assisting the OO
designer in using correctly design patterns.

The first chapter explains our approach, the evolution of our objectives and
presents the structure of report.

In the second chapter, we presented that the design patterns are very
beneficial tools but their use is not simple ([GoFo95]). Indeed, their application
has a complexity cost and the designers cannot apply them in a systematic
manner. This difficulty involves the fact that designer needs a good knowledge of
the whole design patterns’ set in order to use design patterns correctly.
But for taking some benefits of design patterns, it is required to exceed this
appearing difficulty. Numerous design patterns related activities work in this
direction. We distinguish two main fields in this research area: the specification
of design patterns and the tools for assisting the design patterns’ use.
The specification is a recent activity but some reliable formal basements for
specifying design patterns were recently introduced with LePus [Eden98b].
About the tools for assisting the designer in using design patterns, it appears some
consistent works available for implementing the design patterns ([FMPW97],
[Toge00]), and for detecting their utilization in legacy systems ([KrPr96],
[Brow95], [Pina99]). However, it seems that there is no satisfying tool available
to assist the suggestion of design patterns ([Corr99]).

One of the reasons for this deficit seems to be the general confusion in the
positions about the design patterns’ use ([GiLo97], [Pehu00]). To emerge from
this situation, it was necessary to refine our position on this topic: in this work,
the design patterns are considered as significant communication tools but their
use cannot be fixed.

On the base of this position, we have identified and shown in the third
chapter which topics could help the designers to use design patterns. For using
correctly the design patterns, it is necessary to have a reliable knowledge and
understanding of the design patterns’ set. Moreover, to assist in using design

92

patterns for solving a problem, a help system must support the research of the
solution. On that purpose, it seems interesting to navigate towards this solution
and to evaluate the suitability of propositions.
This analyze results practically in the necessity to highlight some substantial but
disregarded features of design patterns: their advantages and drawbacks, the
design principles which compose them and their relationships with others.

To satisfy those requirements, we have introduced in the fourth chapter, a
new presentation of the design patterns’ description. In the scope of this thesis,
this work could not have been based on LePus, the specification language we
presented in the second chapter. However, we proceeded available works about
the design patterns’ description ([GoFo95], [GuEr99], [Kard97]) and their
relationships ([Zimm96]) to define a new coherent and structured format.
It results in a presentation centered on the design structures encapsulated in
design patterns which clears up the design principles which compose them. It
presents also the improvement to expose explicitly advantages and drawbacks of
design patterns in separated lists. Moreover, we reformulated the intent with a
complete and coherent pattern. Finally, this presentation evinces the nature of the
relationships between design patterns.

In addition to be compact and comprehensible, our presentation of design
patterns puts forward the features necessary for enhancing the design patterns’
use that were defined in the third chapter. As such, it provides a consistent base
for the development of a help system.

Therefore, in the fifth chapter, we were able to introduced a help system for
using design patterns. Supported by our new presentation of design patterns, our
help system assists the designer in finding some solutions to his design problems
in the design patterns’ set. First, it favors efficiently the navigation through the
design patterns’ set towards a solution with a navigation map. Secondly, it
supports a coherent evaluation of design patterns by checking the pertinence of
their consequences and tracing the results.
Moreover, our prototype integrates some contextual features which invite the user
to learn always more about the design patterns’ set.

Finally, we discussed the results of our help system and highlighted two
directions which may be considered:

- it improves the designer style and knowledge,
- it increases the pertinence of the solution.

In this thesis, our analyze shows the clear necessity to elucidate the design
patterns substance to enhance their learning. Moreover, our prototype of help
system illustrates the interest of the navigation through the knowledge for
assisting the research in a knowledge base like design patterns’ set.

In conclusion, this research project demonstrates that in order to enhance
the design patterns’ use, it may be considered to work on the comprehension of

93

design patterns as much than on their communication and application as most of
design patterns related activities do.

6.3. Future works

Our research results in a substantial and original solution to assist the
designers in using design patterns. But, in the scope of this thesis, our system
could not reach further than the stage of a prototype. In the perspective of a more
consistent tool, the following directions should be considered:

- :
Our propositions need to be verified in a practical context. It may be
significant to test the prototype with some designers of different levels.
Then the analyze of the various reactions should highlight the main
defaults and main qualities of our system. This study is fundamental to
give reliable basements for any further works.

- :
It may be considered to use a strong formalism as LePus to refine our
structure of the design patterns’ description. Such formalism could
specify explicitly the relationships between design patterns and so
enhance the navigation towards a solution. Moreover, it could strength
the relations between the structure of a design pattern and its
consequences. This work should help to elucidate the design strategies
encapsulated in design patterns.

- :
Our work was based of a restricted set of design patterns. A functional
help system should consider the entire set of the GoF’s book. It may be
also significant to extend this set with some other design patterns.

The contextual aspect of a help system should take into account the
directions we give in the last chapter. As explained in §5.6.2, the user’s
level and experience should be traced in order to offer some substantial
contextual features. Moreover, it may be considered to integrate some
open questions to challenge the comprehension of the user ([Kuro00]).

- :
The detection of design problems could serve as an interesting entry
point in a help system. However, as presented in § 5.4.1.1.1, it may be
necessary to enhance the available works with an stronger interaction
with the user and some artificial intelligence techniques.

- :

94

A help system for assisting the design patterns’ use should also
consider the available CASE tools. Typically, it may be interesting to
offer an access to a tool automating the application of design patterns
when a solution is found.

