

Vrije Universiteit Brussel – Belgium
Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes – France
and

Monash University – School of Computer Science and
Software Engineering – Australia

2002

An Agent-Based Platform for Assisting Repository
Navigation and Administration
(Part of the LEOPARD Project)

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

(Thesis research conducted in Australia in the EMOOSE exchange)

By: Olivier Constant

Promoter: Prof. Theo D’Hondt (Vrije Universiteit Brussel)
Co-Promoter: Dr. Annya Réquilé (Monash University)

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 1

Abstract

Repositories can be hard to navigate and administrate. Standard static access techniques
like indexing have limited power and flexibility and their maintenance requires
appropriate feedback. Users, administrators and content providers are all concerned by
this issue. It has become all the more critical as the successful emergence of learning
objects leads to the creation of very large and complex repositories.

We propose an approach strictly based on the dynamic collection of users' navigation
pathways for allowing for the effective use of large repositories. The computation of
pathways allows for the inference of virtual semantic links between resources of the
repository. Hence users can be assisted in their navigation dynamically based on
pathways from their personal profile but also from the whole community of users
including experts. In addition, pathways are a potential source of feedback for repository
administrators and content providers. Possibilities include the discovery of communities
of users and categories of content.

A prototype has been designed as a multiagent system. To allow for its implementation,
an agent infrastructure and agent framework have been developed for MS .Net. The
prototype is an experimental platform that demonstrates how pathways can be collected
and how assistance can be provided for the navigation of a repository of web pages. It
also intends to be a research platform for a future extraction of feedback and the
development of advanced algorithms for a better assistance.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 2

Acknowledgements

My most sincere thanks are due to Annya Réquilé who supervised me during these past
five months. She guided me with enthusiasm and without neglecting the human aspects
of research.

I am also particularly grateful to Christine Mingins who is the initiator of the whole
project and made this master’s thesis possible.

I would then like to thank Brian Yap for his collaboration and Jan Miller and Hugo
Leroux for a thousand reasons they know.

Finally, a special word of thanks is due to all the people at the CSSE who were
responsible for such a good atmosphere at work.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 3

Contents

Abstract 1

Acknowledgements 2

Contents 3

Introduction 6

Chapter 1: State -of-the-Art 9

1 Recommender systems 9
1.1 Background 9
1.2 Examples 10
1.3 A profiling technique 11

2 Agents 12
2.1 Overview 12
2.2 Multi-agent systems (MASs) 13
2.3 Examples of agents and MASs 17
2.4 Existing tools 19
2.5 Design 22

3 Metadata 24
3.1 Definition 24
3.2 Roles and use 24
3.3 Storage 25
3.4 Interoperability issue 25

4 Perspectives 28

Chapter 2: Contribution 29

1 Our approach 29
2 Expected outcomes 29

2.1 User navigation assistance. 29
2.2 Feedback for administrators and content providers. 30

3 Principles of our solution 30
3.1 User perspective 31
3.2 Resource perspective 31
3.3 Business intelligence generation 32

4 Consequences 32

Chapter 3: Application Design 33

1 Structure overview 33
2 Navigation System Interface 34
3 Agents Component 34

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 4

3.1 User Agents Component 35
3.2 Node Agents Component 35

4 Standard User Profiles Component 35
5 Business Intelligence Component 35
6 Non-generic part 36

6.1 Choice of Navigation System 36
6.2 Consequences on the application 37

Chapter 4: Implementation 38

1 Implementation strategy 38
2 Agent infrastructure level 39

2.1 Agent communication 39
2.2 Agent management 39

3 Agent framework level 41
3.1 Agent design 41
3.2 Synchronized inter-activity communication 42

4 Application level 44
4.1 Overview 44
4.2 User Agent Proxy 44
4.3 User Agent Maker 46
4.4 User Agent 46
4.5 Business Intelligence Component 48

Chapter 5: Future Work 51

1 Application outputs 51
2 Explicit user inputs 51
3 Validation of the approach 52
4 Genericity checking 52
5 Application implementation 52
6 Improvement of the agent system 53

Conclusion 54

Index of terms used 55

Appendix A: Addendum on Industrial Issues 56

Learning objects 56
1. The promises of e-learning 56
2. The necessary emergence of learning objects 56

Appendix B: SQL Tables Design 58

1 Table UP (User Profile) 58
2 Table UPNode 58
3 Table UPLink 58

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 5

(4) Table UP_SUP (matches User Profiles with SUPs) 58
(5) Table SUP 58
4 Table SUPNode 59
5 Table SUPLink 59

Appendix C: Conference Paper 60

Appendix D: Source Code 65

1 Agent infrastructure 65
1. Class MAP.Middleware 65
2. Class MAP.MessageTransporter 67
3. Class MAP.NameServer 72
4. Class MAP.DirectoryFacilitator 75
5. Class MAP.Message 80
6. Class MAP. MessageCategory 82

2 Agent framework 83
7. Class MAP.AgentId 83
8. Class MAP.AgentAddress 84
9. Class MAP.IAgent 85
10. Class MAP.Agent 86
11. Class MAP.Activity 89
12. Class MAP.Conversation 90

3 Application 95
13. Class Architecture.UserId 95
14. Class Architecture.ResourceId 96
15. Structs for message contents 97
16. Class Architecture.UAProxyAg – User Agent Proxy 97
17. Class Architecture.UAMakerAg – User Agent Maker 102
18. Class Architecture.UserAg – User Agent 103
19. Class Architecture.DBManagerAg – Database manager 107

4 Application – Profiles 109
20. Class Architecture.Profiles.IProfile 109
21. Class Architecture.Profiles.INode 110
22. Class Architecture.Profiles.ILink 111
23. Class Architecture.Profiles.DataUtilities 111
24. Class Architecture.Profiles.UP – User Profile 112
25. Class Architecture.Profiles.UPNode 117
26. Class Architecture.Profiles.UPLink 120
27. Class Architecture.Profiles.SUP – Standard User Profile 123
28. Class Architecture.Profiles.SUPNode 126
29. Class Architecture.Profiles.SUPLink 129

References 132

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 6

Introduction

A shift has recently occurred in the e-learning community. Educational material starts being
developed differently as classically integrated courses tend to be replaced by small reusable
chunks of instructional data [1]. These chunks of data supporting learning are called learning
objects [2]. More precisely, learning objects are defined by Wiley in [3] as “any digital
resource that can be reused to support learning”. Learning objects rely on the idea that since
more and more learning content becomes available on-line through colleges, universities and
companies, it is costly and senseless to produce new material that is similar to material that is
already available. Instead, new courses can be built based on already-existing, reusable
learning objects. The same learning object can even be used in totally different contexts: a
video about Australian bushfires for example can be handled from both a biological and an
economical point of view. Consequently, learning objects are often referred to as the Lego™
approach.

This new paradigm for building courses has quickly raised enthusiasm. Many different
learning object repositories have appeared so far, for example the one proposed by Apple [4]
or in California [5]. The IEEE Learning Technology Standards Committee currently works on
standards for facilitating the interoperability of learning objects ([6]) so that, if the success is
confirmed, there may soon be a virtual worldwide library of learning objects available for
teachers and course builders.

Australia is getting particularly involved. The Le@rning Federation has been recently
initiated by the government to incite a massive investment in the area. “In 2001-2006 all
States, Territories and the Commonwealth of Australia are collaborating in this Initiative –
The Le@rning Federation – to generate, over time, online curriculum content for Australian
schools” [7].

This decision is bound to lead to the creation of very rich and complex repositories of learning
objects. However, Edouard Lim, chief librarian of Monash University, noticed that “there is
no credible research as to whether extant repositories meet the needs of course builders”. He
pointed out that current learning object discovery tools like SchoolNet [8] or Merlot [9] do
not manage to satisfy the users. Some lead users to the website of the learning object’s owner
instead of the learning object itself. The more advanced repositories propose search engines
relying on domain specification and keywords, which tends to provide a vast amount of non-
sorted answers to queries, a part of them being irrelevant. This is all the more critical as the
repositories get bigger and richer.

The issue of the effective use of complex repositories, although likely to become particularly
crucial for learning objects, is general. A repository, in the general sense, is composed of a set
of resources, where a resource is a chunk of data that can be accessed by users. Examples of
repositories are a relational database, a web site, a set of multimedia documents. As the fast
development of networks makes more and more information become available, resources of
all types can be accessed inside repositories whose size is virtually unlimited. The bigger the
size, the harder it is to make effective use of the resources.

Different actors are involved in the use of repositories:

(1) Users access the resources (navigate the repository) for satisfying an interest in a
topic/domain, using access facilities. An access facility is a mean for resource

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 7

discovery, for example an index or a search engine. The resources are accessed
sequentially: such a sequence is a navigation pathway.

(2) Administrators or “curators” (by analogy with museums) are responsible for
organizing the resources and providing access facilities.

(3) Content providers elaborate the resources and, sometimes, provide embedded access
facilities (for example web links when the resources are web pages).

From a user’s point of view, making effective use of the repository consists in finding the
resources that are relevant for the domain they are interested in. This task may be easy for
experts who know both about the domain and the repository, but hard for the other users. This
is where access facilities are crucial. Traditional access facilities include:

(1) Search engines. The advantage is that they do not usually require much maintenance:
evolutions of the repository are automatically and periodically taken into account
when the repository is swept by the engine. Search engines rely on the textual content
of the resources when they are text-based, or on metadata. Despite all the advances
that have been made like clustering [10] and relevance-based filtering algorithms,
using a search engine is still often not efficient. Finding keywords for a search engine
is a task that requires time and concentration, and it is all the harder as the user does
not know much about the domain.

(2) Indexes. They provide direct access to certain resources. Thus an index only deals

with a limited number of resources. It allows for the fast discovery of some key
resources, however it does not allow for an effective use of the whole repository. The
bigger the repository, the bigger the limitations of indexes.

(3) Web anchors. They are embedded in the resources and provide unidirectional links to

other resources.

All these access facilities have in common that they rely on static data: indexes and web
anchors are static, search engines use static textual content or metadata. This static nature
brings its own drawbacks that get all the worse as the repository evolves quickly.

First, maintenance is tedious because it must be done by hand. For indexes, administrators
have to take into account the evolution of their repository as well as the possible evolution of
the interests of the users. It requires a close control of the repository, which is hard to achieve
when the resources come from multiple sources. For web anchors, the pointed web pages may
have been removed or new relevant ones may have appeared. This should be regularly
checked by content providers so that they modify their web pages if needed. Therefore the
problem of “dead links” is commonly spread throughout the web for example. For the same
reasons, the metadata of resources is not always complete or up-to-date. For instance, the
meta tags of web pages are seldom used effectively.

Secondly, it is provided for users by non-users: indexes by administrators, web links by
content providers, metadata possibly by both (metadata can be provided by users in some rare
cases but that requires an effort from them). Indexes, for example, rely on the administrator’s
judgment on 3 points: (1) which topics users should be interested in for structuring the index,
(2) the selection of the resources to be indexed, and (3) the name of the index entries, that
should be understood by the users. However, users, administrators and content providers may
have different points of view. Static-based access facilities depend on the administrators’ or

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 8

content providers’ interpretation of the resources and understanding of the users’ interests and
level of knowledge. This ignores the diversity and heterogeneity of the users. A resource like
a learning object can be considered differently in different contexts. A web page about
Australian bushfires may have anchors to pages related to biology but not economy because
the content provider is a biologist.

From these two problems, two main needs emerge:

(1) The need for feedback about the usage of the repositories. This is because
administrators and content providers have a limited knowledge of the repository and
the needs of the users whereas that knowledge is important for doing their job:
maintaining, updating and improving access facilities as well as resources.

(2) The need for assistance in user navigation based on the experience of users instead of
administrators or content providers.

The LEOPARD project (Learning EnvirOnment Platform for Agent-based Repository
Discovery) [11] aims at addressing these needs. This project originates from Edouard Lim’s
propositions and it is conducted at the School of Computer Science and Software Engineering
- Monash University. The LEOPARD project is at its beginning and this Master’s Thesis
work is part of it.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 9

Chapter 1: State-of-the-Art

Recommender systems are first examined since they aim at assisting resource discovery. Then
agents are studied as a widespread approach for handling assistance problems. Lastly,
metadata is presented as a static technique for the better use of resources.

1 Recommender systems

1.1 Background

Recommender systems [12] are systems that learn about the preferences of users in order to
help them find resources, sometimes called items, they are interested in. The items can be any
resource: books, movies or web pages for instance. Such systems try to address the problem
of information overload, particularly on the Web and in e-commerce, free the user from
having to formulate explicit queries and make the access to desired items more efficient.

The preferences of users are gathered into ‘user profiles’. A user profile is personalized
information about what is known by the system of the interests of the user. These can be long-
term or current, dynamically changing interests. Typically, a user profile is a collection of
ratings indicating the user’s interest on certain items.

There exist two main techniques for filtering and selecting items, both relying on the ability of
the system to extract profile knowledge about what the user likes and dislikes:
- The content-based technique consists in selecting the items that are similar to what the user

likes and dissimilar to what he dislikes. Such a technique is content-dependent because it
requires to define what “similar” and “dissimilar” mean for items.

- Collaborative filtering [13] relies on the comparison of users instead of items. The profile of
the user is compared with other user profiles in order to find users who have similar “tastes”
or preferences. Thus the user is likely to like items that such users liked. So the items that
most of such users found interesting are selected for recommendation.

Some recommender systems combine both techniques, in which case they are said to be
hybrid [14]. Content-based recommendation requires feedback from the user in order to know
what he likes and dislikes. In the case of hybrid systems, this information is shared in order to
make collaborative filtering possible for other users. Hybrid systems present several
advantages compared to “pure” systems. On one hand, pure content-based systems provide
over-specialized recommendations as users are only recommended items that are similar to
items they have already graded. In addition, content-based systems face the problem of the
methods for content analysis: such methods are either imprecise or targeted to very specific
items. On the other hand, collaborative systems cannot recommend new items since they have
not been rated by any user. Furthermore, they cannot make recommendations for users who
are similar to no one. Hybrid systems overcome these problems by the mean of additional
complexity.

In all the cases, the user profiling strategy is an important issue. Such a strategy defines how
profile information, i.e. likes and dislikes, is collected from the user. It can be done in an
active or passive manner [15].

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 10

- Active profiling consists in asking the user to provide profiling information explicitly.

Typically, the user is asked to rate several items. In the case of systems that are exclusively
collaborative filtering systems, this strategy raises the problem of the reward of users for
providing such a feedback. Indeed, a user who takes the time to provide feedback explicitly
does not get any benefit from it.

- The passive strategy relies on the transparent observation of the user behaviour. Monitoring

certain aspects of his behaviour allows the system to infer some implicit rating as a
feedback. Although this strategy removes the burden of rating items for users, its
effectiveness closely depends on the algorithms for inferring interest ratings. For example,
the time spent in reading web pages, the number of mouse clicks on a page can be relevant
indicators of interest. This point is currently an active research area [15-17].

1.2 Examples

1.2.1 MovieLens

MovieLens [18] is a classical collaborative filtering system that targets on recommendations
of movies. Users are requested to rate some movies on a scale between 1 and 5. The more
ratings, the more accurately the system can match the user with others and provide effective
recommendations.

1.2.2 Fab

Fab [19] is a recommender system for the web. It is a hybrid system: recommendations come
from both content-based comparisons with items in the user profile and high-rated items from
the profiles of similar users. Internally, it relies on different kinds of agents. Collection agents
are in charge of finding web pages related to given topics. On request, they send them to a
central router that then forwards them as recommendations to users. Users are then requested
to rate them explicitly. In addition, a selection agent is dedicated to each user. It is in charge
of selecting the web pages received from the central router. This is achieved through the
maintenance of a user profile that is built from the user’s ratings.

1.2.3 MEMOIR and related

In [20], an evolution of a previous recommender system for the web called MEMOIR is
described. It relies on the notion of Open Hypermedia which consists in managing links
between documents separately from documents. This provides much flexibility in the nature
and use of links. For example, the concept of generic link mentioned in [20] allows for
content-based navigation. Links, for instance, can be followed by strings in the case of text
documents: destination anchors are determined according to the string.

The system is agent-based. A user profile is built for knowing what the user finds interesting.
Interest is inferred according to the activity the user is doing. Activities are monitored by a
local User Interface agent. Such activities include navigating, bookmarking and rating Web
pages. The user’s navigation is observed thanks to a specific proxy. Also, users have the
possibility to add annotations to the web pages.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 11

Links are thus generated and stored in a “linkbase” where they are categorized into topics.
Whenever a web page is browsed by the user, a context identifier helps check is there are
links in the linkbase that match the context of the page. If so, then the links are recommended
through the alteration of the web page.

1.2.4 Casper

Casper [21] is a system that provides recommendations for finding jobs on an online
recruitment website. Recommendations rely on case-based reasoning: the system evaluates
each possible new job comparing it with the jobs already evaluated. It then proposes jobs that
are the most similar to jobs that have interested the user. Profiles are built passively by the
system through a server log.

1.3 A profiling technique

This section describes a profiling technique that is interesting in the context of our project.

In Casper, user profiles are built passively from server logs [21]. Server logs simply contain
information about accesses by users to a repository of web pages. Thus it is an interesting
example on how to build user profiles with that kind of repository.

The recruitment website publishes job descriptions. When a user accesses a job description,
he can ask the system to email the description to him for further examination or apply for the
job online. Job descriptions are discovered through search queries. User profiles are built to
automatically filter out irrelevant jobs returned by the queries.

User profiles contain a list of jobs that have been accessed. Jobs are rated via 3 “relevancy
indicators”:

- The number of visits made by the user. A filter detects irrelevant revisits that are due
to “irritation clicks”. Irritation clicks occur when the latency of the network irritates
the user, who clicks repeatedly on the same anchor in the web page.

- The action performed. It can be, by increasing indication of relevancy, read, email to
oneself or apply online. Obviously, this indicator is specific to the web site.

- The time spent by the user reading (read-time).

The calculation of the read-time is the more delicate. A general average read-time for all the
jobs in all the profiles is calculated. The read-time is calculated when a user leaves a job
description for reading another one. If the value is bigger than a threshold, for example
because the user logged off, the value is replaced by the general average read-time. If the user
already read the job description in the past, the new value is added to the previous one.
Finally, the read-time is graded based on the comparison with other read-times in the user
profile.

Such a method is an example of how to infer relevancy indicators using a passive profiling
technique on simple server logs. However it is adapted to homogeneous resources like job
descriptions: this is why calculating a general average read-time makes sense. For resources
that are highly heterogeneous, the algorithm would have to be more sophisticated.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 12

2 Agents

2.1 Overview

2.1.1 Definition of an agent

The notion of agent originally comes from the AI community and has been particularly
dealing with the field of Distributed AI. Although such a notion is not new, finding a precise
definition of an agent is a problem that has long been debated [22]. The term “agent” has been
applied by many people to very different software entities in various contexts. According to
loose definitions, it is just a system that encapsulates some artificial intelligence.

However, there exists a general agreement on some more precise characteristics. An agent is
an entity that has a set of goals. These goals concern the environment within which the agent
is situated. In order to reach such goals, the agent can act upon its environment over time and,
usually, sense it.

Besides, an agent has ordinarily some degree of autonomy, which is the ability to have an
activity without any external intervention of any human or program. To distinguish between
levels of autonomy, some authors speak about “autonomous agents” or “semi-autonomous
agents”. In general, a significant consequence of autonomy is that agents are said to have
control not only over their internal state but also over their behaviour (which is sometimes
called encapsulation of behaviour). It means that they can be requested to perform some
action or provide a service but the final decision about what to do is up to them.

A few agents are solitary in the sense that they interact with no other agent or with the human
user only, who can be considered as a non-software agent. In many cases however, the ability
to communicate with other agents is considered as an important feature.

A commonly admitted definition of an agent is given by Jennings and Wooldridge in the
following statement:

“an agent is an encapsulated computer system that is situated in some environment, and
that is capable of flexible, autonomous action in that environment in order to meet its
design objectives” [23]

What is called flexibility is precisely what makes agents somehow intelligent. It means that
they are:

- reactive: they sense their environment and respond by acting on it;
- proactive: they take initiative in order to satisfy their goals;
- socially able: they can interact with other agents.

Also, there exist some common properties that are crucial in some contexts. For instance
learning agents have the capability of altering their behaviour with experience. Also, mobility
can be fundamental in distributed systems: mobile agents are able to migrate from one host
platform to another, in order for example to carry out some task locally.

2.1.2 Agents vs. objects

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 13

Comparing objects and agents is a way of providing a better understanding of the concept of
an agent. Objects and agents present similarities: they both have behavioural capabilities,
encapsulate an internal state and use message passing for communicating. Thus Shoham
introduced in [24] the notion of Agent-Oriented Programming as a specialisation of Object-
Oriented Programming with specific constraints. From this perspective, Bradshaw [25]
characterizes an agent as “an object with an attitude”. In other words an agent, as an
abstraction mechanism, is an object with additional capabilities [26, 27].

First, the state of an object is just a set of attributes, while many agents have a more
sophisticated structure. This is because of the requirements of the behaviour of an agent. For
example, Shoham describes the state of an agent, called its mental state, as a composition of
“mental components” such as beliefs, capabilities, choices, and commitments. Also, a
successful kind of agent is built on the Belief, Desire and Intention (BDI) model, which
separates between the information, motivational and deliberative states [28].

Then, unlike objects that receive indisputable orders through method invocation, agents only
receive requests. It means that agents can actually decide what to execute, which may imply
to ignore some requests. This property of control over the behaviour is a consequence of what
Odell [27] calls unpredictable autonomy. It is summarized by the sentence “Agents can say
“no”.” The behaviour of an agent may not be predictable externally since it depends on the
encapsulated states and goals of the agent.

Besides, an object is passive by default while an agent has to be active for pursuing its goals.
This is what Odell calls dynamic autonomy. It is summarized by the sentence “Agents can say
“go”.” It can be characterized in degrees, from simple reactivity to an entirely proactive
behaviour. A consequence is that an agent has its own thread of control. Thus the notion of
active objects is probably the closest to agents in the object-oriented world. For example,
Huhns and Stephens state in [29] that “Fundamentally, an agent is an active object with the
ability to reason, perceive and act.” Therefore, several works have illustrated ways of
implementing agents from active objects [30, 31].

Lastly, the relationships between agents are more complex than in the case of objects.
Because of both sorts of autonomy, agent communication involves event notification and is
generally asynchronous. This involves parallel processing. In addition, the effective
collaboration of different agents requires a good organization and brings the need for a social
dimension within multi-agent systems.

2.2 Multi-agent systems (MASs)

2.2.1 Overview

Communicative agents are able to cooperate in order to satisfy their respective goals. A set of
interacting agents is called a multi-agent system or agent-based system (groups of agents are
also called communities or societies of agents). For the AI community, MASs are regarded as
an interesting and still promising (although not new) approach for Distributed Artificial
Intelligence (DAI) [32].

Sycara characterizes MASs as follows [33]:

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 14

(1) each agent has incomplete information or capabilities for solving the problem and,
thus, has a limited viewpoint;

(2) there is no system global control;
(3) data are decentralized;
(4) computation is asynchronous.

Despite their autonomy (2)(4), the agents take part of the achievement of the overall goals of
the system by working on the realization of their simple goals with their limited data and
capabilities (1)(3).

Considering all the characteristics described above, it is apparent that MASs are a very
particular type of systems that are more suitable to certain types of problems or environments
[33, 34].

MASs are particularly suited for conceiving complex systems. The abstraction and modularity
they provide leads to the conceptualization of a system as “a society of cooperating
autonomous problem solvers” [34]. Such a partition of the problem helps reduce complexity.

Then, such a metaphor fits well to some kinds of problems involving naturally autonomous
entities. Examples include air-traffic control, manufacturing systems or virtual characters in
computer games (see Applications).

Because of their decentralized nature, MASs are also a good mean for solving problems that
involve distribution, in the general sense: either distribution of data, control, expertise or
resources [34]. In particular, MASs can be used for modeling real-world entities with their
own expertise and resources that need interact between them. In the case of distributed data,
agents are a mean for making computation at the data sources, thus reducing (possibly distant)
communication to exchanges of already-computed high-level information.

Furthermore, MASs are a good mean for implementing open systems. An open system is a
system whose components can change dynamically and be highly heterogeneous, for instance
in terms of authors or implementation languages and techniques. A typical example of an
open system with heterogeneous components is the World Wide Web. Heterogeneity is not a
problem since agents present strong encapsulation. The dynamic alteration of the composition
of a MAS is made possible through certain types of MAS organizations like the Facilitator.
As an example, the system described in [35] supports the dynamic addition and retraction of
services by the mean of agents that register/unregister to the system.

Finally, MASs present the advantage of allowing for the interoperation of legacy systems.
Again, because agents naturally present a strong encapsulation, a legacy system can be turned
into an agent. Strategies for such a transformation include the use of a wrapper or a transducer
[36]. Modifying legacy systems can be very expensive. Integrating them into a MAS is a way
of making them able to collaborate with new systems without having to modify them.

2.2.2 Agent communication

While partitioning a system into agents helps reduce its complexity, complexity may then
arise in the relationships between agents. Agent communication is at the heart of MASs,
whether agents collaborate or compete, whether they communicate between them or with non-

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 15

agent programs. Concretely MASs are based on 3 elements for communication: an agent
communication language, a content format and an ontology.

a) Communication languages and protocols

Agent communication languages (ACLs) define the semantics of the communication protocol.
An ACL message is composed of several arguments that at least specify the sender, the
intended receiver, the content of the message and for understanding that content, the content
language and the ontology used. There exist two widespread ACLs:

KQML, the Knowledge Query Manipulation Language [37, 38], has been used in many
projects for almost a decade and is thus a kind of de facto standard.

The FIPA ACL is intended to become a standard as well. FIPA is the Foundation for
Intelligent Physical Agents. It was formed in 1996 to produce software standards for the
interoperation of heterogeneous agents and the services that they can represent in agent-based
systems [39]. At this time FIPA has not released any standard yet although experimental ones
are provided, among them the FIPA ACL language.

b) Content formats

While an ACL defines how to exchange messages, a content format specifies a syntax and its
associated semantics for defining how the content of the messages is represented. It can be
seen as the “inner language” of an ACL [36]. The understanding of messages requires agents
to use a parser for that inner language.

A commonly used content format is KIF, the Knowledge Interchange Format [40]. Examples
of other formats supported by KQML are SQL, Prolog, Lisp. In addition to KIF, FIPA
proposes experimental specifications for CCL (Constraint Choice Language, based on the
representation of choice problems as Constraint Satisfaction Problems - CSPs) or RDF (the
Resource Description Framework, designed for expressing machine-understandable metadata
and supporting interoperability between applications, and that can be encoded in XML).

KIF is often used for illustrations because it is easily readable. Here is an example:
(ask-one (mug-price blue-mug ?price))
(reply (mug-price blue-mug (aud 10)))

The first line is a request for the price of a blue mug, the second one is the reply informing
that the blue mug costs 10 Australian dollars.

c) Ontologies

An ontology defines a vocabulary that should be shared and known by the agents. It allows
agents to agree on the meaning of the words used in the content of messages. An ontology is
typically domain-dependent and thus defined for a particular MAS. However, there are some
attempts of standardization. The main example is the Semantic Web project that aims at
defining a standard ontology for the web in order to facilitate the use of internet agents [41].

