
Vrije Universiteit Brussel - Belgium

Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes - France

2002

V
R

IJ
E

UNIVERSITEIT BRUSSE
L

S
C

IE
N

TIA VINCERE TENEBR
A

S

ECOLE DES MINES DE NANTES

A Binding-Time Analysis for petitCafé

A Thesis submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

(Thesis research conducted in the EMOOSE exchange)

By: Maŕıa Laura Ponisio

Promotor: Prof. Theo D’Hondt (Vrije Universiteit Brussel)

Co-Promotor: Jacques Noyé (Ecole des Mines de Nantes)

To my parents, Cristina y Jorge.

To my grandparents, Emilio, Cristina, Angélica y Héctor.

To Patricio.

Abstract

One of the major advantages of object-oriented languages is that they allow the easy
construction of general software components, but this is achieved at high cost in terms
of inefficiency.

We can attenuate this inefficiency by adapting programs automatically to the
environment where they are inserted. Partial evaluation is a program specialization
technique to achieve this task, transforming a program into a more specialized version
of it. Off-line partial evaluators perform as a first step a binding-time analysis, BTA,
that determines which parts of the program can be executed in advance and annotates
them accordingly. The BTA only works with the knowledge that some input values
are known and some are not. Then, the analysis propagates this knowledge through
the program and annotates each program construct, indicating whether the knowledge
of the input value will make it possible to compute this program construct or not.
Consequently, the design of a correct and precise BTA is of primary importance to
perform efficient off-line partial evaluation.

The mission of this work was to lay the foundations for that design. Thus, we have
modeled a simple BTA for a subset of Java that relies on constraint-based program
analysis.

We have achieved the mission by designing petitCafé, a subset of Java with specific
object-oriented features, modeling a simple BTA for petitCafé using constraints and
implementing a prototype of the analysis. Our model adds precision to the analysis
by considering objects as complex structures and it keeps the analysis simple by
classifying them into equivalence classes. It is simple and flexible. It provides the
basis for implementation, facilitates the reasoning that would be no longer possible
using a too complicated model and lays the foundations for the design of correct and
precise BTAs for Java.

Acknowledgements

Thanks to my parents Cristina Noval and Jorge Ponisio.

Thanks to Patricio Armesto for his support.

Thanks to my grandfather, Emilio H. Noval.

I would like to thank Jacques Noyé, my supervisor, for his interest in my work,

guidance, understanding, patience and constant support during this research. He was

always there with a smile.

Thanks to Prof. Theo D’Hondt for his teaching and for being the alma mater of

the EMOOSE.

I would like to thank Ulrik Pagh Schultz for reviewing this work, for his advice

and time.

Thanks to Gustavo Rossi for his advice, support, guidance and trust. Thanks to

the LIFIA. Thanks to Gabi Arevalo.

Special thanks to Luis Ernesto Cleve, Paul Asman, José Luis Villa, and Mart́ın

Mantovanni.

I am very fortunate that our paths have met.

Nantes, France Maŕıa Laura Ponisio

August 21, 2001

iii

Table of Contents

Acknowledgements iii

Table of Contents v

1 Introduction 1
1.1 Thesis . 1

2 Partial Evaluation 3
2.1 Introduction . 3
2.2 Partial Evaluation . 3

2.2.1 Generality versus Efficiency 3
2.2.2 Program Specialization . 4
2.2.3 Partial Evaluation . 4
2.2.4 Binding-Time Analysis . 8

2.3 Divisions . 9
2.3.1 Flow Sensitivity . 9
2.3.2 Use Sensitivity . 10
2.3.3 Polyvariant Analysis . 11

2.4 The Constraints . 12
2.4.1 Program Analysis . 12
2.4.2 The Constraint-Based Approach 12

2.5 Summary . 13

3 Binding-Time Analysis for Object-Oriented Languages 15
3.1 Introduction . 15
3.2 petitCafé . 16

3.2.1 Abstract Syntax . 17
3.2.2 Transformations . 17

3.3 Domains . 19
3.3.1 Concrete and Abstract Domains 20

v

3.4 Binding Time Domains . 23
3.4.1 The Basic Binding Times S and D 23
3.4.2 The Binding Time BT . 24

3.5 Binding Times . 25
3.5.1 The Binding Time of Primitive Values 25
3.5.2 The Binding Time of Objects 25
3.5.3 References . 31
3.5.4 Method Calls . 36
3.5.5 Example of Calculating Binding Times 37

