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Abstract

One of the fundamental research areas in computer science is concerned with
representing and inferring knowledge from information. Through the years,
many techniques have been proposed to solve the related difficulties, either
separately, or by combining knowledge representations with knowledge in-
ference. In this dissertation, prototype-based languages, as an expressive
knowledge representation, are combined with forward-chaining rule-based
reasoning, as a mechanism to infer knowledge. More specifically, we pro-
pose that a forward-chaining inference engine on top of a prototype-based
language, supporting a rule language, composed of expressions in the base
language, can result in a powerful mechanism for meta-programming in an
interactive manner. To support our claim, a forward-chaining hybrid sys-
tem was integrated into the prototype-based programming language SELF.
Experiments in the context of monitoring code, in search of “bad smells”
and suggesting refactorings, show its utility as a meta-programming tool.
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Chapter 1

Introduction

Nowadays, the field of study of computer science is strongly linked with the
study of knowledge. How to infer knowledge from information and how to
represent knowledge has been a research subject for years. There have been
countless proposals to solve both questions.

On the one hand, modern object-oriented prototype-based programming
languages (specifically, SELF [Sel]) have many advantages in the context of
knowledge representation, especially in comparison with most class-based
languages.

On the other hand, production rules can serve as a mechanism for in-
ferring knowledge from information. This dissertation combines both ap-
proaches: a hybrid system that results from the blend between rule-based
reasoning and an object-oriented prototype-based programming language.

The driving idea behind this dissertation is situated in the context of
(declarative) meta-programming. Today there exist powerful, mature back-
ward and forward-chaining tools such as SOUL [SOU] for performing rule-
based reasoning at the meta-level. However, there is room for improve-
ment, for instance in the context of interactive programming since these
systems involve program execution outside the main programming environ-
ment. Moreover, the associated rule language often consists of expressions
in a language different from the target language.

We propose that a forward-chaining system, capable of expressing rules
in terms of expressions in a prototype-based programming language can be a
means for meta-programming, possibly in an interactive programming style,
as it can monitor a constantly changing fact base.

Therefore, a forward-chaining inference rule-based engine was built on
top of SELF, with the ability to use SELF expressions in both the condition
and action parts of the rules. New means were conceived for interpreting
the (implicit) universal quantification in a rule, thus providing new ways for
grouping together objects in SELF. Moreover, combining a forward-chaining
production rules system with SELF adds a meta-programming layer, that
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goes beyond SELF’s own meta-object protocol.
As a case study in meta-programming, this dissertation will show how

a forward-chaining rule-based engine can be used as a tool for guided pro-
gramming in SELF, by providing rules that can suggest possible refactorings
to the user while programming.

The rest of this dissertation is structured as follows: chapter 2 discusses
the philosophy behind current knowledge representation paradigms, high-
lights the advantages of using the prototype-based paradigm, provides a
classification of the related programming languages, and finally introduces
the programming language SELF.

Next, chapter 3 introduces the formalisms used for expressing rules, the
most common ways for chaining them and details the Rete algorithm. This
chapter also introduces hybrid systems in the context of production systems,
and presents NéOpus [NeO], which was used as a guide for building the
forward-chaining system developed during this research.

Chapter 4 details the structure and implementation of this forward-
chaining inference rule-based engine built on top of SELF. The topics dis-
cussed include the problems encountered during the transition from the
class-based to the prototype-based paradigm and the challenges in finding
ways to group objects in a prototype-based world. Also the (dis)advantages
of prototypes as opposed to classes, in this specific context are discussed.
The high-level structure and evaluation process of the rule-based system,
together with the rule language are included.

In Chapter 5 we present the developed system and the associated rule
language as a new meta-programming layer on top of SELF, which enables
interactive programming, as illustrated with some experiments on refactor-
ing code.

Finally, Chapter 6 enumerates the conclusions of this research, while
chapter 7 proposes possible future research directions.
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Part I

Preliminaries
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Chapter 2

Prototypes and SELF

This chapter introduces some of the philosophical foundations that lie behind
the way in which knowledge is represented inside object-oriented program-
ming systems; in essence this means comparing the classification theory
with the prototype theory of knowledge representation. Both approaches
map into two different kinds of programming languages: class-based and
prototype-based; more emphasis will be put on describing the latter, as the
objective of this thesis is showing that a prototype-based language (PBL,
for short) could be better suited for performing rule-based inference.

Subsequent sections will contain a brief history and some classification
attempts of prototype-based languages, concluding with a detailed view of
SELF [Sel], the language used for this research.

2.1 Knowledge Representation: Philosophical Foun-
dations

There has been a long standing philosophical controversy questioning the
best way to represent concepts: as abstract sets or classes, or as concrete
prototypes. It will be shown that the roots of this discussion can be traced
back to the works of ancient Greece’s philosophers.

2.1.1 Early Developments on Classification Theory

The earliest mention of classes versus instances dates back to over two thou-
sand years ago, and it was stated by Plato [Tai99]. He made the distinction
between forms —“ideal” descriptions of things and the particular instances
of this forms. For Plato, the world of ideas was more important than the
world of instances. Aristotle, Plato’s student, continued the research into
classification and intended to provide a detailed and comprehensive taxon-
omy of all natural things, grouping them under the same category if they
shared the same properties, and allowing the definition of new categories in

10



terms of other categories if the new ones have at least the same properties
as the defining (“genus”) ones. This rule can be summarized as:

essence = genus + differentia

In this way, a new category is defined in terms of its defining properties and
distinguishing properties. However, Aristotle also realized that his model
had problems dealing with those properties characteristic of an object that
are atypical for that kind of objects. He called them “accidental” properties,
and restated the substance of a concept in terms of two aspects: the essence
and the accidents.

From a mathematical point of view, the classification theory is directly
related with the concept of sets (or classes). A set is constructed either by
describing the principles that identify membership in a set, or by enumerat-
ing all of its members. In the first case, the description of a set enumerates
all the essential properties of its members, and an object is said to be a
member or an instance of a set if it belongs to that set.

2.1.2 A Challenge on Classification

Nobody disputed Aristotle’s ideas on classification during a long time. The
first people that questioned the “classical” view were the British philoso-
phers W. Whewell and W.S. Jevons [Tai99] in the 19th century. They re-
alized that there is a great subjective component involved in the process
of classifying things, and that process requires creative invention and eval-
uation. As a consequence, there are no universal rules to determine the
properties that should be used as the basis for classifying objects, and there
are no objectively “right” classifications.

In 1953, Ludwig Wittgenstein noticed that it is difficult to say in advance
what are the essential characteristics of a concept, and he also provided
several examples of “simple” concepts that are extremely difficult to define in
terms of shared properties, like “game” or “work of art”. As an alternative,
Wittgenstein stated that the meaning of most concepts is determined not by
definition, but by family resemblances. Such concepts can be defined only
in terms of similarity and representative “prototypes”.

2.1.3 Prototype Theory is Born

Wittgenstein’s ideas inspired new research in the emerging prototype theory.
J.L. Austin (1961), L. Zadeh (1965), F. Lounsbury and many others started
to investigate the topic. But it was Eleanor Rosch who introduced prototype
theory in the mid-1970s. She observed that categories, in general, have
best examples (“prototypes”), and that all of human senses play a role
in categorization. Rosch focused her research on two implications of the
classical theory:
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• If categories are defined only by properties that all members share,
then no members should be better examples of the category than any
other members.

• If categories are defined only by properties inherent in the members,
then categories should be independent of the peculiarities of any beings
doing the categorization.

The above implications are not typically true when people do classifications.
In fact, some instances are “better” representatives of categories than others,
and our background, mental capabilities and experience play a significant
role in the classification process.

Observations such as those above showed the flaws in the classical classifi-
cation model, and formed the basis for the prototype theory stated by Rosch
and others. The essential results can be summarized as follows [Lak87]:

• Some categories are graded; that is, they have inherent degrees of
membership, fuzzy boundaries, and central members whose degree of
membership (on a scale from zero to one) is one.

• Other categories have clear boundaries; but within those boundaries
there are graded prototype effects — some category members are bet-
ter examples of the category than others.

• Categories are not organized just in terms of simple taxonomic hierar-
chies. Instead, categories “in the middle” of a hierarchy are the most
basic. Most knowledge is organized at this level.

• The basic level depends upon perceived part-whole structure and cor-
responding knowledge about how the parts function relative to the
whole.

• Categories are organized into systems with contrasting elements.

• Human categories are not objectively “in the world”, external to hu-
man beings. Many categories are embodied, and defined jointly by the
external physical world, human biology, the human mind, plus cultural
considerations.

2.2 From Philosophy to Programming Languages

Section 2.1 summarized the two main philosophical currents concerned with
the question of how to represent human knowledge. They obviously influ-
ence the way in which programming languages are built, exploiting either
the class-based paradigm or the prototype-based paradigm for representing
knowledge. In this section, the practical implications of the previous philo-
sophical discussion shall be enunciated. As an aside note, it is surprising
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to find that most software developers have no idea of the conceptual and
philosophical background surrounding object-oriented programming, even
though such concepts directly impact the way in which a program is built.

2.2.1 Classes vs. Prototypes

Most objected oriented languages are built around the idea that it is possible
to abstract out the general, “essential” concepts that apply to all members
of a class, and describe all of them at once. However, as Wittgenstein
stated, it is difficult to say in advance what characteristics are essential for
a concept. In the mathematical world the concept of set has proven useful
for describing properties that apply to many objects, but in the every-day
world the prototype approach in some ways corresponds more closely to
the way people seems to acquire knowledge [Lie86]. In class-based systems,
people are expected to find out from the beginning the abstract properties
that apply to all the members of a class of objects; on the other hand,
prototype-based systems encourage people to create concrete concepts first
and then generalize them by saying what aspects of the concept are allowed
to vary.

Class-Based Languages and their Limitations

Conceptually, one of the sources of complexity of having classes in an object-
oriented system lies in the fact that they play multiple roles, with several
different functions. For example, in Smalltalk [GR85] some of the roles
played by a class include [Bor86]:

• generators of new objects,

• descriptions of the representation of their instances,

• descriptions of the message protocol of their instances,

• elements in the description of the object taxonomy,

• a means for implementing differential programming,

• repositories for methods for receiving messages,

• devices for dynamically updating many objects when a change is made
to a method, and

• sets of all instance of those classes

From a more pragmatic point of view, several limitations arise when
using an object-oriented programming language for representing the knowl-
edge of a domain; these limitations are not exclusive of but are more evident
in class-based systems [Tai99]:
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Limited modeling capabilities The programming model used by most
object-oriented programming languages closely resembles the Aris-
totelian classical model of the world: new classes are defined in terms
of shared properties, and all the instances of a class have the same set
of properties; even the inheritance model commonly used in object-
oriented languages is very similar to the Aristotelian way of defining
new categories in terms of existing genealogical parents. As was dis-
cussed in sections 2.1.2 and 2.1.3, Aristotle’s model has its own short-
comings and given that class-based programming languages follow so
closely this model, it is easy to see that the same shortcomings also
apply to such languages. In particular, there are many concepts and
domains that cannot naturally be modeled in terms of shared proper-
ties (things like a traffic jam, water, the greenhouse effect).

No optimum class hierarchies Aristotle believed in the existence of a
“single correct taxonomy of all natural things”. Rosch’s research has
shown that the categorization process is a subjective activity, and a
“single and correct taxonomy” cannot be achieved. As a consequence,
it is possible to assert that an optimum class hierarchy does not re-
ally exist for a given domain. In practice, a good class hierarchy in-
volves trade-offs in various regards, for example a reusable library is
not necessarily an efficient one, or a very efficient library may lack
extensibility.

Basic classes and the need for iteration A very important contribution
of Rosch’s prototype theory is the observation that not all concepts
and categories are equal. There are categories that are more “ba-
sic” than others and objects that are “better” representatives of their
respective categories. When categories are organized into taxonomic
hierarchies the basic classes end up in the middle of the class hierar-
chy, as the classes at the top tend to be overly generic and the ones at
the bottom overly specific. However, the basic categories are usually
found first whereas the general ones can only be deduced later when
more experience from the problem domain has been gathered. A con-
ceptual conflict arises here: On one hand, the implementation of a
class-based hierarchy starts from top to bottom, as superclasses must
exist before their subclasses. On the other hand, the generic, more
abstract classes are usually found after some experience working with
a knowledge domain reveals generalizations and new abstractions that
should be placed at the top of the hierarchy. As a consequence of this
conflict, the construction of object-oriented class libraries becomes an
iterative process where the useful abstractions are discovered rather
than invented after a number of iterations.
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Prototype-Based Languages

The classification theory in philosophy laid the foundations for class-based
languages (CBLs for short), in a similar way the prototype theory inspired a
new paradigm of object-oriented languages: the prototype-based program-
ming model. In this model, all programming is done in terms of concrete,
directly manipulable objects often referred to as prototypes [Tai99].

There are many different languages that adhere to the prototype-based
paradigm, each of them with its unique set of characteristics (see 2.3.3 and
2.3.4). However, some features are common to most of them, such as an
increased object flexibility (for instance, it is often possible to add or remove
variables or methods in individual objects), creation of new objects by coping
or cloning existing ones, and inheritance is replaced by other mechanisms
such as delegation in SELF [Sel] or concatenation in Kevo.

The existing PBLs have been developed for different application do-
mains, with different goals in mind. However, they share the same goals
and same advantages. For instance, their goals include [CDB99]:

• Provide simpler descriptions of objects. People naturally grasp new
concepts by creating concrete examples rather than abstract descrip-
tions.

• Offer a simpler programming model, with fewer concepts and primi-
tives.

• Offer new capabilities to represent knowledge, because CBLs con-
straint objects too tightly.

Some advantages of using PBLs include [Tai99], [Bor86]:

• A reduced need for a priori classification.

• The “infinite regression” problem with classes is completely absent.

• Encouragement of a more iterative and exploratory programming and
design style.

• In general, the designer does not deal with abstract descriptions or
concepts, instead is faced with concrete realizations of those concepts.

• Design is driven by evaluation in the context of examples.

• Learning a PBL can be simpler than learning a CBL, there are fewer
concepts to cope with.

• Any object can be given individualized behavior.

• A PBL would provide better support for concrete, visual programming
systems.
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• Prototypes have advantages for incremental learning of concepts.