2.2.3 Architectures

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 16

MASs need an organization for specifying agent interactions through the definition of roles,
behavior expectations and authority relations [33]. For example, a simple kind of architecture
is the hierarchical one, in which an agent at a given hierarchy level is responsible for making
decisions for the resolution of a problem, and uses subordinate agents so that communication
is only vertical.

For handling distribution and heterogeneity and making more effective use of the agent
paradigm, more sophisticated architectures have been elaborated.

a) Federations

In a federation [36], agents belong to groups that are typically distributed. Each group has a
particular program (possibly an agent) called a facilitator. Agents register their interests and
capabilities and sent requests and notifications to their facilitator. Facilitators are then in
charge of sending these messages to the right agents, possibly by the intermediary of other
facilitators. Thus facilitators have to perform some intelligent routing of messages, to select
the right agents to accomplish some tasks, to process messages for semantic translation, to
manage the communications across the network [42]. This organization is powerful in that it
allows transparent access to services provided by agents, it is scalable and it is open since it
permits dynamic addition and retraction of such services [35].

Depending on the system implemented, facilitators tend to have all or some of these
capabilities. In [43], a Broker Agent is defined as a simple facilitator that provides “yellow
pages” services. Agents register services offered and requested so that the broker dynamically
connects services to requests. In addition, an Agent Name Server (ANS) allows for the actual
inter-agent communication by providing a “white pages” service. In other words, the ANS is
in charge of matching the symbolic names of agents with their addresses.

b) FIPA architecture

The architecture specified by the FIPA goes in the sense of the approach described above in
that it tends to separate the services described in [42]. It distinguishes between the white
pages service, the yellow pages service and the transport service.

FIPA specifies that agents reside on an Agent Platform (AP) that consists of some machine(s),
the operating system and the agent support software. In addition, an AP must have 3 agent
management components:

- An Agent Management Service (AMS) offers white pages services to agents. Every
agent on a given Agent Platform has to register to the AMS. The AMS maintains a
directory of agent identifiers containing transport addresses.

- A Directory Facilitator (DF) plays the role of a yellow pages service provider. Agents
may register their services with the DF or query the DF to find out what services are
offered by other agents.

- A Message Transport System (MTS) is in charge of handling inter-Agent Platform
communication.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 17

FIPA Agent Management Reference Model. Source: www.fipa.org

2.3 Examples of agents and MASs

2.3.1 Personal assistants

P. Maes’ “interface agents” are built on the metaphor of the personal assistant [44]. They help
users and collaborate with them in order to perform some tasks. They are initially not very
good at it but they learn the user’s habits and become progressively useful. Concretely,
interface agents monitor the user’s activity, remembering the actions and learning from them,
then perform actions on their own to “reduce work and information overload”. Thus such
personal assistants are customized and personalized for specific users.

Such an assistance can take different forms: perform tasks on the user’s behalf, train or teach
the user, facilitate collaboration between users… [44]. The last point means that the agent can
assist in exchanging know-how and efficient habits between the different users of a
community. In all the cases, the agent should not restrain the freedom of the user in the sense
that the user is able to behave just the way he would without the agent.

The learning phase appears to be fundamental. It can be achieved by different means:

- The agent “watches over the shoulder”, i.e. observes the user's behavior for imitation.
- It adapts thanks to the feedback he receives from the user.
- It can be trained by the user on the basis of examples.
- It can ask for advice from other agents assisting other users.

Yet two assumptions determine if such an approach is suitable:

1. “The application should involve a significant amount of repetitive behavior” since
the agent needs to detect patterns.

2. Such repetitive behavior should not be the same for all users, otherwise it is better to
hard-code the procedures and there is not need for learning agents.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 18

However, the usefulness of personal assistants has been questioned since then [45]. On one
hand, if the task is simple there may be no use for a personal assistant; on the other hand, a
complex task is likely to require that a deep knowledge about the user and about the task is
provided to the agent.

As an example of interface agent, Lieberman et al. discuss in [46] Reconnaissance Agents.
This kind of agents help the user browse the Web. By observing the user navigating with his
usual browser, they generate profiles that they use to infer the user’s interests and preferences.
Then when the user has reached a web page, they propose relevant links for him to navigate
next. The interface agent is independent from the browser so it does not limit the user in his
manual browsing activity.

Lieberman et al. have developed two such reconnaissance agents. The first, Letizia,
transparently explores the links on the current page to eliminate those that are bad or
irrelevant and proposes the best one. The second one, PowerScout, uses search engines to
perform concept browsing: it extracts keywords from the current pages and combines them or
not with the user profiles to query search engines. It then displays the results, grouped by
concept.

2.3.2 Other information agents

Information agents are more general than personal assistants. They can be defined as
“computational software systems that have access to multiple, heterogeneous and
geographically distributed information sources as in the Internet or corporate Intranets” [47].
They are generally in charge of looking for relevant information among scattered data
(information gathering) or filtering and organizing such data coherently. The need for such
agents has become critical with the explosion of Internet.

An example of agents for managing information is the Zuno Digital Library. “Digital libraries
are a set of well-organised technologies and, above all, a very important source of structured,
well-organised and well-stored information” [48]. In the case of ZDL, the system consists in a
multi-agent system that provides a coherent view of heterogeneous, disorganized data sources
like the Web [49]. In [48], P. Isaias proposes an architecture for a virtual digital library that is
composed of 8 kinds of collaborative agents, each of them being specialized in a well-defined
role: for example, user interface agents for consumers and providers, broker agent,
information retrieval agent.

HuskySearch/Grouper [10] is a descendent of MetaCrawler, a meta-search engine that helps
users find information on the Web without maintaining any database. The whole system is a
Softbot (“software robot”), i.e. an “intelligent agent that uses software tools and services on a
person's behalf”. It is called intelligent agent in the sense that it uses the same tools as users
do and determines dynamically how to satisfy the user’s request. HuskySearch/Grouper
queries several popular web search engines, then organizes the results using a clustering
algorithm. In other words it tries to group documents in several topics, based on their
similarities, in order to help users locate the interesting ones and get an overview of the
retrieved document set.

2.3.3 Electronic commerce

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 19

Electronic commerce is a field in which agents can typically prove useful by reducing
information overload and saving time for users. Autonomy and personalization allow agents
to act efficiently at the stages of product brokering, merchant brokering and negotiation [50].
Agents can contact other agents or explore the Web to select relevant products within the
scope of interest of the user, then select interesting offers for a given product and possibly
determine the terms of the transaction.

However agents are not limited to the role of the buyer: they can be the seller or an
intermediary (mediator, facilitator that maps consumers and producers, information provider)
[51]. Thus many business tasks involved in e-commerce can be automated. Among others,
examples of agents dedicated to e-commerce are MIT Media Lab’s Firefly and Kasbah [52].

2.3.4 Industrial systems and logistics

Centralized, hierarchically-organized manufacturing planning and control is a model that is
often considered as being too rigid for dealing with today’s dynamically changing
environments [53]. Instead, more sophisticated systems are needed for more flexibility and
fault tolerance. MASs are thus a useful approach thanks to their ability to handle complex,
distributed systems. A big number of such systems are referenced in [53].

For similar reasons MASs have been applied to logistics, for example air traffic management
or military operations (MokSAF [54]).

2.3.5 Games

A big number of different kinds of games involve computer AI. A category that really
involves agents is 3D action “Quake-like” games, in which agents are virtual characters. Such
autonomous characters have well-defined goals, typically seek for enemies to destroy. They
sense their environment through their “range of sight” or by “hearing” noises. Then they react
to such signals, for example they protect the leader if he is in danger. They also take
initiatives to reach their objective, for instance deciding which path to take to reach the enemy
base.

2.4 Existing tools

There exists a big number of tools that aim at facilitating the development of agent-based
systems. They range from specific programming languages ([55]) and component libraries to
agent development frameworks ([56]). Frameworks for building MASs are interesting in the
context of this project because they do not provide only facilities for building agents but also
a generic design for agents and a basic implementation, easing rapid prototyping.

Besides, this project can involve a big number of agents, which may require to distribute them
on several machines for correct performance. Agent platforms provide the infrastructure for
allowing agents to interoperate and they sometimes handle distribution. Such platforms are
thus interesting. In addition to handling distribution and inter-machine agent communication,

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 20

they often provide implementation of middleware agents like FIPA’s DF and AMS for agent
management. Furthermore, most of agent platforms also provide agent frameworks.

Another interesting feature is the compliance of platforms with FIPA specifications. FIPA has
defined experimental specifications that are to evolve to become a standard. FIPA has
released three sets of experimental specifications until now: FIPA 97, FIPA 98 and FIPA
2000, the last one making the others obsolete. Specification domains include the abstract
architecture, agent management, agent message transport system, communication language
and content language.

The following software is non-commercial platforms for developing MASs.

2.4.1 JADE

JADE, the Java Agent DEvelopment Framework [57], was developed by Telecom Italia and
the University of Parma. It requires a Java 2 Runtime Environment and has been tested on
many platforms. The last version, 2.5, was released in February 2002. It complies with FIPA
2000 specifications.

JADE implements an agent platform and a development framework. The platform can be
distributed over several hosts regardless of the OS. It also supports agent migration and
cloning. Agents lifecycle can be controlled via a GUI that also supports debugging.

It is a complete, rather mature tool that has been successful. It can be extended with many
add-ons. For example, JESS allows for the development of rule-based behaviours. It also
supports the Protégé ontology editor. Furthermore, many research prototypes have been based
on JADE.

Lastly, JADE has been integrated with the LEAP project (Lightweight Extensible Agent
Platform) [58]. This project targets mobile enterprises and ensures compatibility with mobile
Java environments down to J2ME-CLDC. Thus it aims at providing FIPA-compliant agents
on PDAs and mobile phones.

2.4.2 FIPA-OS

FIPA-OS (FIPA Open Source) is an Open Source implementation of the FIPA standard
originating from a research lab of Nortel Networks [Networks, #41][Forge, #42]. It provides
implementation for agent platforms and a component-based toolkit for developing domain-
dependent agents. It is thus intended to enable rapid prototyping. FIPA-OS supports most of
the recent FIPA experimental including the agent management and communication systems.

Since its first release in 1999, it has been continuously improved as a managed Open Source
community project, leading to more than 10 formal new releases. Upgrades, bug fixes and
extensions have been provided. In particular, a version of FIPA-OS aimed at PDAs and
mobile phones, µFIPA-OS, has been developed by the University of Helsinki. In addition,
useful tutorials are proposed as well as an active newsgroup.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 21

FIPA-OS is totally implemented in Java 2. However, releases converted to JDK 1.1 are
proposed as well.

2.4.3 ZEUS

ZEUS [59] is another sophisticated Open Source agent system developed by British Telecom
Labs. It provides support for generic agent functionality and advanced settings for the
planning and scheduling of the behaviours of agents. It also includes facilities for building
agents in a visual environment. For specifying the agents’ behaviour, goals are represented
using a chain of actions that have to be fulfilled before the goal can be met. Agent
communications comply to FIPA specifications for the message transport.

ZEUS uses Swing GUI components so it requires a JDK1.2 virtual machine. It has been
successfully tested on Windows 95/98/NT4 and Solaris platforms.

2.4.4 Comtec Agent Platform

Comtec Agent Platform [60] is an implementation of FIPA 97 Agent Management, Agent
Communication Language and Agent/Software Integration first released in 1998. The FIPA
98 Ontology Service was added later. Nevertheless, it is a limited platform with little
documentation.

2.4.5 April Agent Platform

The April Agent Platform (AAP) [61] is a free agent platform provided by the Fujitsu Labs. It
is FIPA 2000-compliant. It provides the basic environment in which FIPA agents can be
launched and can operate. It is written in a language called April, the Agent PRocess
Interaction Language.
However, it is available on Linux and Solaris only.

2.4.6 Grasshopper

Grasshopper is a Java-based mobile agent platform developed by IKV++ Technologies AG.
An add-on allows Grasshopper to be compliant with the FIPA98 specifications. Similarly, an
add-on enables Grasshopper to comply with the OMG Mobile Agents Facility (MASIF) that
provides a framework for agent mobility. Support is provided through an active forum on the
internet. Grasshopper requires Java 1.2.2.

2.4.7 Conclusion

There exists sophisticated agent platforms and frameworks with advanced features like visual
agent building, visual agent management and debugging, mobility or experimental support for
mobile devices. However, the huge majority of these platforms require a Java environment.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 22

2.5 Design

2.5.1 The DIMA design

In [30], a generic agent structure for implementation in OO languages is proposed, based on
active objects. The definition of an agent is based on the one proposed by Wooldridge (e.g.
[23]]). Characteristics are derived from that definition, including:

- An agent’s behavior can be decomposed into several behaviors like perceiving,
reasoning, communicating. Each of them can be procedural or knowledge-based.

- An autonomous agent must have autonomous therefore concurrent behaviors. Besides,
the communication behavior must incorporate a message interpreter (opposed to direct
method invocation) so that the agent keeps control over its internal state and behavior.

- An agent is proactive so it must incorporate a meta-behavior that manages its set of
behaviors, depending on its internal state and the external state of the world.

- An agent is sociable so it has to understand a communication language.

The proposed structure is this one:

From [30]

It is made of a first layer of concurrent behaviors that are managed by a Supervision Module
at the meta-level (meta-behavior). This module is implemented as an Augmented Transition
Network where states represent decision points. These decisions are about activating or
suspending a behavior.

The behaviors are modules that have their own data, methods and engine. The data can be
updated by the methods or any asynchronous event. The engine is a thread that controls the
activation of the methods. It can be interrupted by the Supervision Module between two
method/rule firings. Examples of behaviors are deliberation, perception, communication. A
behavior is called reactive when it is purely procedural or cognitive when it is knowledge-
based, e.g. when the engine is an inference engine. Thus the structure was implemented in
Smalltalk-80 augmented with NéOpus for allowing rule-based programming.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 23

2.5.2 The Brainstorm design

In the Brainstorm approach, an object becomes an agent thanks to its associations to agent
capabilities that are provided by the meta-level [62]. The meta-level is composed of meta-
objects and each of them provides a single capability. So an agent is composed of an object
and a set of meta-objects. Agent capabilities include communication, perception, knowledge.
For example, the communication meta-object intercepts the messages received by the object
and treats them. In addition, a second meta-level is composed of reaction and deliberation
meta-objects that manage the behavior of the first meta-level.

The second meta-level has a similar role as the Supervision Module in the DIMA approach.
Yet here behaviors are not aggregated by the agentified object but defined at the meta-level.
The drawback is that it requires that meta-objects are supported.

2.5.3 The FIPA-OS design

In FIPA-OS the root class for agents is the abstract class FIPAOSAgent that essentially
specifies behavior for:
- registering/unregistering to the agent management services defined by FIPA specifications;
- receiving messages;
- handling Tasks.

A Task defines an activity of an agent. It has explicitly defined states and it can have subtasks.
It registers to certain types of messages that it is in charge of handling. Thus a Task is
automatically activated when some kinds of messages are received. A Task may create a new
thread, enabling agents to perform parallel processing.

This approach provides a good modularity for handling messages by delegating this job to
Tasks automatically. On the opposite, other approaches centralize message treatment in a
communication module. However, there is no global supervision of the agent’s behavior for
activating or interrupting activities.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 24

3 Metadata

During the earlier investigations in the start of the project, metadata was examined as a base
for inferring virtual semantic links between resources. However, the use of metadata would
imply to abandon the generic nature of our solution. The issue of interoperability presented in
the last section about metadata illustrates this problem. It was therefore decided not make any
use of metadata in our solution.
Note: we consider the word “metadata” as a singular as many authors do.

3.1 Definition

Metadata is literally “data about data”. More precisely, Dempsey and Heery define it as:

“Data associated with objects which relieves their potential users of having to have full
advance knowledge of their existence or characteristics.” [63]

The term ‘user’ can refer to a program or service (e.g. a software agent) as well as a person.
The object described by the metadata can be a resource of any type: web page, text, image…
It can also be an aggregation of several resources, as long as it can be manipulated as a single
one [64].

Metadata can reflect the following features of the resources [64]: content (intrinsic), context
(about the creation of the resource), intrinsic structure (associations between resources
contained in the resource) and extrinsic structure (associations between the resource and other
resources).

There exist different sorts of metadata that can be characterized on many different points [64,
65] including:

- Source: internal/external, creation at resource creation time or later.
- Creator: human (resource creator/user) or program (portal, resource creation tool).
- Nature: created by non-specialists or by experts.
- Status: static/dynamic, long-term/short term.
- Granularity level: relates to a single resource or a collection of resources.

3.2 Roles and use

Different actors need metadata for different purposes [66-68]. First, users need resource
descriptions to search across the range of available resources in order to find, identify and
interpret them. They must be able to combine and compare descriptions in order to select the
resources that fit to their needs then obtain them.

Then metadata increases the accessibility of resources to users. In particular, metadata enables
repository administrators to create catalogs or indexes that ease searches and resource
discovery. The creation of such indexes can be automatically performed by a program if all
the resources of the target repository or repositories have consistent metadata. It also allows
for the use of search engines, particularly when the resources are not text-based.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 25

Thirdly, repository administrators and content providers need to administer resources through
time, classify them, preserve them, promote them. They also want to enable and control both
access and use, for example for commerce, privacy, property rights, authenticity…

Finally, third party services like portals or brokers performing queries for users have the same
needs as providers, and in addition they may need to annotate or re-contextualise resources.

3.3 Storage

Metadata is always linked to a resource. This link can be implemented in different ways:
metadata can be [65]:

- (1) Embedded in resource. It requires that the resource supports such an embedding of
metadata, that the metadata creator/modifier has write access to the resource and that
services support extraction of embedded metadata. An example of embedded metadata
is the META tags in HTML documents.

- (2) Linked from resource, for example web links. This allows metadata to be remote

from the resource. It requires that the resource supports embedding of link and that
services are able to follow the link. Write access to the resource is also still required at
metadata creation time.

- (3) Pointing to resource, which is the most common case. It allows services to get

metadata independently of the resource: metadata can be a remote database entry for
example. Services just need to be able to find and read the metadata records. It does
not put any constraint on the resource and does not require resource editing.

(from [65])

3.4 Interoperability issue

As it has been seen, metadata is all the more useful as it is used and exchanged by different
parties inside a community or even across communities.

“Metadata can […] make it possible to search across multiple collections or to create
virtual collections from materials that are distributed across several repositories” [64]

However metadata is static and can be defined by many different actors. Thus the problem of
interoperability arises: metadata cannot be exchanged across repositories unless it is defined
the same way in both repositories or it can be mapped from a repository to the other. For
allowing for the full power of metadata, automated processing through software robots should
be possible across the repositories.

Resource

Metadata

(1)

Resource Metadata

(2)

Resource Metadata

(3)

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 26

This requires some agreement and standardization efforts between the parties on the following
points [67]:

- Syntax of metadata: the rules of expression.
- Structure: the grammar or significance of the arrangement of terms.
- Semantics: the vocabulary of terms and what they mean.

3.4.1 Syntax

There is now a consensus on the use of XML, the Extensible Markup Language [69]. XML
defines means of describing tree-structured data in text-based format. It gets now widely
adopted for transferring any type of data, including metadata, between programs or systems
(for example, it is the base of web services).

XML only provides syntax but that syntax is suitable for the definition of metadata standards.
First, defining a markup vocabulary and associating it with a documentation allows one to
provide semantics. Then XML supports the validation of structural models like DTDs
(Document Type Definition) or XML Schemas. In other words, it is possible to specify a
structural model and check that the structure of a given XML document conforms to it.

3.4.2 Structure

Communities use different structural conventions for expressing semantic relationships,
which reduces interoperability. Thus the Resource Description Framework (RDF), which is a
recommendation from the W3C (1999), has been elaborated. Its goal is “to define a
mechanism for describing resources that makes no assumptions about a particular application
domain, nor defines (a priori) the semantics of any application domain.” [70] Thus it should
be domain neutral but at the same time be suitable for describing information about any
domain.

RDF provides constraints on structure so that a document cannot be misinterpreted. It
exclusively relies on URIs (Uniform Resource Identifiers) for identification of resources and
their properties (descriptive attributes). However, despite its power RDF has not yet been
widely adopted on the Web: it requires a hard-coding conversion effort.

3.4.3 Semantics

Several initiatives for creating semantics standards, sometimes providing also a structure,
have been carried out like MARC 21 for bibliographic information [71], EAD [72], ISAD
[73]. In the field of Learning Objects, the IEEE LTSC (Learning Technology Standards
Committee) has a Learning Object Metadata working group currently working on the
elaboration of a standard [74].

Such a need for the development of a standard also exists for audio, video and audiovisual
resources. The Fraunhofer Institute is working on the definition of a Multimedia Content
Description Interface, also called MPEG-7 [75].

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 27

One of the best known standards comes from the Dublin Core Initiative [Initiative, #89].
Developed by a group of librarians, information professionals and subject specialists, it aims
at proposing a smallest common denominator for generically describing resources, thus easing
cross-disciplinary resource discovery. However its generic aspect comes at a cost: it cannot be
a replacement for richer, community-specific vocabulary.

While standards such as Dublin Core or MPEG-7 aim at describing single-medium atomic
digital resources, people have claimed that the full potential of digital libraries is reached
when they provide multimedia resources combining text, image, audio and video components.
This is why the Harmony Project was initiated [76]. It aims at supporting the development of
metadata standards for multimedia components.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 28

4 Perspectives

Recommender systems make use of interesting techniques for helping users in resource
discovery, thus in repository navigation. However, most are developed ad hoc in the sense
that they target on specific repositories and specific resources in order to use targeted
recommendation algorithms and be more effective. Moreover, providing navigation assistance
only solves one part of the problem of the effective use of repositories. Assistance for
repository administration and resource building is indeed necessary too.

Metadata is a mean for actors to make effective use of resources: resource discovery for users,
resource management for repository administrators, provision of complementary information
for content providers. However, it is static data that must be maintained at a significant cost.
In addition, its static nature raises interoperability problems in terms of syntax, semantics and
structure. Big standardization efforts are being carried out to overcome the problem. Before
this objective is achieved, an application that makes use of metadata must target on a specific
metadata specification and cannot be generic. Furthermore, generality goes against power: the
more generic the metadata, the less relevant the information it holds.

Another issue is that metadata is generally created by an actor for being used by another actor,
for example by a resource creator for a user. Thus it is limited by the creator’s knowledge and
point of view and designed for an intended usage that may not be the usage the user is
interested in. This is particularly crucial in the case of learning objects as their power lies in
reuse. For example, if a document about bushfires in Australia is provided by a biologist, it
may contain metadata related to biological issues. But it could also be used by an economist
building a course on agricultural opportunities in Australia. For him, the metadata will not be
suitable and he will probably miss the resource. Another approach would therefore be needed.

Agents and multiagent systems are powerful concepts for handling assistance issues. The
notion of autonomous problem-solving entities encapsulating some “intelligence” and able to
collaborate when they do not have sufficient data is an elegant approach that has proven to be
effective in many cases.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 29

Chapter 2: Contribution

A team was created for working at the CSSE (School of Computer Science and Software
Engineering) – Monash University on the problem of effective use of large repositories. The
team includes Prof. Christine Mingins, Dr. Annya Réquilé, Honours student Brian Yap and
myself. In the future, a PhD student and a MSc student will join the team too. The project was
called LEOPARD for “Learning EnvirOnment Platform for Agent-based Repository
Discovery”. As the project was in its early beginning, the approach that would be followed
had to be elaborated. This was carried out as a team work through weekly meetings.

1 Our approach

Opposite to the approaches followed by most recommender systems and strategies based on
“hard” data like metadata, we chose to investigate how to assist all actors involved in the use
of repositories – users, administrators and content providers – on a minimal base. What is
meant by minimal base is the restriction of the data that is collected and computed in order to
allow for the design of an assistance application that:

(1) Works dynamically, ignoring all hardwired metadata. Only information collected by
the observation of the users is used.

(2) Is generic in the sense that no assumption is made at all about the nature of the
repository neither the nature or content of the resources.

Because of (1), the application does not require any tedious maintenance from administrators.
The application is based on actual usage only so that its effectiveness does not depend on non-
users’ knowledge or points of view. The navigation assistance provided to users relies strictly
on the observation of the actions of other users. In addition, the application is then able to
provide feedback about actual usage to both administrators and content providers.

At the same time, (2) makes it possible to handle different kinds of repositories like a web site
or a relational database. But the main advantage is that it makes it possible to handle highly
heterogeneous resources. This is fundamental for learning objects that can be in the form of
text, video, image, sound as well as composite multimedia documents. Whatever the nature of
the resources, the assistance application should be able to handle them the same way.

2 Expected outcomes

Outcomes are expected for all categories of actors – users, administrators and content
providers.

2.1 User navigation assistance.

Users need to be assisted in resource discovery (or repository navigation). The application
must thus be able to provide dynamic recommendations to the users about resources to access.

Not only are the resources important but also possibly the order in which they are suggested
to be accessed. This is true for learning objects because they can have prerequisites. The same

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 30

way Lego™ blocks should be assembled in a specific, ordered manner to build something,
learning objects should be used in a specific order in the context of a course. The prerequisites
thus depend on the course involving the learning objects or on the context in which the
learning object is used.

2.2 Feedback for administrators and content providers.

The observation of the actual usage of repositories enables the application to provide
assistance to administrators and content providers as feedback.

For example it may be possible for administrators, as inspired by the Prototype Category
theories of E. Rosch [77] and G. Lakoff [78], to discover communities of users and categories
of content that administrators were not aware of, and that they had thus not made explicit in
static access facilities like indexes. At a more basic level, if administrators introduce a new
interesting resource and see it is not accessed, they will deduce that they should provide more
straightforward access to it.

In this sense the application does not substitute itself to static access facilities but it helps
administrators maintain and improve them. The dynamic nature of the application plays an
important role here. As it keeps “up-to-date”, it follows the evolution of the users’ interests as
well as the evolution of the content of the repository (addition/removal of resources) without
any human intervention.

Concerning content providers, they may discover that their resource is used in different
contexts from the one they expected. Again, the example of the document about bushfires that
can be handled from an economical and a biological perspective illustrates this point. A
biologist who receives such feedback can then redesign his resource, for example extending
its metadata or adding web links to resources related to economical consequences of storms.

Obviously extracting feedback from data about usage is not a trivial task. Elaborating adapted
algorithms is a promising field for investigation.

3 Principles of our solution

The main principles of our solution can be derived from the statement of the approach. The
generic and dynamic nature of the application restrains the collected data to the most simple
and general observable actions performed by users: accesses to resources. An access is
basically a piece of information containing:

- the identity of the user performing the access;
- the resource accessed;
- the timestamp of the access.

By performing sequences of accesses, users define navigation pathways. Hence all the
assistance provided by the system relies on the dynamic collection of pathways into user
profiles and the computation of these profiles. Although it can seem to be rough, low-level
information, its classification and computation can allow for the generation of a higher-level
business intelligence layer (BIL) providing useful assistance. For the elaboration of this BIL,
pathways can be handled from 2 different perspectives: user and resource. It is through the

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 31

combination of the information acquired from these 2 perspectives that the BIL can be
generated.

3.1 User perspective

Pathways originate from specific users. Considering a given user, the application has
knowledge of:

- his current pathway;
- his previous pathways in history;
- other users’ pathways.

The user’s current pathway comes from the domain or topic that the user is currently
investigating. Using a notion introduced in recommender systems, it is then possible to
distinguish experts among the other users. Experts are, in this case, users who have
knowledge of (1) the domain or topic investigated by the user, and (2) the resources related to
this domain/topic within the repository. It can thus be useful to let experts define reference
pathways into “standard user profiles” (SUPs) that are related to specific domains. Such
information can be used for refining user navigation assistance.