3.6 Summary . 37

4 Constraints 39
4.1 BTA by Solving Constraints . 39

4.1.1 Requirements . 40
4.1.2 Constraints in petitCafé . 40

4.2 Constraint Generation . 41
4.2.1 Variable assignment . 41
4.2.2 Conditional . 46
4.2.3 While . 48
4.2.4 Method Invocation . 48
4.2.5 Class Hierarchy . 50

4.3 Summary . 51

5 Constraint Solving 53
5.1 The Equation Solver . 53

5.1.1 REQS Basics . 54
5.1.2 Turning Inequations into Equations 57
5.1.3 Constraints in REQS . 57
5.1.4 Example . 62

5.2 petitAnalyzer . 63
5.2.1 Showing the Annotated Program 64

5.3 An overview of BTA of petitCafé programs 65
5.4 Summary . 66

6 Conclusion 69
6.1 Motivation and Goal . 69
6.2 Summary . 69
6.3 Future Work . 70
6.4 Final Conclusion . 70

Bibliography 71

Chapter 1

Introduction

One of the major advantages of object-oriented languages is that they allow the easy
construction of general software components. But this generality usually implies
inefficiency. This can be solved in part using partial evaluation[14].

Partial evaluation is a technique that consists in transforming a program into a
more specialized version of it. This new version is more efficient in terms of memory
and performance and the transformation is done using part of the program’s input.

One of the strategies to perform partial evaluation is the off-line strategy that
consists of splitting the partial evaluation process into two phases: binding-time anal-
ysis that determines which parts of the program can be executed in advance and to
annotate them accordingly; and specialization which processes a program driven by
the binding time information and the concrete values.

Binding-time analysis determines at what time (basically specialization time or
execution time) the value of a variable can be computed, that is, the time when
the value can be bound to the variable[14][13]. Thus, the binding time information
of a program can be used for specialization as long as the input values match the
known/unknown pattern given for binding-time analysis[7].

Since binding-time analysis determines how an off-line partial evaluator will spe-
cialize a program, the accuracy of the binding-time information directly determines
the degree of specialization[11]. It becomes important, then, to have a model that
facilitates the reasoning to well understand and develop ways to build correct and
efficient binding-time analyses.

1.1 Thesis

This dissertation deals with binding-time analysis for a subset of the Java language
called petitCafé. The state of the art of binding-time analysis for object-oriented
languages is studied.

1

The focus is in binding-time analysis, classifying variables into static (if its values
can be determined at specialization time) and dynamic (if not static) of a program
given a known/unknown division of its inputs. The analysis performed in this work
is Constraint-Based[16].

The goal is to define a model on which it is easy to reason about binding-time
analysis in object-oriented languages, but also that allows precise annotations. In
order to do this, the model makes it possible to specify and reason about partially
static objects.

This work defines a model to express and produce using constraints the binding-
time of expressions of an object-oriented language. It includes the definition of con-
straints to produce the binding-time analysis in an abstract as well as in a practical
way, that is, explaining how to write them in a way understandable by an equa-
tion solver, in this case REQS, a program that solves a recursive equation system.
This work shows clearly and unambiguously how to produce the classification of the
binding time for every variable in the program.

The model presented here sets the basis for developing binding-time analyses that
certainly will improve the efficiency of real object-oriented specialized programs.

Based on this model, a prototype of a BTA for petitCafé has been implemented.
The work is organized as follows: chapter 2 presents program specialization,

binding-time analysis and the components related to them, introducing the back-
ground and discussing the basic properties. Chapter 3 presents the model, gives
specifications and explains the basics characteristics of the approach taken. Next,
chapter 4, presents the abstract constraints defining a system that indicates how to
annotate the program parts. Afterwards, chapter 5 shows how to solve the equa-
tion system, explains how to perform the binding-time analysis and gives examples.
Finally, chapter 6 summarizes the work and discusses further research.