95

77.. IINNDDUUSSTTRRIIAALL AANNDD EECCOONNOOMMIICC IIMMPPAACCTT OOFF OOUURR RREESSEEAARRCCHH

7.1. Design Patterns and software industry

7.1.1. Software Reuse

Reuse is becoming a revered commandment in the software industry. In every
domain, this notion appears. A lot of efforts were done into better programming
languages, tools, and techniques: COBOL, structured analysis and design, then
OO languages and OOA&D processes. This enthusiasm is easily understandable
when look at the benefits of reuse on the software industry.

On this subject, Martin Griss from HP and Ivar Jocobson from Rational
presented during the international conference OOPSLA’97 (Conference on
Object-Oriented Programming, Systems, Languages, and Applications) [Oops97]
a concrete analysis of those benefits. They worked in collaboration with the major
software companies of the market like AT&T, Brooklyn Union Gas, Ericsson
AXS, HP, IBM, NETRON, REBOOT, and Microsoft. They concluded that reuse
provides statically the following benefits:

Time To Market Reductions 1.5 to 2 times
Quality Improvements 5 to 10 times
Maintenance Cost Reductions 2 to 5 times
Development Cost Reductions 15% to 30%

Table 5: Software reuse benefits

Considering this significant feedback, the reuse is rightly considered as an
essential principle in the software industry.

96

7.1.2. Design Patterns: tools of reuse

Software developers always had a strong tendency to reuse designs that have
worked well for them in the past. Then, as they gain more experience, their
repertoire of design experience grows and they become more proficient.
Unfortunately, this design reuse is usually restricted to personal experience.

However, considering the significant benefits of reuse, it was necessary to
share design knowledge among developers. On that purpose, software patterns
appeared in the software community and with them design patterns . A design
pattern encapsulates a experimented design strategy solving general problem in a
particular context.

The availability of a catalog of design patterns can help both the experienced
and the novice designer to recognize situations in which design reuse could or
should occur. Such a collection is time-consuming to create, but as explained in
the following parts, the invested effort pays off.

7.1.3. Design reviews about the design patterns’ usage

Since their introduction, the design patterns’ use increased rapidly in the
software community. To answer the demand for concrete feedback, a group of
industrial worked on reviewing the design patterns’ use ([CoBe96], [Co&al97]).
They observed the following proceeds:

Table 6: Design reviews results about design patterns

These results show clearly the position of the software industry on the design
patterns: the use of design patterns can have a significant impact on the way a
team develops software. The improved communication through patterns alone is a
valuable asset. Giving novices the opportunity to learn from positive examples

97

which already form the basis of a shared team vocabulary can help speed their
contribution to the team. However, it is noticeable that half the companies claim
that a pattern mentor is necessary to support the design patterns’ use in the work
teams.

7.2. Our help system

The software industry is aware of the substantial benefits of design patterns
and pretends to take dividends of their use. However, design patterns have a
complexity cost and their use appears a delicate task which could be rapidly more
harmful than advantageous in the software life cycle. Therefore the software
industry may be concerned by a software assisting their use. With regard to our
investigations in the literature, it appeared relevant to study such a tool in this
thesis project.

Our research analyses results in a prototype of a help system to assist the
designers in using design patterns.

Our work targets two main goals:
- to enhance the learning of the design patterns’ set,
- to support the research of design solutions in terms of design

patterns.

Practically, we suggest a electronic support for using the design patterns’ set.
With a contextual aspect, our prototype works on improving regularly the
knowledge and the understanding of the user. Moreover, some navigation and
evaluation devices assist the user to find a solution to his design problem.

It may be considered that our help system results in:
- improving the designer style and knowledge
- increasing the pertinence of the solutions.

7.3. Conclusion

Considering the results of this work, it may be considered that an help
system to assist the designers in using design patterns could have a significant
interest for the software industry.

First, because it improves the learning of the design patterns, such a system
could tend to replace the necessity of a pattern mentor and the costly courses and
seminars about design patterns.

Secondly, the help system attempts to facilitate the design patterns’ use.
Therefore, it may be considered that such a tool will increase the general usage of

98

design patterns and so ameliorate globally the practice of software reuse and its
benefits.

99

88.. RREEFFEERREENNCCEESS

[Alex77] Christopher Alexander , A pattern language , New York Oxford
University Press, 1977.

[Alex79] Christopher Alexander , A timeless Way of Building , New York
Oxford University Press, 1979.

[AgCo98] E. Argebo and A. Cornils , How to preserve the benefits of design
pattens, Computer science department, University of Aahus,
Denmark, 1998.

[Coop99] James W. Cooper, The design patterns: Java Tutorial, Addison-
Wesley Pub Co 1999.

[CoSc95] J.Coplien and D.Schmidt, eds. , Pattern languages of Program
Design, Addison-Wesley, 1995.

[CoBe96] J.Coplien, K. Beck and al., Industrial experience with design
patterns, in 18 th Instl. Conf. On Software Engineering IEEE CS
Press, March 1996.

[Co&al97] J.Coplien and al., Reviews of Industrial experience with design
patterns,
http://www1.bell-labs.com/user/cope/Patterns/ICSE96/icse.html

[Corr99] A. Correa and M.L. Werner , Identification of Problematic
Constructions in OO Applications : an approach based on heuristics,
design patterns and anti-patterns, thesis report COPPE Universidade
Federal de Rio de Janeiro, 1999.