For example, a specialist in the lifestyle of kangaroos can define in a standard user profile one
or several pathway(s) of accesses to resources in the repository dealing with that topic. A user
specifying explicitly, or implicitly through his current pathway, that he is interested in
kangaroos can then be better assisted in his navigation by the recommendation of such a
predefined pathway.

SUPs are therefore a mean for the explicit definition of communities of users. SUPs can be
explicitly created by experts, but administrators may as well “discover” implicit SUPs
through the feedback provided by the application. Administrators can then make these SUPs
explicit by actually creating them and associating users with them.

3.2 Resource perspective

Pathways virtually define links between resources (origin, destination). Using passive
profiling techniques from recommender systems, it is possible to maintain relevancy
indicators about links. This can be achieved by monitoring the tendency of users to traverse
the links, i.e. to access the destination of the link after its origin. The more a link is traversed,
the more we can assume that its origin and destination are somehow semantically related. This
leads to the inference of virtual semantic links between resources. These virtual semantic
links are higher-level than the raw links from pathways because they indicate that 2 resources
are related by themselves, not made artificially related by pathways of users. Although the
semantics itself cannot be really known by the application from simple pathways, the
presence of a virtual semantic link can be assumed when the relevancy indicators on the link
have high values.

The particularity of these links is that they are not static, hardwired links but instead
dynamically-generated ones in the specific context of a business intelligence generation.
When assistance is required for a particular actor in a particular situation (e.g. navigation
assistance for user U who is accessing resource R after having navigated pathway P), specific

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 32

business intelligence is generated. Links, which are part of the BIL, are thus generated
depending on that context.

3.3 Business intelligence generation

Dynamically generating specific business intelligence on demand requires to make numerous
decisions in order to combine and compute information coming from both perspectives –
resource and user – intelligently. For example, in the case of navigation assistance, choosing
which resources are the most relevant for recommendation implies to consider at the same
time the profile of the user, the SUPs that may suit to him and resources semantically linked
to the current one in the context.

A large amount of data is therefore involved in the computation. For keeping good
modularity, it seems natural to decentralize the data into individual pieces like user profiles.
Thus the business intelligence generation relies on the decentralized computation then on the
“intelligent” combination of the pieces of data. Multiagent systems appear as a natural
approach for handling such a problem. Agents are suitable for computing their own
encapsulated piece of information, making micro-decisions according to the context, then
cooperating intelligently depending on these decisions for reaching the overall goal.

4 Consequences

LEOPARD is an ambitious project that has to be carried out in the long term. The first phase
is to test the approach by designing and developing a first application as an experimental
platform. In addition, by validating the concepts the experimental platform should be a mean
for obtaining support from the industry. As a consequence, it was decided to carry out the
development on and for Microsoft’s new development platform, .Net.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 33

Chapter 3: Application Design

I was in charge of the design of the application. During that phase, my choices were exposed
and discussed during our team meetings.

1 Structure overview

In its generic and complete form, the application is structured as shown by the figure below.

Overview of the structure of the application

The application is aimed at being layered over existing repositories of any type. The
Navigation System comes with the repository and is external to the application. It allows
users to access the resources. It provides the input point of the application as data describing
the accesses. Inside the application, the Navigation System Interface is in charge of reading
that Access Data. The Navigation System Interface is therefore dependent, at least in part, on
the nature of the access data thus on the Navigation System. Also, assistance may be provided
through the Navigation System and thus be dependent on it. All the rest of the application is
generic.

For managing pathways, 2 groups of agents correspond to the 2 different perspectives
described in Chapter 2: User Agents and Node (resource) Agents. On the overall, the same
information is maintained by both groups of agents but it is organized differently. At this
stage of the project, clarity in the design and in the way the application works is more

Administrators

Application

Business
Intelligence
Component

Agents Component

User Agents
Component

Node Agents
Component

 Navigation
System

Interface

Standard
User Profiles

Accesses

Notifies

Queries

Navigation
System

Repository

Reads
access
data

Provides
assistance Users

Uses

Content
providers

Legend:
Non-generic

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 34

important than memory space optimization.

A description of the generic elements of the structure is provided below, then the non-generic
elements are described in the case of the particular context of use that was chosen for the
prototype application.

2 Navigation System Interface

An Access Monitor is an agent in charge of collecting the access data logged by the
Navigation System. It notifies the User Agent Proxy and the Node Agent Proxy of every
access. As explained in Chapter 2, access information includes a user identifier, a resource
identifier and a timestamp. The proxies are then in charge of forwarding that piece of
information to the concerned agents within the User Agents Component and the Node Agents
Component. The concerned agents depend on the content of the access information as each
resource is handled by a Node Agent and each user is handled by a User Agent.

Both proxies must therefore know all the agents of the component they are proxies for.
Whenever a resource or user is not handled, they should require for the creation of the missing
agent. This is done through an auxiliary User/Node Agent Creator.

The Navigation System Interface

Thanks to this principle, every user and accessed resource is handled by an agent that is kept
informed of accesses involving its user/resource.

3 Agents Component

Application

Navigation System
Interface

Access
Monitor

User Agents
Component

Node Agents
Component

Notifies
Reads

Navigation
System

Access
Data

User Agents
Proxy

Node Agents
Proxy

Notifies /
Adds Agent

Notifies /
Adds Agent

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 35

3.1 User Agents Component

User agents keep track their dedicated users identified by user identifiers. Access information
helps retrieve pathways for building user profiles. Every User Profile is encapsulated by a
User Agent. Links in a user profile are associated with data about the user’s behaviour: the
number of traversals performed, the timestamp of the last traversal, the time spent on the
destination resource. In addition, the profile can be associated with Standard User Profiles that
are known to suit the user.

When a user does not navigate the repository for a while, his dedicated User Agent can save
its profile and terminate. It is regenerated whenever the user starts navigating again.

3.2 Node Agents Component

A Node Agent is in charge of tracking the usage of a resource. This is done by keeping trace
of the traversals of links originating from the resource, independently from the users. Like in
user profiles, links are associated with relevance indicators: last timestamp, number of
traversals. A node Agent thus has information about the popularity of a resource in the
context of different pathways.

4 Standard User Profiles Component

A Standard User Profile (SUP) defines interesting pathways for people interested in a certain
domain. SUPs can be created by experts. Alternatively, administrators can create SUPs as
well if the application enables them to discover categories of content.

5 Business Intelligence Component

This component is in charge of elaborating assistance dynamically. Because designing an
algorithm for providing assistance to administrators or content providers would require a lot
more investigation, only navigation assistance for users has been considered for this
application.

Navigation assistance is elaborated through the generation of a directed graph representing
recommended navigational pathways. The vertices represent resources while the edges
symbolize links. The graph originates from the resource the user is currently on. The edges
hold relevancy indicators representing the relevancy of the traversal of the link they represent.

Relevancy indicators come from the computation of data provided by 3 sources:

(1) the Node Agents that give an indication of the general popularity of the link;
(2) the SUPs associated with the user, representing some typical interest for some

categories of users; and
(3) the personal profile of the user.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 36

The graph is then formatted to be visualized and sent for being displayed to the user. A
possible format is naturally a visual directed graph. As an example, the graph could look like
this:

Example of a graph as navigation assistance

In this example, “RX” is the identifier of a resource.

- The length of the edges and the weights indicate the general popularity of the link: the
bigger the weight, the shorter the arrow, the more popular the link.

- The thickness of the arrows indicates the relevancy of the traversal of the link for the
user based on his former pathways and his domain interests (SUPs).

This is just an example since elaborating a relevant visualization is an issue that would require
a specific study.

6 Non-generic part

Although most of the application can be designed in a generic way, it is necessary to decide
which sort of Navigation System the application layers over for a complete design.

6.1 Choice of Navigation System

It has been chosen to operate on a repository of web pages (e.g. a web site). The core of the
Navigation System is then a web server. Users simply navigate the repository with a web
browser connecting to the web server. This configuration has been chosen for several reasons.
First it is the most common configuration in which users experience navigation. Then it is
simple: the technology is very familiar and the resources are clearly identified. Lastly, it is
easily suitable for carrying out tests in a real context of use: for example the application could
be layered over the actual website of our school.

The Access Data is then in the form of a server log. Server logs classically keep record, for
each access to a web page, of the IP address of the user, the URL of the web page and the
timestamp of the access. User identifiers are then IP addresses while resource identifiers are
URLs.

However, some constraints must be fulfilled for enabling the application to work correctly.
First, users must have static IP addresses and connect from one same computer. Then, the web
pages should not be dynamically generated as each should have a distinct URL. Although
these constraints may not be acceptable in real use, they are suitable for an experimental
platform. In different contexts, users may be asked to log onto the application for being

R3

R1

R4

36
63

18

R2
52

R0 R3

R1

R4

36
63

18

R2
52

R0

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 37

identified for example.

The Navigation System

6.2 Consequences on the application

The Access Monitor agent is a “web log monitor”. It senses its environment by reading the
lines in the web log.

Another consequence is the way navigation assistance is provided. As the user’s access
program is a web browser, a possibility is to dynamically modify the web page viewed by the
user in order to incorporate the assistance data in the form of additional web content. For
example, there could be an additional frame on top of the original web page. This should be
done at the level of the web server. An alternative is to use a dedicated plug-in for the web
browser. Assistance is then displayed in a specific part of the browser window. In all the
cases, the nodes of the assistance graph can be actual web anchors that can be clicked for
immediate navigation. However, this issue has not been fully investigated so no decision has
been made yet. In a first development, the application can just display assistance in a text
format on the application’s machine.

Navigation System

Application

Web Server

Repository

Web browser

Web page
Web page

Web page
Web page

Server
Log Writes

Accesses

Connects to

Uses

Reads

Sends navigation
assistance content

User

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 38

Chapter 4: Implementation

1 Implementation strategy

The application has been designed as a multiagent system. Agents need an infrastructure that
enables them to live and interact. On top of that layer, an agent framework provides an agent
design and tools for implementing agents. Both layers together can be called the Agent
System.

Implementation layers

Therefore, the Agent System must be obtained first. Generic, mature agent systems already
exist and are freely available. However, a constraint on the application is that it runs under the
Microsoft .Net environment.

A good solution for rapid prototyping is to use an already existing platform and tools.
However, as .Net is very recent, no agent platform has been found that has been created for
.Net. Almost all the existing agent platforms are implemented in Java. A strategy has thus to
be chosen for solving the problem.

- A first strategy consists in keeping the Java code and try to run it under .Net. The J#
plugin for VisualStudio makes it possible to execute J# code under .Net. Microsoft J#
is very close to Sun’s Java language, however it is not compatible with features later
than JDK 1.1.4. Among the agent platforms, only FIPA-OS is provided as a JDK1.1.x-
compliant version. Although its source code is compatible with J# .Net, it makes use
of 7 external Java libraries (e.g. Xerces, Swing, Java2 Collections) that have to be
incorporated as source code as well, which sometimes requires to decompile bytecode
(e.g. with JAD [79]). Finally, in addition to decompiling problems, it appears that such
a .Net project cannot work because of the absence of RMI in J#.

- Another strategy is to convert all the Java code to C# using Microsoft’s JUMP pack.

However, the current version of JUMP is Beta 2 at this time and it is not complete
enough to provide a satisfactory solution.

- A third possibility is to make .Net cooperate with a Java Virtual Machine at run-time.

This can be done by using web services and exchanging XML or by wrapping Java
objects into COM components by the mean of tools like J-Integra [80]. Nonetheless,
in addition to being complicated, this solution allows only for the exchange of data or
objects and not the reuse of classes.

Application

Agent Framework

Agent Infrastructure
Agent System

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 39

As none of the strategies was satisfactory, it was decided to develop a simple agent platform
and agent framework from scratch for .Net. C# was chosen as the implementation language. It
is indeed a modern OO language that has been designed especially for .Net. At the same time,
it is close enough to Java so that learning it is a rather short phase.

I designed and implemented the whole Agent System, then a big part of the application.

2 Agent infrastructure level

The infrastructure enables agents to find each other and communicate by exchanging
messages. The application can involve a number of agents that grows with the number of
users and resources used. There is thus no threshold about the number of agents, which is not
acceptable if the application is located on one single machine. For avoiding machine overload,
an important characteristics of the infrastructure is that it supports the distribution of agents
among several machines or hosts.

2.1 Agent communication

All inter-agent communication is achieved through exchanges of messages. Every agent has a
unique identifier that is specified in message “addresses” for proper delivery to the recipient.

In the ideal case, agents communicate by the mean of dedicated communication language and
content language. Information is text-based and agents use an interpreter and an ontology for
interpreting it. More heavy-weight data structures like objects are confined inside the agents.
Thus agent encapsulation is preserved, only “high-level” information is transmitted and
interoperation between heterogeneous agents is eased.

In our case however, developing such a system would conflict with the objective of rapid
prototyping. Our agents are homogeneous and are designed specifically for cooperating. Thus
a simple communication system has been designed and implemented based on messages
holding a subject and a content object.

More precisely, messages are composed of the following data:

- The ID of the intended recipient agent for allowing the posting service to deliver the
message;

- The ID of the sender agent in order to enable the recipient to send a reply;
- A subject for allowing the recipient to identify what the message is about. In other

words, the subject defines a message category;
- The nature of the message: namely notification or request;
- Possibly some additional data as a content that the recipient should process. Such

content can be any object, thus it is important that it is not part of the sender’s internal
state otherwise it would break the sender’s encapsulation. Alternatively, the content
object can be passed by value or serialized.

2.2 Agent management

Following the principles of the experimental FIPA agent management specification, the
infrastructure is composed of 3 services.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 40

(1) A Name Server (NS) maps every agent identifier (ID) with the address of the host on

which the agent runs. Every new agent gets a unique identifier and must register to the
NS at initialization time. This allows for the proper delivery of messages to agents.
Handling agent IDs and hosts independently is better in terms of design, and it is also
necessary for enabling agent migration in the future.

(2) A Directory Facilitator (DF) enables agents needing a certain service to get the ID of

agents providing the service. In other words, it enables service consumers to find
service producers. A service is any task that an agent can do. The DF brings flexibility
(even dynamic) in agent organizations. In contrast, agents could hold simple
references to the producer agents that they need, but this would not be very suitable in
a distributed configuration. For example, if several agents on different hosts are able to
provide the same service, it is better that a consumer queries the local producer or a
producer on the least loaded host.

(3) Message Transporters (MTs) are in charge of delivering messages. There is one MT

per machine. In the general case, an agent willing to communicate with another agent
creates a message, fills the “recipient” field with the ID of the second agent then posts
the message to the local MT. The MT knows all the local agents so if it finds that the
recipient is local, it delivers the message to it. Otherwise, it gets the address of the
recipient’s host thanks to the NS and forwards the message to the MT of that host.

The NS and DF must be unique within an agent infrastructure. Therefore, they must be
instantiated on one machine only, which is called the Main Host. The NS and DF can then be
accessed from other hosts using synchronized remote method invocation. This has been
implemented using the facilities provided in the .Net’s Remoting namespace.

In contrast, each host has its own MT. Implementation for remote inter-MT communication is
based on the MSMQ (Microsoft Message Queuing) service. It allows for asynchronous
message sending with high-level administration facilities. Each agent message is simply
embedded in a MSMQ message.

Computer A (main host)

Infrastructure

Computer B

Infrastructure

MT DF NS MT

MSMQ message sending

Proxy
(Remoting)

Proxy
(Remoting)

Shared Shared

Register,
Query

Post
message

Deliver
message

Computer A (main host)

Infrastructure

Computer B

Infrastructure

MT DF NS MT

MSMQ message sending

Proxy
(Remoting)

Proxy
(Remoting)

Shared Shared

Register,
Query

Post
message

Deliver
message

DF NS

The agent infrastructure

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 41

3 Agent framework level

3.1 Agent design

For its external world, an agent is simply an entity that has the ability to receive agent
messages. An agent must also have a unique identifier, typically a string. Thus the interface
that agents comply with simply specifies a method for posting messages and a method for
getting the agent’s ID. The inner structure is presented in the following figure and explained
below.

3.1.1 Main thread and activities

Inspired by the DIMA design, the agents are active objects in order to allow for their pro-
activity. Thus they own a main thread that defines the meta-behaviour of the agent. The
behaviour level is composed of different activities that are threads having their own data and
methods. Activities allow for the modularity of the agent’s behaviour. The main thread
defines the meta-behaviour as it controls the activities. For example, it decides when to
initiate an activity and when to suspend or stop it if necessary.

For consistency, all the activities must be dependent on the existence of the agent. When an
agent terminates, all its activities and threads must terminate as well. This is achieved by
keeping weak references to all the internal threads of the agent. If a thread is still alive when

PostMessage(m: Message):
void

GetId(): AgentId

Agent

Message
queue

Message
Message

Activity1

Message

Activity2 Activity3

Main thread
(meta-behaviour)

Controls

Accesses

Agent structure

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 42

the agent terminates, the thread is terminated as well. The .Net framework supports
concurrency facilities for ensuring that no inconsistent state is reached.

When the framework is extended, it can be appropriate to model the agent’s meta-behaviour
through a statechart diagram.

3.1.2 Message queue and strong encapsulation

Because of its strong encapsulation and unpredictable autonomy, an agent should not react
synchronously to external events or the arrival of messages. Thus external threads should not
be allowed to invoke the agent’s methods directly. Such a thread would possibly modify the
agent’s internal state independently from the agent’s will.

Instead, agents react to incoming messages asynchronously. When a thread accesses an agent
by posting a message, the message is just stored in the agent’s message queue. Then the
message is processed whenever the agent decides so. The message queue has the role of an
interface between the agent and the external world.

3.2 Synchronized inter-activity communication

Because agents work asynchronously with their external world, it is necessary to provide
some synchronization mechanisms for allowing them to interoperate easily. For that purpose,
agent activities can use conversation objects.

A conversation defines a specific context in which messages can be exchanged. This allows
for synchronized and asynchronous requests/replies between activities from different agents.
The synchronized case is similar to method invocation: the thread of the activity is blocked
until a reply is obtained. The asynchronous case allows the activity to do some work while
expecting the reply.

The agent whose activity creates a conversation is the initiator. The conversation is
transmitted to another agent as an embedment in a standard message. The message is
processed normally by the recipient agent through its message queue. However, when the
message is handled by an activity, the conversation can be obtained from the message for
sending new messages in the context of the conversation. The conversation is then considered
as handled by the agent.

The implementation is based on C# events. The principle is that when a conversation is
handled by an agent, incoming messages that have been sent in the context of the
conversation bypass the agent’ message queues and are obtained directly by the handling
activity through an event handler.

The figure below summarized the steps of the use of conversations.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 43

A conversation finishes in two cases. First, it is possible to send a message and do not expect
any reply. All replies will be ignored since the messages are not stored in the agent’s message
queue. Secondly, a conversation can be simply closed, which has the same effect.

Agent1

A1 M1 C

Agent2

M
Q

Step 1: Activity A1 of Agent1 creates a conversation C which is immediately considered as handled
by Agent1 (grey color). A message M1 is sent by A1 to agent Agent2 in the context of C. Thus A1
expects a reply in the context of C (dotted thread arrow) and a clone of C is embedded in M1. The
clone is not considered as handled by Agent2 (white color), hence it is normally stored in Agent2’s
message queue MQ.

C

Agent1

A1

Agent2

Step 2: An activity A2 handles M1 in Agent2 and gets the non-handled conversation.

C A2 C

Agent1

A1

Agent2

Step 3: A2 sends a reply M2 to Agent1 in the context of C. C is thus considered as handled by
Agent2. M2 is obtained directly by A1, bypassing Agent1’s message queue, since C is handled by
Agent1. As C is considered handled by both agents, A1 and A2 can do synchronized and
asynchronous exchanges of messages.

C A2 CM2 C

Principle of conversations

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 44

4 Application level

4.1 Overview

The figure at the end of this section shows an overview of the agents that have to be
implemented and the status of the implementation. I did part of the implementation, another
part has been affected to another team member and a last part has not been implemented yet.
Below is the description of the part I have implemented.

4.2 User Agent Proxy

The singleton User Agent Proxy receives 2 kinds of messages:

(1) navigation messages from the Web Log Monitor that are notifications of accesses.
This is for notifying User Agents;

(2) termination request messages from User Agents. This happens when a User Agent
considers that the user it handles has stopped using the Navigation System after a
certain time. The User Agent Proxy decides whether to give termination authorization
or not.

Therefore the behaviour of the main thread of the User Agent Proxy is described as follows:

Waitinginitialize() Initiating
NavigationHandling Activity

Initiating TerminationExamination
Activity

navigationMessageArrived()

terminationRequestMessageArrived()

Each time a new message arrives, a new activity is created for handling it. This is because a
lot of messages are likely to be sent to the User Agent Proxy. It was thus chosen to perform
concurrent computation of the messages.

4.2.1 Navigation message handling

When a notification about an access is received as a navigation message, 3 configurations are
possible depending on the state of the User Agent that handles the user of the access:

- The User Agent is currently available: the message is forwarded to it.
- No User Agent handles the user: its creation is requested to the User Agent Maker

agent. An acknowledgement is received in the context of a conversation when the
User Agent is ready to handle messages. In the meantime, a temporary queue is
created for keeping all the messages that should be handled by the User Agent. When

Statechart diagram of the main thread of the User Agent Proxy

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 45

the new User Agent is ready, all the messages in the temporary queue are forwarded to
it.

- The User Agent is being currently created: the message is pushed into the temporary
message queue.

Checking
UserAgent state

Forwarding
message

state=AVAILABLE

Updating
message queue

state=BEING_CREATED

Initiating UserAgent creation

entry/ setUserAgentState(BEING_CREATED)
entry/ requestUserAgentCreation()

[state=null or state=TERMINATED]

Finishing UserAgent creation

entry/ setUserAgentState(AVAILABLE)
entry/ forwardMessagesInQueue()

confirmationReceived()

4.2.2 Termination examination message handling

For being sure that no message is lost when a User Agent wishes to terminate, the User Agent
Proxy keeps the timestamp of the last message sent to the User Agent. If the time elapsed is
sufficient for being sure that no message has arrived since the User Agent’s decision to
terminate, the User Agent Proxy gives authorization for termination.

Confirming

entry/ deleteAgentState()
entry/ sendConfirmation()checkIdleTime()

Denying

entry/ sendDenial()

not (checkIdleTime())

Statechart diagram of the NavigationHandling activity

Statechart diagram of the TerminationExamination activity

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 46

4.3 User Agent Maker

This agent has the ability to act as a factory for building User Agents. Although the current
version is very simple, creating new empty User Agents, further versions will have to check if
a user profile already exists and provide the possibility to create a User Agent with an initial
user profile associated with SUPs.

Waitinginitialize()
Creating new UserAgent

creationRequestMessageArrived()

4.4 User Agent

4.4.1 General behaviour

A User Agent is notified by the User Agent Proxy of accesses by the user it handles. This
allows for the maintenance of a user profile. Each time a notification has arrived, the User
Agent updates its user profile. Then if a new notification has arrived, it means that the user
keeps navigating thus there is no point in generating navigation assistance (called BI for
Business Intelligence). The user profile is just updated again. Otherwise, the user is
examining a web page so a BIGenerator agent is requested by the User Agent to generate
navigation assistance.

Another point is the decision that the User Agent can make to terminate if the user does not
navigate any more. This is for situations where the user has gone to sleep or logged off his
computer for example. The issue here is to determine the threshold idle time after which the
agent decides to terminate. It requires to study statistics about users’ behaviour and elaborate
a specific algorithm. The current implementation just uses an arbitrary threshold of 30
minutes.

Statechart diagram of the User Agent Maker

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 47

Waiting

BI generation initiation

entry/ requestBIGenerator()

Terminating

entry/ terminate()

Getting ready

entry/ notifyProxy()

Handling user's navigation

entry/ updateProfile()

Pre-termination

entry/ saveData()
entry/ requestTermination()

initialize()

navigationMessageArrived()

[(msgQueue.IsEmpty) and
(thresholdTimeExpired())]

navigationMessageArrived()

msgQueue.IsEmpty

terminationAuthorized()

[! msgQueue.IsEmpty or
terminationRefused()]

4.4.2 User profile management

User profiles hold relevancy indicators as described before. A timestamp of the last access of
the user is also kept for knowing how long the user has not accessed the repository.

As all the profile data has to be persistent on the long term, is potentially big and is
independent of the existence of User Agents, it is maintained in a database. The database is a
SQL relational database handled by MS SQL Server. The detail of the design of the tables is
presented in Appendix B.

For managing databases, .Net provides facilities through ADO (Active Data Object) .Net. The
strong point of this technology lies in its intermediate data layer, the DataSet, between the
database and the business logic.

Instead of managing connections to the database and handling database-dependent commands,
the business logic only manipulates the data in the DataSet. The DataSet is initially filled with
data from the database but it is disconnected. Only on demand does it connect to execute
commands like update on the database.

Statechart diagram of a User Agent

Database

DataSet Application
(business

logic)

Data Adapter

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 48

Thus the profile, node and link classes for user profiles and SUPs encapsulate ADO code.
User Agents just keep a reference to their user profiles whose data belongs to the DataSet. As
the DataSet is separated from the business logic, the User Agents are virtually stateless. This
point can become significant for further evolutions like agent mobility.

4.5 Business Intelligence Component

Simple pathways are not high-level information. However the obtention of series of [user,
resource, timestamp] makes it possible to compute relevancy indicators allowing for the
inference of semantic links between resources. Simple relevancy indicators are for example
the number of traversals between two resources and the “age” of the last traversals that can
act as a “moderator” since an old last access may mean that the destination resource has been
removed from the repository.

Also, the time spent by the user “using” (reading / watching / listening to) a resource that is
the destination of a link reveals the interest of the resource in a context defined by the origin
resource of the link. However the calculation of this “use time” is not trivial. A user can
interrupt his navigating activity because some event has interfered like a phone call, and start
navigating again a moment later. It is impossible to distinguish between this case and a long
period of use of the resource indicating a strong interest. There is also a time when the user
simply stops navigating and starts a different activity. Detecting this situation may appear as
more feasible than the previous one: a threshold period can be set for deciding that the user
has gone or that he has kept using the resource for a long time. Nevertheless, such a threshold
period is arbitrary. An approach like the profiling technique described in [15] is suitable for
homogeneous resources but not in the general case. The intelligent determination of a
threshold period requires investigation on statistics about usage. Such work is being carried
out at Monash in parallel to our project. Typically, our application is a tool that can be used
for easing this work.

As a first approach, a simple algorithm is proposed for the elaboration of navigation
assistance although it has not been implemented. The data the algorithm can use comes from
3 perspectives: the user’s profile, the associated SUPs and general popular links from the
current resource. The simplest strategy consists in computing a relevancy indicator for each of
these perspectives. This leads to edges holding 3 different relevancy indicators in the
assistance graph, that can then be graphically represented through parameters like the length
and thickness of arrows, or even explicitly through textual weights. As for the depth of the
graph, it can be limited to 1. More sophisticated algorithms will handle a bigger depth. The
problem is thus reduced to the computation of a relevancy indicator or weight for each
perspective.

(1) In the case of SUPs, the current implementation already defines a weight that is an
integer. Thus if a link, originating from the current resource, is in several SUPs
associated with the user, the final weight of the link in the graph can just be the sum of
the weights.

