
Vrije Universiteit Brussel - Belgium
Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes - France
and

Universidad de Chile - Chile

2001

V
R

IJ
E

UNIVERSITEIT BRUSS
E

L

S
C

IE
N

TIA
VINCERE TENEB

R
A

S

Portable semantic alterations in Java

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange)

By: Marc Śegura-Devillechaise

Promotor: Prof. Th́eo D’Hondt (Vrije Universiteit Brussel)
Co-Promotor: Prof. Luis Mateu (Universidad de Chile)

http://www.vub.ac.be/
http://www.emn.fr
http://www.dcc.uchile.cl/
http://www.emn.fr/romanczuk/MSC/Welcome.html
http://marc.seguradevillech.free.fr/
http://prog.vub.ac.be/PoolMembers/Theo/TDH/htm.dir/homepage.htm
http://www.vub.ac.be/
http://www.dcc.uchile.cl/

1

Abstract
In non-purely object-oriented languages some basic abstractions are not treated as objects. Their se-
mantics cannot be refined using standard object-oriented techniques like polymorphism or inheritance.
Metaobject protocols are a solution. However most of them are limiting the alterations to object-
oriented constructions. Abstractions that are not handled as objects by the language can therefore not
be altered. In the case of the Java language, there is however an important set of instructions inter-
preted by the virtual machine that closely match fundamental concepts of the language. By providing
a mechanism to insert bytecode instructions (e.g, a method body) directly into existing bytecode, some
fundamental concepts of the language could therefore be altered, although they remain hard-wired in
the virtual machine.These hook insertions can be used to reify, on the client side, fundamental object-
oriented concepts like: object initialization, method calls and casts for instance. This, per se, would
represent a notable step forward since until now portable bytecode instrumentation tools like Javassist
do not reify these concepts, or in a limited manner. Those concepts are clearly reified only in modified
virtual machines (hence sacrifying portability). The purpose of this thesis is to explore the feasibil-
ity and implement at least some of these ideas. An open reflective extension like Reflex can directly
benefit from this work, since it will provide it with code transformation entities allowing an increased
expressiveness of the meta-object protocol.

2

Acknowledgments
I am glad to take this opportunity to thank the people who helped to make this work possible.

First, this work would not have been possible without all the persons behind the EMOOSE project: it was a great
year where I have learned a lot and met lots of very interesting people. I am really grateful for the opportunity I
have been given to study in the EMOOSE program. I do hope the program will be reconducted over years.

I am especially grateful to the teachers of EMOOSE. I hardly believe how much they made me evolve. Among
many others interesting classes, I really enjoyed the discovery of Smalltalk and Pico%.

I am very happy to have a place to tell all Emoosers I studied with: Victor hugo Arroyo, Gustavo Bobefff (with
Carla and Santi), Kristof De Vos, Sofie Goderis, Peng Liang, Patricio Salinas and David Würth how much I
enjoyed working with them. I am even more happy to count them as friends.

Thanks to my promotor Prof. Dr. Théo D’Hondt for taking all EMOOSE students under his wings. Also thanks
to my co-promotors Dr. Luis Mateu, and Eric Tanter for suggesting a subject, and allowing me to deviate from
it and finally let me work on what I wanted. I especially appreciate the freedom I was given.

Thanks to the people of the supporting institutions, the Ecole des Mines de Nantes and the Universidad de Chile
for helping me whenever they could, in particular during my stay in Chile.

Especially I would like to thank the people that motivated me and convinced me to finish this work when I was
depressed: Eric Tanter, Kristof De Vos, Sofie Goderis, Victor-Hugo Arroyo, the Ibañez family, my own family,
Annya Romanczuk, Andres Farias, friends met in Chile: Sumiko, Fiorella, Ron Pablo, Javiera, and Angela the
daily people of Access Nova: David, Thomas and Eduardo and my promotors. I am grateful for all the help and
ideas provided by Eric and Kristof.

As this is the conclusion of four years spent at the Ecole des Mines, I would like to take a few lines to thanks all
the people and teachers I have been working with during this four years. Although I am already lacking of space,
I owe a lot to Thomas Ledoux who, more or less, makes me born to computer science, Philippe David, Olivier
Lhomme, and Patrice Boizumault whose introduction classes in first year attracted me to computer science,
Mario Südholt for its smart classes on data structure in second year, Romuald Debruyne and Narendra Jussien
for their wonderful classes on logic and constraint programming in third year, Jacques Noyé and Christian Colin
both for their classes and help to choose between GL and GSI options. I am also grateful to Gossiaux Pol ,
Lionel Luquin, Carl Rauch, Ludovic Klein, and Richard Dallier, F. Tellier, F. Lallier and Jean-Paul Bourgeois,
Rogatien Guihard, Sophie Dubuisson and Anne-France de Saint-Laurent, Philippe Houe, Christian Prins. Not
to forget, I owe a lot to all the engineer students I have been working with like Jocker, Neg, GV, Volvic, K-Zim
to mention a few of them.

I am already out of space and it is clear that many many people are still missing: I do not forget them. It is dif-
ficult to think to all the knowledge and affection I have been given. I just hope that one day I will merit these gifts.

Thanks to Veronica for being there.

http://www.emn.fr/romanczuk/MSC/Welcome.html
http://www.emn.fr/romanczuk/MSC/Welcome.html
http://www.emn.fr/romanczuk/MSC/Welcome.html
http://prog.vub.ac.be/PoolMembers/Theo/TDH/htm.dir/homepage.htm
http://www.dcc.uchile.cl/~etanter/
http://www.emn.fr
http://www.dcc.uchile.cl/
http://www.dcc.uchile.cl/~etanter/
http://kristof.devos.free.fr/
http://www.emn.fr/info/perso/romanczuk/Welcome.html
http://www.dcc.uchile.cl/~afarias/
http://www.emn.fr
http://www.emn.fr/info/perso/ledoux/Welcome.html
http://debruyne.ifrance.com/debruyne/
http://njussien.nexen.net/Welcome.html
http://www.emn.fr/fran/recherche/dept_info/perso/noye/Welcome.html
http://www.emn.fr/cv/info/colin/

Contents

1 Introduction 9
1.1 An copy paste mechanism at a bytecode level . 9
1.2 Goals . 10
1.3 Document overview . 10

2 An introduction to class files 11
2.1 Classes and class files . 11

2.1.1 Overview . 11
2.1.2 Source code and class files: different times . 11

2.2 Constant pool . 14
2.3 Attributes . 14
2.4 Methods and related attributes . 14

2.4.1 Code attribute . 14
2.4.2 Local variables . 17
2.4.3 Exception . 17

2.5 Bytecode instructions: a low level language . 17
2.6 An example . 18
2.7 The stack . 21

2.7.1 Types and stack . 21
2.7.2 Stack depth . 21

2.8 Summary . 22

3 Macro languages 23
3.1 Generalities about macros . 23
3.2 Some properties of macro languages . 23
3.3 Macro languages: a small survey . 24
3.4 Summary . 25

4 Bytecode manipulation libraries 27
4.1 The prototype requirements . 27
4.2 Bytecode manipulation libraries available . 28
4.3 BCEL overview . 29
4.4 JikesBT overview . 29
4.5 Joie overview . 30
4.6 Evaluation . 31

3

CONTENTS 4

4.7 Summary . 31

5 Java reflective extensions using bytecode rewriting 33
5.1 Reflection in general . 33
5.2 Reflection in Java . 34
5.3 Kava . 37
5.4 Javassist . 38
5.5 Summary . 40

6 Designing the copy paste mechanism 41
6.1 Nature and motivations of the tool . 41
6.2 Design goals . 43
6.3 Reified entities . 43
6.4 Extent of alterations . 45

6.4.1 Possible alterations . 45
6.4.2 Not enabled alterations . 47

6.5 Different kind of information . 49
6.5.1 Dynamic information . 50
6.5.2 Static information . 50
6.5.3 Information passed for the implemented alterations . 51
6.5.4 Strings and arrays versus objects . 51

6.6 An example . 53
6.7 Reinterpreted constructs . 57

6.7.1 Local variables . 60
6.7.2 Return reinterpretation . 60
6.7.3 Exceptions reinterpretation . 60
6.7.4 Self references reinterpretation . 61

6.8 Summary . 61

7 Naive implementation 63
7.1 The package structure . 63
7.2 From Naive API objects to Naive implementation objects . 64
7.3 From Naive implementation objects to BCEL objects . 65
7.4 The inliner hierarchy . 67

7.4.1 Using the inliners . 67
7.4.2 The inliners and NaiveMethodImpl . 67
7.4.3 Taking care of the stack depth . 69
7.4.4 Passing and returning information to the pasted method 71

7.5 Memory policy . 74
7.6 Summary . 74

8 Future works 75
8.1 Offering more alterations . 75
8.2 Revisiting the concept . 75
8.3 Opening the framework . 76
8.4 Summary . 76

CONTENTS 5

9 Conclusion 77

A Some examples 82
A.1 General shape of the examples . 82
A.2 Field read alterations . 82
A.3 Some alternate implementations taking a field read alterations as example 83
A.4 Field write alterations . 85
A.5 Cast alterations . 87
A.6 Method invocation alterations . 89
A.7 Constructor alterations . 97

B Exceptions between metalevel and baselevel 101
B.1 An overview of Java exceptions facilities . 101
B.2 Java metaprotocols and exceptions . 102
B.3 Exceptions and assumptions . 104

B.3.1 The shape of the example . 104
B.3.2 Javassist 1.0 . 106
B.3.3 Naive . 108

B.4 Conclusion . 109

List of Figures

2.1 Class file structure . 12
2.2 Different times, different level of alterations. 13
2.3 HelloWorld class: the source code. 18
2.4 State of the stack duringmain execution . 20

4.1 JOIE layers . 30

5.1 an example of Kava configuration binding . 37

6.1 A block synchronization in a method body . 48
6.2 ModifiedClass class . 53
6.3 Design of the example: UML class diagram . 55
6.4 Example class . 56
6.5 MethodInvocationAlteratorObject class . 57
6.6 Message flow performing the alteration . 58
6.7 MethodBodyContainer class . 59

7.1 The inliner inheritance tree . 68

A.1 Field read alteration:ModifiedClass class . 83
A.2 Field read alteration:Example class . 84
A.3 Field read alteration:FieldReadAlteratorObject class 85
A.4 Field read alteration:MethodBodyContainer class . 86
A.5 Field write alteration:ModifiedClass class . 87
A.6 Field write alteration:Example class . 88
A.7 Field write alteration:FieldWriteAlteratorObject class 89
A.8 Field write alteration:MethodBodyContainer class . 90
A.9 Cast alteration:ModifiedClass class . 91
A.10 Cast alteration:MethodBodyContainer class . 91
A.11 Cast alteration:Example class . 92
A.12 Cast alteration:CastAlterator class . 93
A.13 Method invocation ateration:ModifiedClass class . 93
A.14 Method invocation alteration:MethodBodyContainer class 94
A.15 Method invocation alteration:Example class . 95
A.16 Method invocation alteration:MethodInvocationAlterator class 96
A.17 Self method invocation ateration: ignored method invocation 97

6

LIST OF FIGURES 7

A.18 Constructor alteration:ModifiedClass class . 97
A.19 Constructor alteration:MethodBodyContainer class . 98
A.20 Constructor alteration:Example class . 99
A.21 Constructor alteration:ConstructorInvocationAlteratorObject class 100

B.1 Main class of the example. 105
B.2 Auxiliary class of the example. 106
B.3 Metalevel with Javassist 1.0. 107
B.4 Javassist running the example . 108
B.5 Metalevel with Naive. 109
B.6 Metalevel with Naive. 110
B.7 Naive running the example . 110

List of Tables

2.1 Entries in the constant pool. 15
2.2 Predefined attributes . 16
2.3 HelloWorld class : the constant pool. 19
2.4 HelloWorld class: bytecode instructions. 20

3.1 Characterization of some macro languages . 26

4.1 Comparison of bytecode manipulation libraries . 31

5.1 comparison of metaobject protocols for Java . 36

6.1 Extent of the possible alterations . 46
6.2 Information delivered . 52

7.1 User and implementor view of the structural entities . 64
7.2 Mapping from Naive implementor view to BCEL objects . 65

8

Chapter 1

Introduction

”No matter what [language] design was agreed upon, there would be time when a given user
for entirely appropriate reasons would need this or that variant of it”.

[KDRB91]

The primary mechanisms to alter a language semantic are macro systems and reflection. However, in Java the
first mechanism is not available and the second is slightly limited. Here, first a different, but related, alteration
mechanism, will first be proposed before presenting the goals of this work. Finally the structure of this document
will be presented.

1.1 An copy paste mechanism at a bytecode level

The design of a macro system seems much simpler than the design of a reflective system, especially when the
interpreter can not be modified. However, while macro systems are usually designed to work on source code,
the Java runtime only knows a portable compiled representation of the different classes called bytecode.

To preserve portability, such a macro system should work on bytecode instead of source code. Our goal here
was to design such a very rudimentary system whose sole purpose will be to inline some code in specific places.

However specific places is a vague term. From the working level, we can infer that ”places” will ultimately be
bytecode instructions. But, dealing with bytecode instruction does not make sense for most Java programmers.
Since bytecode instructions are used to implement language semantic, ”places” could be understood as language
semantic.

The code to be expanded there should also be provided through a compiled class in order to remain at a bytecode
level. A natural way for the user, is to describe the code to be expanded as a method of a compiled class.

Reaching an appropriate level of abstraction is also an important objective of this thesis. The reflection commu-
nity has developed a representation of the different entities coming into play in object-oriented programming.
We choose to borrow this representation in order to reach an abstraction level close to source code.

9

CHAPTER 1. INTRODUCTION 10

All in all, the goal of this thesis is a kind of advanced copy paste mechanism at the bytecode level akin to macro
relying upon the reflection representation of the entities involved.

1.2 Goals

Our goal in this thesis, is to explore the direction described in 1.1 by developing a prototype acting as a tech-
nological demonstrator of this approach’s feasibility. The prototype developed has been named N.A.I.V.E, an
acronym for Natural Abstractions for the Virtual machinE. Possible applications of such a working prototype
could be: production of new languages by Java language alterations like experimentiation with new thread mod-
els or new language paradigms like aspect orientation, production of reflexive systems, and the optimization by
inlining of delegation chains.

1.3 Document overview

This document is structured in nine chapters. The second chapter presents bytecode basics that are the ground
of this work. Chapter 3 to 5 are part of the state of the art: chapter 3 studies how to characterize macro
systems, chapter 4 analyzes the bytecode manipulation libraries available and chapter 5 presents the different
Java reflective extensions. Chapter 6 describes the design of the copy paste mechanism while chapter 7 discusses
the implementation of the prototype. Chapter 8 presents some perspectives. Chapter 9 concludes.

Chapter 2

An introduction to class files

”Bytecode: an architecture neutral intermediate format designed to transport code efficiently
to multiple hardware and software platforms”.

[GM96]

This chapter tries to give an introduction to the runtime representation of class in Java: class files. First a gen-
eral overview will be given before describing the main data structures that composes it: the constant pool and
attributes. More attention will be then be paid to the data structures involved into the representation of methods.
It will be followed by a simple example to fix the ideas. Finally, a number of constraints imposed on the stack
structure used by methods will be enumerated.

2.1 Classes and class files

2.1.1 Overview

A class file is the representation of a given class used by the Java interpreter, or in Java parlance, used by the
virtual machine. [LY97] standardizes the format of class files: it is defined as an array of bytes, although in most
cases it ends up to be a file on disk. Figure 2.1 presents the structure of the class file. First comes visioning
numbers that allow to identify the version of the class file format in use as well as the versions of the represented
classes. It is followed by the constant pool, a data structure whose role will presented in 2.2. Then it contains
the access rights of the class: in source code terms, it roughly correspond to the modifierspublic , final ,
abstract andabstract applied to a class. Further these access rights allows to differentiate a class from a
Java interface. After, the class file structure defines the represented class and its super class. Next, the interfaces
has implemented by the class are listed. Then, comes an enumeration of the fields and methods defined by this
class. Finally, the structure ends by defining attributes. Attributes will be described in 2.3.

2.1.2 Source code and class files: different times

This thesis explores the alteration of class definition to alter their behaviors. Java source code, usually given
as text files, is transformed into bytecode by compilation. as shown on 2.2, this leaves two places to alter the

11

CHAPTER 2. AN INTRODUCTION TO CLASS FILES 12

Figure 2.1: Class file structure.
This representation is based on chapter 4 of [LY97] that describes a class file with a C-like syntax.
The figure gives the impression that all attributes are stored at the end of the class file. This is only true for class
attributes, the structures corresponding to fields and methods (coresponding to the Fields and Methods boxes on
the figure) allocate space to store their own specific attributes.

CHAPTER 2. AN INTRODUCTION TO CLASS FILES 13

Figure 2.2: Different times, different level of alterations.

CHAPTER 2. AN INTRODUCTION TO CLASS FILES 14

definition of a class and ultimately its behavior. If the alteration is performed, on the text files that contains
the source code of the class, it is described as acompile time alteration. If the alteration is performed on the
compiled form of the class (at the bytecode level) before the virtual machine loads it, it is said to beload time
alteration.

2.2 Constant pool

The constant pool is a class scoped data structure that avoid anyJava virtual machine to rely on the runtime
layout of classes, interfaces, class instances, or arrays [LY97] hence ensuring portability. The constant pool is
an array of entries whose types are summarized on Table 2.1. For example, the ”This class” and ”Super class”
on figure 2.1 are defined as entries indexes in the constant pool. It is important to note that, depending on their
type, constant pool entries may refer to each other.

2.3 Attributes

The data structures associated to the boxes corresponding to Fields and Methods on figure 2.1 are not directly
describing more than a signature. The rest of information is stored in attributes. Attributes are a way to attach
information to a whole class file, a field, a method or to another attribute itself. They are therefore contained in
their related data structures: on figure 2.1, the data structures corresponding to the boxes ”Fields”, ”Methods”
and ”Attributes” can contain attribute.

User specific can be defined but a virtual machine is free to ignore any user specific attribute it does not un-
derstand. [LY97] opposes to user specific attributes, predefined attributes described by the specification. These
predefined attributes are summarized on table 2.2. But only a subset of this attributes (ConstantValue ,
Code, Exceptions , andInnerClasses) are required to be understood by all virtual machines.

2.4 Methods and related attributes

Because this thesis is interested into modifying the runtime definition of a method, this section will describe the
most important attributes that can be attached to a method:Code, LocalVariableTable andException .

2.4.1 Code attribute

It is defined by [LY97] asvariable-length attribute used in the attributes table of method info structures. A Code
attribute contains the Java virtual machine instructions and auxiliary information for a single method, instance
initialization method, or class or interface initialization method. Saying it more simply, theCode attribute holds
the method body of the method it is associated with.

Java virtual machines are stack based interpreters. TheCode attribute defines the maximum stack depth that
may be reach while executing its method body. It also defines the maximum number of local variables used,

CHAPTER 2. AN INTRODUCTION TO CLASS FILES 15

E
nt

ry
R

ep
re

se
nt

in
g

R
ef

er
en

ce
d

en
tr

y
ty

pe
R

ef
er

en
ce

d
en

tr
y

m
ea

nn
in

g
C

O
N

S
T

A
N

TC
la

ss
a

cl
as

s
or

an
in

te
rf

ac
e

C
O

N
S

T
A

N
TU

tf
8

fu
lly

qu
al

ifi
ed

cl
as

s
or

in
te

rf
ac

e
na

m
e

C
O

N
S

T
A

N
TF

ie
ld

re
f

a
fie

ld
C

O
N

S
T

A
N

TC
la

ss
fu

lly
qu

al
ifi

ed
cl

as
s

or
in

te
rf

ac
e

na
m

e
of

th
e

cl
as

s
co

nt
ai

ni
ng

th
e

fie
ld

C
O

N
S

T
A

N
TN

a
m

e
A

n
d

T
yp

e
na

m
e

an
d

de
sc

rip
to

r
of

th
e

fie
ld

C
O

N
S

T
A

N
TM

e
th

o
d

re
f

a
m

et
ho

d
on

an
ob

je
ct

C
O

N
S

T
A

N
TC

la
ss

fu
lly

qu
al

ifi
ed

cl
as

s
na

m
e

of
th

e
cl

as
s

co
nt

ai
ni

ng
th

e
m

et
ho

d
C

O
N

S
T

A
N

TN
a

m
e

A
n

d
T

yp
e

na
m

e
an

d
de

sc
rip

to
r

of
th

e
m

et
ho

d
C

O
N

S
T

A
N

TI
n

te
rf

a
ce

M
e

th
o

d
re

f
a

m
et

ho
d

on
an

in
te

rf
ac

e
C

O
N

S
T

A
N

TC
la

ss
fu

lly
qu

al
ifi

ed
cl

as
s

na
m

e
of

th
e

in
te

rf
ac

e
co

nt
ai

ni
ng

th
e

m
et

ho
d

C
O

N
S

T
A

N
TN

a
m

e
A

n
d

T
yp

e
na

m
e

an
d

de
sc

rip
to

r
of

th
e

m
et

ho
d

C
O

N
S

T
A

N
TS

tr
in

g
a

ch
ai

n
of

ch
ar

ac
te

rs
C

O
N

S
T

A
N

TU
tf
8

th
e

ch
ar

ac
te

r
se

qu
en

ce
C

O
N

S
T

A
N

TI
n

te
g

e
r

an
in

te
ge

r
va

lu
e

C
O

N
S

T
A

N
TF

lo
a

t
a

flo
at

va
lu

e
C

O
N

S
T

A
N

TL
o

n
g

a
lo

ng
va

lu
e

C
O

N
S

T
A

N
TD

o
u

b
le

a
do

ub
le

va
lu

e
C

O
N

S
T

A
N

TN
a

m
e

A
n

d
T

yp
e

re
pr

es
en

ta
fie

ld
or

m
et

ho
d

C
O

N
S

T
A

N
TU

tf
8

fie
ld

or
m

et
ho

d
na

m
e

w
ith

ou
ti

nd
ic

at
in

g
w

hi
ch

cl
as

s
C

O
N

S
T

A
N

TU
tf
8

fie
ld

or
m

et
ho

d
de

sc
rip

to
r

or
in

te
rf

ac
e

ty
pe

it
be

lo
ng

s
to

C
O

N
S

T
A

N
TU

tf
8

a
se

qu
en

ce
of

ch
ar

ac
te

rs

Ta
bl

e
2.

1:
E

nt
rie

s
in

th
e

co
ns

ta
nt

po
ol

.
[L

Y
97

]d
efi

ne
s

de
sc

rip
to

rs
ass

tr
in

gs
re

pr
es

en
tin

g
th

e
ty

pe
of

a
fie

ld
or

m
et

ho
d.

.
T

he
en

co
di

ng
us

ed
to

re
pr

es
en

tt
he

se
st

rin
gs

is
sp

ec
ifi

ed
in

de
ta

ils
in

[L
Y

97
].