100

[DpLi00] Mailing lists about design patterns :
- gang-of-four-patterns:

http://hillside.net/patterns/Lists.html#gang-of-4
- pattern-discussion:

http://hillside.net/patterns/Lists.html#patterns-discussion

[Eden98a] Ammon H. Eden, Giving “the quality” a name , 1998,
http://www.math.tau.ac.il/~eden/bibliography.html

[Eden98b] Ammon H. Eden, LePus – Symbolic logic modeling of object
oriented architectures: a case study. , 1998,
http://www.math.tau.ac.il/~eden/bibliography.html

[Eden99] Ammon H.Eden, Precise specification of Design Patterns and tools
support in their application, Phd. Dissertation, September 1999.

[FMPW97] G. Floriji n, M. Meijers, P. van Winsen, Tool support for object
oriented pattern., Proceedings of ECOOP’ 97.

[Ga&al96] D. Garlan and al., Stylized architecture, Design Patterns, and
Objects, National Science Foundation CCR-9357792, September
1996.

[GiLo98] Joseph Gil and Davi H. Lorentz Design Pattern and Language
Design, in Computer Vol. 31, No.3, March 1998.

[GoFo95] E. Gamma and al. Design Pattern, Elements of Reusable object-
Oriented software, Addison Weisley 1995.

[GuEr99] A. Gustavsson and M. Ersson Formalizing the intent of a design
pattern, for the course of Amnon H. Eden about object architecture,
1999.

[HHGa90] R.Helm, J.M. Holland, D. Gangopadhyay, Contracts: Specifying
compositions in Object Oriented system , Proceedings of OOPSLA
1990.

[Kard97] Magnus Kardell, A classification of object oriented design patterns,
master’s thesis, Umea University, Denmark, 1997.

[Brow95] Kyle Brown, Design reverse engineering and automated design
pattern detection in STK, Master thesis, 1995
(http://www2.ncsu.edu/eos/info/tasug/kbrown/thesis2.htm)

[KiBe96] Kim J. and K. M. Benner (1996). Implementation Patterns for the
Observer Pattern, [VCKe96].

101

[Keri00] Joshua Kerievsky, A Learning Guide To Design Patterns, Industrial
Logic Inc., http://www.industriallogic.com/papers/learning.html.

[KrPr96] Design Recovery by automated
search of structural design patterns in OO software., in Proc. of
Working Conference on Reverse Engineering, 1996.

[Kuro00] Brian T. Kurotsuchi, Wonderful World of Design Patterns ,
http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/patterns/

[Lima92] J. C. M Lima. Towards an intellignet system for the building of
diagnostics in tutorials. Phd. Dissertation, University of Paris VI,
Octobre 1992.

[Lima95] J. C. M Lima. Knowledge representation in software packages aimed
to know about their users. In "Advances in Database and Expert
Systems". IIAS Editions, ISBN 0921836228, Windsor, Canada, pp
110-114, 1995.

[Lima97] J. C. M. Lima. Teaching intelligently by computers: a formal model
based on an object notation . Universidade Estadual do Norte

97, Campos, Brasil, 1997.

[Oops97] OOPSLA http://oopsla.acm.org

[Pehu00] Chris Pehura site: www.pehura.com

[Pina99] Osvaldo Pinali Doederlein, Design Pattern extraction for software
documentation, master thesis EMOOSE’99.

[PrUn98] Lutz Prechelt, Barbara Unger, A series of controlled experiments on
Design Patterns: Methodology and Results, in Proc. Softwaretechnik
’98, 1998.

[Rant99] Kalevi Rantanen, Brain, Computer and the ideal final result, 1999,
http://www.ideationtriz.com

[RLKS98] A. Romanczuck-Requile, J. C. M. Lima, C. Kaestner, E. Scalabrin. A
Contextual Help System Based on Intelligent Diagnosis Processing
Aiming to Design and Maintain Object-Oriented Packages. In
"Lecture Notes in Computer Science", ISBN 3-540-65460-7 1543,
Springer-Verlag, pp. 64-65, 1998.

[Rohn96] Rohnert H., The Proxy Design Pattern Revisited, in [VCKe96].

[Toge00] TogetherSoft (2000) www.together.com

102

[VCKe96] Vlissides J. M., J. O. Coplien, and N. L. Kerth, Pattern Languages in
Program Design 2., Addison-Wesley 1996

[Wiki00] Wiki Pages about patterns:
http://c2.com/cgi/wiki?WikiPagesAboutWhatArePatterns

[Zimm96] Walter Zimmer, Relationships between design patterns, In J.O.
Coplien and D.C. Schmidts (eds.), Patterns languages of
programming design, Addison-Wesley 1996, pp. 345-364.