• Provide better support for experimental programming

Not everything is perfect, of course. Most prototype-based languages are
more motivated by technical matters than the philosophical basis of knowl-
edge representation, and they do not usually take into account the concep-
tual modeling side [Tai99]; there is an organizational gap evident in some
PBLs which lack a mechanism for grouping together objects that share sim-
ilar characteristics, as sometimes a more rigid, structured way of organizing
an object system is necessary (this point is particularly interesting for the
current research, and will be treated in more detail in the following chap-
ters). Also, PBLs have not yet found a place in the industry; besides the
huge success of JavaScript and a rather modest usage of NewtonScript, no
other PBL has been embraced by the industry.

2.3 Prototype-Based Languages: Origins and Clas-
sification Attempts

For any given field of knowledge, it is important to be able to recognize
its origins and be aware of its diversity. To accomplish this objective, the
present section provides an overview of the genesis of prototype-based pro-
gramming, alongside three different classification attempts that show several
examples of such languages and how do they compare with each other in
terms of their features, primitive mechanisms and program organization.

2.3.1 Origins of Prototype-Based Programming

Prototypes and Frames Systems

The predecessors of prototype-based languages were invented in the late sev-
enties by the AI community for knowledge representation purposes. The idea
of using the prototype theory developed in cognitive science (see 2.1.3) and
differential description to represent knowledge was pioneered by the frame
theory (Minsky 1975) and the frame-based languages KRL (Bobrow and
Winograd 1977) and FRL (Roberts and Goldstein 1977) [CDB99]. Frames
were designed to represent knowledge such as typical values, default values,
or exceptions, which are difficult to describe in other formalisms. It is clear
that frame-based languages have influenced prototype-based languages.

Structure A frame is a set of attributes, each one representing one char-
acteristic of the frame as an “attribute name – set of faces” pair.

Differential description and parents It is possible to create a new frame
by only expressing the differences from an existing one used as a pro-
totype. This produces an “is-a” kind of relationship.
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Frame
name: ‘‘whale’’
category: mammal
environment: sea
enemy: man
weight: 10000
color: blue

Frame
name: ‘‘Moby-Dick’’
is-a: whale
color: white
enemy: Captain-Ahab

Figure 2.1: Frame and differential description

Frame hierarchies and inheritance The “is-a” relationship is an order
relationship that defines frames hierarchies. A frame can inherit a set
of attributes from its parent.

Figure 2.1 shows an example of a frame and a differential description.

Actor Languages

The actor language Act1 (Lieberman 1981) also represents entities with
classless objects. Although Act1 provides objects and mechanisms concep-
tually similar to those of frame systems, it should be pointed that the differ-
ence between frame-based languages and Act1 is that Act1 is a programming
language, not a knowledge representation language [CDB99].

Actors have attributes (“properties”) and behavior (“methods”). Meth-
ods are invoked by sending messages to actors. Actors are created by
cloning and extending existing ones with the primitives create, extend
and c-extend.

Cloning Act1 introduced cloning (shallow copying) as a standard way to
create objects. The basic idea is that, given an existing concrete object,
it is easier to get a new similar object by copying it. The create
primitive combines cloning with the addition of new properties.

Extension The extend primitive allows the creation of objects by using the
delegation mechanism to achieve differential description. An object
created this way it is called an extension, and its parent the proxy.

Delegation and inheritance The relationship between an actor and its
proxy is similar to the “is-a” relationship between frames. It is im-
plemented by a link named proxy, which is used by the delegation
mechanism. An actor can inherit properties from its proxy, and when-
ever it does not know how to handle a message, the proxy is asked to
answer for it by way of the delegation mechanism.
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(object ’extend ’point
’((x 5) (y 10))
’((print (lambda () ...))

(norm (lambda () ...))))

(point ’create ’point2
’((x 3) (y 30))
’((move (lambda (newX newY)

(setq x newX y newY)))))

(point2 ’extend ’turtle
’((heading 0) (y 4))
’((forward (lambda (...)

...))))

Figure 2.2: Cloning and extension in Act1

Figure 2.2 shows an example of cloning and extension in Act1.
As a final remark for this section, there is one very important reading,

essential for understanding the origins of prototype-based languages: “Us-
ing Prototypical Objects to Implement Shared Behavior in Object-Oriented
Systems” by Henry Lieberman [Lie86]. It is the first reference to a prototype-
based programming language, and documents the decisions behind the im-
plementation of a PBL, such as using delegation instead of inheritance,
makes a comparison between delegation and inheritance (concluding that
the former is more powerful than the latter), talks about efficiency concerns
and provides several examples of prototype-based applications. It is indeed
a classical document in its subject, and it should be studied together with
this chapter.

2.3.2 The Treaty of Orlando

The treaty of Orlando [LHU87] [DUH88] is a small document written by H.
Lieberman, L. Stein and D. Ungar during OOPSLA ’87 in Orlando (Florida),
which constitutes one of the earliest attempts to find the general principles
that apply to all object-oriented systems, class-based, prototype-based or
otherwise. Its importance lies in the fact that it also illustrates a rudimen-
tary classification attempt of the PBLs available at the time, based on their
features. Sections 2.3.3 and 2.3.4 provide a more up-to-date classification.

The treaty of Orlando embodies a consensus between different approaches
for building an object oriented system. The most important contribution of
this treaty to the field of computer science is the identification of two funda-
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mental concepts which in one way or another are present in any object ori-
ented language; in fact, they are the foundations of modern object-oriented
systems: templates and empathy. They are called “fundamental” because
they cannot be defined in terms of one another, and most object-oriented
languages can be described largely in terms of the ways in which they com-
bine these mechanisms. Also, it becomes clear that there is not a “best way”
for designing an object oriented programming language around the concepts
of templates and empathy, because there are independent degrees of freedom
or dimensions for each of them, which make sense in different contexts.

The templates mechanism provides the way for creating new objects,
offering guarantees about the similarity of group members; the instantiation
of classes and the copying (cloning) of prototypes are particular cases of
templates. The empathy mechanism allows an object to act as if it were
another object, thus allowing the sharing of state and behavior. Inheritance
and delegation are two different implementations of empathy.

The different dimensions of templates include: whether prototypes, classes,
both or neither mechanism is used for constructing new objects; whether an
object, once it is created, can or can not gain or lose attributes -in other
words, whether the template is or is not strict-, or if the concept of strictness
simply does not apply.

The degrees of freedom for the empathy include: whether the empa-
thy it is static (the sharing patterns are fixed at compile time or at object
creation time) or dynamic (the sharing patterns are established during run-
time); whether it is implicit (the system directs automatically the patterns
of sharing between objects), explicit (the patterns of sharing are directed
by the programmer) or both; and whether the behavior of an object can be
specified for just one object (idiosyncratic behavior), for a group of objects,
or for both.

There are two kinds of sharing in object-oriented systems: anticipated
and unanticipated. If the designer of a system can anticipate the general
structure and relationship between the parts of a system, and if this struc-
ture is relatively static, then the best approach would be to write down
the anticipated structure, encoding the anticipated sharing of behavior in a
mechanism suitable for the task, e.g., classes. However, if the system that
needs to be modeled has a high probability of following unpredictable paths,
a programming language that is easily adapted to changes in structure and
behavior would be a better choice.

Table 2.1 [LSU88] summarizes the findings of the authors of the treaty,
applied to some object-oriented systems of the time of the document, both
class-based and prototype-based
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Language Determination of Empathy Template Mechanisms
When How For What How

Actors runtime explicit per object none none
Delegation runtime both per object none none

SELF runtime implicit per object templates non-strict
Simula compile time implicit per group classes strict

Smalltalk object creation implicit per group classes strict
Hybrid runtime both both any non-strict

Table 2.1: Languages and their attributes according to the treaty of Orlando

2.3.3 Classification According to Primitive Mechanisms

Dony, Malenfant and Bardou [CDB99] present a comprehensive classification
of prototype-based languages under two different criteria: according to the
primitive mechanisms that constitute their virtual machine, and according
to the way in which programs built with the languages are organized. This
and the next section summarize the authors’ findings, which serve as a good
starting point to understand the commonalities and differences found in
modern PBLs.

The classification according to primitive mechanisms relies on the an-
swers to several questions about the low-level implementation details of the
PBLs under study.

Regarding object representation, are objects represented with attributes
and methods or with slots?. Slots allow an uniform way of accessing at-
tributes and methods, enforcing an implicit encapsulation mechanism.

Regarding object creation and evolution, is it possible to create new
objects ex-nihilo? Can an object’s structure be modified dynamically? Is a
cloning primitive available in the language?.

With respect to the way inheritance is implemented and life-time shar-
ing between objects, does the language allow creation by extension? Is it
possible to have multiple parents? Is it possible for an object to change
its parent?. If the language provides no delegation mechanism, is there a
propagation mechanism supporting life-time sharing?.

Regarding extensions, delegation and sharing, when the language pro-
vides delegation, does it achieve “property sharing”? That is, an extension
object and its parent can be seen as different parts of the representation
of the same domain entity? Or “value sharing”? Meaning that the notion
of extension is used to express the sharing of attribute values and meth-
ods between two objects representing different entities of the application
domain.

The results of this type of classification are summarized in table 2.2
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SELF Object Garnet Amulet Agora Moostrap
Lisp

Distinction between no yes no no yes no (slots)
variables and methods
Creation ex-nihilo yes no yes no no yes
Dynamic modification yes yes yes yes no (possible yes
of object structure at meta level)
Cloning yes yes no no yes yes
Extension mechanism yes yes yes yes yes optional
Propagation no no no no no no
mechanism
Single / multiple multiple single multiple simple simple simple or
parents (mixins) multiple
Dynamic parent yes yes no yes
modification
Interpretation of property property value 4 kinds encapsulated property
extension mechanism sharing sharing sharing sharing inheritance sharing

NewtonScript Kevo Omega Obliq Yafool
Distinction between no yes yes no no
variables and methods
Creation ex-nihilo yes no no yes yes
Dynamic modification yes yes yes only for no yes
of object structure prototypes
Cloning yes yes yes yes (multiple) yes
Extension mechanism yes yes no no yes
Propagation no yes yes no no
mechanism
Single / multiple double — — — multiple
parents
Dynamic parent yes — — — yes
modification
Interpretation of property and — — — value
extension mechanism value sharing sharing

Table 2.2: PBL comparison according to primitive mechanisms
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2.3.4 Classification According to Program Organization

Another way of classifying PBLs, also according to [CDB99], derives from
studying the way in which programs are organized. Even though it seems
to contradict the basic principles of prototype theory, it is necessary to
organize programs by grouping similar objects. Several possible solutions
have been found through the years, which give rise to the classification
attempt explained in this section; they describe how an individual object’s
state is linked to its behavior or to the part(s) that share(s) in common with
other similar objects.

One kind of object and one kind of link Applies to languages where
all the objects are homogeneous (e.g., there are no distinctions between
them), and delegation is used for sharing. All objects are mutable, can
be used as parents and can be cloned. The only link is the parent-of
link.

Two kinds of objects, one kind of link A language with one kind of
link and one kind of object tends to evolve towards one with two kinds
of objects. Besides prototypical objects, some special, distinguished
objects appear, probably supported at the language level. They are
immutable or abstract, and may not be cloned or used as parents.
The traits-based programming model is an example of this class of
languages.

Two kinds of objects, two kinds of links This refers to languages where
one of the links is for delegation and implementing sharing, and the
other introduces a structural description, similar to an instance-of
link. The two kinds of objects are the prototypical ones and a new ob-
ject that allows sharing of structural information between structurally
identical objects, for instance, the maps in SELF.

One kind of object, two kinds of links This type of languages seem to
derive from the “two kinds of objects, two kinds of links” type, where
a map object is replaced by a slot in the standard objects, containing
a descriptor, a kind of slot dictionary. This is very similar to the
implementation of a class-based language, except that it lacks a sharing
mechanism between descriptors that would have a semantics similar
to inheritance.

Figure 2.3 shows some examples of languages adhering to the classification
explained in this section.

2.4 SELF: The Power of Simplicity

The current section details the most important features of SELF, present-
ing a technical overview of the language, the organizational structure of its
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Figure 2.3: Examples of classification according to program organization
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programs, an introduction to the “transporter” (the mechanism for saving
SELF programs as source code) and an overview of Mango, a parser gener-
ator for SELF which was used during this research.

2.4.1 Technical Overview

Self [US87] is a “pure” object-oriented prototype-based programming lan-
guage and an associated visual programming environment. Designed by
David Ungar and Randall Smith in 1986, Self was initially implemented
for Solaris at Stanford University in 1987. The project moved to Sun Mi-
crosystems Labs [Sel] in 1991 and further developments continued on the
language, until the dissolution of the SELF research group at Sun. How-
ever, the project is still active, and in recent years there have been releases
of the language ported to Mac OS X; the latest version at the time of this
writing is 4.2.1. It is worth mentioning that the SELF interest group [Int]
is a great source of information and help for anyone interested in learning
about SELF.

This academic language has been used as an instrument for language,
environment, user interface and implementation research, encouraging an
exploratory programming style. Some of its most interesting features in-
clude creation ex-nihilo, cloning, usage of slots for unifying variables and
methods into a single construct, message passing as the fundamental op-
eration, delegation with late binding of self, dynamic typing, dynamic and
multiple parent modification and powerful reflective capabilities.

Blending State and Behavior

In SELF encapsulation of state is enforced, thanks to the fact that there
is no direct way to access a variable, instead objects send messages for
accessing and modifying a data slot. This makes inheritance more powerful:
In an extension object, it is possible to redefine the access and modification
messages of a data slot. For example, by replacing the contents of the
assignment method of a data slot with an empty operation the slot becomes
read-only. If some data needs to be shared between a group of objects, it
can be placed in their parent object: this is similar to having class variables
in a CBL.

Closures and Methods

SELF provides its users with the ability to use blocks (closures, λ-expressions)
like in Smalltalk, allowing the definition of new control structures; blocks
are represented by an object containing an environment link and methods
named value, value:, value:With: etc., depending on the number of ar-
guments.
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Local variables. The local variables in SELF’s methods are stored us-
ing slots. Interestingly, SELF’s methods are prototypes of activation
records, and as such they are copied and invoked when executed. The
local variables are allocated by reserving slots for them in the proto-
type activation record.

Environment link. Generally, a method contains a link to its enclosing
closure or scope. In SELF, the method’s parent link performs this
function, and if a slot is not found the lookup continues through the
outer scopes following the parent link. When a method is invoked
its prototype it is copied and the parent link is set to the message’s
receiver. Also, when accessing local variables the message lookup for
the implicit “self” receiver starts at the current activation record, but
the receiver of the message is set set to be the same as the current
receiver. Thanks to this technique, the procedure for accessing local
and instance variables and method lookup is unified in SELF.

