
Vrije Universiteit Brussel - Belgium
Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes - Nantes

1999

V
R

IJ
E

UNIVERSITEIT BRUSS
E

L

S
C

IE
N

TIA
VINCERE TENEB

R
A

S

Generic Component Architecture Using

Meta-Level Protocol Descriptions

A Thesis submitted in partial ful�llment of the requirements

for the degree of Master of Science in Computer Science

(Thesis research conducted in the EMOOSE exchange

project funded by the European Community)

By: Maria Jose Presso

Promotor: Prof. Theo D'Hondt (Vrije Universiteit Brussel)

Co-Promotors: Prof. Kris DeVolder (Vrije Universiteit Brussel)

Prof. Pierre Cointe (Ecole des Mines de Nantes)

2

Acknowledgments

I want to express my gratitude to all the people who helped me to carry out

this thesis.

I thank my advisors, Kris De Volder and Pierre Cointe. To Pierre Cointe

for initiating me in the �eld of re�ection and broadening my horizon by

pointing to many interesting topics. To Kris De Volder for giving me the

right mixture of advice, pushing and support I needed to do this work.

I thank my promotor Theo D'Hondt for encouraging me when I needed

it most.

Thanks all the people who made the EMOOSE program possible, and

very specially to Annya Romanczuk, whose concern went really far beyond

duty.

Thanks to all the people at EMN and PROG who was ready to help in

many di�erent ways, in academic aspects as well as in solving the numerous

quotidian problems that come up when being far from home.

This wouldn't have been possible without the unconditional support from

my family. Their love and concern were and will always be essential for any

undertaking.

I want to thank the enfermeros for their for their day-to-day company

and support, and for the fun we had together which was often just the needed

help. Their friendship made this rather than possible, enjoyable.

To all the people who shared grati�yng moments in Brussel and Nantes.

Meeting them was an important part of this being a rich experience.

3

4

Abstract

The purpose of component technology is to build applications by composing

reusable of software pieces without programming.

This dissertation addressed the problem of describing protocols for com-

posing components in such a way that they are explicit and become indepen-

dent from the composition tool. This allows to build generic tools capable

of handling di�erent kinds of composition protocols.

In order to be able to build applications out of components, it is neces-

sary to have descriptions of components that tell how to deploy them, and

how to connect them to others. Component models standardize these com-

position mechanisms, giving raise to composition protocols. Those protocols

are described in speci�cations and embedded into builder tools that allow to

describe an application built up from connected components and generate

the code.

We propose the use logic meta programming to describe the components,

describe the protocols for composition and the code that realizes them, speci-

fy an application built up from connected components and generate the code

for the application. We show by constructing a prototype tool, that these

descriptions make the protocols and the tool independent.

2

Contents

1 Introduction 7

2 Components and Component Models 11

2.1 Related Research . 11

2.2 Conceptual framework . 14

2.3 Component Models . 16

2.3.1 Component Models for Visual Composition 16

2.3.2 Distributed Systems 17

2.3.3 Server Components . 19

2.3.4 Summary and Discussion 20

2.4 Java Beans . 22

2.4.1 Building an application by assembling beans 23

2.4.2 Java Bean Components 26

2.4.3 Assembling beans . 29

2.5 Summary . 31

3 Logic Meta Programming 33

3.1 Logic Meta Programming . 33

3.1.1 Logic Meta Programming System 34

3.2 TyRuBa . 34

3.2.1 The TyRuBa Language 36

3.2.2 Code Generation . 37

3.2.3 Representational Mapping 38

3.2.4 Derived Information 40

3.3 Summary . 42

4 Representing component models for generic builder tools. 43

4.1 General Picture . 44

4.2 Describing an application . 50

3

CONTENTS

4.3 Describing a Component Model 53

4.3.1 Describing components 56

4.3.2 Describing a container 57

4.3.3 Describing parts . 59

4.3.4 Describing con�guration 59

4.3.5 Describing connection protocols 60

4.4 Summary . 65

5 Independence between the component model and the builder

tool 67

5.1 Extending the protocols for beans 68

5.1.1 Outcall . 68

5.1.2 Combined Protocols: two-way synchronize 70

5.1.3 Summary . 71

5.2 Conduits component model 71

5.2.1 Conduit components 75

5.2.2 The �ow protocol . 77

5.2.3 Conduit Container . 78

5.2.4 Describing parts . 79

5.3 Summary . 79

6 Future Work 81

7 Conclusions 85

4

List of Figures

2.1 An application built from beans: a Directory Browser 24

2.2 Building an application using beans: con�guring a bean . . . 25

3.1 Base program representation 34

3.2 Architecture of a logic meta programming system 35

3.3 A Java program and its logic representation 40

4.1 Architecture of a generic composition tool 45

4.2 Interface for adding a part to a composite application 47

4.3 Interface for creating a connection between two parts 49

4.4 Interface for con�guring the parts of the application 50

4.5 A composite application: Directory Browser 51

4.6 Architecture of the component model description 55

5.1 Conduits hierarchy . 72

5.2 A composite application . 73

5.3 An example of the code of a simulation 74

5.4 A composite conduits application 76

5

6

Chapter 1

Introduction

In the latest years there is a growing interest in technologies to build appli-

cations by assembling reusable software pieces or software components. The

availability of this kind of technology lowers development e�ort and allows to

build customized software in a cost e�ective way. It also improves reliability,

as components become thoroughly tested by successive uses.

Components are encapsulated entities that are meant to be assembled

to make up applications. A component is not used in isolation, it needs to

interact with others to form a system. To be able to interact with others,

components have well de�ned interfaces that specify what they provide and

what they require from other components. As a reusable entity, a component

can be used or deployed in di�erent applications and it can be con�gured or

adapted to �t the needs of a particular application.

Using components, applications are assembled rather than programmed.

The development of an application based on components consists in deploy-

ing a set of components, con�guring them and connecting them. Deploy-

ment, con�guration and connection are thus the basic mechanisms necessary

to build applications out of components.

A component model de�nes a set of standard mechanisms covering the

di�erent steps in component-based development. In the present there are

already several industrial component models, as for example Java Beans,

Enterprise Java Beans, Corba components, ActiveX controls and DCOM.

The standards de�ned by component models allow for the interoperation

of components that are independently produced, for example by di�erent

vendors.

A component model de�nes how components have to be described and

how the are composed. Describing how components are composed involves

7

CHAPTER 1. INTRODUCTION

specifying how to create a composite application, how to deploy components

into the composite application and how to connect them.

The description of how to connect the parts, or connection protocol, in-

volves on one side to specify when two parts can be connected, when they are

�plug compatible�. On th other side it involves de�ning how the connection

is realized, if there is some glue code that needs to be produced, or some

step of actions that have to be performed.

In the existing industrial component models, the mechanisms or protocols

for composition are described by means of natural language speci�cations.

This descriptions are verbose, ambiguous and of course non-executable.

A key point for the success of component technology is the availability of

tools for building applications out of components. Such tools should assist

the user in describing a composite application by assembling components

and generate the code for the application. For example, a visual builder

tool lets the user pick a set of components from a palette and place them in

some kind of container. The user can con�gure these components by editing

some attributes. Then the tool allows to connect the components by drawing

lines between them. In this way the user produces a kind of description of

the application. In the end, the tool generates the code for the described

application.

The builder tool assists the user in the creation of the composite ap-

plications so that he builds well-formed component assemblies. It does so

by restricting the constructs the user can make to those that are valid. In

the example of the visual builder tool, where the connections are created by

drawing lines, the tool only allows to draw lines between components that

are plug-compatible. To guide the user in this way the tool needs to have

knowledge that allows to determine whether a construction is valid.

The tool also generates the code for the composite application, so it also

needs to know how to map the description of a component assembly into

code.

Typically, a builder tool embeds knowledge about the composition mech-

anisms from a certain component model. It embeds the notions of what is

a valid construct and a speci�c way of realizing the constructs. Thus the

mechanisms available and their mapping into code are �xed, imposed by the

builder tool. Unless the implementation of the tool is modi�ed, it is not pos-

sible to change how the code is generated, to add a new kind of connection

or even less, to use the tool with a di�erent component model.

The goal of this thesis is to make the mechanisms for composition ex-

plicit and independent from the builder tool. Separating the mechanisms

for composition from the builder tool allows to build generic tools capable

8

of handling di�erent composition mechanisms. It is then possible to modify

the composition mechanism or de�ne new ones and continue to use the same

tool.

To achieve this goal we use meta-level descriptions of the components,

the mechanisms for compositions and the composite applications. These

descriptions support the operation of a builder tool in its two main func-

tionalities: assisting the user in specifying component assemblies and the

generating the code for the application.

To provide for the assistance to the user, the description of the com-

ponents and component models must allow to determine whether a certain

construction is valid, as for example whether a component can be used in a

certain assembly, or if a pair of components can be connected.

To provide for the generation of the application code, the description of

the component model must allow to interpret a description of a composite

application and map it into code.

We use a logic programming language as a formalism to describe com-

ponents, component models and composite applications. Components and

component models are represented as sets of facts and rules. The kind of

questions that need to be answered from the representation, such as whether

a certain connection is valid, or what are the valid connections are very much

like logic queries. A logic programming language provides good support for

this kind of reasoning. A builder tool makes appropriate queries to the rep-

resentation to determine what are valid compositions and guide the user to

produce the description of a composite application.

The description of the composite application is a declarative speci�cation,

saying what are the components that make up the application, how they are

con�gured and how they are connected. This declarative description can also

be appropriately described using a logic language as a set of facts stating

what are the components of the application and how they are con�gured and

connected.

To generate the code we again use the technique of logic meta program-

ming. In logic meta programming a program is represented as a set of facts.

In our component based development, the facts that represent the code are

deduced from the facts that describe the composite application and the facts

and rules that describe the components and the component model. The de-

scription of the component model provides rules that specify how to generate

the code for the application.

We de�ned an interface for the interaction between a builder tool and

the logical representation of components and component models. This makes

the tool generic, as it can work with any model that is represented according

9

CHAPTER 1. INTRODUCTION

to the de�ned interface. It is then possible to modify the model, as for

example add new ways of connecting components or modify how the code

is generated, and continue to use the same tool. It is also possible to de�ne

a new component model and use the same tool to build applications in this

new model.

To validate the approach, we developed a prototype builder tool that

interacts with the logic representation of component models.

We show how to represent component models, components and composite

applications using logic in such a way that it supports the operation of the

builder tool. To illustrate the representation, we represent the Java Beans

component model. We use this model because it is accessible and clearly

de�ned.

We conducted some experiments to validate that the tool is independent

from the component model. To show that the component model can be

modi�ed while continuing to use the same builder tool, we extended Java

Beans with new connection protocols. To show that the tool can be used with

a di�erent component model, we represented a new component model with its

own composition mechanisms. In both cases, the tool can be used without

any change, thus providing evidence about the independence between the

tool and the mechanisms for composition.

The report is structured as follows: in next chapter we survey research

work related to component technology and identify a set of elements we

consider the main features in a component model (from the point of view of

the programming/composition language), setting up a conceptual framework

for the work. Then we use this conceptual framework to analyze existing

commercial component models. Chapter 3 presents the technique of logic

meta programming. Chapters 4 and 5 present the contribution of this work.

In chapter 4 we discuss the interface between a generic composition tool and

present the prototype builder tool we built for validating the approach. We

discuss the representation of components, component models and composite

applications using a logic programming language to support the operation

of a generic builder tool. We illustrate the representations by representing

Java Beans. Chapter 5 discusses the experiments that show that the tool is

independent from the composition mechanisms: the extension of Java Beans

with new connection protocols and the representation of a new component

model. Chapter 6 discusses some lines for future work and chapter 7 presents

the conclusions.

10

Chapter 2

Components and Component

Models

There are currently several industrial approaches to component technology.

These approaches are very diverse and for this reason it di�cult to analyze

in a uniform way. In this chapter we will present a conceptual framework to

be used to analyze existing component models. This framework will also be

used as the basis for our representation of component models. We start by

discussing research work in the area, then we present the features we use to

characterize a component model and �nally we analyze some existing com-

ponent models using our conceptual framework. The last section discusses

the Java Beans component in more detail, as it is going to be used as a

reference for our representation of component models.

2.1 Related Research

In this section we will discuss research work on conceptual foundations for

the area of software components, and addressing the problem of connecting

components.

A compact de�nition of components is given by Nierstrasz and Dami [7]

saying that

�a component is a static abstraction with plugs�.

Static means that the component is independent from its uses or instantia-

tions, and can be stored in a repository. Abstraction means that a component

is an encapsulated entity. Static abstractions can be very diverse in nature,

11

CHAPTER 2. COMPONENTS AND COMPONENT MODELS

as for example classes, mixins, functions, macros, procedures, templates and

modules. The plugs are the points of interaction between the component

and its environment. Examples of plugs are parameters, ports and mes-

sages. This de�nition of components is complemented by the de�nition of

software composition which says that �the process of constructing applications

by interconnecting software components through their plugs�. This de�nition

points out one of the main problems in the area, which is how to connect

the components.

Another de�nition of components by Szyperski[6] says that

�A software component is a unit of composition with contractual-

ly speci�ed interfaces and explicit context dependencies only. A

software component can be deployed independently and is subject

to composition by third parties�

The two de�nitions agree on components having well de�ned interaction

points. Independence implies that the component is encapsulated, so encap-

sulation is also a common point. Composability is also a point present in

both de�nitions. Although not present in the de�nition, the discussion in

Szyperski's book also considers a component as the static software piece that

is delivered independently of its uses or instances.

The notion of a component is also a main element in the area of soft-

ware architectures. Software architecture addresses the description of the

overall system structure. A software architecture is de�ned as a set of com-

ponents and connectors. The term component is not used in the sense of a

reusable software piece but in the sense of a computational entity, for ex-

ample a �lter or a server. The connectors describe the interaction between

the components. A representative work in the area is the work by Allen

and Garlan[10][11]. They consider the de�nition of a system in three parts:

component and connector types, component and connector instances and

con�guration, and they de�ne a language, Wright, to specify these parts. A

component type describes a set of ports that represent the points of interac-

tion between the component and its environment. A component type can be

assimilated to the static components in the de�nitions discussed above and

the ports to the plugs. The connector types de�ne a set of roles, describing

the obligations of the components that take part in the interaction and a

glue, describing the coordination between the roles. The component and

connector instances are the actual parts of the system, and the con�gura-

tion describes the combination between the components and the connectors

by mapping the ports in the components to compatible roles in the connec-

tors. In Wright, the ports, roles and glue are de�ned using a variant of CSP.