[ZlZu91] Boris Zlotin and Alla Zusman, TRIZ and Pedagogy, 1991,
http://www.ideationtriz.com

103

99.. FFIIGGUURREESS IINNDDEEXX

Figure 1: Intelligent Tutoring System ________________________________ _______________________ 12

Figure 2: Granularity of problems detection ________________________________ __________________ 22

Figure 3: Induction process ________________________________ _______________________________ 23

Figure 4: List of consequences________________________________ _____________________________ 58

Figure 5: Relationship description window ________________________________ ___________________ 58

Figure 6: Implementation advice description window ________________________________ ___________59

Figure 7: Participants description window ________________________________ ___________________ 63

Figure 8: Highlighting of design principles in the diagram ________________________________ ______64

Figure 9: Design pattern description window ________________________________ _________________ 65

Figure 10: Help system‘s main window ________________________________ ______________________ 69

Figure 11: Help system’s navigation board window ________________________________ ____________70

Figure 12: Checking of consequences ________________________________ _______________________ 71

Figure 13: Consistence of the checking of consequences ________________________________ ________72

Figure 14: Warning window of contradictory checking ________________________________ _________72

Figure 15: Board of evaluations’ results ________________________________ _____________________ 73

Figure 16: Common design problems description window ________________________________ _______77

Figure 17: Design patterns classification window________________________________ ______________ 79

Figure 18: Variation purposes window ________________________________ ______________________ 79

Figure 19: Navigation map ________________________________ _______________________________ 81

Figure 20: Tracing of the user route on the navigation map ________________________________ ______83

Figure 21: Suggestion window________________________________ _____________________________ 86

104

1100.. TTAABBLLEESS IINNDDEEXX

Table 1: Design principles in design patterns ________________________________ _________________ 48

Table 2: Consequences of design principles ________________________________ __________________ 53

Table 3: Consequences of design patterns ________________________________ ____________________ 55

Table 4: Intent structure________________________________ ________________________________ __62

Table 5: Software reuse benefits ________________________________ ___________________________ 95

Table 6: Design reviews results about design patterns ________________________________ __________96

105

1111.. AANNNNEEXXEESS

Annex 1 Example of OO Design Pattern: Composite. 106

Annex 2 Consequences and relationships of Design Principles. 112

Annex 3 Consequences and relationships of Design Patterns. 114

Annex 4 Intent description of the design pattern. 117

Annex 5 Shot screens of Design Patterns and Design Principles. 119

ANNEX 1

EXAMPLE OF OO DESIGN PATTERN: COMPOSITE.

Name

Composite

Intent

Compose objects into tree structures to represent part-whole hierarchies. Composite lets clients treat
individual objects and compositions of objects uniformly.

Motivation

Graphics applications like drawing editors and schematic capture systems let users build complex
diagrams out of simple components. The user can group components to form larger components,
which in turn can be grouped to form still larger components. A simple implementation could
define classes for graphical primitives such as Text and Lines plus other classes that act as
containers for these primitives.

But there's a problem with this approach: Code that uses these classes must treat primitive and
container objects differently, even if most of the time the user treats them identically. Having to
distinguish these objects makes the application more complex. The Composite pattern describes
how to use recursive composition so that clients don't have to make this distinction.

The key to the Composite pattern is an abstract class that represents both primitives and their
containers. For the graphics system, this class is Graphic. Graphic declares operations like Draw
that are specific to graphical objects. It also declares operations that all composite objects share,
such as operations for accessing and managing its children.

The subclasses Line, Rectangle, and Text (see preceding class diagram) define primitive graphical

objects. These classes implement Draw to draw lines, rectangles, and text, respectively. Since
primitive graphics have no child graphics, none of these subclasses implements child-related
operations.

The Picture class defines an aggregate of Graphic objects. Picture implements Draw to call Draw on
its children, and it implements child-related operations accordingly. Because the Picture interface
conforms to the Graphic interface, Picture objects can compose other Pictures recursively.

The following diagram shows a typical composite object structure of recursively composed Graphic
objects:

Applicability

Use the Composite pattern when
• you want to represent part-whole hierarchies of objects.
• you want clients to be able to ignore the difference between compositions of objects

and individual objects. Clients will treat all objects in the composite structure
uniformly.

Structure

A typical Composite object structure might look like this:

Participants

Component (Graphic)

• declares the interface for objects in the composition.
• implements default behavior for the interface common to all classes, as appropriate.
• declares an interface for accessing and managing its child components.
• (optional) defines an interface for accessing a component's parent in the recursive

structure, and implements it if that's appropriate.

Leaf (Rectangle, Line, Text, etc.)

• represents leaf objects in the composition. A leaf has no children.
• defines behavior for primitive objects in the composition.

Composite (Picture)

• defines behavior for components having children.
• stores child components.
• implements child-related operations in the Component interface.

Client

• manipulates objects in the composition through the Component interface.

Collaborations

Clients use the Component class interface to interact with objects in the composite structure. If
the recipient is a Leaf, then the request is handled directly. If the recipient is a Composite, then it
usually forwards requests to its child components, possibly performing additional operations before
and/or after forwarding.

Consequences

The Composite pattern

• defines class hierarchies consisting of primitive objects and composite objects. Primitive
objects can be composed into more complex objects, which in turn can be composed, and
so on recursively. Wherever client code expects a primitive object, it can also take a
composite object.

• makes the client simple. Clients can treat composite structures and individual objects
uniformly. Clients normally don't know (and shouldn't care) whether they're dealing with a
leaf or a composite component. This simplifies client code, because it avoids having to
write tag-and-case-statement-style functions over the classes that define the composition.

• makes it easier to add new kinds of components. Newly defined Composite or Leaf
subclasses work automatically with existing structures and client code. Clients don't have to
be changed for new Component classes.

• can make your design overly general. The disadvantage of making it easy to add new
components is that it makes it harder to restrict the components of a composite. Sometimes
you want a composite to have only certain components. With Composite, you can't rely on
the type system to enforce those constraints for you. You'll have to use run-time checks
instead.