Delegation

Delegation means that when an object receives a message, it first attempts
to respond to the message using its own behavior. At failing, the object au-
tomatically forwards the message to its parents. The delegation link allows
state and behavior of the parent to be shared between parent and child.

As between inheriting classes in a CBL, delegation supports late binding
of the self pseudo variable. Messages send to self in the parent will “come
back” to the object that originally received the message.

A parent is just an object that resides in a slot named with a trailing
asterisk and makes the child inherit all the slots of the parent slot. When
two objects choose the same object to be their parent, the parent gets shared
between the two children: every change made in the parent by one child will
also be visible to the other child. This is commonly called Parent Sharing
and is something most PBLs feature. Another kind of sharing that is specific
to Self might be called Child Sharing (or multiple inheritance). Child sharing
occurs when two or more parent objects share the same child object, i.e.
when an object decides to name two or more parent slots (i.e. it has two or
more slots with an asterisk).

A drawback of cloning objects is that all the slots are copied, even those
(like methods) that could be shared between the object and all of its clones.
To avoid copying behavior (next to state) every time an object is cloned,
the Self group introduced traits objects for storing the shared behavior in
an object and let the cloned objects inherit from it. Using traits objects can
be seen as class-based programming in a prototype-based language.

Traits encourage the creation of delegation hierarchies that look like in-
heritance hierarchies: their highest levels are made of traits and the concrete
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objects are found at the leaves. Traits-based programming leaves more flex-
ibility in the creation of objects, and traits are not classes [CDB99]. A
very interesting property of traits is that testing whether two object sup-
port the same protocol is reduced to testing if the two objects’ traits are
the same or have a common parent; this fact was used heavily during the
course of this research, as it shall be seen in the following chapters. In a
sense, traits-based programming emphasizes the notion of similar behavior
among objects [CDB99].

Syntax

The syntax for a textual representation of SELF objects closely resembles
Smalltalk’s, with a few exceptions. For instance, the receiver is omitted
when it is “self”, the return value of a method is always the result of the
last expression, keyword messages associate from right to left and case is used
to make keyword message-sends easier to read: the first keyword must be a
lowercase, and subsequent keywords in the same selector must be uppercase.

A few new elements have been added to the syntax of the language.
For example, there is a slot list syntax for creating objects inline that, if
present, must be nestled in a pair of vertical bars; SELF objects are written
between parenthesis and include a dot-separated list of slots and in the case
of methods, also include code. There are several forms for slots:

• A selector by itself denotes two slots: an accessor slot initialized to nil
and an assignment slot with the same name of the accessor slot plus
a trailing colon, initialized to the assignment primitive. (denoted by
←) For example, the object (|name|) contains two slots: one called
name containing nil, and another one called name: containing ←.

• A selector followed by a left arrow (<-) and an expression also denotes
two slots: one slot initialized to the value of the expression and the
corresponding assignment slot. In other words, it is like an initialized
variable.

• A selector followed by an equals sign “=” and an expression denotes
only the accessor slot with the constant value resulting from the eval-
uation of the expression.

• A unary selector (identifier) preceded by a colon defines an argument
slot of a message. For example, [ | :x. :y | x + y ] defines a
block with two arguments, x and y.

As an example, the code in figure 2.4 implements a very simple point pro-
totypical object. The point inherits from the traits clonable that stores
the common behavior and state of clonable objects, and has two data slots
containing the x and y coordinates. The remaining method slot contains a
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(|
parent* = traits clonable.
x <- 0. y <- 0.
addPoint: aPoint =
((copy x: x + aPoint x) y: y + aPoint y)

|)

Figure 2.4: Example of SELF syntax

method for adding two points, by copying point and initializing it with the
added x and y coordinates.

Advanced Concepts

There are some features of the SELF language that are not commonly found
in PBLs and should be considered “advanced”. They can be quite powerful
and a good SELF programmer must be aware of their existence. A brief
description of such features follows, and a more detailed explanation can be
found in [Ung02] and [OA00].

Multiple Inheritance An object can have more than one parent slot;
when a message is received the delegation mechanism finds the par-
ent object that can respond to the message, if more than one object
implements the same message an error occurs.

Resends The resend mechanism allows the code inside a method to ex-
plicitly delegate a message send to the parent slot of the object, or to
specify to which of its parents the message should be delegated to.

Dynamic Parents The parent slots of an object can be defined as assignable,
and as such the parent object that they are pointing to can be changed
simply by changing the slot to point to another parent.

Copy-Down When an object is extended, it is necessary to copy-down its
data slots to its children, this is due to a limitation of SELF’s compiler
that cannot optimize for dynamic inheritance. This is similar to “sub-
classing” an object.

Mirrors Mirrors are SELF’s reflective mechanism, and they allow the pro-
grammer to examine and manipulate objects in almost any conceivable
way: any kind of slot can be added, removed, or modified; the parent
hierarchy can be traversed and modified, etc. A mirror on object x can
be obtained by sending the message reflect: x to any object that
inherits defaultBehavior. All the changes applied to a mirror object
also get applied to the original, “reflectee” object.
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2.4.2 Organizing Programs Without Classes

The advantages of using prototypes in an object-oriented language have
been enumerated before in this document. However, one of the fundamental
questions that must be asked is: How to organize a program without classes?.
In section 2.3.4 several alternatives were shown, and this section shows the
particular way in which programs can be organized in SELF. Notice that
this subject creates a very important distinction between different PBLs, as
there is no “standard” or universal solution to the problem of organizing
programs. Therefore, several of the possible solutions will be specific to
SELF.

The authors in [CDB99] suggest that SELF should be considered a “two
kinds of objects, two kinds of link” type of PBL, because it has maps for
sharing structural information between structurally identical objects. The
author of this document disagrees with that classification; it is true that
SELF uses maps on its underlying implementation, but this is made for
optimization purposes and it is never evident from the programmer’s per-
spective. What is more, maps are not first-class objects and cannot be
manipulated directly; maybe they can be manipulated by direct use of the
primitives of the language, but even so that is discouraged and would be
considered bad style. SELF is more a “two kinds of object, one kind of
link” type of PBL, and the traits-based programming model is encouraged.
The SELF group came up with several ideas for sharing behavior between
objects [DUH91]:

Intra-Type Sharing In its simplest form, a data type is implemented as
a prototype object holding the state with a parent pointer to a traits
object, holding its behavior.

Inter-Type Sharing New data types can be defined as differences from
existing data types. One possibility would be by creating a new proto-
type object for holding the state with a parent pointer to a new traits
object that is a child of an existing traits object. Here, the new data
type is defined by refining a traits object.

Representation Sharing As an augmentation of the inter-type sharing,
it is also possible to refine a prototypical object holding state by us-
ing the copy-down mechanism discussed in section 2.4.1. Here, the
representation extension takes into account data parents.

Using dynamic, multiple parents also counts as a way for sharing behavior.
It was discussed in section 2.4.1.

The SELF group [DUH91] also defined a way for naming and categorizing
objects:

Name Spaces Programs need to refer to well-known objects from different
places in the system. To provide this functionality, SELF defines name
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space objects whose sole function is to provide names for well-known
objects. The name of an object in a name space is simply the name of
the slot that refers to the object. The name spaces in SELF are rooted
at the lobby object since most objects inherit from it, and after an
object has been “installed” in the lobby it is said to be well-known
and can be accessed from any object that inherits from the lobby.

The lobby is further sub-divided in the globals, traits and mixins
inheritance hierarchies that group respectively the prototypes, behav-
ior and “mixable” behavior objects of the system. There is no real
difference between the three types of objects, they are implemented
using the same mechanisms, although they will be used for different
purposes. For example, in general it does not make sense to clone
an object in the traits or a mixins hierarchy, whilst the objects in
globals are intended to be cloned.

Categories As a further way to organize the contents of an object, it is
possible to define categories (much like the protocols in Smalltalk)
and put slots “inside” such categories. The categorization mechanism
is implemented with annotations (see the section 2.4.3).

2.4.3 The SELF Transporter

The prototype-based paradigm of programming encourages people to con-
struct programs by directly manipulating concrete objects. SELF’s visual
development environment helps to achieve this objective, providing the pro-
grammer with a graphical representation of the objects in the system, which
can be easily changed and manipulated. This representation of an object
system is not a textual one, and usually a programming session is stored us-
ing binary image files. However, in general the image files are not portable
between instances of SELF installed in different machines, and it is neces-
sary to use a textual persistence mechanism that allows a program to be
re-created in other worlds: the transporter [Ung95].

The key to transporting objects lies in the ability to annotate an object,
that is, adding extra pieces of information to whole objects or to individual
slots. This information is used mostly by the programming environment;
although any object can be an annotation, the SELF syntax only supports
the textual definition of string annotations [OA00]. In particular, the an-
notations are used for specifying a slot’s module, and also for annotating a
copied-down object with the source of the copy (copy-down parent).

A couple of explanations should be made at this point: first, not all the
objects currently present in SELF’s image are saved, only those that are
accessible from the lobby. Second, the designers of the transporter chose to
implement persistence on a per-slot basis, i.e., for each slot it is necessary to
specify its module, as slots are the minimum unit of functionality in SELF.
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A module is a unit of persistence in SELF: all the slots annotated to
belong to the same module are stored together in the same text file, even if
they belong to different objects. Also it is possible that one object belongs
to several modules, as each of its slots could be placed in different modules.

The process of supplying all the necessary annotations for saving a mod-
ule can be a bit complex, as is the algorithm that uses the extra information
to write out a slot, but it is explained in detail in [Ung95]. What is really im-
portant is understanding the five missing pieces of information that must be
provided to determine how to write a slot: which module to use, whether to
transport an actual value or a counterfactual initial value, whether to create
a new object in the world or to refer to an existing one, whether an object
is immutable with respect to transportation, and whether an object should
be created by a low-level, concrete expression or an abstract, type-specific
expression.

The flowchart in figure 2.5 illustrates the order in which the transporter
queries the annotations in order to make its decisions.

As a final remark for this section, it should be noticed that the trans-
porter is the biggest source of frustration when working with SELF. It is all
too easy to put incorrect values in the annotations necessary for saving an
object, and there seem to be some bugs in the transporting mechanism (at
least in the Mac OS X version). The consequences? At the moment of filing-
in a saved file, it is possible that some objects are corrupt, have incorrect
values in some of their slots, or the filing-in process fails altogether. Also, in
theory the order in which new slots are loaded into the image should not be
important, but in practice some serious errors occur if the transporter does
not find an object because it has not been defined yet. Extreme caution
should be taken when using the transporter, and it is highly recommended
to use an external version control system such as SubVersion or CVS to
store the file-outs.

2.4.4 Mango: A Parser Generator for SELF

Mango [Age94] is SELF’s parser generator. It is fully integrated with SELF’s
world, just like the parsers it produces. Both Mango and the generated
parsers are SELF objects themselves. It has several interesting features
that go beyond what is offered by other more conventional parser compilers
such as YACC. For instance, Mango grammars are structured and map
directly onto parse trees, and the parse trees are built automatically and
can be decorated with attributes after the parsing is completed, instead of
just providing hooks for calling reduce actions during parsing.

A structured context-free grammar is a grammar for which each non-
terminal has exactly one production and each production is structured. A
structured production has one of the following five forms:

Construction: A ::= X1 X2 ... Xn
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Figure 2.5: Transporter Flowchart
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“The nonterminal A derives the sequence X1 X2 ... Xn.”

Alternation: A ::| X1 X2 ... Xn

“The nonterminal A derives one of X1, X2, ..., Xn.”

Non-empty list: A ::+ E S

“The nonterminal A derives a non-empty sequence of the form
ESES ... ESE.” E is the element and S the separator of the list derived
by A. The separator is optional; if it is left out, A derives EE ... E.

Possibly-empty list: A ::* E S

“The nonterminal A derives a possibly empty sequence of the form
ESES ... ESE.” In other words, A ::* E S either derives ε or some-
thing that is also derived by A ::+ E S. The separator is once again
optional.

Optional: A ::? E

“The nonterminal A derives E or ε.”

The process of building a parser is as follows: Mango takes grammars (spec-
ifying both syntax and lexical parts) as input and produces parsers. The
parsers, in turn, take strings as input and produce parse trees.

A new parser is obtained by sending the message

mango parsers stGrammarParser copy

Then, the message parseFile: can be sent to the returned object, passing
the name of a file with a grammar as the argument; finally, the generated
parser can be obtained by sending output makeParser to the same object.

Once a new parser has been built as explained above, it can be used by
sending it the message parseString: or parseFile: with the appropriate
argument. The result is a parse tree node, corresponding to the start symbol
in the grammar. The node can be evaluated by sending it the appropriate
message, which depends on the custom behavior that was added to that
node.

The result of parsing a string or a file is a parse tree with a structure
corresponding to the grammar used to generate the parser. Each node in
the tree corresponds to a nonterminal symbol in the grammar, with an
interface (the set of messages it can respond to) determined by the form
of the nonterminal symbol and any custom behavior that may have been
added to it. The specific details can be found in [Age94].

Perhaps the most interesting part, is the fact that custom behavior can
be added to mango parse trees by means of a “behavior file”. Mango will
process this file during parser generation and ensure that the prototype
and/or traits parse tree nodes possess the behavior.
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The behavior file is just the textual description of a single SELF object,
the behavior object. The behavior object has a number of slots whose names
are also the names of nonterminal symbols in the grammar; the contents of
these slots get added to the traits object of their respective nodes. It is also
possible to add behavior to the prototype object of a parse tree node.
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Chapter 3

Rule-Based Inference and
NéOpus

This chapter introduces the fundamental concepts behind the theory of rules
and rule-based languages as a means of representing and reasoning about
human knowledge.

First, a comparison is made between the two basic formalisms (more can
exist and variations thereof) for expressing rules: production rules and pred-
icate logic (3.1). The next section describes the two main methods for chain-
ing rules: forward-chaining and backward-chaining (3.2). Later on, section
3.3 describes hybrid systems that result from the blend between rule-based
reasoning engines and object-oriented programming languages. Section 3.4
details the Rete algorithm, an efficient way to implement a forward-chaining
production rule system. Finally, section 3.5 describes Opus and NéOpus, two
particular examples of hybrid systems.

3.1 Formalisms for Expressing Rules

Rule-based reasoning is a specific topic of study in the field of Artificial
Intelligence, its main objective is representing human knowledge as a set of
rules. A rule is a statement of the form

If <condition> Then <action>

or alternatively
<conclusion> If <action>

(both are equivalent). This might seem like an If-Then statement in a
procedural language, however the main difference here is the fact that rules
are not activated (“fired”) in a predetermined order, instead, the inference
engine supporting the rules determines which rules can be fired and in which
order.
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There are two main formalisms for expressing rules: production rules –
where the rules are called productions– which give rise to production systems,
and first-order predicate logic –where the rules are logic clauses– which
originate logic-based systems.