(2) General popular links provided by the Node Agents are links whose origin is the

current resource. The links hold a number of occurrences of traversals and a
timestamp of the last access. Given an arbitrary integer N and threshold date D, the

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 49

algorithm can be: select among the links those whose last access is more recent than D
(for filtering out out-of-date links). Then among the remaining ones select the N ones
that have the more occurrences. The weights are the number of occurrences. Again, an
issue is: how are those arbitrary values intelligently chosen? Number N is used to
ensure a maximum number of links when formatting the graph, but many other
strategies can be followed, for example: select all the links that have more occurrences
than number O, or select those that have a bigger number of occurrences than the
average.

(3) The user profile provides the same kind of data as general links, except that it is

targeted at the user and includes use time data. Thus the same algorithm can be used as
in (2) except for the computation of weights as they now depend on both the
occurrences and the use time spent on the destination resource. Since the use time is
error-prone, priority can be given to the occurrences. The fact that the same user
traversed a link several times clearly indicates that the origin and destination resources
are related so a semantic link can be assumed. Then among links with the same
number of occurrences, those with the biggest use time can be selected. The
computation of a weight may arbitrarily be the number of occurrences plus the use
time in minutes.

The algorithm described is simple but rough. Elaborating a good algorithm is a wide field of
investigation since there are numerous possibilities. Getting feedback through the application
about repository usage and working on statistics on this data is probably necessary before
thinking about developing a satisfying algorithm.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 50

Agents of the application and nature of the messages exchanged

About to be implemented by other team member

Not implemented

Implemented

Business Intelligence Component

Navigation Interface Component

User Agents Component

Node Agents Component

UserAgentMaker
<<Singleton>>

BIProvider

UserAgentProxy
<<Singleton>>

R : User_agent_create

UserAgent

I : Access

I: Termination_ok

I: User_agent_ready

R: Termination_request

BIGenerator

R : Provide_Business_Intelligence

R : Business_intelligence_generate

NodeAgent

I : Links_From_Node

WebLogMonitor
<<Singleton>> I : Access

NodeAgentProxy

R : Get_Links_From_Node

...

I: Access

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 51

Chapter 5: Future Work

This is the beginning of a vast project, thus numerous points are still to investigate.

1 Application outputs

First, the algorithm for navigation assistance must be implemented for enabling testing. But
more importantly, a good algorithm should be developed which is far from being trivial. The
pathways collected by the application are raw data that can be studied from a statistical point
of view. Such a work is probably necessary since the development of the algorithm requires
some knowledge about how the repository is used. The parameters of the algorithm are thus
bound to depend on the repository and the kind of resources and users involved.

Then formatting the navigation assistance and actually delivering it to the user is another
matter. A type of graph representation has been proposed but more work is required for a
precise design. Furthermore, the formatting depends closely on the output of the navigation
assistance algorithm. The delivery of the assistance can occur through a plugin of the user’s
navigator or by direct alteration of the web pages. In that case, a separate HTML frame may
be added at the top of the web page. The graph displayed should allow for direct navigation
by clicking on the vertices like on anchors.

While navigation assistance is for users, administrators and content providers also need
facilities for getting feedback from the application on the usage of the repository. Tools for
discovering communities of users and categories of content, creating SUPs based on them and
refining the SUPs over time are needed.

2 Explicit user inputs

Although the input system of the application has been designed to be mostly transparent to
users, the effective use of SUPs may require explicit inputs in certain cases, first from experts
and secondly from some user.

SUPs might be created by administrators as well as simple users who declare to be experts in
a domain. The application should therefore allow experts to identify themselves as such and
create new SUPs. In that case SUPs could just be generated by monitoring experts’ pathways.
Which control would experts have on their SUPs? How would they indicate different
relevance weights on the links of the SUPs? Experts should be allowed to refine and improve
their SUPs over time. It may also make sense to allow communities of experts to improve
SUPs as a team work. In that case, an identification system would be required. For example,
an expert could create a SUP and associate a password with it so that his colleagues can later
modify it using the password.

As for “simple” users, it is certainly a good point that they do not have to worry about SUPs if
they do not want to. When they use the Navigation System for the first time, an empty user
profile is created for them. SUPs can possibly be associated to their profile later if their
pathways indicate an interest in the domain of a SUP. However, it may as well be very useful

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 52

to enable users to explicitly specify some SUPs that should be associated with their profile. A
new user may wish to get assistance navigation about kangaroos although his profile is still
empty. Thus the application may have to display currently existing SUPs and let users choose
the ones they think are suitable for them. This is equivalent, to some extent, to allowing users
to edit their user profiles.

3 Validation of the approach

The application is an experimental platform for testing if the “minimalist” approach that has
been chosen can prove effective. Therefore it is necessary to carry out tests in a real situation.
This can be done on any web site like the one of the CSSE. Thanks to such tests, it should be
possible to determine if simple pathways are enough for providing assistance, or if it is
essential to observe other activities of users. For example, in the case of web pages other
activities could be downloading or bookmarking: existing recommender systems already
handle such activities. However, the generic nature of the approach would then be lost, since
navigation is the only activity that is generic to every kind of repository.

4 Genericity checking

The application has been designed in the case of a web site as a repository. Furthermore, some
constraints have been assumed like the use of static IP addresses and the fact that every user
uses his own computer. This makes it possible for the application to be entirely transparent for
the users. However for a generic, real-life use it will probably be necessary to identify users
another way, through a login system for example. Similarly, there can be problems for
identifying resources in the case of dynamically-generated web pages for example.

Furthermore, the generic nature of the approach must be tested on other kinds of repositories.
For example, a relational database raises some other issues. In particular, it is necessary to
specify explicitly what a resource is.

5 Application implementation

For allowing for the actual distribution of User Agents, a problem due to the use of ADO .Net
must be addressed. DataSets, that are the intermediate data layer, are serializable. It means
that they cannot be marshaled by reference: when a DataSet must be used on a second host, a
copy of it is always sent to the host. Therefore, if there are User Agents on different machines,
they will alter different instances of the DataSets. So the modified DataSets have to be
merged before updating the database in order not to lose changes.

As an alternative implementation, it could be interesting in the future to consider distributing
some agents to the users’ machines. As the User Agents are virtually stateless (as long as they
can communicate with the profiles) they could reside on the users’ machines, which would
solve the identification problem. In addition, they could be accompanied by a navigation
assistance generator that would therefore do all the computation on the user’s machine.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 53

6 Improvement of the agent system

The agent system is rather simple so it can be extended in many ways.

First, a real text-based communication language and a content language can be used for a
cleaner communication.

Then some performance issues could be considered. A multiagent system involves a lot of
multithreading. Sometimes it is better to create new threads, sometimes not. Furthermore,
distribution raises the problem of load balancing. The directory facilitator could be improved
in order to select providers based on criteria like the current load on the agents’ host. It can
even be thought about allowing for mobile agents for dynamic load rebalancing. The agent
system should not be too hard to extend in that direction. Real tests should make load
problems clearer.

Lastly, our current agents are “lightweight” in the sense that their autonomy and
“intelligence” are limited. Nevertheless they will certainly evolve in the future and get more
and more “intelligence” as the application and its algorithms get more sophisticated. It could
then be useful to provide higher-level layers in the agent design. For example, explicit support
for agent states and transitions could be added for a direct implementation of state diagrams,
or a Prolog-like inference engine for defining a rule-based behaviour.

For the time being, these issues, particularly those from subsections 1 to 3, are being actively
researched in the LEOPARD project.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 54

Conclusion

A “minimalist” approach has been chosen for the elaboration of assistance to repository users,
administrators and content providers, since it is exclusively based on the observation of users’
pathways. This approach allows for the design of an agent-based application that is generic,
dynamic and transparent for the users. An agent system has been developed for the .Net
platform, then an experimental platform was partly implemented on top of it. This platform
will make it possible to validate the approach and will be a base for research about algorithms
for the generation of assistance and the extraction of feedback. This work is the starting point
of a vast project that is at its early stage and currently keeps moving forward.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 55

Index of terms used

Access: access of a resource by a user at a certain timestamp for use. Use can consist in

reading, viewing, listening depending on the nature of the resource, through a specific
program on the user’s machine.

Access facility: mean for resource discovery by a user. Examples include indexes, search

engines, web links.

Actor: human person concerned with the use of a repository. Can be a user, an administrator

or a content provider.

Administrator: person in charge of maintaining a repository, which includes providing access

facilities to the users.

Content provider: person who is the author of a resource.

Expert: user who has expert knowledge in (1) a domain or topic, and (2) the resources related

to this domain/topic in a repository.

Link (if not qualified): virtual relation between the resources of two consecutive accesses in a

pathway. The resource of the first access is the origin and the resource of the second
access is the destination.

Navigation: activity of accessing resources performed by a user.

Pathway: chronologically ordered sequence of accesses from the same user.

Repository: set of resources that can be accessed. For example: a database, a web site.

Resource: piece of data or content that can be accessed as a whole by a user.

Traversal: action of accessing the destination resource of a link after its origin resource.

User: person who navigates one or several repositories for satisfying an interest in a topic.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 56

Appendix A: Addendum on
Industrial Issues

Learning objects

1. The promises of e-learning

Traditional educational material, typically books, is expensive for users like school pupils or
students. It is all the worse as users have to pay for material that they generally do not fully
use. On the other side, it is a profitable industry for publishers and sellers. For example, the
American National Association of College Stores estimated the combined American and
Canadian college store sales to be $8.959 billion for the 1998-99 academic year [81].

This situation facilitates the development of online teaching and learning as an alternative. In
addition to obviously removing location constraints, online courses holds many promises
among which a cost that is lower than that of traditional material.

A study published in February 2002 by Apex Learning called “Online Courses and Other
Types of Online Learning for High School Students” [82] reveals that cost effectiveness is
one of the top reasons for the adoption of online courses.

Not surprisingly, this study also shows that e-learning becomes more and more widespread.
40 percent of U.S. high schools are currently using online courses or are planning to start
using them during the 2001-2002 school year. In addition, “another 17 percent are interested
in offering online courses in the future”. At the level of public school districts, 32 percent will
adopt and use an online learning platform for the first time in 2002. Therefore Apex
Learning’s CEO Keith Oelrich concludes that "in just a few years, online courses are quickly
becoming an integral part of the high school experience".

In addition, online learning is much more developed in higher education. The Institute for
Higher Education Policy estimated in 1999 that 85 percent of American four-year colleges
would offer courses online by 2002 [83].

However, Downes indicates in [2] that developing courses from scratch leads to a cost
varying from $4,000 to $100,000 (Canadian dollars). When delivered to a small number of
students, it may result in course fees that are comparable with fees for traditional courses.
This is because the possibilities of online material are not fully exploited.

2. The necessary emergence of learning objects

A strength of online material is that is can be shared. Sharing material between universities
should allow for sharing the costs and getting a big number of students involved, therefore
reducing the fees. However, Downes points out that, although the cost saving should be

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 57

tremendous, this principle does not work because what is shared is courses [2]. He argues that
courses are generally too specific to satisfy the needs of different universities and teachers.

Instead, small chunks of educational content that are designed for being reused as components
of courses – learning objects – appear as a solution.

This new approach for online material and course building still has to prove suitable.
However, Downes claims that the economics of sharing learning objects are relentless:

“It makes no financial sense to spend millions of dollars producing multiple versions of
similar learning objects when single versions of the same objects could be shared at a
much lower cost per institution. There will be sharing, because no institution producing its
own materials on its own could compete with institutions sharing learning materials.”

Learning objects are thus a natural paradigm according to economics.

Learning objects are indeed being adopted with gusto, as proven by the Australian Le@rning
Federation. Other Australian initiatives to establish learning objects repositories include the
following:

- The Building the Internet Workforce Project [84]. It is funded by organisations such as
SUN Microsystems [85], Telstra [86], Compuware [87] and DSTC [88]. It aims at
creating a set of learning objects for education in IT (Information Technology).

- Learning Resource Exchange [89]. It aims at developing and maintaining a national

database of metadata about learning objects to support discovery and re-use. This
project was originally funded by the DEST (Commonwealth Department of Education
Science & Training) [90].

- Peer Review of ICT (Information and Communications Technology) Resources [91].

It is funded by DEST and aims at developing “conceptual and procedural bases for a
national scheme for independent and expert peer-review of ICT-based teaching
resources.”

Despite these proofs of success, some issues about learning objects still need to be researched.
Are they really a viable approach? How should they actually be created, managed, used? The
study of the effective use of complex repositories fits into this context. Learning objects can
indeed be highly heterogeneous resources and exist in big quantities, considering for example
that SchoolNet already holds over 5000 learning resources. Tackling this issue is quite urgent
as industry is ready to adopt and invest on learning objects.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 58

Appendix B: SQL Tables Design

1 Table UP (User Profile)

Name Key Data type Size Allows nulls
userId yes varchar 50 no
lastUse no dateTime 8 no

2 Table UPNode

Name Key Data type Size Allows nulls
identifier yes uniqueidentifier 16 no
resourceId no varchar 50 no
UP no varchar 50 no

3 Table UPLink

Name Key Data type Size Allows nulls
identifier yes uniqueidentifier 16 no
originNode no uniqueidentifier 16 no
destinationNode no uniqueidentifier 16 no
lastUse no datetime 8 no
occurrences no int 4 no
useTime no bigint 8 no

(4) Table UP_SUP (matches User Profiles with
SUPs)

Name Key Data type Size Allows nulls
UP yes varchar 50 no
SUP yes varchar 50 no

(5) Table SUP

Name Key Data type Size Allows nulls
SUPName yes varchar 50 no
description no varchar 50 yes

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 59

4 Table SUPNode

Name Key Data type Size Allows nulls
identifier yes uniqueidentifier 16 no
resourceId no varchar 50 no
SUPName no varchar 50 no

5 Table SUPLink

Name Key Data type Size Allows nulls
identifier yes uniqueidentifier 16 no
originNode no uniqueidentifier 16 no
destinationNode no uniqueidentifier 16 no
weight no int 4 no

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 60

Appendix C: Conference Paper

A paper has been submitted to ICITA 2002, the First International Conference on Information
Technology & Applications, Bathurst, Australia, 25-29 November 2002
(http://odysseus.mit.csu.edu.au/icita2002.html).

At this time, a short version of the paper has been accepted and the following full version is in
the acceptation process.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 60

?

Abstract-- Motivated by recent developments in Category theory,
we have designed a generic virtual layer that overlays
repositories of learning objects. Agents embedded in this layer
observe traversals from both the repository and the user
perspective, and support the inference of dynamic semantics
based on actual usage. We will experiment with the dynamically
generated metadata with the goal of enhancing users’
navigation and discovery experiences.

Index Terms--Multi-Agent, Learning Objects, Intelligent
environment, User pathway, Recommender Systems.

I. INTRODUCTION AND MOTIVATION

he learning community has adopted the idea of

Olivier Constant is a student in the EMOOSE Master of Science at
Ecole des Mine de Nantes in France, currently completing his Masters
Thesis at Monash University. (e-mail: Olivier.Constant@eleve.emn.fr).

Christine Mingins is Associate Professor in the School of Computer
Science at Monash University (e-mail: cmingins@csse.monash.edu.au).

Annya Réquilé-Romanczuk, Ecole des Mines de Nantes, France, is
currently on sabbatical in the School of Computer Science and Software
Engineering at Monash University (e-mail: arequile@csse.monash.edu.au
).

Brian Yap is a research student at Monash University. (e-mail:
brian.yap@csse.monash.edu.au)

ICITA2002 ISBN: 1-86467-114-9

repositories of learning objects with gusto. In
Australia,

 for example, “… all States, Territories and the Commonwealth
of Australia are collaborating in this Initiative-The Le@rning
Federation-to generate, over time, online curriculum content
for Australian schools. “ Our concern is that coded metadata,
hard indexes and search mechanisms will provide insufficient
support for content users to explore and discover useful
materials in very rich

and complex repositories. We have designed a generic,
virtual layer that sits over repositories and collects information
about users’ traversals. Inspired by the Prototype Category
theories of Elinor Rosch [11] and George Lakoff [12], we intend
to experiment with the information derived from these
traversals to attempt to infer action-based semantics about the
repository. For example, we may ‘discover’ communities of
users and categories of content that are not explicit in the
indexes; We will use this derived metadata to inform user
profiles and more generally attempt to enhance the experience
of the users, content providers and site managers in
navigating, discovering and managing the material in the
repository.

This paper describes the architecture of this ‘business

intelligence layer’.

II. A CASE STUDY WITH LEARNING OBJECTS

The multi-agent architecture presented in this paper is

designed to address the problem of making effective use of

Deriving Action-based Semantics from Learning
Repositories

Olivier Constant*º, Christine Mingins*, Annya Réquilé -Romanczuk*º and Brian Yap*,

http://www.csse.monash.edu.au/projects/LEOPARD

* School of Computer Science and Software Engineering,
 Monash University, PO Box 197 Caulfield East, Victoria 3145, Australia

 º Ecole des Mines de Nantes, La Chantrerie, 4 rue Alfred Kastler, BP 20722,
44307 Nantes Cedex 3, France

 T

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 61

very large repositories of learning objects. In this section we
describe the case study in which this problem appears.

Technological advances in the past few years, particularly in
the area of online delivery and e-learning, have inspired
changes in the way educational materials are designed,
developed, and delivered to teachers and students. A major
shift in educational materials development has occurred where
there is a move away from the traditional method of developing
courses in an integrated way to accomplish a learning
objective to one that is based on the use of individual building
blocks or bite-sized “learning objects” [8]. This approach
resembles what Wayne Hodgins, Director of Worldwide
Learning Solutions, has called the LegosTM approach. In the
same way that LegosTM building blocks can be used to build a
variety of structures, so too learning objects can be used by
lecturers, teachers and others in creative ways to build courses
which meet different learning outcomes. The theoretical
underpinning is that instead of thousands of people wasting
time “re-inventing the wheel”, a learning object once
constructed can be re-used and shared. Steven Downs [9] has
argued that the economics of sharing learning objects are
relentless.

This new approach has resulted in the establishment of a
large number of learning object repositories both within
Australia and overseas.

While theoretical underpinnings of learning object
repositories are difficult to challenge, a number of issues
relating to their establishment still need to be researched. Our
project will address major problems/issues, such as the lack of
consultation/analysis of user needs in the creation of
repositories and inadequate resource dis covery tools. It has
been reported that many of the learning repositories are
difficult to use.

We will try to address these problems:
- by undertaking user needs and usages analysis, and by

using the data collected by the multi-agent component
(see fig.1);

- by facilitating access to the plethora of content
repositories and to address the problems of locating,
exploring and manipulating learning resources expertly
and creatively;

- by using the Learning Object Exploration System, cross-
domain searching software and profiling systems to
automatically match the needs of users with the
appropriate learning objects;

- by using “intelligent” agents to “remember” frequently
used and relevant resources and to inform users
through presenting more intelligently guided pathways
within that virtual environment.

The project will deliver an intelligent Learning Object

Exploration System capable of identifying the needs of
teachers, lecturers and course builders. This “intelligence” will
be based on “profiling”, extensive user analysis and resource

assessment, and the construction of an “intelligent” agents to
provide appropriate feedback.

The development of an intelligent learning architecture
incorporates:

- the ability to actively collect and access a wide range
of content repositories

- substantial improvements in the usefulness of
learning objects within any given repository leading
to enhanced exploitation of learning materials .

- the provision of enhanced feedback for the better
management of content repositories.

III. MULTI-AGENT ARCHITECTURE

In this section we describe this architecture. An overall view
of the architecture is depicted in Fig.1.

Repository

Architecture

user

Web
Browser

Interacts with

Learning Objects Exploration
System

Learning
Object

Learning
Object

Learning
Object

Agents Component

Standard User
Profiles

Business Intelligence
Component

Provides exploration assistance

User Agents
Component

Reads

Node Agents
Component

Exploration
System Interface

Accesses

Accesses

WebServer

Gives access to

Communicates with

Plugs web contents

Log

Reads

Writes

Fig. 1. Overview of the whole system

The prototype is based on an agent infrastructure and agent

framework developed in C#. The infrastructure supports multi-
hosts distribution via .Net’s remoting and MSMQ. Persistent

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 62

data like profiles is stored in a SQL database on demand and
accessed through ADO .Net.

A. Learning Object Exploration System

The architecture is designed to be plug into layered over

existing repositories of Learning Objects. The system provides
access to repositories through a web server. Users simply
explore the repository with a web browser and view the
Learning Objects as web pages.

The system is linked to the architecture through output and
input points on the web server. The output point is a simple
server log. For each access to a Learning Object, the log is
classically required to record a user identifier (a static IP
address for instance), an identifier of the Learning Object and
the date and time.

The input point consists in adding web content generated
by the architecture to the web page that is viewed by the user.

B. The Agent Components

User Agents Component

A User Agent tracks each user of the system. This agent

may have references to Standard User Profiles (SUP) that suit
its user. In addition, the User Agent is in charge of maintaining
a personal user profile. This profile contains information about
the user’s pathways. The profile is refined over time as the
User Agent Proxy informs the User Agent of the user’s
activities. When a user logs off for a while, his dedicated User
Agent terminates. The profile persists independently from the
User Agent and it can be stored into a SQL database on
demand. It is reactivated when the user navigates again.

Node Agents Component

Node Agents form a virtual layer supplying information about
traversals made between nodes. This information can then be
exploited by others elements, such as the Business Intelligence
Component. Node linkage information is formulated by the
traversal of users between nodes. The term “node” is a general
terminology used to represent a particular repository artifact.
The artifact could be a web page or a relation in a relational
database or it could even be more fine-grained such as a field
in a relation. In the case study in this paper, a node is
synonymous with a unique web page, thus a Node Agent will
be associated with a unique node. In the virtual network.

Each Node Agent has the responsibility of:
- Capturing a user’s page traversals (destinations). For

instance a node agent (A) observes a web page (P). A
user (U) accessed page P and then from there
accessed a new page (Q). The node agent A must

capture the next web page traverse by the user P,
which is page Q in this instance.

- Storing the most recent timestamp for each
destination navigated.

- Keeping a count on each destination page accessed
from the observed page.

The Log Monitor gathers the information above is gathered

by analyzing web server log files. Each Node Agent registers
its associated node identity with the Log. The Node is then
notified whenever a relevant log line appeared in the web
server log and ‘memorizes’ the information.

C. Business Intelligence Component

This component is in charge of elaborating exploration

assistance dynamically for every given user involved in
exploring a Learning Repository. This is achieved by
generating a directed graph representing navigation pathways.
The vertices represent Learning Objects while the edges
symbolize navigational links. All the pathways have the
current Learning Object as origin. The edges hold information
about the relevance of the traversal to the link they represent.

Such information comes from 3 sources:

(1) the Node Agents that give an indication of
the general popularity of the link,

(2) the SUPs associated with the user,
representing users’ interest in some
categories and

(3) the personal profile of a user maintained by
his User Agent.

 This information is computed in order to obtain relevancy
indicators.

The graph is then formatted to be visualized and sent to the
web server for being displayed to the user. A possibility is that
the user sees an additional frame on top of the web page by
the mean of a plug-in for his web browser. The frame shows a
graph whose nodes are actual web links that can be clicked.
The graph provides navigation assistance in that the user is
proposed relevant pathways. As an example, the graph could
be something like this:

In this example, “LOX” is the identifier of a Learning Object;

the weight and the length of the edges indicate the general

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 63

popularity of the link (the bigger the weight, the shorter the
arrow) and the thickness of the arrows represents the
relevancy of the traversal of the link for the user. This last
information comes from the computation of the user profile and
the Standard User Profiles (SUP) associated with the user.

D. Standard User Profiles Component

Every Standard User Profile (SUP) defines a category of

users. A SUP contains pathway information for exploring
Learning Objects that are interesting for the category of users.
Administrators of the repository initially define SUPs, either
directly or by computing similar user profiles maintained by the
User Agents.

When a new user enters the system, he has the option of
explicitly selecting SUPs that suit him via a special web page.
His User Agent then references the SUPs. Otherwise, a User
Agent is automatically created for him and initialized with no
SUP. Later, the User Agent may infer a SUP after some time,
thanks to the knowledge of the exploratory pathways of the
user.

E. Exploration System Interface

A Log Monitor is in charge of reading the server log

periodically. For every line in the log, the Log Monitor notifies
the User Agent Proxy and the Node Agent Proxy and transmits
the logged information (Fig.2).

Log

User Agents
Component

User Agents
Proxy

Accesses

Log MonitorReads

Notifies

Node Agents
Component

Node Agents
Proxy

Notifies

Accesses

Exploration System Interface

Fig. 2. The Exploration System Interface component

The proxies act as name servers for User Agents and Node

Agents. In other words, they know all the agents and their
corresponding identifiers, permitting for example access to the
Node Agent that manages a given Learning Object. Besides,
they transmit the log notifications from the Log Monitor to the
agents that are concerned. Thus every User Agent is kept
informed of the exploration of the user it manages, and similarly
Node Agents keep aware of the navigation of all the users.

When the User Agent Proxy does not recognize a user that
is referenced in the log, it means that it is a new user. Hence
the User Agent Proxy creates a new User Agent with no SUP.

IV. RELATED WORK

Recommender systems [1] learn about the preferences of

users in order to assist them in finding items they are
interested in, like books or movies. These systems aim at
addressing the problem of information overload, particularly on
the Web and in e-commerce. They make use of user profiles
that are built either from explicit or implicit feedback from the
user. The recommendation mechanism is based on comparing
items (content-based), user profiles (collaborative filtering) or
both [2].

Our system is comparable to recommender systems in that
recommends pathways based on user profiles. Like many
recommender systems it facilitates access to information
without requiring the user to formulate explicit queries.
Additionally, it uses similar techniques such as passive user
profiling [3, 4] based on server logs [5] and relies on the notion
of categories of users in the same manner as collaborative
systems.

However, in addition our system provides assistance based
on 3 different dimensions:

- the general community of users,
- categories specific to the user
- and individual user profiles.

Reconnaissance agents like those of the MIT Media Lab [6]

help users browse the Web. These interface agents are on the
client side to observe the user navigating and generate
profiles. When the user reaches a web page, they propose
links for further navigation. For example, the well-known Letizia
explores all the links on the page viewed by the user in order to
eliminate irrelevant links, and then recommends the links that
fit best with the user profile.

Likewise, our system provides navigation assistance
without interfering with the normal browsing behavior of the
user. Also, this assistance changes according to the position
of the user in the navigational space. However, our
recommendations are not only based on the profile of the user
but also on the experience of others.

Also, our attempt to build semantic links can be compared to
systems with ontology-based semantics. The idea of the
Semantic Web as proposed by Tim Berners-Lee and Jim
Hendler is based on coded ontologies permitting software
agents to “understand” the relationships between web pages
[7].

While we are not seeking to replace ontologies, indexes and
other repository metadata, we are taking a diametrically
opposite approach to metadata tagging – that is, constructing

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 64

an architecture that will allow us to experiment with
‘discovering’ rather than coding categories, communities and
other interesting semantics based on actual usage.

Our system does not require any ontology since it builds
semantic links (infers semantics from links) pragmatically,
based on the actual navigation of users. The advantage is that
the generation and the maintenance of links are dynamic,
hence our system adapts dynamically to any change within the
repository.

Although our system is obviously not suitable for
navigating the whole Web, it is based on generic principles
that make it adaptable to any sort of repository, from a
relational database of learning objects or other resources to a
local area network of web pages.