CHAPTER 2. AN INTRODUCTION TO CLASS FILES 16

N
am

e
R

ol
e

U
se

d
in

da
ta

st
ru

ct
ur

e
C

o
n

st
a

n
tV

a
lu

e
re

pr
es

en
ts

th
e

va
lu

e
of

co
ns

ta
ntst
a

tic
fie

ld
re

pr
es

en
tin

g
fie

ld
s

C
o

d
e

co
nt

ai
ns

th
e

by
te

co
de

in
st

ru
ct

io
n

in
fo

rm
at

io
n

re
pr

es
en

tin
g

m
et

ho
ds

E
xc

e
p

tio
n

s
in

di
ca

te
s

w
hi

ch
ex

ce
pt

io
ns

a
m

et
ho

d
m

ay
th

ro
w

re
pr

es
en

tin
g

a
m

et
ho

d
In

n
e

rC
la

ss
e

s
us

es
to

de
sc

rib
e

in
ne

r
cl

as
se

s
cl

as
s

at
tr

ib
ut

es
S

yn
th

e
tic

us
es

to
de

sc
rib

e
in

ne
r

cl
as

se
s

cl
as

s
at

tr
ib

ut
es

re
pr

es
en

tin
g

a
m

et
ho

d
re

pr
es

en
tin

g
a

fie
ld

S
o

u
rc

e
F

ile
de

sc
rib

es
th

e
fil

e
co

nt
ai

ni
ng

th
e

Ja
va

so
ur

ce
co

de
cl

as
s

at
tr

ib
ut

es
L

in
e

N
u

m
b

e
rT

a
b

le
m

ap
s

be
tw

ee
n

lin
es

in
Ja

va
so

ur
ce

co
de

an
d

by
te

co
de

in
st

ru
ct

io
ns

in
C

o
d

e
at

tr
ib

ut
e

L
o

ca
lV

a
ri
a

b
le

T
a

b
le

m
ap

s
be

tw
ee

n
th

e
re

pr
es

en
ta

tio
n

of
lo

ca
lv

ar
ia

bl
e

(a
nu

m
be

r)
an

d
th

e
so

ur
ce

co
de

re
pr

es
en

ta
tio

n
(a

na
m

e)
in

C
o

d
e

at
tr

ib
ut

e
D

e
p

re
ca

te
d

si
gn

al
s

th
at

th
is

cl
as

s
or

in
te

rf
ac

e
ha

s
be

en
su

pe
rs

ed
ed

cl
as

s
at

tr
ib

ut
es

si
gn

al
s

th
at

th
is

fie
ld

ha
s

be
en

su
pe

rs
ed

ed
re

pr
es

en
tin

g
a

fie
ld

si
gn

al
s

th
at

th
is

m
et

ho
d

ha
s

be
en

su
pe

rs
ed

ed
re

pr
es

en
tin

g
a

m
et

ho
d

Ta
bl

e
2.

2:
P

re
de

fin
ed

at
tr

ib
ut

es
.

In
th

is
ta

bl
e,

w
he

n
an

at
tr

ib
ut

e
is

sa
id

to
be

us
ed

in
th

e
cl

as
s

at
tr

ib
ut

es
da

ta
st

ru
ct

ur
e,

it
sh

ou
ld

be
un

de
rs

to
od

th
at

it
is

st
or

ed
in

th
e

bo
x

ca
lle

d
”A

ttr
ib

ut
es

”
on

fig
ur

e
2.

1.

In
th

is
ta

bl
e,

w
he

n
an

at
tr

ib
ut

e
is

sa
id

to
be

us
ed

in
th

e
da

ta
st

ru
ct

ur
e

re
pr

es
en

tin
g

m
et

ho
ds

,
it

sh
ou

ld
be

un
de

rs
to

od
th

at
it

is
st

or
ed

in
th

e
bo

x
ca

lle
d

”M
et

ho
ds

”
on

fig
ur

e
2.

1.

In
th

is
ta

bl
e,

w
he

n
an

at
tr

ib
ut

e
is

sa
id

to
be

us
ed

in
th

e
da

ta
st

ru
ct

ur
e

re
pr

es
en

tin
g

fie
ld

s,
it

sh
ou

ld
be

un
de

rs
to

od
th

at
it

is
st

or
ed

in
th

e
bo

x
ca

lle
d

”F
ie

ld
s”

on
fig

ur
e

2.
1.

CHAPTER 2. AN INTRODUCTION TO CLASS FILES 17

representing each of them by a number. It defines an array containing the bytecode instruction sequence. More-
over if defines an exception table. It ends up by an array of the attributes that are associated to it.

The exception table corresponds at a source level totry catch statements. It is an array whose entries are
composed of four elements: the first is the bytecode instruction just after thetry , the second is the bytecode
instruction right after the exception is not expected anymore (or in other words, the next instruction after the{
closing thetry {), the third element is the bytecode instruction just after thecatch , and finally the fourth is
an index in the constant pool defining the exception being handled by thetry catch .

In this subsection, we have seen that aCode corresponds to the runtime representation of a method body. It
defines the bytecode instructions corresponding to that body, the local variables, the maximal stack depth used,
and the try catch contained in that method.

2.4.2 Local variables

TheLocalVariableTable is defined by [LY97] asan optional variable-length attribute of a Code attribute.
It may be used by debuggers to determine the value of a given local variable during the execution of a method.
For each local variable appearing in theCode attribute is associated with, theLocalVariableTable pre-
cises from and to which bytecode instruction the local variable is available (something akin to the scope at a
source level) and provides an index in the constant pool defining its type.

2.4.3 Exception

TheExceptions is defined by [LY97] asa variable-length attribute used in the attributes table of a method info
structure. The Exceptions attribute indicates which checked exceptions a method may throw. A checked ex-
ception is an exception subclassingjava.lang.Exception . This attributes roughly said represents the
throws clause of a method declaration.

2.5 Bytecode instructions: a low level language

The bytecode instruction set currently consists of 212 instructions, 44 opcodes are marked as reserved and may
be used for future extensions or intermediate optimizations within the virtual machine. The instruction set can
be roughly grouped as follows:

• Stack operations: that push or pops values from the stack

• Arithmetic operations: allowing to do some basic operations on each primitive types of the virtual ma-
chine

• Control flow: branch instructions like goto like, if like instructions, and exceptions throwing. Branch
targets are coded as offsets from the current byte code position

• Load and store operations for local variables and for arrays

CHAPTER 2. AN INTRODUCTION TO CLASS FILES 18

• Field access

• Method invocation

• Object allocation: for object and array

• Conversion and type checking

Bytecode instructions may refer to the constant pool. In general, this is done by hard coding an integer corre-
sponding to the refereed index in the constant pool in the bytecode instruction sequence in theCode attribute.

2.6 An example

public class HelloWorld {
public static void main(String[] arguments) {

System.out.println(arguments[0]);
}

}

Figure 2.3:HelloWorld class: the source code.

In this section, a very simple example will be considered: theHelloWorld class whose source code is pre-
sented on figure 2.6 will be discussed from the bytecode level. This class only prints on the screen the first
argument it is given to. The example is volontary oversimplified, in particular, there is no error handing when
no argument is given.

On this example, the author using thejavac compiler coming with the standard jdk 1.3 gets the constant pool
presented in table 2.3.

With reference to the source code presented in 2.6, the compiler has generated a zero argument constructor that
we will ignore for the sake of simplicity. Furthermore it has created aSourceFile attribute that indicates that
the source file name is stored at position 13 in the constant pool.

There is no field defined in the source code, so there is no field structure (corresponding to the ”Fields” box on
figure 2.1) but there is one method defined:main . This method structure has a relatedCode attribute. This
Code attribute specifies that the maximum stack depth while executingmain is 3 and that no local variables
are defined in it. It further contains the sequence of bytecode instructions presented in table 2.4.

The state of the stack during the execution ofmain is described on figure 2.4. An empty stack is allocated to the
method before executing the first instruction. As shown in (a) on figure 2.4, thegetstatic pushes the value
of the fieldSystem.out on the stack. Then theaload 0 pushes the value of the first argument:arguments
on the stack. Next, aniconst 0 pushes a zero on the stack. At that time, the maximal depth is reached. The

CHAPTER 2. AN INTRODUCTION TO CLASS FILES 19

P
os

iti
on

Ty
pe

C
on

te
nt

R
ef

er
s

1
C

O
N

S
T

A
N

TM
e

th
o

d
re

f
vo

id
O

b
je

ct
.<

in
it>

()
V

()
5

(c
la

ss
),

14
(n

am
e

an
d

ty
pe

)
2

C
O

N
S

T
A

N
TF

ie
ld

re
f

S
ys

te
m

.o
u

t
L

ja
va

/io
/P

ri
n

tS
tr

e
a

m
;

15
(c

la
ss

)
,1

6
(n

am
e

an
d

ty
pe

)
3

C
O

N
S

T
A

N
TM

e
th

o
d

re
f

vo
id

ja
va

.io
.P

ri
n

tS
tr

e
a

m
.p

ri
n

tln
(L

ja
va

/la
n

g
/S

tr
in

g
;)

V
(S

tr
in

g
)

17
(c

la
ss

),
18

(n
am

e
an

d
ty

pe
)

4
C

O
N

S
T

A
N

TC
la

ss
H

e
llo

W
o

rl
d

19
(n

am
e)

5
C

O
N

S
T

A
N

TC
la

ss
O

b
je

ct
20

(n
am

e)
6

C
O

N
S

T
A

N
TU

tf
8

<
in

it>
7

C
O

N
S

T
A

N
TU

tf
8

()
V

8
C

O
N

S
T

A
N

TU
tf
8

C
o

d
e

9
C

O
N

S
T

A
N

TU
tf
8

L
in

e
N

u
m

b
e

rT
a

b
le

10
C

O
N

S
T

A
N

TU
tf
8

m
a

in
11

C
O

N
S

T
A

N
TU

tf
8

([
L

ja
va

/la
n

g
/S

tr
in

g
;)

V
12

C
O

N
S

T
A

N
TU

tf
8

S
o

u
rc

e
F

ile
13

C
O

N
S

T
A

N
TU

tf
8

H
e

llo
W

o
rl
d

.ja
va

14
C

O
N

S
T

A
N

TN
a

m
e

A
n

d
T

yp
e

<
in

it>
()

V
6

(n
am

e)
,7

(s
ig

na
tu

re
)

15
C

O
N

S
T

A
N

TC
la

ss
S

ys
te

m
21

(n
am

e)
16

C
O

N
S

T
A

N
TN

a
m

e
A

n
d

T
yp

e
o

u
t

L
ja

va
/io

/P
ri
n

tS
tr

e
a

m
;

22
(n

am
e)

,2
3

(s
ig

na
tu

re
)

17
C

O
N

S
T

A
N

TC
la

ss
ja

va
.io

.P
ri
n

tS
tr

e
a

m
24

(n
am

e)
18

C
O

N
S

T
A

N
TN

a
m

e
A

n
d

T
yp

e
p

ri
n

tln
(L

ja
va

/la
n

g
/S

tr
in

g
;)

V
25

(n
am

e)
,2

6
(in

de
x)

19
C

O
N

S
T

A
N

TU
tf
8

H
e

llo
W

o
rl
d

20
C

O
N

S
T

A
N

TU
tf
8

ja
va

/la
n

g
/O

b
je

ct
21

C
O

N
S

T
A

N
TU

tf
8

ja
va

/la
n

g
/S

ys
te

m
22

C
O

N
S

T
A

N
TU

tf
8

o
u

t
23

C
O

N
S

T
A

N
TU

tf
8

L
ja

va
/io

/P
ri
n

tS
tr

e
a

m
;

24
C

O
N

S
T

A
N

TU
tf
8

ja
va

/io
/P

ri
n

tS
tr

e
a

m
25

C
O

N
S

T
A

N
TU

tf
8

(L
ja

va
/la

n
g

/S
tr

in
g

;)
V

Ta
bl

e
2.

3:
H

e
llo

W
o

rl
d

cl
as

s
:

th
e

co
ns

ta
nt

po
ol

.
T

he
ty

pe
s

ar
e

ex
pr

es
se

d
us

in
g

S
tr

in
gs

in
th

e
in

te
rn

al
fo

rm
at

of
th

e
vi

rt
ua

lm
ac

hi
ne

.
W

ith
ou

t
de

sc
rib

in
g

th
is

fo
rm

at
in

de
ta

ils
,

co
ns

tr
uc

to
rs

ar
e

re
na

m
ed

in
to<

in
it>

an
d

th
e

co
de

co
rr

es
po

nd
in

g
to

cl
as

s
in

iti
al

iz
er

s
is

st
or

ed
in

a
m

et
ho

d
ca

lle
d

<
cl

in
it>

.

P
os

iti
on

4
de

sc
rib

es
th

e
”T

hi
s

cl
as

s”
bo

x
of

fig
ur

e
2.

1.
P

os
iti

on
5

de
sc

rib
es

th
e

”S
up

er
cl

as
s”

bo
x

of
fig

ur
e

2.
1.

N
ot

e
th

at
al

lS
tr

in
gs

ev
en

th
os

e
us

ed
by

at
tr

ib
ut

es
ar

e
st

or
ed

in
th

e
co

ns
ta

nt
po

ol
.

CHAPTER 2. AN INTRODUCTION TO CLASS FILES 20

Byte offset Instructions Argument in constant pool
0 getstatic 15 (System.out Ljava/io/PrintStream;)
3 aload 0
4 iconst 0
5 aaload
6 invokevirtual 17 (java.io.PrintStream), 3 (println (Ljava/lang/String;)V(String):void)
9 return

Table 2.4: HelloWorld class : the bytecode instructions contained in theCode attribute of the
main method.

Figure 2.4: State of the stack duringmain execution

CHAPTER 2. AN INTRODUCTION TO CLASS FILES 21

aaload instruction consumes the reference to the object array corresponding toarguments and the follow-
ing integer to push the value contained in that array at that index on the stack. Finally theinvokevirtual
instruction invokes theprintln method. On the stack, it consumes the reference on which the method should
be invoked:System.out and the arguments:arguments[0]) to feed the method with. It pushes the result
returned by the method on the stack: sinceprintln returns void, in that case, nothing is pushed on the stack.
Thereturn transfer control to the caller ofmain .

2.7 The stack

Each time method is executed, an associate stack is created to allow bytecode instructions to exchange results:
they pop and push values from the stack.

2.7.1 Types and stack

While the Java virtual machine expects that nearly all type checking is done prior to runtime, the instruction set
distinguishes its operand types using instructions intended to operate on values of specific types. Consequently,
the stack is typed incategory 1 andcategory 2. Only double and long belongs to category 2.category 1
consumes one position on the stack.category 2 consumes two positions on the stack. Trying to manipulate two
category 1 as acategory 2 or a position on the stack corresponding to acategory 2 as acategory 1, will cause
the class file to be rejected by the class verifier.

2.7.2 Stack depth

To ensure the integrity of a class file and to prevent it from the attack of malicious classes, the virtual machine
checks a number of properties of the class file. Class file not verifying these properties will not be loaded and
therefore not be executed. Outside sanity checks ensuring that the interpreter will be able to interpret the class
file, they are two very important constraints imposed on a class file:

• ”If an instruction can be executed along several different execution paths, the operand stack must have
the same depth prior to the execution of the instruction, regardless of the path taken.”

• ”At no point during execution can the operand stack grow to a depth greater than that implied by the
max stack item.”

In others words, the first statements, ensures that for a given instruction the stack depth will always be the same
regardless of the branch previously performed. The second statement clearly entails that the maximal stack
depth of a given method has to be computed during the class file generation. Any class file generator has to meet
these two constraints.

CHAPTER 2. AN INTRODUCTION TO CLASS FILES 22

2.8 Summary

Class are represented by class files at the runtime level. Class files are no more than an array of bytes composed
of different structures. Among the most important, the constant pool that avoid any Java virtual machine to
rely on the runtime layout of classes, interfaces, class instances, or arrays and attributes are a way to attach
information to a whole class file, a field, a method or to another attribute itself. In essence, by comparison, the
data structures corresponding to methods and fields are little more than a name and a signature. TheCode holds
runtime representation of a method body. TheLocalVariableTable maps from the runtime representation
of local variable machine to their source code representation. TheExceptions attribute corresponds to the
throws clause of a method declaration. Each time method is executed, an associate stack is created to allow
bytecode instructions to exchange results: they pop and push values from the stack.long anddouble are
occupying two positions on the stack. An attempt to split such along or double will cause the class file to
be rejected by the class verifier. For a given instruction the stack depth has to be always the same regardless of
the branch previously performed. No execution of a method should consume a greater stack than declared in its
code attribute.

Chapter 3

Macro languages

”From now on, a main goal in designing a language should be to plan for growth.”
Guy Steele

Growing a Language, OOPSLA’98 invited talk

There exists systems that are already doing the kind of copy paste mechanism proposed in this thesis. But these
systems: macro languages are modifying the source code while the central idea of this thesis is to modify the
compiled code.Nevertheless, macros have been widely studied and understanding how to characterize them may
be more than helpful to characterize our prototype.

Here generic notions on macro languages will first be introduced. Then a set properties allowing to characterize
a macro language will be proposed. It will be followed by a short survey of well known macro languages. Our
goal in this chapter is not to review all the macro languages but to identify some of their characterizing properties
applicable to Naive as well. This justify that this chapter will not be focus on the Java language.

3.1 Generalities about macros

Macro are defined in the source code by specific keywords. This specific keywords can be though as a language
extension. Then the source code is process by a preprocessor that reduces macro to source code of the original
language. Finally the language compiler or interpreter can be used on this modified source code.

More precisely, a macro keyword is an identifier that has been associated with a macro definition. A macro
definition is a user-definable transformation that tells how macro calls can be transformed into simpler forms.
The result of a transformation may also contain macro calls, and these will also be transformed recursively, until
the entire expression being expanded is expressed in terms of the primitive forms of the language.

3.2 Some properties of macro languages

A major characterization of a macro language is whether it operates at a lexical or syntactical language. Lexical
languages proceed by arbitrary substitution of tokens. But the language independency of these macro languages

23

CHAPTER 3. MACRO LANGUAGES 24

is repaid by their inability to ensure the correctness of the transformation: they just ignore the syntax of the
underlying host language. On the other hand, macro languages working at a syntax level, uses an abstract syntax
trees that allows them to ensure the correctness of the transformations they are performing.

Some macro languages working at syntactical level only provide pattern matching and substitution while oth-
ers allows explicit programming on the abstract syntax tree. This last property is known as programmable macro.

While lexical systems seems to have been supplanted by lexical systems, a new working level is emerging.It is
based on acknowledging the failure of syntax based systems when the macro programmer needs to deal with
logical and/or contextual information. These macro languages are using reification of entities comparable to the
well studied metaobjects of the refection community to offer to the macro programmer a logical and contextual
representation.

Type checking is an important problem occurring when the underlying language is strongly typed. Normally, at
least the arguments and the return type of the macros should be checked in order to grant the correctness of the
transformation performed by the macro language.

Recursion is another problem arising when dealing with macros. Direct recursion designs the fact that the body
of a macro contain an invocation of itself. Indirect recursion covers the fact that a self invocation is created dur-
ing the transformation. Usually both the macro language preprocessor and the macro user should take great care
to avoid infinite loops. In system based on reflection-like entities, the macro expansion is type driven: macro
expansion is managed by the reification of a type, in other words of a class1.

There are several approaches to implement a macro languages. First, language can be distinguished on whether
the macro body is expanded eagerly at its definition or lazily at each invocation. Since names clashes can occur,
renaming is often used: macro languages that ensures that no such name clashes will occur are known as hy-
gienic. While macro languages are designed to be transparent, meaning that the next phases of the compilation
or interpretation process does not need of be aware of the macro systems, errors reporting is usually a headache.

In this section, several properties identifying a macro system have been, identified: the operation level, whether
programmable macros are available or not, type checking and recursion capabilities, eager or lazily hygienic
macro expansion, and error reporting.

3.3 Macro languages: a small survey

The purpose of this section is not to study the macro languages for themselves but to review wide spread macro
languages towards the properties described before to check whether this set of properties can give a useful char-
acterization. In that case, it might be interesting to discuss the previously described properties with Naive. The
reviewed macro languages are: CPP: the C preprocessor [KR78], M4 [Ker81], TEX [Knu01], Dylan [Sha96],
C++ templates [Sha96], Scheme [KCR], Jakarta Tool Suite (JTS) [BLS92], bigwig [BS00] and OpenJava2

1it seems that the terms type-driven was coined by [TCKI00].
2OpenC++ has been presented as a macro system too in [Chi98] and, despite the underlying language, is close to

OpenJava.

CHAPTER 3. MACRO LANGUAGES 25

[TCKI00].

Considering 3.1, it appears that no one of the macro languages considered offers the same answer to
the properties identified in section 3.2. We can therefore conclude that this set of properties can be
used to characterize macros languages.

3.4 Summary

This chapter has precised the notion of macros: in a reduced view, they appear as a tool performing
an advanced copy paste of code in the source code before interpretation or compilation. It has isolated
and proved on a small survey that a macro system can be roughly characterized by a small number of
properties: the operation level, whether programmable macros are available or not, type checking and
recursion capabilities, eager or lazily hygienic macro expansion, and error reporting.

CHAPTER 3. MACRO LANGUAGES 26

C
P

P
M

4
T E

X
D

yl
an

C
+

+
te

m
pl

at
es

S
ch

em
e

JT
S

bi
gw

ig
O

pe
nJ

av
a

Le
ve

lo
fo

pe
ra

tio
n

le
xi

ca
l

le
xi

ca
l

hy
br

id
sy

nt
ac

tic
al

sy
nt

ac
tic

al
sy

nt
ac

tic
al

sy
nt

ac
tic

al
sy

nt
ac

tic
al

m
et

ao
bj

ec
ts

lik
e

La
ng

ua
ge

de
pe

nd
en

t
no

no
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
P

ro
gr

am
m

ab
le

co
nd

iti
on

al
s

ar
ith

m
et

ic
ye

s
no

co
ns

ta
nt

fo
ld

in
g

ye
s

ye
s

no
ty

pe
dr

iv
en

Ty
pe

ch
ec

ki
ng

n/
a

n/
a

n/
a

on
ly

ar
gu

m
en

tt
yp

es
ye

s
im

pl
ic

it
ye

s
ye

s
ye

s
D

ire
ct

re
cu

rs
io

n
no

ye
s

ye
s

ye
s

no
ye

s
no

re
je

ct
ed

no
In

di
re

ct
re

cu
rs

io
n

no
ye

s
ye

s
ye

s
ye

s
ye

s
n/

a
n/

a
n/

a
B

od
y

ex
pa

ns
io

n
la

zy
ea

ge
r

la
zy

la
zy

la
zy

la
zy

ea
ge

r
ea

ge
r

ty
pe

dr
iv

en
H

yg
ie

ni
c

no
no

no
ye

s
no

ye
s

ye
s

ye
s

ye
s

G
ua

ra
nt

ee
d

te
rm

in
ai

so
n

ye
s

no
no

no
no

no
ye

s
ye

s
ye

s
T

ra
ns

pa
re

nt
ye

s
n/

a
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
E

rr
or

re
po

rt
in

g
n/

a
n/

a
no

no
no

no
no

ye
s

ye
s

Ta
bl

e
3.

1:
C

ha
ra

ct
er

iz
at

io
n

of
so

m
e

m
ac

ro
la

ng
ua

ge
s.

D
yl

an
m

ix
es

op
er

at
io

ns
at

le
xi

ca
la

nd
sy

nt
ac

tic
al

le
ve

l.
C

on
st

an
tf

ol
di

ng
is

an
op

tim
iz

at
io

n
th

at
re

pl
ac

es
a

ca
ll

of
co

ns
ta

nt
ar

gu
m

en
ts

w
ith

th
e

co
ns

ta
nt

re
su

lt
of

th
at

ca
ll.

Chapter 4

Bytecode manipulation libraries

Surveying the libraries allowing to manipulate bytecode was a necessity with several objectives. At
least, ensuring than no bytecode manipulation library already exists offering the features we wanted
to develop was needed. From this viewpoint, this chapter is an integral part of the state of the art of
this thesis. Moreover reifying the abstractions presented in chapter 2 is a huge work. Furthermore, the
reification of these abstractions while necessary to implement a prototype was not the main goal of our
work. It was therefore natural to use a third party library providing them.

Therefore this chapter should be understood from its double goal: ensuring that no bytecode manipu-
lation library with similar features already exist and secondly reviewing them in order to choose one
suitable to develop our prototype on top of it. This presupposes to have a better idea of what the
prototype might expect from a bytecode manipulation library: this will be discussed before actually
describing the libraries available.