12

2.1. RELATED RESEARCH

This description allows to determine the compatibility between the ports and

the roles they are mapped to, and in this way, to determine the validity of

the connections between the components. A distinctive characteristic of this

work is the representation of connectors as explicit entities, with the purpose

of characterizing and reasoning about component interaction.

The representation of interactions as explicit entities has been applied

in the area of software composition in the work on gluons[1]. Gluons are

part of a framework for developing �nancial applications which allows for

dynamic composition. The gluons are special objects whose responsibility

is to mediate the cooperation between software components (in this case,

objects). The framework is centered around the protocols and they are

considered the primary reusable elements. The speci�cation of a protocol

consists in a set of roles, and interplay relation that speci�es the compatibility

between the roles, and a �nite automaton that speci�es the valid sequences

of interactions between the participants. Each object in the environment

may conform to a set of roles, and these roles together with the protocols

will determine to which objects it can be connected. In this approach, most

of the interaction code is factored out from the components into the gluons,

the components keep the functionality necessary to hook the protocols such

as exported values and event noti�cation.

Scripting languages are a means of specifying software composition, by

introducing, customizing and binding a set of components[2][13] . These

languages are similar to programming languages, but with the special pur-

pose of supporting the assembly of a particular kind of components. They

also allow to program some additional, application-speci�c behaviour and to

provide some glue code adapting components.

De Mey addressed the problem of building applications by visually as-

sembling components[4]. She presents a framework for visual composition

that can be specialized to speci�c application domains. The components

have a set of ports, that de�ne their composition interface. Components are

connected between them by linking their ports. The validity of the connec-

tions between the ports is determined by a set of composition rules, that

de�ne the compatibility between port types. The framework is specialized

for a certain domain by providing information about the components and the

component rules speci�c to the domain. The information about the compo-

nents include the composition interface and the implementation of the task

the component performs, and a the visual presentation responsible for the

component's visual display.

Vista is a prototype tool that implements this framework. It provides

some abstract classes to be subclassed for implementing the component's

13

CHAPTER 2. COMPONENTS AND COMPONENT MODELS

behaviour and presentation. The compatibility rules are described using a

textual notation that is interpreted by a composition model manager which

is part of the framework. The composition model manager is like an oracle

that maintains the compatibility rules and oversees the functioning of the

framework.

This framework supports the de�nition of di�erent composition models

and in this sense, our approach is similar to this one. In De Mey's work the

emphasis is put in the visual manipulation of components, and the speci�ca-

tion of the composition rules is restricted to listing the port types and their

compatibilities. It points out the necessity of alternative way for expressing

composition models. This is the point addresses by this thesis, which con-

centrates on the de�nition of the composition rules, and proposes the use of

a logic programming language for this purpose.

2.2 Conceptual framework

This section presents the conceptual framework we will use to analyze the

existing component models, and that underlies the architecture we propose

for representing component models. The conceptual framework is based on

concepts from the work discussed in the previous section and on the study

of existing component models. We will keep the discussion abstract in this

section, then it will be illustrated by the analysis of the existing models

according to this framework in next section. This gives an idea how well the

models �t in the framework and thus is an informal validation of the choice

of the elements in the framework.

The main characteristics of components we identify are

� components can be composed to build more complex components

and applications.

� components are encapsulated: to use a component it is not necessary

to access to its internals. Moreover, this access is not possible.

� components can interact with other components; as a component is

not an application by itself, it is necessary to connect it and make it

communicate with other components. The interaction with other com-

ponents is done through well de�ned interfaces, the clearly specify

what the component provides and what it requires from other com-

ponents and from their environment. The points of interaction of a

component with their environment are the plugs.

14

2.2. CONCEPTUAL FRAMEWORK

� a component is a static software piece. It can be used or deployed

many times, in an application or in di�erent application. This makes a

distinction between the reusable component and its uses or instances.

For the purpose of making the distinction clear, we will use the term

part to refer to a particular use of a component in a determined ap-

plication while the term component is used for the static entity that is

delivered and can be stored in a component repository.

� components can be con�gured in a particular use by setting a set of

parameters.

Deploying a component means linking it to a particular composite appli-

cation. It is done when the developer is assembling the application. The

deployment of a component creates a part, that is a description of how the

component is used in the application. A part refers to the binding between

a component and a container.

Given the above characteristics of components, the creation of an appli-

cation by assembling components will involve deploying a set of component

as parts of the application, con�guring the parts and connecting the parts

though their plugs. In order to use the components in this way we need

descriptions of the components that specify how they must be deployed in

a composite application and con�gured, and how they can be connected to

other components.

A component model de�nes a standardized way for describing compo-

nents, and mechanisms for deploying, con�guring and connecting them. As

we will see in the analysis of the existing component models, the component

are not deployed �in the air�, but hosted in a special entity which we call

the container which provides an execution environment for the component

instance. A component model de�nes

� a way of describing the components and their plugs

� a way to create a container to host the components

� a way to use a component as part of an application, and link the part

to the container

� a way to con�gure the parts

� protocols to connect the parts through their plugs

15

CHAPTER 2. COMPONENTS AND COMPONENT MODELS

The �rst mechanism will be used by the component developer, the other four

will be used by the application assembler.

The main focus of this dissertation is on the mechanisms for connecting

the parts and determining which are the valid connections. A component

model may provide di�erent kinds of connections. We call the description of

one kind of connection a protocol.

In chapter 4 we will show how we can describe a component model using

a logic programming language. We will make the descriptions of the compo-

nent models explicit allowing to modify the protocols of a component model,

or extend the model with new protocols.

2.3 Component Models

Existing component models are very diverse, and they have di�erent par-

ticular goals. According to their goal, the notion of component is di�erent

and they stress a di�erent aspect of the composition process. In this section

we will analyze existing component models according to the main features

identi�ed in the conceptual framework: which are the kind of plugs the com-

ponent may de�ne, which is the container, how are the components instanti-

ated and linked to the container, how they are con�gured and which are the

connections. For each approach we will present the goal, how the elements

in the conceptual framework match in it and which element is stressed.

In each case, we will present the goal of the approach, how the mech-

anisms map in the approach and what mechanisms are stressed in the ap-

proach. The purpose of this section is not to present each model in detail, but

to characterize them within a uni�ed framework and validate the framework

by this characterization.

2.3.1 Component Models for Visual Composition

The aim of Java Beans[5] and ActiveX Controls[6] is to de�ne components

that can be manipulated visually by builder tools to build applications. This

kind of models correspond closely to what we can expect as building an

application by assembling components: the user has a tool box of components

to pick and put into a kind of canvas, connects them by drawing lines between

them and then the tool generates the code for the application.

In these models, plugs are methods, properties and events. Methods are

services provided by the component. Properties are exported values, such as

for example the contents of a text �eld. Events are a mechanism for notifying

that something interesting has happened. For example, the selection of an

16

2.3. COMPONENT MODELS

item in a list raises an event. Objects willing to be noti�ed of an event have

to register with the object emitting the event.

Also properties can be used for con�guring the instances of the compo-

nents, such as for example the color of the background.

Both kinds of components are integrated into a container, in the case of

ActiveX Controls an ActiveX container and in the case of Beans an applet,

an application or a normal class.

These components are con�gured by setting their exported values or

properties. They are connected using events. A connection is realized by

registering an instance of a component as willing to be noti�ed from events

from another.

ActiveX Controls evolved from Visual Basic controls. Their provided

operations are de�ned as COM interfaces, which are pointers to function

tables .

The Java Beans component model has been de�ned from scratch. It is

described in a technical speci�cation [5]. The speci�cation de�nes an API

provided by a set of classes and a set of programming conventions that the

component developer must follow when writing his beans and that will be

used by the builder tools to manipulate them. This model is simple and

accessible, yet includes the main features of a component model. For this

reason, we use it as a reference for the de�nition of the component model

architecture (chapter 4). We discuss it in more detail in section2.4.

2.3.2 Distributed Systems

In distributed systems the accent is put in the communications of objects

through a network. In this kind of models a component allows to create an

object that provides services over the network.

The main mechanism is the connection between components. Connection

in this models is the communication by the invocation of operations in a

remote component.

The communication infrastructure acts as a container for the compo-

nents. The components are required to register with the infrastructure the

services they provide. The deployment of the component involves creating

the object that provides the service and registering it to the container.

The connection between components involves obtaining a reference to

the object and then invoking the operation. The reference is obtained by

interacting with a name service that allows to �nd an object based on a

symbolic name, or a yellow-pages service that allows to �nd an object based

on its characteristics. DCOM, CORBA and Jini belong to this kind of mod-

17

CHAPTER 2. COMPONENTS AND COMPONENT MODELS

els; they all share the general interpretation of the features in a component

model described above. Next we will discuss aspects more speci�c to each

model.

DCOM

COM and DCOM are the component models from Microsoft. The goal of

COM is the communication between applications. DCOM extends the COM

model with communication between di�erent machines. DCOM and COM

do not specify what a component is. It is not necessarily an object, and it

can be implemented in any language.

The plugs of COM/DCOM components are interfaces, each interface de-

�nes a set of operations or services provided by the component. An interface

is a pointer of a table of function pointers. Another kind of plugs are outgo-

ing interfaces, that are interfaces for event noti�cation. Associated to each

outgoing interface, the component has to provide for the registration of ob-

jects that implement the outgoing interface and are willing to be noti�ed of

the events.

CORBA

The goal of Corba is to allow the communication between distributed ob-

jects implemented in di�erent languages and executing in di�erent platforms.

CORBA de�nes a language for specifying the services an object provides: the

Interface De�nition Language (IDL). An interface consist of a set of opera-

tions and attributes. The interfaces are the plugs of the components. Every

service invocation is mediated by the ORB (Object Request Broker), which

is responsible for locating the object that implements the service and com-

municate the request. The ORB provides an execution environment that

hides the diversity of languages and execution platforms[6] [12]. The ORB

corresponds to the container in our characterization of component models.

The components providing services must be connected to the ORB, publish

their references through the naming service and put themselves to the lis-

tening of service requests. This process corresponds to mechanism of adding

a part to a container in our characterization.

JINI

The goal of Jini [16][17]is to federate a set of resources into a single distribut-

ed system. Resources can be software of hardware devices or a combination

18

2.3. COMPONENT MODELS

of the two. Resources can join and leave the system dynamically. Jini is

based on Java and assumes that Java is the programming language.

A Jini component implements a service; it may be a computation, a s-

torage or a hardware device. A service is described as an interface in Java,

which constitutes the plug of the component. Jini de�nes two protocols,

Discover and Join, that allow a service to become a part of the system.

They consist in �nding a yellow-pages service and registering to it. Another

protocol, Lookup, speci�es how to obtain a reference to a service provider

through the yellow-pages service. The obtainment of the reference followed

by the invocation of the service constitute the connection between the com-

ponents. In this model, the infrastructure for remote communication and

the yellow-pages service constitute the container.

2.3.3 Server Components

The goal of server component models is to facilitate the development of

server components. Server components are complex because they have to

take into account non functional aspects as security, transaction management

and persistence. These models specify a framework in which the component

developer only concentrates on the functionality of the component, while

non functional aspects are provided by a container in which the component

instance executes. This models are Enterprise Java Beans[8] and the proposal

for CORBA[9] components.

The main entity in server component models is the container which pro-

vides important services for the execution of the component instance. The

container is complex and meant to be provided by a provider with system-

level programming expertise.

A component in this models is a class implementing a set of business

methods. In EJB the class must implement some Java interfaces de�ned by

the EJB library.

In the EJB model the component speci�es a set of requirements for the

container, like the kind of transaction and security management it requires,

by means of a �deployment descriptor�. The the deployment of an EJB as a

part of the container consists in setting the environment properties accord-

ing to the requirements speci�ed by the EJB in the deployment descriptor,

generating additional classes for stubs and skeletons for distribution, gener-

ate some more classes to be used by the container to manage the EJB at

runtime and register the service to the naming service.

The plugs of the EJB components are the business methods they de�ne.

The connection is the invocation of the business methods by the clients. To

19

CHAPTER 2. COMPONENTS AND COMPONENT MODELS

establish the connection, �rst the client locates a reference to the compo-

nent by interacting with a naming service and then it invokes the methods.

Method invocation is mediated by the container.

An EJB can be con�gured by adapting its business logic through wrapper

methods. The EJB architecture provides hooks where to insert this wrapper

methods. It can also be con�gured by modifying its deployment descriptor

and setting the environment properties.

The proposal for CORBA components builds on top of the CORBA archi-

tecture for communicating distributed objects written in di�erent languages

and across di�erent platforms. This proposal is said to be aligned to the EJB

model. For the moment it is a proposal, and to our knowledge no containers

exist so far.

In CORBA components, the plugs are provided and required interfaces

(called dependencies), events and properties. The plugs are described using

the CORBA IDL. The component also may specify some requirement from

the container.

The component can de�ne an interface for con�guration.

The deploying the component involves choosing a machine and a process

for the component to execute, register to the CORBA ORB and con�gure

the properties that the component requires from the container.

The connections in this model are of two kinds: linking required to pro-

vided interfaces and event emitters to event consumers and searching a ser-

vice provider through a naming service and invoking the service.

2.3.4 Summary and Discussion

In this section we analyzed some existing commercial component models

according to the main features identi�ed in the previous section. Table

2.1 summarizes what is the mapping of the features in each of the mod-

els. Although sometimes very di�erent in nature, the main features have

a correspondence in each of the models. In most of the models, a compo-

nent corresponds to a class. This class may sometimes be a facade for a

set of classes. According to the model, this class has some conventions to

ful�llentity, like implementing some interface in a library (EJB) following

certain programming conventions (Java Beans) or providing a de�nition of

the operations in terms of an interface de�nition language (Corba). In the

Microsoft models (ActiveX and COM) the components do not necessarily

correspond to a class, it is not de�ned what components are. It can be any

implementation of an interface.

In all the models there are plugs de�ned as operations or methods. In

20

2.3. COMPONENT MODELS

Table 2.1:

21

CHAPTER 2. COMPONENTS AND COMPONENT MODELS

some of the models the operations are grouped in set of related operations

or interface. Some other common kind of plugs are properties of exported

values and events. Events are a means for decoupled communication, as the

entity that emits the event does not need to know in advance the receiver

of the event. For this reason they provide a good means for late connection,

and are used in most of the models.

Connection involves following several steps or conditions, like registering

for an event, or �nding a reference to a service provider. In the end, the

actual communication is done through operation invocation.