V. CONCLUSION AND FUTURE WORK

Coded metadata or indexing mechanisms fix the content

semantics of information repositories. We believe that we can
enhance users’ experiences in discovering information in rich
repositories by using the mechanism described in this paper to
derive semantics based on users’ navigations. Of particular
interest is the discovery of communities or categories of both
information and users, and uncovering untagged aspects of
complex objects relevant to the user community. The business
intelligence layer described in this paper has been designed as
a test bed for such experiments.

REFERENCES

[1] P. Resnick, H.R. Varian, “Recommender systems”,

Communications of the ACM, vol. 40 issue 3, p. 56-58, 1997.
[2] M. Balabanovic, Y. Shoham, “Fab: Content-Based, Collaborative

Recommendation”, Communications of the ACM, vol. 40 issue 3,
March 1997.

[3] D.M. Nichols, “Implicit Rating and Filtering”, in Proceedings of
the 5th DELOS Workshop on Filtering and Collaborative Filtering,
10-12 November 1997, Budapest, Hungary.

[4] M. Claypool, D. Brown, P. Le, M. Waseda, “Inferring User
Interest”, in IEEE Internet Computing, November/December 2001,
p. 32-39.

[5] K. Bradley, R. Rafter, B. Smyth, “Inferring Relevance Feedback
from Server Logs: A Case Study in Online Recruitment”, 2000, in
Proceedings of the 11th Irish Conference on Artificial Intelligence
and Cognitive Science (AICS 2000), Galway, Ireland.

[6] H. Lieberman, C. Fry, and L. Weitzman, “Exploring the Web with
Reconnaissance Agents”, in Communications of the ACM, Volume
44 Issue 8, August 2001.

[7] Web Ontology Working Group:
http://www.w3.org/2001/sw/WebOnt/

[8] Carnevale, Dan. (2001). “Some online educators turn to bite-sized
instruction”, Chronicle of Higher Education, May 3, 2001.
[Online] http://chronicle.com/free/2001/05/2001050301u.htm

[9] Downs, Stephen (May 2000). “Learning objects”. [Online]
Accessed: 25 March 2002.
(http://www.atl.ualberta.ca/downes/Learning_Objects.doc)

[10] http://socci.edna.edu.au/content/index.asp
[11] Rosch, E. (1978): Principles of categorization. In E. Rosch & B.

B. Lloyd (eds.): Cognition and categorization (pp. 27-48).
Hillsdale, NJ: Erlbaum

[12] Lakoff, G (1990): Women, Fire and Dangerous Things What
Categories Reveal about the Mind, University of Chicago Press,
Chicago

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 65

Appendix D: Source Code

1 Agent infrastructure

1. Class MAP.Middleware

using System;
using System.Windows.Forms;
using System.Diagnostics;

namespace MAP
{
 /// <summary>
 /// Utility class for the infrastructure management.
 /// Two configurations are possible: (1) this process on this
computer
 /// is the main host, i.e. the centralized parts of the
infrastructure
 /// reside in this process, or (2) this process is not the main host:
 /// it has to communicate with the remote main host for accessing the
 /// centralized parts of the infrastructure.
 /// These configurations depend on the way the infrastructure is
installed
 /// by method Install.
 /// </summary>
 public sealed class Middleware
 {
 // For Http Remoting operations
 internal static readonly int SERVER_PORT = 1989;
 internal static readonly int CLIENT_PORT = 1990;

 // Maximum latency time of network for Messages to be delivered
 public static readonly TimeSpan MAX_LATENCY = new TimeSpan(0,
0, 5);

 /// <summary>
 /// The address of the current process on this machine.
 /// </summary>
 public static readonly AgentAddress ThisAddress = new
AgentAddress(
 GetProcessId(), GetComputerName());

 /// <summary>
 /// The name of the main host machine, i.e. the one on which
the
 /// NS and the DF should reside. If this process is the main
host,
 /// then the value is "localhost".
 /// </summary>
 private static string MAIN_HOST;

 /// <summary>
 /// Returns the name of this computer.
 /// </summary>
 /// <returns></returns>
 public static string GetComputerName()
 {

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 66

 return SystemInformation.ComputerName.ToLower();
 }

 /// <summary>
 /// Returns the unique process ID of this process.
 /// </summary>
 /// <returns></returns>
 public static string GetProcessId()
 {
 return Process.GetCurrentProcess().Id.ToString();
 }

 /// <summary>
 /// Returns the name of the computer on which the main host
resides.
 /// </summary>
 /// <returns></returns>
 public static string GetMainHostName()
 {
 return MAIN_HOST;
 }

 /// <summary>
 /// Setups the agent infrastructure in this process as main
host.
 /// </summary>
 public static void Install()
 {
 Install("localhost");
 }

 /// <summary>
 /// Setups the agent infrastructure in this process. Parameter
is the machine
 /// name of the main host. If its value is "localhost" then
this process
 /// becomes the main host.
 /// </summary>
 /// <param name="mainHostName"></param>
 public static void Install(string mainHostName)
 {
 MAIN_HOST = mainHostName;
 NameServer.Install();
 DirectoryFacilitator.Install();
 // MessageTransporter does not need any install because
of MSMQ
 }

 /// <summary>
 /// Returns whether the specified AgentAddress is this host.
 /// </summary>
 /// <returns></returns>
 public static bool IsThisHost(AgentAddress address)
 {
 return ThisAddress.Equals(address);
 }

 /// <summary>
 /// Returns whether this process is the main host.
 /// </summary>
 /// <returns></returns>

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 67

 public static bool ProcessIsMainHost()
 {
 return GetMainHostName() == "localhost";
 }

 /// <summary>
 /// Uninstalls the agent infrastructure by cleaning up
resources
 /// (for example MSMQ queues).
 /// </summary>
 public static void Uninstall()
 {
 MessageTransporter.Uninstall();
 }

 // Class cannot be instantiated
 private Middleware() {}
 }
}

2. Class MAP.MessageTransporter

#define MULTI_PROCESSES // For testing several platforms on the same
machine
using System;
using System.Diagnostics;
using System.Collections;
using System.Messaging;

namespace MAP
{
 /// <summary>
 /// The MessageTransporter provides facilities for delivering
Messages to their
 /// recipient. Agents have to register to their MT in order to
receive an ID that
 /// allows them to receive Messages by the mean of the 'Recipient'
property.
 /// There is one instance of MT per machine. Each instance has a MSMQ
queue for
 /// receiving messages from other machines.
 /// </summary>
 public class MessageTransporter
 {
 // The singleton instance
 private static MessageTransporter instance;

 /// <summary>
 /// Defines the path of a MSMQ MessageQueue for IAgent
Messages.
 /// </summary>
 /// <param name="computer"></param>
 /// <param name="process"></param>
 /// <returns></returns>
 private static string MakePath(string computer, string process)
 {
 string path = computer + "\\private$\\agentmt";
 #if MULTI_PROCESSES
 path += process;
 #endif

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 68

 return path;
 }

 /// <summary>
 /// Returns the singleton instance.
 /// </summary>
 /// <returns></returns>
 public static MessageTransporter GetMT()
 {
 if (instance == null) instance = new
MessageTransporter();
 return instance;
 }

 /// <summary>
 /// Cleans up resources like MSMQ queues and kills all local
Agents.
 /// </summary>
 public static void Uninstall()
 {
 if (instance != null)
 {
 // Kill all local Agents
 lock(instance.table)
 {
 IList agents = new
ArrayList(instance.table.Values);
 foreach (IAgent ia in agents)
 {
 if (ia is Agent)
 {
 Agent agent = ia as Agent;
 agent.Terminate();
 }
 }
 }
 // Delete MSMQ queue

 System.Messaging.MessageQueue.Delete(instance.mQueue.Path);
 }
 }

 // A table of (agentID: string, agent: IAgent) referencing the
local agents
 private Hashtable table;
 // A table of (agentAddress, queue: MessageQueue) for
remembering
 // the MessageQueues of remote MessageTransporters.
 private Hashtable queueTable;
 // The own MessageQueue of this for receiving Messages.
 private System.Messaging.MessageQueue mQueue;

 /// <summary>
 /// Private constructor because this is singleton.
 /// </summary>
 private MessageTransporter()
 {
 // Initializes tables
 table = new Hashtable();
 queueTable = new Hashtable();
 // Creates own MessageQueue for receiving remote Messages

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 69

 string path = MakePath(".", Middleware.GetProcessId());
 if (! System.Messaging.MessageQueue.Exists(path))
 mQueue = System.Messaging.MessageQueue.Create(path);
 else
 mQueue = new System.Messaging.MessageQueue(path);
 // Setups asynchronous receiving
 mQueue.ReceiveCompleted +=
 new
ReceiveCompletedEventHandler(RemoteMessageArrived);
 mQueue.BeginReceive ();
 }

 /// <summary>
 /// Allows for the retrieval of a local IAgent from its ID.
 /// Returns null if not found.
 /// </summary>
 /// <param name="id"></param>
 /// <returns></returns>
 private IAgent FindAgent(AgentId id)
 {
 Debug.Assert(id != null);
 IAgent agent = null;
 lock (table)
 {
 if (table.ContainsKey(id))
 agent = (IAgent) table[id];
 else
 Console.WriteLine("Cannot find agent with id
{0} in process {1}",
 id, Middleware.ThisAddress);
 }
 return agent;
 }

 /// <summary>
 /// Returns the MessageQueue of a MessageTransporter on a
remote computer.
 /// </summary>
 /// <param name="computerName"></param>
 /// <returns></returns>
 private System.Messaging.MessageQueue
GetMessageQueue(AgentAddress address)
 {
 System.Messaging.MessageQueue queue = null;
 lock (queueTable)
 {
 if (queueTable.ContainsKey(address))
 // Queue already known
 queue = (System.Messaging.MessageQueue)
queueTable[address];
 else
 {
 // Get queue object
 System.Messaging.MessageQueue[] queues =
null;
 try
 {
 queues = System.Messaging.MessageQueue.

 GetPrivateQueuesByMachine(address.Computer);
 }

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 70

 catch
 {
 // Cannot get remote queues
 return null;
 }
 string path = MakePath(address.Computer,
address.Process);
 // Obtaining queue directly fails if it is
remote (.Net bug or
 // insufficient documentation?) so instead we
get all the private
 // queues on the remote machine and select
the right one. Not the
 // most efficient way, but it works.
 foreach (System.Messaging.MessageQueue q in
queues)
 {
 if (q.Path.EndsWith(path))
 {
 queue = q;
 break;
 }
 }
 if (queue != null) queueTable.Add(address,
queue);
 } // End queue already known
 } // End lock
 return queue;
 }

 /// <summary>
 /// Transmits a Message to the (possibly remote) recipient
IAgent.
 /// </summary>
 /// <param name="m"></param>
 public void PostMessage(Message m)
 {
 Debug.Assert(m != null);
 AgentId recipientId = m.Recipient;
 AgentAddress address =
NameServer.GetNS().FindAddressOf(recipientId);
 Debug.Assert(address != null);
 if (Middleware.IsThisHost(address))
 {
 // The specified computer name in the agent ID is
this computer
 // so the agent should be local
 IAgent recipient = FindAgent(recipientId);
 if (recipient != null)
 recipient.PostMessage(m);
 else
 Console.WriteLine("MT could not find
recipient "
 + " for {0} in host {1}", m,
Middleware.ThisAddress);
 }
 else
 {
 // Forward the Message to a remote
MessageTransporter via MSMQ

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 71

 System.Messaging.MessageQueue queue =
GetMessageQueue(address);
 if (queue == null)
 {
 // Failed to obtain queue
 Console.Write("Cannot find MSMQ queue on host
{0}",
 address);
 Console.WriteLine(" so cannot send message
{0}.", m);
 }
 else
 {
 // Queue successfully obtained
 System.Messaging.Message msg = new
System.Messaging.Message(m);
 msg.Formatter = new BinaryMessageFormatter();
 queue.Send(msg);
 }
 }
 }

 /// <summary>
 /// Allows IAgents to register and get an ID.
 /// </summary>
 /// <param name="agent"></param>
 /// <returns></returns>
 public AgentId Register(IAgent agent)
 {
 Debug.Assert(agent != null);
 AgentId id = null;
 lock (table)
 {
 if (!table.ContainsValue(agent))
 {
 do {id = AgentId.NewId();} while
(table.Contains(id));
 table.Add(id, agent);
 Console.WriteLine("MT - Added: {0} for {1}",
 id, agent);
 }// Else agent is already registered
 }
 // Register AgentAddress
 NameServer.GetNS().Register(id, Middleware.ThisAddress);
 return id;
 }

 /// <summary>
 /// Handles incoming Messages asynchronously.
 /// </summary>
 /// <param name="source"></param>
 /// <param name="asyncReceive"></param>
 private void RemoteMessageArrived(Object source,
 ReceiveCompletedEventArgs asyncReceive)
 {
 System.Messaging.MessageQueue queue =
(System.Messaging.MessageQueue)
 source;
 // Get the System.Messaging.Message
 System.Messaging.Message msqmMessage = queue.EndReceive(
 asyncReceive.AsyncResult);

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 72

 // Set up formatter for unserialization
 BinaryMessageFormatter reader = new
BinaryMessageFormatter();
 msqmMessage.Formatter = reader;
 // Get the Message and post it on this
 Message agentMsg = (Message) msqmMessage.Body;
 PostMessage(agentMsg);
 // Try to receive other messages
 queue.BeginReceive ();
 }

 /// <summary>
 /// Allows IAgents to unregister during their finalization.
 /// </summary>
 /// <param name="agent"></param>
 /// <returns></returns>
 public void Unregister(AgentId id)
 {
 NameServer.GetNS().Unregister(id);
 Debug.Assert(id != null);
 lock (table)
 {
 table.Remove(id);
 }
 }
 }
}

3. Class MAP.NameServer

using System;
using System.Collections;
using System.Diagnostics;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;

namespace MAP
{
 /// <summary>
 /// Name Server: maps AgentIds with AgentAddresses.
 /// The singleton NS resides on the main host only. Other hosts use a
proxy and
 /// synchronized remote calls to the instance on the main host.
 /// </summary>
 public class NameServer : MarshalByRefObject // For remote access
 {

 //****** STATIC PART ******

 // The unique instance.
 private static NameServer Instance;

 // Remoting parameters
 private static readonly string FUNCTION = "NS";

 /// <summary>
 /// Returns the singleton instance.
 /// </summary>
 /// <returns></returns>

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 73

 public static NameServer GetNS()
 {
 if (Instance == null) Install();
 return Instance;
 }

 /// <summary>
 /// Makes a (possibly remote) Name Server available on this
computer.
 /// This method is required because C# does not support static
initialization
 /// blocks.
 /// There is no need to call this method explicitly if the
platform on the
 /// main host is started first.
 /// </summary>
 public static void Install()
 {
 if (Instance != null) return; // Already installed
 if (Middleware.ProcessIsMainHost())
 InstallServer();
 else
 InstallClient();
 }

 /// <summary>
 /// Current process is not main host: get proxy to DF on main
host.
 /// </summary>
 private static void InstallClient()
 {
 string uri = "http://" + Middleware.GetMainHostName() +
":"
 + Middleware.SERVER_PORT + "/" + FUNCTION;
 // e.g.: http://samson.csse.monash.edu.au:1979/NS
 HttpChannel chan = new
HttpChannel(Middleware.CLIENT_PORT);
 ChannelServices.RegisterChannel(chan);
 try
 {
 Instance = (NameServer) Activator.GetObject(
 typeof (NameServer),
 uri);
 Console.WriteLine("NS - Available remotely");
 }
 catch(System.Net.WebException e)
 {
 // Cannot get proxy
 string msg = "Cannot find Name Server on main host:
"
 + uri + "\\n" + e.Message;
 throw new Exception(msg);
 }
 }

 /// <summary>
 /// Current process is main host: create DF and make it
accessible remotely.
 /// </summary>
 private static void InstallServer()
 {

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 74

 HttpChannel chan = new
HttpChannel(Middleware.SERVER_PORT);
 ChannelServices.RegisterChannel(chan);
 Instance = new NameServer();
 RemotingServices.Marshal(Instance, FUNCTION);
 Console.WriteLine("NS - Available locally");
 }

 //****** NON-STATIC PART ******

 // Table of (agentId, agentAddress)
 private Hashtable table;

 /// <summary>
 /// Private constructor because this is Singleton.
 /// </summary>
 private NameServer()
 {
 table = new Hashtable();
 }

 /// <summary>
 /// Allows for the retrieval of an AgentAddress. Returns null
if none found.
 /// </summary>
 /// <param name="agentId"></param>
 /// <returns></returns>
 public AgentAddress FindAddressOf(AgentId agentId)
 {
 Debug.Assert(agentId != null);
 AgentAddress address = null;
 lock (table)
 {
 if (table.ContainsKey(agentId))
 {
 // IAgent is registered
 address = (AgentAddress)table[agentId];
 }
 }
 return address;
 }

 /// <summary>
 /// Registers an IAgent. If already registered, updates its
address.
 /// </summary>
 /// <param name="agentId"></param>
 /// <param name="address"></param>
 public void Register(AgentId agentId, AgentAddress address)
 {
 Debug.Assert(agentId != null);
 Debug.Assert(address != null);
 lock (table)
 {
 if (!table.Contains(agentId))
 {
 table.Add(agentId, address);
 }
 else
 {

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 75

 table[agentId] = address;
 }
 }
 }

 /// <summary>
 /// Unregisters an IAgent. Does nothing is it is not registered
 /// </summary>
 /// <param name="agentId"></param>
 public void Unregister(AgentId agentId)
 {
 Debug.Assert(agentId != null);
 lock(table)
 {
 if (table.Contains(agentId))
 {
 table.Remove(agentId);
 }
 }
 }
 }
}

4. Class MAP.DirectoryFacilitator

using System;
using System.Collections;
using System.Diagnostics;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;

namespace MAP
{
 /// <summary>
 /// Directory Facilitator: helps service consumers find service
providers.
 /// The singleton DF resides on the main host only. Other hosts use a
proxy and
 /// synchronized remote calls to the instance on the main host.
 /// </summary>
 public class DirectoryFacilitator : MarshalByRefObject // For remote
access
 {

 //****** STATIC PART ******

 // The unique instance.
 private static DirectoryFacilitator Instance;

 // Remoting parameters
 private static readonly string FUNCTION = "DF";

 /// <summary>
 /// Returns the singleton instance.
 /// </summary>
 /// <returns></returns>
 public static DirectoryFacilitator GetDF()
 {
 if (Instance == null) Install();

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 76

 return Instance;
 }

 /// <summary>
 /// Makes a (possibly remote) Directory Facilitator available
on this computer.
 /// This method is required because C# does not support static
initialization
 /// blocks.
 /// There is no need to call this method explicitly if the
platform on the
 /// main host is started first.
 /// </summary>
 public static void Install()
 {
 if (Instance != null) return; // Already installed
 if (Middleware.ProcessIsMainHost())
 InstallServer();
 else
 InstallClient();
 }

 /// <summary>
 /// Current process is not main host: get proxy to DF on main
host.
 /// </summary>
 private static void InstallClient()
 {
 string uri = "http://" + Middleware.GetMainHostName() +
":"
 + Middleware.SERVER_PORT + "/" + FUNCTION;
 // e.g.: http://samson.csse.monash.edu.au:1989/DF
 try
 {
 Instance = (DirectoryFacilitator)
Activator.GetObject(
 typeof (DirectoryFacilitator),
 uri);
 Console.WriteLine("DF - Available remotely");
 }
 catch(System.Net.WebException e)
 {
 // Cannot get proxy
 string msg = "Cannot find Directory Facilitator on
main host: "
 + uri + "\\n" + e.Message;
 throw new Exception(msg);
 }
 }

 /// <summary>
 /// Current process is main host: create DF and make it
accessible remotely.
 /// </summary>
 private static void InstallServer()
 {
 Instance = new DirectoryFacilitator();
 RemotingServices.Marshal(Instance, FUNCTION);
 Console.WriteLine("DF - Available locally");
 }

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 77

 //****** NON-STATIC PART ******

 // Table of (service name, IProviderSet of agentIds)
 private Hashtable providersTable;

 /// <summary>
 /// Private constructor because this is Singleton.
 /// </summary>
 private DirectoryFacilitator()
 {
 providersTable = new Hashtable();
 }

 /// <summary>
 /// Allows for the retrieval of a service provider. Returns
null if none found.
 /// </summary>
 /// <param name="service"></param>
 /// <returns></returns>
 public AgentId FindProviderOf(string service)
 {
 Debug.Assert(service != null);
 AgentId providerId = null;
 lock (providersTable)
 {
 if (providersTable.ContainsKey(service))
 {
 // Service is registered
 IProviderSet aSet =
(IProviderSet)providersTable[service];
 providerId = aSet.SelectProvider();
 }
 }
 return providerId;
 }

 /// <summary>
 /// Registers a service provider.
 /// </summary>
 /// <param name="service"></param>
 /// <param name="agentId"></param>
 public void RegisterProvider(string service, AgentId agentId)
 {
 Debug.Assert(service != null);
 Debug.Assert(agentId != null);
 lock (providersTable)
 {
 if (providersTable.Contains(service))
 {
 // Service already registered
 IProviderSet providers =
(IProviderSet)providersTable[service];
 if (!providers.Contains(agentId))
 {
 providers.Add(agentId);
 }
 }
 else
 {
 // Register new service

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 78

 IProviderSet providers = new
ProviderSet(service, providersTable);
 providers.Add(agentId);
 providersTable.Add(service, providers);
 }
 }
 }

 /// <summary>
 /// Unregisters a service provider.
 /// Does nothing if the service provider is not registered.
 /// </summary>
 /// <param name="service"></param>
 /// <param name="agentId"></param>
 /// <returns></returns>
 public void Unregister(string service, AgentId agentId)
 {
 Debug.Assert(service != null);
 lock (providersTable)
 {
 if (providersTable.ContainsKey(service))
 {
 IProviderSet providers =
(IProviderSet)providersTable[service];
 if (providers.Contains(agentId))
 {
 providers.Remove(agentId);
 if (providers.Count == 0)
 {
 providersTable.Remove(service);
 }
 }
 }
 }
 }

 /// <summary>
 /// Unregisters an IAgent from all its registered services.
 /// </summary>
 /// <param name="agentId"></param>
 public void Unregister(AgentId agentId)
 {
 lock(providersTable)
 {
 IList list = new ArrayList(providersTable.Values);
 foreach (IProviderSet providers in list)
 {
 providers.Remove(agentId);
 }
 }
 }
 }

 /// <summary>
 /// Defines a set of providers for the same service.
 /// Allows, in particular, for the selection of a provider.
 /// </summary>
 interface IProviderSet
 {
 void Add(AgentId agentId);
 bool Contains(AgentId agentId);

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 79

 int Count {get;}
 void Remove(AgentId agentId);

 /// <summary>
 /// Selects one provider among the possible providers for the
service.
 /// </summary>
 AgentId SelectProvider();
 }

 /// <summary>
 /// Default implementation for IProviderSet.
 /// </summary>
 class ProviderSet : IProviderSet
 {
 private IList list;
 private readonly string _service;
 private readonly Hashtable _table;

 public ProviderSet(string service, Hashtable table)
 {
 list = new ArrayList();
 _service = service;
 _table = table;
 }
 public void Add(AgentId agentId)
 {
 if (!list.Contains(agentId))
 list.Add(agentId);
 }
 public bool Contains(AgentId agentId)
 {
 return list.Contains(agentId);
 }
 public int Count
 {
 get
 {
 return list.Count;
 }
 }
 public void Remove(AgentId agentId)
 {
 list.Remove(agentId);
 if (list.Count == 0)
 {
 lock(_table)
 {
 _table.Remove(_service);
 }
 }
 }
 public AgentId SelectProvider()
 {
 // Selects the first provider in the list and puts it at
the end
 // so that the selection is circular.
 Debug.Assert(Count > 0);
 object first = list[0];
 list.Remove(first);
 list.Add(first);

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 80

 return (AgentId) first;
 }
 }
}

5. Class MAP.Message

using System;

namespace MAP
{
 /// <summary>
 /// Defines messages for inter-agent communication.
 /// </summary>
 [Serializable]public class Message
 {
 // Message natures.
 public enum Natures {Request, Inform};

 private Natures _nature;
 private AgentId _sender, _recipient;
 private string _subject;
 private object _content;
 private Conversation _conversation;

 /// <summary>
 /// Message creation with a content object.
 /// The object must be serializable for remote communication.
 /// Warning: be sure not to break the encapsulation of the
agent's mental
 /// state in the case of local communication. If the object
belongs to the
 /// agent's state, be sure it is Marshal-By-Value and not
Marshal-By-Ref,
 /// or pass a deep copy of it.
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="recipient"></param>
 /// <param name="nature"></param>
 /// <param name="subject"></param>
 /// <param name="content"></param>
 public Message(AgentId sender, AgentId recipient, Natures
nature,
 string subject, object content)
 {
 _sender = sender;
 _recipient = recipient;
 _nature = nature;
 _subject = subject;
 _content = content;
 _conversation = null;
 }

 /// <summary>
 /// Simple message creation.
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="recipient"></param>
 /// <param name="nature"></param>
 /// <param name="subject"></param>

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 81

 public Message(AgentId sender, AgentId recipient, Natures
nature,
 string subject) : this(sender, recipient, nature,
subject, null) {}

 public object Content
 {
 get
 {
 return _content;
 }
 }
 public Conversation Conversation
 {
 get
 {
 return _conversation;
 }
 }
 public Natures Nature
 {
 get
 {
 return _nature;
 }
 }
 public AgentId Recipient
 {
 get
 {
 return _recipient;
 }
 set // Used for Message forwarding
 {
 _recipient = value;
 }
 }
 public AgentId Sender
 {
 get
 {
 return _sender;
 }
 set // Used for Message forwarding
 {
 _sender = value;
 }
 }
 internal void SetConversation(Conversation conversation)
 {
 _conversation = conversation;
 }
 public string Subject
 {
 get
 {
 return _subject;
 }
 }

 public override String ToString()

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 82

 {
 string contentStr = Content == null ? "" : (" content:" +
Content);
 return "[Message"
 //+ " from:" + Sender
 //+ " to:" + Recipient
 + " nature:" + Nature
 + " subject:" + Subject
 + contentStr + "]";
 }
 }
}

6. Class MAP. MessageCategory

using System;

namespace MAP
{
 /// <summary>
 /// Defines a category of Message through a nature and subject.
 /// </summary>
 public class MessageCategory
 {
 private Message.Natures _nature;
 private string _subject;

 public MessageCategory(Message.Natures nature, string subject)
 {
 _nature = nature;
 _subject = subject;
 }

 // For use with Hashtable
 public override bool Equals(object obj)
 {
 if (!(obj is MessageCategory)) return false;
 MessageCategory peer = (MessageCategory) obj;
 return
 peer.Subject == this.Subject
 &&
 peer.Nature == this.Nature;
 }

 /// <summary>
 /// Returns whether this is the category of the Message.
 /// </summary>
 /// <param name="m"></param>
 /// <returns></returns>
 public virtual bool IsCategoryOf(Message m)
 {
 if (m == null) return false;
 return
 m.Subject == this.Subject
 &&
 m.Nature == this.Nature;
 }

 // For use with Hashtable
 public override int GetHashCode()