The set of all productions in a system is called rule base or production
memory. The data representing the knowledge to which the rules apply is
called fact base (a.k.a. working memory or knowledge base). The If part
of a production is called LHS (left-hand side) and its Then part is called its
RHS (right-hand side).

There are rule languages specifically created for dealing with either type
of formalism. There are also hybrid languages (see section 3.3) that combine
a “normal” language (typically object-oriented) with a rule language.

3.1.1 Production Rules

Production rules present empirical associations between patterns of data and
actions that should be performed as a consequence. As such they also have
the format conclusion if condition, although the conclusion can sometimes
be interpreted as recommending an action rather than concluding that a
certain proposition is true. The patterns and concrete data are usually
represented as object-attribute-value triplets. Bear in mind that the objects
mentioned in the definition are constant symbols which denote a conceptual
object, and not full-fledged objects in the sense of entities that encapsulate
data and behavior in object-oriented languages.

An interpreter executes a production system performing the following
operations [For82]:

1. Match. Evaluate the LHSs of the productions and find out which are
satisfied, given the current contents of the knowledge base.

2. Conflict Resolution. Select one production that satisfied the LHS, or
halt the interpreter if there is not any available.

3. Act. Perform the actions in the RHS of the selected production.

4. Goto 1.

OPS5 [BFKM85] is a typical example of a rule language belonging to
the Production Rules formalism.

3.1.2 First-Order Predicate Logic

First-order predicate based logic is the basis of logic-based systems. Propo-
sitional logic is concerned with establishing the truth value of combinations
of atomic propositions, which each have a definite truth value. Predicate
logic, on the other hand, exposes the internal structure of propositions and
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analyzes them into predicates that are applied to individuals, which are ob-
jects the world consists of and have individual properties. Universal and
existential quantification is permitted over the individuals [DH04].

Logic-based systems use logic as their programming language, with Pro-
log [Fla94] as the typical example of a rule language belonging to the First-
Order Predicate Logic formalism.

3.2 Rule Chaining

The way in which an inference engine activates a rule is known as rule
chaining. This process is fired when new data arrives that matches either
the condition or conclusion activation pattern of a rule.

3.2.1 Forward-Chaining

Forward chaining starts with the data available and uses the inference rules
to conclude more data until all possible facts are inferred and asserted, a
halting statement is encountered, a number of cycles have passed or a specific
goal has been reached (the stopping strategy depends on the engine). An
inference engine using forward chaining searches the inference rules until it
finds one in which the LHS is known to be true. It then concludes the RHS
and adds this information to its data. Because the data available determines
which inference rules are used, this method is also called “data driven.”

Typically, synthetic tasks such as design, scheduling and assignment are
usually solved by forward chaining [SAA+00] . The Rete algorithm (ex-
plained in section 3.4) was designed to be a fast implementation for forward-
chaining engines. Among others, OPS5, Opus, and NéOpus carry out this
type of rule activation.

3.2.2 Backward-Chaining

Backward chaining starts with a list of goals (conclusions) and works back-
wards to see if there is data (conditions) which will allow it to conclude any
of these goals. An inference engine using backward chaining would search
the inference rules until it finds one which has a RHS that matches a desired
goal. If the LHS of that inference rule is not known to be true, then it is
added to the list of goals.

Note that chaining is not the same as reasoning: backward reasoning
attempts to prove a particular goal whereas forward reasoning infers new
knowledge starting from the existing knowledge. In principle, either chaining
modes are able to express both kinds of reasoning strategies for solving
problems [Jac86], but using the corresponding chaining mode for a particular
reasoning strategy is more expressive.
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Typically, analytic tasks such as classification, diagnosis and assessment
are goal-oriented and solved by backward reasoning [SAA+00]. Prolog uses
this type of rule activation.

3.3 Hybrid Systems: Objects and Rules

In the current discussion, a hybrid system is one that integrates both a
rule-based language and an object oriented language. Many of such hy-
brid languages have been implemented through the years, and the author
in [DGJ04] and [DH04] provides an exhaustive survey of more than 15 lan-
guages, focusing on the investigation of the level of integration between the
two languages.

Frame-based languages were excluded from the survey because “frames
are usually prototype-based” and “nowadays, the state-of-the-art object-
oriented programming languages for software engineering are still class-
based. Therefore, we only consider these kind of languages.” [DH04].
However, as was mentioned in section 2.3.1 frames are only regarded as
predecessors of prototype-based languages, and not fully mature members
of the prototype-based programming language paradigm.

3.4 The Rete Algorithm

There is one recurring problem when implementing a production system:
How to efficiently compare a large collection of patterns (premises in the
context of production systems) to a large collection of objects?. One of the
most well-known solutions comes in the form of the Rete algorithm [For82],
developed by Charles L. Forgy in 1974; it was adapted and used in Opus
and NéOpus (see 3.5), therefore it is important to understand the original
algorithm to fully comprehend the design and implementation of either one
of those inference engines.

A detailed explanation and implementation of Rete (which means “net-
work” in Latin) is available in the white paper “Rete: A Fast Algorithm
for the Many Pattern/Many Object Pattern Match Problem” [For82], this
section summarizes parts of that paper.

3.4.1 Overview

During the inference and evaluation cycle of a production system, the inter-
preter has a collection of objects and a collection of patterns (conditions in
a rule that must be satisfied), and it is necessary to find every object that
matches the pattern — in other words, which productions have satisfied con-
dition parts. The näıve approach of matching all the patterns against all the
objects during the inference process is unacceptable in terms of efficiency,
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(Changes to Working Memory)

↓

Black Box

↓

(Changes to the Conflict Set)

Figure 3.1: Pattern Matcher as a Black Box

as this procedure can be slow when large numbers of patterns or objects are
involved.

The Rete algorithm was designed to make many pattern/many object
pattern matching less expensive in terms of number of matches performed,
and it is useful for production system interpreters.

In a production system interpreter, the output of the match process and
the input to conflict resolution is called the conflict set, which is a collection
of ordered pairs of the form

<Production, List of elements matched by its LHS>

also called instantiations. The Rete algorithm computes the conflict set by
comparing a set of LHSs to a set of elements in order to discover all the
instantiations.

3.4.2 How to Avoid Iterating over Working Memory

The key to avoid performing constant iteration over every object in the
working memory when trying to match a pattern, lies in storing information
between cycles. To determine whether a given pattern matches one element
in working memory, it might seem necessary to iterate over all the elements,
however the iteration can be avoided altogether by storing with each pat-
tern a list of the elements that it matches. The lists are updated when the
working memory changes: if a new element enters the working memory or
if an existing element is modified or is removed, the interpreter finds all the
patterns that match it and updates their respective lists by adding, modi-
fying or removing the object. In this way, the pattern matcher component
of a production system never has to examine working memory, and can be
viewed as a black box with one input and one output, as shown in figure
3.1.

The descriptions of working memory changes that are passed into the
black box are called tokens. A token is an ordered pair of a tag indicating
the operation to be performed (adding, removing) and a list of data elements.
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Notice that the modifications are implemented by removing an element and
then adding it with its new values.

3.4.3 How to Avoid Iterating over Production Memory

The previous section showed how to avoid iterating over the fact base in a
production system, effectively avoiding the need to traverse all the objects in
a system when something changes in the fact base. Then, the next question
would be how to avoid iterating over the rule base?, so it would not be
necessary to traverse all the productions in the system when a change occurs.
The answer is, by using a tree-structured sorting network or index for the
productions. The network is compiled from the patterns and is the principal
component of the black box.

Compiling the Patterns

There are two kinds of tests that a pattern matcher performs when process-
ing a working memory element: testing for intra-element features which only
involve one working memory element, and testing for inter-element features,
for the cases when a variable occurs in more than one pattern.

The pattern compiler builds a network by linking together nodes which
test elements for these features.

When the compiler processes an LHS, it begins with the intra-
element features. It determines the intra-element features that
each pattern requires and builds a linear sequence of nodes for
the pattern. Each nodes tests for the presence of one feature.
After the compiler finishes with the intra-element features, it
builds nodes to test for the inter-element features. Each of the
nodes has two inputs so that it can join two paths in the net-
work into one. The first of the two-input nodes joins the linear
sequences for the first two patterns, the second two-input nodes
joins the output of the first with the sequence for the third pat-
tern, and so on. The two-input nodes test every inter-element
feature that applies to the elements that they process. Finally,
after the two input nodes, the compiler builds a special terminal
node to represent the production. This node is attached to the
last of the two-input nodes. Note that when two LHSs require
identical nodes, the compiler shares parts of the network rather
than building duplicate nodes. [For82]

As an example, figure 3.2 shows two productions (expressed in the OPS5
language) together with the network compiled from them.

39



(P Plus0x
(Goal ^TypeSimplify ^Object<N>)
(Expression ^Name<N> ^Arg1 0 ^Op+ ^Arg2<X>)

--> ...)

(P Time0x
(Goal ^TypeSimplify ^Object<N>)
(Expression ^Name<N> ^Arg1 0 ^Op* ^Arg2<X>)

--> ...)

Figure 3.2: Rete Network for Plus0x and Time0x [For82]
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Processing in the Network

The root node at the top of figure 3.2 represents the input to the black box.
It receives tokens that are intended to be sent to the black box and passes
copies of the tokens to all its successors.

The first nodes after the root node are the one-input nodes that perform
intra-element tests, and can have more than one output. Each node tests
one feature and sends the tokens that pass the test to its successors.

Two-input nodes compare tokens from different paths and join them if
if they satisfy the inter-element conditions of the LHS.

Finally, a terminal node will only receive tokens that instantiate the
LHS, because the nodes before it have already performed all the necessary
tests.

Saving Information in the Network

The key point in Rete Network’s algorithm is that it must maintain state
information. Generally, such state is stored by the two-input nodes, each
one of them contains two lists, called the left and right memories.

The left memory stores copies of the tokens that arrived at its left input,
and the right memory holds copies of the tokens that arrived at its right
input.

3.4.4 Completing the Set of Node Types

The network in figure 3.2 contained nodes of four types: root, terminal, one-
input and two-input. As a minimum, two more types of nodes are necessary
for building a useful Rete network.

Another type of two-input node is needed for negated patterns (negative
premises). This node stores a count with each token in its left memory,
indicating the number of tokens in the right memory that “allow consistent
variable bindings” [For82]. The right memory’s tokens contain the elements
that match the negated pattern. The node only allows tokens with a count
of zero to pass.

The final type of node is a variant of the one-input node, and tests
working memory elements for constant features. This nodes compare two
values from a working memory element, and are used to process patterns
that contain two or more occurrences of the same variable.

3.4.5 Final Remarks on Rete

Rete was designed to be a fast algorithm, and as such the implementation
details in [For82] are very low-level: the information is represented as binary
words and manipulated at the bit level via an assembler-like programming
language. It does not translate well into the more “modern” object-oriented
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programming languages, and it is necessary to sacrifice some of the efficiency
of the original algorithm by implementing it at a higher level of abstraction.
However, the essential aspects of the algorithm can be preserved by respect-
ing the requirements of avoiding unnecessary iteration over working and
production memory.

3.5 Opus and NéOpus

Opus –A production system written in Smalltalk– and a later, expanded
version of it called NéOpus were studied as a reference for implementing a
hybrid system. This section introduces both systems.

3.5.1 Opus Overview

Opus is a tool for rule-based programming which integrates the production
system paradigm with the Smalltalk-80 environment, and is modeled after
the OPS5 expert system. It is described in detail in [AL87]. The biggest
contribution of Opus was demonstrating how first-order, forward-chaining
rules could be accommodated in Smalltalk in a seamless way, via an object-
oriented realization of Forgy’s Rete network algorithm.

Opus was designed with one main objective in mind: bringing together
in one system two different programming and knowledge representation
paradigms –objects and production rules–. The authors also intended to
provide a full integration between the system, the environment and the lan-
guage with complete freedom to use any Smalltalk expression in either the
premise or action part of the rules. The system’s architecture is composed
of four main parts:

The Work Memory The set of categories defined by the user (Smalltalk
classes) together with all the objects belonging to them (Smalltalk
instances).

The Rule Base A special kind of classes whose methods are Opus’ rules.

The Rules A textual representation of rules, with the following structure:
one identifier, a variable declaration, a list of premises and an action
part.

The Interpreter The component in charge of managing the execution of
the rule base. In particular, it selects the rule(s) to be executed during
each cycle of the inference process.

Of course, there are some important differences between Opus and OPS5.
For instance, the messages for accessing attributes and some comparison
messages (=, <, >, ...) will have a different syntax. But the real richness of
Opus, compared with OPS5, derives from two fundamental differences:
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• The premises can be expressed in terms of any Smalltalk message send.

• Utilization of functional links between objects (e.g., an object can be
accessed by passing messages to another object, and needs not to be
declared).

3.5.2 NéOpus Overview

NéOpus was built upon the ideas of Opus, as the Ph.D. research of François
Pachet [Pac92]. The author reimplemented Opus with several improvements
which will be detailed in the next section, creating a more powerful –but
also more complex– inference system. Two very important principles were
established and implemented throughout the system:

Principle “Any Object” Any object in Smalltalk’s environment can be
used in a rule

Principle “Any Expression” Any Smalltalk boolean expression can be
used as a premise in the rules

Here lies the power of the inference engine: the rules can be stated over any
object, expressing any condition.

New Features

NéOpus adds several new features to the basic Opus system:

• It is possible to establish single inheritance relationships between rule
bases.

• A declarative control architecture is defined with the introduction of
Metarules [PP94].

• Assertions and Goals as part of the rule language.

• 0-Order reasoning via global variables.

• Programming environment fully integrated with Smalltalk (Browsers,
Inspectors, Views, ...).

• Activation Contexts for defining which instances of a class should be
considered while evaluating a rule base.

• Local variables in rules, which also can be fired.