The main di�erences between the models concern the container and the

deployment of the components. The container varies from just a class, to

a complex communication infrastructure. All the models de�ned some way

in which a component becomes a part of the composite application, but the

mechanism can be very di�erent. For example in Java Beans, the compo-

nent is linked to the container by de�ning a variable that host the runtime

instance of the component and providing some code that creates that run-

ning instance, in EJB the component is linked to the container by setting

environment properties, creating a set of auxiliary classes and registering the

component services to a name service.

From the analysis in this section we conclude that the identi�ed main

features from component models provide a �rst step towards a characteri-

zation of component models. A deeper study is needed to achieve a general

foundation of component models.

Most of the component models are strongly based on object oriented pro-

gramming. A component usually corresponds to a class. This identi�cation

blurs the distinction between object models and component models. The

shift to components puts the focus on connection and con�guration mech-

anisms. Connection is based on communication through message passing

or operation invocation, but with some structure or protocols that allows

to decouple the caller and the callee. Events is one of this protocols that

structure on message passing. Another is access through naming or yellow

pages services. Con�guration or adaptation in component models is done

by setting values for properties or exported attributes, in contrast to the

adaptation through inheritance typical from object-oriented programming.

2.4 Java Beans

The Java Beans component model [5] is clearly speci�ed and accessible. At

the same time it contains the main features we identi�ed in a component

22

2.4. JAVA BEANS

model. For this reason we use it as a reference in the representation of

component models. In this section we present in more detail the aspects of

Java Beans that are relevant for this representation.

According to the speci�cation of Java Beans [5], �a Java Beans is a

reusable software component that can be manipulated visually in a builder

tool�. Beans can be simple graphical widgets such as buttons or more com-

plex components such as database viewers or chart drawers. The Java Beans

component model de�nes a set of rules that must be followed for writing a

component so it can be manipulated by builder tools. This kind of tools allow

to build an application by placing a set of beans in a container, con�guring

then and connecting them.

The plugs that allow to connect beans are methods, events and prop-

erties. Methods are just normal, public methods. Events are a mechanism

to notify that something relevant has happened. Properties are exported

values that can be read or written by invoking appropriate bean's methods.

Properties are used for connection and for con�guration. A bean can be

con�gured by providing values for its properties.

We begin by discussing an example of the construction of an application

out of beans, using a builder tool. Then we explain how beans are written

and how they are manipulated in the application code.

2.4.1 Building an application by assembling beans

As an illustration of how an application using beans can be constructed and

how the tool manipulates the components, let's consider building a small

application using the BeanBox. The BeanBox is a simple tool provided by

Sun that allows to create applications using beans. The purpose of the tool

is to illustrate how to compose beans rather than to build real applications.

The application we are going to build is a directory browser that allows

to walk through the directory hierarchy. It's interface is shown in �gure 2.1.

The application consists of four parts: a text label, a list box , a button

and a non-visual component, directory explorer that explores the directory

hierarchy. The text label will show the path of the current directory. The

list box shows the contents of the current directory and allows to chose a

directory to explore. The button allows to go up in the directory hierar-

chy. The directory explorer maintains the current directory and knows its

contents, and can go up and down in the hierarchy.

To build this application we have to pick up the di�erent parts, con�gure

them and connect them. The BeanBox lets us perform all these steps and

in the end it produces the code for the application.

23

CHAPTER 2. COMPONENTS AND COMPONENT MODELS

Figure 2.1: An application built from beans: a Directory Browser

When the BeanBox is started it shows a container to put the beans, a

tool box with the available beans and a property sheet.

As a �rst step, we create the parts choosing the beans from the tool box

and placing them in the container.

Next, we con�gure the parts. A bean can be con�gured by providing

values for its properties. When a bean instance in the container is selected,

the property sheet shows its properties and allows to con�gure them by

editing their values. For example, we select the button in our example and

con�gure it by providing text �Go Up� for the label property. (Figure 2.2)

Having created and con�gured the parts, we create the connections be-

tween them. The BeanBox allows to create two kinds of connections between

the parts. The �rst kind of connection links an event in a part to a method

in another part. An event is a noti�cation that something interesting has

happened. A method is just a normal method. Linking an event to a method

means that the method will be invoked when the event occurs. The other

kind of connection links two properties or exported values: a �source� and a

�target� property. The meaning of the link is that whenever the value of the

source property changes, this change will be re�ected in the target property.

In our example, the Directory Explorer has a property currentDirectory

whose value is the path of the directory being explored. We want to link

this property to the text property of the label, so that the label shows the

path of the current directory. To create this connection in the BeanBox we

have to follow several steps:

1. Select the part that is the source of the link. In our example the source

part is the DirectoryExplorer.

2. Choose from a menu what kind of connection we want to build. In this

case we select properties.

24

2.4. JAVA BEANS

Figure 2.2: Building an application using beans: con�guring a bean

25

CHAPTER 2. COMPONENTS AND COMPONENT MODELS

3. Then we choose the source property from the list of properties of the

selected part. In this case we chose the property currentDirectory.

4. Draw a line to a target part. In our example the target part is the

label

5. Choose the target property from the list of properties of the part. In

this case we choose the text property.

In the same way we create the other two connections between properties.

We link the contents property in the DirectoryExplorer, which holds the list

of the �les contained in the current directory, to the items property in the

List, which holds the elements that are shown by the list. Finnaly, we link

the selectedItem property from the list bean, which holds the selection made

by the user, to the currentDirectory property in the DirectoryExplorer, so

when the user selects a directory the DirectoryExplorer goes to explore that

directory.

The last connection links the button to the directory explorer, so that

when the button is pressed, the directory explorer goes one level up in the

directory hierarchy. The directory explorer has a method goUp that makes

it browse the upper directory. Pressing the button generates an event called

actionPerformed. We want to link the occurrence of this event to the in-

vocation of the goUp method in the directory browser. This connection is

created using the BeanBox in an analogous way as the connection of prop-

erties: �rst we select the button and we choose to connect it trough events

and select the actionPerformed as a source of the link; then we draw a line

to the directory explorer and choose the goUp method from the list of the

directory explorer's methods.

After completing the connections, we ask the BeanBox to generate the

code for the assembled application. The BeanBox generates a class. The

class is an applet with the layout of the BeanBox. This class acts as the

container for the beans, and contains the code necessary for deploying, con-

�guring and connecting the beans.

2.4.2 Java Bean Components

As a component, a bean provides a way of being deployed as a part of a

composite application, a way of being con�gured and a way of being linked

to other components. The Java Beans component model standardized this

mechanisms, so the components do not de�ne them all by themselves, but

26

2.4. JAVA BEANS

they de�ne the information necessary for the standard mechanisms to op-

erate. Builder tools use this information an mechanisms to assemble the

beans.

The Java Beans speci�cation establishes a set of rules or conventions that

beans conform to so that they can be manipulated by builder tools.

A Java Bean is implemented by a class that follows a set of rules de�ned

by the Java Bean speci�cation. Alternatively, a bean could consist of a set

of classes, but in this case there is a class that acts as a facade for the rest

and complies to the rules.

A bean must provide support for instantiation by de�ning a no argument

constructor. Connection is supported by providing a set of methods, events

and properties. Methods are normal public methods. Events and properties

are implemented using methods that follow special rules. Properties also

support con�guration.

Events

Events are a mechanism for notifying state change noti�cations from a source

object to one or more target objects. Events provide a means for connecting

bean instances, by linking events sources to event targets or event listeners.

The event mechanism consist in a publish and subscribe policy. An event

source provides a mechanism that allows objects interested in being noti�ed

of the occurrence of the event to subscribe to it. The emission of the event

consists in the event source invoking a speci�c method in each of its registered

subscribers.

Each kind of event noti�cation corresponds to a di�erent method. Re-

lated groups of noti�cation methods are grouped in event listener interfaces.

For example, the methods for notifying mouse events are grouped in the

java.awt.event.MouseListener interface which consists in the methods

mouseClicked, mouseEntered, mouseExited, mousePressed, mouseReleased.

Event listener interfaces are identi�ed as such by extending the java.util.

EventListener interface. This is an empty interface whose purpose is to

serve as a marker or annotation to distinguish listener interfaces.

A class of objects that are meant to be targets of a certain kind of events

implement the corresponding listener interface.

A class of objects that act as event sources are identi�ed because they

provide methods for registering and unregistering event listeners. These

methods must follow some programming conventions that allow builders to

detect them. An event source is identi�ed by the presence of a pair of

methods of the form:

27

CHAPTER 2. COMPONENTS AND COMPONENT MODELS

public void addEventListenerType (EventListenerType a)

public void removeEventListenerType (EventListenerType a)

EventListenerType is an event listener interface. It must inherit from ja-

va.util.EventListener and its name must end with �Listener�.

The event noti�cation may convey some information. For example, in

an event that noti�es of a mouse click, we are interested to know the co-

ordinates where the mouse was clicked. The information associated to the

event is encapsulated in an event state object which is the sole argument

to the noti�cation method. The class of an event object inherits from ja-

va.util.EventObject.

The following table summarizes the rules for de�ning an event Foo:

element convention

class of the event object
FooEvent

extends java.util.EventObject

event listener interface
FooListener

extens java.util.EventListener

method in the listener

interface

public void methodname(FooEvent e)

method for registering a

listener
public void addFooListener(FooListener l)

method for unregister-

ing a listener
public void removeFooListener(FooListener l)

Properties

Properties are exported attributes. The bean class de�nes special methods

for reading or writing a property. Depending on the methods provided for

accessing a property, it may be read-only, write-only or read-write: a read-

able property provides a getter method for reading its value and a writable

property provides a setter method for updating the value. The conventions

for setter and getter methods are (considering a property Bar of type Prop-

ertyType):

void setBar(PropertyType value);

PropertyType getBar ();

Properties are used for con�guration and connection. Con�guration is done

by providing values for writable properties. The mechanism for connection

28

2.4. JAVA BEANS

using properties is based on events: a bean may provide noti�cation of the

change of the value of some of its properties. The change of a property's

value produces an event. Objects interested in being noti�ed of property

changes register as listeners of this event. These properties whose changes

produce events are called bound properties.

Java Beans de�nes an event and a listener interface of property changes.

The listener interface is PropertyChangeListener. As in the general case

of events, a bean which has bound properties an so emits the Property-

ChangeEvent must provide a pair of methods to register and unregister event

listeners.

A single event is used for notifying changes of all the properties in a bean.

To distinguish which is the property that actually changed, an event object

is passed as an argument. This event object carries information about the

source of the event, the name of the updated property and its old and new

values.

The property change event and the event object allow to build the con-

nection between properties described in the previous section. In the following

section we will explain how the connections can be implemented.

The following table depicts the programming conventions for properties:

element convention

getter method PropertyType getFoo()

setter method void setFoo(PropertyType value)

class of event object

for notifying property

changes

PropertyChangeEvent

change listener interface PropertyChangeListener

noti�cation method void propertyChange(PropertyChangeEvent e)

method for registering a

listener

void addPropertyChangeListen-

er(PropertyChangeListener l)

method for unregister-

ing a listener

void removePropertyChangeListen-

er(PropertyChangeListener e)

2.4.3 Assembling beans

Beans are meant to be assembled using a builder tool which generates the

application code. A normal user of a builder tool is not concerned about how

this code implements his application. However, to make a tool or �ne tune

an existing tool (which allows to be modi�ed), it is necessary to know how

29

CHAPTER 2. COMPONENTS AND COMPONENT MODELS

to implement the deployment, con�guration and connection of the beans.

A composite application built out of beans is implemented as a class that

hosts beans instances. This class acts as a container, and provides for the

creation of bean instances, con�guration and connection.

If a bean is used as a part of an application then an instance of the

bean corresponding to that part has to be created. An instance of a bean is

created by invoking the method instantiate in a support class, Beans, that is

provided by the Java library. For example, the instantiation of the directory

explorer in our example is done as follows:

myExplorer = (DirectoryExplorer)Beans.instantiate(cl,

�DirectoryExplorer�);

In the previous code, cl is the class loader, which is obtained using Java

introspection mechanisms.

The con�guration of the beans is achieved by invoking the setter methods

of its writable properties. For example, the con�guration of the button in

our example that provides a label for the button is implemented as

upButton.setLabel(�Go Up�);

As discussed in the previous section, support for connection is the event

noti�cation mechanism. Making up connections involves subscribing event

listeners to event sources. This registration is done by invoking the method

for registering listeners of a certain kind of event in the event source. For

example, the registration of an object interested in being noti�ed when the

go up button is pressed, is done as follows:

upButton.addActionListener(aListener);

The de�nition of events and properties provide the plugs or hooks for building

the kind of connections we used in the construction of the example appli-

cation. This kind of connections are protocols provided by the tools on top

of the basic plugs de�ned in the speci�cation. The implementation of these

protocols involves some glue code that realizes the links.

One of these connection links event to a method so that the method is

called when the event occurs. In this connection, the target part may not

implement the listener interface corresponding to the event, and the method

may not be the noti�cation method for the event. A possible way of making

this connection is creating an adaptor class that implements the listener

interface, and where the noti�cation method for the event we are connecting

30

2.5. SUMMARY

invokes the target method. The connection is realized by creating an adaptor

object and registering it as an event listener in the source.

The other connection we considered links a source property to a target

property so that the changes of the value of the �rst property are propagated

to the target property. This connection is built using the property change

event and the associated event object. One way of implementing this connec-

tion is creating an adaptor object that listens to property change event and

updates the target property when the source property is modi�ed. When

it is noti�ed of a property change, the event the adaptor object consults

the event object to determine if the modi�ed property is the property it is

interested in. If the modi�ed property is the source of the connection, then

the adaptor object invokes the setter method of the target property with the

new value of the source property, which is contained in the event object.

The implementation of the connections we have just discussed is only one

of the possible ways in which they can be made. Di�erent tools may provide

di�erent ways of building the connections.

2.5 Summary

In this chapter we set up the conceptual framework that underlies our repre-

sentation of component models. We started by surveying some research work

in the area that addresses the conceptual foundations of component technol-

ogy and the problem of connecting components. Based on this study and

on the study of existing component models, we identi�ed what we consider

the main elements and mechanisms in a component model. Then we used

this features to analyze the existing component models to see how well they

�t in the conceptual framework. We could characterize the di�erent models

according to the chosen features, thus informally validating the choice. Fi-

nally, we explained in more detail the Java Beans component model which

we use as a reference for the representation of component models. We chose

this model because it is an industrial, well accepted component model which

is accessible and clearly speci�ed and presents all the main features of com-

ponent models.

31

CHAPTER 2. COMPONENTS AND COMPONENT MODELS

32

Chapter 3

Logic Meta Programming

This dissertation proposes the use of logic meta programming for describing

component models, components and composite applications and to generate

application code. We adopt the view of logic meta programming of [14].