4.1 The prototype requirements

The choice between the different libraries has been governed by four criteria: expressiveness, the pro-
gramming language in which the library is implemented, the quality of the abstractions provided and
licensing issues.

It may sound odd to present expressiveness as an important criterion to choose a bytecode manipu-
lation library. However Java bytecode allow to express any -correct- construction appearing in Java
source code. A partial or limited reification of the abstractions presented in chapter 2 used by the vir-
tual machine may prevent a bytecode manipulation library either to describe, either to generate some
construction appearing in the Java source code. For instance, a library neglecting to reify the exception
table will prevent many alterations of the exceptions mechanism used in Java source code to handle
errors. Therefore, one strong requirement in the choice of a bytecode manipulation library is to be able
to express the same constructions appearing in Java source code.

27

CHAPTER 4. BYTECODE MANIPULATION LIBRARIES 28

Secondly, the implementation language of the bytecode library is important. To achieve our goal of
portability, it is desirable that our prototype only uses portable libraries. Java distinguishes itself from
other languages by its ability to cope with different platforms: [GM96] states thatJava is designed to
support applications that will be deployed into heterogeneous network environments. In such environ-
ments, applications must be capable of executing on a variety of hardware architectures.. If we want
to be able to run our program in every platforms where Java is available, it is natural to relay only on
Java written libraries.

Moreover, the quality of the abstractions provided could not be neglected: there is an enormous gap
between low-level objects close to the physical representation and a high level logical representation.
In the first case, the programmer is in charge of maintaining and ensuring the correctness of the rela-
tionships between the different objects involved in the bytecode generation. For instance, a low-level
representation may allow to add a bytecode instruction taking an index in the constant pool without
even checking that this index is not outside of the constant pool1 . A logical representation eases the
programming task by hiding low level details and by automatically maintaining the constraints im-
posed by the virtual machine between the different abstractions. For example, in a well design library
most manipulations of the constant pool can be hidden.

Finally, the licensing problem corresponds to the fact that we prefer to work with open source tools
rather than with commercial tools. This in turn allows us to distribute our work freely to any person
interested.

It is important to be aware of the tensions between the goal of expressiveness and the qualities of ab-
stractions criteria. Actually, it is difficult to reach a higher level of abstractions without presupposing
the end user tasks. If the end user goals do not match exactly the presupposed activities, it is likely
that the expressiveness will suffer. This does not mean that the library is bad; it only stresses that the
library is not well adapted to the user needs. The following survey of bytecode manipulation libraries
needs to be understood within our context: inlining a bytecode instruction sequence in place of another
pre-existing instruction.

4.2 Bytecode manipulation libraries available

Although still few people trust it, bytecode manipulation is being used in a large spectrum of appli-
cations: BIT [Lee96] offers an instrumentation interface for Java classes modelled on ATOM [SE94].
Like the latter, it constrains the alteration to preserve the semantics of the instrumented code. For
example, a method that will be inserted into another one has to be static and has to take a single argu-
ment. Binary Component Adaptation [KH97] is a bytecode transformation environment designed to
solve the problem of integrating incompatible software components. It addresses external interface is-
sues, such as method signatures and names, but not method implementations. Kimera [SGGB99] uses

1Remember that the constant pool is no more than an array of entries

CHAPTER 4. BYTECODE MANIPULATION LIBRARIES 29

bytecode transformation to implement a distributed virtual machine infrastructure. Hyper/J [OT00]
uses bytecode manipulation to implement a language extension for Java allowing the separate devel-
opment of applications and aspects of code encapsulating features cross-cutting the existing methods.
Unfortunately, neither of them is presented as a general-purpose transformation.

Fortunately, there are several general-purpose implementations of bytecode manipulation available:
BCEL, JikesBT, and JOIE. All of them translate the class file data structure into an intermediate inter-
nal representation, let the user performs the modifications he wishes and then regenerate a valid class
file data structure from the altered intermediate representation.

4.3 BCEL overview

BCEL stands for Byte Code Engineering Library. The purpose of BCEL as described in [Dah99] and
in [Dah01] is”to give the users a convenient possibility to analyse, create, and manipulate (binary)
Java class files”. BCEL achieved its goals by reifying all the abstractions and data structures specified
in [LY97]. BCEL offers two levels of reification: a static one and a dynamic one. Each level of des-
cription has an associated package in BCEL clearly separating the scope of the different abstractions in
use. The static level is used to describe a class from a virtual machine point of view while the dynamic
level allows altering a class file. The static level can be roughly understood as the intermediate repre-
sentation: reaching the dynamic level requires building first the abstractions representing a given class
at a static level. Saving a dynamically modified class file requires to regenerate a static description
from the dynamic description. This leads to a rather functional approach. On the other hand, BCEL
way of improving the abstraction level it offered relies upon the use of object-oriented techniques and
design patterns. This approach introduces no assumption on the activities of the user. BCEL does not
offer any built in mechanism to safely copy paste a method body in place of a bytecode instruction.

4.4 JikesBT overview

JikesBT or Jikes Bytecode Toolkit has been proposed by Chris Laffra”as a 100% Java class library
which enables Java programs to create, read, and write binary Java class files”. Its main difference with
BCEL is its ability to represent the class file logically in memory. A logical representation focuses on
the relationships between the abstractions that come into play in the virtual machine more than on
their physical representation. The fact that the accent is put on the relations between abstractions al-
lows to hide the constant pool to the user as long as he does not want explicitly deal with it. This
slightly eases the programming task without making assumption on the activities the user is willing to
perform. JikesBT does not offer any built in mechanism to safely copy paste a method body in place
of a bytecode instruction.

http://www.alphaworks.ibm.com/tech/jikesbt

CHAPTER 4. BYTECODE MANIPULATION LIBRARIES 30

4.5 Joie overview

Figure 4.1: JOIE layers (taken from [CC01]

JOIE stands for Java Object Instrumentation Environment. JOIE as described in [CC01, CCK98] is
a multilayered library: each layer address an identified level of abstraction. class file is the lowest
level surrounded by two intermediate layers: Bytestream and Core. As shown on figure 4.1, three high
level layers are available: Symbolic, Mixin and Instrumentation. class file is not meant to be used and
direct usage of Bytestream and Core is as well discouraged. The Mixin interface allows to access and
manipulate class-level structures, such as fields and methods, modifying them to copy features from
externally supplied auxiliary classes. This provides a simple way to add fields, methods, or method
prologues and epilogues without requiring knowledge of the bytecode. The Instrumentation layer al-
lows the insertion of sequences of instructions at well-defined points of methods. The Instrumentation
is limited to insertion; no replacement of a given instruction can be performed. The Symbolic interface
is designed to create and manipulate instructions. It represents instructions as instances of classes that
manage much of the bookkeeping complexity. The Symbolic interface interprets instruction operands
and presents them as references to typed objects with useful methods and behavior.

While this layered architecture seems to be one of the major strength of JOIE, it raises specific prob-
lems: as stated by the designers themselves: upper layers may maintain private state that is unknown to
the bottom layers. Especially JOIE does not attempt to maintain the consistency between the different
layers: ”since Symbolic is layered above Bytestream, manipulations to instructions using Symbolic
are reflected at the Bytestream level. However, the converse is not true: Symbolic supplements the
intermediate representation with structures that are not updated by Bytestream. Thus transformers

CHAPTER 4. BYTECODE MANIPULATION LIBRARIES 31

Expressiveness Implementation Abstractions Licence
language quality

BCEL Adequate Java Adequate LGPL (free)
JikesBT Adequate Java Excellent AlphaWorks (limited

to 90 days)
JOIE Adequate in bottom layers Java Adequate Duke University

Bounded in upper layers license (free)

Table 4.1: Comparison of bytecode manipulation libraries

cannot safely use both Bytestream and Symbolic to manipulate the same instructions” [CC01]. JOIE
designers do not felt this as a problem because according to them:”upper layers are specialized to
meet common functional requirements without direct use of the bottom interfaces” [CC01]. Unfor-
tunately, there was no suitable upper layer higher than Bytestream suitable to copy paste a method
body in place of a bytecode instruction. In other words, the higher level of abstractions provided by
Mixin, Symbolic or Instrumentation restricts the user activities from replacing a bytecode instruction
by a sequence of bytecode instruction. These hypothesis in turn are bounding the expressiveness of
the possible alterations in such a way that the user was not able to replace an instruction by safely a
method body2.

4.6 Evaluation

The discussion on the adequation of BCEL, JikesBT and JOIE on the light of our four criteria chosen
is summarized on Table 4.1: hopefully, it seemed that each of the libraries considered could allow us
to implement a mechanism replacing a given bytecode instruction by a sequence of bytecode instruc-
tions. The choice can be reduced to a comfort question: while it is clear that JikesBT minimizes the
development effort, its licence is problematic. JOIE while interesting suffers from layering problems
and therefore does not offer an abstraction level hight than its bottom layers whose use is discouraged.
It therefore appears that BCEL was the more adapted choice.

4.7 Summary

In short, in this section several bytecode manipulation libraries has been described in the light of
evaluation criteria suitable to the goal of replacing one given bytecode instruction by a sequence of
externally bytecode instructions. These criteria are expressiveness, implementation language, licence
and abstractions quality. Among the others, the abstractions quality was probably the most important.
We retained BCEL as most suited to our needs. While looking for a bytecode manipulation library,

2Another problem arising with JOIE is that all the upper layer described in [CC01] are not included in the main
distribution. It further seems that there is not clear separation between the different layers actually making the problem of
mixing the use of upper layers more burning

CHAPTER 4. BYTECODE MANIPULATION LIBRARIES 32

we discovered that no one offers a built in ability to perform the inlining of an externally provided
bytecode instruction sequences with an abstraction level comparable to Java source code. From this
viewpoint, the previous discussion goes beyond an implementation problem: it is an integral part of
the state of the art.

Chapter 5

Java reflective extensions using bytecode
rewriting

”Augmenting a language with a metaobject protocol does not need to be radical change.
In many cases, problems with an existing language or implementation can be improved by
gradually introducing metaobject protocol features.”

[KDRB91]

Reflection refers to the”abilities to represent, operate, on and otherwise deal with itself in the same
way that it represents, operates or and deals with its primary subject matter” [Smi90]. Clearly, the
alterations capabilities provided by a copy paste mechanism can help to develop a reflective system in
Java. Conversely, one might wonder if existing reflective extensions of Java is not already offering this
kind of copy paste mechanism . It is the purpose of this chapter to answer to this question.

First, general concepts about reflection will be introduced before describing the reflective extensions
available for Java. Finally, the extensions based on bytecode rewriting techniques will be discussed.

5.1 Reflection in general

[Smi84] highlights that a reflective system can be understood as a system containing its own inter-
preter. The self modifying ability entails that the system is able to modify its own interpreter which in
turns results in modifying the program execution. Since the system can reason on its own interpreter
and modify it, the interpreter can be seen as a program executed by another interpreter. This second
interpreter is part of the system and can therefore be modified. Consequently, it can be understood as
a program executed by a third interpreter and so on. Each program interpreter plays the role of a pro-
gram executed by another interpreter. This duality program/interpreters structures reflective systems
in layers or meta-levels. In practice, however, only two levels are commonly considered: the first level
is called base level describes the task that the system has to achieve (thewhat) while the second level
called metalevel interprets the base level (thehow).

33

CHAPTER 5. JAVA REFLECTIVE EXTENSIONS USING BYTECODE REWRITING 34

Somehow, Java alone is already a reflective system. In fact, according to [BGW93], if”reflection is the
ability of a program to manipulate as data something representing the state of a program during its own
execution, there are two aspects of such manipulation: introspection and intercession. Introspection is
the ability for a program to observe and therefore reason about its own state. Intercession is the ability
for a program to observe and therefore reason its own execution state or alter its own interpretation
meaning.” Therefore, Java alone appears somehow as a reflective system because it offers introspec-
tion capabilities1.

The state of the art approach to implement reflective object-oriented systems offering introspection as
well as intercession relies upon language based approach providing a metaobjects protocol. [KDRB91]
describes them as resulting of three design stages:

1. ”First the basic elements of the programming languages-classes [...] are made accessible as
objects. Because these objects represent fragments of a program, they are given the special
name of metaobjects.”

2. ”Second, individual decisions about the behavior of the language are encoded in a protocol
operating on these metaobjects - a metaobject protocol.”

3. ”Third for each kind of metaobject, a default class is created, which lays down the behavior of
the default language in the form of methods in the protocol.”

However this approach is tightly integrated with the language design. Java was not designed with this
goal in mind: this has lead implementors to use different techniques to augment Java with reflective
abilities.

There is a difference between structural reflection:”the ability to allow a program to alter the defi-
nitions of data structures such as classes and methods” [Chi00]. Behavorial reflection can be derived
from structural reflection as shown in [Chi00, Tan00]. [Chi00] provides a small metaobject2 protocol
providing behavioral reflection thanks to his implementation of a structural reflection: Javassist. Like-
wise [Tan00] describes a metaprotocol built on top of Javassist adapted to mobile agents.

5.2 Reflection in Java

[BS99] states that several approaches can be followed to add reflective capabilities to Java. These
approaches are:

1. Modify the source code of the base level to glue the hole between the metalevel and the base
level.

1Throughjava.lang.Class and through the packagejava.lang.reflect .
2packagejavassit.reflect

CHAPTER 5. JAVA REFLECTIVE EXTENSIONS USING BYTECODE REWRITING 35

2. Modify the bytecode of the base level with the same goals in mind.

3. Modify the virtual machine interpreting the Java byte-code.

Others approaches might be possible like building an interpreter of code source, or using partial eval-
uation. Nevertheless, we find no explorations of these possibilities in the literature. However, in a
context more general than the implementation of a Java metaprotocol, Chiba in [Chi97] discusses var-
ious approaches to implement a metaobject protocol.

The following enumeration summarizes the metaobject protocols available to our knowledge:

• Examples of the first approach are Open Java[Tat99] and Proactive [Vay97].

• Examples of the second approaches are: Javassist[Chi00], Kava[WS00], and Reflex[Tan00]3.

• Examples of the third approach are: Metaxa[Gol97] and Guarana[OCGB98].

The major problem of the last two approaches is a portability problem while the problem of the first
approach is to require an access to the source code of the base level.

It makes sense to compare the different implementations on the basis of the interceptions they allow
to realize. In an object-oriented world, the main activities are methods calls, instance creation and ac-
cessing instance and class variables. Consequently, a metaobject protocols should offer the ability to
refine this activities. Each of these activities can be understood from a sender viewpoint: for instance,
one object wants to send a message to another or from a receiver viewpoint: for example, one object
is asked to execute a given message. Each point of view is legimate because it allows redefining the
semantics of messages either per sender or per receiver.

Further, in an impure language like Java, it is interesting to be able to refine through the metaobject
protocol some of the behavior that is not by default reified. In the case of Java, monitors4 and arrays
are good candidate for such reification.

One of the major strengths of object-oriented technology is the ability to incrementally refine the pro-
tocol offered by subclasses specializing a given behavior. As pointed out by [KDRB91], a metaobject
protocol is no more than a standard protocol. It is therefore wishable to let the user tailor it to its needs
using the standard object-oriented construction offered by the language. However, the necessity to
maintain the relationship between the runtime and the metaobject protocol may limit the user ability
to refine the metaprotocol.

Finally, to evaluate the different reflective extensions four families of comparison criteria have been
distinguished:

3Reflex is written on top of Javassist and therefore we will not described it more
4In Java each object instance has by default a monitor associated. But the monitor queue can not be directly manipulated.

CHAPTER 5. JAVA REFLECTIVE EXTENSIONS USING BYTECODE REWRITING 36

Proactive OpenJava Javassist Kava Metaxa Guarana
Message send yes yes yes

Message received yes yes yes yes yes yes
Constructors send yes yes yes

Constructors received yes yes yes yes
Fields read or write yes yes yes yes

Monitors yes yes
Arrays yes yes

Dynamic changes yes possible yes possible yes yes
of metatreatments

Structural reflection yes yes n/a n/a

Table 5.1: comparison of metaobject protocols for Java.
This an adaptation of a figure appearing in [BS99]
Note that we disagree with [BS99] when he states that OpenJava makes it difficult to maintain the metalink at
runtime. We believe that depending on the user needs, the insertion of the appropriate hook may allow it as in
any libraries providing structural reflection.

• the main activities performed in an object-oriend world: methods calls, instance creation and
accessing to instance variables, all of them on a per sender or per receiver basis

• the ability to refine some first class object in particular monitors and arrays

• the ability of incrementally refine the metaprotocol using the standard object-oriented construc-
tions offered by the language

• the degree of control on the hooks inserted given to the user

Our conclusions are summarized on Table 5.1. To our knowledge, in all reflective extensions of Java,
the control of instance variables is limited to a sender viewpoint

Kava allows to refine the elements presented in Table 5.1 but only by providing before and after meth-
ods. This means that the refined activities in the base level will always takes place. This is slightly
different from replacing the activity performed in the base level by an inserted code: the metatreat-
ment. Javassist is quite powerful but still relatively oriented on a receiver point of view. Copying a
method body in place of a language construct fits more with a sender viewpoint. All in all, by compar-
ison with the other reflective extensions, it appears that the idea of replacing a given language semantic
by a method body seems to be relatively complementary of existing reflective extensions. While this
conclusion is interesting in itself, it might wondered if extensions built on bytecode rewriting do not
use a copy paste mechanism hidden in an implementation. It is therefore needed to analyze Kava and
Javassist in more details.

CHAPTER 5. JAVA REFLECTIVE EXTENSIONS USING BYTECODE REWRITING 37

5.3 Kava

Kava is built on top of JOIE5. Kava rewrites method bodies using load time bytecode engineering.
However, it is difficult to analyze Kava because the protocol presented in [WS00] and in [WS01] are
not consistent with the distributed release6. In each of the previous papers, and in Kava 0.9, only before
and after methods are provided. For example, in Kava 0.9, a given metaobject may be notified:

• Before or after finalization in other words the garbage collection of the base object,

• Before or after reading or writing a given field,

• Before or after sending or receiving a method7,

Thus Kava is only providing before and after methods in the metaprotocol: the only way to prevent a
given operation to take place (like finalization or sending or receiving a message or reading or writ-
ing a field) is to throw an exception in the before method of the metaprotocol. Kava metaprotocol
does not declare any specific exceptions in the signature of the metaobjects methods: this entails that
due to Java language semantics, Kava metaprocotol can only throwRuntimeException . Actually,
RuntimeException (and its subclasses) never needs to be part of a method signature:Runtime-
Exception s can be thrown at any time, anywhere in any block of Java code. Thus, the only way
to prevent a given operation to take place is to throw aRuntimeException in the related before
method of the metaprotocol.

metaclass kava.MetaTrace {
putfield(* , i, * , *);

receivemethod(test , *);
} class * metaclass-is kava.MetaTrace ;

Figure 5.1: an example of Kava configuration binding. (file META.CFG provided with the examples
of the Kava 0.9 distribution)

Because Kava does not provide structural reflection but behavioural reflection, it makes sense to con-
sider the relationships between metaobjects and base objects in Kava. This binding is achieved by
separately provided configuration file binding one class to one metaobject. For each metaobject, the
configuration file specifies the after and before methods it is interested in. As it can be seen from figure

5Although [WS00] presents it as being written on top o f BCEL, the distributed version of Kava 0.9 depends of JOIE.
6In particular, [WS00] presents an API based on an interfaceIMetaObject and context objects (likeIExecution-

Context , IfieldContext , IInvocationContext andIexcetpionContext), but none of the latter objects
seem to be part of the currently distributed version of Kava.

7It seems that Kava 0.9 does not include a method notified before or after an exception is thrown in the base level code
contrary to the metaprotocol described in [WS00].

CHAPTER 5. JAVA REFLECTIVE EXTENSIONS USING BYTECODE REWRITING 38

10, this binding language is relatively different from the Java language.

In each version of Kava protocols known to the author, the metaprotocol methods take various argu-
ments whose classes are specific to Kava8. These objects are instantiated at runtime in the bytecode
inserted by Kava in the base level. This introduces a tight relationship between the metalevel: Kava
classes and the base level. In particular, it becomes impossible to run the base level in the absence of
the metalevel classes, i.e. in the absence of Kava classes.

Finally, we have seen that Kava although relaying on very expressive bytecode generation libraries
only provides before and after like methods. Kava rewrites method bodies using load time bytecode
engineering. Metaobjects are bound to base level objects by an externally provided configuration file
written in a dedicated language. The only way to prevent a given operation to take place in the base
level is to throw aRuntimeException in the before method of the metalevel. Moreover, base level
classes made reflective by Kava become runtime dependant of Kava classes.

5.4 Javassist

javassist has been designed with two goals in mind: first provide source code level abstraction, and
secondly provide efficiency and safety in terms of types.

As said previously javassist, enables structural reflection (we will not cover the aspect of behavioral
reflection coming with javassist in the packagejavassit.reflect). As described in [Chi00]
using javassist essentially means dealing with five objects:javassit.CtClass , javassist.-
CtField , javasssist.CtMethod , javasssist.CtConstructor andjavassist.CodeConverter .
A CtClass describes a class file, aCtMethod a method, aCtField a field,CodeConverter is
used to perform some alterations on a method. With these objects a given user can:

• Perform the same introspection task that offers the standard Java with the difference that the
given class file is not loaded by the virtual machine.

• Change modifiers of a method9 : visibility (private , protected , public) as well as
synchronized

• Copy method from a given class into another, exchange method bodies

• Add simple methods (getter, setter and methods that returns immediately), and fields to a given
class

• Change the super class of a given class

8IExecutionContext , IFieldContext , IInvocationContext and IExcetpionContext in [WS00]
kava.Method kava.ValueArrayList kava.Value kava.Reference in Kava 0.9.

9Some of the methods enabling this are now deprecated in Javassist 1.0.

CHAPTER 5. JAVA REFLECTIVE EXTENSIONS USING BYTECODE REWRITING 39

• Instrument the body of a given method

The instrumentation of a method body allows:

• Replace the instantiation of a given class by another

• Replace a given method call by another

• Replace a given field access by another

Therefore, it can be said that the granularity of the structural reflection provided by Javassist is more
or less the members of a given class. For instance, the instrumentation of a method body is too limited
to be usefully used in the meta object protocol offering behavioral reflection that comes with Javassist:
it is based on renaming techniques of different class members.

This and the restricted instrumentations abilities suggest that Javassist makes most of its modifications
in the top-level structures of the class files where the members are defined and in the constant pool.
Ensuring this, requires understanding the representation of the bytecode used by Javassist.

Javassist unlike Kava does not use a third party library of bytecode manipulation. Bytecode ma-
nipulation is achieved thanks to the packagejavassist.bytecode .The inheritance tree below
ConstInfo completely reify the constant pool entries. Major abstractions such as class file, constant
pool, attribute, field, methods and the exception table are reified byClassFile , ConstantPool ,
AttributeInfo , FieldInfo , MethodInfo , ExceptionTable respectively. However, no
reifications of the bytecode instructions are available. TheBytecode class provides a limited ability
to add instructions in the code attribute containing the bytecode instruction flow of a given method.
But the added instructions should not perturb the stack. For example, the maximal stack depth will not
be recomputed.

This is an important restriction to Javassist ability to manipulate bytecode. It is therefore not surpris-
ing to discover that theTransformer inheritance tree, on which theCodeConverter is relaying,
only changes the indexes taken by bytecode instructions in the constant pool. Javassist exploits the
fact that field read, field write, methods and constructors invocation all map to bytecode instructions
whose indexes in the context pool indicates which field to read, write, method or constructor to invoke
respectively, to reexpress them with source level concepts.

All in all, we have seen that Javassist:

• Allows structural reflection.

• The grain is more or less the member of a class.