2

Chapter 2

Partial Evaluation

2.1 Introduction

One of the major advantages of object-oriented languages is that their abstraction
mechanisms encourage building generic components that can be adapted to be used
in the context where they are deployed. General software components can be easily
constructed. But this generality is achieved at the expense of efficiency.

The next sections show the conflict between generality and efficiency and present
program specialization and more specifically program evaluation as one appropriate
technique to solve this problem.

Then binding-time analysis is introduced an its place in partial evaluation shown,
together with the definition of static and dynamic expressions.

Finally we present an insight of constraint-based analysis, on which relies the
analysis performed throughout this work.

2.2 Partial Evaluation

2.2.1 Generality versus Efficiency

Encapsulation and message passing allow objects to become autonomous entities that
interact between them to define a program. Once the object’s data and implementa-
tion is hidden, we can parameterize the object and use it in several programs.

A consequence of the generality is that several features of the object will not be
necessary in some of its contexts of use. Instead, at execution time, the object has to
adapt its behavior to the context where it is.

To do that the context gives the object data in the form of parameters. Then,

3

depending on the context of use, the object may have parts of its data and imple-
mentation that are fixed since the context will provide it always the same data. At
this point there can be computations and data of the object that depend only on that
fixed data, which makes them also fixed. This leads to a situation where superfluous
computations are performed over and over and thus to a loss of performance.

To summarize, object-oriented programming facilitates generality, but with the
disadvantage of inefficiency. This is in part because a highly parameterized program
can spend most of its time testing and interpreting parameters, and relatively little
in carrying out the computations it is intended to do[14].

2.2.2 Program Specialization

The efficiency versus modularity and generality conflict can be solved using program
specialization.

The general idea of program specialization is to automatically optimize a generic
program to a specific execution context described by program invariants.

Program specialization is then a technique for mapping generic programs into
specific implementations dedicated to a specific purpose [23].

2.2.3 Partial Evaluation

Given a program and its input data, an interpreter can execute the program producing
a final answer. Given a program and only part of this program’s input data, a program
specializer will attempt to execute the given program as far as possible yielding as a
result a residual program that will perform the rest of the computation when the rest
of the input data is supplied[14]. It is a source-to-source staging transformation.

The effect of running the original program on full input data is identical to that
of running the specialized version of the program on the dynamic input data part.

Partial evaluation is a special form of program specification where the invariants
are actual program input values (in a more general sense, this can be properties on
program input [7]).

A partial evaluator is given a subject program together with part of its input data,
in1. Its effect is to construct a new program p in1 which, when given p’s remaining
input in2, will yield the same result that p would have been produced given both
inputs. In Figure 2.1 there is a sketch of the process. Data values are in ovals and
programs are in boxes. The specialized program p in1 is first considered as data
and then considered as code, whence it is enclosed in both. In addition single arrows
are indicate program input data, and double arrows indicate outputs. The partial
evaluator has two inputs while p in1 has only one and p in1 is the output of the
partial evaluator[14].

4

Figure 2.1: A partial evaluator

Using partial evaluation, it is possible to write a highly parameterized but maybe
inefficient program, and use a partial evaluator, another program, to specialize it to
each interesting setting of parameters, automatically obtaining as many customized
versions as desired[14].

There are two approaches to achieve partial evaluation: off-line and on-line.1 In
off-line specialization, the partial evaluator has two stages. In the first one, binding-
time analysis, treated in the section 2.2.4, it analyzes the program to determine which
parts of it can be executed in advance and annotate them. The partial evaluator
classifies and annotates the expressions into the ones that can be computed at program
specialization time, which are called static and the others, the ones whose values are
unknown at specialization time, called dynamic. In the second stage of off-line partial
evaluation, specialization, the partial evaluator takes the analyzed and annotated
program and the known input and produces a specialized version for that input.