In this chapter we present the approach and the logic meta programming

system we used for implementing the experiments.

3.1 Logic Meta Programming

A meta program or meta-level program is a program that manipulates pro-

grams. The manipulated programs are called base programs or base level

programs. The language in which the meta program is written is called the

meta language, and the language in which the base programs are written is

called the base language.

The meta program �reasons� about the base programs. To do this, it is

necessary to represent the base language programs using data structures of

the meta language.

In logic meta programming the meta language is a logic programming

language. The base-language programs are represented by a set of logic

facts. A function called representational mapping associates each program

with its meta level representation. The representational mapping determines

the set of facts that represent a base-level program.

A logic program indirectly represents a set of facts: the set of facts that

can be proven from its facts and rules. Thus, the set of facts that represents

a base program can be represented by a logic program that allows to deduce

them. Therefore, base programs are indirectly represented by logic programs.

This situation is depicted in 3.1. This representation is powerful because it

33

CHAPTER 3. LOGIC META PROGRAMMING

allows to represent �patterns� of code with holes using rules, and then �ll in

the holes and deduce the facts that represent the actual code.

Represents

Represents

Mapping

Base Language Program

Logic Program

Set of Propositions

Represents

Figure 3.1: Base program representation

The representational mapping determines which aspects of the base pro-

gram are made explicit and available for manipulation by the meta program.

For this reason, the choice of the representational mapping is a central issue

in the design of a logic meta programming system.

3.1.1 Logic Meta Programming System

The architecture of a logic meta programming system is shown in �gure

3.2. The main parts of the system are a logic system and a code generator.

The user of the meta-programming system interacts with a code generator

which outputs the base language code. The code generator retrieves the

information necessary to produce the base program by querying the logic

system to consult the facts that represent the base program. The logic system

consist on a database that stores the logic program and a logic inference

engine. The facts that represent the base program are inferred by the logic

engine from the rules and fact stored in the rule base. The code generator

is a kind of inverse of the representational mapping. It produces a base-

language programs from the set of facts that represent it. The code generator

makes appropriate queries to the logic system and outputs the result as base-

language code.

3.2 TyRuBa

TyRuBa is a logic meta programming system based on a simpli�ed Prolog

extended to facilitate the manipulation of Java code. The TyRuBa language

34

3.2. TYRUBA

Base-language
Program

Logic
Meta Program

Virtual Set of
Propositions

Logic System

Represent
Queries

Outputs

Interprets

Represent

Logic Meta-Programming System

Code Generator
Request

Figure 3.2: Architecture of a logic meta programming system

35

CHAPTER 3. LOGIC META PROGRAMMING

has a quoting mechanism that allows pieces of quoted Java code to occur

as terms in logic programs. Conversely, logic variables and terms can also

occur within a quoted piece of code. This last feature is very useful in the

implementation of code generators, as variables can be used as place-holders

to create code templates.

3.2.1 The TyRuBa Language

This section brie�y presents the TyRuBa language. For more details on the

language we refer to [14].

A TyRuBa program is a set of logic rules, facts, queries and directives.

TyRuBaFile :: = (Rule | Fact | Query)*

The syntax and semantics of rules and facts is the same as Prolog. A rule

consist of a conclusion term followed by :- followed by a condition expression.

A fact is a rule whose condition is always true and thus is omitted. Queries

do not a�ect the generated code.

Rule ::= Predicate �:-� Expression �.�

Fact ::= Predicate �.�

Query:: �:-� Expression �.�

Predicates and expressions are also syntactically and semantically similar to

Prolog predicates and expressions.

Predicate ::= Constant[�(� TermList�)�]

The version of TyRuBa used in our experiments is an extension of the one

presented in [14]. In this version, a predicate is any term.

Expressions are disjunctions and conjunctions of predicates:

Expression ::=Disjunction

Disjunction ::= Conjunction (�;� Conjunction)*

Conjunction ::= SimpleExpression (�,� SimpleExpression)*

SimpleExpression::= Predicate

|(�Expression�)�

Terms in TyRuBa are a bit di�erent from Prolog. The main di�erence is

a special kind of term that allows pieces of Java code to appear as data in

logic programs. Variables, constants and Compound terms follow syntactic

rules that allow to avoid con�icts when they appear inside quoted code.

36

3.2. TYRUBA

Term ::= Variable | Constant | CompoundTerm |

QuotedCode | List

Variables and constants are identi�ers. Variables are distinguished from

constants by a leading �?�. ?pepe, ?X are variables; pepe, 12, X are constants.

Compound terms are written using �<� and �>�, instead of using �(�

and �)� as in Prolog. This allows to distinguish compound terms occur-

ring in quoted Java code from function calls. Array<String>, ?term<?bar,

foo,<11,2>�> are examples of compound terms. We found compound terms

very useful for expressing programming conventions as the ones in Java Bean-

s.

List in TyRuBa are as in Prolog:

List ::=�[� ListRest

ListRest ::= �]� | Term ListCdr

ListCdr ::= �,� Term ListCdr

| �|� Term �]�

| �]�

Examples of lists are [a,b,c], [a|[b,c], [a|[b|[c|[]]]], which all repre-

sent the list whose elements are a, b and c.

QuotedCode is a special kind of term that represents a piece of quoted

Java code. It is a string between a pair of balanced �{� ,�}�. It is composed of

a list of Java tokens, variables, constant terms and compound terms. Nested

�{� and �}� are just another kind of tokens and do not introduce nested

quoting.

TyRuBa also provides some meta predicates, i.e. predicates about terms

or expressions

FIRST(expression) evaluates the expression and retains only the �rst

solution.

FINDALL(expression,term,variable) �nds instances of term for which ex-

pressions is true and collect this instances in a list that is bound to variable.

NODUP(term,expression) produces all the solutions to expression, elimi-

nating those where the instantiation of term is the same as the instantiation

of term in a previous solution. The NODUP predicate is useful for code gener-

ation.

NOT(expression) fails when expression succeeds.

3.2.2 Code Generation

The TyRuBa language described so far is a logic programming system. To

complete a logic meta programming system we need a code generator that

37

CHAPTER 3. LOGIC META PROGRAMMING

generates the base programs from their logic representation. A code gen-

erator is associated with a representational mapping: it generates the code

for programs represented using the representational mapping for which it is

implemented.

In TyRuBa the code generator invokes the logic system to evaluate a

query to obtain the code to be output. To obtain the declaration of a class

or interface X, the code generator performs the query

:-generate(X,?code).

The solutions to this query bind the generated code to ?code. There may be

zero, one or more solutions to this query. No solutions means that the meta

program does not specify an entity of name X. In the case of many solutions,

the system takes the �rst one.

It is possible to de�ne di�erent representational mappings and implement

their corresponding code generator. A code generator is implemented by

de�ning the generate predicate in terms of the facts in the representational

mapping. The generate predicate is de�ned as rules and facts in TyRuBa

itself. The system loads the code generator from an initialization �le. In

next section we will present a speci�c representational mapping and the

corresponding code generator. This representational mapping is the one

used for the experiments in this dissertation.

3.2.3 Representational Mapping

The representational mapping associates a base program with a set of facts

that are its logic representation. The representational mapping determines

which aspects of the base program are made explicit (rei�ed) in the represen-

tation, and can thus be easily consulted, manipulated and generated by meta

programs. The representational mapping we use in this dissertation rei�es

information about methods, instance variables and constructors in classes

and interfaces, and the relationships between classes and interface.

The presence of a class declaration is represented by the fact

class_M(?C).

The representation of an interface is similar

interface_M(?I).

The presence of interface ?I in the implements clause of class ?C is asserted

by the fact

38

3.2. TYRUBA

implements_M(?C,?I).

The presence of type ?T1 in the extends clause of type?T2 is asserted by the

fact

extends_M(?T2,?T1).

If class ?C is abstract, this is represented as

abstract_M(?C).

If type ?T is public, this is represented as

public_M(?T).

The presence of a method ?m with return type ?R and argument types

?A1,?A2,...,?An in type ?T is represented by

method_M(?T,?R,?m,[?A1,?A2,...,?An],{...declaration...}).

The last argument is the code of the method declaration as it will appear in

the generated code for the class or the interface.

A constructor in class ? C with argument types ?A1,?A2,....?An is rep-

resented as

constructor_M(?C,[?A1,?A2,....?An],{...declaration...}).

The declaration of a variable ?n of type ?T in class ?C with initializer ?i is

expressed as

var_M(?C,?T,?n,?i).

Figure 3.3 shows an example of a class and its representation using this

mapping.

The code generator is implemented by de�ning the generate predicate

in terms of the the predicates of this representational mapping. The imple-

mentation of the code generation de�nes a rule for generating the code of a

class and a rule for generating the code of an interface. The code for a type

is generated by querying the rule base for the di�erent pieces that make up

the type.

The following rule generates the code of a class:

39

CHAPTER 3. LOGIC META PROGRAMMING

class OurButton extends Component{
 OurButton(){
 super();}
 void setText(String t){
 this.text = t;}
 String getText(){
 return this.text;}
 :
 :
}

class_M(OurButton).
extends_M(OurButton,Component).
constructor(OurButton,[],{
 OurButton(){
 super();}
 }).
method_M(OurButton,void,setText,[String]),{
 void setText(String t){
 this.text = t;}
 }).
method_M(OurButton,String,getText,[],{...}).
:
:

Figure 3.3: A Java program and its logic representation

generate(?class,{

?public ?abstract class ?class

?extendsClause

?implClause

{ ?features }

}) :-

class_M(?class),

CG_public(?class,?public),

CG_abstract(?class,?abstract),

CG_extendsclause(?class,?extendsClause),

CG_implementsclause(?class,?implClause),

FINDALL(NODUP([?class|?feature],

CG_feature(?class,?feature,?implem)),

?implem,

?features).

The predicate CG_public queries the rule base to determine if ?class is

asserted to be public or not and generates the keyword �public� or an empty

String. The predicate CG_abstract is similar to CG_public. The predicate

CG_extendsclause generates the extends clause from all the names in the

database that are in an extend relationship with the class.

The de�nition of the predicate generate for interfaces is much the same

as the de�nition for classes.

3.2.4 Derived Information

The representational mapping rei�es the information about the features that

are directly declared in a class or interface and not about the features that

are inherited from its super types. Similarly, it only rei�es the relation

40

3.2. TYRUBA

between a class and its direct superclass and extended interface, and not

the general subtype relation. Often when a meta program needs to have

more general information, as for example if a class has a certain method no

matter if the method is declared in the class or inherited from a superclass.

This kind of information can be deduced from the information rei�ed in

the representational mapping. Below we discuss some predicates providing

higher level information. See [14] for their implementation.

The predicates extends and implements extend the extends_M and

implement_M taking into account the inheritance relations. extends(?subclass,

?superclass) determines if ?subclass inherits directly or indirectly from

?superclass. implements(?class, ?interface) determines if ?class im-

plements ?interface either because it implements it directly or it imple-

ments an interface that extends ?interface, or if one of its direct or in-

direct superclasses implements ?interface or and interface that extends

?interface.

The predicate subtype implements the subtype relation between classes

and interfaces as de�ned in Java.

The predicates feature and feature1 allow to ask if a class or inter-

face has a certain feature, i.e. a variable, a method or a constructor. The

predicate feature1 determines if the feature is directly declared in the class,

while feature takes inheritance into account. The following query determines

the presence of a feature in a class or interface, either by explicit declaration

or inheritance:

:-feature(?type,?feature).

The features are represented as TyRuBa terms. A variable named ?n of type

?t is represented by the term

var<?T,?n>

A method ?m with return type ?R and argument types ?A1,...,?An is rep-

resented as

method<?R,?m,[?A1,...,?An]>

A constructor with arguments ?A1,...,?An is reprinted as

constructor<[?A1,...,?An]>

41

CHAPTER 3. LOGIC META PROGRAMMING

3.3 Summary

In this chapter we described the technique of logic meta programming as

approached in [14] and the logic meta programming system TyRuBa. A

base level program is represented by a set of logic facts as determined by

a representational mapping. In a logic meta programming system the set

of facts that represent the base program is indirectly represent by a logic

meta program and inferred using an inference engine. A code generator

queries the logic system to generate the base level programs. TyRuBa is a

logic meta programming system with special features for dealing with Java

code. We also presented a representational mapping and its code generator.

The TyRuBa system and this representational mapping will be used for

representing the applications assembled from components and to generate

the application code.

42

Chapter 4

Representing component

models for generic builder

tools.

The goal of this dissertation is to make the knowledge about a component

model independent from the builder tool. We propose to use a logic pro-

gramming language as a uniform way of describing the components, the

mechanism for assembling them and the composite applications. The idea

is that components and components models are represented as sets of facts

and rules that are stored in a rule base which is consulted by the builder tool

to help the user to produce a description of the composite application. The

application is also represented by a set of facts, which are added into the rule

base. The application code is indirectly represented by the rules and facts

that describe the composite application, the components and the component

model. The code is generating by querying this set of facts, following the

logic meta programming approach presented in chapter 3.

The interface between the builder tool and the component model is well

de�ned in terms of a set of queries the tool asks the rule base and a set of

facts the tool adds to the rule base. Thus, the tool is generic as it can be

used with any model whose representation conforms to that interface.

In this chapter we explain how a generic builder tool interacts with a logic

representation of a component model and present a prototype tool based on

this interaction. We discussed the representation of components, composite

applications and component models in terms of facts and rules that support

the operation of the tool and the generation of the application code. We

illustrate the representation by representing Java Beans.

43

CHAPTER 4. REPRESENTING COMPONENT MODELS FOR

GENERIC BUILDER TOOLS.

4.1 General Picture

This section discusses the interaction between the logic representation of a

component model and a generic builder tool.

In section 2.4.1 we described how a composite application is created using

a builder tool. The tool guides the user to perform the di�erent steps to build

the composite application:

1. create a container for parts

2. deploy a set of components as parts of the application

3. con�gure the parts

4. connect the parts

The creation of the connection involves several sub steps:

1. select the source of the link

2. select the protocol of connection

3. select a plug among the plugs in the source part

4. select the target part

5. select a plug among the plugs in the target part

The tool guides the user when performing each of the steps so that only

correct assemblies are built (correct in the sense that the composition is

valid). It does so by placing constrains on what the user can build. For

example, when creating the parts, it allows to select only components that

are valid for the current container. When creating a connection, it allows

to choose source and target plugs that are compatible. In order to help the

user in this way, the tool needs to have knowledge about the component

model and the components that allows it to determine what is valid. In a

tool like the BeanBox this knowledge is hard-coded. This knowledge is not

explicit, and we can not modify it unless we modify the implementation of

the tool. It is not possible to add modify a protocol, modify the way the

code is generated, or add new protocols.