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 83

 {
 return Subject.GetHashCode() + Nature.GetHashCode();
 }

 public Message.Natures Nature
 {
 get
 {
 return _nature;
 }
 }

 public string Subject
 {
 get
 {
 return _subject;
 }
 }

 public override string ToString()
 {
 return "[Nature:" + Nature + ", Subject:" + Subject +
"]";
 }
 }
}

2 Agent framework

7. Class MAP.AgentId

using System;

namespace MAP
{
 /// <summary>
 /// Defines a unique identifier for an IAgent.
 /// </summary>
 [Serializable]public class AgentId
 {
 private static readonly Object aLock = new Object();

 /// <summary>
 /// Generates a new unique ID.
 /// Current implementation is based on current time. Class Guid
could be used
 /// too.
 /// </summary>
 /// <returns></returns>
 public static AgentId NewId()
 {
 lock (aLock) // For being sure there is no duplicate with
current time
 {
 DateTime now = System.DateTime.Now;
 string name = "ag" + now.Year + now.Month + now.Day
+ now.Hour

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 84

 + now.Minute + now.Second + now.Millisecond;
 return new AgentId(name);
 }
 }

 private string _name;

 /// <summary>
 /// Constructor.
 /// </summary>
 /// <param name="name"></param>
 private AgentId(string name)
 {
 _name = name;
 }

 public string Name
 {
 get
 {
 return _name;
 }
 }

 public override bool Equals(object o)
 {
 if (!(o is AgentId)) return false;
 AgentId peer = (AgentId) o;
 return this.Name == peer.Name;
 }

 public override int GetHashCode()
 {
 return Name.GetHashCode();
 }

 public override string ToString()
 {
 return Name;
 }
 }
}

8. Class MAP.AgentAddress

using System;

namespace MAP
{
 /// <summary>
 /// Defines locations at which IAgents reside.
 /// </summary>
 [Serializable]public class AgentAddress
 {
 private string _process;
 private string _computer;

 /// <summary>
 /// Constructor. The address is composed by a process ID and a
computer

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 85

 /// name in order to allow for the retrieval of the process in
which the
 /// agent resides. Note: Process is for testing several
processes on the same
 /// machine: process identification can be removed eventually.
 /// </summary>
 /// <param name="process"></param>
 /// <param name="computer"></param>
 public AgentAddress(string process, string computer)
 {
 _process = process;
 _computer = computer;
 }

 public string Computer
 {
 get
 {
 return _computer;
 }
 }

 public string Process
 {
 get
 {
 return _process;
 }
 }

 public override bool Equals(object o)
 {
 if (!(o is AgentAddress)) return false;
 AgentAddress peer = (AgentAddress) o;
 return
 this.Process == peer.Process &&
 this.Computer == peer.Computer;
 }

 public override int GetHashCode()
 {
 return Process.GetHashCode() + Computer.GetHashCode();
 }

 public override string ToString()
 {
 return Process + "@" + Computer;
 }
 }
}

9. Class MAP.IAgent

namespace MAP
{
 /// <summary>
 /// Specifies a very generic definition of an agent as an object that
can
 /// be sent agent messages.
 /// </summary>

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 86

 public interface IAgent
 {
 /// <summary>
 /// Sends a Message to the agent.
 /// </summary>
 /// <param name="m"></param>
 void PostMessage(Message m);

 /// <summary>
 /// Returns the agent identifier.
 /// </summary>
 AgentId GetId();
 }
}

10. Class MAP.Agent

using System;
using System.Threading;
using System.Collections;

namespace MAP
{
 /// <summary>
 /// Defines a delegate that can be used for handling the
MessageArrived event for
 /// Conversations.
 /// </summary>
 public delegate void MessageArrivedEventHandler(Message m);

 /// <summary>
 /// Defines a generic design for agents. Instantiable subclasses must
provide an
 /// implementation for method Execute.
 /// </summary>
 public abstract class Agent : MarshalByRefObject, IAgent
 {
 // The Agent ID
 private readonly AgentId id;
 // Queue of Messages
 protected MessageQueue msgQueue;
 // Event raised when Messages arrive.
 internal event MessageArrivedEventHandler MessageArrived;
 // List of WeakReferences to the Threads depending on this and
its Activities
 private IList threads;
 // Main Thread
 private readonly Thread mainThread;

 /// <summary>
 /// To be invoked by subclasses.
 /// </summary>
 /// <param name="withMessageQueue"></param>
 protected Agent()
 {
 threads = new ArrayList();
 // Initialization of the queue of Messages.
 msgQueue = new MessageQueue(this);
 // Registration to the Message Transporter.
 id = MessageTransporter.GetMT().Register(this);

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 87

 // Start agent's main Thread.
 ThreadStart starter = new ThreadStart(Execute);
 mainThread = new Thread(starter);
 mainThread.Start();
 }

 /// <summary>
 /// Defines the meta-behaviour of the agent. The meta-behaviour
manipulates
 /// (starts, suspends, stops) all the different behaviours of
the Agent.
 /// </summary>
 protected abstract void Execute();

 /// <summary>
 /// See IAgent.GetId
 /// </summary>
 /// <returns></returns>
 public AgentId GetId()
 {
 return id;
 }

 /// <summary>
 /// Defines the default behaviour when a not-understood Message
is received.
 /// Called by MessageQueue.
 /// </summary>
 /// <param name="m"></param>
 protected internal virtual void MessageNotUnderstood(Message m)
 {
 Console.WriteLine("Not understood: {0} received by {1}",
m, this);
 }

 /// <summary>
 /// Returns a new Thread that is referenced by this so that
this has control
 /// over the Thread. Should only be called by subclasses or
class Activity.
 /// </summary>
 /// <param name="starter"></param>
 /// <returns></returns>
 internal protected Thread NewThread(ThreadStart starter)
 {
 Thread t = new Thread(starter);
 // A WeakReference references the Thread until its
finalization starts
 // Look for already existing free WeakReferences in the
List
 for (int i = 0; i < threads.Count; i++)
 {
 WeakReference wr = (WeakReference) threads[i];
 if (!wr.IsAlive)
 {
 // This WeakReference is free: use it
 wr.Target = t;
 return t;
 }
 }
 // No free WeakReference found: create and add a new one

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 88

 WeakReference weak = new WeakReference(t);
 threads.Add(weak);
 return t;
 }

 /// <summary>
 /// See IAgent. Enqueues all Messages in the MessageQueue
except if they
 /// belong to an already started Conversation.
 /// </summary>
 /// <param name="m"></param>
 public void PostMessage(Message m)
 {
 Conversation conv = m.Conversation;
 if (conv == null || !conv.IsHandled)
 // Message is not handled by a Conversation so push
it in the
 // MessageQueue
 msgQueue.Enqueue(m);
 else
 // Notify Conversation (asynchronous because it is
an event)
 if (MessageArrived != null) MessageArrived(m);
 }

 /// <summary>
 /// A shortcut for posting a Message to the local
MessageTransporter.
 /// </summary>
 /// <param name="m"></param>
 protected void SendMessage(Message m)
 {
 MessageTransporter.GetMT().PostMessage(m);
 }

 /// <summary>
 /// Should be called when method Execute terminates or when
Middleware is
 /// uninstalled.
 /// Unregisters this from the system and aborts all own
Threads.
 /// Can be overriden for making some work before terminating
but base method
 /// must always be invoked.
 /// </summary>
 protected internal virtual void Terminate()
 {
 // If method is not called by main Thread, abort main
Thread, i.e.
 // kill Agent
 if (!Thread.CurrentThread.Equals(mainThread))
 {
 try {mainThread.Abort();}
 catch(ThreadStateException)
 {
 Console.WriteLine("Cannot abort main Thread
in {0}", this);
 }
 }
 // Unregister this
 MessageTransporter.GetMT().Unregister(GetId());

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 89

 DirectoryFacilitator.GetDF().Unregister(GetId());
 // Abort all dependent threads
 for (int i = 0; i < threads.Count; i++)
 {
 WeakReference wr = (WeakReference) threads[i];
 Thread t = (Thread) wr.Target;
 if (t != null)
 t.Abort();
 }
 }

 public override String ToString()
 {
 return "[Agent:" + GetType().Name + "]";
 //return "[Agent:" + GetId() + "]";
 }
 }
}

11. Class MAP.Activity

using System;
using System.Threading;
using System.Collections;

namespace MAP
{
 /// <summary>
 /// Defines a piece of behaviour for an Agent.
 /// It is aimed at providing modularity in the implementation of an
Agent's
 /// behaviour. An Activity can have its own data, allowing for a
clear
 /// separation between activity-dependent data and the Agent's mental
state.
 /// If work involves multithreading, Threads should be created via
the NewThread
 /// method for allowing the Agent to keep control over its behaviour.
 /// </summary>
 public abstract class Activity
 {
 // The Agent this belongs to.
 protected readonly Agent agent;

 // The Thread that executes this
 protected Thread mainThread;

 protected Activity(Agent ag)
 {
 agent = ag;
 mainThread = null;
 }

 /// <summary>
 /// Defines the work performed by this when its main thread is
started.
 /// Default implementation does nothing (thread finishes
immediately).
 /// </summary>
 public virtual void Execute() {}

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 90

 /// <summary>
 /// Returns the main Thread owned by this. Returns null if
thread has never
 /// been started.
 /// Allows for the control by the agent over its behaviour.
 /// </summary>
 public Thread MainThread
 {
 get
 {
 return mainThread;
 }
 }

 /// <summary>
 /// Returns a new thread that is referenced by the agent for
control.
 /// </summary>
 /// <param name="starter"></param>
 /// <returns></returns>
 protected Thread NewThread(ThreadStart starter)
 {
 return agent.NewThread(starter);
 }

 /// <summary>
 /// A shortcut for posting a Message to the local
MessageTransporter.
 /// </summary>
 /// <param name="m"></param>
 protected void SendMessage(Message m)
 {
 MessageTransporter.GetMT().PostMessage(m);
 }

 /// <summary>
 /// Starts the main thread of this. Main thread executes method
Execute.
 /// </summary>
 public void Start()
 {
 ThreadStart starter = new ThreadStart(Execute);
 mainThread = NewThread(starter);
 mainThread.Start();
 }

 public override string ToString()
 {
 return "[Activity:" + base.ToString() + "]";
 }
 }
}

12. Class MAP.Conversation

using System;
using System.Threading;

namespace MAP

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 91

{
 /// <summary>
 /// Allows for specific conversations between Agents with
synchronized and
 /// asynchronized Message sending.
 /// Conversation messages are not stored into the Agent's
MessageQueue after the
 /// Conversation has been initiated, i.e. the Agent has sent at least
one Message
 /// as part of the Conversation. Instead, Messages are obtained
directly from the
 /// Conversation object by the mean of the MessageArrived event of
the Agent.
 /// </summary>
 [Serializable]public class Conversation : ICloneable
 {
 // Last received Message in the synchronized and async cases
 private Message syncReply, asyncReply;
 // To get the agent's MessageArrived event
 private Agent agent;
 // The main lock
 private Object aLock;
 // Whether a Message is expected after an async Message sending
 private bool expectingMessage;
 // MessageArrived event handlers
 private MessageArrivedEventHandler syncHandler, asyncHandler;
 // Unique ID of this
 private Guid identifier;
 // States and current state
 private enum States {JUST_CREATED, NOT_INITIATED, INITIATED,
CLOSED};
 private States currentState;

 public Conversation() : this(Guid.NewGuid(),
States.JUST_CREATED) {}

 private Conversation(Guid id, States state)
 {
 identifier = id;
 syncReply = null;
 asyncReply = null;
 expectingMessage = false;
 aLock = new Object();
 agent = null;
 currentState = state;
 syncHandler = new
MessageArrivedEventHandler(HandleSyncNotification);
 asyncHandler = new
MessageArrivedEventHandler(HandleAsyncNotification);
 }

 /// <summary>
 /// Returns whether a Message belongs to the context of this.
 /// </summary>
 /// <param name="m"></param>
 /// <returns></returns>
 public bool AppliesTo(Message m)
 {
 return this.Equals(m.Conversation);
 }

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 92

 /// <summary>
 /// Sends a Message asynchronously in the context of this.
 /// Reply can be detected through the ExpectingReply and Reply
properties.
 /// Raises an exception if a reply to an AsyncSend is already
expected.
 /// </summary>
 /// <param name="m"></param>
 /// <param name="ag"></param>
 /// <returns></returns>
 public void AsyncSend(Message m, Agent ag)
 {
 Monitor.Enter(aLock);
 CheckState();
 asyncReply = null;
 expectingMessage = true;
 agent = ag;
 agent.MessageArrived += asyncHandler;
 m.SetConversation(GetUpdatedClone());
 MessageTransporter.GetMT().PostMessage(m);
 Monitor.Exit(aLock);
 }

 /// <summary>
 /// Checks that a reply to an AsyncSend is not expected.
 /// Called by SendAndWait and AsyncSend.
 /// </summary>
 private void CheckState()
 {
 // Supposedly holding lock already
 if (expectingMessage || currentState == States.CLOSED)
 {
 Monitor.Exit(aLock);
 throw new Exception("Cannot send message because a
"
 + "reply is expected or Conversation is
closed.");
 }
 }

 public object Clone()
 {
 return new Conversation(this.identifier,
this.currentState);
 }

 /// <summary>
 /// Closes this, i.e. it becomes impossible to send Messages in
the context of
 /// this, and if a Message is expected after an AsyncSend then
it is ignored.
 /// </summary>
 public void Close()
 {
 Monitor.Enter(aLock);
 if (expectingMessage)
 {
 agent.MessageArrived -= asyncHandler;
 expectingMessage = false;
 }
 currentState = States.CLOSED;

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 93

 Monitor.Exit(aLock);
 }

 public override bool Equals(object obj)
 {
 if (obj == null || !(obj is Conversation)) return false;
 Conversation peer = (Conversation) obj;
 return this.identifier.Equals(peer.identifier);
 }

 /// <summary>
 /// Returns whether a reply is expected in the context of this.
 /// True only after an AsyncSend until Reply becomes not null.
 /// </summary>
 public bool IsExpectingReply
 {
 get
 {
 lock (aLock) {return expectingMessage;}
 }
 }

 public override int GetHashCode()
 {
 return identifier.GetHashCode();
 }

 /// <summary>
 /// Gets a clone to send and updates states of clone and this.
 /// </summary>
 /// <returns></returns>
 private Conversation GetUpdatedClone()
 {
 // Clone because can be used by local peer Agent
 Conversation clone = (Conversation)this.Clone();
 if (currentState == States.JUST_CREATED)
 {
 clone.currentState = States.NOT_INITIATED;
 this.currentState = States.INITIATED;
 }
 else if (currentState == States.NOT_INITIATED)
 {
 clone.currentState = States.INITIATED;
 this.currentState = States.INITIATED;
 } // If state = INITIATED or CLOSED than keep state
 return clone;
 }

 /// <summary>
 /// Called by event MessageArrived in MessageQueue after an
AsyncSend.
 /// </summary>
 /// <param name="m"></param>
 private void HandleAsyncNotification(Message m)
 {
 Monitor.Enter(aLock);
 if (this.AppliesTo(m))
 {
 asyncReply = m;
 agent.MessageArrived -= asyncHandler;
 agent = null;

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 94

 expectingMessage = false;
 }
 Monitor.Exit(aLock);
 }

 /// <summary>
 /// Called by event MessageArrived in MessageQueue after a
SendWaitForReply.
 /// </summary>
 /// <param name="m"></param>
 private void HandleSyncNotification(Message m)
 {
 Monitor.Enter(aLock);
 if (this.AppliesTo(m))
 {
 syncReply = m;
 Monitor.Pulse(aLock); // Awakens thread in
SendWaitForReply
 }
 Monitor.Exit(aLock);
 }

 /// <summary>
 /// Returns whether Messages in the context of this do not need
to be pushed
 /// into the Agent's MessageQueue since they are handled
already.
 /// </summary>
 internal bool IsHandled
 {
 get
 {
 return currentState != States.NOT_INITIATED;
 }
 }

 /// <summary>
 /// Returns the Message received in the context of this after
an AsyncSend.
 /// </summary>
 public Message Reply
 {
 get
 {
 lock (aLock) {return asyncReply;}
 }
 }

 /// <summary>
 /// Sends a Message asynchronously in the context of this and
closes this.
 /// </summary>
 /// <param name="m"></param>
 /// <returns></returns>
 public void SendAndClose(Message m)
 {
 CheckState();
 currentState = States.CLOSED;
 m.SetConversation(GetUpdatedClone());
 MessageTransporter.GetMT().PostMessage(m);
 }

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 95

 /// <summary>
 /// Allows for synchronized Message exchanges between Agents.
 /// Raises an exception if a reply to an AsyncSend is expected.
 /// </summary>
 /// <param name="m"></param>
 /// <param name="ag"></param>
 /// <returns></returns>
 public Message SendWaitForReply(Message m, Agent ag)
 {
 Monitor.Enter(aLock);
 CheckState();
 syncReply = null;
 agent = ag;
 agent.MessageArrived += syncHandler;
 m.SetConversation(GetUpdatedClone());
 MessageTransporter.GetMT().PostMessage(m);
 Monitor.Wait(aLock); // Wait for notification
 agent.MessageArrived -= syncHandler;
 Monitor.Exit(aLock);
 agent = null;
 return syncReply;
 }

 }
}

3 Application

13. Class Architecture.UserId

using System;

namespace Architecture
{
 /// <summary>
 /// Defines a unique user identifier.
 /// </summary>
 [Serializable]public class UserId
 {
 // The static IP address of the user
 private string _ip;

 public UserId(string ipAddress)
 {
 _ip = ipAddress;
 }

 public string IPAddress
 {
 get
 {
 return _ip;
 }
 }

 public override bool Equals(object obj)
 {

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 96

 if (!(obj is UserId)) return false;
 UserId peer = (UserId) obj;
 return peer.IPAddress == this.IPAddress;
 }

 public override int GetHashCode()
 {
 return _ip.GetHashCode();
 }

 public override string ToString()
 {
 return "[User IP:" + IPAddress + "]";
 }

 }
}

14. Class Architecture.ResourceId

using System;

namespace Architecture
{
 /// <summary>
 /// Defines an identifier for a resource in a repository.
 /// </summary>
 [Serializable]public class ResourceId
 {
 // Simply the full unique name of the resource
 private string _resourceName;

 public ResourceId(string resourceName)
 {
 _resourceName = resourceName;
 }

 public string Name
 {
 get
 {
 return _resourceName;
 }
 }

 public override bool Equals(object obj)
 {
 if (!(obj is ResourceId)) return false;
 ResourceId peer = (ResourceId) obj;
 return peer.Name == this.Name;
 }

 public override int GetHashCode()
 {
 return _resourceName.GetHashCode();
 }

 /// <summary>
 /// Returns the name of the service consisting in managing the
corresponding

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 97

 /// resource.
 /// </summary>
 /// <returns></returns>
 public string GetManagingService()
 {
 return "Resource_management_" + Name;
 }

 public override string ToString()
 {
 return "[Resource:" + Name + "]";
 }

 }
}

15. Structs for message contents

using System;
using Architecture.Profiles;

namespace Architecture
{
 public struct Subjects
 {
 public static readonly string BIGeneration =
"Business_intelligence_generate";
 public static readonly string Navig = "Navigation_act";
 public static readonly string UACreation = "User_agent_create";
 public static readonly string UAReady = "User_agent_ready";
 public static readonly string SaveUserProfile =
"Save_user_profile";
 public static readonly string TerminationAccepted =
"Termination_ok";
 public static readonly string TerminationRequest =
"Termination_request";
 }

 [Serializable]public struct NavigationActContent
 {
 public UserId userId;
 public ResourceId resourceId;
 public DateTime timestamp;

 public NavigationActContent(UserId user, ResourceId resource,
 DateTime occurrenceTimestamp)
 {
 userId = user;
 resourceId = resource;
 timestamp = occurrenceTimestamp;
 }
 }
}

16. Class Architecture.UAProxyAg – User Agent
Proxy

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 98

using System;
using System.Collections;
using System.Diagnostics;
using System.Threading;
using MAP;

namespace Architecture
{
 /// <summary>
 /// User Agents Proxy agent.
 /// </summary>
 public class UAProxyAg : Agent
 {
 public static readonly string SERVICE = "User_agents_proxy";

 // Message filters
 private static readonly MessageCategory Navigation =
 new MessageCategory(Message.Natures.Inform,
Subjects.Navig);
 private static readonly MessageCategory ReadyNotification =
 new MessageCategory(Message.Natures.Inform,
Subjects.UAReady);

 // Table of (userId : UserId, UserAgentData : UAData)
 // For knowing all the UserAgents' states.
 private Hashtable uaTable;
 // UserAgent maker
 internal AgentId uaMaker;

 public UAProxyAg() : base()
 {
 DirectoryFacilitator.GetDF().RegisterProvider(SERVICE,
GetId());
 uaTable = Hashtable.Synchronized(new Hashtable());
 msgQueue.AddFilters(new MessageCategory[]
 {Navigation, ReadyNotification});
 uaMaker = DirectoryFacilitator.GetDF().FindProviderOf(
 UAMakerAg.SERVICE);
 Debug.Assert(uaMaker != null);
 }

 protected override void Execute()
 {
 Step1: // Waiting
 while (msgQueue.IsEmpty);
 Message m = msgQueue.Dequeue();
 if (Navigation.IsCategoryOf(m)) goto Step2;
 else goto Step3;

 Step2: // Initiating NavigationHandling Activity
 RunNavigationHandling(m);
 goto Step1;
 Step3: // Initiating TerminationExamination Activity
 RunTerminationExamination(m);
 goto Step1;
 }

 private void RunNavigationHandling(Message m)
 {
 new NavigationHandlingActivity(this, uaTable, m).Start();

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 99

 }

 private void RunTerminationExamination(Message m)
 {
 new TerminationExaminationActivity(this, uaTable, m,
 m.Conversation).Start();
 }
 }

 /// <summary>
 /// Data about a User Agent in uaTable in UAProxyAg
 /// </summary>
 class UAData
 {
 public enum States {AVAILABLE, BEING_CREATED, TERMINATED};

 public AgentId agent;
 public States state;
 public DateTime lastMessageTimestamp;
 public Queue messages;

 public UAData()
 {
 agent = null;
 state = States.BEING_CREATED;
 lastMessageTimestamp = DateTime.Now;
 messages = null;
 }
 }

 class NavigationHandlingActivity : Activity
 {
 private Message message;
 private Hashtable uaTable;

 public NavigationHandlingActivity(Agent agent, Hashtable
_uaTable,
 Message _message) : base(agent)
 {
 message = _message;
 uaTable = _uaTable;
 }

 public override void Execute() {
 NavigationActContent navig =
(NavigationActContent)message.Content;
 UserId userId = navig.userId;

 // Checking UserAgent state
 UAData data = (UAData) uaTable[userId]; // uaTable is
synchronized
 if (data == null)
 {
 // Create new entry in table
 data = new UAData();
 Monitor.Enter(data); // LOCK
ON on UAData
 uaTable.Add(userId, data);
 InitiateUACreation(data, userId);
 }
 else

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 100

 {
 Monitor.Enter(data); // LOCK
ON on UAData
 UAData.States state = data.state;
 if (state == UAData.States.AVAILABLE)
 {
 ForwardMessage(data);
 }
 else if (state == UAData.States.BEING_CREATED)
 {
 UpdateMessageQueue(data);
 }
 else // state == TERMINATED
 {
 InitiateUACreation(data, userId);
 }
 }
 }

 private void FinishUACreation(UAData data, UserId userId)
 {
 // Forward all Messages in waiting queue
 foreach (Message m in data.messages)
 {
 m.Sender = agent.GetId();
 m.Recipient = data.agent;
 SendMessage(m);
 }
 data.messages = null;
 data.state = UAData.States.AVAILABLE;
 Monitor.Exit(data); //
LOCK OFF on UAData
 }

 private void ForwardMessage(UAData data)
 {
 data.lastMessageTimestamp = DateTime.Now;
 message.Sender = agent.GetId();
 message.Recipient = data.agent;
 Monitor.Exit(data); //
LOCK OFF on UAData
 SendMessage(message);
 }

 private void InitiateUACreation(UAData data, UserId userId)
 {
 data.state = UAData.States.BEING_CREATED;
 // Create queue of waiting Messages
 data.messages = new Queue();
 data.messages.Enqueue(message);
 Monitor.Exit(data); //
LOCK OFF on UAData
 // data can be accessed again: threads that access it
will be in the
 // BEING_CREATED case
 Message reply = RequestUACreation(userId);

 Monitor.Enter(data); // LOCK
ON on UAData
 data.agent = reply.Sender;
 FinishUACreation(data, userId);

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 101

 }

 private Message RequestUACreation(UserId userId)
 {
 Message m = new Message(agent.GetId(),
((UAProxyAg)agent).uaMaker,
 Message.Natures.Request, Subjects.UACreation,
userId);
 Conversation conv = new Conversation();
 Message reply = conv.SendWaitForReply(m, agent);
 return reply;
 }

 private void UpdateMessageQueue(UAData data)
 {
 Debug.Assert(data.messages != null);
 data.messages.Enqueue(message);
 data.lastMessageTimestamp = DateTime.Now;
 Monitor.Exit(data); //
LOCK OFF on UAData
 }
 }

 class TerminationExaminationActivity : Activity
 {
 // Security time gap for confirming agent termination
 private static TimeSpan SecurityGap =
Middleware.MAX_LATENCY.Add(
 Middleware.MAX_LATENCY.Add(Middleware.MAX_LATENCY));

 // The Message sent by the UserAgent as a termination request
 private Message message;
 private Hashtable uaTable;
 private Conversation conversation;

 public TerminationExaminationActivity(Agent agent, Hashtable
_uaTable,
 Message _message, Conversation _conversation) :
base(agent)
 {
 message = _message;
 uaTable = _uaTable;
 conversation = _conversation;
 }

 public override void Execute()
 {
 UserId userId = (UserId)message.Content;
 UAData data = (UAData) uaTable[userId]; // uaTable is
synchronized
 Debug.Assert(data != null);
 Monitor.Enter(data); // LOCK ON on UAData
 if (CheckIdleTime(data.lastMessageTimestamp))
 {
 data.state = UAData.States.TERMINATED;
 Monitor.Exit(data); // LOCK OFF on
UAData
 SendConfirmation();
 }
 else
 {

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 102

 Monitor.Exit(data); // LOCK OFF on
UAData
 SendDenial();
 }
 }

 // Checks that the last Message sent to the UserAgent was sent
long enough
 // ago to be sure that it has arrived
 private bool CheckIdleTime(DateTime timestamp)
 {
 TimeSpan gap = DateTime.Now.Subtract(timestamp);
 // Sent since a time that is greater than the security
gap
 return gap.CompareTo(SecurityGap) > 0;
 }

 private void SendConfirmation()
 {
 Message m = new Message(agent.GetId(), message.Sender,
 Message.Natures.Inform,
Subjects.TerminationAccepted);
 conversation.SendAndClose(m);
 }

 private void SendDenial()
 {
 Message m = new Message(agent.GetId(), message.Sender,
 Message.Natures.Inform, "Deny termination");
 conversation.SendAndClose(m);
 }
 }
}

17. Class Architecture.UAMakerAg – User Agent
Maker

using System;
using System.Threading;
using MAP;

namespace Architecture
{
 /// <summary>
 /// Plays the role of a factory for UserAgents.
 /// </summary>
 public class UAMakerAg : Agent
 {
 public static readonly string SERVICE = "User_agent_factory";