• Two modes of reasoning when considering the class inheritance: “sim-
ple” only takes into account the instances of a class, and “natural”
which takes into account the instances of a class and all the instances
of its (potential) subclasses.
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Part II

Contributions
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Chapter 4

Prototypes Meet Rules

The present chapter introduces a Forward-chaining Inference Rule Engine
(FIRE), the tool developed for exploring a hybrid system built on the com-
bination between a production system and a prototype-based language. Sec-
tion 4.1 motivates why we built a rule-based system in combination with a
prototype-based object-oriented programming language and justifies some
implementation decisions taken. Section 4.2 goes deeper into the imple-
mentation details of FIRE, in particular, explaining how the transition was
handled for going from classes to prototypes in the context of a hybrid sys-
tem. Section 4.3 enumerates the advantages and disadvantages of using a
PBL as an implementation language. A brief set of instructions for using
FIRE is provided in section 4.4, and finally Section 4.5 presents an outline
of the inference and evaluation process in FIRE.

4.1 Motivation

Chapters 2 and 3 introduced two different paradigms for representing knowl-
edge and inferring information about it, namely prototype-based languages
and rule-based systems. The survey in [DGJ04] shows several hybrid sys-
tems where object-oriented programming languages and rule-based systems
have been integrated. All of the object-oriented languages in that survey are
class-based, and those hybrid systems based on frames —prototype-based
languages for knowledge representation— were excluded from the survey.
However, frames are regarded as predecessors, but not true members of the
prototype-based language paradigm [CDB99].

It is also true that there have been numerous (but old) approaches for
combining frames and rules, but in recent years hybrid systems have been
built around the class-based paradigm of knowledge representation, leaving
apart the prototype-based paradigm, even though it offers many potential
advantages over classes for representing knowledge (like the ones discussed
in section 2.2.1).
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The background in the two previous paragraphs was necessary to make
this statement: To the author’s knowledge, in present times there are no
hybrid systems created from the combination of a production system and a
modern prototype-based programming language. This is a gap in the field of
knowledge representation and inferencing that is worth exploring and filling.
For this purpose, FIRE was created: A Forward-Chaining Inference Rule
Engine for a Prototype-Based Language. This tool will allow exploring the
challenges of building such a hybrid system, and will allow investigating
the expressive power of a rule language built on top of a prototype-based
language in the context of meta-programming, as described in chapter 5

Why SELF and NéOpus ?

The first implementation issue for building FIRE was which PBL should be
chosen for the job, and what hybrid system to use as an implementation
guide.

Even though there are many PBLs, SELF is one of the most widely
known prototype-based languages, and has been developed and improved
during more than fifteen years. As was shown in the classification sections
(see 2.3.2, 2.3.3 and 2.3.4) it has features, primitives and organizational
mechanisms that are commonly found in most PBLs and that makes it a
good example of the prototype-based paradigm; this and the fact that it has
reached a high level of maturity and stability, make it ideal for using it in a
research about PBLs, such as the subject of this thesis.

Similarly, there are lots of class-based hybrid production systems. This is
an important starting point, because many of the (possible) implementation
problems encountered when building a forward-chainer on top of another
language have already been solved; besides it is always possible to learn
from other people’s research and findings before attempting to provide a
new, original contribution to any field of knowledge.

In the context of the current research, the results obtained in the NéOpus
system are very relevant when it comes to implementing a rule-based system
on top of a prototype-based language such as SELF, and make it ideal as
an implementation guide for FIRE. From a purely practical point of view, it
is very important that the source code of NéOpus is available free of charge
[NeO] and can be studied and used with complete freedom.

At a deeper level, NéOpus embodies the results and research of three
generations of rule-based systems: the experience accumulated from the
development of OPS5, Opus and NéOpus itself can be profited in several
levels. For instance, Opus and then NéOpus showed how to realize the
Rete algorithm in an object-oriented system, overcoming the original, very
efficient but very outdated implementation of Forgy [For82]. Also, at the
heart of NéOpus lies the simple but fully functional rule-based engine of
Opus that can serve as a starting point to later build a more powerful
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one. As a proof of concept, FIRE includes all the functionality described in
the original Opus, plus some of the more advanced characteristics found in
NéOpus (to be precise, the last three items enumerated in 3.5.2).

Finally, since Opus and NéOpus were implemented in Smalltalk, a typ-
ical and well-established example of a class-based language, an excellent
opportunity arises to experiment and discover how to interpret the ideas
and concepts of a program that relies heavily in the structure and orga-
nization of classes, into the more flexible —but less structured— world of
prototype-based languages.

4.2 FIRE for SELF Implementation

This section outlines FIRE’s structure in 4.2.1; the important implementa-
tion issues of building an inference engine over a prototype-based language
are described in sections 4.2.2 and 4.2.3 alongside the solutions found to
them. Also, an explanation of the language created for writing rules in
FIRE is given in section 4.2.4.

4.2.1 Overview of FIRE’s Structure

FIRE’s inference engine is composed of several objects, with complex inter-
actions between them. It is no use trying to summarize all the implementa-
tion details in just a few paragraphs, so only an outline of its structure will
be given in this section.

At a high level, FIRE’s structure is identical to that of NéOpus. It con-
sists of a kernel with the most important objects of the system, a network
with several type of nodes implementing the Rete algorithm and a parser
for the rule language.

The key areas that set apart FIRE from NéOpus lie in the fact that
they are realized under completely different paradigms: class-based versus
prototype based. Section 4.2.3 presents a detailed discussion of this topic,
emphasizing the aspect with the deepest level of differentiation, namely, the
way of grouping together objects with similar characteristics.

Kernel

The objects in the kernel (shown in figure 4.1) implement the object repre-
sentation of the elements in a production rules system, and the rules them-
selves. Figure 4.2 depicts the relationship between different objects in the
system. The main responsibilities of each object are:

rule Provides an object representation of a rule and contains all the ele-
ments present in the textual representation of it, namely: name, vari-
able declaration, premises and actions.
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Figure 4.1: Kernel Objects in FIRE
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Figure 4.2: Relationship Between Objects in FIRE

49



premise Provides an object representation of a premise, it is aggregated in
the rule object. It has information about the type of the premise and
the dispensers it refers to. The possible types include general positive,
general negative, positive with one free variable, negative with one free
variable, positive with no free variables, assignment to a local variable
and assignment to a fireable local variable.

fireableRule Encapsulates a pair of node-token objects; it contains a token
that has succeeded all the tests in the Rete network and the final node
in the network, the latter contains the action part of the rule that will
be executed with the values of the token.

fireableRuleCollection Aggregates fireable rules inside a sorted sequence.

token Represents a change to the state of the network, it signals the ad-
dition, deletion or modification of an object in the system. It gets
propagated in the network, and holds both the set of values bound
to the declared variables and the tests that should be performed on
them.

tokenCollection Aggregates tokens inside a list.

ruleBase The main object of the system; it is responsible of adding rules to
the base, starting the evaluation process and managing an evaluation
context.

conflictSet Contains a fireableRuleCollection and provides mechanisms for
managing the execution of rules.

Network

The objects in the network (shown in figure 4.3) implement a Rete network,
with a hierarchy of nodes specialized for different types of premises; Figure
4.4 shows the traits inheritance hierarchy between nodes, and figure 4.7
details an interesting feature of that hierarchy, namely, the use of delegation
and multiple inheritance to avoid code duplication between nodes. The main
responsibilities of each object are:

network Provides an entry point to the sequence of nodes associated with
each rule; creates and interconnects the nodes that implement the
Rete network. Each type of premise maps to a different kind of node,
the kind of node created by the network depends on the type of the
premise.

node Represents the most general type of node, all the others inherit from
its behavior. It has mechanisms for testing, memorizing and propa-
gating tokens through the network. It maps to the general positive
premises.

50



Figure 4.3: Network Objects in FIRE

Figure 4.4: Node Hierarchy in FIRE

51



nodeNoDisp Maps to the premises of type positive with no free variables.

nodeOneVar Maps to the premises of type positive with only one free
variable.

nodeLocalVar Maps to the premises that perform an assignment to a local
variable.

nodeAssignNoVar Maps to the premises that perform an assignment to
a fireable local variable.

nodeNegative Maps to the premises of type general negative.

nodeOneVarNegative Maps to the premises of type negative with only
one free variable.

Parser

The final element of FIRE is its parser object. The parser was built with
the help of Mango [MAN], using the grammar defined in appendix A. The
parser generates a parse tree after a successful parsing, the tree has all
the behavior methods defined in the file ruleParser.behavior.self of the
FIRE distribution.

The parser is responsible of reading the textual representation of a rule
and performing several transformations on the resulting parse tree:

• Pre-processing the text.

• Determining the internal name of the variables in the declaration part.

• Renaming the variables in the premises and action part accordingly.

• Modifying assignments so they return the assigned value.

• Expanding macros.

The reasons behind this transformations are implementation-specific,
necessary to accomplish the final responsibility of the parser: creating rule
and premise objects from textual representations of rules, in such a way that
they can be evaluated by the system.

4.2.2 Adapting the Rete Algorithm

The core of FIRE’s forward-chainer implementation lies in its adaptation of
the Rete Algorithm (see section 3.4) for performing an efficient matching of
the objects in the fact base against the premises in the rules. The SELF real-
ization of Forgy’s algorithm [For82] is based on the NéOpus implementation,
in turn based in the Opus implementation, in turn based in OPS5’s imple-
mentation. It is important to remember that Rete was originally designed
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for evaluating rules in the OPS5 system, which represented knowledge and
expressed premises and actions via a “pre-object” language, with objects
more similar to records in Pascal than objects in the sense of the current
object-oriented languages (i.e., encapsulated abstractions containing data
and behavior).

By comparison, the fact base in FIRE is composed of SELF objects; the
premises in the rule language can be written as any valid expression in SELF
that returns a boolean value and the actions as any valid expression: hence
the rules become very expressive, but implementing the underlying engine
to support them is harder. Also, it is possible to reference more than one
object in a single premise, and the role of the variables is reversed because
they are no longer used to reference the value of attributes in objects, instead
they reference the objects themselves.

The preceding differences have a great impact [Pac92] in the way Rete
should be adapted for working in a true object-oriented language. In par-
ticular:

• There is no need for a discrimination network (one-input nodes). In
FIRE, this is implicitly replaced by the link between objects and their
dispensers.

• There are no n-ary relations; premises are expressed in terms of SELF
message passing.

• The nodes must be capable of filtering more than one new object per
premise (nodes with more than one dispenser).

• It becomes too difficult to factor out nodes for several rules sharing a
common premise. For instance, how to discover that messages such as
x isNil and x == nil or a > b and b < a are equivalent

and should be represented by the same node?.

• It is impractical to represent the network and the tokens in exactly the
same way suggested in [For82]: the data structures are too low-level
and require the manipulation of information at the bit level. A higher
level of abstraction is used, in the form of SELF prototypes and traits.

• For the same reason as above, it is impractical to linearize the network
as a series of assembler-like instructions; instead, an object-oriented
representation of the network is provided.

However, the two key ideas of the original algorithm are preserved,
namely, avoiding iteration over working memory by storing with each premise
the list of elements that it matches and avoiding iteration over production
memory by compiling the premises in a network of nodes with memory.
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4.2.3 Adapting NéOpus: From Classes to Prototypes

The biggest challenge of building FIRE was departing from the traditional
class-based paradigm of knowledge representation used in hybrid systems.
There were other, secondary implementation challenges like the ones men-
tioned in the previous section, but the most fundamental question to be
solved was how to interpret the universal quantification of variables in a
prototype-based world.

FIRE is a first-order reasoning engine, and all the variables declared
in a rule are (implicitly) universally quantified. For instance, this means
that a variable said to be of kind person refers to “all” the person objects
in the system. In a class-based world the previous example can be easily
translated to implementation terms: the kind of a variable would be its
class, and “all” the objects of the same kind in the system would be the
instances of that class. Classes, subclasses, instances ... all these concepts
applied to the quantification of variables in a rule needed an equivalent in a
prototype-based world.

Grouping Objects in SELF

In NéOpus, a dispenser refers to a class that sends new instances that bind
to one of the variables in the declaration part of a rule. FIRE adopts the
name of “dispenser”, but adapts the concept to a prototype-based world.
The variable declaration part of a rule in FIRE has the form:

| "prototype" p1 p2. "traits object" t1 t2 |

The symbol between double quotes it is said to be the dispenser of the
variables it precedes. If a variable is declared to belong to a "prototype"
(or alternatively, to a "globals prototype") then prototype-based grouping
applies to it, therefore the prototype and all of its copies are considered
when binding values to the variable. On the other hand, if it is declared to
belong to a "traits object", then traits-based grouping is enforced, and
all of the children of the traits object are considered when binding values to
the variable, including children from different inheritance hierarchies that
happen to share the same parent, but excluding children that are traits
themselves.

Traits-based grouping is similar to the grouping of objects that results
from considering a class and its instances (although it is possible to have
cross-cutting grouping, because objects from completely unrelated hierar-
chies can share the same parent traits object), whilst prototype-based group-
ing is exclusive to a prototype-based world. The possibility of combining
traits-based grouping and prototype-based grouping simultaneously in a rule
is unique to FIRE, and holds the potential to be a very powerful feature.

Given that grouping objects is a fundamental part in FIRE, a special set
of algorithms had to be developed for dealing with the subject.
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rule name
| variable declaration |
premises

ACTIONS
action part

Figure 4.5: Rule Structure in FIRE

Simple vs. Natural Typing and Inheritance

NéOpus introduced the concept of typing : a variable in a rule is said to be
of “simple type” if it refers to all the instances of a class, and is of “natural
type” if it refers to all the instances of a class and all the instances of its
(potential) subclasses.

As one further generalization, the inheritance concepts of superclasses
and subclasses are re-interpreted in the light of the two kinds of grouping
of objects defined above: An ancestor is defined to be either the immediate
parent trait(s) of a trait object or the immediate copy-down parent(s) of
a prototype object, depending on the kind of dispenser. In a similar way,
a descendant is the immediate child (children) traits object of a traits dis-
penser or the immediate copy-down child (children) prototype object of a
prototype dispenser. Both ancestors and descendants are considered when
“natural typing” is enabled in FIRE.

4.2.4 The Rule Language

A very simple language was developed for expressing rules in FIRE; the full
grammar can be found in appendix A. This section describes the charac-
teristics and general syntax of the language, alongside with some caveats.
Every rule has the structure depicted in figure 4.5

The following subsections explain in detail each of the parts of a rule.
Section 4.2.4.1 explains the naming convention for rules; section 4.2.4.2
shows the different types of variables that can be declared for using in a rule
alongside with the naming convention for variables; section 4.2.4.3 specifies
the SELF expressions that can be used as valid premises and finally section
4.2.4.4 details the types of premises that can be used in the action part of a
rule together with the macros available in the language.

4.2.4.1 Rule Name

The rule name is simply any valid identifier in SELF: a string starting with
a lower-case letter, followed by any number of letters (upper or lower-case),
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numbers or the "_" character. This name is used as an identifier in FIRE,
and allows accessing the object representation of the rule inside FIRE.