On-line and off-line partial evaluation

Above we have described partial evaluation as a process that has two stages.
The first one is to compute classification between expressions that are known at

specialization time, so-called static, from the ones whose values cannot be deter-
mined at specialization time, the so-called dynamic expressions. This classification is
based of the knowledge that some input will be known at specialization time or not.

1In this work we assume off-line partial evaluation. For explanations on on-line partial evaluation,
see [14].

5

This implies a certain division, a classification between static (known) and dynamic
(unknown) input variables. According to [14], an essential requirement in program
specialization is that the division is (uniformly) congruent, which means that ”any
variable that depends on a dynamic variable must itself be dynamic”. This is also
called congruence condition.[14]

Congruence. A division is congruent if the value of every static variable is deter-
mined by the values of other static variable (and thus ultimately by the available
input). Equivalently, a variable whose value depends on a dynamic variable must it-
self be dynamic. This means that the static parameter cannot be bound to a residual
expression during specialization.

An expression exclusively built from constants and static variables is also called
static, while it is called dynamic if it contains a dynamic variable. For example
suppose that the program to specialize contains the assignment

X := exp

If exp is dynamic then by the congruence condition X must also be dynamic.
So the partial evaluation is a process with two stages. First compute a division

B from the program and the initial divisionB, without making use of the concrete
values of the static input variables. Then the actual program specialization takes
place, making use of the static inputs to the extent determined by the division, not
by the concrete values computed during specialization. This approach is called off-line
partial evaluation, as opposed to on-line partial evaluation.

A partial evaluator decides which available values should be used for specialization.
If the concrete values computed during program specialization can affect the choice
of the action taken (by the partial evaluator) then the partial evaluation is on-line.
Otherwise it is off-line[14].

Many partial evaluators mix on-line and off-line methods, since both have ad-
vantages. The main advantage of on-line partial evaluation is that it can sometimes
exploit more static information during specialization than off-line, thus yielding bet-
ter residual programs. Offline techniques make generation of compilers, etc., by self-
application feasible and yield faster systems using a simpler specialization algorithm.
In [14] the authors argue that ”only off-line specializers have been successfully self-
applied.” By ’successfully’ they mean that a resulting program, typically compilers,
have been reasonably small and efficient. They make a case study of compilation
and compiler generation by on-line partial evaluation. They find that the result of
compiler generation is not satisfactory and show how off-line evaluation provides a
simple solution.

It should be noted the importance of binding-time analysis given the fact that
almost all off-line partial evaluators base their decisions on the result of a preprocess,

6

the binding-time analysis.

Partial Evaluation is automatic

The process of partial evaluation is done automatically. A program together with
part of its input data are transformed into a more efficient specialized version by
pre-computing parts of the program that depend only on one given input.
This process has three main stages: analysis, specialization and execution.

First, a binding-time analysis determines which parts of the program can poten-
tially be executed using only some of the program runtime input (so-called static
data).

Once values for the static data have explicitly been given, the program is trans-
formed by pre-computing parts depending only on the program input into the spe-
cialized version (which can then be compiled). This is the specialization time. At
this time if a variable was catalogued as static during the binding-time analysis time
and its value has a textual representation, i.e. it is an integer, and is in a context
known as dynamic, then it is lifted into a residual representation. That means that
the textual representation of the static variable is computed at specialization time.

After the specialization comes the actual execution of the specialized program.

BTA → Specialization → Execution

Although binding-time analysis is fully automatic, the program to specialize may
need some ‘tuning,’ i.e. modification by hand, to get better binding-time separation
and so better speedup. After binding-time analysis, specialization can be done auto-
matically and completely without human intervention as often as wished, e.g. every
time the static data changes. A well-known example is compiling by specializing an
interpreter.

Why partial evaluation

Partial evaluation is applicable to a wide range of problems. The essence of partial
evaluation is to solve a problem indirectly, using some relatively static information to
generate a faster special purpose program, which is then run on various data supplied
more dynamically[14]. The specialized program can be much faster than the original
one (speedups exceeding 10 have been seen in practice). The speedup can be either
measured, or predicted from the binding-time information.