• Ability to transform a method body is limited to changing the indexes of a bytecode instruction.
This in source code terms allows to replace the instantiation of a given class by another, replace
a given method call by another, and to replace a given field access by another.

CHAPTER 5. JAVA REFLECTIVE EXTENSIONS USING BYTECODE REWRITING 40

Javassist metaprotocols are built using class members renaming schemes.

5.5 Summary

We have seen in this section that if there were several reflective extensions of Java available, few of
them rely upon bytecode rewriting. Approaches relaying on interpreter modifications suffer from a
lack of portability. The problem could have been solved by source code approaches but the source
code is usually not easily available when the virtual machine is loading a class. class file rewriting at
load time emerges as a solution able to provide augment the language with reflection. Two libraries
already exist exploring this path: Kava and Javassist.

Kava, on the other hand, is only providing after and before methods. Because in Kava the base seman-
tic of the language is executed, because Kava only offers to refine the base semantic of the language
before or after it did take place, there is no easy way to replace a given semantic attached to the lan-
guage. Replacing a bytecode instruction corresponding to a given semantic attached to the language,
can be thought as a complementary approach of the alterations that Kava can perform.

In Javassist, the granularity of the rewriting is more or less the member of a given class: this limits the
families of metaprotocols deriving from Javassist to a receiver viewpoint based on renaming schemes.
Replacing bytecode instruction corresponding to a given semantic attached to the language can pro-
vide the complementary sender viewpoint missing in Javassist.

Chapter 6

Designing the copy paste mechanism

”Courage: within the context of the first three values-communication, simplicity and
feedback-it is time to go like hell.”

[Bec99]

In this chapter, the prototype: Naive is presented. First, its relations with reflection and macro systems
are discussed, establishing its motivations. This leads to secondly enumerate the goals of the design.
Thirdly, the entities allowing the alterations are presented before precising their extents. But the al-
tered semantic contain information and this information has to be passed to the user before and after
performing the alteration. Next a full example will be presented. The fact that a copy paste mecha-
nism is used entails that some language constructs do not make sense anymore: they will be finally
discussed.

6.1 Nature and motivations of the tool

The idea behind Naive is very simple: there are bytecode instructions that directly map to source code
language constructs. Unfortunately, Java ability to refine its language constructs are quite limited.
Naive proposition is to replace the bytecode instruction corresponding to one of this constructs by an
arbitrary sequence of bytecode effectively allowing to refine some of Java language constructs.

But bytecode is not a friendly playground for most programmers, and therefore reaching an abstrac-
tion level comparable to the source code level is a major goal. Because a method body can contain
an almost arbitrary sequence of bytecode instructions and because methods are a familiar concept to
any Java programmer, it leads us to rephrase the sentence:”replacing the bytecode instruction corre-
sponding to one of this language constructions by an arbitrary sequence of bytecode” into ”inlining an
externally user provided compiled method in place of a given semantic appearing in a given method”.
In particular, it entails that the user will only deal with the construct he is willing to refine in a given
method. While this makes the prototype implementation responsible of mapping from a given seman-
tic to the bytecode instructions to be replaced, it frees the user from low level details (the bytecode
instruction to be replace and the sequence of instructions to be inlined) and provides him with a higher

41

CHAPTER 6. DESIGNING THE COPY PASTE MECHANISM 42

source code like view (the construct to be altered and the method to be copied in place of this construct).

While this is a huge simplification, a useful metaphor is to reason on source code instead of bytecode.
Considering the Java source code of the method body to be altered, what this thesis tries to achieve, is
that each time a given Java language construct is encountered the Java source code of another method
specified by the user is copied in replacement of the language construct. But instead of performing this
copy in the source code, the prototype of this thesis does it at the bytecode level since the Java runtime
environment relies only upon bytecode and never on source code.

Normally this kind of copy/paste mechanism works on the source code and is supported by macros.
Unfortunately the Java runtime has almost no knowledge of the source code. This highlights the need
of a macro system that does not work on source code but on the runtime data structures. In the latter
case, the macro expansion is performed after the compilation at the bytecode level before interpretation
contrary to the systems presented in chapter 3 where the macro expansion is performed at the source
code level before compilation. While this is an abuse extension of the term, we propose to describe
macro expansion performed at a bytecode level asruntime level macro.

This runtime level macro system: naive described below should increase the abstraction as much as
possible: bytecode is not a friendly playground for most programmers. As in OpenJava [TCKI00] and
OpenC++ [Chi98] , we choose to borrow the representation that the reflection community studied for
years. While however Chiba and Tatsubori explicitly use the term of metaobject, we prefer to speak of
structural entities rather than metaobject, since everything is merged at runtime.

We believe that the finer control possible should be given to the user. Therefore, instead of choosing
for a type driven, we choose for a method driven where the structural entity describing a method is
responsible of performing the copy paste inside the method. This is an attempt to answer to the needs
of implementors of Aspect Oriented Programming system. Other desirable properties of Naive are:
full type checking to be hygienic and to grant termination.

Clearly this type of macro system is close to a reflective system: it provides”abilities to represent,
operate, on and otherwise deal with itself in the same way that it represents, operates or and deals
with its primary subject matter” [Smi90]. This reflection capabilities, while strongly oriented on a
sender viewpoint, are offered through modifying the compiled form defining classes: it can therefore
be described as a structural reflective system. Nevertheless, it also allows to intercept basic operations
such as message sends. It is therefore correct to describe it as a reflective behavioral system. One
may try to find a compromise stating that it is a reflective system using structural reflection to enable
limited behaviorial reflective capabilities. Nevertheless, it is important not to get confused: macros
and reflection are different things. Macros are powerful: it is significant that the entire CLOS object
system [KDRB91] is implemented thanks to the macro system of Common Lisp. But a macro system
is not a meta object protocol although it can help to implement one.

This section presented the ideas behind Naive: allowing to inline an externally user provided compiled

CHAPTER 6. DESIGNING THE COPY PASTE MECHANISM 43

method in place of a given semantic appearing in a given method by actually replacing the bytecode
instruction corresponding to one of this semantic by the bytecode instructions corresponding to the
method body provided by the user. The system is described as a method driven runtime level macro
system using reifications borrowed from the reflection field that can be used, but substantially different
from, a reflective system using structural reflection to enable limited behaviorial reflective capabilities.
The system may fill the gap between the Java runtime and the macro systems based on source code as
well as providing a sender viewpoint missing in most Java reflective extensions.

6.2 Design goals

Naive has been designed with three main goals in mind:

• abstraction,

• reusability,

• expressiveness,

Abstraction corresponds to the fact that the user should be free from the details arising from bytecode
manipulation. In particular, a user should never have to deal with entities specific to bytecode but only
with source code level code entities.

Reusability corresponds to the fact that the copied method should, as much as possible, not be forced
to assume the place where it will be copied.

Expressiveness corresponds to the fact that enough information should be provided to allow a given
user to copy methods in replacement of language constructions that perform exactly the same behavior
than the replaced methods.

6.3 Reified entities

Naive reifies somestructural entities borrowed from the reflection community that ultimately are com-
mon to the Java runtime environment and to the source code level:NaiveClass , NaiveMethod
andNaiveField . They reify respectively a class, a method, and a field. Their instantiations is done
by factory methods. Factory methods allow to hide the instantiation relations between the different en-
tities. Each factory method takes aString in argument that uniquely identifies the structural entity.

In fact, it could have been possible to reach the same results with factory methods taking in argument
something else than aString name. For example, the factory method ofNaiveClass could have
taken aClass in argument, the factory method ofNaiveMethod could have taken aMethod in ar-
gument, and the factory method ofNaiveField could have taken aField in argument. However,

CHAPTER 6. DESIGNING THE COPY PASTE MECHANISM 44

using the Java standard structural entities (Class and java.lang.reflect.*) will automati-
cally load the related class file in the virtual machine before Naive alters it. Since class files are cached
by virtual machines, the same virtual machine could not have been able to load the class file after its
alteration by Naive. Another problem arising with using Java standard structural entities (Class and
java.lang.reflect.*) to instantiate Naive entities is that although they may refer to the same
class file they are considered only equals if they have been loaded by the sameClassLoader .

Compared to other alternative,String s are lightweight, are notClassLoader dependant, and still
make sense for the end user. The choice ofString s leads to the development of a specific jargon.

A class member of a classSomeClass is either a field, a method or an inner class declared inSome-
Class .

Thesimple name of a class is the name of the class as it appears in its declaration after the class key-
word. For instance, the simple name of the classString is "String" .

Thesimple name of a class member is the name of the member as it appears in its declaration inside
the class. For instance, the simple name of the fieldout declared in the classSystem is "out" .

Thequalified name or canonical name of a class is the package name to which the class belongs, fol-
lowed by a dot, followed by the simple name of the class. For example the qualified name of the class
String is "java.lang.String" .

Except for methods, thequalified name or canonical name of a member is the qualified name of the
class to which the member belongs, followed by a dot, followed by the simple name of the member.
For example the qualified name of the class fieldout declared in the class isSystem "java.lang-
.System.out" .

The qualified name or canonical name of a method is the qualified name of the class to which the
member belongs, followed by a dot, followed by the simple name of the method, followed by a left
parenthesis, followed by the class of each of the arguments taken separated by a coma and closed
by a right parenthesis. For example the qualified name of the methodequals declared in the class
Object is "java.lang.Object.equals(Object)" .

This jargon helps to understands how to instantiate Naive structural entities:

• aNaiveClass is instantiated through the static methodNaiveClass.getNaiveClass(-
String className) whereclassName is the qualified name of the class,

• aNaiveMethod is instantiated through the static methodNaiveMethod.getNaiveMethod(-
String methodName) wheremethodName is the qualified name of the method,

• aNaiveField is instantiated through the static methodNaiveField.getNaiveField(-
String fieldName) wherefieldName is the qualified name of the Field,

CHAPTER 6. DESIGNING THE COPY PASTE MECHANISM 45

These objects can be used in place of Java standard structural entities -java.lang.Class and
these found injava.lang.reflect.* - to describe a given class file without loading a class file
in the virtual machine.

Naive proceeds by replacing a given bytecode instruction with a well known semantic in the source
level by the bytecode instructions sequence contained in a method provided by a user. It is therefore
natural that the alterations provided by Naive are offered by theNaiveMethod class.

Naive provides entities reifying structural entities common to the bytecode level and the source code
akin to those provided by standard Java (Class andjava.lang.reflect.*). The provided reifi-
cations:NaiveClass , NaiveMethod andNaiveField are instantiated through factory methods
taking in arguments the qualified name of the entity.

6.4 Extent of alterations

There are two ways of apprehending the extent of the alterations possible. The most obvious one
is by enumerating the possible alterations. But it is at least equally interesting to understand which
alterations remains impossible and why.

6.4.1 Possible alterations

The implementation principle behind Naive is based on”inlining an externally user provided compiled
method in place of a given semantic appearing in a given method”. But for the Naive implementors,
thea given semantic has to be mapped into a bytecode instruction because ultimately the only thing
the Naive system knows to do is”replacing the bytecode instruction corresponding to one of this lan-
guage constructions by an arbitrary sequence of bytecode”. This simple statement explains a lot the
boundaries of the possible alterations that Naive enables: a given language semantic can be altered if
and only if it is achieved by a single bytecode instruction in the runtime level.

Even at the beginning of this thesis work, this constraint appear to be far too restrictive. In particular,
it was clear that they were bytecode instructions that did not map to a ”full” language semantic of
the source code but only to ”specialized cases”. For instance, theGETSTATIC instruction is used at
the bytecode level to read a class variable of a given class whileGETFIELD instruction is used at the
bytecode level to read an instance variable of a class. This is what we call ”specialized cases” of a
”full” language semantic, in that case: reading the value stored in a class or instance variable.

But the constraint can be easily relaxed. For example, to refine the language semantic corresponding to
”reading a class or instance value”, the method provided by the user should be copied and pasted each
time atGETSTATICor GETFIELD is encountered. This just leads to state that a given language se-
mantic can be altered if and only if it is achieved in the runtime level by a set of bytecode instructions,

CHAPTER 6. DESIGNING THE COPY PASTE MECHANISM 46

Pseudo source code examples Bytecode instructions Implemented
Messages sent object .toString() INVOKEVIRTUAL yes

INVOKESTATIC
INVOKESPECIAL
INVOKEINTERFACE

Constructor new Object() INVOKESPECIAL yes
Exception throwing throw exception ATHROW no

Field read point .x GETFIELD yes
GETSTATIC

Field written point .x=0 PUTFIELD yes
PUTSTATIC

Cast (Object)point CHECKCAST yes
RTTI object instanceof String INSTANCEOF no

Local variable read int var=0; ALOAD, DLOAD no
var= var+1; FLOAD, ILOAD

LLOAD
Local variable write int var; ASTORE, DSTORE no

var=var+1; FSTORE, ISTORE
LSTORE

Get value from array array[index]= AALOAD, BALOAD no
array[index]+1; CALOAD, DALOAD

FALOAD, IALOAD
LALOAD, SALOAD

Write value in array array[index]= AASTORE, BASTORE no
array[index]+1; CASTORE, DASTORE

FASTORE, IASTORE
LASTORE, LASTORE

Getting array lentgh array .length ARRAYLENGTH no
Creating array new Object [3] NEWARRAY no

MULTIANEWARRAY
ANEWARRAY

Returning return null ARETURN, DRETURN no
FRETURN, IRETURN
LRETURN, RETURN

Table 6.1: Extent of the possible alterations.
The first column names the semantic of the language that can be refined. RTTI is an abbreviation for Run-Time
Type Identification.
The second column offers an example of therefined semantic as appearing in source code.
The third column enumerates the related bytecode instructions.
The fourth column states if the alterations are implemented in the prototype implementation companion of this
thesis.

CHAPTER 6. DESIGNING THE COPY PASTE MECHANISM 47

each of them realizing specialized cases of the language construct. The major point to be reminded is
that in particular, it implies that language semantic achieved by a set of bytecode instructions working
in cooperation can not be altered with Naive.

These considerations allow to enumerate the set of possible alterations that can be done with the tech-
nique proposed in this thesis. As presented in table 6.1, these alterations are: message sent, constructor
sent, exception throwing, field read or write, type conversion between objects also known as cast, run-
time type identification, local variable read or write, reading or writing a value in an array, getting an
array length, creating an array, and returning from a method.

This section enumerated the various alterations possible with the technique proposed in this thesis
considering that a given language semantic can be altered if and only if it is achieve in the runtime le-
vel by a set of bytecode instructions, each of them realizing specialized cases of the language construct.

6.4.2 Not enabled alterations

More or less, there are three reasons that can prevent a given semantic of the source language to be
altered with the technique described here. First, there are language semantic implemented by a cooper-
ation of instructions. Secondly some language constructions are not realized by bytecode instructions.
Finally there are instructions whose results should conform to some constraints imposed by the virtual
machine [LY97]. Furthermore, there are bytecode instructions that do not correspond to anything at a
source code level. We will describe the four groups.

Semantic not realized by bytecode instruction

As described in section 2.4.1, exception trapping is not directly realized by bytecode instruction. Pre-
cisely speaking, the exceptions trapped in a block of code and the location of the exception handler1 is
not stored in the instruction flow of theCode attribute but in another part of theCode attribute. This
prevents to refine the semantic associated with thetry -catch statements.

Semantic implemented by a cooperation of instructions

Sadly all loops and conditional constructions appearing in the source code are realized by a cooper-
ation of bytecode instructions. Therefore, the language constructions associated to thewhile , for ,
if , break , cycle Java keywords can not be altered.

Furthermore,finally statements are achieved at the bytecode level by a cooperation of what will
appear at a source code level as atry -catch and jumping (using aGOTOinstruction) to the piece of

1an exception handler is the code appearing in acatch block in Java source code.

CHAPTER 6. DESIGNING THE COPY PASTE MECHANISM 48

bytecode corresponding to the code of thefinally statement. For these reasons,finally state-
ments can not be currently refined.

Constraints preventing a correct refining

There are only one language construction that can not be refined using this technique because of con-
straints imposed on the bytecode instructions flow by the specification of the virtual machine given in
[LY97]: thesynchronized keyword when used to achieve block synchronization (synchronized
can be used as a method modifier as well).

Whensynchronized is used as a modifier (like inpublic synchronized Object method()
{ }), no special instruction is needed inside theCode attribute containing the bytecode body of the
method. Therefore, the alterations of the modifiersynchronized applied to a method is a structural
reflection concern and this section has nothing to do with our concerns here.

public Object method() {
//code there - no synchronization
Object lock = new Object();
synchronized(lock) {

//here is a block synchronization on lock
//code there

}
//code there - no synchronization

}

Figure 6.1: A block synchronization in a method body

But, a given method body can contain a synchronized block like in figure 14. It allows to execute a
block of code with the monitor of the object taken. In fact, at a bytecode level, this is achieved by at the
beginning of the block taking the object lock with the bytecode instruction:MONITOTRENTERand
releasing it at the end with the instructionMONITOREXIT. But [LY97] states thatalthough a compiler
for the Java programming language normally guarantees structured use of locks, there is no assurance
that all code submitted to the Java virtual machine will obey this property. Implementations of the Java
virtual machine are permitted but not required to enforce both of the following two rules guaranteeing
structured locking. Let T be a thread and L be a lock. Then:

• The number of lock operations performed by T on L during a method invocation must equal the
number of unlock operations performed by T on L during the method invocation whether the
method invocation completes normally or abruptly.

CHAPTER 6. DESIGNING THE COPY PASTE MECHANISM 49

• At no point during a method invocation may the number of unlock operations performed by T
on L since the method invocation exceed the number of lock operations performed by T on L
since the method invocation.

Stating it more simply, it means that a correct implementation of the semantic of thesynchronized
keywordmay result in a cooperation of bytecode instructions.

Bytecode instructions without mapping to construct at a source level

There are two kinds of instructions groups that do not have even a partial mapping in the source le-
vel: those creating uninitialized objects2 and those manipulating the stack. The stack only exists at a
runtime level, it is therefore useless to provide the ability to touch it using our copy/paste technique.
However, uninitialized objects manipulation are a feature needed by metaobject protocols.

The ability to manipulate uninitialized objects are a desirable feature that the Java language source
level does not offer. However, uninitialized objects exist at a bytecode level: they are created by a
NEWinstruction and their constructor is invoked using a mechanism akin to private method invocation.
During a while, this raises our hope to be able to provide the ability to manipulate uninitialized objects.

Unfortunately, [LY97] states that:Only the invokespecial instruction is allowed to invoke an instance
initialization method (this are the constructors or the class initializer). [. . .] When doing dataflow
analysis on instance methods, the verifier initializes local variable 0 to contain an object of the current
class, or, for instance initialization methods, local variable 0 contains a special type indicating an
uninitialized object. After an appropriate instance initialization method is invoked (from the current
class or the current superclass) on this object, all occurrences of this special type on the verifier’s
model of the operand stack and in the local variable array are replaced by the current class type. The
verifier rejects code that uses the new object before it has been initialized or that initializes the object
more than once. In addition, it ensures that every normal return of the method has invoked an instance
initialization method either in the class of this method or in the direct superclass.. This clearly means
that the bytecode verifier of the virtual machine will reject any classes that contain a method that tries
to access to an uninitialized object.

6.5 Different kind of information

During this work it becomes quickly clear that the user may be interested into two types of information
answering to different needs:static information anddynamic information. By static information we
design information that could be provided by class file reasoning. For instance, the destination type of
a cast operation is typically a static information. Bydynamic information we design information that
could only be provided at runtime. For instance, the instance on which a method is called is typically a

2in other words objects before the invocation of their constructors like objects created by thebasicNew message in
the Smalltalk language.

CHAPTER 6. DESIGNING THE COPY PASTE MECHANISM 50

dynamic information. While dynamic information can only be provided to the user at runtime, in other
words, after the inlining took place, static information can be provided before performing the inlining.
It therefore becomes clear that static information can be used to guide the inlining mechanism: a user
can use the static information to choose which method to inline.

6.5.1 Dynamic information

Designing a mechanism to feed the inlined code with the dynamic information could have been a
problem but very hopefully it is possible to impose a given signature on the method containing the
code inlined. Imposing a signature is a practical way of solving the problem, dynamic information is
provided to the inlined code as if it was the arguments of the method. Clearly, this is only an impres-
sion and Naive implementation gives it by inlining some more glue code before actually pasting the
bytecode sequence contained in the method provided by the user.

Imposing a signature on the inlined method implies to define the arguments of the method as well as
the type it returns. As explained before, arguments are used to pass the dynamic information. The
return type is used to let the inlined method produce a result in place of the result computed by the
replaced bytecode instruction.

The fact that arbitrary values should be exchanged to and out the inlined code entails that a wrap-
ping should be performed by the Naive implementation for the primitive types:boolean, byte,
char, double, float, int, long, short). When an argument to be passed to the in-
lined code is a primitive type, it is wrapped into a Java object (respectivementBoolean, Byte,
Char, Double, Float, Integer, Long, Short . The inlined code should use the static
information to make the difference between a wrapped value and a non-wrapped one when it mat-
ters. When a returned value is expected from the inlined code, it should be returned as an object: the
Naive implementation will ensure that a unwrapping will be performed if necessary, possibly ending
by throwing aCastException if there is a type problem.

This subsection maps the need of exchanging information between the copied method and the contain-
ing method to the necessity of imposing a signature on the copied method. Arguments are used to feed
the copied method with dynamic information while the return type is used as the result of the replaced
construct if any. Wrapping and unwrapping are performed automatically by the prototype to handle
the case of exchanging primitive types.

6.5.2 Static information

Static information should be provided before performing the copy to the user in order to let him choose
which method to copy. ThereforeNaiveMethod provides a set of methodaccept whose unique
argument is an interface inheriting fromSemanticAlterator . Each subinterface ofSemantic-

CHAPTER 6. DESIGNING THE COPY PASTE MECHANISM 51

Alterator only defines one method: this method takes the static information in argument and
should return aString that will be interpreted as the qualified name of the method to be inlined.

Thus the standard usage scenario in Naive is to define an object implementing the subinterface of
SemanticAlterator corresponding to a given semantic, then instaniates theNaiveMethod de-
scribing the method in which the alteration has to be performed and send it the messageaccept with
the previously defined object. Finally the altered class file can be obtained by sending the message
getAsByteArray() to theNaiveClass . This should be the preferred way of retrieving an al-
tered class file since it allows to work entirely in memory. However for comfort asave() method
is provided inNaiveClass : it writes the altered class file in the working directory. By construction
this scenario grants termination.

This subsection maps the need to provide the user with static interface to an interface based design.
These interfaces provide methods that take the static information in arguments and return the method
to be copied. Objects implementing these interfaces can be given to aNaiveMethod with the mes-
sageaccept to actually perform the semantic alteration.

6.5.3 Information passed for the implemented alterations

While dynamic information and static information are different, they are also largely complementary
of each other. For example, giving to an implementor of an Aspect Oriented Programming extension
only a reference to the instance that sends a message at runtime is not enough: knowing the method
that sends the message is needed. Since avoiding that the pasted copy needs to assume the place where
it is pasted is desirable, it becomes clear that the pasted method should be feed both with static infor-
mation and dynamic information.

The information passed is summarized on table 6.2. We neglect to give the name of the altered method
before performing the paste (or in other words, we neglect to give the qualified name of the altered
method to the object implementing a subinterface ofAlterator) because the pasting mechanism
requires to send the messageaccept to aNaiveMethod object describing the altered method. In
particular it implies that the altered method is known when the paste is performed. This is all but no a
surprise: when a user tries to do a copy paste, it is better that he knows where he want the paste to be
done before using any copying system.

6.5.4 Strings and arrays versus objects

It may strange odd by reading the table 6.2 to pass information only throughString and an array of
objects. Especially in the latter case, it might be though than instead of using an array, using an object
providing getter methods will be easier to manipulate for the end user.