We propose an architecture for a generic builder tool where the knowledge

about the component models is represented separately from the tool. (See

�gure 4.1)The component model is described by a set of facts and rules

44

4.1. GENERAL PICTURE

stored in a rule base. The components are also described by logic facts in

the rule base. The user interacts with the tool to create the description of

the composite application. The tool queries the rule base to �nd out what

is valid and help the user to create a correct assembly. The description of

the composite application is also represented by a set of logic facts. These

facts specify which is the container, which are the parts and how the parts

are connected. The tool inserts these facts into the rule base.

Application
Code

Building Tool

Description
ApplicationComponent Model

Description

query produce

generate

Figure 4.1: Architecture of a generic composition tool

The facts describing a composite application are:

composite(?containertype,?compositename). This fact declares a com-

posite application named ?compositename using the container

?containertype.

45

CHAPTER 4. REPRESENTING COMPONENT MODELS FOR

GENERIC BUILDER TOOLS.

part(?compositename,?component,?partname). This fact links ?component

as part of the composite application ?compositename.

configure(?compositename,?partname,?propertyname,?value). This

fact con�gures the part ?partname by providing a the value ?value for

?propertyname.

connect(?protocol,?compositename,?part1,?plug1,?part2,?plug2). -

This fact speci�es the linking of ?plug1 in ?part1 to ?plug2 in ?part2

using the protocol ?protocol within ?compositename.

The tool guides the user to make valid application descriptions. For this

purpose, it queries the rule base to determine whether a certain declaration

is valid. For each of the possible declarations described above, there is a

corresponding query the tool asks the rule base to constrain the description

that can be made to the valid ones:

:-validcontainer(?containertype,?compositename). This query deter-

mines which are the containers we can use to create a composite ap-

plication in the component model we are using.

:-validpart(?compositename,?component,?partname). This query deter-

mines which components can be used as parts of the application

:-validconfiguration(?compositename,?partname,

?propertyname,?value). This query determines which

are the possible con�guration for the parts of the application.

:-validconnection(?protocol,?compositename,

?part1,?plug1,?part2,?plug2). This query determines

which plugs can be connected and under which protocol.

Finally, the tool queries the rule base to generate the code for the composite

application. The code of the application is represented by a set of facts

using the representational mapping presented in section 3.2.3. This facts

are deduced from the facts that describe the composite application and the

facts and rules that describe the component model and the components. The

following query obtains the code for the application:

:-generate(?composite,?code).

46

4.1. GENERAL PICTURE

A prototype builder tool

To validate our approach we implemented a prototype builder tool. We use

this tool to build applications in di�erent component models whose repre-

sentation is explained later on this section. This tool validates the approach

as it shows that the representation of component models we propose can

e�ectively be used by a builder tool to construct applications and that we

can use the same tool with di�erent component models. Being a proof-of-

concept implementation, the tool has the minimal functionality needed for

the purpose of validation and provides only a very simple user interface.

The tool allows to build a composite application by performing each of

the necessary steps: create a container, add parts to it, connect them and

generate the code for application. It queries the rule base containing the

knowledge about the component model using the interface described in the

previous section to allow creating only valid compositions.

Figure 4.2 shows the interface to create a part. The component pop-up

menu allows to choose between the components that can be used to create

valid parts for the current container. Its contents are obtained by executing

the query

:-validpart(thiscomposite,?component,?part)

and taking the binding of the variable component from all the solutions.

Figure 4.2: Interface for adding a part to a composite application

When the user presses the Add button, the tool inserts the following fact

into the rule base:

47

CHAPTER 4. REPRESENTING COMPONENT MODELS FOR

GENERIC BUILDER TOOLS.

part(thiscomposite, chosencomponent,partname).

Figure 4.3 shows the interface to create a connection. It allows to create a

connection that is valid in the current application by choosing a protocol, a

plug in one part and a plug in another part. The pop-up menu corresponding

to each element shows which are the valid choices according to what is already

chosen for the other elements. For example, if the source and target parts

have been chosen, then the protocol can be selected among the protocols for

which those parts have compatible plugs.

The possible values for an element are obtained by querying the rule base

for the valid connections, using a variable as the argument for the element

we are interested in, an the chosen values of the rest of the elements.

For example, the choices for the source plug are obtained by executing

the query

:-validconnection(chosenProtocol, thisComposite,

chosenPart1, ?plug1,

chosenPart2, chosenPlug2).

and taking the values for the variable ?plug1 from all the solutions. The

value of thisComposite is the name of the application under construction.

The other arguments to the query are the chosen value for the element, or a

variable if there is no selected value for the element.

The pop-up menu for an element shows the valid values that are obtained

from the query and extra option allowing to leave the value unchosen.

When the user presses the Add button, the following fact is inserted into

the rule base:

connect(chosenProtocol, thisComposite,

chosenPart1, chosenPlug1,

chosenPart2, chosenPlug2).

The fact is only inserted when all the elements in the connection have been

chosen. It is forbidden to add a connection where one of the elements is

unchosen (i.e. one of the elements is a variable).

Con�guration is done in a similar way. Figure shows the interface for

con�guring a part. The query that is used to provide the choices for the part

and the property is

:-validconfiguration(thisComposite,?part,

?property,?value).

48

4.1. GENERAL PICTURE

Figure 4.3: Interface for creating a connection between two parts

49

CHAPTER 4. REPRESENTING COMPONENT MODELS FOR

GENERIC BUILDER TOOLS.

Figure 4.4: Interface for con�guring the parts of the application

When the con�guration is accepted by the user, pressing the OK button, the

following fact is added to the rule base:

configure(thisComposite,chosenPart,

chosenProperty,value).

In this section we discussed how a generic builder tool interacts with a logic

representation of the component model to guide the user in assembling an

application. The interaction consists in a set of queries that tool asks the

rule base to �nd out what are valid compositions, a set of facts describing

the composite application that the tool inserts into the rule base and a query

that generates the application code. In the rest of the chapter we will present

the representation of components, component models and applications that

make this possible.

4.2 Describing an application

The description of an application speci�es a container in which the parts are

put, the parts and the connections between the parts. This description is

a kind of script consisting of a set of logic facts. This description can be

created by a builder tool, such as the one described in the previous section,

50

4.2. DESCRIBING AN APPLICATION

but it can also be written down directly using the logic language as a kind

of scripting language.

The description of a composite application contains exactly one fact that

speci�es the container to be used to host the parts of the composite appli-

cation, a number of facts that specify which components are used as parts

of the composite application and a number of facts that specify the links

between the parts, describing which are the plugs that are connected and

which is the protocol used to connect them.

In the rest of this section we will illustrate the description of an appli-

cation by the representation of the directory browser application introduced

in section 2.4.1. (Figure 4.5)

The application is built of four parts: a text label, a list box , a button

and a non-visual component, directory explorer that explores the directory

hierarchy. The text label will show the path of the current directory. The

list box shows the contents of the current directory an allows to chose a

directory to explore. The button allows to go up in the directory hierarchy.

The directory explorer maintains the current directory and knows it contents,

and can go up and down in the hierarchy.

Figure 4.5: A composite application: Directory Browser

The composite application is built using a container for beans. This is

expressed by the fact:

composite(beancontainer,DirectoryBrowser).

The following facts assert which are the parts of the application: a text label,

a list box, a button and a directory explorer.

part(DirectoryBrowser,Label,path).

part(DirectoryBrowser,ListBean,contentsList).

part(DirectoryBrowser,Button,upButton).

part(DirectoryBrowser,DirectoryExplorer,myExplorer).

51

CHAPTER 4. REPRESENTING COMPONENT MODELS FOR

GENERIC BUILDER TOOLS.

The upButton is con�gure by providing a text, and we also con�gure the

directory explorer so it stars browsing the home directory:

configure(DirectoryBrowser,upButton,

Text,�Go Up�).

configure(DirectoryBrowser,myExplorer

currentDirectory,�/home�).

Next we need to represent the connections between these parts. The con-

nection between the currentDirectory property in the directory explorer

and the text property of the label, so that when the currentDirectory

changes, the change is re�ected by label showing the path of the new current

directory is described by the following fact:

connect(synchronize, DirectoryBrowser,

myExplorer, property<currentDirectory>,

path, property<text>).

Synchronize is the name of the protocol that links to properties so that the

change of the value in the �rst is re�ected in the same change in the value

of the second.

The contents property in the directory explorer is linked to the items

property of the list box, so that the contents of the list box are updated

when the contents of the directory explorer change to those of a di�erent

directory:

connect(synchronize, DirectoryBrowser,

myExplorer, property<contents>,

contentsList, property<items>).

The list box has a bound property, selectedItem, that is the current selection.

This property is linked to the currentDirectory property of the directory

explorer, so that when a directory is selected in the list box, the directory

explorer goes to explore the selected directory.

connect(synchronize, DirectoryBrowser,

contentsList, property<selectedItem>,

myExplorer, property<currentDirectory>).

The directory explorer has a method goUp, that makes it go to explore the

upper directory. The event action performed of the button is linked to this

method, so that when the button is pressed, the goUp message is sent to the

directory explorer. This connection is speci�ed by the fact

52

4.3. DESCRIBING A COMPONENT MODEL

connect(events, DirectoryBrowser,

upButton, event<Action<Performed>�>,

myExplorer, method<goUp,[]>).

events is th protocol that links an event to a method, in such a way that

the method is invoked when the event occurs. In the above description, the

method is identi�ed by its name and the list of the types of the arguments,

which in this case is empty.

The logic facts presented in this section describe the composite appli-

cation. In the next chapter we will show how the representation of the

component model allows to generate the code for the application from this

description.

4.3 Describing a Component Model

In this section we present how to represent a component model and illustrate

it by discussing the representation of Java Beans.

The representation of the component model must support

� guiding the user in the construction of application description

� the generation of the code for the application from this description.

This representation provide rules and facts to determine what is a valid

container and how to create a composite application, what are valid parts

and how to link them to the container, and what are valid connections and

how to create them. To determine what are the valid elements, the descrip-

tion must contain facts and rules to answer the queries validcontainer,

validpart,validconfiguration and validconnection. To create the com-

posite application it must de�ne rules that allow to compute the descrip-

tion of the application code from the facts that describe the application:

composite, part, configure, connect. The description of the applica-

tion code will be a meta-level representation of the base program in terms

of logic facts, as described in chapter 3.

In addition to the description of the component model itself, we need de-

scriptions of the components that provide how to instantiate the component,

how to link it to a container, how to con�gure and how to connect it.

The set of rules and facts that represent a component model are organized

in di�erent groups that describe the di�erent elements of the component

model: the container, the protocols for adding parts to a container and the

53

CHAPTER 4. REPRESENTING COMPONENT MODELS FOR

GENERIC BUILDER TOOLS.

protocols for connecting the parts. Each of this descriptions is responsible

for part of the obligations of the component model:

� The description of the container is responsible for providing a rule for

validcontainer(?container, ?compositename),

and to generate the code corresponding to the declaration

composite(?container, ?compositename).

� The description of the creation of parts is responsible for providing a

rule for

validpart(?compositename,?componentname,?partname)

and to generate the code corresponding to the declaration

part(?compositename,?componentname,?partname).

� The description of the con�guration of parts is responsible for providing

a rule for

validconfiguration(?compositename,?partname,

?propname,?value)

and to generate the code corresponding to the declaration

configure(?compositename,?partname,

?propname,?value)

� The description of a connection protocol is responsible for providing a

rule for

validconnection(protocolname,?compositename,

?part1,?plug1,

?part2,?plug2)

and to generate the code to realize the connection speci�ed by

connect(protocolname,?compositename,

?part1,?plug1,

?part2,?plug2).

54

4.3. DESCRIBING A COMPONENT MODEL

Component 1
Description

Component 2
Description

Application
Code

Description
Protocol nComponent m

Description

Container
Description

Building Tool

query produce

Protocol 1
Description

Protocol 2
Description

generate

Configuration
Description

Description
Application

Figure 4.6: Architecture of the component model description

55

CHAPTER 4. REPRESENTING COMPONENT MODELS FOR

GENERIC BUILDER TOOLS.

In accordance to the above discussion, the architecture of the generic compo-

sition tool from �gure 4.1 can be detailed to show the organization of the rule

base into the description of the di�erent elements in the component model,

as shown in Figure 4.6. The rest of this section discusses the description of

each of the elements.

4.3.1 Describing components

The description of a component must specify how the component is to be

used: how to integrate it as part of an application, how it must be con�gured

and how it must be connected to other components. Usually, a component

model will standardize these mechanisms for all the components that conform

to the component model. In such a case, the component model provides

support for the standard mechanisms and the components provide hooks for

the operation of the mechanisms. Therefore, the description of how to use

the component is indirect and relies on the description of the component

model, namely in the description of the creation of parts and the connection

protocols.

In Java Beans, for example, the mechanism for deploying a bean in an

application is the same for all beans, and is indirectly described by knowing

that the component is a bean and fromthe protocol for adding a part into

an application. Similarly, the bean's properties are indirectly described by

getter and setter methods and the events are indirectly described by listener

registration/unregistration methods.

The description of a bean consists of a fact stating that the component

is a bean, and a set of facts describing its public methods.

The way of deploying beans is standard for all beans, and described is

section 4.3.3.

The descriptions of the connection protocols allow to deduce the bean's

properties and events that are indirectly represented by some of the beans

public methods(we discuss how in section 4.3.5).

The OurButton bean has a read/write property Background. This prop-

erty is indirectly described by the following facts stating the presence of a

getter and a setter method:

feature1(OurButton,

method<java.awt.Color,get<Background>,[]>).

feature1(OurButton,

method<void,set<Background>,[java.awt.Color]>).

56

4.3. DESCRIBING A COMPONENT MODEL

A bound property is explicitly described as such by a fact, as it is not pos-

sible to deduce that it is bound from the methods. Background is a bound

property:

bound(OurButton, Background).

As OurButton has a bound property, it has methods for registering and

unregistering property change listeners:

feature1(OurButton,

method<void,add<PropertyChange<Listener>�>,

[PropertyChange<Listener>]>).

feature1(OurButton,

method<void,remove<PropertyChange<Listener>�>,

[PropertyChange<Listener>]>).

The following methods describe event listener registration and unregistration

methods, and they indirectly describe that the bean emits an action event:

feature1(OurButton,

method<void, add<Action<Listener>�>,

[Action<Listener>]>).

feature1(OurButton,

method<void, remove<Action<Listener>�>,

[Action<Listener>]>).