Known Uses

Examples of the Composite pattern can be found in almost all object-oriented systems. The original
View class of Smalltalk Model/View/Controller [KP88] was a Composite, and nearly every user
interface toolkit or framework has followed in its steps, including ET++ (with its VObjects
[WGM88]) and InterViews (Styles [LCI+92], Graphics [VL88], and Glyphs [CL90]). It's
interesting to note that the original View of Model/View/Controller had a set of subviews; in other
words, View was both the Component class and the Composite class. Release 4.0 of Smalltalk-80
revised Model/View/Controller with a VisualComponent class that has subclasses View and
CompositeView.

The RTL Smalltalk compiler framework [JML92] uses the Composite pattern extensively.
RTLExpression is a Component class for parse trees. It has subclasses, such as BinaryExpression,
that contain child RTLExpression objects. These classes define a composite structure for parse
trees.
RegisterTransfer is the Component class for a program's intermediate Single Static Assignment
(SSA) form. Leaf subclasses of RegisterTransfer define different static assignments such as
primitive assignments that perform an operation on two registers and assign the result to a third; an
assignment with a source register but no destination register, which indicates that the register is
used after a routine returns; and an assignment with a destination register but no source, which
indicates that the register is assigned before the routine starts.

Another subclass, RegisterTransferSet, is a Composite class for representing assignments that
change several registers at once.

Another example of this pattern occurs in the financial domain, where a portfolio aggregates
individual assets. You can support complex aggregations of assets by implementing a portfolio as a
Composite that conforms to the interface of an individual asset [BE93].

The Command (233) pattern describes how Command objects can be composed and sequenced with
a MacroCommand Composite class.

Related Patterns

Often the component-parent link is used for a Chain of Responsibility (223).

Decorator (175) is often used with Composite. When decorators and composites are used together,
they will usually have a common parent class. So decorators will have to support the Component
interface with operations like Add, Remove, and GetChild.

Flyweight (195) lets you share components, but they can no longer refer to their parents.

Iterator (257) can be used to traverse composites.

Visitor (331) localizes operations and behavior that would otherwise be distributed across
Composite and Leaf classes.

ANNEX 2

CONSEQUENCES AND RELATIONSHIPS OF DESIGN PRINCIPLES.

D
es

ig
n

P
ri

nc
ip

le
C

on
se

qu
en

ce
A

dv
an

ta
ge

 /
D

ra
w

ba
ck

D
es

ig
n

P
at

te
rn

 o
r

pr
in

ci
pl

e
 A

ff
ec

te
d

co
ns

eq
ue

nc
e

D
es

ig
n

P
at

te
rn

 o
r

pr
in

ci
pl

e
 A

dd
ed

 c
on

se
qu

en
ce

U
se

 in
te

nt

C
om

po
si

tio
n

ad
d

fe
at

ur
es

 d
yn

am
ic

al
ly

A
In

he
rit

an
ce

ad
d

fe
at

ur
es

 a
t

co
m

pi
le

-ti
m

e
In

te
rfa

ce
Th

e
cl

ie
nt

 is
 n

ot
 a

w
ar

e
of

 th
e

sp
ec

ifi
c

ty
pe

 o
f

th
e

ob
je

ct
s

to
 m

ak
e

dy
na

m
ic

ity

av
ai

la
bl

e

C
om

po
si

tio
n

fle
xi

bi
lit

y
ea

sy
 to

 c
us

to
m

iz
ed

 /
ha

rd
 to

 le
ar

n
In

he
rit

an
ce

"w
hi

te
-b

ox
"

re
us

e

C
om

po
si

tio
n

Lo
ts

 o
f s

m
al

l o
bj

ec
ts

 a
re

cr

ea
te

d

lig
ht

 h
ie

ra
rc

hi
es

 /
be

ha
vi

or
 d

ep
en

ds
 o

n
in

te
rr

el
at

io
ns

hi
ps

In
he

rit
an

ce
ad

d
fe

at
ur

es
 a

t
co

m
pi

le
-ti

m
e

In
he

rit
an

ce
"w

hi
te

-b
ox

"
re

us
e

to
 re

ac
t t

o
th

e
la

ck

of
 a

va
ila

bl
e

co
m

po
ne

nt
s

C
om

po
si

tio
n

"b
la

ck
 b

ox
"

re
us

e
ke

ep
s

en
ca

ps
ul

at
io

n
/

re
qu

ire
s

w
el

l-d
ef

in
ed

in

te
rfa

ce
In

he
rit

an
ce

"w
hi

te
-b

ox
"