4.2.4.2 Variable Declaration

The variables that will be used in the rule are declared between vertical bars,
in a list of dot-separated declarations. A declaration has two parts: the name
of the dispenser between double quote characters ("") followed by one or
more variables. A trailing dot after the last declaration is not allowed. As
was detailed in 4.2.3, the dispensers can have one of two forms: "prototype"
(equivalent to: "globals prototype") or "traits object", assuming that
the referenced objects do exist in the system and can be accessed from the
lobby. Additionally, non-firing local variables (i.e., variables that cannot be
added, removed or modified in the actions part) can be declared if their
dispenser is set to "local", these are useful for holding temporary values
when writing the rule.

Conceptually, three kinds of variables can be declared in the variable
declaration part:

First-Order variables Those declared to be bound to a certain dispenser.

Local variables Those declared with the "local" dispenser. This kind of
variable cannot be fired in the action part of the rule, and are intended
to be assigned to the result of a message sent in the premises part

Fireable local variables Declared in the same way as the first-order vari-
ables, but intended to be assigned to the result of a message sent in
the premises part (therefore it must have the same kind of dispenser
as the object returned from the message). This kind of variable can
be fired in the action part of the rule.

The example in figure 4.6 will make things clearer. There is one big caveat
regarding the names of variables. Due to limitations in the implementation
of the parser, the variable names inside a rule must not be substrings of
one another, and they must not be substrings of any string in the premises
or actions part. For example, the variable names stud and student will
cause problems as the former is a substring of the latter. The simplest
solution to this problem is following some naming conventions for variables,
like using names with more than four characters and ending with a number.
The parser does not check for the problem just described, so care should be
exercised when writing the rules.

4.2.4.3 Premises

Premises are SELF expressions enclosed inside back quotes (the ‘ character)
and separated by dots. A trailing dot after the last premise is not allowed.
There are three types of premises:
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varTypeExample
|

"string" stri1 stri2. <- first-order variables
"traits students" studentList. <- first-order variable
"local" loca1. <- local variable
"student" stud1 <- fireable local variable

|
‘loca1: stri1, stri2‘.
‘stud1: studentList first‘

ACTION
‘stud1‘ GO

Figure 4.6: Types of Variables in a Rule

Assignment A SELF assignment expression where the left side is either
a local or a fireable local variable present in the variable declaration
part, and the right side any valid SELF expression.

Positive premise Any valid SELF expression that returns a boolean value.

Negative premise A premise with the following special syntax:

NOT | "proto" prot1 | ‘prot1 < 10‘.

“NOT” is a keyword marking the beginning of a negative premise;
then comes a variable declaration that obeys the same rules outlined
in the previous section but whose scope is limited to the negative
premise; finally, a SELF expression enclosed inside back quotes that
must evaluate to a boolean value. Notice that the negation tested in
this kind of premise is the negation by absence, not to be confused
with the not message, and the absence is only checked at the moment
of the test.

4.2.4.4 Action Part

The action part is the sequence of dot-separated actions following the “AC-
TIONS” keyword. Each action is any valid SELF expression between back
quotes. A trailing dot after the last action is not allowed.

Optionally, a macro can be applied to an action, as was the case in the
last action in figure 4.6. There are three types of macros, and all of them
get automatically expanded by the parser:

GO This macro signals that the object in the action must be added to the
evaluation context of the rule.

57



REMOVE The object in the action has to be removed from the evaluation
context of the rule.

MODIFIED The object in the action has been modified, so it must be
removed and added again to the evaluation context.

It is worth emphasizing that macros can only be applied to the first-order
and fireable local variables present in the variable declaration part. The need
to signal an object that it has been modified is known as “the problem of the
modified” and is discussed in [Pac92]. It all boils down to the inability of an
object of deciding if the modifications performed on it during the execution
of a rule should or should not be permanent, therefore the responsibility of
taking such a decision is delegated to the programmer of rules.

The syntax of the language has room for a couple of improvements. Both
the problem with the naming of variables outlined above, and the necessity
of surrounding SELF expressions with back quotes could be avoided if a
syntactic Scanner (like Smalltalk’s) and a structured grammar (see [Int]
messages number 49, 813, 814) were available for the SELF language. For
the moment, the implementation of those artifacts is proposed as a possible
future work.

4.3 Consequences of Using Prototypes

Advantages

Of course, there were several advantages of using the prototype-based paradigm,
most of them thanks to the inherent flexibility of PBLs. It was possible to
define a very compact way of sharing behavior between prototypes, with
a minimum of code duplication. For example, the network nodes hierar-
chy benefited from multiple inheritance and delegation, as shown in fig-
ure 4.7. As can be seen, the behavior of nodeOneVarNegative is defined
in traits node, traits nodeOneVar, traits nodeOneVarNegative and
traits nodeNegativeCommon; the “common” part is shared with
nodeNegative, even though that prototype is in a separate branch of the
inheritance hierarchy.

Several other parts benefited from a heavy refactoring and simplification
of the code with respect to NéOpus (for instance the context management
category in traits ruleBase), although these improvements are due to
good software engineering practices and not to the fact that prototypes
were used in place of classes.

One of the most interesting parts of FIRE in terms of profiting from
SELF’s flexibility and highly dynamic nature, is the implementation of the
tokens. Neither the number of data slots in a token object nor the method
slots are known in advance when a rule base is instantiated, that information
depends on the rules subsequently added to the base. However, once a
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Figure 4.7: Delegation in Nodes Hierarchy

59



Figure 4.8: Meta-Prototypes in Tokens

token is created, all its successive copies should have the same method and
data slots (albeit with different values in latter case). The solution for this
problem was creating a Meta-Prototypical token object: a prototype whose
copies are different prototypes with a varying number of data and method
slots, but the copies of these copies are clones of their prototype. Figure 4.8
illustrates the situation; the left-hand side of the image depicts the Meta-
Prototype, with zero data and method slots, alongside with one copy of it.
The right-hand side shows two different prototypes, created by sending the
message newDynamicProto: aName to the Meta-Prototype, each one with
a different number of data and method slots, and each one with a copy of
itself. Notice that the dynamic prototypes are modified when new rules are
added, by adding new slots as required. Given that tokens are frequently
propagated —and in great numbers— in the Rete network, it was mandatory
that their memory footprint was as small as possible. The previous design
accomplishes just that, the behavior is centralized in the traits token and
selectors objects, from whence it is shared by all the tokens in the network,
which are clones (i.e., shallow copies) of each other, only the idiosyncratic
data in their i1, . . . , in slots is different between tokens.
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From a more practical point of view, the ability of SELF to add data or
method slots dynamically greatly simplifies the generation of code. For ex-
ample, to dynamically add a method in Smalltalk it is necessary to perform
some string manipulations on the source code, compile the source and then
add the new method to the method dictionary of a class, in SELF these
operations are as simple as:

(reflect: selectors)
at: selector
PutContents: (body parseObjectBody)

Where selectors is the traits object where the method will be added,
selector the name of the method and body its source code. Also, Mango
does a great job simplifying the process of building a parser, thanks to its
programming model where the user adds behavior to the nodes of a parse
tree, which simplifies the implementation of transformations and manipula-
tions of the parsed code.

Disadvantages

There were also disadvantages of using the prototype-based paradigm. Most
of the prototypes were defined in a class-like way: the shallow copy mes-
sage had to be overridden with messages to create copies with their data
slots initialized to new values (as opposed to, slots pointing to the same
objects as their prototype). The only exception was the token prototype,
where making clones and not instance-like objects made sense. But the
most challenging part was dealing with the lack of structural information
in prototypes: in a class-based environment, it is generally possible to send
the class message to an object and get the class object that originated it.
In a prototype-based world, it is not always possible to get the dispenser of
an object (in particular, not in SELF), and there are situations where it is
necessary to propagate this information as an argument to message sends:

aMessageWith: anObject WithDispenser: objectDispenser

The converse of this situation also had to be dealt with: In a class-based
world, a message can be sent to a class to find out its instances. In SELF,
it was mandatory to develop efficient algorithms for retrieving either the
copies of a prototype or the children of a traits object (depending of the
kind of dispenser used); also to support the natural typing of variables, it
was necessary to develop algorithms for traversing the ancestors and the
descendants of a dispenser, and finding out their copies or children. These
algorithms are outlined in the appendix B.
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Figure 4.9: Creating a New Rule Base

Figure 4.10: Adding Rules to a Rule Base

4.4 Using FIRE for SELF

This section explains the basic steps for adding and evaluating rules in FIRE,
and introduces the concept of activation contexts and their management.

Adding Rules to the Rule Base

The first step for working with FIRE is creating a new rule base. This
is accomplished by sending the message copyWithName: to the ruleBase
prototype, as shown in figure 4.9.

After a new ruleBase object has been created, there are two possibilities
(see figure 4.10) for adding new rules to it:

• Reading a text file with a single rule, by sending the message
compileRuleFromFile: to the ruleBase. The path to the file is
either an absolute path or a path relative to the objects/ directory
in SELF’s working dir.

• Directly typing a rule into an evaluation box, by sending the mes-
sage compileRuleFromString: to the ruleBase. In this case, all the
single-quote characters that may be part of the text of the rule must
be escaped by preceding them with a backslash, like this: \’

Context Management

The notion of an evaluation context was introduced by NéOpus and is also
adopted in FIRE. Normally, the methods for grouping object in FIRE (see
appendix B) would return all the objects in the system for a given type of
dispenser. This is necessary for rules that apply globally to objects in all of
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SELF’s image, but has some inconveniences. First, for certain dispensers,
the computation of the results will take some time to calculate due to the
large number of objects belonging to the dispenser (for instance, copiesOf:
vector returns around 40000 objects and takes close to one minute to cal-
culate in a Mac G3). This can cause a big performance hit in the evaluation
cycle. Second, not all of the objects obtained will be valid children or copies
of a dispenser, some could be objects that are no longer referenced by any
other object and are waiting to be garbage collected.

The evaluation contexts are presented as a solution to the above prob-
lems. The idea is simple: given that rules generally apply to certain objects
member of a particular dispenser, then put them explicitly inside a container
and tell FIRE that the rules should only be evaluated over the objects in
the context. The context is just a dictionary object: each key is a string
with the name of a dispenser, and each value is the list of objects belonging
to that dispenser.

The user of FIRE can create its own context and pass it as an argument
to the rule base (method executeWithContext:) or can use the rule base’s
own context. Several methods are provided in the “context management”
category of the rule base (see figure 4.11).

The most commonly used methods include addInContext:ToDispenser:
for adding a new object to the evaluation context;
emptyContextForDispenser: empties the list of objects for a given dis-
penser and putAllInContextForDispenser:, which causes the system to
evaluate all the objects in the system belonging to the specified dispenser
(this has the same effect as not using a context for that particular dispenser).

Firing the Rules

Several parameters must be considered when choosing an strategy for firing
rules. FIRE provides a set of default values for all the parameters, which
should suffice for most situations; however, if necessary it is possible to
change them. Table 4.1 enumerates the parameters, their default values,
the object to which messages should be sent, and the actual messages for
modifying the values. Notice that the third column refers to the objects
accessible from the rule base whose parameters need to be modified. For
instance, for changing the insertion order of fireable rules in the conflict set,
a user would type and execute the following command into an evaluation
box of the ruleBase object:

conflictSet rules comparator: aNewComparatorObj

The parameters determine which actions get triggered by the forward-chainer,
and it is possible that the results obtained depend on the order of firing of
the rules (for instance, in the case of rules dealing with the ordering of
objects).
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Figure 4.11: Context Management in FIRE

parameter default value configurable from messages to send
activation rule base’s own ruleBase go
context used activation context executeWithContext:

executeWithAllObjects
executeWithSingleObj:
WithDispenser:

stop condition of conflict set ruleBase executeUntil:
evaluation process is empty publicStopCondition:
insertion order of fireable rules added at conflictSet comparator:
rules in conflict set end of conflict set rules
fireable rule triggered first rule in conflictSet trigger:
each evaluation conflict set triggerFirst
cycle triggerLast

triggerDefault
typing (simple or natural) simple typing ruleBase setNaturalTyping

setSimpleTyping

Table 4.1: Parameters for Firing Rules
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A typical evaluation of a rule base starts by sending it the message go
and ends when either the conflict set is empty or the argument passed as
a parameter to the message publicStopCondition: evaluates to false. If
the evaluation cycle needs to be halted, simply send publicStopCondition:
false to the rule base.

Some remarks on the messages for configuring parameters: The evalua-
tion process stops when either the public stop condition evaluates to false
or the conflict set is empty, whichever happens first. Also, the typing of
variables applies to all first-order variables in all the rules in the rule base.

4.5 Inference and Evaluation Cycle

This section summarizes how the different parts of FIRE interact to finally
pick up and execute a rule, without delving deeply in implementation details.

In the network object it is stored a chain of node objects for each rule
in the rule base, each one connected to the following and preceding node.
The nodes are connected in the same order as the premises in each rule.
Also, when one of the variables of the declaration part appears for the first
time in a premise (such a variable it is said to be free up until this point), a
dispenser is connected to that node: an object in charge of sending all the
possible values that bound to that variable.

The evaluation cycle of the network is performed by sending new token
objects on it, each one representing one possible set of instantiation of the
variables declared in the rule. More specifically, the network takes care of
putting in the tokens all the possible combinations of the values stored in the
activation context of the rule base, that correspond to the type of dispensers
declared for the rule. New tokens also get sent into the network when the
execution of a rule causes a macro to be executed, therefore new objects get
added, or existing ones get modified or removed.

The tokens are propagated down the network, going through the nodes
corresponding to each one of the premises in the rule, until they reach the
final node.

Each type of premise in the rule maps to one type of node in the network,
although some types of nodes are just optimizations for representing more
efficiently a type of premise (for instance, the noVar node is a simplification
of a common node, for the cases where a premise does not need a dispenser
attached to it because there are no free variables in the premise). FIRE
is in charge of creating the right kind of node for each premise in a rule,
and the specific implementation details are not important for understanding
the propagation process. What really matters, is that nodes essentially fall
down in two categories: they are either positive or negative (with assignment
nodes being a special case of positive nodes).

The positive nodes perform the test corresponding to the premise they
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represent, and then propagate the token if the evaluation of the premise
succeeded. The negative nodes implement a more elaborate algorithm (ex-
plained in detail in [Cha90]) but with the same result: only if a token suc-
ceeds the premise, is propagated to the following node, where it will be
stored in its left memory.