CHAPTER 6. DESIGNING THE COPY PASTE MECHANISM 52

Information given toAlterator Information given at pasted method delivered as
Message qualified name of invoked method qualified name of invoked methodString

sent qualified name of altered method String
instance of invoker Object
instance of invoked Object
values of arguments Object[]

Constructor qualified name of constructor qualified name of invoked constructorString
qualified name of altered method String

instance of invoker Object
argument values Object[]

Casts qualified name of destination type qualified name of destination typeString
qualified name of altered method String

instance of altered object Object
casted instance Object

Field qualified name of field read qualified name of field read String
read qualified name of altered method String

instance of altered object Object
instance on which the fied is read Object

Field qualified name of field written qualified name of field written String
written qualified name of altered method String

instance of altered object Object
instance on which the field is written Object

new field value Object

Table 6.2: Information delivered
The first column names the semantic of the language that can be refined. The second column describes the infor-
mation passed to the class implementing anAlterator subinterface. The method required by anAlterator
subinterface takes always one argument typed as aString .
The third column describes the information passed to the pasted method at runtime. Pasted methods have to take
only one argument: an array of objects (i.e.Object[]). The information is passed through this array. Higher
indexes in this array are placed at the bottom in this table.
The type of the information passed in that array is given in the fourth column.
The convention is the following: static information always precedes dynamic information.

CHAPTER 6. DESIGNING THE COPY PASTE MECHANISM 53

Two points have to be considered there: first of all, such an object does not exist in the Java standard
library because it is answering to a Naive specific need. Therefore a solution based on an object in-
stead of an array will make the altered class file dependent of a Naive specific class to be interpreted
successfully in a virtual machine. Rephrasing it in the macro parlance, it means that the macro expan-
sion performed by Naive will not be transparent because the interpretation stage will be aware through
classes dependencies of the alteration.

Secondly this is potentially a costly solution. Kava described in 5.3 passes information through Kava
specific objects named in Kava parlance: context objects. But Kava authors in [WS01] points out that
” preliminary measurements of the performance of Kava indicate that the most expensive operation is
the generation of the context. Presently, this expense is more than doubling the execution speed of a
number of instructions. ”. We did believe that a user worried by type safety could use an object whose
constructor take our array in argument and that provide appropriate getter methods. This solution lets
users choose between performance and type safety.

In this section, the use of arrays andString to exchange information has been presented as ensuring
the system transparency. Beyond transparency performance problem may arise: the current implemen-
tation let the user choose between type safety and performance.

6.6 An example

package naive.thesisexamples.methodinvocation;
public class ModifiedClass {

public String toString() {
return "EMOOSE";

}
public String method() {

System.out.println("hello");
return this.toString();

}
}

Figure 6.2:ModifiedClass class

This section will present a method alteration example to fix the ideas.ModifiedClass will contain
a methodmethod() whose sole purpose is to return the result of a self invocation oftoString() .
As shown on figure 6.6,toString() is refined to always return"EMOOSE".

The purpose of the alteration realized in this example will be to paste a method body in place of
the this.toString() invocation contained inmethod() declared byModifiedClass . The

CHAPTER 6. DESIGNING THE COPY PASTE MECHANISM 54

pasted method body will use the dynamic information he is given to perform exactly the same method
invocation using standard Java introspection capabilities.

To achieve this example, a classMethodInvocationAlteratorObject will implement the
naive provided interface:MethodInvocationAlterator . The methodmethodCallReplacer()
of MethodBodyContainer will contain the method body that will be pasted in place of thethis.to-
String() invocation contained inmethod() declared byModifiedClass . TheExample will
perform the alteration. An UML class diagram summarizing this design is presented in figure 6.3.

The messagemodify defined inExample actually performs the class file alteration. As shown
on 6.6, it proceeds by instantiating aNaiveMethod describing the methodmethod() declared
by ModifiedClass . It will send to thisNaiveMethod object the messageaccept() with in
argument an instance ofMethodInvocationAlteratorObject . ThenExample will write
the modified class file on disk using the methodsave() offered by theNaiveClass instance de-
scribingModifiedClass and retrieved by sending the messagegetDeclaringClass() to the
NaiveMethod object methodmethod() declared byModifiedClass . Finally, Example will
instantiate aModifiedClass and display the result of sending it the messagemethod() in a con-
sole.

As shown on figure 6.6, TheMethodInvocationAlteratorObject implements a subinter-
face:MethodInvocationAlterator of SemanticALterator . It’s unique method: get-
MethodToInlineOnMethodInvocation() takes a String in argument. It will be called by
the thenaiveMethod local variable ofmodify method ofExample class (figure 6.6). The
naiveMethod will pass it through itsString argument the static information. As stated in table
6.2, thenaiveMethod will therefore pass it the the qualified name of the method invoked.get-
MethodToInlineOnMethodInvocation() has to return aString containing the qualified
name of the method to paste in place of this method invocation ornull if this method invocation
should not be altered. This process is summarized on figure 6.6.

The pasted method described in figure 6.6just perform the method invocation by introspection. This
method:methodCallReplacer() takes an array in argument containing the dynamic information
describing what the base level code wants to achieve: here invoking a method. As stated in table 6.2,
the first element of the array is the qualified name of the method invoked given as aString , the sec-
ond element is the qualified name of the invoker given as aString , the third element is the instance
of the object invoking the method or null, the fourth element is the instance on which the method is
invoke, and finally the fifth element is an object array containing the arguments passed to the invoked
method or null if the invoked takes no arguments. If some argument value is a primitive type, it will
be wrapped into an appropriate object.

As expectedExample run in a console displaysEMOOSEin output.

This section presented an example showing how a method invocation can be performed. The source

CHAPTER 6. DESIGNING THE COPY PASTE MECHANISM 55

Figure 6.3: Design of the example: UML class diagram

CHAPTER 6. DESIGNING THE COPY PASTE MECHANISM 56

package naive.thesisexamples.methodinvocation;
import naive.kernel.NaiveMethod;
import java.io.IOException;
public class Example {

public static void main(java.lang.String[] args) {
//do the modifications
modify();
//execute the modifed code
ModifiedClass m = new ModifiedClass();
//display the result
System.out.println(m.method());

}
public static void modify() {

//creates the alterator
MethodInvocationAlteratorObject alterator =

new MethodInvocationAlteratorObject();
//get the metaobject describing a method
NaiveMethod method =
NaiveMethod.getNaiveMethod(

"naive.thesisexamples.methodinvocation.ModifiedClass.method()"
);
//perform the alteration
method.accept(alterator);
//write the modified class file on disk
try {

NaiveClass naiveClass = method.getDeclaringClass();
naiveClass.save();

} catch(IOException exp) {
System.err.println(exp);
System.exit(-1);

}
}

}

Figure 6.4:Example class

CHAPTER 6. DESIGNING THE COPY PASTE MECHANISM 57

package naive.thesisexamples.methodinvocation;

import naive.kernel.MethodInvocationAlterator;
public class MethodInvocationAlteratorObject

implements MethodInvocationAlterator {
public String getMethodToInlineOnMethodInvocation(

String inReplacementOfMethodCall
) {

return "naive.thesisexamples.methodinvocation.
MethodBodyContainer.methodCallReplacer(Object[])
";

}
}

Figure 6.5:MethodInvocationAlteratorObject class

code presented was based on the previous section.

6.7 Reinterpreted constructs

The fact that a method is actually inlined into another perturbs the semantics of a number of language
constructs:

• local variables: how the inlined method avoids names clash,

• returns: how the inlined methods is returning a value,

• exceptions throwing: how the inlined method is signalling errors,

• self references,

Following the metaphor proposed in 6.1, each of these problems appears at a source level if someone
copy and past a method into another. It makes clear that the name of the local variables should be
different between the copied method and the method where it is past. In the same way, the return
type of the inlined method should at least match the return type of the enclosing method. The same
problem arises with the exceptions: the exceptions thrown by the inlined method should be catched or
be declared in the signature of the enclosing method. And obviously if you do a copy and paste in the
source code of two Java class, thethis keyword used for self reference designs different objects. As it
will be seen below, these problems are going deeper than ensuring the integrity of the modified method.

CHAPTER 6. DESIGNING THE COPY PASTE MECHANISM 58

Figure 6.6: Message flow performing the alteration

CHAPTER 6. DESIGNING THE COPY PASTE MECHANISM 59

package naive.thesisexamples.methodinvocation;
import java.lang.reflect.*;
import naive.kernel.NaiveMethod;
public class MethodBodyContainer {

public Object methodCallReplacer(Object[] args)
throws ClassNotFoundException,

NoSuchMethodException,
IllegalAccessException,
Throwable {

String qualifiedMethodName = (String) args[0];
Object methodOwner = args[3];
Object[] argumentValues = (Object[]) args[4];
//get the Naive meta obj
NaiveMethod naiveMethod =

NaiveMethod.getNaiveMethod(qualifiedMethodName);
//maps from Naive meta object to standard java meta object
//Method langMethod=naiveMethod.getAsLangOnDisk() can
//not be used because the class loader may be different
Class[] argumentTypes = null;
if (argumentTypes != null) {

argumentTypes = new Class[argumentValues.length];
for (int k = 0; k < argumentTypes.length; k++) {

argumentTypes[k] = argumentValues[k].getClass();
}

}
Class langClass = Class.forName(

naiveMethod.getDeclaringClass().getCanonicalName()
);

Method langMethod = langClass.getMethod(
naiveMethodx.getSimpleName(), argumentTypes
);

//peform the method call
try {

return resu = langMethod.invoke(
methodOwner, argumentValues
);

} catch (InvocationTargetException exp) {
throw exp.getTargetException();

}
}

}

Figure 6.7: MethodBodyContainer class

CHAPTER 6. DESIGNING THE COPY PASTE MECHANISM 60

6.7.1 Local variables

The main problem with local variables is that the inlined method could refer to local variable with the
same name that a preexisting local variable of the method where it is pasted. For example if at a source
level one copy a piece code containing a local variable namednaive and if the method where the
paste is performed already a variable namednaive , a name clash is likely to occur.

At the bytecode level, things are not very different: local variable does not have a name (a name can
be available but only for debugging and is not mandatory) but are identified by a positive number.
Therefore a name clash can occur exactly in the same way.

To prevent this, the current prototype, renames the different local variables contained in the pasted
method. Actually it just add the greater integer identifying a local variable inside the method where
the paste is performed to all local variables contained in the pasted method. This makes the system
hygienic.

6.7.2 Return reinterpretation

The main problem with thereturn is the type of thereturn contained in the copied method
should match the type of the return type declared in the signature of the method where the paste is
achieved. Clearly we can expect not the user to provide a method to be copied with the right return type
since it will force the copied method to always assume the place where it will be pasted.Thus, and as
stated in 6.5.1, for generality, the inlined method should return anObject relaying on an appropriate
unwrapping facility. This considered, two alternatives have to be considered for the semantic attached
to thereturn contained in the copied method:

• return in the copied method returns to the enclosing method,

• return in the copied method returns to the caller of the enclosing method,

Both semantics are legitimate and makes sense for different cases. However, the first approach en-
forces the idea of giving the impression that the inlining is like a kind of method calls. This semantics
seemed the more logical one and this is the one we retained during the implementation.

6.7.3 Exceptions reinterpretation

Exceptions are a powerful ways of handling errors. In Java, they are completely integrated with the
language: neglecting them while implementing our prototype is therefore closer to a mistake than to
an acceptable tradeoff. The copied method as any piece of code may encounter error states and need to
signal it. It means that the copied method need to be able to throw exceptions to the enclosing method.

CHAPTER 6. DESIGNING THE COPY PASTE MECHANISM 61

However, contrary to the return type, the consistency between the exceptions thrown, the exceptions
declared in the method signature, and thetry catch blocks acting as exception handlers is only
checked at compiled time. In other words, contrary to the source level, it is possible to throw any kind
of exceptions at any time anywhere in the bytecode regardless of the method signature and regardless
of thetry catch blocks acting as exception handlers.

Nevertheless, as presented in B, despite this ability care must be taken not to break the assumptions
made by the level on the exceptions thrown. This leads to restrict the exceptions that the copied method
may throw to exceptions that the enclosing level expect.

We said that an exception isexpected in a method if there is a try block handling the type of the ex-
ception thrown, or if this method declares a type compatible with the exception in its throws clause.

If the exception is expected inside the method where the paste is performed, the exception will be
thrown as if. When the exception is not expected by the method where the paste is performed, Naive
will wrap the exception thrown by the base level code into anjava.lang.reflect.Undeclared-
ThrowableException . This subclass ofRuntimeException will be eventually thrown in the
method where the method is performed.

6.7.4 Self references reinterpretation

Finally, there is a problem arising with self (this keyword in Java) and super (super keyword in
Java) references appearing in the copied method. We do not believe that it should part of Naive re-
sponsibility to handle it since the reinterpretation of these references can not be done correctly without
presupposing the user activities. Therefore even if it has a taste of method call, the copied method is
really copied in the object altered and the Naive user have to be aware of it.

6.8 Summary

Here the idea that a macro system performing its macro expansion after the compilation step has
been defended. This approach solves the problem of source code availability encountered by previous
macro systems. It can allow a relatively wide range of alterations that can help to implement a reflex-
ive system using structural reflection to enable limited behaviorial reflective capabilities, especially by
providing a sender viewpoint.

Borrowing entities originally studied by the reflection communities:NaiveClass , NaiveMethod
andNaiveField , it tries to raise the abstraction offered to the user by providing a logical and con-
textual representation of the manipulated concepts. These manipulated entities are reexpressed in a
source code viewpoint meaning that the bytecode manipulations are hidden to the user.

CHAPTER 6. DESIGNING THE COPY PASTE MECHANISM 62

In Naive a given language semantic can be altered if and only if it is achieved in the runtime level by a
set of bytecode instructions, each of them realizing specialized cases of the language construct. In ex-
tenso, the possible alterations are: message sent, constructor sent, field read or write, type conversion
between objects also known as cast, runtime type identification, exception throwing, local variable
read or write, reading or writing a value in an array, getting an array length, creating an array, and
returning from a method. The fourth first have been implemented in the prototype.

The altered semantic convey information that need to be passed to the alterator before and after per-
forming the alteration. We distinguished two types of information answering to different needs: static
information and dynamic information. By static information we design information that could be
provided by class file reasoning. By dynamic information, we design information that could only be
provided at runtime. Static information is used to guide the copy paste mechanism and is therefore
provided to the user so that before performing a paste it could decide which method need to be pasted
at the place of a given language semantic. Static and dynamic information are passed to the pasted
method at runtime so that it does not need to assume the place where it is pasted. Information is con-
veyed by objects arrays andString in order to ensure system transparency.

Alterations (or macro expansions in other words) are performed by sending the messageaccept to
a NaiveMethod . The process is therefore mostly method driven rather than type driven (or class
driven in other words). The process by construction ensures termination.

The fact that a method is actually past into another perturbs the semantics of a number of language
constructs: local variables, returns, exceptions throwing and self references. Automatic reinterpreta-
tion is provided for the first three but the reinterpretation of self references is left to the user. The
reinterpretation of local variables ensures that the system is hygienic.

Chapter 7

Naive implementation

”If you wake up feeling no pain, you know you are dead”.
Russian proverb

In this chapter, an overview of the implemented prototype is given. First the packages structure is pre-
sented. Then the mapping from structural entities to the implementation objects of the prototype, and
the mapping of these implementation objects to BCEL objects are discussed. This leads to considering
the hierarchy of inliners objects, the classes that are actually performing the copy paste. Finally, the
memory policy adopted in Naive is described.

7.1 The package structure

Naive is structured in six packages:naive.kernel , naive.kernel.impl , naive.kernel.-
impl.bytecode , naive.kernel.impl.bytecode.generator , naive.kernel.impl.-
inliner , andnaive.kernel.impl.namespace . naive.kernel contains the user API,
the others package contains implementation classes. In particular all classes described in the chapter
6 belongs to that package.naive.kernel.impl contains an implementation view of the entities
stored innaive.kernel . naive.kernel.impl.bytecode contains low level classes that
either are performing bytecode analysis or are needed to deal with BCEL objects. Thenaive.-
kernel.impl.bytecode.generator contains classes that generate a bytecode sequence cor-
responding to a source code action. It is used bynaive.kernel.impl.inliner which contains
the classes that actually perform the bytecode inlining.naive.kernel.impl.namespace pro-
vides classes that allow to always provide ajava.lang.Class up to date representing an altered
class file.

63

CHAPTER 7. NAIVE IMPLEMENTATION 64

User view Implementor view
naive.kernel naive.kernel.impl

Interface Abstract class
NaiveClass NaiveClassImpl AbstractNaiveClassImpl

NaiveMember NaiveMemberImpl none
NaiveMethod NaiveMethodImpl AbstractNaiveMethodImpl
NaiveMethod NaiveMethod NaiveMethod

Table 7.1: User and implementor view of the structural entities: classes corresponding to structural
entities, interfaces and abstract classes.

7.2 From Naive API objects to Naive implementation objects

In the early design stage, there was a sharp tension between the idea of offering the user a clean API
and to clutter the structural entities:NaiveClass , NaiveMethod andNaiveField with imple-
mentation methods. The two needs were equally legitimate.

In the current prototype the problem is solved by providing two views of the structural entities: one is
the user API located innaive.kernel and the other is an implementation view located innaive.-
kernel.impl . Nevertheless the user API view is more important that the other: as much as possi-
ble the use of implementation method should be avoided. Therefore, it was natural to provide a one
way ability to switch from view. The message:getImplLink() sent to any structural entities of
naive.kernel will return an appropriate class ofnaive.kernel.impl .

However this solution was still raising some problematic issues especially of visibility of the instance
variables located in the structural entities. Therefore,naive.kernel.impl only provides a set
of interfaces and abstract classes that are implemented by inner classes inside structural entities. The
messagegetImplLink() returns an instance of these inner classes that the outer world only know
through its implemented interfaces defined innaive.kernel.impl . This effectively solves the
problem of offering different view of the same structural entities.

Strictly speaking,naive.kernel.impl could have only contain interfaces that would have been
implemented by inner classes defined in the structural entities. However, this solution in itself was
not satisfactory because if the API was not cluttered with implementation methods, the code source
of the structural entities would have been mixing the different concerns associated to the different
views we wanted to provide. Therefore, abstract classes were provided innaive.kernel.impl
that implement most of the behavior of the implementor view. This allowed the structural entities of
naive.kernel to implement only the API needed by the API while the inner classes they contain
only add the definitions of a few getter method.

Table 7.1 summarizes the mapping between structural entities, interfaces, and abstract classes. All in
all, defining a new implementation method requires to add the new method signature in the interface

CHAPTER 7. NAIVE IMPLEMENTATION 65

Concept Reification
Naive BCEL

Implementor view Static view Dynamic view
Class NaiveClassImpl JavaClass ClassGen

mapping through: getAsJavaClass() getAsClassGen()
Field NaiveFieldImpl Field FieldGen

mapping through: getAsJavaField() getAsFieldGen()
Method NaiveMethodImpl Method MethodGen

mapping through: getAsJavaMethod() getAsMethodGen()
Constant pool NaiveClassImpl ConstantPool ConstantPoolGen()

can be queried through:getConstantPool() getConstantPoolGen()

Table 7.2: [Mapping from Naive implementor view to BCEL objects .
The constant pool is not a structural entities reified by Naive. But at a bytecode level, it is a class file scoped data
structure. It is therefore natural to associate it withNaiveClassImpl . The mapping methods are defined on
the Naive object (second column).

objects named in the second column of table 7.1 so that the new method becomes available to the out-
side world, and implement the method in the abstract classes identified in the third column of the table.

In this section, we have seen how the naive implementation decouples the user API offered in the
packagenaive.kernel from an implementation view. This implementation view can be queried
by sending the messagegetImplLink() . It will return an inner class defined inside the struc-
tural entities considered whose type is an interface declared innaive.kernel.impl . Additional
abstract classes innaive.kernel.impl allows a true separation of concerns in the source code
between the user view offered innaive.kernel and an implementor view offered thanksnaive.-
kernel.impl .

7.3 From Naive implementation objects to BCEL objects

Since the structural entities proposed innaive.kernel are common to the bytecode level and to
the source level as stated in 6.3, it is not surprising that BCEL offers some reification of them. There
is however an important difference distinction to be done between the structural entities offered in
naive.kernel and the reification of BCEL: the latter proposes objects with a bytecode concern
while the former are operating at a level closer to source code.

Naturally the question arises to map the structural entities, or more precisely the implementation view
of the structural entities, to their counterparts in BCEL. As stated in 4.3, BCEL provides two views
of a class file: a static view and a dynamic view. The static view is the one provided by BCEL after
parsing the class file. It can be used to provide bytecode logical and bytecode contextual information
of a given class file. It is not possible to alter a class file using this static view. Alterations require to

CHAPTER 7. NAIVE IMPLEMENTATION 66

switch to the dynamic view. Usually the classes of BCEL knows how to translate themselves into their
dynamic counterparts and vice et versa.

However two problems appears there: first the translation process of BCEL between static and dy-
namic level have some side effects. For example, using thegetMethod() more than once on a
MethodGen to switch from a dynamic level to a static one, may cause the class file containing the
method to have more than oneCode attribute for that method. This causes the altered class file to be
rejected by the bytecode verifier when a virtual machine tries to use it. The second problem is that
once a reification is altered, the altered reification should be kept in memory until the user require
the altered class file to be dump either in memory, either on disk. As described on table 7.2 Naive
implementation objects define secure mapping methods that will provide their counterparts in BCEL
taking all these constraints into account.

It is however interesting to note that the second problem: ”keeping an altered reification in mem-
ory until the user either dump the related class file in memory or on disk” is the reason why Naive
structural entities are instantiated by factory methods. These factory methods are relaying upon class
members to keep track of the modified entities. A givenNaiveField , NaiveMethod or Naive-
Method can register itself as being altered with regards to these class variables, by sending itself the
message addToPendingModificationsSet() defined in the implementor view. Unregistra-
tion is achieved with the messageremoveFromPendingModificationsSet() . This frees the
user to distinguishing when he has to reinstantiate a structural entities (usingnew) and when he has to
reuse a previously altered reification.

This is however not enough: whatever the structural entities manipulated, only class maps to class
file and are therefore dump in memory or written to disk. In clear, it means thatNaiveMethod
andNaiveField should have a kind of link with theirNaiveClass so that the latter can query
them for alterations before dumping itself in memory or on disk. To achieve this,NaiveMethod and
NaiveField are defining inner classes implementing the interfaceClassAlterator . When they
perform an alteration, they register their relatedClassAlterator on their declaring class file using
the methodaddAlterator(ClassAlterator) of AbstractNaiveClassImpl .

In this section, we have seen that BCEL provides counterparts of the Naive structural entities, with
however a bytecode concern. These counterparts exist in two view static and dynamic. The former is
result of BCEL parsing and only allow a static description. To modify the described class file, switch-
ing to the dynamic view is needed. However, how the level switch should be achieved largely depends
on the previous use of the different reification provided by BCEL. Naive implementor view provides
safe translation methods. The necessity to kept altered structural entities in memory is the reason
of being of factory methods. AlteredNaiveField andNaiveMethod registered themselves on
their declaringNaiveClass by sending the messageaddAlterator(ClassAlterator) on
the implementor view usingClassAlterator .

CHAPTER 7. NAIVE IMPLEMENTATION 67

7.4 The inliner hierarchy

The packagenaive.kernel.impl.inliner is at the heart of naive abilities: it provides the copy
and paste mechanism. As shown on 7.1, it is structured in an inheritance tree that use subclassing at
its roots to incrementally increase the copy paste features and at the bottom to specialize the different
classes to perform specific alterations. First we will describe how to use them before discussing their
relationship withNaiveMethod . Then the layering structure will be considered: one layer to take
care of the stack, another to pass and return information to the pasted code.