re
us

e

In
te

rfa
ce

Th
e

cl
ie

nt
 is

 n
ot

 a
w

ar
e

of

th
e

sp
ec

ifi
c

ty
pe

 o
f t

he

ob
je

ct
s

m
or

e
tra

ns
pa

re
nc

y
/

ob
je

ct
s

ar
e

co
ns

tra
in

ed

to
 th

e
in

te
rfa

ce

D
ire

ct
Im

pl
em

en
ta

tio
n

Li
m

it
th

e
us

e
to

 th
e

ob
je

ct
 a

nd
 it

s
su

bc
la

ss
es

In
te

rfa
ce

Th
e

cl
ie

nt
 is

 n
ot

 a
w

ar
e

of

th
e

sp
ec

ifi
c

im
pl

em
en

ta
tio

n
of

 th
e

ob
je

ct
s

m
or

e
tra

ns
pa

re
nc

y
/

ob
je

ct
s

ar
e

co
ns

tra
in

ed

to
 th

e
in

te
rfa

ce

D
ire

ct
Im

pl
em

en
ta

tio
n

Li
m

it
th

e
us

e
to

 th
e

ob
je

ct
 a

nd
 it

s
su

bc
la

ss
es

In
he

rit
an

ce
ad

d
fe

at
ur

es
 a

t c
om

pi
le

-
tim

e

ke
ep

s
be

ne
fit

 o
f t

he

fe
at

ur
es

 o
f t

he
 s

up
er

cl

as
s

/ n
ot

 d
yn

am
ic

C
om

po
si

tio
n

ad
d

fe
at

ur
es

dy

na
m

ic
al

ly

In
he

rit
an

ce
"w

hi
te

-b
ox

"
re

us
e

ke
ep

s
be

ne
fit

 o
f t

he

fe
at

ur
es

 o
f t

he
 s

up
er

cl

as
s

/ i
nh

er
its

 a
n

im
pl

em
en

ta
tio

n
m

ay
be

no

t a
da

pt
ed

 to
 th

e
ne

w

pr
ob

le
m

 d
om

ai
n

C
om

po
si

tio
n

"b
la

ck
 b

ox
"

re
us

e

A
bs

tra
ct

 c
la

ss
pr

ov
id

e
on

ly
 th

e
ge

ne
ric

im
pl

em
en

ta
tio

n

A
bs

tra
ct

 c
la

ss
pr

ov
id

e
on

ly
 th

e
ge

ne
ric

im

pl
em

en
ta

tio
n

di
re

ct
 th

e
be

ha
vi

or
 o

f
th

e
su

bc
la

ss
es

 /
co

ul
d

be
 n

ot
 a

da
pt

ed
 to

 th
e

ne
w

 p
ro

bl
em

In
te

rfa
ce

Th
e

cl
ie

nt
 is

 n
ot

 a
w

ar
e

of
 th

e
sp

ec
ifi

c
im

pl
em

en
ta

tio
n

of
 th

e
ob

je
ct

s

A
n

ab
st

ra
ct

 c
la

ss

ca
n

be
 u

se
d

as
 a

n
in

te
rfa

ce

A
lte

rn
at

iv
e

A
ss

oc
ia

tio
n

114

ANNEX 3

CONSEQUENCES AND RELATIONSHIPS OF DESIGN PATTERNS.

D
es

ig
n

P
at

te
rn

C
on

se
qu

en
ce

A
dv

an
ta

ge
 /

D
ra

w
ba

ck

S
im

ila
ri

ty
?

D
es

ig
n

P
at

te
rn

 o
r

pr
in

ci
pl

e
 A

ff
ec

te
d

co
ns

eq
ue

nc
e

D
es

ig
n

P
at

te
rn

 o
r

pr
in

ci
pl

e
 A

dd
ed

 c
on

se
qu

en
ce

U
se

 in
te

nt

D
ec

or
at

or
ch

an
ge

 s
ki

n
of

 a
n

ob
je

ct
 a

nd
 n

ot
 th

e
gu

ts
A

S
tra

te
gy

ch
an

ge
 g

ut
s

of
 a

n
ob

je
ct

an

d
no

t t
he

 s
ki

n

D
ec

or
at

or
ad

d
re

sp
on

sa
bi

lit
ie

s
A

X
C

om
po

si
te

ad
d

co
m

po
si

tio
n

C
om

po
si

te
ad

d
co

m
po

si
tio

n
To

 a
dd

 re
sp

on
si

bi
lty

 to
 a

co

m
po

si
te

 o
bj

ec
t

X
P

ro
xy

co
nt

ro
l a

cc
es

s
to

 a
n

ob
je

ct

D
ec

or
at

or
m

ak
e

va
ry

 o
bj

ec
t r

es
po

ns
ab

ili
tie

s
A

X
A

da
pt

er
m

ak
e

va
ry

 a
n

in
te

rfa
ce

S
tra

te
gy

le
ts

 th
e

al
go

rit
hm

 v
ar

y
in

de
pe

nd
en

tly

fro
m

 c
lie

nt
s

th
at

 u
se

 it
.

A
X

Fl
yw

ei
gh

t
m

an
ag

e
sh

ar
ed

 o
bj

ec
ts

X
S

ta
te

m
ak

e
va

ry
 a

 s
ta

te
 o

f a
n

ob
je

ct

V
is

ito
r

m
ak

e
va

ry
 o

pe
ra

tio
n

th
at

ca

n
be

 a
pp

lie
d

to
 o

bj
ec

t

S
tra

te
gy

el
im

in
at

e
co

nd
iti

on
al

 s
ta

te
m

en
ts

(p

ra
ct

ic
al

...
?)

A

S
tra

te
gy

co
m

m
un

ic
at

io
n

ov
er

he
ad

 if
 d

iff
er

en
t

gr
an

ul
ar

ity
 o

f a
lg

or
ith

m
 (c

om
po

si
tio

n
?)