At the end of the sequence of nodes there is a finalNode object; if a
token reaches this node means that it has succeeded all the tests of previous
nodes, and is packed inside a fireable rule and added to the conflict set.

From that point, the rule that gets picked and fired depends entirely on
the configuration parameters for firing rules, detailed in section 4.4.

The inference and evaluation cycle can proceed in two different ways,
depending on how it was parameterized (see section 4.4). In the standard
mode, the cycle continues as long as the conflict set is not empty, or the
public stop condition is met. If acting as a monitor (see next chapter),
the forward-chainer keeps testing objects in the system with respect to the
rules. This is a polling approach towards the goal of constantly monitoring
the state of the system.
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Chapter 5

Applying a Forward-
Chaining Rule-Based Engine
for Meta-Programming

In a broad sense, meta-programming can be defined as the act of writing
programs that write or manipulate other programs as their data. Certain
programming languages allow writing programs that can examine and pos-
sibly modify their own high-level structure at runtime; such languages are
said to be reflective. Furthermore, “Declarative Meta-Programming (DMP)
is the use of a Declarative Programming language at Meta-level to reason
about and manipulate programs built in some underlying base language”
[DMP].

On the one hand, given that SELF is a reflective language, it is possible
to perform meta-programming with it, but not in a declarative way. On the
other hand, FIRE’s rule language contains a declarative element: the ability
to express patterns for grouping objects. This chapter explores the bene-
fits of combining a reflective programming language with a rule language
with declarative elements. Why FIRE is appropriate for performing meta-
programming is motivated in section 5.1, next, a case study is presented in
section 5.2 where FIRE takes on the role of an interactive tool for suggesting
refactorings.

5.1 Why FIRE is Appropriate
for Meta-Programming?

The SELF language has built-in meta-programming capabilities in the form
of the very powerful reflective mechanism known as mirrors (see 2.4.1).
FIRE adds another layer of meta-programming facilities thanks to its par-
tially declarative capabilities and its rule language that is a subset of the
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base language.
The language for expressing rules in FIRE acts as a partially declarative

language over SELF’s environment. It allows the expression of patterns, in
the form of conditions, for grouping objects that conform to a certain crite-
ria. Moreover, it is possible to constantly monitor the objects in the system,
allowing verification of objects with respect to a description, although we
still need to specify how to perform such a verification (this is the reason for
stating that the rule language in FIRE is partially declarative). When an
object is positively verified against a description in a rule, then a sequence
of actions gets triggered by the forward-chainer.

Since the rule language is expressed in terms of SELF code (i.e., condi-
tions and actions are “normal” SELF expressions) it is possible to use all of
SELF’s expressive power —in particular, its reflective capabilities— as part
of the rule language itself. As a first consequence, the rules allow the expres-
sion of partially declarative meta-programming conditions for monitoring
objects and performing actions over them. As a second consequence, it is
possible to express rules that deal simultaneously with two kinds of grouping
(traits-based and prototype-based), and either simple or natural typing can
be used for interpreting inheritance relationships (see section 4.2.3). Both
consequences make FIRE a good meta-programming candidate.

5.2 FIRE as a Tool for Guided Programming Based
on Refactorings

This section demonstrates a case study in meta-programming with FIRE,
explaining how it can be the starting point for a tool for guided programming
that detects bad smells in code and suggests refactorings to correct them.

5.2.1 Refactorings as a Case Study

One of the most remarkable characteristics about FIRE is that it has unique
grouping capabilities, and is capable of detecting commonalities in such
groups.

Also FIRE can be used for performing forward-chaining inference in an
interactive environment such as SELF’s because it can take on the role of
the interactive control loop, by monitoring the objects in the system.

Both characteristics are useful for detecting bad smells and suggesting
refactorings, since certain types of bad smell detections involve looking for
commonalities across groups of objects and meta-level operations for finding
out their structure/contents, and FIRE’s forward-chaining type of inference
make it ideal for triggering a refactoring suggestion when an object(s) struc-
ture/contents changes in such a way that it corresponds to the description
of a bad smell.
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An introduction to refactoring and some related experiments are shown
in the following sections.

5.2.2 Introduction to Refactoring

Refactoring, as defined in [Fow99], is “the process of changing a software
system in such a way that it does not alter the external behavior of the
code, yet improves its external structure”. It is a means for improving the
design of the code after it has been written. The purpose of refactoring is
taking a bad design and reworking it into well-designed code. To ensure
that the code is still working after performing a refactoring, unit tests are
executed. A unit test is a method for testing the correctness of a particular
module of source code.

Bad Smells

A bad smell is a hint that indicates that something has gone wrong some-
where in the source code of a program. A smell can be used to track down
the problem, and can indicate “when” a refactoring would be convenient
and “what” refactoring should be applied. Martin Fowler [Fow99] defines
22 different bad smells that can be detected in code written in a class-based
programming language. Each bad smell has an associated list of refactor-
ings, which constitute possible solutions for getting rid of the smell. Fowler
[Fow99] provides a comprehensive catalogue with more than 70 refactorings,
each of them representing a concrete solution for a specific problem in the
source code. The next sections mention the types of refactorings considered
in the experiments. Two of the bad smells are relevant in the context of the
current discussion, and they are explained in the next paragraphs. For more
details about the refactorings mentioned, refer to [Fow99].

Duplicated Code Having the same code in different places is the most
common smell found in applications. We can use the Extract Method
refactoring to unify the code in one place. However, if the duplicated
code is in two sibling subclasses, we can use Extract Method and Pull
Up Method. In cases when the code in the extracted method has
nothing to do with the class, the Extract Class refactoring would be
appropriate.

Speculative Generality Sometimes programs get full of all sorts of hooks
for special cases to handle things that aren’t required. The result are
methods which are only called by their own tests and thus only add
to the complexity of maintenance and understanding. Replace unnec-
essary delegation with the code of the delegate with the Inline Class
refactoring, Collapse the Hierarchy if there are abstract classes that
are not doing much. Purge unused parameters with Remove Parame-
ter or apply Rename Method.
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5.2.3 Experiments

This section describes the experiments performed with FIRE to demonstrate
its utility as both a meta-programming layer on top of SELF and a tool for
performing guided programming in an interactive environment. Specifically,
the experiments aim at the detection of bad smells in SELF code at the
moment they appear, and at suggesting an appropriate refactoring. The
following paragraphs gather some general considerations that are applicable
to all experiments.

The kind of bad smells detected by the experiments are commonly found
during the early stages of the development of a SELF program, when the
prototypes are just being defined and the behavior of a prototype has not
yet been completely factored out into a traits object.

The rules use a näıve approach towards detecting bad smells (like check-
ing for methods with the same name ignoring their contents). The intention
of the experiments is showing FIRE’s meta-programming facilities as a way
to do guided programming, and therefore the smell detection is simplistic,
but could be enhanced in future works.

Given that the original refactorings suggested in Fowler’s Book [Fow99]
were conceived for class-based languages, they had to be adapted to a
prototype-based paradigm. In particular, the extract to traits refactoring
suggested in the third experiment does not have a direct equivalence in
class-based languages, although it can be compared with the Extract Class
refactoring.

The refactorings are suggested via a message printed on SELF’s console.
Again, this is a simplistic approach that could be enhanced by displaying a
pop-up in SELF’s graphical user interface.

Taking advantage of SELF’s flexibility, a group of helper methods specific
to the experiments was added to the rule base, so they can be easily invoked
from inside the rules. These methods are shown next to the rule that uses
them. All of them make use of SELF’s reflective capabilities.

The experiments were performed over an object system like the one
shown in figure 5.1. It includes a prototypical student object, three copies
of it and a traits object for holding the common behavior.

As a final remark, the experiments do not take advantage of FIRE’s
evaluation context, but instead are evaluated over all the objects in the
system that match the declaration part of the rule. This evaluation mode
was selected, as it resembles more closely the control loop of an interactive
tool for guided programming.

The following sections detail the experiments performed. Each one shows
the rule that implements the smell detection, the helper method called from
the rule and the results obtained.
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Figure 5.1: Experiments Setting

Pull-Up Method Refactoring

If two objects share a method of the same name, then suggest
that the method should be moved to a common traits object

The bad smell detected by the rule in this experiment is one type of
duplicated code: if two objects share the same traits object, and a new
method is added to one of them with the same name of a method already
existing in the other, then a “duplicated methods” condition is detected and
the suggested refactoring triggered by this situation is pulling-up the method
to the traits object. Figure 5.2 shows the rule and figure 5.3 illustrates the
helper method.

Results. The rule gets triggered whenever two student objects have meth-
ods with the same name. It starts printing messages in the console
until one of the methods is removed or the method gets refactored into
the traits object.

Remove Parameter Refactoring

If the arguments of a method are not used inside its body, then
suggest that they should be removed.

The bad smell detected by the rule in this experiment is one kind of spec-
ulative generality. FIRE checks the methods in an object, if a new method
gets added and there are no references to one or more of its parameters
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duplicatedMethods
|
"traits student" studentX studentY.
"local" methodNames1 methodNames2 common

|

‘studentX != studentY‘.
‘methodNames1: methodNamesIn: studentX‘.
‘methodNames2: methodNamesIn: studentY‘.
‘common: (methodNames1 intersect: methodNames2)‘.
‘common size > 0‘

ACTIONS

‘’duplicated method(s) found: ’ print‘.
‘common do: [|:e| (e, ’, ’) print]‘.
‘’consider pull up to traits object’ printLine‘

Figure 5.2: Rule for detecting duplicated methods

methodNamesIn: obj = (
((reflect: obj) asList
select: [|:e| e isMethod])
collect: [|:e| e name])

Figure 5.3: Helper method for detecting duplicated methods
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inside the body of the method, then an “unused parameter” condition is de-
tected and the suggested refactoring triggered by this situation is removing
the parameter(s) that are not used in the method. Figure 5.4 shows the rule
and figure 5.5 illustrates the helper method.

unusedParameters
|
"traits student" studentX.
"local" numParameters1

|

‘numParameters1: unusedArgsIn: studentX‘.
‘numParameters1 size > 0‘

ACTIONS

‘numParameters1 do: [|:e| e printLine]‘

Figure 5.4: Rule for detecting unused parameters

unusedArgsIn: obj = (
| args. notUsed |
notUsed: list copyRemoveAll.
(reflect: obj) do: [ |:s|
(s isMethod)
ifTrue:
[ args: s value arguments.
args do: [ |:a|
s contents source findSubstring: a
StartingAt: 0
IfPresent: []
IfAbsent: [ notUsed add:

(’argument ’, a, ’ not used in method ’, s key)]]]].
notUsed)

Figure 5.5: Helper method for detecting unused parameters

Results. The rule gets triggered whenever one or more arguments in a
method are not referenced in the method’s body. It starts printing
messages in the console until all the arguments in a method are used
inside its body.

Notice that the lookup for a “reference” to an argument is just a
substring search, so it is possible to find such a substring in the body
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of the method, even though the argument was not referenced in the
method’s body.

Extract to Traits Refactoring

If a non-traits object has “too many” methods, then suggest that
they should be moved into a traits object.

The bad smell and subsequent refactoring defined by the rule in this
experiment are specific to traits-based PBLs. During the development of a
prototype-based system, objects can start receiving some additional behav-
ior in the form of new methods getting added to them. At a certain point,
the methods are “too many” and should be extracted to a separate traits
object, so they can be shared more efficiently between copies of the object.
The rule written for detecting this bad smell checks to see if any object has
more methods than a certain threshold for the number of methods (also
defined in the rule). When the number of methods in an object is greater or
equal than the threshold, then a “too many methods” condition is detected
and the suggested refactoring triggered by this event is extracting them to a
traits object. Figure 5.6 shows the rule and figure 5.7 illustrates the helper
method.

Results. The rule gets triggered whenever the number of method slots in
an object goes beyond a threshold value, which was defined with value
“5” for this experiment. It starts printing messages in the console until
the number of methods in the objects drops below the threshold, or
the methods get refactored into the traits object

5.2.4 Discussion of Experiments

The experiments showed the straightforward nature of writing rules that
apply to subsets of objects in the system and perform advanced reflective
operations on them. In particular, FIRE showed its utility as a tool for
guided programming that can detect bad smells and can suggest possible
refactorings (pull-up method, remove parameter, extract to traits) in real
time.

The experiments serve as proof of concept that FIRE effectively adds a
layer of partially declarative meta-programming capabilities to SELF. Even
more, FIRE has also proven its utility as a monitor in an interactive envi-
ronment. More experiments are needed for exploring the expressive power
of the rule language.

Certain extensions could be made on FIRE for improving its perfor-
mance and/or adding more expressive power to the rule language; these are
discussed in chapter 7: Future Work.
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tooManyMethods
|
"traits student" studentX.
"local" numMethods1 thresholdValue1

|

‘numMethods1: numMethodsIn: studentX‘.
‘thresholdValue1: 5‘.
‘numMethods1 >= thresholdValue1‘

ACTIONS

‘(’object named ’, studentX name, ’ has more than ’,
thresholdValue1 asString, ’ methods. Consider
refactoring them to a traits object’) printLine‘

Figure 5.6: Rule for detecting an object with many methods

numMethodsIn: obj = (
| num <- 0 |
(reflect: obj) do: [ |:s|
(s isMethod)
ifTrue:
[ num: num succ ]].

num)

Figure 5.7: Helper method for detecting an object with many methods
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Part III

Conclusions and Future
Work
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Chapter 6

Conclusions

This dissertation started by introducing the philosophical foundations of
knowledge representation. Next, we discussed prototype-based languages,
that are very expressive and are preferred to their class-based counterparts
for representing knowledge. The language SELF was introduced as an ex-
ample of a PBL.

Then, we introduced rule-based engines as a means for performing in-
ference and extracting knowledge out of information. Hybrid systems were
also introduced, which are the combination of object-oriented programming
languages with rule-based systems. NéOpus was shown as a representative
of hybrid systems. One particular type of inference engine was of special
interest for this dissertation: the type that performs forward-chaining of
rules, as it is better suited for monitoring a constantly changing fact base.

The main part of this research started with the introduction of FIRE,
a tool built as a combination of a forward-chaining rule-based inference en-
gine with the modern object-oriented, prototype-based language SELF. This
combination provides a unique set of advantages, like the ability of represent-
ing the knowledge base via prototypes, the possibility of using SELF expres-
sions as part of the rule language (in both condition and action parts), and
the re-interpretation of the meaning of universal quantification of variables
in terms of grouping and inheritance in a prototype-based world. Perhaps
one of the most prominent advantages of building FIRE on top of SELF is
that even reflective expressions can be used in the conditions and/or actions
parts of rules. This, in combination with the declarative nature of group-
ing of objects in FIRE produces a meta-layer that might supersede SELF’s
mirrors mechanism.