 // Message filter
 public static readonly MessageCategory UACreation = new
MessageCategory(
 Message.Natures.Request, Subjects.UACreation);

 public UAMakerAg() : base()
 {
 DirectoryFacilitator.GetDF().RegisterProvider(SERVICE,
GetId());

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 103

 msgQueue.AddFilters(new MessageCategory[] {UACreation});
 }

 protected override void Execute()
 {
 while (true)
 {
 while (msgQueue.IsEmpty);
 Message m = msgQueue.Dequeue();
 new AgentMakingActivity(this, m).Start();
 }
 }
 }

 class AgentMakingActivity : Activity
 {
 private Message requestMessage;

 public AgentMakingActivity(Agent agent, Message request) :
base(agent)
 {
 requestMessage = request;
 }

 public override void Execute()
 {
 UserId userId = (UserId) requestMessage.Content;
 Conversation conversation = requestMessage.Conversation;
 // CALL TO DBMANAGER HERE
 new UserAg(userId, conversation);
 }
 }
}

18. Class Architecture.UserAg – User Agent

using System;
using MAP;
using Architecture.Profiles;
using System.Diagnostics;

namespace Architecture
{
 /// <summary>
 /// User Agent class.
 /// </summary>
 public class UserAg : Agent
 {
 // Threshold timespan after which this terminates if not
notified of any
 // user navigation act
 public static TimeSpan STOP_THRESHOLD = new TimeSpan(0, 30, 0);

 // ID of user managed and UP
 private UserId user;
 private UP userProfile;
 // UserAgent and NodeAgent Proxy IDs
 private AgentId proxy;
 // Message filter
 private MessageCategory Navigation = new MessageCategory(

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 104

 Message.Natures.Inform, Subjects.Navig);
 // Last resource explored
 private ResourceId lastResource;
 // Previous Link traversed
 private UPLink prevLink;
 // Timestamp of arrival on previous resource
 private DateTime prevArrival;
 // Conversation between UAProxy and UAMaker for the creation of
this
 private Conversation initConversation;

 public UserAg(UserId userId, Conversation conversation)
 {
 user = userId;
 userProfile = UP.CreateUP(userId);
 initConversation = conversation;
 UserAgInit();
 }

 public UserAg(UserId userId, string[] supNames, Conversation
conversation)
 {
 user = userId;
 userProfile = UP.CreateUP(userId, supNames);
 initConversation = conversation;
 UserAgInit();
 }

 private void UserAgInit()
 {
 lastResource = null; prevLink = null;
 msgQueue.AddFilters(new MessageCategory[] {Navigation});
 proxy = DirectoryFacilitator.GetDF().FindProviderOf(
 UAProxyAg.SERVICE);
 Debug.Assert(proxy != null);
 }

 protected override void Execute()
 {
 DateTime idleStart = DateTime.Now;
 NotifyProxy();
 Message m;
 NavigationActContent navig;

 Step1: // Wait
 while (msgQueue.IsEmpty)
 if (ThresholdTimeExpired(idleStart)) goto
Step2;
 goto Step4;

 Step2: // Pre-termination
 SaveData(); // Before termination request otherwise
a new UA could be
 // created and initialized before
data is saved
 Conversation termConv = RequestTermination();
 while (termConv.IsExpectingReply &&
msgQueue.IsEmpty);
 if (!msgQueue.IsEmpty)
 {

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 105

 // Message received: interrupt pre-
termination phase
 termConv.Close();
 idleStart = DateTime.Now;
 goto Step1;
 }
 // Answer from proxy received
 Message answer = termConv.Reply;
 bool authorized = (answer.Subject ==
Subjects.TerminationAccepted);
 if (authorized) goto Step3;
 else
 {
 // Add network latency time for waiting a bit
more
 idleStart.Add(Middleware.MAX_LATENCY);
 goto Step1;
 }

 Step3: // Terminating
 Terminate();
 return;

 Step4: // Handling user's navigation
 m = msgQueue.Dequeue();
 navig = (NavigationActContent) m.Content;
 UpdateProfile(navig);
 if (!msgQueue.IsEmpty) goto Step4;
 else goto Step5;

 Step5: // BI generation initiation
 RequestBIGeneration();
 idleStart = DateTime.Now;
 goto Step1;
 }

 // ****** Agent activities and transitions ******

 // Inform UserAgentProxy that this is ready
 private void NotifyProxy()
 {
 Message m = new Message(GetId(), proxy,
Message.Natures.Inform,
 Subjects.UAReady);
 initConversation.SendAndClose(m);
 initConversation = null;
 }

 private void RequestBIGeneration()
 {
 AgentId generator =
DirectoryFacilitator.GetDF().FindProviderOf(
 BIGeneratorAg.SERVICE);
 Debug.Assert(generator != null);
 Message m = new Message(GetId(), generator,
Message.Natures.Request,
 Subjects.BIGeneration, userProfile);
 SendMessage(m);
 }

 private Conversation RequestTermination()

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 106

 {
 Message m = new Message(GetId(), proxy,
Message.Natures.Request,
 Subjects.TerminationRequest);
 Conversation termConv = new Conversation();
 termConv.AsyncSend(m, this);
 return termConv;
 }

 private void SaveData()
 {
 // Useless for the moment since all User Profile data is
static
 /*
 AgentId dbManager =
DirectoryFacilitator.GetDF().FindProviderOf(
 DBManagerAg.SERVICE);
 Message m = new Message(GetId(), dbManager,
Message.Natures.Request,
 Subjects.SaveUP, userProfile);
 // Wait until operation is finished
 Conversation c = new Conversation();
 c.SendWaitForReply(m, this);*/
 }

 private bool ThresholdTimeExpired(DateTime idleStart)
 {
 return DateTime.Now.Subtract(idleStart) > STOP_THRESHOLD;
 }

 private void UpdateProfile(NavigationActContent navig)
 {
 ResourceId newResource = navig.resourceId;
 if (lastResource == null)
 // No previous resource navigated
 userProfile.AddNodeOn(newResource);
 else
 {
 // User comes from another resource
 if (prevLink != null)
 {
 // User comes from another Link
 // Update read time on previous Link
 TimeSpan elapsed =
navig.timestamp.Subtract(prevArrival);

 prevLink.AddReadTime((long)elapsed.TotalMilliseconds);
 }
 // Add/get new Link
 prevLink = userProfile.AddLinkBetween(lastResource,
newResource)
 as UPLink;
 }
 userProfile.LastTimestamp = navig.timestamp;
 prevArrival = navig.timestamp;
 lastResource = newResource;
 Console.WriteLine(userProfile);
 }

 }
}

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 107

19. Class Architecture.DBManagerAg – Database
manager

using System;
using System.Data;
using System.Data.SqlClient;
using MAP;
using Architecture.Profiles;

namespace Architecture
{
 /// <summary>
 /// Database Manager.
 /// </summary>
 public class DBManagerAg : Agent
 {
 public static readonly string SERVICE = "DB_management";

 // Database name
 private static readonly string DB = "agentdb";

 private SqlConnection connection;
 private DataSet upDataSet;

 public DBManagerAg() {}

 protected override void Execute()
 {
 Initialize();
 CleanupDB();

 /*
 // Nodes
 ResourceId a = new ResourceId("a");
 ResourceId b = new ResourceId("b");
 ResourceId c = new ResourceId("c");
 ResourceId d = new ResourceId("d");
 ResourceId e = new ResourceId("e");

 // Create a SUP
 string supName = "My SUP";
 SUP sup = SUP.GetSUP(supName);
 if (sup == null) sup = SUP.CreateSUP(supName, "A dummy
description");
 sup.AddLinkBetween(a, b);
 sup.AddLinkBetween(b, c);
 sup.AddLinkBetween(d, b);
 sup.AddLinkBetween(b, d);

 // Create an UP
 UP up = UP.CreateUP(new UserId("1.1.1.1"), new string[]
{supName});
 up.AddLinkBetween(a, b);
 up.AddLinkBetween(b, c);
 up.AddLinkBetween(c, b);
 UPLink link = up.GetLinkBetween(b, c) as UPLink;
 link.Traverse();
 link.AddReadTime((long)1500);

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 108

 Console.WriteLine("Done");*/
 }

 /// <summary>
 /// Deletes all data in DB.
 /// </summary>
 private void CleanupDB()
 {
 try
 {
 connection.Open();
 UP.Cleanup(connection);
 Console.WriteLine("{0} - DB cleaned up", this);
 }
 catch (Exception e)
 {
 Console.WriteLine("{0} - Cannot clean up DB: {1}",
this, e);
 }
 finally
 {
 connection.Close();
 }
 }

 /// <summary>
 /// Agent initialization.
 /// </summary>
 private void Initialize()
 {
 Console.WriteLine("{0} - Initializing data from local SQL
DB '{1}'...",
 this, DB);
 InitializeData();
 Console.WriteLine("{0} - Ready", this);
 DirectoryFacilitator.GetDF().RegisterProvider(SERVICE,
GetId());
 }

 /// <summary>
 /// Fills DataSet with DB data.
 /// </summary>
 private void InitializeData()
 {
 try
 {
 connection = new SqlConnection(

 "server=(local)\\;Trusted_Connection=yes;database=" + DB);
 upDataSet = new DataSet();
 UP.Initialize(upDataSet, connection);
 }
 catch (Exception e)
 {
 Console.WriteLine("{0} - Data initialization
aborted: {1}", this, e);
 Console.WriteLine(e.StackTrace);
 }
 finally
 {

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 109

 connection.Close();
 }
 }

 /// <summary>
 /// For saving changes in DB before terminating.
 /// </summary>
 protected override void Terminate()
 {
 UpdateDB();
 base.Terminate();
 }

 /// <summary>
 /// Saves all changes in the DB.
 /// </summary>
 private void UpdateDB()
 {
 try
 {
 Console.WriteLine("{0} - Updating DB...", this);
 connection.Open();
 UP.Update();
 Console.WriteLine("{0} - DB updated", this);
 }
 catch (Exception e)
 {
 Console.WriteLine("{0} - Cannot update data: {1}",
this, e);
 }
 finally
 {
 connection.Close();
 }
 }
 }
}

4 Application – Profiles

20. Class Architecture.Profiles.IProfile

using System;
using System.Collections;
using System.Text;

namespace Architecture.Profiles
{
 /// <summary>
 /// Defines a generic Profile made of INodes and ILinks.
 /// </summary>
 public interface IProfile
 {
 /// <summary>
 /// Adds a ILink to this, doing the linkage to already existing
INodes or
 /// creating new ones if needed. Returns the new ILink, or the
existing one

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 110

 /// if it is already present.
 /// </summary>
 /// <param name="origin"></param>
 /// <param name="destination"></param>
 /// <returns></returns>
 ILink AddLinkBetween(ResourceId origin, ResourceId
destination);

 /// <summary>
 /// Adds a new INode for the specified resource. If the INode
already exists,
 /// returns it otherwise returns a new one.
 /// </summary>
 /// <param name="resource"></param>
 /// <returns></returns>
 INode AddNodeOn(ResourceId resource);

 /// <summary>
 /// Returns a ILink between the specified resources, or null if
none exists.
 /// </summary>
 /// <param name="origin"></param>
 /// <param name="destination"></param>
 /// <returns></returns>
 ILink GetLinkBetween(ResourceId origin, ResourceId
destination);

 /// <summary>
 /// Returns a INode on the specified resource, or null if none
exists.
 /// </summary>
 /// <param name="resource"></param>
 /// <returns></returns>
 INode GetNodeOn(ResourceId resource);

 /// <summary>
 /// Returns all the INodes in this.
 /// </summary>
 INode[] GetNodes();

 /// <summary>
 /// Returns whether the specified ILink exists in this.
 /// </summary>
 /// <param name="origin"></param>
 /// <param name="destination"></param>
 /// <returns></returns>
 bool HasLinkBetween(ResourceId origin, ResourceId destination);

 /// <summary>
 /// Returns whether the specified INode exists in this.
 /// </summary>
 /// <param name="resource"></param>
 /// <returns></returns>
 bool HasNodeOn(ResourceId resource);
 }
}

21. Class Architecture.Profiles.INode

using System;

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 111

using System.Collections;

namespace Architecture.Profiles
{
 /// <summary>
 /// Defines a Node on a given resource in a Profile.
 /// </summary>
 public interface INode
 {
 /// <summary>
 /// The resource of this.
 /// </summary>
 ResourceId Resource {get;}

 /// <summary>
 /// Returns all the links whose origin is this.
 /// </summary>
 /// <returns></returns>
 ILink[] GetLinks();

 /// <summary>
 /// Returns a Link whose origin is this and whose destination
is the specified
 /// resource. If no such Link exists, returns null.
 /// </summary>
 /// <param name="resource"></param>
 /// <returns></returns>
 ILink GetLinkTo(ResourceId resource);

 /// <summary>
 /// Returns whether this contains a Link to the specified
resource.
 /// </summary>
 /// <param name="resource"></param>
 /// <returns></returns>
 bool HasLinkTo(ResourceId resource);
 }
}

22. Class Architecture.Profiles.ILink

using System;

namespace Architecture.Profiles
{
 /// <summary>
 /// Defines a Link between two resources (Nodes) in a Profile.
 /// </summary>
 public interface ILink
 {
 INode Destination {get;}
 }
}

23. Class Architecture.Profiles.DataUtilities

using System;
using System.Data;

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 112

using System.Data.SqlClient;

namespace Architecture.Profiles
{
 /// <summary>
 /// Utility class for data management by ADO.
 /// </summary>
 internal class DataUtilities
 {

 /// <summary>
 /// Deletes all data from the specified table in the database.
 /// </summary>
 /// <param name="connection"></param>
 /// <param name="tableName"></param>
 /// <returns></returns>
 public static void CleanupTable(SqlConnection connection,
 string tableName)
 {
 SqlCommand command = new SqlCommand("DELETE FROM " +
tableName,
 connection);
 command.ExecuteNonQuery();
 }

 /// <summary>
 /// Fills a DataSet with content of a table through a
Connection and creates
 /// and returns a DataAdapter.
 /// </summary>
 /// <param name="dataSet"></param>
 /// <param name="connection"></param>
 /// <param name="tableName"></param>
 /// <returns></returns>
 public static SqlDataAdapter InitializeTable(DataSet dataSet,
 SqlConnection connection, string tableName)
 {
 SqlDataAdapter adapter = new SqlDataAdapter();
 adapter.MissingSchemaAction =
MissingSchemaAction.AddWithKey;

 // Create commands
 string commandText = "SELECT * FROM " + tableName;
 adapter.SelectCommand = new SqlCommand(commandText,
connection);
 SqlCommandBuilder builder = new
SqlCommandBuilder(adapter);
 // Fill dataset
 adapter.Fill(dataSet, tableName);

 return adapter;
 }

 }
}

24. Class Architecture.Profiles.UP – User Profile

using System;
using System.Collections;

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 113

namespace Architecture.Profiles
{
 using System;
 using System.Data;
 using System.Data.SqlClient;
 using System.Diagnostics;

 /// <summary>
 /// Defines a User Profile. Such a Profile stores information on the
Links
 /// that provides indicators of the relevancy of the traversal of the
Links
 /// based on the user's navigation history. In addition, a User
Profile can
 /// have references to SUPs that suit to the user.
 /// </summary>
 [Serializable]public class UP : IProfile
 {
 // Data tables
 private static readonly string TABLE_NAME = "UP";
 private static readonly string UP_SUP_TABLE_NAME = "UP_SUP";
 private static DataTable table, upSupTable;
 // SqlDataAdapters
 private static SqlDataAdapter adapter, upSupAdapter;
 // Column names
 private static readonly string USER_ID = "userId";
 private static readonly string LAST_USE = "lastUse";
 // In UP_SUP
 private static readonly string UP_COL = "UP";
 private static readonly string SUP_COL = "SUP";
 // Relations
 private static DataRelation ToNodes, ToSUPs;

 public static void Cleanup(SqlConnection connection)
 {
 SUP.Cleanup(connection);
 UPNode.Cleanup(connection);
 DataUtilities.CleanupTable(connection, TABLE_NAME);
 // Clear all Tables in DataSet
 DataSet dataSet = Data.DataSet;
 foreach (DataTable dt in dataSet.Tables)
 dt.Rows.Clear();
 }

 /// <summary>
 /// Creates new UP data.
 /// </summary>
 /// <param name="resource"></param>
 internal static UP CreateUP(UserId user) {
 return CreateUP(user, new string[] {});
 }
 internal static UP CreateUP(UserId user, string[] supNames)
 {
 Debug.Assert(user != null && supNames != null);
 if (Data.Rows.Find(user.IPAddress) != null)
 throw new Exception("UP for user " + user + "
exists already");
 DataRow row = Data.NewRow();
 row[USER_ID] = user.IPAddress;
 row[LAST_USE] = DateTime.Now;

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 114

 lock(Data) {Data.Rows.Add(row);}
 UP up = new UP(user);
 // Add SUPs
 foreach (string supName in supNames)
 up.AddSUP(supName);
 return up;
 }

 internal static DataTable Data
 {
 get
 {
 return table;
 }
 }

 public static UP GetUP(UserId user)
 {
 DataRow row = Data.Rows.Find(user.IPAddress);
 if (row == null) return null;
 return new UP(row);
 }

 public static void Initialize(DataSet dataSet, SqlConnection
connection)
 {
 SUP.Initialize(dataSet, connection);
 UPNode.Initialize(dataSet, connection);
 adapter = DataUtilities.InitializeTable(dataSet,
connection, TABLE_NAME);
 table = dataSet.Tables[TABLE_NAME];
 // Create relation
 ToNodes = table.DataSet.Relations.Add("UP_To_UPNodes",
 table.Columns[USER_ID],
 UPNode.Data.Columns[UPNode.UP],
 false);
 // Linkage between UP and SUP
 upSupAdapter = DataUtilities.InitializeTable(dataSet,
connection,
 UP_SUP_TABLE_NAME);
 upSupTable = dataSet.Tables[UP_SUP_TABLE_NAME];
 ToSUPs = upSupTable.DataSet.Relations.Add("UP_To_SUPs",
 table.Columns[USER_ID],
 upSupTable.Columns[UP_COL],
 false);
 }

 public static void Update()
 {
 SUP.Update();
 UPNode.Update();
 adapter.Update(Data);
 }

 //************ NON-STATIC PART *************

 private UserId _user;

 /// <summary>
 /// Wraps already existing data as a SUP object.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 115

 /// </summary>
 /// <param name="name"></param>
 private UP(DataRow row) : this(new
UserId((string)row[USER_ID])) {}
 private UP(UserId user)
 {
 _user = user;
 }

 public UserId User
 {
 get
 {
 return _user;
 }
 }

 private DataRow Row
 {
 get
 {
 return Data.Rows.Find(_user.IPAddress);
 }
 }

 private void AddSUP(string supName)
 {
 SUP sup = SUP.GetSUP(supName);
 if (sup == null)
 throw new Exception("Cannot find SUP " + supName);
 DataRow row = upSupTable.NewRow();
 row[UP_COL] = User.IPAddress;
 row[SUP_COL] = supName;
 // Should not be present already
 lock (upSupTable)
 {
 upSupTable.Rows.Add(row);
 }
 }

 /// <summary>
 /// See IProfile.
 /// </summary>
 public ILink AddLinkBetween(ResourceId origin, ResourceId
destination)
 {
 ILink link = GetLinkBetween(origin, destination);
 if (link != null) return link;
 UPNode origNode = AddNodeOn(origin) as UPNode;
 UPNode destinNode = AddNodeOn(destination) as UPNode;
 return UPLink.CreateLink(origNode, destinNode);
 }

 /// <summary>
 /// See IProfile.
 /// </summary>
 public INode AddNodeOn(ResourceId resource)
 {
 INode node = GetNodeOn(resource);
 if (node != null) return node;
 return UPNode.CreateNode(this, resource);

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 116

 }

 public override bool Equals(object obj)
 {
 if (!(obj is UP)) return false;
 UP peer = (UP) obj;
 return this.User.Equals(peer.User);
 }

 public override int GetHashCode()
 {
 return _user.GetHashCode();
 }

 /// <summary>
 /// See IProfile.
 /// </summary>
 public ILink GetLinkBetween(ResourceId origin, ResourceId
destination)
 {
 INode node = GetNodeOn(origin);
 if (node == null) return null;
 return node.GetLinkTo(destination);
 }

 /// <summary>
 /// See IProfile.
 /// </summary>
 public INode GetNodeOn(ResourceId resource)
 {
 DataRow[] rows = Row.GetChildRows(ToNodes);
 foreach (DataRow row in rows)
 {
 ResourceId peer = new
ResourceId((string)row[UPNode.RESOURCE]);
 if (resource.Equals(peer))
 return new UPNode(row);
 }
 return null;
 }

 /// <summary>
 /// See IProfile.
 /// </summary>
 public INode[] GetNodes()
 {
 DataRow[] rows = Row.GetChildRows(ToNodes);
 System.Collections.ArrayList list = new
System.Collections.ArrayList(
 rows.Length);
 foreach (DataRow row in rows)
 list.Add(new UPNode(row));
 return (INode[])list.ToArray(typeof (INode));
 }

 /// <summary>
 /// Returns all the SUPs associated with this.
 /// </summary>
 /// <returns></returns>
 public SUP[] GetSUPs()
 {

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 117

 DataRow[] rows = Row.GetChildRows(ToSUPs);
 ArrayList list = new ArrayList(rows.Length);
 foreach (DataRow row in rows)
 {
 string supName = (string)row[SUP_COL];
 list.Add(SUP.GetSUP(supName));
 }
 return (SUP[]) list.ToArray(typeof (SUP));
 }

 /// <summary>
 /// See IProfile.
 /// </summary>
 public bool HasLinkBetween(ResourceId origin, ResourceId
destination)
 {
 return GetLinkBetween(origin, destination) != null;
 }

 /// <summary>
 /// See IProfile.
 /// </summary>
 public bool HasNodeOn(ResourceId resource)
 {
 return GetNodeOn(resource) != null;
 }

 public DateTime LastTimestamp
 {
 get
 {
 return (DateTime) Row[LAST_USE];
 }
 set
 {
 lock (Row)
 {
 Row[LAST_USE] = value;
 }
 }
 }
 }
}

25. Class Architecture.Profiles.UPNode

using System;
using System.Data;
using System.Data.SqlClient;
using System.Diagnostics;
using System.Collections;

namespace Architecture.Profiles
{
 /// <summary>
 /// Defines a Node on a given resource in a User Profile.
 /// </summary>
 [Serializable]public class UPNode : INode
 {
 // Data table

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 118

 public static readonly string TABLE_NAME = "UPNode";
 private static DataTable table;
 // SqlDataAdapter
 private static SqlDataAdapter adapter;
 // Column names
 internal static readonly string ID = "identifier";
 internal static readonly string RESOURCE = "resourceId";
 internal static readonly string UP = "UP";
 // Relation
 private static DataRelation ToLinks;

 public static void Cleanup(SqlConnection connection)
 {
 UPLink.Cleanup(connection);
 DataUtilities.CleanupTable(connection, TABLE_NAME);
 }

 /// <summary>
 /// Creates new Node data.
 /// </summary>
 /// <param name="resource"></param>
 internal static UPNode CreateNode(UP profile, ResourceId
resource)
 {
 Debug.Assert(profile != null && resource != null);
 // Node should not exist already
 Guid _id = Guid.NewGuid();
 DataRow row = Data.NewRow();
 row[ID] = _id;
 row[RESOURCE] = resource.Name;
 row[UP] = profile.User.IPAddress;
 lock(Data) {Data.Rows.Add(row);}
 return new UPNode(_id);
 }

 internal static DataTable Data
 {
 get
 {
 return table;
 }
 }

 public static void Initialize(DataSet dataSet, SqlConnection
connection)
 {
 UPLink.Initialize(dataSet, connection);
 adapter = DataUtilities.InitializeTable(dataSet,
connection, TABLE_NAME);
 table = dataSet.Tables[TABLE_NAME];
 // Create relation
 ToLinks =
table.DataSet.Relations.Add("UpNode_To_UpLinks",
 table.Columns[ID],
 UPLink.Data.Columns[UPLink.ORIGIN],
 false);
 }

 public static void Update()
 {
 UPLink.Update();

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 119

 adapter.Update(Data);
 }

 //************ NON-STATIC PART *************

 private Guid _identifier;

 /// <summary>
 /// Wraps already existing data as a Node object.
 /// </summary>
 /// <param name="row"></param>
 internal UPNode(DataRow row) : this((Guid)row[ID]) {}
 internal UPNode(Guid id)
 {
 _identifier = id;
 }

 internal Guid Identifier
 {
 get
 {
 return _identifier;
 }
 }

 public ResourceId Resource
 {
 get
 {
 return new ResourceId((string)Row[RESOURCE]);
 }
 }

 private DataRow Row
 {
 get
 {
 return Data.Rows.Find(_identifier);
 }
 }

 /// <summary>
 /// See INode.
 /// </summary>
 /// <returns></returns>
 public ILink[] GetLinks()
 {
 DataRow[] rows = Row.GetChildRows(ToLinks);
 ArrayList list = new ArrayList(rows.Length);
 foreach (DataRow row in rows)
 {
 list.Add(new UPLink(row));
 }
 return (ILink[])list.ToArray(typeof (ILink));
 }

 /// <summary>
 /// See INode.
 /// </summary>
 /// <param name="resource"></param>

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 120

 /// <returns></returns>
 public ILink GetLinkTo(ResourceId resource)
 {
 ILink[] links = GetLinks();
 foreach (ILink link in links)
 {
 if (link.Destination.Resource.Equals(resource))
 return link;
 }
 return null;
 }

 /// <summary>
 /// See INode.
 /// </summary>
 /// <param name="resource"></param>
 /// <returns></returns>
 public bool HasLinkTo(ResourceId resource)
 {
 return GetLinkTo(resource) != null;
 }

 public override bool Equals(object obj)
 {
 if (!(obj is UPNode)) return false;
 UPNode peer = (UPNode) obj;
 return this._identifier.Equals(peer._identifier);
 }

 public override int GetHashCode()
 {
 return _identifier.GetHashCode();
 }
 }
}

26. Class Architecture.Profiles.UPLink

using System;
using System.Data;
using System.Data.SqlClient;
using System.Diagnostics;

namespace Architecture.Profiles
{
 /// <summary>
 /// Link for User Profile.
 /// </summary>
 public class UPLink : ILink
 {
 // Table
 public static readonly string TABLE_NAME = "UPLink";
 private static DataTable table;
 // SqlDataAdapter
 private static SqlDataAdapter adapter;
 // Column names
 internal static readonly string ID = "identifier";
 internal static readonly string ORIGIN = "originNode";
 internal static readonly string DESTINATION =
"destinationNode";

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 121

 internal static readonly string LAST_USE = "lastUse";
 internal static readonly string OCCURRENCES = "occurrences";
 internal static readonly string READ_TIME = "readTime";

 public static void Cleanup(SqlConnection connection)
 {
 DataUtilities.CleanupTable(connection, TABLE_NAME);
 }