For the purpose of our experiments, we simply wrote down the facts describ-

ing the beans' methods but we could also obtain them using Java introspec-

tion. We could write a program that inspects a bean and generates the set

of facts that describe it. We only considered the plugs that can be deduced

using the programming conventions de�ned in Java Beans and not the ones

described using the BeanInfo. The BeanInfo is a way of providing explicitly

information about the plugs, instead of letting them to be deduced from the

programming conventions. To extend our representation to handle BeanInfo,

we just have to map the description of the plugs in the bean info into facts

that asses the existence of the plugs, and these plugs would coexist with the

plugs deduced using the rules.

4.3.2 Describing a container

The description of a container must de�ne how to create a composite appli-

cation, what components it can host, and how to add parts into it. Addition-

ally, it may provide support for the connections between the parts, such as

57

CHAPTER 4. REPRESENTING COMPONENT MODELS FOR

GENERIC BUILDER TOOLS.

collecting and hosting initialization code for the connections. The descrip-

tion of the container uses the description of the components, the protocol to

add parts and the protocols for connecting components.

In the case of beans, the description of the container speci�es the creation

of a class that implements the composite application. This class contains

pieces of code handling the creation of the parts and the initialization of the

connections. These pieces of code are described by the part and connection

protocols. The container is responsible for collecting and hosting this pieces

of code.

Let's consider an example of a container for beans. It creates an ap-

plet class for the composite application. The following facts are part of the

description of the container:

class_M(?comp) :- composite(beancontainer,?comp).

public_M(?comp):- composite(beancontainer,?comp).

extends_M(?comp, MyAbstractApplet):-

composite(beancontainer,?comp).

MyAbstractApplet is a support class we de�ned that provides basic func-

tionality for all the generated applets.

The generated applet has a method that initializes all the parts. This

method host the code for initializing each part. This code is generated by

the description of the creation of parts (section 4.3.3) from the declaration

of the parts in the composite application.

method_M(?comp, void, initContents, [], {

public void initContents() throws

java.lang.ClassNotFoundException, java.io.IOException {

ClassLoader myLoader =

this.getClass().getClassLoader();

?initcode

addConnections();

?configcode

}}):-

composite(beancontainer,?comp),

FINDALL(initialization(?comp,?part,?impl),?impl,?initcode),

FINDALL(configuration(?comp,?part,?impl),?impl,?configcode).

The �rst statement in the generated method obtains the class loader, which is

used in the instantiation of the beans. The variable ?initcode will be bound

58

4.3. DESCRIBING A COMPONENT MODEL

to the initialization code of all the parts, which are collected by the FINDALL

predicate in the condition of the rule. The variable ?configcode will be

bound to the code that con�gures the parts, and is collected in the same

way as the initialization code. The statement addConnections(); method

invokes the method that initializes the connections between the beans. The

method for initializing the connections is generated by the following rule:

method_M(?comp, void, addConnections, [], {

public void addConnections() {

?code;}

}):-

composite(beancontainer,?comp),

FINDALL(connection(?comp, ?impl),?impl,?code).

The above method hosts the code for initializing the connections. This code

is generated by the connection protocols from the declaration of the connec-

tions (section 4.3.5)

4.3.3 Describing parts

A part is a particular use of a component in a composite application. The

description of a part speci�es the component and the container that hosts

it.

In Java Beans, creating a part implies de�ning a variable in the container

and code for initializing this variable.

var_M(?comp,?bean,?part,{}):-

part(?comp,?bean,?part).

initialization(?comp,?part,{

?part=(?bean)Beans.instantiate(myLoader,

"?bean");

}):-

part(?comp,?bean,?part).

The initialization code, that creates an instance of the bean, will be collected

and hosted by the container, as described in the previous section.

4.3.4 Describing con�guration

Con�guration is achieved by setting some parameters in the components.

Beans are con�gured by providing values for its writable properties. A valid

59

CHAPTER 4. REPRESENTING COMPONENT MODELS FOR

GENERIC BUILDER TOOLS.

con�guration for a part created from a bean provides a value for a property

for which a setter method is de�ned. This is expressed by the following rule:

validconfiguration(?comp,?part,?prop,?value):-

part(?comp,?bean,?part),

setter(?bean,?prop,?meth).

To realize the con�guration of the part, some initialization code is generated.

It invokes the setter method with the provided value:

configuration(?comp,?part, {

?part.?setterName(?value);}):-

part(?comp,?bean,?part),

configure(?comp,?part,?prop,?value),

setter(?composite,?part,?prop,

method<?setterType,?setterName,[?propType]>).

4.3.5 Describing connection protocols

The representation of a protocol describes which are the valid connections

between the parts and how to build them. A valid connection links a plug

in one part of the composite application to a compatible plug in another

part of the application. To determine whether a connection is valid we need

to determine the presence of valid plugs in the parts and that those plugs

are compatible. The plugs are described by the components from which

the parts are created. A plug can be described directly or indirectly. An

indirect description means that the protocol deduces the plugs from some

information in the description of the component.

We will discuss the representation of the two protocols corresponding to

the connections provided by the BeanBox, described in section 2.4.3: syn-

chronize and events. The synchronize protocol links a property to another so

that a change in the value of the �rst one will be propagated to a change in

the value of the second one. The events protocol links an event to a method

so that the occurrence of the event produces the invocation of the method.

Synchronize

The synchronize protocol links two properties: a source and a target proper-

ty. The changes of the value in the source property will be propagated to

the second property. The presence of a property plug is indirectly described

by some public methods in the bean.

60

4.3. DESCRIBING A COMPONENT MODEL

A valid connection links a valid source property to a valid target property

whose types are compatible (the type of the source is a subtype of the target):

validconnection(synchronize,?composite,

?source,?sprop,

?target,?tprop):-

validSource(synchronize,?composite,?source,?sprop),

validTarget(synchronize,?composite,?target,?tprop),

compatible(?composite,?source,?sprop,?target,?tprop).

To determine that a part has a valid source or valid target plug, we consider

the component from which it has been created.

To be a valid source of a synchronize connection, a property must be

readable: it must have a getter method. It must be bound: it will raise

an event PropertyChangeEvent when its value changes, and it must have

methods to register and unregister listeners of the PropertyChangeEvent.

The following rule states what is a valid source:

validSource(synchronize,?comp, property<?name>):-

getter(?comp,property<?name>,

method<?proptype,?getname,[]>),

bound(?comp,?name),

feature(?comp,

method<void,add<PropertyChange<Listener>�>,

[PropertyChange<Listener>]>),

feature(?comp,

method<void,remove<PropertyChange<Listener>�>,

[PropertyChange<Listener>]>).

The conventions to detect a bound property are speci�ed in the Java -

Beans Speci�cation [5]. These conventions allow to determine that a bean

has a bound property form the presence of methods to register and un-

register PropertyChaneListeners, but it is not possible to determine which

is the bound property. For this reason, we explicitly state which are the

bound properties in the description of the bean. Therefore, the condition

bound(?comp,?name) will be directly solved by the fact in the description

of the bean. So will the conditions about the presence of registration and

unregistration methods. The presence of the getter method will be deduced

using the following rule:

getter(?comp,property<?name>,

61

CHAPTER 4. REPRESENTING COMPONENT MODELS FOR

GENERIC BUILDER TOOLS.

method<?proptype,get<?name>,[]>):-

feature(?comp,method<?proptype,get<?name>,[]>).

A valid target of a synchronize connection is a writable property, that is, a

property for which a setter method is de�ned:

validTarget(synchronize,?comp,property<?name>):-

setter(?comp, property<?name>,

method<void, ?setname, [?proptype]>).

setter(?comp, property<?name>,

method<void,set<?name>,[?proptype]>):-

feature(?comp,method<void,set<?name>,[?proptype]>).

Note that in order to determine that a plug in a part is a valid source or

target for a connection we considered the corresponding components. This

properties will be transfered or inherited into the parts created from the

component using the following rule

?property(?protocol,?comp,?part,?prop) :-

inheritfromcomponent(?property),

part(?comp,?type,?part),

?property(?protocol,?type,?prop).

We state that validSource and validTarget will be transfered to the parts

by the facts

inheritfromcomponent(validSource).

inheritfromcomponent(validTarget).

Building the connection. To realize a connection through the synchro-

nize protocol, we generate a class for an object that mediates the synchroniza-

tion and some code for initializing the connection that creates this mediating

object and registers it as a listener to the source object.

The class implements the PropertyChangeListener interface. The method

that is called for notifying a PropertyChange event sets the value of the tar-

get property to the value of the source property when the source property

changes. As the same event is emitted for the change of all the properties,

this method has to determine whether the property that was modi�ed is the

one that is the source of the connection.

62

4.3. DESCRIBING A COMPONENT MODEL

method_M(synchronize<?composite,?source,

property<?sname>,?target,property<?tname>�>,

void,propertyChange,[PropertyChanged<Event>], {

public void propertyChange (PropertyChange<Event> e){

String propertyName = e.getPropertyName();

if (propertyName == "?dsname"){

target.?setterName((?propType)e.getNewValue());}

}

}):-

connect(synchronize,?composite,

?source,?property<?sname>,

?target,?property<?tname>),

setter(?composite,?target,property<?tname>,

method<?setterType,?setterName,[?propType]>),

CAP(?dsname,?sname).

The CAP predicate associates an identi�er starting with a down-case to the

same identi�er, but where the �rst letter is the corresponding uppercase. It

is necessary to appropriately handling the naming conventions.

The code to initialize the connection creates an object for mediating the

synchronization and register it as a listener of property changes in the source

initializeconnection(?composite,

{?source.add<PropertyChange<Listener>�>(new

synchronize<?composite,?source,

?sprop,?target,?tprop>(?target));

}):-

connect(synchronize,?composite,

?source,?sprop,

?target,?tprop).

synchronize<?composite,?source,?sprop,?target,?tprop> is the class

of the mediating object, named after the connection for which it is generated.

Its constructor has a parameter that is the object whose property is to be

updated.

The code for initializing the connections will be collected by the container

and inserted as initialization code in the composite application, as explained

in section 4.3.2.

63

CHAPTER 4. REPRESENTING COMPONENT MODELS FOR

GENERIC BUILDER TOOLS.

Events

The events protocol links and event to a method, in such a way that the

method is invoked when the event is raised. A valid connection using the

events protocol links a valid event plug in a part to a valid event target

method in another part. This is expressed by the following rule:

validconnection(events, ?composite,

?source, event<?ev, ?action>,

?target, method<?name, ?args>):-

validEventSource(events, ?composite,

?source,event<?ev, ?action>),

validEventTarget(events, ?composite,

?target,method<?name, ?args>),

compatible(event<?name>, ?args).

As in the synchronize protocol, the plugs are described by the components.

An event source plug is described indirectly by the programming conven-

tions: the bean must have methods for registering and unregistering event

listeners, there is a class of event objects and the listener type must contain

a method for notifying the occurrence of the event. The following rule uses

this conventions to deduce what is a valid event source:

validEventSource(events, ?component, event<?name,?action>):-

registrationmethod(?component,event<?name,?action>,

?method<?R, ?regnam, [?ltype]>),

unregistrationmethod(?component,event<?name,?action>,

method<?R,?unregnam, [?ltype]>),

class(?name<Event>),

interface(?ltype),

subtype(?ltype, Listener),

CAP(?downname,?name),

feature(?ltype,

method<void,?downname<?action>,[?name<Event>]>).

A method is a valid target of an event connection if it has no parameters or

a single parameter that is an event object:

validEventTarget(events, ?component, method<?n, ?args>):-

64

4.4. SUMMARY

type(?component, ?ctype),

feature(?ctype, method<?R, ?n, ?args>),

validArgs(?args).

validArgs([]).

validArgs([?t]):-subtype(?t, Event).

To determine the validity of the connection, in addition to determining that

the plugs are valid, it is necessary to determine that they are compatible. In

this case, we need to determine that the arguments of a target method are

compatible with the event. It is so if they are empty or a sole argument that

is a subtype of the event.

compatible(event<?name>,[]).

compatible(event<?name>,[?t]):-subtype(?t, ?name<Event>).

Building the connection To build the connection we generate an adaptor

class and code for initializing the connection, much in the same way as we

did for the synchronize protocol. The adaptor class implements the listener

interface of the event we are connecting to. The method that is invoked for

the notifying the occurrence of the event, invokes the target message. The

initialization code creates an adaptor object and registers it as listener of the

event in the source.

4.4 Summary

This chapter showed how the knowledge used by a builder tool to create

applications out of components can be separated from the builder tool and

represented using a logic programming language.

We described how a builder tool interacts with a logic representation of

a component model to help the user to create an application out of com-

ponents. The logic representation of the component model consists in a set

of facts and rules store in a rule base. The tool guides the user in creating

the application by allowing to build only valid component assemblies, and

generates the code for the application.

The interface between the tool and the logic representation consists of

a set of queries the tool executes to determine what is a valid assembly, a

set of facts describing the composite application created by the user that are

added into the rule base, and a query that generates the application code.

65

CHAPTER 4. REPRESENTING COMPONENT MODELS FOR

GENERIC BUILDER TOOLS.

We described a proof-of-concept implementation of a builder tool. This

builder tool will be used to validate the approach by using it to assemble

applications in di�erent component models.

We discussed how to represent component models, components and ap-

plications as facts an rules to support the operation of the tool. The rep-

resentation of a component model is composed by several interacting parts

describing the di�erent elements in the component model: the container, the

parts and the protocols. We illustrated these representations by representing

Java Beans and an application built by assembling beans.

Using the representation of Java Beans and the prototype tool it is possi-

ble to build applications by composing beans. This shows that the proposed

representation e�ectively supports the operation of a builder tool. In the

next chapter we will discuss some experiments to validate that the tool is

generic and can be used with extended versions of the component model and

with a di�erent component model.

66

Chapter 5

Independence between the

component model and the

builder tool

This chapter discusses some experiments that show that the tool and the

component model are independent and we can change the component model

and continue to use the same tool.

The �rst experiment shows that the component model can evolve while

continuing to use the same tool. We do this by extending the Java Beans

component model with new protocols.

The second experiment shows that the tool can be used with a di�erent

component model. To do this we represent a new component model.

One of the protocols we add to Java Beans is a protocol for connecting

a required service (operation in another component) to a provided service.

The other is a two-way synchronization of properties: the change in any of

them updates the other one. The two-way synchronization protocol is built

upon the basic synchronize protocol described in the previous section.

The other model of components we represent is based on a pedagogical

example about simulation of water conduits. This is not a component model

in the sense of Java Beans of the other commercial models, but it is a kind

of framework which o�ers a number of reusable software pieces to build

applications with, and in this sense is very similar to a component model.