As a proof of concept, we have applied FIRE as an interactive meta-
programming tool for guided programming, performing experiments on de-
tection of “bad code smells” and on suggesting possible refactorings to elim-
inate them. This is a very relevant research topic, as FIRE can detect bad
smells at the moment they occur and suggest a course of action; the same
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principle could be applied to detect other types of “anomalies” in the source
code (e.g., non-conformance with coding standards) or even going beyond
the source code and verifying conformance with documentation, models, etc.
The next chapter points to other possible directions of future work.
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Chapter 7

Future Work

This section analyzes some possible areas of future work in the context of
this dissertation. First, possible implementation extensions for FIRE are
presented, aiming at improving its performance, adding more expressive
power to it and finding more uses to it. Second, future research directions
for the combination of SELF and rules are discussed.

7.1 Improving FIRE

The algorithms for grouping objects are not considered very efficient. Cur-
rently, they are implemented at a higher level, but we believe that a more ef-
ficient way to iterate over groups of objects exists. Further study is required
in the low-level constructs of SELF, such as the primitives mechanism, the
maps of objects and the virtual machine.

Both the language and the rule parser have well-known shortcomings, like
the need to back-quote SELF expressions and the variable naming problems.
Both might be solved if a parser for SELF source code was available. Such
an artifact could also be very useful for enhancing the ability of FIRE to
express rules dealing with the structure of source code.

The rule language can be enriched with more advanced characteristics.
Possible candidates are assertions, adding temporal reasoning, rule base
inheritance and meta-rules for controlling the firing of other rules.

The monitoring aspect of FIRE can be greatly improved by using a
mechanism to restrict monitoring to specific attributes of specific objects,
reducing the number of times the forward-chainer is triggered. Such a mech-
anism is described in [DGJ04].

7.2 Future Research Directions

More important than the implementation improvements, it is necessary to
perform more experiments with FIRE in the area of interactive program-
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ming, going beyond the suggestion of refactorings. If FIRE is to be used
for reasoning about code, then it is necessary to have some more advanced
mechanism for manipulation of code at the object level.

It is also necessary to keep exploring the unique expressive power of
the rule language, perhaps looking for ways to exploit the double hierarchy
of traits and prototypes, and the cross-cutting nature of traits-based inheri-
tance. Interestingly, the double hierarchy somewhat resembles the hierarchy
of classes and interfaces in Java; it may be worth exploring this relation-
ship, in the context of language-independent rules that take advantage of
the structural similarities in the hierarchies of both languages.
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Appendix A

Rule Language Grammar

Name: ’ruleParser’
Behavior: ’ruleParser.behavior.self’

Syntax: SLR(1)
Transformations: ’elimEpsilons’, ’elimSingletons’ ;

<rule> ::= <name> <varDeclaration>
<premises> ’ACTIONS’ <actions> ;

<name> ::= {identifier} ;

<varDeclaration> ::= ’|’ <declarations> ’|’ ;
<declarations> ::+ <declaration> ’.’ ;
<declaration> ::= {dispenser} <variables> ;
<variables> ::+ {identifier} ;

<premises> ::+ <premise> ’.’ ;
<premise> ::| <positivePremise> <negativePremise> ;
<positivePremise> ::= {selfexp} ;
<negativePremise> ::= ’NOT’ <varDeclaration> <positivePremise> ;

<actions> ::+ <action> ’.’ ;
<action> ::| {selfexp} {selfexp_go}

{selfexp_mod} {selfexp_rem} ;

Lex: SLR(1)
Transformations: ’elimEpsilons’, ’elimSingletons’, ’useCharClasses’ ;

{whitespace} -> [ \t\n\v\f\r\b]+ ;
{identifier} -> {lowercase} ( {letter} | {digit} | ’_’ )* ;
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{dispenser} -> ’"’ {whitespace}? {identifier}
( {whitespace} {identifier} )* {whitespace}? ’"’ ;

{selfexp} -> ’‘’ {whitespace}? {anychar}
( {whitespace} {anychar} )* {whitespace}? ’‘’ ;

{selfexp_go} -> {selfexp} {whitespace} ’GO’;
{selfexp_mod} -> {selfexp} {whitespace} ’MODIFIED’;
{selfexp_rem} -> {selfexp} {whitespace} ’REMOVE’;
{lowercase} = [a-z] ;
{uppercase} = [A-Z] ;
{letter} = {lowercase} | {uppercase} ;
{digit} = [0-9] ;
{validchar} = ’(’ | ’)’ | ’#’ | ’$’ | ’%’ | ’&’ | ’_’ | ’|’ |

’~’ | ’,’ | ’-’ | ’!’ | ’*’ | ’<’ | ’>’ | ’\’’ |
’{’ | ’}’ | ’.’ | ’?’ | ’+’ | ’^’ | ’/’ | ’\\’ |
’[’ | ’]’ | ’@’ | ’"’ | ’=’ | ’;’ | ’:’ ;

{anychar} = ({letter} | {digit} | {validchar})+ ;
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Appendix B

Mixin for System Navigation

FIRE defines different, novel ways of grouping objects in SELF, giving rise
to new interpretations of the universal quantification of the variables in a
rule. Since this is such an important topic in the current research, it is
appropriate to explain in detail the mechanisms invented for grouping ob-
jects. In concrete, the mixins systemNavigation object was developed,
which makes heavy use of SELF’s mirrors facilities and provides a rich in-
terface for traversing and grouping the objects in the SELF image. It was
implemented as a mixin because its applicability goes beyond the scope of
FIRE, and it should be easily integrated in other objects that may use it.
Notice that it was implemented in a procedural style, with the receiver of a
message being passed as an argument to it. Figure B.1 shows the methods
defined in mixins systemNavigation, and subsequent sections enumerate
the most important methods and outline the algorithms behind them.

Traits-Based Grouping

traitsOf: anObject Returns a list with all the parent slots of the object
argument which are also traits objects.

childrenOfTraits: traits Returns a vector with all the children slots of
the traits argument which are not traits objects themselves.

Prototype-Based Grouping

prototypeOf: anObject Returns the prototype of the given object. If
the object is a traits or mixins object then the object itself is re-
turned; if the object can respond to the prototype message then the
method returns the result of invoking that message; finally, the method
prototypeIfPresent:IfAbsent: is tried on the mirror of the object
returning either the prototype or nil if none was found.
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Figure B.1: Methods for Grouping and Traversing Objects in SELF
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copiesOf: aProto Returns a vector with all the copies of the given object.
Since in SELF there is not a direct way of finding out the copies of an
object, this algorithm was developed: First, the list of all the parent
slots of the object is obtained. Then, for each of the parents, a list is
returned containing all their children which are not well-known and
have the same prototype as the given object. This strategy excludes
traits that might be children of one of the parents of the object and
children copied from other prototypes that happen to share a parent
with the object. Each successive list of children is intersected with the
result of intersecting the previous lists; in the end, only the children
common to all of the parents are returned.

Traits-Based Inheritance

allTraitsAncestorsOf: traits Returns a list with all the parent slots of
the traits argument which are also traits objects. This operation is
performed recursively up the traits inheritance hierarchy, until all the
parent traits are found. The first element of the list is the traits object
passed as argument.

allTraitsDescendantsOf: traits Returns a list with all the well-known
children objects of the traits argument that are also traits objects.
This operation is performed recursively down the traits inheritance
hierarchy, until all the traits children are found. The first element of
the list is the traits object passed as argument.

childrenOfTraitsIncludingAncestors: traits
Calls allTraitsAncestorsOf: and then calls childrenOfTraits:
on every element of the returned list. All the resulting elements are
returned in a new list.

childrenOfTraitsIncludingDescendants: traits
Calls allTraitsDescendantsOf: and then calls childrenOfTraits:
on every element of the returned list. All the resulting elements are
returned in a new list.

Prototype-Based Inheritance

allCopyDownAncestorsOf: aProto Returns a list with all the copy-
down parents of the prototype argument. This operation is performed
recursively up the copy-down inheritance hierarchy, until all the copy-
down parents are found. The first element of the list is the prototype
object passed as argument.

allCopyDownDescendantsOf: aProto Returns a list with all the well-
known copy-down children of the prototype argument. This operation
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is performed recursively down the copy-down inheritance hierarchy,
until all the copied-down children are found. The first element of the
list is the prototype object passed as argument.

copiesIncludingCopyDownAncestorsOf: aProto
Calls allCopyDownAncestorsOf: and then calls copiesOf: on every
element of the returned list. All the resulting elements are returned in
a new list.

copiesIncludingCopyDownDescendantsOf: aProto
Calls allCopyDownDescendantsOf: and then calls copiesOf: on ev-
ery element of the returned list. All the resulting elements are returned
in a new list.

Putting it all Together

The methods in this section are the more general ones, as they can receive
either a prototype or a traits object, and they return the correct answer
depending on the type of the argument.

str2Disp: str Receives as an argument a string with a path relative to
the lobby and returns the object in that path. It is useful for passing
a string instead of an object to all the methods in the mixin. This is
very helpful in FIRE, as the dispensers are represented internally as
strings, because traits object could not be used as keys in dictionaries.

allAncestorsOf: protoORtrait
Calls either allCopyDownAncestorsOf: or allTraitsAncestorsOf:
depending on the type of the argument.

allDescendantsOf: protoORtrait
Calls either allCopyDownDescendantsOf: or allTraitsDescendantsOf:
depending on the type of the argument.

copiesORchildrenOf: protoORtrait Calls either copiesOf: or
childrenOfTraits: depending on the type of the argument.

copiesORchildrenIncludingAncestorsOf: protoORtrait
Calls either copiesIncludingCopyDownAncestorsOf: or
childrenOfTraitsIncludingAncestors: depending on the type of
the argument.

copiesORchildrenIncludingDescendantsOf: protoORtrait
Calls either copiesIncludingCopyDownDescendantsOf: or
childrenOfTraitsIncludingDescendants: depending on the type of
the argument.
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Perhaps the most interesting method in the mixins object is copiesOf:.
“Strictly speaking, there isn’t supposed to be an observable relationship be-
tween an object and what it was cloned from in SELF”. This was stated by
David Ungar himself (see [Int], message number 1819). However, discovering
all the copies becomes important in the context of quantifying the variables
in a rule. The fact that this way of grouping objects is not common in SELF
is evidenced by the lack of a mechanism in the language itself for finding
out such information, making necessary the use of a high level algorithm.
This has a disadvantage in terms of performance. During (informal) profil-
ing of the algorithms, it was discovered that SELF’s method calls browse
childrenOfReflectee: and browseWellKnown childrenOfReflectee:
take up most of the running time of the algorithms for finding children or
copies, creating a potential bottleneck when dealing with a large number of
objects (more than one thousand). A solution to reduce the running time
would be to implement a more efficient version of those methods, possibly
at the primitives level. This proposal is stated as a possible future work.

Another possible solution for finding all the copies of a prototype was
suggested by Jecel Assumpcao Jr. (see [Int], message number 1820): ba-
sically, a brute-fore approach involving iterating over all the objects in the
system and performing a comparison at the data slot level: if two objects
share the same data slots, then they are copies of the same prototype. Some
(informal) time measurements were made, discovering that for a small num-
ber of copies FIRE’s implementation is much faster, but interestingly, for
a large number of copies Jecel’s algorithm can be a little faster. A more
formal approach for measuring the efficiency of the algorithms needs to be
developed, but is out of the scope of this document.
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Appendix C

Licensing Information

The source code in FIRE for SELF’s distribution is covered by two licenses.
The source code specific to FIRE for SELF is under the General Public
License (GPL) of the Free Software Foundation [GNU]. The GPL only
covers the following files:

• applications/collectionsAddOn.self

• applications/fire4Self.self

• fire4Self.grm

• install-fire4Self.self

• ruleParser.behavior.self

The full text of the GPL is included with the code, and the license’s notice
can be accessed from within the program by typing ruleBase license in
any evaluation box and pressing the “Get It” button. A transcript of the
notice follows.

FIRE for SELF: A Forward-Chaining Inference Rule-Based Engine
for a Prototype-Based Language

Copyright (C) 2004 Oscar Andres Lopez Paruma

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
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You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Mango is an essential part of FIRE for SELF and is distributed together
with it, however it is covered by one of Sun Microsystems’ licenses (also
included with the code). This is Mango’s license:

# Sun-$Revision: 30.4 $

Copyright 1993-2004 Sun Microsystems, Inc. and Stanford University.

All Rights Reserved. RESTRICTED RIGHTS LEGEND: Use, duplication, or
disclosure by the government is subject to restrictions as set forth
in subparagraph (c) (1) (ii) of the Rights in Technical Data and
Computer Software Clause at DFARS 252.227-7013 (Oct. 1988) and FAR
52.227-19(c) (June 1987).

Sun Microsystems, Inc. 2600 Casey Avenue, Mountain View, CA 94043
USA

LICENSE:

You may use the software internally, modify it, make copies and
distribute the software to third parties, provided each copy of the
software you make contains both the copyright notice set forth above
and the disclaimer below.

DISCLAIMER:

Sun Microsystems, Inc. makes no representations about the
suitability of this software for any purpose. It is provided to you
"AS IS", without express or implied warranties of any kind. Sun
Microsystems, Inc. disclaims all implied warranties of
merchantability, fitness for a particular purpose and
non-infringement of third party rights. Sun Microsystems, Inc.’s
liability for claims relating to the software shall be limited to
the amount, if any of the fees paid by you for the software. In no
event will Sun Microsystems, Inc. be liable for any special,
indirect, incidental, consequential or punitive damages in
connection with or arising out of this license (including loss of
profits, use, data, or other economic advantage), however it arises,
whether for breach of warranty or in tort, even if Sun Microsystems,
Inc. has been advised of the possibility of such damage.
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Appendix D

Installation Instructions

Installing FIRE for SELF is very simple once you have a copy of the source
code distribution. It can be summarized in just four steps.

1. Copy the file fire4Self.tar.bz2 to $SELF_WORKING_DIR/objects

2. Go to $SELF_WORKING_DIR/objects and execute the command

tar -xjf fire4Self.tar.bz2

3. Start SELF

4. At SELF’s command line prompt, type and execute the following com-
mands

’install-fire4Self.self’ _RunScript
ruleBase bootstrapParser

You can check that the globals, traits and mixins name spaces now
have a new category, “fire4Self”.
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