D
Im

pl
em

en
ta

tio
n

ad
vi

ce
pa

ss
 th

e
co

nt
ex

t a
s

pa
ra

m
et

er

S
tra

te
gy

ch
an

ge
 g

ut
s

of
 a

n
ob

je
ct

 a
nd

 n
ot

 th
e

sk
in

A
D

ec
or

at
or

ch
an

ge
 s

ki
n

of
 a

n
ob

je
ct

an

d
no

t t
he

 g
ut

s

Fa
ct

or
y

M
et

ho
d

cr
ea

te
 o

bj
ec

ts
 k

no
w

in
g

on
ly

 w
he

n
bu

t n
ot

 w
ha

t
A

Te
m

pl
at

e
M

et
ho

d
le

ts
 s

ub
cl

as
se

s
re

de
fin

e
st

ep
s

of
 a

n
al

go
rit

hm
Fa

ct
or

y
m

et
ho

d
ar

e
of

te
n

ca
ll

by
 te

m
pl

at
e

m
et

ho
d

Fa
ct

or
y

M
et

ho
d

le
ts

 c
la

ss
 d

ef
er

 in
st

an
tia

tio
n

to

su
bc

la
ss

es
A

A
lte

rn
at

iv
e

A
ss

oc
ia

tio
n

D
es

ig
n

P
at

te
rn

C
on

se
qu

en
ce

A
dv

an
ta

ge
 /

D
ra

w
ba

ck

S
im

ila
ri

ty
?

D
es

ig
n

P
at

te
rn

 o
r

pr
in

ci
pl

e
 A

ff
ec

te
d

co
ns

eq
ue

nc
e

D
es

ig
n

P
at

te
rn

 o
r

pr
in

ci
pl

e
 A

dd
ed

 c
on

se
qu

en
ce

U
se

 in
te

nt

Te
m

pl
at

e
M

et
ho

d
de

fe
rs

 s
te

ps
 o

f a
lg

or
ith

m
s

to

su
bc

la
ss

es
A

S
tra

te
gy

m
ak

e
va

ry
 a

n
al

go
rit

hm

Te
m

pl
at

e
M

et
ho

d
re

qu
ire

s
to

 k
no

w
 w

hi
ch

 m
et

ho
d

to
 o

ve
rr

id
e

an
d

w
hi

ch
 n

ot

D
Im

pl
em

en
ta

tio
n

ad
vi

ce
pu

t n
am

e
co

nv
en

tio
n

Im
pl

em
en

ta
tio

n
ad

vi
ce

m
in

im
iz

e
th

e
nu

m
be

r o
f

pr
im

iti
ve

C
om

po
si

te
co

m
po

se
 o

bj
ec

ts
 in

to
 tr

ee

st
ru

ct
ur

es
 to

 re
pr

es
en

t p
ar

t-
w

ho
le

 h
ie

ar
ch

ie
s

A

C
om

po
si

te
m

ak
e

va
ry

 th
e

st
ru

ct
ur

e
an

d
th

e
co

m
po

si
tio

n
of

 a
n

ob
je

ct
A

C
om

po
si

te
le

ts
 c

lie
nt

 tr
ea

ts
 in

di
vi

du
al

 o
bj

ec
ts

an

d
co

m
po

si
tio

ns
 o

f o
bj

ec
ts

un

ifo
rm

ly
A

C
om

po
si

te
di

ffi
cu

lt
to

 re
st

ric
t t

he
 n

at
ur

e
of

th

e
co

m
po

sa
nt

 in
 fu

nc
tio

n
of

 th
e

pa
re

nt
D

Im
pl

em
en

ta
tio

n
ad

vi
ce

ru
n-

tim
e

ch
ec

ki
ng

C
om

po
si

te
co

m
po

se
d

ch
ild

re
n

do
 n

ot
 k

no
w

th

ei
r p

ar
en

t
D

Im
pl

em
en

ta
tio

n
ad

vi
ce

P
as

s
th

e
pa

re
nt

 a
s

pa
ra

m
et

er

to
 th

e
ch

ild

C
om

po
si

te
ch

ild
re

n
ar

e
no

t o
rd

er
ed

D
Ite

ra
to

r
m

ak
e

yo
u

va
ry

 h
ow

 a
n

ag
gr

eg
at

e'
s

el
em

en
ts

 a
re

ac

ce
ss

ed
, t

ra
ve

rs
ed

to
 tr

av
er

se
 C

om
po

si
te

D
ec

or
at

or
ad

d
re

sp
on

sa
bi

lit
ie

s
To

 a
dd

 re
sp

on
si

bi
lty

 to
 a

co

m
po

si
te

 o
bj

ec
t

C
ha

in
 o

f R
es

po
ns

ab
ili

tie
s

 g
iv

e
m

or
e

th
an

 o
ne

 o
bj

ec
t a

ch

an
ce

 to
 h

an
dl

e
th

e
re

qu
es

t.
A

C
ha

in
 o

f R
es

po
ns

ab
ili

tie
s

av
oi

d
co

up
lin

g
th

e
se

nd
er

 o
f a

re

qu
es

t a
nd

 th
e

re
ce

iv
er

A
X

D
ec

or
at

or
M

ak
e

va
ry

 o
bj

ec
t

re
sp

on
sa

bi
lit

ie
s

C
ha

in
 o

f R
es

po
ns

ab
ili

tie
s

R
ec

ei
pt

 is
 n

ot
 g

ua
ra

nt
ee

d
D

C
ha

in
 o

f R
es

po
ns

ab
ili

tie
s

m
ak

e
va

ry
 o

bj
ec

t t
ha

t c
an

 fu
lfi

l a

re
qu

es
t

X
C

om
po

si
te

tre
at

 c
om

po
si

te
 s

tru
ct

ur
e

an
d

in
di

vi
du

al
 o

bj
ec

ts
 u

ni
fo

rm
ly

A
lte

rn
at

iv
e

A
ss

oc
ia

tio
n

117

ANNEX 4

INTENT DESCRIPTION OF DESIGN PATTERNS.