 /// <summary>
 /// Creates new UPLink data.
 /// </summary>
 /// <param name="origin"></param>
 /// <param name="destination"></param>
 internal static UPLink CreateLink(UPNode origin, UPNode
destination)
 {
 Debug.Assert(origin != null && destination != null);
 // Should not exist already
 Guid _id = Guid.NewGuid();
 DataRow row = Data.NewRow();
 row[ID] = _id;
 row[ORIGIN] = origin.Identifier;
 row[DESTINATION] = destination.Identifier;
 row[LAST_USE] = DateTime.Now;
 row[OCCURRENCES] = 1;
 row[READ_TIME] = 0;
 lock(Data) {Data.Rows.Add(row);}
 return new UPLink(_id);
 }

 internal static DataTable Data
 {
 get
 {
 return table;
 }
 }

 public static void Initialize(DataSet dataSet, SqlConnection
connection)
 {
 adapter = DataUtilities.InitializeTable(dataSet,
connection, TABLE_NAME);
 table = dataSet.Tables[TABLE_NAME];
 }

 public static void Update()
 {
 adapter.Update(Data);
 }

 //************ NON-STATIC PART *************

 private Guid _identifier;

 internal UPLink(DataRow row) : this((Guid)row[ID]) {}
 internal UPLink(Guid _id)
 {
 _identifier = _id;

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 122

 }

 public void AddReadTime(long readTime)
 {
 Row[READ_TIME] = ReadTime + readTime;
 }

 public INode Destination
 {
 get
 {
 return new UPNode((Guid)Row[DESTINATION]);
 }
 }

 private DataRow Row
 {
 get
 {
 return Data.Rows.Find(_identifier);
 }
 }

 public override bool Equals(object obj)
 {
 if (!(obj is UPLink)) return false;
 UPLink peer = (UPLink) obj;
 return this._identifier.Equals(peer._identifier);
 }

 public override int GetHashCode()
 {
 return _identifier.GetHashCode();
 }

 public DateTime LastTimestamp
 {
 get
 {
 return (DateTime) Row[LAST_USE];
 }
 }

 public int Occurrences
 {
 get
 {
 return (int) Row[OCCURRENCES];
 }
 }

 public long ReadTime
 {
 get
 {
 return (long) Row[READ_TIME];
 }
 }

 public void Traverse()
 {

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 123

 Row[OCCURRENCES] = Occurrences + 1;
 Row[LAST_USE] = DateTime.Now;
 }
 }

}

27. Class Architecture.Profiles.SUP – Standard User
Profile

using System;
using System.Data;
using System.Data.SqlClient;
using System.Diagnostics;

namespace Architecture.Profiles
{
 /// <summary>
 /// Standard User Profile.
 /// </summary>
 [Serializable]public class SUP : IProfile
 {
 // Data table
 private static readonly string TABLE_NAME = "SUP";
 private static DataTable table;
 // SqlDataAdapter
 private static SqlDataAdapter adapter;
 // Column names
 private static readonly string SUP_NAME = "SUPName";
 private static readonly string DESCRIPTION = "description";
 // Relation
 private static DataRelation ToNodes;

 public static void Cleanup(SqlConnection connection)
 {
 SUPNode.Cleanup(connection);
 DataUtilities.CleanupTable(connection, TABLE_NAME);
 }

 /// <summary>
 /// Creates new SUP data.
 /// </summary>
 /// <param name="resource"></param>
 internal static SUP CreateSUP(string name)
 {
 return CreateSUP(name, "");
 }
 internal static SUP CreateSUP(string name, string description)
 {
 Debug.Assert(name != null);
 if (Data.Rows.Find(name) != null)
 throw new Exception("SUP named " + name + " exists
already");
 DataRow row = Data.NewRow();
 row[SUP_NAME] = name;
 row[DESCRIPTION] = description;
 lock(Data) {Data.Rows.Add(row);}
 return new SUP(name);
 }

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 124

 internal static DataTable Data
 {
 get
 {
 return table;
 }
 }

 public static SUP GetSUP(string name)
 {
 DataRow row = Data.Rows.Find(name);
 if (row == null) return null;
 return new SUP(row);
 }

 public static void Initialize(DataSet dataSet, SqlConnection
connection)
 {
 SUPNode.Initialize(dataSet, connection);
 adapter = DataUtilities.InitializeTable(dataSet,
connection, TABLE_NAME);
 table = dataSet.Tables[TABLE_NAME];
 // Create relation
 ToNodes = table.DataSet.Relations.Add("SUP_To_SUPNodes",
 table.Columns[SUP_NAME],
 SUPNode.Data.Columns[SUPNode.SUP],
 false);
 }

 public static void Update()
 {
 SUPNode.Update();
 adapter.Update(Data);
 }

 //************ NON-STATIC PART *************

 private string _name;

 /// <summary>
 /// Wraps already existing data as a SUP object.
 /// </summary>
 /// <param name="name"></param>
 private SUP(DataRow row) : this((string)row[SUP_NAME]) {}
 private SUP(string name)
 {
 _name = name;
 }

 public string Name
 {
 get
 {
 return _name;
 }
 }

 private DataRow Row
 {

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 125

 get
 {
 return Data.Rows.Find(_name);
 }
 }

 /// <summary>
 /// See IProfile.
 /// </summary>
 public ILink AddLinkBetween(ResourceId origin, ResourceId
destination)
 {
 ILink link = GetLinkBetween(origin, destination);
 if (link != null) return link;
 SUPNode origNode = AddNodeOn(origin) as SUPNode;
 SUPNode destinNode = AddNodeOn(destination) as SUPNode;
 return SUPLink.CreateLink(origNode, destinNode);
 }

 /// <summary>
 /// See IProfile.
 /// </summary>
 public INode AddNodeOn(ResourceId resource)
 {
 INode node = GetNodeOn(resource);
 if (node != null) return node;
 return SUPNode.CreateNode(this, resource);
 }

 /// <summary>
 /// See IProfile.
 /// </summary>
 public ILink GetLinkBetween(ResourceId origin, ResourceId
destination)
 {
 INode node = GetNodeOn(origin);
 if (node == null) return null;
 return node.GetLinkTo(destination);
 }

 /// <summary>
 /// See IProfile.
 /// </summary>
 public INode GetNodeOn(ResourceId resource)
 {
 // Get all Node rows
 DataRow[] rows = Row.GetChildRows(ToNodes);
 foreach (DataRow row in rows)
 {
 ResourceId peer = new
ResourceId((string)row[SUPNode.RESOURCE]);
 if (resource.Equals(peer))
 return new SUPNode(row);
 }
 return null;
 }

 /// <summary>
 /// See IProfile.
 /// </summary>
 public INode[] GetNodes()

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 126

 {
 DataRow[] rows = Row.GetChildRows(ToNodes);
 System.Collections.ArrayList list = new
System.Collections.ArrayList(
 rows.Length);
 foreach (DataRow row in rows)
 list.Add(new SUPNode(row));
 return (INode[])list.ToArray(typeof (INode));
 }

 /// <summary>
 /// See IProfile.
 /// </summary>
 public bool HasLinkBetween(ResourceId origin, ResourceId
destination)
 {
 return GetLinkBetween(origin, destination) != null;
 }

 /// <summary>
 /// See IProfile.
 /// </summary>
 public bool HasNodeOn(ResourceId resource)
 {
 return GetNodeOn(resource) != null;
 }

 public override bool Equals(object obj)
 {
 if (!(obj is SUP)) return false;
 SUP peer = (SUP) obj;
 return this.Name.Equals(peer.Name);
 }

 public override int GetHashCode()
 {
 return _name.GetHashCode();
 }
 }
}

28. Class Architecture.Profiles.SUPNode

using System;
using System.Collections;
using System.Data;
using System.Data.SqlClient;
using System.Diagnostics;

namespace Architecture.Profiles
{
 /// <summary>
 /// Defines a Node on a given resource for a SUP.
 /// </summary>
 [Serializable]public class SUPNode : INode
 {
 // Data table
 public static readonly string TABLE_NAME = "SUPNode";
 private static DataTable table;
 // SqlDataAdapter

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 127

 private static SqlDataAdapter adapter;
 // Column names
 internal static readonly string ID = "identifier";
 internal static readonly string RESOURCE = "resourceId";
 internal static readonly string SUP = "SUPName";
 // Relation
 private static DataRelation ToLinks;

 public static void Cleanup(SqlConnection connection)
 {
 SUPLink.Cleanup(connection);
 DataUtilities.CleanupTable(connection, TABLE_NAME);
 }

 /// <summary>
 /// Creates new Node data.
 /// </summary>
 /// <param name="resource"></param>
 internal static SUPNode CreateNode(SUP profile, ResourceId
resource)
 {
 Debug.Assert(profile != null && resource != null);
 // Node should not exist already
 Guid _id = Guid.NewGuid();
 DataRow row = Data.NewRow();
 row[ID] = _id;
 row[RESOURCE] = resource.Name;
 row[SUP] = profile.Name;
 lock(Data) {Data.Rows.Add(row);}
 return new SUPNode(_id);
 }

 internal static DataTable Data
 {
 get
 {
 return table;
 }
 }

 public static void Initialize(DataSet dataSet, SqlConnection
connection)
 {
 SUPLink.Initialize(dataSet, connection);
 adapter = DataUtilities.InitializeTable(dataSet,
connection, TABLE_NAME);
 table = dataSet.Tables[TABLE_NAME];
 // Create relation
 ToLinks =
table.DataSet.Relations.Add("SupNode_To_SupLinks",
 table.Columns[ID],
 SUPLink.Data.Columns[SUPLink.ORIGIN],
 false);
 }

 public static void Update()
 {
 SUPLink.Update();
 adapter.Update(Data);
 }

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 128

 //************ NON-STATIC PART *************

 private Guid _identifier;

 /// <summary>
 /// Wraps already existing data as a Node object.
 /// </summary>
 /// <param name="row"></param>
 internal SUPNode(DataRow row) : this((Guid)row[ID]) {}
 internal SUPNode(Guid id)
 {
 _identifier = id;
 }

 internal Guid Identifier
 {
 get
 {
 return _identifier;
 }
 }

 public ResourceId Resource
 {
 get
 {
 return new ResourceId((string)Row[RESOURCE]);
 }
 }

 private DataRow Row
 {
 get
 {
 return Data.Rows.Find(_identifier);
 }
 }

 /// <summary>
 /// See INode.
 /// </summary>
 /// <returns></returns>
 public ILink[] GetLinks()
 {
 DataRow[] rows = Row.GetChildRows(ToLinks);
 ArrayList list = new ArrayList(rows.Length);
 foreach (DataRow row in rows) {
 list.Add(new SUPLink(row));
 }
 return (ILink[])list.ToArray(typeof (ILink));
 }

 /// <summary>
 /// See INode.
 /// </summary>
 /// <param name="resource"></param>
 /// <returns></returns>
 public ILink GetLinkTo(ResourceId resource)
 {
 ILink[] links = GetLinks();

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 129

 foreach (ILink link in links)
 {
 if (link.Destination.Resource.Equals(resource))
 return link;
 }
 return null;
 }

 /// <summary>
 /// See INode.
 /// </summary>
 /// <param name="resource"></param>
 /// <returns></returns>
 public bool HasLinkTo(ResourceId resource)
 {
 return GetLinkTo(resource) != null;
 }

 public override bool Equals(object obj)
 {
 if (!(obj is SUPNode)) return false;
 SUPNode peer = (SUPNode) obj;
 return this._identifier.Equals(peer._identifier);
 }

 public override int GetHashCode()
 {
 return _identifier.GetHashCode();
 }
 }
}

29. Class Architecture.Profiles.SUPLink

using System;
using System.Data;
using System.Data.SqlClient;
using System.Diagnostics;

namespace Architecture.Profiles
{
 /// <summary>
 /// SUPLink.
 /// </summary>
 [Serializable]public class SUPLink : ILink
 {
 // Table
 public static readonly string TABLE_NAME = "SUPLink";
 private static DataTable table;
 // SqlDataAdapter
 private static SqlDataAdapter adapter;
 // Column names
 internal static readonly string ID = "identifier";
 internal static readonly string ORIGIN = "originNode";
 internal static readonly string DESTINATION =
"destinationNode";
 internal static readonly string WEIGHT = "weight";

 public static void Cleanup(SqlConnection connection)
 {

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 130

 DataUtilities.CleanupTable(connection, TABLE_NAME);
 }

 /// <summary>
 /// Creates new SUPLink data.
 /// </summary>
 /// <param name="origin"></param>
 /// <param name="destination"></param>
 internal static SUPLink CreateLink(SUPNode origin, SUPNode
destination)
 {
 Debug.Assert(origin != null && destination != null);
 // Should not exist already
 Guid _id = Guid.NewGuid();
 DataRow row = Data.NewRow();
 row[ID] = _id;
 row[ORIGIN] = origin.Identifier;
 row[DESTINATION] = destination.Identifier;
 row[WEIGHT] = 1;
 lock(Data) {Data.Rows.Add(row);}
 return new SUPLink(_id);
 }

 internal static DataTable Data
 {
 get
 {
 return table;
 }
 }

 public static void Initialize(DataSet dataSet, SqlConnection
connection)
 {
 adapter = DataUtilities.InitializeTable(dataSet,
connection, TABLE_NAME);
 table = dataSet.Tables[TABLE_NAME];
 }

 public static void Update()
 {
 adapter.Update(Data);
 }

 //************ NON-STATIC PART *************

 private Guid _identifier;

 internal SUPLink(DataRow row) : this((Guid)row[ID]) {}
 internal SUPLink(Guid _id)
 {
 _identifier = _id;
 }

 public INode Destination
 {
 get
 {
 return new SUPNode((Guid)Row[DESTINATION]);
 }

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 131

 }

 private DataRow Row
 {
 get
 {
 return Data.Rows.Find(_identifier);
 }
 }

 public override bool Equals(object obj)
 {
 if (!(obj is SUPLink)) return false;
 SUPLink peer = (SUPLink) obj;
 return this._identifier.Equals(peer._identifier);
 }

 public override int GetHashCode()
 {
 return _identifier.GetHashCode();
 }
 }
}

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 132

References
1. Carnevale, D., Some online educators turn to bite-sized instruction, in Chronicle of

Higher Education. 2001. http://chronicle.com/free/2001/05/2001050301u.htm

2. Downes, S., Learning objects.
http://www.atl.ualberta.ca/downes/naweb/Learning_Objects.doc

3. Wiley, D., Connecting learning objects to instructional design theory: A definition, a
metaphor, and a taxonomy, in The Instructional Use of Learning Objects, D. Wiley,
Editor. 2000, Association for Instructional Technology, Association for Educational
Communications and Technology.

4. Apple Learning Interchange, Exhibit. http://ali.apple.com/ali/resources.shtml

5. California State University Center for Distributed Learning, Merlot - Multimedia
Education Resource for Learning and Online Teaching. http://www.merlot.org/Home.po

6. IEEE - LTSC, Draft Standard for Learning Object Metadata v. 6.4.
http://ltsc.ieee.org/wg12/

7. Australian Capital Territory, Le@rning Federation.
http://www.decs.act.gov.au/schools/lfindex.htm

8. Canada's SchoolNet. http://www.schoolnet.ca/pagemasters/e

9. MERLOT. http://www.merlot.org/Home.po

10. O. Zamir and O. Etzioni, Grouper: A Dynamic Clustering Interface to Web Search
Results, A. Mendelzon, Editor. 1999, Elsevier Science: Toronto, Canada.

11. CSSE, The LEOPARD project. http://www.csse.monash.edu.au/projects/LEOPARD

12. P. Resnick and H.R. Varian, Recommender systems, in Communications of the ACM.
1997. p. 56-58.

13. D. Goldberg, et al., Using collaborative filtering to weave an information tapestry, in
Communications of the ACM. 1992. p. 61-70.

14. S.E. Middleton, et al. Exploiting Synergy Between Ontologies and Recommender
Systems. in Semantic Web Workshop 2002. 2002. Hawaii, USA.

15. R. Rafter, B. Smyth, and K. Bradley. Inferring Relevance Feedback from Server Logs:
A Case Study in Online Recruitment. in 11th Irish Conference on Artificial Intelligence
and Cognitive Science (AICS 2000). 2000. Galway, Ireland.

16. M. Claypool, et al., Inferring User Interest, in IEEE Internet Computing. 2001. p. 32-
39.

17. Nichols, D.M. Implicit Rating and Filtering. in 5th DELOS Workshop on Filtering and
Collaborative Filtering. 1997. Budapest, Hungary.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 133

18. N. Good, et al. Combining collaborative filtering with personal agents for better
recommendations. in Sixteenth National Conference on Artificial Intelligence. 1999.

19. M. Balabanovic and Y. Shoham, Fab: Content-Based, Collaborative Recommendation,
in Communications of the ACM. 1997.

20. S. El-Beltagy, D. DeRoure, and W. Hall. The Evolution of a Practical Agent-based
Recommender System. in Workshop on Agent-based Recommender Systems,
Autonomous Agents 2000. 2000.

21. R. Rafter, B. Smyth, and K. Bradley. Case-Based User Profiling for Content
Personalisation. in International Conference on Adaptive Hypermedia and Adaptive
Web-based Systems (AH2000). 2000. Trento, Italy.

22. S. Franklin and A. Graesser, Is it an agent, or just a program?, in Intelligent Agents III
(Proceedings of the Third International Workshop on Agent Theories, Architectures,
and Languages 1996). 1996, Springer: Budapest, Hungary.

23. N.R. Jennings and M. Wooldridge. Agent-Oriented Software Engineering. in 9th
European Workshop on Modelling Autonomous Agents in a Multi-Agent World
(MAAMAW'99). 2000. Valencia, Spain: Springer.

24. Shoham, Y., Agent Oriented Programming. Journal of Artificial Intelligence, 1993. 60:
p. 51-92.

25. Bradshaw, J.M., An Introduction to Software Agents, in Software Agents, J.M.
Bradshaw, Editor. 1997, The AAAI Press.

26. M. Wooldridge and P. Ciancarini, Agent-Oriented Software Engineering: The State of
the Art, in First International Workshop on Agent-Oriented Software Engineering
(AOSE'2000). 2000, Springer: Limerick, Ireland.

27. Odell, J., Objects and Agents Compared. Journal of Object Technology, 2002. 1(1): p.
41-53.

28. A.S. Rao and M.P. Georgeff. BDI Agents: From Theory to Practice. in First
International Conference on Multiagent Systems (ICMAS'95). 1995. San Francisco.

29. M.N. Huhns and L.M. Stephens, Multiagent Systems and Societies of Agents, in
Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, G.
Weiss, Editor. 1999, The MIT Press. p. 79-120.

30. Z. Guessoum and J.-P. Briot, From Active Objects to Autonomous Agents, in IEEE
Concurrency. 1999. p. 68-76.

31. G. Armano and E. Vargiu, Implementing Autonomous Reactive Agents by Using Active
Objects, in WOA 2000 -- Dagli oggetti agli agenti: tendenze evolutive dei sistemi
software, A. Corradi, A. Omicini, and A. Poggi, Editors. 2000, Pitagora Editrice
Bologna. p. 35-40.

32. Lesser, V.R., Multiagent Systems: An Emerging Subdiscipline of AI. ACM Computing
Surveys, 1995. 27(3).

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 134

33. Sycara, K.P., Multiagent Systems, in AI Magazine. 1998.

34. N.R. Jennings and M. Wooldridge, Applications of Intelligent Agents, in Agent
Technology: Foundations, Applications, and Markets, N.R. Jennings and M.
Wooldridge, Editors. 1998, Springer Verlag.

35. S. El-Beltagy, D. De Route, and W. Hall. A Multiagent system for Navigation
Assistance and Information Finding. in Fourth International Conference on the
Practical Application of Intelligent Agents and Multi-Agent Technology (PAAM'99).
1999. London, UK.

36. M.R. Genesereth and S.P. Ketchpel, Software agents, in Communications of the ACM.
1994.

37. T. Finin, J. Werber, and e. al., Draft Specification of the KQML Agent Communication
Language. http://www.cs.umbc.edu/kqml/kqmlspec/spec.html

38. T. Finin, Y. Labrou, and J. Mayfield, KQML as an Agent Communication Language, in
Software Agents, J.M. Bradshaw, Editor. 1997, The AAAI Press. p. 291-316.

39. FIPA, The FIPA web pages. http://www.fipa.org/about/index.html

40. M.R. Genesereth and R.E. Fikes, Knowledge Interchange Format Version 3.0 Reference
Manual. http://logic.stanford.edu/kif/Hypertext/kif-manual.html

41. W3C, The Semantic Web project. http://www.w3.org/2001/sw/

42. T. Khedro and M.R. Genesereth, Facilitators: A Networked Computing Infrastructure
for Distributed Software Interoperation, in The 1995 International Joint Conference on
AI: Workshop on AI in Distributed Information Networks. 1995: Montreal, Canada.

43. Y. Peng, et al., An Agent-Based Approach for Manufacturing Integration - The
CIIMPLEX Experience. International Journal of Applied Artificial Intelligence, 1999.
13(1-2).

44. Maes, P., Agents that Reduce Work and Information Overload, in Communications of
the ACM. 1994. p. 30-40.

45. H.S. Nwana and D.T. Nduma, A Perspective on Software Agent Research. Applied
Artificial Intelligence, 1999. 13(Special issue).

46. H. Lieberman, C. Fry, and L. Weitzman, Exploring the Web with Reconnaissance
Agents, in Communications of the ACM. 2001. p. 69-75.

47. Oliveira, E., Applications of Intelligent Agent-Based Systems, in Proceedings of SBAI -
Simpósium Brasileiro de Automação Inteligente. 1999: São Paulo, Brazil. p. 51-58.

48. Isaias, P. An Agent Architecture for a Virtual Research Digital Library. in TERENA
(Trans-European Research and Education Networking Association) Networking
Conference 2000: Pioneering Tomottow's Internet. 2000. Lisbon, Portugal.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 135

49. D. Derbyshire, et al., Agent-Based Digital Libraries: Driving the Information Economy,
in Proceedings of the Sixth IEEE Workshop on Enabling Technologies: Infrastructure
for Collaborative Enterprises. 1997, IEEE: Cambridge, MA, USA. p. 82-86.

50. R.H. Guttman, A.G. Moukas, and P. Maes, Agent-mediated Electronic Commerce: A
Survey. Knowledge Engineering Review, 1998. 13(2): p. 147-159.

51. A.R. Lomuscio, M. Wooldridge, and N.R. Jennings, A Classification Scheme for
Negotiation in Electronic Commerce, in Agent Mediated Electronic Commerce, The
European AgentLink Perspective, F. Dignum and C. Sierra, Editors. 2000, Springer. p.
19-33.

52. MIT Media Lab, Past projects. http://agents.media.mit.edu/projects/past.html

53. W. Shen and D.H. Norrie, Agent-Based Systems for Intelligent Manufacturing: A State-
of-the-Art Survey. Knowledge and Information Systems (KAIS), 1999. 1(2): p. 129-156.

54. Carnegie Mellon University - Software Agents Group and Robotics Institute and U.o.P.-
D.o.I.S. Telecommunications, MokSAF: Software Environments for Route Planning
and Team Coordination. http://www-2.cs.cmu.edu/~softagents/moksaf/index.html

55. Agent Oriented Software Pty. Ltd., Jack Intelligent Agents. http://www.agent-
software.com.au/shared/home/index.html

56. A. Zunino and A. Amandi. Brainstorm/J: a framework for intelligent agents. in Second
Argentinian Symposium on Artificial Intelligence (ASAI 2000). 2000. Buenos Aires,
Argentina.

57. Telecom Italia Lab, JADE web pages. http://sharon.cselt.it/projects/jade/

58. LEAP, Lightweight Extensible Agent Platform. http://leap.crm-paris.com/

59. H.S. Nwana, D.T. Ndumu, and L.C. Lee, ZEUS: An advanced Tool-Kit for Engineering
Distributed Multi-Agent Systems, in Proceedings of the Third International Conference
and Exhibition on the Practical

Application of Intelligent Agents and Multi-Agent Technology (PAAM 98). 1998: London,
U.K. p. 377-391.

60. Communication Technologies, Comtec Agent Platform. http://ias.comtec.co.jp/ap/

61. Fujitsu Labs, April Agent Platform. http://www.nar.fujitsulabs.com/aap/about.html

62. A. Amandi and A. Price. Towards Object-Oriented Agent Programming: The
Brainstorm Meta-Level Architectu. in First International Conference on Autonomous
Agents. 1997. Marina del Rey, California, USA.

63. L. Dempsey and R. Heery, Metadata: a current view of practice and issues. Journal of
Documentation, 1998. 54(2): p. 145-172.

64. Gilliland-Swetland, A.J., Setting the stage, in Introduction to metadata: pathways to
digital information v.2.0. 2000, Getty Information Institute.

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 136

65. Johnston, P., XML and "meta-tagging", in presentation in Technical seminar for
Pathfinder LEAs, BECTa. 2002: Coventry, UK. http://www.ukoln.ac.uk/interop-
focus/presentations/bectapf/tsld001.htm

66. Johnston, P., Metadata : an overview, in presentation in XML and Educational
Metadata Workshop. 2001: London, UK. http://www.ukoln.ac.uk/interop-
focus/presentations/sbu/ppt/overview.ppt

67. Johnston, P., Metadata sharing and XML. 2002, NOF Technical Advisory Service.
http://www.ukoln.ac.uk/nof/support/help/papers/metaxml.htm

68. Johnston, P., An Introduction to Metadata, in Presentation to the "Metadata : from soup
to nuts" seminar for NOF-digitise projects. 2002: London, UK.
http://www.ukoln.ac.uk/nof/support/workshops/metadata-
2002/presentation2/presentation2.ppt

69. W3C, XML. http://www.w3.org/XML/

70. Resource Description Framework (RDF) Model and Syntax Specification, W3C
Recommendation. http://www.w3.org/TR/REC-rdf-syntax/

71. MARC. http://www.loc.gov/marc/

72. Encoded Archival Description. http://www.loc.gov/ead/

73. International Standard Archival Description from the International Council of Archives.
http://www.ica.org/

74. IEEE LTSC Learning Object Metadata Working Group.
http://ltsc.ieee.org/wg12/index.html

75. MPEG-7. http://ipsi.fhg.de/delite/Projects/MPEG7/

76. The Harmony project. http://metadata.net/harmony/

77. Rosch, E., Principles of categorization, in Cognition and categorization, E. Rosch and
B.B. Lloyd, Editors. 1978, Erlbaum: Hillsdale, USA. p. 27-48.

78. Larkoff, G., Women, Fire and Dangerous Things: What Categories Reveal about the
Mind. 1990, Chicago: University of Chicago Press.

79. Kouznetsov, P., Jad - the fast JAva Decompiler. http://kpdus.tripod.com/jad.html

80. Linar, J-Integra. http://www.linar.com/

81. National Association of College Stores. http://www.nacs.org

82. Interactive Educational Systems Design Inc. (IESD), Online Courses and Other Types
of Online Learning for High School Students. 2002.
http://www.apexlearning.com/results/results_schools_dist.asp

MSc EMOOSE Thesis – http://www.emn.fr/EMOOSE 137

83. Council for Higher Education Accreditation, Distance Learning in Higher Education,
Update Number 3 (June 1999). http://www.chea.org/Commentary/distance-
learning.html

84. The Building the Internet Workforce Project.
http://www.itee.uq.edu.au/~seminar/archive/sem-0382.html

85. Sun website. www.sun.com

86. Telstra website. www.telstra.com

87. Compuware website. www.compuware.com

88. DSTC website. www.dstc.com

89. The Learning Resource Exchange project (LRX).
http://www.admin.utas.edu.au/academic/acservices/meetings/talc/Appendix/2_01C3.do
c

90. Commonwealth Department of Education Science & Training (DEST).
http://www.dest.gov.au

91. The Peer Review of ICT Resources project.
http://www.detya.gov.au/highered/eippubs/eip01_3/default.htm