We identify in this framework the main elements that (according to our

de�nition) make up a component model and represent them as facts and

rules, conforming to the interface described in the previous chapter.

In both cases, the extension of Java Beans and the new model, the proto-

67

CHAPTER 5. INDEPENDENCE BETWEEN THE COMPONENT

MODEL AND THE BUILDER TOOL

type tool described in the previous chapter can be used without any change,

which show that it is generic and independent from the component model.

5.1 Extending the protocols for beans

5.1.1 Outcall

Using the regular connection mechanisms in Java Beans it is not possible

for a bean to specify that it requires a service from other bean. It imposes

a push communication model, where information is pushed as it comes up,

rather than a pull model where information is pulled as needed [6]. It is

not possible to make a call and get a return value when needed. The reason

for this is providing decoupling, allowing for late connection of components.

The outcall protocol presented in this section adds the feature of a pull

communication model, while keeping decoupling and late connection.

The outcall protocol describes the connection of a required service to a

provided service. A required service means that the bean invokes an oper-

ation. A provided service is an implementation of the operation. It is not

necessary that the required and provided service have the same name.

A connection of a required to a provided service is described as

connect(outcall,?compositename,

?client,outcall<?oname,?oargs>,

?provider,method<?pname,?pargs>).

Following the style of Java Beans, a required serviced is described using

programming conventions. A provided service is just any public method.

The required service is described by an interface named servicetypeSer-

vice that contains the method to be invoked. This interface extends the

interface Service. Service is an empty interface we de�ne for the purpose of

identifying service descriptions, much in the same way listener interface is

identi�ed because it extends the empty interface Listener.

A bean that requires that service will provide a method setservicetype Service,

this method allows to deduce that the bean requires the service and also to

register the provider of the service when building the connection.

The convention de�ned for outcalls allows to code a bean that require a

certain service in plain Java: it just refers to the required service through

a variable whose type is the service interface. The setter method for the

service must bound this variable to the provider of the service.

The following rule determines whether a bean has an outcall plug:

68

5.1. EXTENDING THE PROTOCOLS FOR BEANS

validClient(?component,outcall<?oname,?oargs>):-

servicesetmethod(?component,outcall<?oname,?oargs>,

?meth).

servicesetmethod(?component,outcall<?oname,?oargs>,

method<void,

set<�<?oname,?oargs>,<Service>�>,

[?servicetype<Service>]>):-

feature(?component,

method<void,set<�<?oname,?oargs>,<Service>�>,

[?servicetype<Service>]>),

interface(?servicetype<Service>),

implements(?servicetype<Service>),

feature(?servicetype<Service>,

method<?R,?oname,?oargs>).

A valid connection links a required service, described by the above conven-

tions, to a provided method which has a compatible signature:

validconnection(outcall,?composite,

?client,?o,

?provider,?m):-

validClient(?composite,?client,?o),

compatibleoutcall(?composite,?client,?o,?provider,?m),

validProvider(?composite,?provider,?m).

validProvider(?component,method<?name,?args>):-

feature(?component,method<?T,?name,?args>).

The signature of a method is compatible with an outcall if it is correct

according with Java's type system to invoke the provided method instead

of the required one. This is so if the return type of the provided method

is a subtype of the required one, and each of the arguments of the required

method is a subtype of the corresponding argument of the provided service.

To build the connection the protocol generates an adaptor class that

implements the service interface. The implementation of the method cor-

responding to the required service invokes the provided service method on

the service provider. The protocol also generates code for initializing the

connection: it creates an adaptor object and registers it to the client of the

service:

69

CHAPTER 5. INDEPENDENCE BETWEEN THE COMPONENT

MODEL AND THE BUILDER TOOL

connection(?comp,

{?client.?setname(new

Adaptor<?comp,?client,?oname,?provider,?pname>(?provider));}):-

connect(outcall,?comp,

?client,outcall<?oname,?oargs>,

?provider,method<?pname,?pargs>),

servicesetmethod(?comp,?client,

outcall<?oname,?oargs>,

method<?t,?setname,?setargs>).

The code for initializing the connection will be collected by the container

in the same way as it happens for the events and synchronize protocols,

described in section 4.3.2.

5.1.2 Combined Protocols: two-way synchronize

The two-way synchronize protocol links two properties making that a change

of the value in any of them is re�ected in the other. The two-way synchro-

nize protocol is a combined protocol: a connection of two properties using

the two-way synchronize protocol is equivalent to two connections using the

synchronize protocol with the roles of the source and the target exchanged.

A connection using two-way synchronize is valid if both connections using

synchronize are valid. The declaration of a connection using two-way syn-

chronize generates the declaration of the two corresponding synchronize con-

nections.

The combination of protocols can be generalized, so that we describe how

the combined protocol combines other protocols and this allows to deduce

what are the valid connections and how to build them on top of other, more

basic connections.

This manipulation of protocols shows the expressive power provided by

logic meta programming for the description of component models. The des-

criptions of the connections are facts, so we can write rules that de�ne them

indirectly. The valid connections are described by rules, and so we can write

rules that allow to deduce that a connection is valid from the validity of

other connections.

The description of the combined protocol speci�es the list of more basic

protocols that it combines, and the correspondence between the plugs in the

combined protocol and the plugs in the basic protocols. The description of

the two-way synchronize as a combined protocol is as follows:

combinedprotocol(

70

5.2. CONDUITS COMPONENT MODEL

twowaysynchronize<?comp,?part1,?prop1,?part2,?prop2>,

[synchronize<?comp,?part1,?prop1,?part2,?prop2>,

synchronize<?comp,?part2,?prop2,?part1,?prop1>]).

A connection using a combined protocol implies a connection for each of the

subprotocols that constitute the combined protocol:

connect(?subprot,?comp,?p1,?pl1,?p2,?pl2) :-

connect(?cp,?comp,?cp1,?cpl1,?cp2,?cpl2),

combinedprotocol(<?cp,?comp,?cp1,?cpl1,?cp2,?cpl2>,?subprots),

element(<?subprot,?comp,?p1,?pl1,?p2,?pl2>,?subprots).

A connection using a combined protocol is valid if each of the connections

implied by the combined protocol is valid:

validconnection(?prot,?composite,

?part1,?plug1,

?part2,?plug2):-

combinedprotocol(?prot<?composite,

?part1,?plug1,

?part2,?plug2>,

?protlist),

andlist<validconnection>(?protlist).

andlist<?predicate>(?list) is true if ?predicate is true for all the ele-

ments in ?list.

5.1.3 Summary

In this section we extended Java Beans with new connection protocols. The

prototype builder tool can be used to build applications in this extended ver-

sion of the model thus showing that it allows the evolution of the component

model.

5.2 Conduits component model

Conduits is a mini framework for building water �ow simulations developed

by prof. Theo D'Hondt (Vrije Universiteit Brussel, PROG laboratory) that

is used for pedagogical purposes in several courses. It consists of a set of

classes representing di�erent kinds of water conduits, such as water sources,

pipes and joins. A simulation is build by assembling a set of instances of this

71

CHAPTER 5. INDEPENDENCE BETWEEN THE COMPONENT

MODEL AND THE BUILDER TOOL

classes. Although this framework is not a �real� component model like Java

Beans,it provides a set of reusable software pieces that can be put together

to build applications. In this sense it is similar to a component model. As

we will explain in the rest of the chapter, it is possible to identify in this

framework the features we identi�ed as fundamental in a component model.

We will represent it following the structure for representing component mod-

els introduced in chapter 4 and use the prototype tool to build applications

in this framework.

The classes in this framework form a hierarchy shown in �gure 5.1. A

composite application puts together a set of instances of the concrete classes

in the hierarchy. Figure 5.2 shows a graphical view of an example com-

posite application using conduits. These classes represent di�erent kinds of

Conduit

Sink

Conduit
Drainable

Pipe Source Join

Figure 5.1: Conduits hierarchy

conduits:

Source: a source conduit produces a water �ow.

Pipe: a pipe conduit has an incoming �ow and produces an outgoing �ow.

Join: a join conduit has two incoming �ows and produces and outgoing �ow.

Sink: a sink conduit has an incoming �ow and �consumes� the water.

72

5.2. CONDUITS COMPONENT MODEL

Join 1

Sink 1

Pipe 1

Source 2

Source 1

Figure 5.2: A composite application

73

CHAPTER 5. INDEPENDENCE BETWEEN THE COMPONENT

MODEL AND THE BUILDER TOOL

A conduit with an outgoing �ow can be connected to a conduit that expects

and incoming �ow. The behaviour of having an outgoing �ow is factorized

in the class DrainableConduit. This class implement the method drain, that

is the method invoked to simulate the �ow from one conduit to another.

An incoming �ow in a conduit is identi�ed by a parameter of type Drain-

ableConduit in the constructor. The invocation of the constructor providing

an instance of DrainableConduit as argument establishes the connection be-

tween the outgoing �ow in the argument and an incoming �ow in the created

conduit instance.

The constructors of the conduits also have other parameters for con�g-

uration: the name and the capacity. The Source's constructor has an extra

parameter, the �pro�le� which describes the �ow of water the source instance

will produce during the execution of the simulation, by specifying the amount

of water to be produced in each period of time.

Figure 5.3 shows the Java code of the composite application from �gure

5.2.

class Simulation{

static public void main(String argv[]){

final int profileSRC_1[][]={{10,1},{20,3},{40,1}};

Source SRC_1 = new Source("Source 1",5,profileSRC_1);

final int profileSRC_2[][]= {{10,2},{20,4}};

Source SRC_2 = new Source("Source 2",4,profileSRC_2);

Pipe PIP_1 = new Pipe("Pipe 1",4,SRC_1);

Join JOI_1 = new Join("Join 1",4,SRC_2,PIP_1);

Sink SNK_1 = new Sink("Sink 1",4,JOI_1);

}

}

Figure 5.3: An example of the code of a simulation

In this framework we can identify the main elements in a component

model. The components are the concrete classes representing the di�erent

kinds of conduits. The plugs are the incoming and outgoing water �ows.

As in Java Beans, the plugs are described by programming conventions: a

subclass of DrainableConduit has an outgoing �ow plug; a parameter of type

DrainableConduit in the constructor of a conduit means an incoming �ow

plug.

A connection links an outgoing to an incoming �ow. The connection is

realized by providing the conduit with the outgoing �ow as an argument to

74

5.2. CONDUITS COMPONENT MODEL

the constructor that creates the conduit with the incoming �ow.

The components are con�gured with a name and a capacity. A source

component is also con�gured with the description of the water �ow it pro-

duces. The con�guration is done by providing arguments to the constructor.

In the rest of the chapter we will explain the logic representation of the

conduits component model.

Figure 5.4 shows the description in the logic notation of the example

application.

5.2.1 Conduit components

As we explained in the previous chapter, the description of a component

must specify directly or indirectly how to deploy, con�gure and connect the

component. In the case of beans, this description was indirect and deduced

using knowledge from the component model. In conduits, the description of

each component speci�es how to deploy the component, how to con�gure it

and how to build the connections. As we explained earlier in this chapter,

the creation of an instance of a conduit also con�gures it an establishes the

connection. So, the creation of the instance of the component depends on

the con�guration and the connections.

The following rule speci�es the deployment of the Pipe component, and

how it depends on the con�guration and connection. At the same time it

creates the part, con�gures it and builds the connections for the incoming

�ow:

initialization(?comp,?p,

{Pipe ?p = new Pipe(?n,?c,?s1);}):-

part(?comp,Pipe,?p),

configure(?comp,?p,name,?n),

configure(?comp,?p,capacity,?c),

connect(flow,?comp,

?s1,outconduit,

?p,inconduit<DrainableConduit<1>�>).

Note that as the con�guration and connections are required to instantiate

the component, it will not be instantiated if they are not provided.

Although the component describes how to build the connections, what is

a valid connection is standard for all the components, and it is described by

the flow protocol. The plugs are indirectly described by some conventions: a

component has an outconduit plug if it is a subtype of the DrainableConduit

75

CHAPTER 5. INDEPENDENCE BETWEEN THE COMPONENT

MODEL AND THE BUILDER TOOL

composite(conduitcontainer, Simulation).

part(Simulation, Source, SRC_1).

configure(Simulation, SRC_1, name, {"Source 1"}).

configure(Simulation, SRC_1, capacity, {5}).

configure(Simulation, SRC_1,

profile, {{{10,1},{20,3},{40,1}}}).

part(Simulation, Pipe, PIP_1).

configure(Simulation, PIP_1, name, {"Pipe 1"}).

configure(Simulation, PIP_1, capacity, 4).

part(Simulation, Source, SRC_2).

configure(Simulation, SRC_2, name, {"Source 2"}).

configure(Simulation, SRC_2, capacity, {4}).

configure(Simulation, SRC_2,

profile, {{{10,2},{20,4}}}).

part(Simulation, Join, JOI_1).

configure(Simulation, JOI_1, name, {"Join 1"}).

configure(Simulation, JOI_1, capacity, {4}).

part(Simulation, Sink, SNK_1).

configure(Simulation, SNK_1, name, {"Sink 1"}).

configure(Simulation, SNK_1, capacity, {4}).

connect(inconduit,Simulation,SRC_1,

outconduit,PIP_1,

inconduit<DrainableConduit<1>�>).

connect(inconduit,Simulation,

SRC_2,outconduit,JOI_1,

inconduit<DrainableConduit<1>�>).

connect(inconduit,Simulation,

PIP_1,outconduit,JOI_1,

inconduit<DrainableConduit<2>�>).

connect(inconduit,Simulation,

JOI_1,outconduit,

SNK_1,inconduit<DrainableConduit<1>�>).

Figure 5.4: A composite conduits application

76

5.2. CONDUITS COMPONENT MODEL

class and it has an inconduit plug if its constructor has a parameter of type

DrainableConduit. So the information about the class and the constructor

allow the protocol to deduce the plugs. This information is describe by the

following facts in the representation of the Pipe:

class(Pipe).

extends_M(Pipe,DrainableConduit).

feature1(Pipe,constructor<[String,int,DrainableConduit]>).

5.2.2 The �ow protocol

The description of the �ow protocol speci�es what are the valid connections.

As each component determines how to build the connections, the protocol

does not determine how to build the connections.

A valid �ow connection links an outconduit plug to an inconduit plug.