7.4.1 Using the inliners

Inliners are typically instantiated by taking three arguments: the method in which the copy/paste
takes place, a set of bytecode instructions belonging to the former method body, and a method that
should be pasted in place of each bytecode instruction contain in the set. Once instantiated, any
MethodAlterator can answer to the messagealter that will actually perform the alteration. In
fact, alter delegates the alteration work to the abstract methodproceed declared inMethod-
Alterator .

7.4.2 The inliners and NaiveMethodImpl

As stated in 7.4.1, inliner classes are typically instantiated by taking three arguments: the method in
which the copy/paste takes place, a set of bytecode instructions belonging to the former method body,
and a method that should be pasted in place of each bytecode instruction contain in the set. It is the
role of the messageaccept of NaiveMethod to instantiate the right inliner with the right number
of arguments.

In fact, this task is not simple as it may seem to. Theaccept method has to enumerate the list of byte-
code instruction on which the semantic alterator maybe interested in. For example,accept(Method-
InvocationAlterator) has to enumerate all bytecode instructions invoking a method in the
method it describes. Furthemore, theaccept message has then to query its semantic alterator with the
appropriate static information to get the method to inline. In the previous example, it means that that
accept(MethodInvocationAlterator) has to analyze the enumerated bytecode instructions
so as to send the messagegetMethodToInlineOnMethodInvocation(String) taking the
qualified name of the method invoked by the bytecode instruction on itsMethodInvocation-
Alterator . Moreover the alterator implemented by the user then return either the qualified name of
the method paste or null if nothing has to be inlined. Clearly there is absolutely nothing in this process
that grants that the alterator will always return the same method to be pasted.

This means that theaccept method has to group the different results returned by the alterator in pairs
where the first element is the set of bytecode instructions, and the second element is the method that

CHAPTER 7. NAIVE IMPLEMENTATION 68

Figure 7.1: The inliner inheritance tree

CHAPTER 7. NAIVE IMPLEMENTATION 69

should be pasted, and instantiate as much inliners than it has made different pairs. Since this process
is relatively complex, close to the bytecode level,accept of NaiveMethod in fact are delegating
their work toaccept of NaiveMethodImpl that will actually perform all the task describe above.

In this section, the relationship of the inliners andNaiveMethod were studied. The methodaccept
proceeds by delegation toNaiveMethodImpl that instantiates the inliner on behalf of the result
returned by the alterator.

7.4.3 Taking care of the stack depth

As stated in 2.7.2, the stack depth has to remain the same whatever the path taken. This means in
particular that the pasted method should not perturb the stack. To achieve this,MethodInliner
translates the method body of the pasted method into a bytecode instruction sequence who last instruc-
tion has a stack depth just big enough to hold the returned value and who consumes the same number
of slots on the stack than the replaced bytecode instruction. The idea there is to that the value returned
by the pasted method should be pushed on the stack as if this value was pushed on the stack by the
replaced instruction. This process is a bytecode to bytecode translation.

While it is dangerous to remove an instruction because other branch instructions may target it, BCEL
when it dumps a class file in memory or on disk removes allNOPinstructions. Therefore, the current
prototytpe is adding aNOPinstruction that just do nothing as the end of the pasted method. Then all re-
turn instructions are rewritten as jump to thisNOPinstruction. To equalize the stack depth,instructions
are inserted before the old return (in other words before the new branch instructions targeting the newly
addedNOP).

Moreover the try catch statements should be translated too. This is a stack caring task because catch-
ing an exception may entail a branch to the exception handler, and as said previously the stack depth
should be the same regardless of the stack taken. Try catch are stored theException attribute where
instructions offsets defines from what to which bytecode instructions an exception should be catch.
Since, we are copying a method into another, theException attribute of the pasted should be trans-
lated intoException attribute of the method where the inlining is taking place.

While this is not a stack caring task,MethodInliner is also adding the needed entries to the con-
stant pool of the class where the past is performed and rewrites the bytecode instruction of the pasted
methods with regards to the new index in the constant pool of the class where the past is performed.
This is mostly a direct use of BCEL objects. The constant pool is updated by the methodcopy-
ConstantPoolRessources declared inMethodInliner .

This whole process is managed by thegetInstructionsToInsert() declared byMethod-
Inliner that returns the translated bytecode instruction sequence. First of all, the technique used to
equalize the stack depth will be presented before focusing on how returns and ty/catch are rewritten.

CHAPTER 7. NAIVE IMPLEMENTATION 70

Equalizing the stack depth

The general idea to equalize the stack depth is to use theCachedStackDepthComputer object
that computes the stack depth at a given instruction. Then depending on the difference the stack can
be equalized by inserting eitherPOPinstructions that will pop the top operand stack value or pushing
some zeros on the stack using aniconst . As stated in 2.7.1, the virtual machine is a typed interpreter
where long and double values occupies two slots on the stack. These slots should never been manip-
ulated separately otherwise the bytecode verifier will complaint. Therefore, usingPOPinstructions
that pop a slot at a time can lead the bytecode verifier to reject the altered class file. To resolve this
problem, we only usesPOP2that pops two slots of the stack in one time. When the number of slots to
be removed is not a multiple of two, we push an additional zero on the stack.

This idea is exploited in thealignStack , andtranslateReturns of MethodInliner . The
former ensures that the stack depth is zero at the end of the instructions sequences while the latter
translate returns.alignStack is a simple implementation of the idea described below.get-
InstructionsToInsert() will call removeLastReturn . This method will store the re-
turned value in a local variable and adjust the stack depth by callingalignStack then push the
returned value from the local variable on the stack.

Rewriting returns

The rewriting of all returns except the last one is performed by thetranslateReturns() method
declared byMethodInliner . For each return instruction encountered, the value returned is stored
in a local variable then some instructions are inserted to equalize the stack depth. Then the value re-
turned is pushed on the stack. Finally a branch instruction to the last instruction is written in place of
the return instruction.

Rewriting try/catch

Try/catch are rewritten by the methodtranslateExeptionHandler of MethodInliner . There
is no surprise in the algorithm used. It mostly relies directly upon BCEL objects. The idea is to use
theException attribute of the pasted method to localize the different bytecode instructions that de-
fine an exception handler of a given type (in extenso the instruction where an exception starts to be
expected, the instruction where the exception starts to be not expected anymore, and the instruction to
jump to when an exception matching the given type is given). Once these instructions are known, they
can be mapped in the new instruction sequence corresponding to the pasted method. Then, the type of
the handled exception and the mapped instructions can be used to add a new exception handler in the
Exception attribute of the method where the pasting is being performed.

In this section, how the classMethodInliner is ensuring the stack depth has been presented.
The process is a bytecode to bytecode translation, rewriting return and try/catch. It is performed

CHAPTER 7. NAIVE IMPLEMENTATION 71

by getInstructionsToInsert() . The stack depth is equalized thanks toalignStack , and
translateReturns of MethodInliner , by inserting either zero withiconst instructions or
either popping values from the stack usingPOP2instructions.translateExeptionHandler of
MethodInliner rewrites the different ty/catch.

7.4.4 Passing and returning information to the pasted method

While taking care of the stack depth was already a challenge in itself, passing and returning infor-
mation from the pasted method, is quite interesting too. This role is achieved by theMethod-
InlinerWithStackMapping class. While first experiments at the beginning of this work, exhibit
- unreliable - information passing without further alterations to the bytecode, it becomes quickly clear
that the insertion of additional bytecode instructions to pass and retrieve information from the pasted
method was needed.

The reason behind this need can be roughly grouped into two points:

• wrapping/unwrapping primitive types values,

• passing information that is not directly available in bytecode,

The first point roughly corresponds to the idea that the different values consumed on the stack by
the replaced instruction should be provided as arguments to the pasted method and that the result pro-
duced by the method should be put on the stack as the result produced by the replaced instruction if any.

The second point might be less obvious. In 6.5.3 the need to feed the pasted method with static and
dynamic information has been established. First, static information is usually not directly available in
the bytecode. For example, there is no ”magic” way to retrieve the qualified name of the method that
is currently being executed in the current thread. Secondly, there are some dynamic information that
is not on the stack but that need to be passed to the pasted method. For example, the current instance
of the object is typically not available to theCHECKCASTinstruction that performs a type conversion
between objects.

This establishes the need for inserting some bytecode to pass the information to the pasted method
and after to retrieve information from the pasted method. The former is know as the prologue and
the latter as the epilogue. The prologue is generated by thegetPrologueToInstructions-
ToInsertOn() declared in MethodInlinerWithStackMapping , the epilogue is generated
by getEpilogueToInstructionsToInsertOn() declared in MethodInlinerWith-
StackMapping : both methods rely heavily upon the classes of the packagenaive.kernel.-
impl.bytecode.generator .

CHAPTER 7. NAIVE IMPLEMENTATION 72

Passing information to the copied code: generating and wrapping

The generation of the prologue is probably the most complicated task. To achieve it, we took a prag-
matic approach of the problem. getPrologueToInstructionsToInsertOn() has to map
the stack put it in an array that may contain another array along with other information provided by
static analysis. To achieve it, we took a very pragmatic approach. Considering that it was highly
desirable to hide the task complexity,getPrologueToInstructionsToInsertOn() is a
relatively long method that acknowledges the different kind of information to be passed described in
table 6.2 by querying abstract and non abstract method various methods refined by its subclass. Still,
this solution is akin to assuming all the need of all the different subclasses and we are strongly con-
vinced that it is abad solution. The next paragraphs will discuss the method queried and their effects
on the array passed to the pasted method.

getPrologueToInstructionsToInsertOn() queries thegetStaticInfo() method
of MethodInlinerWithStackMapping for the static info to be passed to the pasted method.
Only String can be passed as static info. This information will be passed to the pasted method as
the first elements in the object array it takes in argument.

Depending on the result returned by the methodisSelfNeededToBeAddedToTheArgument-
Array() , it will add a reference to the instance object1 running the method as next element, right
after the static information in the object array taken in argument of the pasted method.

If the abstract methodisNulllNeededBeforeStackMapping() returns true, it will add a
null as the next element of the object array taken in argument of the pasted method. This method
is used while altering a static field read (InlineAsFieldRead encounters aGETSTATICinstruc-
tion), static field write (InlineAsFieldWrite encounters aPUTSTATIC instruction), or altering
a static method invocation (InlineAsMethodInvokation encounters aINVOKESTATIC in-
struction). The point is that in all the previous cases, table 6.2 requires to pass either the instance
owning the field, or the instance on which the method was invoked which does not make sense in these
cases.

Finally the stack consumed by the replaced will be map into the array with an appropriate wrapping
if necessary. The mapping also applies to fill the last element of the array with another object ar-
ray if the methodisLastElementInArrayAnEnclosedArray() returns true. Typically this
method only returns true forInlineAsConstructorInvokation and InlineAsMethod-
Invokation classes. The types and the length of the objects to be stored in that enclosed array is
retrieved through the abstract methodgetLastPostionArrayTypes() . The stack mapping per-
formed by getPrologueToInstructionsToInsertOn() adjusts the enclosing array size by
considering the length of the array returned bygetLastPostionArrayTypes() and the number
of values consumed on the stack by the replaced instructions. The mapping is further complicated by
the fact that the data at the bottom of the stack corresponds to the greater indexes in the array of objects

1it will generate anull if the method where the paste is performed is a class method.

CHAPTER 7. NAIVE IMPLEMENTATION 73

taken in arguments of the pasted method.

In this subsection, we have seen that the bytecode sequence that passed information to the pasted
method is generated bygetPrologueToInstructionsToInsertOn() . It relies upon col-
laboration with various others methods to pass information that is not directly available and to map
the information directly available into the types described in table 6.2. In fact, the collaboration with
the different methods parameterizes the prologue generation. In other words,getPrologueTo-
InstructionsToInsertOn() more or less assumes the shape of the prologue needed by all the
subclasses ofMethodInlinerWithStackMapping , and finally the shape of the information to
be passed to the pasted method.

Getting information from the copied code: dewrapping

Fortunately getting information from the pasted is much less painful. This task is performed by the
bytecode instructions sequence generated bygetEpilogueToInstructionsToInsertOn()
declared in MethodInlinerWithStackMapping . The result to be unwrapped is typically de-
pendant of the instruction replaced and it is retrieved using the abstract methodtypeToUnWrap() .
If this method returns"void" any results generated by the pasted method will be discarded. If nec-
essary, an unwrapping will be performed.

Moreover, the generated unwrapping sequence takes care of mapping the exceptions. The replaced
instruction is analyzed to infer which exceptions this instruction is allowed to throw. Then if the
pasted method throws an exception whose type does not match to one of these allowed exceptions,
the exceptions thrown will be wrapped into anUndeclaredThrowableException (from the
packagejava.lang.reflect). This is done by generating at a bytecode level, a sequence of try
catch blocks. The uppercatch s trap exceptions corresponding to the exceptions that the replaced
instruction may have thrown and rethrow them as if. In source code, it will look like:

catch(AnExceptionType anException) {
throw anException;

}

The last catch any exception and wraps them intoUndeclaredThrowableException before
rethrowing them. In source code, it will look like:

catch(Exception anException) {
throw new

UndeclaredThrowableException((Thowable) anException);
}

In this section, we have seen that the bytecode unwrapping sequence is generated bygetEpilogue-
ToInstructionsToInsertOn() . An unwrapping is performed both on the returned value and
on the exceptions thrown by the pasted method.

CHAPTER 7. NAIVE IMPLEMENTATION 74

7.5 Memory policy

Most objects in Naive, are instantiated through factory methods. Factory methods allows to do some
caching. Cached values are stored intoSoftReference (packagejava.lang.ref). Soft ref-
erence hold a reference on an object, which is cleared at the discretion of the garbage collector in
response to memory demand.

In the same way, the instance variables that can be recomputed are hold in Naive objects through
SoftReference . When an object wants to access such a field, it uses the related getter method. If
the related getter determines that the reference has been cleared, it will reinitialize the reference kept
in the field and returns the new computed value. Usually the values used to reinitialize the reference is
performed by a method namedinit plus the name of the related field.

This process can be though as a cooperation between the garbage collector and lazy initialization. It
is aimed is to find a compromise between caching and the cost of instantiating objects that gracefully
adapt and profits at maximum of the memory available at runtime.

In this section we have seen that Naive is using lazy initialization, factory methods, andSoft-
Reference to enable memory sensitive caching of instantiated objects.

7.6 Summary

Naive is structured in six packages each one with a sperate concern. The packagenaive.kernel.-
impl contains an implementor view of structural entities. A structural entities can be queried for its
implementor view by sending the messagegetImplLink() . This implementor view provides safe
getter method to map into BCEL counterparts reification. The copy paste is actually performed by
the suclasses ofMethodAlterator located in the packagenaive.kernel.impl.inliner .
MethodAlterator mostly defines the public interface of the inliner hierarchy. Its first subclass:
MethodInliner ensures the stack and constant pool integrity. Its subclass:MethodInliner-
WithStackMapping adds the ability to pass and retrieve information to and from the pasted method.
The memory policy in Naive tries to use a caching mechanism that gracefully and automatically adapt
to the available memory.

Chapter 8

Future works

This chapter presents the different extensions that could improve, according to us, the current proto-
type. The most obvious one is to push the concept to its limits and implement all the alterations that it
allows to perform. But it may also be possible, by analyzing the alterations it does not enable to revisit
the concept. Finally, the framework can be refactored to remove the assumptions it is making on the
user utilization of the prototype.

8.1 Offering more alterations

According to the alterations possibilities presented in table 6.1, it is remarkable that less than 40 % are
implemented in the current prototype. While this figure was established by a quick look on table 6.1, it
may even been decreased if one makes the difference between the alterations directly concerning self
like a message sent to thethis keyword andsuper keyword and the other one.

8.2 Revisiting the concept

In 6.1, we stated that Naive principle is: from an implementor viewpoint: ”replacing the bytecode
instruction corresponding to one of this language constructions by an arbitrary sequence of bytecode”
and from an user viewpoint: ”inlining an externally user provided compiled method in place of a given
semantic appearing in a given method”. Nevertheless, a number of alterations that can not be per-
formed by Naive enumerated in 6.4.2 could be performed if the principles were not centered onthe
bytecode instruction that maps to thegiven semantic but ona sequence of instructions.

Achieving this, will require to provide the user with another structural entities, that does no exist in
the reflection community, representing a sequence of instructions. This entity could be close to the
structural entities that describe a method. It will in particular allow to alter language semantic that

75

CHAPTER 8. FUTURE WORKS 76

results from a collaboration of bytecode instructions.

8.3 Opening the framework

Table 6.2 present the information passed to theSemanticAlterator and to the pasted method.
This information is hard coded inside the prototype: a given user can not parameterize the information
is want to be passed either to theSemanticAlterator , either to the pasted method. In clear, this
design tries to be universal, at the price of efficiency since it is passing more information that a given
user may need. We never believe very much in object-oriented designs that pretends to be universal
with regards to their users. A much better approach will be to let the user specifies the information that
it needs to be passed. Applying a pattern like the Command pattern may be a solution.

8.4 Summary

In this chapter, we have seen that the prototype could be improved by implementing all the alterations
that the concept allows to perform. The concept in itself can be revisited by instead of replacing
one bytecode instruction, replacing a sequence. This would lead to introduce a new structural entities
representing a sequence of bytecode instructions. Finally, the framework could be opened up by letting
the user parameterize the information he wants to be passed to theSemanticAlterator and to the
pasted method.

Chapter 9

Conclusion

In this dissertation, we presented a new portable way of performing Java semantic alteration by run-
time level macro. While the described prototype suffers from severe limitations and as described in
chapter 8 more work is still need to reach full maturity, we believe that it gives serious hints that this
approach is feasible and need to be explored.

The main contribution of this thesis is probably not into the description of yet another obscure system
manipulating compiled forms of classes, but more in an attempt to merge the concepts developed by
two communities: macro and reflection worlds. Both allows to perform semantic alterations, both may
benefit of each other. On these basis, the constraints arising from the Java language leads us to propose
runtime level macros to achieve portability.

77

Bibliography

[Bec99] Kent Beck.Extreme programming explained: embrace change. Addison Wesley, 1999.
41

[BGW93] D.G. Bobrow, R.G. Gabriel, and J.L. White. Object oriented programming: the clos
perspective.chapter CLOS in context The shape of the design space, in Object oriented
programming MIT Press, 1993. 34

[BLS92] D. Batory, B. Lofaso, and Y. Smaragdakis. Jts: Tools for implementing domain-specific
languages.Proceedings of 5’th International Conference on Software Reuse, IEE, 1992.
24

[BS99] N. Bouraqadi-Sadani. Java and reflexion. Technical report, Ecolde des Mines de Nantes,
1999. 34, 36

[BS00] Claus ”Brabrand and Michael I.” Schwartzbach. ”growing languages with metamorphic
syntax macros”. sep 2000. 24

[Caz98] W. Cazzola. Evaluation of object-oriented reflective models.ECOOP Work-
shop on Reflective Object-Oriented Programming and Systems (EWROOPS’98), 12th
European Conference on Object-Oriented Programming (ECOOP’98),, available at
http://www.disi.unige.it/person/CazzolaW/, 1998.

[CC01] G.A. Cohen and J.S. Chase. An architecture for safe bytecode insertion.Duke University,
submitted for publication available at http://www.cs.duke.edu/ari/joie/, 2001. 30, 31

[CCK98] G.A. Cohen, J. Chase, and D Kaminsky. Automatic program transformation with
joie. in Proceedings of the 1998 USENIX Annual Technical Symposium, available at
http://www.cs.duke.edu/ari/joie/, 1998. 30

[Chi97] S. Chiba. Implementation techniques for efficient reflective languages. Technical Report
Technical Report 97-06, Department of Information Science, University of Tokyo, 1997.
35

[Chi98] Shigeru Chiba. Macro processing in object-oriented languages.Proc. of Technology of
Object-Oriented Languages and Systems (TOOLS Pacific ’98) IEEE Press, November
1998. 24, 42

78

http://www.disi.unige.it/person/CazzolaW/
http://www.cs.duke.edu/ari/joie/

BIBLIOGRAPHY 79

[Chi00] S. Chiba. Load-time structural reflection in java. European Con-
ference on Object-Oriented Programming (ECOOP’00), available at
http://www.hlla.is.tsukuba.ac.jp/ chiba/Javassist/index.html, 2000. 34, 35, 38, 102

[Dah99] M. Dahm. Byte code engineering.in Proceedings JIT’99, Berlin, available at
http://bcel.sourceforge.net/documentation.html, 1999. 29

[Dah01] M. Dahm. Byte code engineering with the bcel api.Technical Report B-17-98, Berlin,
available at http://bcel.sourceforge.net/documentation.html, 2001. 29

[GM96] J. Gosling and H. McGilton. The java language environment white paper.Sun Microsys-
tems, available at http://Java.sun.com/docs/white/, 1996. 11, 28

[Gol97] M. Golm. Design and implementation of a meta architecture for java. available at
http://www4.informatik.uni-erlangen.de/Projects/PM/Java/, Leipzig Germany, 1997. 35,
102

[GS00] J. Gosling and B. Steele.The Java Language Specification, Second Edition, the Java
Series, volume available at http://Java.sun.com/docs/books/jls/. Sun Microsystems, Inc,
2000. 101

[KCR] R. Kelsey, W. Clinger, and J. (eds. Rees. Revised5 report on the algorithmic language
scheme. Computation, vol. 11, no. 1, september, 1998 and acm sigplan notices, vol. 33,
no. 9, october, 1998. available at http://www.schemers.org/Documents/Standards/. 24

[KDRB91] G. Kiczales, J. Des Rivires, and D.G. Bobrow.The art of the metaobject protocol. MIT
Press, 1991. 9, 33, 34, 35, 42

[Ker81] Brian W. with contributions of P. J. Plauger Kernighan.Software Tools in Pascal. Addison-
Wesley, 1981. 24

[KFFD86] E. Kohlbecker, D. P. Friedman, M. Felleisen, and B. Duba. Hygienic macro expansion.
Proceedings of the ACM Conference on LISP and Functional Programming, 1986.

[KH97] R. Keller and U. Hlzle. Binary component adaptation. Technical report trcs97-20,
Computer Science Department, University of California, Santa Barbara, available at
http://www.cs.ucsb.edu/oocsb/papers/TRCS97-20.html, 1997. 28

[Knu01] Donald E. Knuth.Computers and Typesetting, volume A-E. Addison Wesley, 2001. 24

[KR78] B. W. Kernighan and D. M. Ritchie.The C Programming Language.Prentice Hall, Inc,
1978. 24

[Lee96] H. Lee. Bit: bytecode instrumenting tool. available at http://www.cs.colorado.edu/ han-
lee/BIT/index.html, University of Washington, 1996. 28

http://www.hlla.is.tsukuba.ac.jp/~chiba/Javassist/index.html
http://bcel.sourceforge.net/documentation.html
http://bcel.sourceforge.net/documentation.html
http://Java.sun.com/docs/white/
http://www4.informatik.uni-erlangen.de/Projects/PM/Java/
http://Java.sun.com/docs/books/jls/
http://www.schemers.org/Documents/Standards/
http://www.cs.ucsb.edu/oocsb/papers/TRCS97-20.html
http://www.cs.colorado.edu/~hanlee/BIT/index.html
http://www.cs.colorado.edu/~hanlee/BIT/index.html

BIBLIOGRAPHY 80

[LS95] J.R. Larus and E. Schnarr. Eel: Machine-independent executable editing.In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), 1995.

[LY97] T. Lindholm and F. Yellin. The Java Virtual Machine Specification, volume available at
http://Java.sun.com/docs/books/vmspec/. Addison-Wesley, 1997. 11, 12, 14, 15, 17, 29,
47, 48, 49

[Mae87] P. Maes. Computional reflection. PhD thesis, Artificial intelligence laboratory, Vrije
Universiteit, Brussel, Belgium, 1987.