C
at

eg
or

y
D

es
cr

ip
tio

n
C

at
eg

or
y

D
es

cr
ip

tio
n

D
ec

or
at

or
O

bj
ec

t
an

 o
bj

ec
t

Fu
nc

tio
nn

al
ity

ad
d

re
sp

on
sa

bi
lit

ie
s

D
yn

am
ic

by
 fo

rw
ar

di
ng

 re
qu

es
ts

 to
 th

e
co

m
po

sa
nt

de
liv

er
s

a
fle

xi
bl

e
ex

te
nd

in
g

m
ec

ha
ni

sm
m

ak
e

va
ry

 o
bj

ec
t

re
sp

on
sa

bi
lit

ie
s

S
tr

at
eg

y
O

bj
ec

t
an

 o
bj

ec
t

Fu
nc

tio
nn

al
ity

m
ak

e
va

ry
 a

n
al

go
rit

hm
D

yn
am

ic
by

 e
nc

ap
su

la
tin

g
ea

ch

al
go

rit
hm

le
ts

 th
e

al
go

rit
hm

 v
ar

y
in

de
pe

nd
en

tly
 fr

om
 c

lie
nt

s
th

at

us
e

it
m

ak
e

va
ry

 a
n

al
go

rit
hm

Fa
ct

or
y

M
et

ho
d

O
bj

ec
t

so
m

e
ob

je
ct

s
In

st
an

tia
tio

n
cr

ea
te

 o
bj

ec
ts

 k
no

w
in

g
on

ly

w
he

n
bu

t n
ot

 w
ha

t
S

ta
tic

by
 d

ef
in

in
g

an
 in

te
rfa

ce
 th

at

le
ts

 s
ub

cl
as

se
 d

ec
id

e
w

hi
ch

ob

je
ct

 to
 in

st
an

tia
te

le
ts

 a
 c

la
ss

 d
ef

er
 in

st
an

tia
tio

n
to

su

bc
la

ss
es

le
t v

ar
y

su
bc

la
ss

 o
f

ob
je

ct
 th

at
 is

in

st
an

ci
at

ed

Te
m

pl
at

e
M

et
ho

d
R

el
at

ed
 o

bj
ec

ts

fa
m

ily
a

cl
as

s
Fu

nc
tio

nn
al

ity
de

fe
rs

 s
te

ps
 o

f a
lg

or
ith

m
s

to
 s

ub
cl

as
se

s
S

ta
tic

by
 d

ef
in

in
g

th
e

sk
el

et
on

 o
f a

n
al

go
rit

hm
 in

 o
ne

 o
pe

ra
tio

n

le
ts

 s
ub

cl
as

es
 re

de
fin

e
ce

rta
in

st

ep
s

of
 a

n
al

go
rit

hm
 w

ith
ou

t
ch

an
gi

ng
 th

e
al

go
rit

hm
 s

tru
ct

ur
e

le
t v

ar
y

st
ep

s
of

 a
n

al
go

rit
hm

C
om

po
si

te
R

el
at

ed
 o

bj
ec

ts

fa
m

ily
so

m
e

ob
je

ct
s

In
te

rfa
ce

co
m

po
se

 o
bj

ec
ts

 in
to

 tr
ee

st

ru
ct

ur
es

 to
 re

pr
es

en
t p

ar
t-

w
ho

le
 h

ie
ar

ch
ie

s
D

yn
am

ic
by

 u
si

ng
 a

n
in

te
rfa

ce
 to

in

te
ra

ct
 w

ith
 th

e
co

m
po

si
te

st

ru
ct

ur
e

le
ts

 c
lie

nt
 tr

ea
t i

nd
iv

id
ua

l o
bj

ec
ts

an

d
co

m
po

si
tio

ns
 o

f o
bj

ec
ts

un

ifo
rm

ly

m
ak

e
va

ry
 th

e
st

ru
ct

ur
e

an
d

co
m

po
si

tio
n

of
 a

n
ob

je
ct

C
ha

in
 o

f
R

es
po

ns
ib

ili
ty

R
el

at
ed

 o
bj

ec
ts

fa

m
ily

so
m

e
ob

je
ct

s
C

om
m

un
ic

at
io

n
 g

iv
e

m
or

e
th

an
 o

ne
 o

bj
ec

t
a

ch
an

ce
 to

 h
an

dl
e

th
e

re
qu

es
t.

D
yn

am
ic

by
 c

ha
in

in
g

th
e

re
ce

iv
in

g
ob

je
ct

s
an

d
pa

ss
in

g
th

e
re

qu
es

t a
lo

ng
 th

e
ch

ai
n

un
til

an

 o
bj

ec
t h

an
dl

es
 it

av
oi

d
co

up
lin

g
th

e
se

nd
er

 o
f a

re

qu
es

t t
o

its
 re

ce
iv

er
m

ak
e

va
ry

 o
bj

ec
t t

ha
t

ca
n

fu
lfi

l a
 re

qu
es

t

V
ar

ia
tio

n

A
pp

lie
d

to
P

ur
po

se

S
co

pe
R

es
ul

t
M

ea
n

(c
ol

la
bo

ra
tio

n)

119

ANNEX 5

SHOT SCREENS OF DESIGN PATTERNs AND DESIGN PRINCIPLES.