In the beans' protocols the validity of connection only depended on the

compatibility of the plugs. In conduits, the validity of a �ow connection

depends not only on plug compatibility but also on the existing connections:

it is not possible to connect an outconduit or an inconduit plug more than

once. Another restriction to connections through the �ow protocol is that a

conduit cannot be connected to itself.

validconnection(inconduit,?comp,

?s,outconduit,?t,inconduit<?n>):-

plug(?comp,?t,inconduit<?n>),

plug(?comp,?s, outconduit),

NOT(connect(inconduit,?comp,

?s,outconduit,?,inconduit<?>)),

NOT(connect(inconduit,?comp,

?,outconduit,?t,inconduit<?n>)),

NOT(equal(?s,?t)).

The variable ? is a variable in whose value we are not interested. Each

occurrence of ? stands for a new variable.

As mentioned before, the plugs are deduced from the description of the

component:

plug(?scomponent,outconduit):-

subtype(?scomponent,DrainableConduit).

plug(?tcomponent,inconduit<?n>):-

feature(?tcomponent,constructor<?args>),

77

CHAPTER 5. INDEPENDENCE BETWEEN THE COMPONENT

MODEL AND THE BUILDER TOOL

filter<equal<DrainableConduit>�>(?args,?inconduits),

GenNames(?inconduits,?innames),

element(?n,?innames).

The previous rule deduces the presence of an inconduit plug from the argu-

ment of type DrainableConduit in the constructor method. It also assigns a

name to the plug. This names are generated by the predicate GenNames,and

consist in the name of the type and a number that serves to distinguish the

plugs in the case there is more that one.

5.2.3 Conduit Container

The description of a container provides how to create a composite applica-

tion, which are the valid parts and how to add them to the container. In the

end the conduit container has to generate a class like the one that is showed

in �gure 5.4.

Parts of a conduit container are created from subclasses of Conduit:

validpart(?comp,?conduit,?name):-

composite(conduitcontainer,?comp),

subtype(?conduit,Conduit).

The conduit container creates a class for the composite application. This

class has a main method that hosts the initialization code for the parts of

the application. Including the code for initializing the part in this main

method establishes the link between the part and the container.

There is a dependency between the initialization code of the di�erent

parts. Recall that to establish a connection between an incoming and an

outgoing �ow, the conduit instance which as the outgoing �ow plug has to be

passed as an argument to the instantiation of the conduit with the incoming

�ow. For this reason, the conduit instance with the outgoing �ow has to be

created before the other one. So, the pieces of initialization code must be

sorted according to these dependencies. It is the container who provides for

this global restriction. The following rule creates the main method in the

composite application class, by collecting and sorting the code for initializing

all the parts:

method_M(?comp, void, main,[String],{

static public void main(String argv[]){

?firstsortedcode

}}):-

78

5.3. SUMMARY

FINDALL(initialization(?comp,?part,?impl),?impl,?code),

FIRST(sort<mustprecede>(?code,?sortedcode)).

mustprecede(?i1,?i2):-

initialization(?c,?p1,?i1),

initialization(?c,?p2,?i2),

connect(inconduit,?c,

?p1,outconduit,

?p2,inconduit<?>).

Note that there may be many possible orderings of the initialization code.

As we only need one, we use the FIRST meta predicate that gives only the

�rst solution.

5.2.4 Describing parts

The description of the valid parts and the creation of the parts is done

directly by the container (valid part) and by the components (creation of

the part).

5.3 Summary

In this chapter we discussed two experiments that show that our represen-

tation makes the tool and the component model independent.

In the �rst experiment, we extend Java Beans with two new protocols.

One of the protocols allows to specify required services in a bean, and to

bind them to provided services. This protocol is de�ned from scratch follow-

ing the style of Java Beans of describing plugs by programming conventions.

The other protocol is a de�ned on top of the synchronize protocol. The con-

nection of two properties using this protocol is equivalent to two connections

using synchronize where the roles of source and target are interchanged. The

de�nition of this second protocol shows how we can manipulate protocols

themselves to build more complex protocols, and how logic meta program-

ming provides a powerfull means for this manipulation. The extended version

of Java Beans can be manipulated using the prototype tool described in the

previous section without any modi�cations, thus showing that a component

model can evolve independently of the builder tool.

The second experiment de�nes a completely new component model. This

component model is based on a pedagogical framework for building water-

�ow simulations. This is not a component model like Java Beans, but pro-

79

CHAPTER 5. INDEPENDENCE BETWEEN THE COMPONENT

MODEL AND THE BUILDER TOOL

vides a framework for building domain speci�c applications by putting to-

gether a set of components, and in this sense it is similar to a component

model. We identi�ed the mechanisms characteristic of a component model in

this framework and represented them following the structure for describing

component models presented in section 4.3. This shows that this structure

can be used to describe models other than Java Beans. The prototype tool

can be used to assemble applications in this new component model, showing

that the tool is independent of the underlying component model.

80

Chapter 6

Future Work

This chapter describes lines for further research coming up from this thesis.

Some of the lines consist in overcoming the limitations of this work and

others on further applying the approach presented in this thesis.

Conceptual Framework

The main features of component models we identi�ed in this work provide

a �rst step towards a characterization of component models. As compo-

nent models are very diverse, a deeper study is needed to achieve a general

foundation for component models.

One of the elements that di�ers the most, and which needs to be further

investigated what is a part and how it is created from a component needs

to be studied in more detail. All the analyzed models have a mechanism

of deploying or linking a component into a composite application. This

mechanisms vary from declaring a variable and putting some initialization

code in a container class, like in Java Beans, to create a set of auxiliary

classes and registering to a naming service as en EJB.

Representation of component models

This thesis focused mainly in the protocols for connecting components. The

treatment of containers, creation of parts and con�guration is limited. A

continuation of this work should look more closely to this other mechanisms.

About the container and the creation of parts, we conjecture that a container

can be seen as a special kind of component and the linking of a part to a

container as a kind of connection protocol.

81

CHAPTER 6. FUTURE WORK

In the connection protocols represented in this thesis the information

used to determine the validity of a connection is limited to information like

signatures and programming conventions. An extension of this work can

take into account information about the behaviour of the components, like

the order in which messages are to be exchanged.

In this work we have identi�ed a generic structure in the representation

of component models. This structure parallels the elements we identi�ed as

fundamental in a component model. The two representation of component

models we presented follow this structure. However, each representations

were built independently and no facts or rules are shared between them. The

only share the underlying organization. A continuation of this work should

extract this common structure or architecture and formalize it in such a way

that it can be reused or specialized when building a new component model

representations.

Representation of other component models

Another possible continuation of this work is to represent other industrial

component models.

The experiment about the representation of the conduits componen-

t model (chapter 5) points out an interesting line to investigate. In this

experiment, we started from an existing framework which already had some

kind of components and composition mechanisms, although it did not be-

long to a �standard� component model. We identi�ed and made explicit

the composition mechanisms already existing in the framework. A research

line suggested by this experiment is to capture and represent the compo-

nent model of existing application families. This provides the advantage of

migrating the application families into components without having to redo

it according to an existing component model. The conduits examples is a

simple and well structured case, research in this line should consider more

complex applications and investigate if it is feasible to extract the component

model and under which conditions.

Validity rules

The current representation supports constraining the assemblies that can be

built so that only well-formed assemblies are made. It does not provide a

means to ensure that all the connections and con�gurations needed by a

component are made. In this case, what happens is that the code is not

generated. An improvement for this would be reporting the requirements

82

that are not ful�lled.

In this work to determine the if an assembly is well-formed we consider

just the validity of each part and the point-to-point connections. An exten-

sion would consider validity rules that take into account the overall structure

of the composite application. For example in the conduits model we may

want to de�ne a restriction stating that in the composite application the

conduits are not connected forming a cycle.

Component granularity

In the component models we represented (and also in the other commercial

models we investigated), a component corresponds to a class or to a set

of classes with a class acting as a facade. In other words, a component

corresponds to an existing language construct. An interesting line to study

is about components of a di�erent granularity, such as components that are

more �ne grained than a class (for example mixins) or cross-cutting. A work

that considers components of a granularity di�erent to a class is the work on

Role-Based Programming[15] , where components are roles implemented as

mixins. It would be interesting to investigate the representation of this model

using our approach. Logic meta programming provides a good support for

expressing entities that do not directly correspond to a language construct

such as a class (it has already been applied to aspect-oriented programming

[18]).

Another extension concerning the granularity of components is to study

hierarchical composition, that is, the assembly of components to build more

complex components.

Builder tools

The prototype tool presented in this thesis is just a proof-of-concept im-

plementation, with very limited functionality. Another line of continuation

would be developing tools with better facilities, as for example a visual user

interface.

Summary and conclusions

In this section we presented some possible lines of continuation of this work.

The treatment of containers and parts in this work being quite primitive, a

continuation of this work should look more closely at these features. The

representation of protocols could be improved to consider more information

83

CHAPTER 6. FUTURE WORK

to determine the validity of connections. Further applications of the ap-

proach of this thesis that could be investigated are the representation of

other existing component models, the study of component models with dif-

ferent granularity for components, and the extraction of component models

from existing application families.

The convergence of all this lines would in the end lead to a powerful ap-

plication assembling enviroment. This enviroment would integrate standard,

customized and domain-speci�c component models.

84

Chapter 7

Conclusions

Currently, the knowledge about component models is embedded into the

builder tools used to assemble applications using the model. The purpose

of this thesis was to investigate if this knowledge can be extracted from the

builder tool and represented separately in such a way that it is possible to

build generic builder tools capable of working with di�erent models or varia-

tions of the models. The approach taken was to use logic meta programming,

using facts and rules to represent and manipulate the knowledge about the

component models.

As a �rst step towards the representation of the component models, we

studied literature in the area and several existing industrial models to iden-

tify what elements need to be represented. From this study we extracted a

set of features that we consider fundamental and set up a conceptual frame-

work. We analyzed existing industrial models according to this conceptual

framework. This analysis showed that the chosen features characterize the

di�erent models.

To provide a representation that is useful for a builder tool, we identi�ed

what is the information the tool needs from the representation of the com-

ponent model to support its operation. As the representation is done using

a logic language, we formalized this requirements an an interface consisting

of a set of queries and facts.

To show that the representation is feasible, we represented two di�erent

component models: Java Beans and the conduits model. The representa-

tions are structured according to the elements in the conceptual framework

and conform to the interface required by the tool. We choose Java Beans as

a case study because it is an industrial, �real case� model, which is accessible

and simple enough to be covered as an experiment. We extended Java Beans

85

CHAPTER 7. CONCLUSIONS

with new protocols, what shows that the representation proposed supports

the evolution of the component models. The other model we represented

is not a �real� model, but a framework which allows to assemble applica-

tions in a speci�c domain. In this framework we could identify the main

elements from the conceptual framework and represent them according to

the interface required by the tool. The two models are di�erent, as one is

an industrial, general purpose model and the other is an experimental, do-

main speci�c model. The composition mechanisms in them also di�er: in

Java Beans the component instances are created and afterwards con�gured

and connected by method invocations, while in Conduits the component in-

stances are con�gured and connected when they are created, by providing

arguments to the constructor. Both models can be represented with the

same interface and the same underlying structure based on the fundamental

elements. This provides evidence supporting the genericity of the kind of

representation proposed.

To show that the representation proposed supports the operation of a

generic builder tool, we implemented a prototype tool that interacts with

the logic representation of a component model to assist the user in assem-

bling applications in the model. The prototype tool can be used to build

applications in Java Beans, in its extended version and in the conduits mod-

el without any change. This provides evidence supporting the independence

between the tool and the component model: in the �rst experiment the com-

ponent model evolved and we continue using the same tool, in the second

experiment we provided a completely new component model and we can still

use the same tool.

Summarizing, in this thesis we wanted to show that the knowledge about

the component model can be separated from the builder tool, allowing to de-

velop generic builder tools. As a �rst step, we identi�ed what are the main

elements in a component model that need to be represented and what infor-

mation must be provided by the representation to support the operation of

a builder tool. As a second step we showed that it is possible to represent

component models satisfying the requirements from step 1, by the represent-

ing two di�erent component models and a variation of one of them. As a last

step we showed that the representation proposed allows to develop generic

builder tools by implementing a prototype tool capable of operating with the

di�erent models represented in step 2.

As a �nal conclusion we can say that the knowledge about the component

model can be separated from the tool, allowing to develop generic builder

tools and that a logic programming language provides a good formalism for

representing this knowledge.

86

Bibliography

[1] X. Pintado. Gluons and the Cooperation between Software Components.

In [3].

[2] O.Nierstrasz, D.Tsichritzis, V. de Mey and M.Stadelmann. Object +

Scripts = Applications. In the Proceedings of Espirit 1991 Conference,

Kluwer, Dordrecht, 1991, pp.534-552

[3] O. Nierstrasz and D. Tsichritzis, eds. Object Oriented Software Compo-

sition. Prentice Hall 1995.

[4] V. de Mey. Visual Composition of Software applications. In [3]

[5] The JavaBeans API Speci�cation. http://java.sun.com/beans

[6] C. Szyperski. Component Software. ACM Press. 1997

[7] O. Nierstrasz and L.Dami. Component-Oriented Software Technology. In

[3]

[8] Sun Microsystems. Speci�cation of the Enterprise Java Beans 1.0 archi-

tecture.

[9] J-M. Geib, C. Gransart, P.Merle.. CORBA:des

concepts a la pratique, Les composants CORBA.

http://corbaweb.li�.fr/CORBA_des_concepts_a_la_pratique/

[10] R.Allen and D. Garlan. A Formal Basis for Architectural Connection.

http://www.cs.cmu.edu/afs/cs/project/able/www/able/. A revised ver-

sion of the paper with the same name that appeared in ACM Transactions

on Software Engineering and Methodology, July 1997.

[11] R.J. Allen, Ph.D. Thesis, Carnegie Mellon University, Technical Report

Number: CMU-CS-97-144. May 1997.

87

BIBLIOGRAPHY

[12] CORBA 2.0 Speci�cation. http://www.omg.org/corba.

[13] J.G Schneider, O. Nierstrasz. Scripting: Notes from the Tutorial Higher-

level Programming for Component-based Systems helded at ECOOP'99.

[14] K. De Volder. Type-Oriented Logic Meta Programming. PhD thesis,

Vrije Universiteit Brussel, Programming Technology Laboratory, June

1998.

[15] M.VanHilst and D.Notkin. Using Role Components to Implement

Collaboration-Based Designs. In the Proceedings of OOPSLA'96.

[16] Jini Architecture Speci�cation. http://www.sun.com/jini/specs/.

[17] Jini Architectural Overview. http://www.sun.com/whitepapers/.

[18] K. De Volder. Aspect Oriented Logic Meta Programming. In the Pro-

ceedings of Re�ection'99.

88