[OCGB98] A. Oliva, I. Calciolari Garcia, and L.E. Buzato. The reflective architecture of guarana.
available at http://www.dcc.unicamp.br/ oliva/guarana/index.html, 1998. 35, 102

[OT00] H. Ossher and P. Tarr. Multi-dimensional separation of concerns and the hyper-
space approach. In Proceedings of the Symposium on Software Architectures and
Component Technology: The State of the Art in Software Development, available at
http://www.research.ibm.com/hyperspace/Papers/index.htm, 2000. 29

[RVL+97] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, B. Bershad, and B. Chen.
Instrumentation and optimization of win32/intel executables using etch.In Proceedings
of the 1997 USENIX NT Conference, 1997.

[SE94] A. Srivastava and A. Eustace. Atom: A system for building customized program analysis
tools. In Proceedings of the SIGPLAN ’94 Conference on Programming Language Design
and Implementation, 1994. 28

[SGGB99] E.G. Sirer, R. Grimm, A.J. Gregory, and B.N. Bershad. Design and implementation of a
distributed virtual machine for networked computers.in Proceedings of the Seventeenth
Symposium on Operating Systems Principles, pages 202–216, Kiawah Island, South Car-
olina, available at http://www.cs.washington.edu/homes/egs/papers/, 1999. 28

[Sha96] Andrew Shalit.Dylan Reference Manual, The: The Definitive Guide to the New Object-
Oriented Dynamic Language. Addison-Wesley, 1996. 24

[Smi84] B.C. Smith. Reflection and semantics in lisp.in Proceedings of the 14th Annual ACM
Symposium on principles of programming languages, POPL’84, pages 23–25, 1984. 33

[Smi90] B.C. Smith. What do you mean meta?In Workshop on reflection and metalevel archi-
tectures in OO programming, ECOOP/OOPSLA’90, Ottawa, Ontario Canada, 1990. 33,
42

[Str97] B. Stroustrup.The C++ Programming Language. Addison Wesley, third edition edition,
1997.

http://Java.sun.com/docs/books/vmspec/
http://www.dcc.unicamp.br/~oliva/guarana/index.html
http://www.research.ibm.com/hyperspace/Papers/index.htm
http://www.cs.washington.edu/homes/egs/papers/

BIBLIOGRAPHY 81

[Tan00] E. Tanter. Reflex a reflective system for java: Application to flexible resource management
in mobile object systems. available at http://www.dcc.uchile.cl/ etanter/Reflex/, Unversi-
dad de Chile, Chile, 2000. 34, 35, 102

[Tat99] M. Tatsubori. An extension mechanism for the java language. available at
http://www.hlla.is.tsukuba.ac.jp/ mich/openjava/, Tsukuba, Japan, 1999. 35, 102

[TCKI00] Michiaki Tatsubori, Shigeru Chiba, Marc-Olivier Killijian, and Kozo Itano. Openjava: A
class-based macro system for java.Springer-Verlag, Lecture Notes in Computer Science
, Reflection and Software Engineering(1826):117–133, 2000. 24, 25, 42

[Vay97] J. Vayssire. Parallel and distributed programming in java: conception and implementation
of java//. Technical report, DEA report in French, Sophia-Antipolis, France, 1997. 35,
102

[WS00] I. Welch and R. Stroud. Kava - a reflective java based on bytecode rewriting.
Lecture Notes in Computer Science 1826 from Springer-Verlag (2000), available at
http://www.cs.ncl.ac.uk/research/dependability/reflection/, 2000. 35, 37, 38, 102

[WS01] I. Welch and R. Stroud. Kava - a reflective java based on bytecode rewrit-
ing. Proceedings of USENIX Conference on Object-Oriented Technology, available at
http://www.cs.ncl.ac.uk/research/dependability/reflection/, 2001. 37, 53

[Zim96] C. Zimmermann. Advances in Object-Oriented Metalevel architectures and reflection,
MOPs and what the Fuzz is All About. CRC Press, 1996.

http://www.dcc.uchile.cl/~etanter/Reflex/
http://www.hlla.is.tsukuba.ac.jp/~mich/openjava/
http://www.cs.ncl.ac.uk/research/dependability/reflection/
http://www.cs.ncl.ac.uk/research/dependability/reflection/

Appendix A

Some examples

The purpose of this appendix is to document by an example each alterations that is currently offered
by the prototype. Each example will copied a method that will achieve the same behavior than the
bytecode instruction replaced, or in less clear terms, than the altered semantics. For that purpose, the
copied methods will heavily relay on Java instrospection features. However, introspection is not the
only solution and alternative implementations are possible. A short description of these alternatives
will be given but only with the field read example.

A.1 General shape of the examples

In the following examples, the classExample will first modify the method:method() declared
by ModifiedClass . We will assume thatModifiedClass is stored in the working directory
and that the working directory is included in the classpath.Example will perform the alteration by
using an object implementing a subinterface ofSemanticAlterator inlining the unique method
of the classMethodBodyContainer in place of the semantic that the subinterface ofSemantic-
Alterator allows to replace.ModifiedClass will be saved to disk. FinallyExample will try
to send the messagemethod to ModifiedClass .

A.2 Field read alterations

In the example involving the alteration of reading a field, we will add a field:i to theModifiedClass
initialized to zero. Then, as shown on figure A.2, themethod() of ModifiedClass will just re-
turn the value ofi . The purpose of the inlined code will just be to return the value ofi as well.

The classExample source code can be found in figure A.2.Example uses aFieldReadAlterator-
Object to perform the alteration: as shown on A.2, it is no more than a simple implementation of the
FieldReadAlterator . The methodgetMethodToInlineOnFieldRead(String) will

82

APPENDIX A. SOME EXAMPLES 83

package naive.thesisexamples.fieldread;

public class ModifiedClass {
public int i = 0;
public int method() {

return this.i;
}

}

Figure A.1: Field read alteration:ModifiedClass class

be feed with the static information: in that case the qualified name of the field that will be read. What-
ever the field the implementation in figure A.2 gives the methodfieldReadReplacer() declared
by MethodBodyContainer to inline in place of the field read.

This method:fieldReadReplacer(Object[]) takes an array in argument containing the dy-
namic information describing what the base level code wants to achieve: here a field read. The first
element of the array is the qualified name of the field given as aString , the second element is the
qualified name of the method reading the field, the third element is the instance of the object reading
the field and finally the fourth element is the instance on which the field is read.

A.3 Some alternate implementations taking a field read alterations
as example

The implementation described in figure A.2just perform the field read by introspection. It may en-
counter various error states: this leads to throw the exceptionsNoSuchFieldException, Illegal-
AccessException andClassNotFoundException . These exceptions are not excepted by
the base level:ModifiedClass is not prepared to handle any of them. If one of the previously
listed exceptions is thrown by the inlined, it will be wrapped in anUndeclaredThrowable-
Exception which is a subclass ofRuntimeException . This will not perturb theModified-
Class.method() sinceRuntimeException may occur at any time any place in a Java program.

The result run in a console hopefully does not encounter any error and displays a 0 in output. We
believe that the implementation proposed in figure A.2 is the more general but alternative possible.
For example, instead of the proposed implementation, one may write:

public Object fieldReadReplacer(Object[] args) {
ModifiedClass instance =(ModifiedClass)args[3];
return new Integer(instance.i);

APPENDIX A. SOME EXAMPLES 84

package naive.thesisexamples.fieldread;
import naive.kernel.NaiveMethod;
import java.io.IOException;

public class Example {
public static void main(Java.lang.String[] args) {

//do the modifications
modify();
//execute the modifed code
ModifiedClass m = new ModifiedClass();
//display the result
System.out.println(m.method());

}
public static void modify() {

//get the metaobject describing a method
NaiveMethod method = NaiveMethod.getNaiveMethod("

naive.thesisexamples.fieldread.ModifiedClass.method()");
//perform the alteration
method.accept(new FieldReadAlteratorObject());
//write the modified class file on disk
try {

method.getDeclaringClass().save();
} catch(IOException exp) {

System.err.println(exp);
System.exit(-1);

}
}

}

Figure A.2: Field read alteration:Example class

APPENDIX A. SOME EXAMPLES 85

package naive.thesisexamples.fieldread;
import naive.kernel.FieldReadAlterator;

public class FieldReadAlteratorObject implements FieldReadAlterator {
public String getMethodToInlineOnFieldRead(

String inReplacementOfField) {
return "naive.thesisexamples.fieldread.MethodBodyContainer.

fieldReadReplacer(Object[])";
}

}

Figure A.3: Field read alteration:FieldReadAlteratorObject class

}

The latter is however much less generic. Actuallly the inlined method: :fieldReadReplacer
is now making the hypothesis that it will always be inlined in place ofModifiedClass.i . The
implementation that used introspection in figure A.2 does not make any assumption.

A.4 Field write alterations

In the example involving the alteration of writing a value to a field, we will add a field:i to the
ModifiedClass initialized to zero. Then, as shown on figure A.4, themethod() of Modified-
Class will set its value to 1 and return value it i. The purpose of the inlined code will just be to write
the new value ofi : 1 as well.

The classExample source code can be found in figure A.4.Example uses aFieldWrite-
AlteratorObject to perform the alteration: as shown on A.4, it is no more than a simple im-
plementation of theFieldWriteAlterator . The methodgetMethodToInlineOnWrite-
Read(String) will be feed with the static information: in that case the qualified name of the field
that will be written. Whatever the field the implementation in figure A.4 gives the methodfield-
ReadReplacer() declared byMethodBodyContainer to inline in place of the field written.

This method:fieldWriteReplacer() takes an array in argument containing the dynamic infor-
mation describing what the base level code wants to achieve: here writing a value to a field. The first
element of the array is the qualified name of the field given as aString , the second element is the
qualified name of the method writing the field, the third element is the instance of the object writing
the field, the fourth element is the instance on which the field is written, and finally the fifth element is
an object containing the new value of the field. If the new value is a primitive type, it will be wrapped

APPENDIX A. SOME EXAMPLES 86

package naive.thesisexamples.fieldread;
import java.lang.reflect.*;
import naive.kernel.NaiveField;

public class MethodBodyContainer {
public Object fieldReadReplacer(Object[] args)

throws NoSuchFieldException,
IllegalAccessException,
ClassNotFoundException {

/*args contains
[qualifiedFieldNameAsString
qualifiedMethodReadingFieldAsString
InstanceOfSenderAsObject
InstanceOfReceiverAsObject]

*/
String qualifiedFieldName = (String)args[0];
Object fieldOwner = args[3];
//get the Naive meta obj
NaiveField naiveField =

NaiveField.getNaiveField(qualifiedFieldName);
//maps from Naive meta object to standard Java meta object
/* Field langField=naiveField.getAsLangOnDisk()
can not be used because the class loader may be different*/

Field langField = Class.forName(naiveField.
getDeclaringClass().getCanonicalName())

.getField(naiveField.getSimpleName());
//load and return the field value
//through standard Java meta object

return langField.get(fieldOwner);
}

}

Figure A.4: Field read alteration:MethodBodyContainer class

APPENDIX A. SOME EXAMPLES 87

package naive.thexsisexamples.fieldwrite;

public class ModifiedClass {
public int i = 0;
public int method() {

this.i = 1;
return this.i;

}
}

Figure A.5: Field write alteration:ModifiedClass class

into an appropriate object.

The implementation described in figure A.4just perform the writing of the field by introspection. As
expectedExample run in a console displays a 1 in output.

A.5 Cast alterations

Java is strongly typed: classes defines types. While the operation of converting a class, respectively
a type, into one of its superclass or superinterface, respectively into one of its supertype is performed
automatically, in all other cases, the programmer has explicitly to request the conversion. This explicit
conversion request is known as casting. Naive offers the ability to alter the semantic of cast operations
between two objects1.

In the example involving the alteration of cast,ModifiedClass.method() will now just instan-
tiates aString casts it into anObject and return it as it can be seen from A.5. The inlined code
presented in A.5 will perform the cast. Since we only want the cast to take place, introspection is of
any help in that case and it is safe to just return the instance that the base code expect to cast relaying
on the automatic unwrapping provided by Naive to perform the cast operation.

The classExample source code can be found in figure A.5.Example uses aCastAlterator-
Object to perform the alteration: as shown on figure A.5, it is no more than a simple implementation
of theCastAlterator . The method getMethodToInlineOnCast(String) will be feed
with the static information: in that case the qualified name of the destination type2 of the requested
cast. Whatever the destination the implementation in figure A.5 gives the methodcastReplacer()

1Conversion between primitive types can not be altered currently with Naive.
2Classes are types in Java.

APPENDIX A. SOME EXAMPLES 88

package naive.thesisexamples.fieldwrite;
import naive.kernel.NaiveMethod;
import java.io.IOException;

public class Example {
public static void main(Java.lang.String[] args) {

//do the modifications
modify();
//execute the modifed code
ModifiedClass m = new ModifiedClass();
//display the result
System.out.println(m.method());

}
public static void modify() {

//get the metaobject describing a method
NaiveMethod method = NaiveMethod.getNaiveMethod(
"naive.thesisexamples.fieldwrite.ModifiedClass.method()");
//perform the alteration
method.accept(new FieldWriteAlteratorObject());
//write the modified class file on disk
try {

method.getDeclaringClass().save();
} catch(IOException exp) {

System.err.println(exp);
System.exit(-1);

}
}

}

Figure A.6: Field write alteration:Example class

APPENDIX A. SOME EXAMPLES 89

package naive.thesisexamples.fieldwrite;
import naive.kernel.FieldWriteAlterator;

public class FieldWriteAlteratorObject implements FieldWriteAlterator {

public String getMethodToInlineOnFieldWrite(String
inReplacementOfFieldWrite) {

return "naive.thesisexamples.fieldwrite.
MethodBodyContainer.fieldWriteReplacer(Object[])";

}
}

Figure A.7: Field write alteration:FieldWriteAlteratorObject class

declared byMethodBodyContainer to inline in place of cast conversion .

This method:castReplacer() takes an array in argument containing the dynamic information de-
scribing what the base level code wants to achieve: here casting a type into another. The first element
of the array is the qualified name of the destination type given as aString , the second element is
the qualified name of the method requesting the cast, the third element is the instance of the object
performing the cast, and finally the fourth element is the object instance that is casted.

Running the example, just display"emoose" as expected. This alteration may seem silly: most of the
casting task is performed on the user shoulder by the Naive implementation. This is because Naive has
to offer a uniform API to the user. For example, once written a method that will alter the semantic of a
field read, a user may want to inline it in various objects without regards of the types of these objects.
Thus, the only assumption that the API can do on the classes it will be used with, is that they will be
subclasses ofObject . This, combined with the lack of parameterized types in Java, actually entails
that the implementation has to perform cast operations when appropriate. Nevertheless, the ability to
alter casts operation is still interesting: one may want to change the casted instance or impose other
constraints than types matching to allow the conversion to succeed, raising aRuntimeException
if needed.

A.6 Method invocation alterations

In the example involving the alteration of invoking a method, we will redefine thetoString()
of ModifiedClass so that it will always return"EMOOSE". Then, as shown on figure A.6, the
method() of ModifiedClass will just the messagetoString() to self (i.e.this). The pur-
pose of the inlined code will just be to invoke thetoString() onself as well.

APPENDIX A. SOME EXAMPLES 90

package naive.thesisexamples.fieldwrite;
import java.lang.reflect.*;
import naive.kernel.NaiveField;

public class MethodBodyContainer {

public Object fieldWriteReplacer(Object[] args) {
try {
/*args contains

[qualifiedFieldNameAsString
qualifiedMethodReadingFieldAsString
InstanceOfSenderAsObject
InstanceOfReceiverAsObject
newFieldValueAsObject
]*/

String qualifiedFieldName = (String)args[0];
Object fieldOwner = args[3];
Object newFieldValue = args[4];
//get the Naive meta obj
NaiveField naiveField =

NaiveField.getNaiveField(qualifiedFieldName);
//maps from Naive meta object to standard Java meta object
//* Field langField=naiveField.getAsLangOnDisk()

can not be used because the class loader may be different*/
Field langField =

Class.forName(naiveField.getDeclaringClass()
.getCanonicalName())

.getField(naiveField.getSimpleName());
//set the field value

langField.set(fieldOwner,newFieldValue);
/*nothing to return
(whatever the value returned it will be ignored)
*/
return null;

} catch(NoSuchFieldException exp) {
System.err.println(exp);

} catch(IllegalAccessException exp) {
System.err.println(exp);

} catch(ClassNotFoundException exp) {
System.err.println(exp);

}
return null;

}
}

Figure A.8: Field write alteration:MethodBodyContainer class

APPENDIX A. SOME EXAMPLES 91

package naive.thesisexamples.cast;
public class ModifiedClass {

public Object method() {
String castMe = "emoose";
Object result = (Object) castMe;
return result;

}
}

Figure A.9: Cast alteration:ModifiedClass class

package naive.thesisexamples.cast;
import java.lang.reflect.*;
import naive.kernel.NaiveField;
public class MethodBodyContainer {

public Object castReplacer(Object[] args) {
/*args contains
[destinationTypeAsString

qualifiedMethodPerformingCastAsString
InstanceOfSenderAsObject
InstanceOfMethodPerformingCastAsObject
castedInstanceAsObject

]*/
Object castedInstance = args[3];
//automatic unwrapping will perform the cast
return castedInstance;

}
}

Figure A.10: Cast alteration:MethodBodyContainer class

APPENDIX A. SOME EXAMPLES 92

package naive.thesisexamples.cast;
import naive.kernel.NaiveMethod;
import java.io.IOException;

public class Example {
public static void main(Java.lang.String[] args) {

//do the modifications
modify();
//execute the modifed code
ModifiedClass m = new ModifiedClass();
//display the result
System.out.println(m.method());

}
public static void modify() {

//get the metaobject describing a method
NaiveMethod method = NaiveMethod.getNaiveMethod(

"naive.thesisexamples.cast.
ModifiedClass.method()");

//perform the alteration
method.accept(new CastAlteratorObject());
//write the modified class file on disk
try {

method.getDeclaringClass().save();
} catch(IOException exp) {

System.err.println(exp);
System.exit(-1);

}
}

}

Figure A.11: Cast alteration:Example class

APPENDIX A. SOME EXAMPLES 93

package naive.thesisexamples.cast;
import naive.kernel.CastAlterator;
public class CastAlteratorObject implements CastAlterator {

public String getMethodToInlineOnCast(String inReplacementCast) {
return

"naive.thesisexamples.cast.MethodBodyContainer
.castReplacer(Object[])";

}
}

Figure A.12: Cast alteration:CastAlterator class

package naive.thesisexamples.methodinvocation;
public class ModifiedClass {

public String toString() {
return "EMOOSE";

}
public String method() {

System.out.println("hello");
return this.toString();

}
}

Figure A.13: Method invocation ateration:ModifiedClass class

APPENDIX A. SOME EXAMPLES 94

package naive.thesisexamples.methodinvocation;
import java.lang.reflect.*;
import naive.kernel.NaiveMethod;
public class MethodBodyContainer {

public Object methodCallReplacer(Object[] args)
throws ClassNotFoundException,

NoSuchMethodException,
IllegalAccessException,
Throwable {

/*args contains
[qualifiedNameOfCalleeAsString

qualifiedNameOfCallerAsString
objectInstanceOfCallerAsObject
objectInstanceOfCalleeAsObject
argsGivenToCalleeAsObjectArray]*/

String qualifiedMethodName = (String) args[0];
Object methodOwner = args[3];
Object[] argumentValues = (Object[]) args[4];
//get the Naive meta obj
NaiveMethod naiveMethod =

NaiveMethod.getNaiveMethod(qualifiedMethodName);
//maps from Naive meta object to standard java meta object
//Method langMethod=naiveMethod.getAsLangOnDisk() can
//not be used because the class loader may be different
Class[] argumentTypes = null;
if (argumentTypes != null) {

argumentTypes = new Class[argumentValues.length];
for (int k = 0; k < argumentTypes.length; k++) {

argumentTypes[k] = argumentValues[k].getClass();
}

}
Class langClass = Class.forName(

naiveMethod.getDeclaringClass().getCanonicalName()
);

Method langMethod = langClass.getMethod(
naiveMethod.getSimpleName(), argumentTypes
);

//peform the method call
try {

return resu = langMethod.invoke(
methodOwner, argumentValues
);

} catch (InvocationTargetException exp) {
throw exp.getTargetException();

}
}

}

Figure A.14: Method invocation alteration:MethodBodyContainer class

APPENDIX A. SOME EXAMPLES 95

package naive.thesisexamples.methodinvocation;
import naive.kernel.NaiveMethod;
import java.io.IOException;
public class Example {

public static void main(java.lang.String[] args) {
//do the modifications
modify();
//execute the modifed code
ModifiedClass m = new ModifiedClass();
//display the result
System.out.println(m.method());

}
public static void modify() {

//get the metaobject describing a method
NaiveMethod method =
NaiveMethod.getNaiveMethod(

"naive.thesisexamples.methodinvocation.
ModifiedClass.method()"

);
//perform the alteration
method.accept(new MethodInvocationAlteratorObject());
//write the modified class file on disk
try {

method.getDeclaringClass().save();
} catch(IOException exp) {

System.err.println(exp);
System.exit(-1);

}
}

}

Figure A.15: Method invocation alteration:Example class

APPENDIX A. SOME EXAMPLES 96

package naive.thesisexamples.methodinvocation;

import naive.kernel.MethodInvocationAlterator;
public class MethodInvocationAlteratorObject

implements MethodInvocationAlterator {
public String getMethodToInlineOnMethodInvocation(

String inReplacementOfMethodCall
) {

return "naive.thesisexamples.methodinvocation.
MethodBodyContainer.methodCallReplacer(Object[])
";

}
}

Figure A.16: Method invocation alteration:MethodInvocationAlterator class

The classExample source code can be found in figure A.6.Example uses aMethodInvocation-
AlteratorObject to perform the alteration: as shown on A.6, it is no more than a simple im-
plementation of theMethodInvocationAlterator . The method public String get-
MethodToInlineOnMethodInvocation(String) will be feed with the static information:
in that case the qualified name of the invoked method. Whatever the method the implementation in
figure A.6 gives the methodmethodCallReplacer() declared byMethodBodyContainer to
inline in place of the invoked method.

This method:methodCallReplacer() takes an array in argument containing the dynamic infor-
mation describing what the base level code wants to achieve: here invoking a method. The first element
of the array is the qualified name of the method invoked given as aString , the second element is
the qualified name of the invoker given as aString , the third element is the instance of the object
invoking the method or null, the fourth element is the instance on which the method is invoke, and
finally the fifth element is an object array containing the arguments passed to the invoked method or
null if the invoked takes no arguments. If some argument value is a primitive type, it will be wrapped
into an appropriate object.

The implementation described in figure A.6just perform the method invokation by introspection. As
expectedExample run in a console displaysEMOOSEin output.

Note the above example will fail miserably if the invoked method was a super method redefined in
ModifiedClass . This is because the introspection capabilities of Java do not offer the ability to
invoke a such a method. This stresses the needs to be able to identify these methods performing

APPENDIX A. SOME EXAMPLES 97

the cut and paste. ThusSuperMethodInvocationAlterator works exactly likeMethod-
InvocationAlterator but is restricted to the invocation of super methods.

Object problem = (Object) this;
problem.toString();

Figure A.17: Self method invocation ateration: ignored method invocation

By nature, object-orientation makes a difference between object instances namely providing a distin-
guished instance:this . We do believe that making the difference still makes sense even for a copy
paste mechanism such as the one proposed here. Thus,SelfMethodInvocationAlterator
works exactly likeMethodInvocationAlterator but is restricted to the invocation of methods
on self. Because at the implementation level Naive only performs a rough data flow analysis, there
are however limitations: for example the invocation of thetoString shown on figure A.6 will be
ignored. Nevertheless all messages explicitly sent tothis as inthis.toString() will be treated
correctly. While we feel this as a limitation, it is still clear that in the first case, the programmer did not
put the accent on sending the message to self, while on a second it emphases the fact that the message
was sent to self.

A.7 Constructor alterations

package naive.thesisexamples.constructor;
public class ModifiedClass {

public Object method() {
return new Object();

}
}

Figure A.18: Constructor alteration:ModifiedClass class

In the example involving the alteration of invoking a constructor, we will redefine, as shown on figure
??, themethod() of ModifiedClass so that it will just create a newObject using a constructor
without argument. The purpose of the inlined code will just be to create a new instance of anObject
as well .

The classExample source code can be found in figure??. Example uses aConstructor-
InvocationAlteratorObject to perform the alteration: as shown on??, it is no more than a
simple implementation of theConstructorInvocationAlterator . The method public

APPENDIX A. SOME EXAMPLES 98

package naive.thesisexamples.constructor;
import java.lang.reflect.*;
import naive.kernel.NaiveMethod;
public class MethodBodyContainer {

public Object constructorCallReplacer(Object[] args)
throws ClassNotFoundException,

NoSuchMethodException,
IllegalAccessException,
Throwable {

/*args contains
[qualifiedNameOfObjectInstantiatedAsString

qualifiedNameOfCallerAsString
objectInstanceOfCallerAsObject
argsGivenToConstructorAsObjectArray]*/

String qualifiedMethodName = (String) args[0];
Object[] argumentValues = (Object[]) args[3];
//get the Naive meta obj
NaiveMethod naiveMethod =

NaiveMethod.getNaiveMethod(qualifiedMethodName);
//maps from Naive meta object to standard java meta object
//Method langMethod=naiveMethod.getAsLangOnDisk()
//can not be used because the class loader may be different
Class[] argumentTypes = null;
if (argumentTypes != null) {

argumentTypes = new Class[argumentValues.length];
for (int k = 0; k < argumentTypes.length; k++) {

argumentTypes[k] = argumentValues[k].getClass();
}

}
Class langClass =

Class.forName(naiveMethod.getDeclaringClass()
.getCanonicalName());

Constructor langConstructor =
langClass.getConstructor(argumentTypes);

Object resu;
try {

resu = langConstructor.newInstance(argumentValues);
} catch (InvocationTargetException exp) {

throw exp.getTargetException();
}
return resu;

}
}

Figure A.19: Constructor alteration:MethodBodyContainer class

APPENDIX A. SOME EXAMPLES 99

package naive.thesisexamples.constructor;
import naive.kernel.NaiveMethod;
import java.io.IOException;
public class Example {

public static void main(java.lang.String[] args) {
//do the modifications
modify();
//execute the modifed code
ModifiedClass m = new ModifiedClass();
//display the result
System.out.println(m.method());

}
public static void modify() {

//get the metaobject describing a method
NaiveMethod method = NaiveMethod.getNaiveMethod(

"naive.thesisexamples.constructor.
ModifiedClass.method()");

//perform the alteration
method.accept(new ConstructorInvocationAlteratorObject());
//write the modified class file on disk
try {

method.getDeclaringClass().save();
} catch (IOException exp) {

System.err.println(exp);
System.exit(-1);

}
}

}

Figure A.20: Constructor alteration:Example class

APPENDIX A. SOME EXAMPLES 100

package naive.thesisexamples.constructor;
import naive.kernel.ConstructorInvocationAlterator;
public class ConstructorInvocationAlteratorObject

implements ConstructorInvocationAlterator {
public String getMethodToInlineOnConstructor

(String inReplacementOfConstructor) {
return "naive.thesisexamples.constructor

.MethodBodyContainer.constructorCallReplacer(Object[])";
}

}

Figure A.21: Constructor alteration:ConstructorInvocationAlteratorObject class

String getMethodToInlineOnConstructorInvocation(String) will be feed with
the static information: in that case the qualified name of the invoked constructor. Whatever the method
the implementation in figure A.7 gives the methodconstructorCallReplacer() declared by
MethodBodyContainer to inline in place of the invoked method.

This method:constructorCallReplacer() takes an array in argument containing the dynamic
information describing what the base level code wants to achieve: here writing here invoking a method.
The first element of the array is the qualified name of the constructor invoked given as aString , the
second element is the qualified name of the invoker given as aString , the third element is the
instance of the object invoking the method or null, and finally the fifth element is an object array con-
taining the arguments passed to the invoked constructor or null if the invoked takes no arguments. If
some argument value is a primitive type, it will be wrapped into an appropriate object.

The implementation described in figure A.7just perform the instance creation by introspection. As
expectedExample run in a console displays an object reference in output.

Appendix B

Exceptions between metalevel and baselevel

In this appendix, we discuss the choice made by Naive to handle exceptions. To enable a comparison
with previously existing systems, a reflection viewpoint will be taken. Therefore, more precisely, this
appendix examines the exception handling between the base level and the meta level. In particular, we
will adopt the vocabulary of OpenJava [?], and called the reification of structural entities metaobject.
First of all, an overview of Java exceptions facilities will be given, followed by a description of the
metaprotocols introduced in chapter 5 with regards to their supports of exceptions handling. In a third
part, an example will be taken showing that care must be taken to let the metalevel throws an exception
without allowing it to break legitimate assumptions that the base level may do.

B.1 An overview of Java exceptions facilities

The Java language provides error handling facilities. These error handling facilities relays on the ex-
ception mechanism.[GS00] states that the”language specifies that an exception will be thrown when
semantic constraints are violated and will cause a non-local transfer of control from the point where
the exception occurred to a point that can be specified by the programmer. An exception is said to be
thrown from the point where it occurred and is said to be caught at the point to which control is trans-
ferred. Programs can also throw exceptions explicitly, using throw statements. Explicit use of throw
statements provides an alternative to the old-fashioned style of handling error conditions by returning
funny values, such as the integer value -1 where a negative value would not normally be expected.
Experience shows that too often such funny values are ignored or not checked for by callers, leading
to programs that are not robust, exhibit undesirable behavior, or both. Every exception is represented
by an instance of the class Throwable or one of its subclasses; such an object can be used to carry
information from the point at which an exception occurs to the handler that catches it. Handlers are
established by catch clauses of try statements.” This has two consequences: first Java programmers
throw exceptions when the semantic of the method in execution is violated. The definition of the
correct semantic of the method is execution is left to the programmer: for instance it could be that
for a file operation that the file given in argument is open. Secondly the error handling facilities is
supported in the language through specific keywords and conventions: when an exception is thrown, a

101

APPENDIX B. EXCEPTIONS BETWEEN METALEVEL AND BASELEVEL 102

catch statement may try to take actions to recover from the error state.

Moreover the language enforces two types of exceptions checked exceptions and unchecked excep-
tions. The latter are exceptions subclassingjava.lang.RuntimeException or java.lang.Error
and can occur at any time in a program. Other exceptions should be declared in the throws clause of
methods signature.

B.2 Java metaprotocols and exceptions

As stated in 5.2, three approaches can be followed to add reflective capabilities to Java:

1. Modify the source code of the base level to glue the hole between the metalevel and the base
level.

2. Modify the bytecode of the base level with the same goals in mind. Naive metaobject protocols
fall in this category.

3. Modify the virtual machine interpreting the Java byte-code.

More or less all currently reflective extensions of Java fall in these categories:

• Examples of the first approach are Open Java[Tat99] and Proactive [Vay97]

• Examples of the second approaches are: Javassist[Chi00], Kava[WS00], and Reflex[Tan00]1

• Examples of the third approach are: Metaxa[Gol97] and Guarana[OCGB98]

Before discussing the behavior of all this extensions towards exception handling, it is probably worth
knowing that although it only provides introspection, a problem akin to this one: - exception handling
in Java reflective system - occurs in the standard Java distribution. In fact, in the case of the dynamic
proxy shipped with the version 1.3 of the Java Development Kit, the packagejava.lang.reflect
offers the ability to dynamically create a proxy of a given pre-existing interface. Proxy implementers
should only provide one methods taking a reified description of the messages sent to the proxy in argu-
ment. This method is furthermore allowed to throw any kind of exception. This method may therefore
throw an exception that is not declared by the pre-existing interface. But all method sent to the proxy
are sent through the pre-existing interface. Since the pre-existing interface may declare method that
do not throw any exception, the implementation method of the proxy may throw an exception which
is not expected from the point of view of the message sender. However, theJDK specifies that:”the
exception thrown from the method invocation on the proxy instance. The exception’s type must be
assignable either to any of the exception types declared in the throws clause of the interface method or
to the unchecked exception types java.lang.RuntimeException or java.lang.Error . If

1Reflex is written on top of Javassist and therefore we will not described it more

APPENDIX B. EXCEPTIONS BETWEEN METALEVEL AND BASELEVEL 103

a checked exception is thrown by this method that is not assignable to any of the exception type de-
clared in the throws clause of the interface method, then an UndeclaredThrowableException
containing the exception that was thrown by this method will be thrown by the method invocation on
the proxy instance.”

Open Java proceeds by reifying at compile time the different syntactic nodes corresponding to the Java
language like class declarations for instance. Using the tree of nodes, the meta-level is free to insert
what it wants exactly where it wishes. The insertion takes the form of strings insert in the source
file. This approach males no restriction on the exceptions thrown by the meta-level. The nature of the
process: string insertions in the base level source code also ensures that the exceptions thrown by the
meta-level can only be of classes or of subclasses of the exceptions handled by the base level code.

Proactive follows a different paths: it generates a proxy. Each method message that was sent to
the original object will be sent to the proxy. The proxy is free to handle the message as it wants.
But the signature of the methods defined in Proactive allows only to the meta-level to throw excep-
tions of types: java.lang.reflect.InvocationTargetException or java.lang-
.IllegalAccessException .
Javassist in its release 0.8 does not allow the meta-level to throw exceptions in the base level. In its
last version: 1.0, it allows the meta-level to throw any type of exceptions in the base level.

Kava only offers the ability for the meta-level to be notified when the base level will require some
specific actions (like sending a message) after or before the action take place. There is no way in Kava
to prevent the action required by the base level to take place. Kava does not allow the base level to
throw an exception in the base level.

Naive allows any type of exceptions to be thrown by the meta level. However when an exception is
thrown in the base level, it is checked in order to see if the base level can handle it. If the base level
can handle it, it is thrown in the base level. Otherwise it is wrapped injava.lang.reflect-
.UndeclaredThrowableException . To determine if the base level code is able to handle an
exception at that point, Naive proceeds by analyzing the exceptions that the intercepts instructions
from the base level may throws.

MetaXa is no longer distributed, it will therefore not be discussed.

Guaran does not allow the meta level to throw exception into the base level.

To summarize, we have seen three types of behaviors:

• In Kava, in Javassist 0.8 and in Guaran, the meta-level is not allowed to throw any kind of
exceptions into the base-level.

• In Proactive, the meta-level is allowed to throw onlyjava.lang.reflect.Invocation-
TargetException or java.lang.IllegalAccessException .

APPENDIX B. EXCEPTIONS BETWEEN METALEVEL AND BASELEVEL 104

• In Javassist 1.0, the meta-level is allowed to throw any kind of exceptions in the base level.

• In the JDK proxy API, and in Naive, the meta-level is allowed to send only exceptions in the
base level that the base level expects. If the base level does not expect an exception thrown by
the meta level, a wrapping of the exception into an unchecked exception is thrown before it is
thrown.

It is important to note that in the two first approaches, the metalevel is still allowed to throw unchecked
exception - in other words exceptions subclassingjava.lang.RuntimeException or java-
.lang.Error.Exception - in the base level. This is because unchecked exceptions do not need
to be declared in the throw clause of Java methods.

As it has been previously explained, we believe that the first two approaches impose unneeded re-
strictions on the meta-level programmer liberty. The question then arises to compare the last two
approaches.

B.3 Exceptions and assumptions

The previous section has described the main metaobject protocols available with regards on their sup-
ports of exceptions. The aim of the present part is to determine whether the metalevel should be
allowed to throw any exception in the base level or whether if a wrapping into an unchecked exception
should occur when the exception thrown by the base level is not expected. We will therefore compare
the behavior of the Java proxy, Javassist 1.0 and Naive -0.1 on the example presented below.

B.3.1 The shape of the example

The main classes involved in the example are presented in figure B.3.1 and B.3.1. What happens in
this example? Mainly, themain function defined in figure B.3.1 try to do something (that something
is precisely:useBaseLevel(createBaseLevel());). If during the execution of the some-
thing, any exception is thrown,main catches the exception and provides an interpretation from the
trapped exception. If the exception is a checked exception, it is interpreted as an exception thrown
by the instantiation of aBaseLevel object in the methodcreateBaseLevel() , otherwise it
is interpreted as an unchecked exception. The latter method:createBaseLevel() is in charge
of creating and returning an instance of aBaseLevel , if any checked exception occurs during the
instantiation,createBaseLevel() will infer that there was a security problem and will throw
a GeneralSecurityException at the place of the exception that has been encountered. The
methoduseBaseLevel will try to invoke method on the instance it has been given on argument.
It will trap a BaseLevelAwareException which is a checked exception, and treated it as be-
ing non harmful. BaseLevel on Figure 2 is just an auxiliary class whose constructor may throw
an uncheked exception:IllegalArgumentException and whose unique method can throw a

APPENDIX B. EXCEPTIONS BETWEEN METALEVEL AND BASELEVEL 105

import java.lang.reflect.*;
import java.security.GeneralSecurityException;

public class BaseLevelUser extends Object {

public static BaseLevel createBaseLevel()
throws GeneralSecurityException {

try {
return new BaseLevel();

} catch(IllegalArgumentException exp) {
//reinterpret the exception to the context
throw new

GeneralSecurityException("creation was not allowed");
}

}

public static void useBaseLevel(BaseLevel baseLevelObject) {
try {

baseLevelObject.method();
} catch(BaseLevelAwareException exp) {

System.out.println(
"BaseLevelAwareException trapped"
);

}
}

public static void main(String[] args) {
try {

useBaseLevel(createBaseLevel());
} catch(RuntimeException exp) {

System.out.println(
"unexpected runtime exception "+exp
);

} catch(Exception exp) {
System.out.println(

"Exception trapped while creating object "+exp
);

}
}

}

Figure B.1: Main class of the example.

APPENDIX B. EXCEPTIONS BETWEEN METALEVEL AND BASELEVEL 106

public class BaseLevel extends Object {

//constructor
public BaseLevel()

throws IllegalArgumentException {
super();

}

public void method()
throws BaseLevelAwareException {

System.out.println(
"BaseLevel.method()"
);

}
}

Figure B.2: Auxiliary class of the example.

checked exception:BaseLevelAwareException . What should be reminded from this example
is that:

• No checked exceptions can occur during the execution ofuseBaseLevel .

• A checked exception can occur during the execution ofcreateBaseLevel .

• The programmer has used this two observations to infer in main that when a checked excep-
tion occurs in the statementuseBaseLevel(createBaseLevel()); this is because the
instantiation ofBaseLevel() failed. It may of course take more complicated measures to
recover from the instantiation problem than displaying the problem on the console.

Even if there are better ways to write a program with the same behavior, the example presented is
legal in Java and the introduction of a metaobject protocol should not break it. The following example
will use metaobject protocols to instrumentBaseLevel.method() in an attempt to acknowledge
whether or whether not throwing exceptions may break the inference made by main.

B.3.2 Javassist 1.0

We leave the previous example unchanged. We only add one classMetaLevel presented on Figure
B.3.2.

APPENDIX B. EXCEPTIONS BETWEEN METALEVEL AND BASELEVEL 107

import javassist.reflect.*;
import java.security.GeneralSecurityException;

public class MetaLevel extends Metaobject {

//constructor required by javassist
public MetaLevel(Object self, Object[] args) {

super(self,args);
}

public Object trapMethodcall(int identifier,
Object[] args)
throws Throwable {

return this.method();
}

public Object method()
throws Throwable {

System.out.println(
"MetaLevel.method()"

);
throw new GeneralSecurityException();

}

}

Figure B.3: Metalevel with Javassist 1.0.

APPENDIX B. EXCEPTIONS BETWEEN METALEVEL AND BASELEVEL 108

This object is in charge of trapping the method callBaseLevel.method() and instead to execute
the code contains inMetaLevel.method() . This latter method throws aGeneralSecurity-
Exception .

We used a class loader to make the link between the meta level and the base level and we type
in a console:java -classpath . javassist.reflect.Compiler BaseLevel -m
MetaLevel . The result is shown on figure B.4.

Figure B.4: Javassist running the example

What happens? Actually, using javassist ability to throw any exception in the base level, we did instru-
mentBaseLevel.method() so that it will always throw aGeneralSecurityException .
Thus the messageBaseLevelUser.useBaseLevel() throws aGeneralSecurityException .
Finally BaseLevelUser.main() catches a checked exception and infers that the instantiation of
BaseLevel did failed during the messageBaseLevelUser.createBaseLevel() .

What we did learn here is that allowing the metalevel to throw any kind of exception is the base level
may lead the base level to take wrong recovery actions from an error state.

B.3.3 Naive

We use Naive to instrument theBaseLevel.method() exactly as with javassist. The code replac-
ing BaseLevel.method() is the code contained inMetalLevelmethodClassReplacer-
(Object[]) shown on figure B.3.3.

Since Naive offers only structural reflection, more work is needed to bind the meta level with the
base level. This is achieved byBinder.main() . The classBinder is shown on figure B.3.3. Then
running in a consoleJava -classpath bcel.jar;nave.jar;. exceptions.Binder
and afterJava - classpath bcel.jar;naive.jar;. exceptions.BaseLevelUser ,
we reach the result shown on figure B.7.

What happens there? In fact, Naive analyzes the method call that it has replaced withMetalLevel-
methodClassReplacer(Object[]) . It has inferred that each checked exception throws that
was not of typeBaseLevelAwareException should be wrapped into an unchecked exception.

APPENDIX B. EXCEPTIONS BETWEEN METALEVEL AND BASELEVEL 109

package exceptions;
import java.security.*;
public class MetaLevel {

public MetaLevel() {
super();

}
public void methodCallReplacer(Object[] args)

throws Throwable {
throw new GeneralSecurityException();

return ;
}

}

Figure B.5: Metalevel with Naive.

When the latter case occur, Naive wraps the unexpected exception into ajava.lang.reflect-
.UndeclaredThrowableException . This is exactly the case of the example. By comparison
with javassist,BaseLevelUser.useBaseLevel() now throws an unchecked exception. This
does not break the assumption made bymain() .

One might think that this example is biased. What if main was doing some assumptions on catching
an java.lang.reflect.UndeclaredThrowableException . The truth is that if one can
catch an unchecked exception, it can not make any hypothesis on where the exception has been thrown
because an unchecked exception can occur at any time, any point in a Java program. Putting it another
way, unchecked exceptions can be thought as exceptions that the base level always expect to occur.
Therefore we believe that the example given is fair.

What we did learn here is that allowing the metalayer to throw exceptions in the base level is possible
without breaking it. But unexpected exceptions from the point of view of the base level should be wrap
in some unchecked exceptions.

B.4 Conclusion

The need of a meta-layer to throw exception into the base level can be satisfied on condition that
exceptions unplanned by the base level are wrapped into unchecked exceptions. This is certainly not a
surprise: you can recover from error states you did planned. Not more. Metaobject protocols allowing
the meta-level to throw any kind of exception in the base level ask the base level to be able to recover
from error states it did not planned. This is wrong but we believe this as being less problematic that
metaobject that did not allow the metalevel to communicate their error states to the base level, because

APPENDIX B. EXCEPTIONS BETWEEN METALEVEL AND BASELEVEL 110

package exceptions;
import naive.kernel.*;
import naive.kernel.impl.*;
public class Binder implements MethodInvokationAlterator {

public String getMethodToInline(String inReplacementOfMethod) {
return "exceptions.MetaLevel.methodCallReplacer(

Object[] args)";
}
public static void main(Java.lang.String[] args)

throws Exception{

//do the modifications
modify();

}
public static void modify()

throws Exception {
NaiveMethod decorator = NaiveMethod.getNaiveMethod(

"exceptions.BaseLevel.method()"
);

decorator.accept(new Binder());
//just to make sure that it
//will be written on disk before using it
decorator.getDeclaringClass().save();

}
}

Figure B.6: Metalevel with Naive.

Figure B.7: Naive running the example

APPENDIX B. EXCEPTIONS BETWEEN METALEVEL AND BASELEVEL 111

in the first approach, the metalevel can be made responsible of the consistency of the exceptions it
throws while on the last approach, the only solution is to duplicate the measures taken by the base
level to recover from an exception is to duplicate them in the metalevel. Something as beautiful as
reflective systems should not lead to horrors like code duplications.

	1 Introduction
	1.1 An copy paste mechanism at a bytecode level
	1.2 Goals
	1.3 Document overview

	2 An introduction to class files
	2.1 Classes and class files
	2.1.1 Overview
	2.1.2 Source code and class files: different times

	2.2 Constant pool
	2.3 Attributes
	2.4 Methods and related attributes
	2.4.1 Code attribute
	2.4.2 Local variables
	2.4.3 Exception

	2.5 Bytecode instructions: a low level language
	2.6 An example
	2.7 The stack
	2.7.1 Types and stack
	2.7.2 Stack depth

	2.8 Summary

	3 Macro languages
	3.1 Generalities about macros
	3.2 Some properties of macro languages
	3.3 Macro languages: a small survey
	3.4 Summary

	4 Bytecode manipulation libraries
	4.1 The prototype requirements
	4.2 Bytecode manipulation libraries available
	4.3 BCEL overview
	4.4 JikesBT overview
	4.5 Joie overview
	4.6 Evaluation
	4.7 Summary

	5 Java reflective extensions using bytecode rewriting
	5.1 Reflection in general
	5.2 Reflection in Java
	5.3 Kava
	5.4 Javassist
	5.5 Summary

	6 Designing the copy paste mechanism
	6.1 Nature and motivations of the tool
	6.2 Design goals
	6.3 Reified entities
	6.4 Extent of alterations
	6.4.1 Possible alterations
	6.4.2 Not enabled alterations

	6.5 Different kind of information
	6.5.1 Dynamic information
	6.5.2 Static information
	6.5.3 Information passed for the implemented alterations
	6.5.4 Strings and arrays versus objects

	6.6 An example
	6.7 Reinterpreted constructs
	6.7.1 Local variables
	6.7.2 Return reinterpretation
	6.7.3 Exceptions reinterpretation
	6.7.4 Self references reinterpretation

	6.8 Summary

	7 Naive implementation
	7.1 The package structure
	7.2 From Naive API objects to Naive implementation objects
	7.3 From Naive implementation objects to BCEL objects
	7.4 The inliner hierarchy
	7.4.1 Using the inliners
	7.4.2 The inliners and NaiveMethodImpl
	7.4.3 Taking care of the stack depth
	7.4.4 Passing and returning information to the pasted method

	7.5 Memory policy
	7.6 Summary

	8 Future works
	8.1 Offering more alterations
	8.2 Revisiting the concept
	8.3 Opening the framework
	8.4 Summary

	9 Conclusion
	A Some examples
	A.1 General shape of the examples
	A.2 Field read alterations
	A.3 Some alternate implementations taking a field read alterations as example
	A.4 Field write alterations
	A.5 Cast alterations
	A.6 Method invocation alterations
	A.7 Constructor alterations

	B Exceptions between metalevel and baselevel
	B.1 An overview of Java exceptions facilities
	B.2 Java metaprotocols and exceptions
	B.3 Exceptions and assumptions
	B.3.1 The shape of the example
	B.3.2 Javassist 1.0
	B.3.3 Naive

	B.4 Conclusion