Problems that can be solved faster using specialization are for instance: highly
parameterised computations that use much time consulting parameters, but are often
run using the same parameter settings; programs with many similar subcomputations;

7

programs of a highly interpretive nature, e.g. circuit and other simulators, where
specialization removes the time to scan the object being simulated; database query
search algorithms; metaprogramming, where a problem is solved by designing a user-
oriented language and an interpreter for it.

Partial evaluation has been used to solve problems in the areas of computer graph-
ics, database queries, neural networks and scientific computing between others. But
the most developed area is programming language processors and specially compiling.

State of the art

According to the Computer Science Department of the University of Copenhagen,
partial evaluators exist for Scheme, C, SML, Fortran77 and logic programming. For
Scheme there are two systems, Similix at Copenhagen and Schism at Rennes; the
same for C, C-mix at Copenhagen and the TEMPO system at Rennes; whereas for
SML there is SML-mix, a prototype at Copenhagen; and for Fortran 77 there is a
prototype developed at Vienna and Copenhagen; finally for logic programming there
are systems developed by SICS (Swedish Institute of Computer Science), K.U. Leuven
(Belgium) and University of Bristol.

All are academic projects, with promising results so far. The Scheme systems are
the most mature. The C and Fortran 77 systems are most promising for industrial
use. However both need more development and experimentation to bring them up to
industrial strength.

An important work is JSpec [21][1], an off-line partial evaluator that treats the
entire Java language excluding exception handles. JSpec takes Java source code or
Java bytecode as input, and can produce Java source code or C code as output.
Specialized C code is executed in the Harissa environment, and can incorporate a
number of low-level optimizations, such as array bounds check elimination. JSpec
exploits object-oriented opportunities for specialization, such as global type informa-
tion propagation, elimination of virtual dispatching and (safe) global propagation of
known encapsulated values.

2.2.4 Binding-Time Analysis

Binding-time analysis is the process of determining at what time the value of a
variable can be computed, that is the time when the value can be bound to the
variable[14]. This time can be program specialization time, in this case the variable is
classified as static or later, in this case the variable is classified as dynamic. The output
of a binding-time analysis is basically a division: a classification of each program
variable as static or dynamic. This division makes it then possible to classify each
program construct as static or dynamic.

8

In off-line partial evaluation, the program specializer uses this division to deter-
mine in advance which are the static parts of the program being analyzed. This is
essential to the success of self-application [14] because the static parts of the program
to analyze are determined prior to the specialization phase, and the program spe-
cializer uses this information when it is run. For example, supplying the division of
the subject program’s variable is the simplest way ”of communicating the necessary
insight to mix”, the compiler generator described in [14]. Moreover, if all the assign-
ments and conditionals are marked as either eliminable or residual, the specializer can
determine its actions at a very low cost, making specialization even more efficient.

Binding-time analysis is important because it determines how an off-line partial
evaluator will specialize a program. In consequence, the accuracy of the binding-
time information directly determines the degree of specialization. There are many
techniques to perform binding-time analysis (i.e. dataflow analysis and abstract in-
terpretation). In this work we are going to use constraint-based analysis.

2.3 Divisions

So far we have assumed that the task of binding-time is to compute only one division
(between static and dynamic) and that this division is valid at all program points.
This simplified view of binding-time analysis can be enriched with other ways to
calculate the division aimed to obtain a more precise binding-time analysis, that is to
let the specializer find as many static expressions as possible so that it can specialize
as much as possible.

2.3.1 Flow Sensitivity

The binding-time analysis can be flow sensitive opposed to flow insensitive. In a flow
sensitive analysis, different binding-times can be associated to a variable at different
program points. Whereas if the analysis is flow insensitive, the variable abstraction
is independent of the program flow.

In a flow sensitive binding-time analysis, a different binding-time description is
computed for each program point, allowing the same variable to be considered static
at one program point and dynamic at another.[11]

The analysis used in this work is flow insensitive.2

2By using SSA (Static Single Assignment) whereby each variable definition is used just once, we
make a flow insensitive analysis, but in fact obtain flow sensitive results. With SSA if we make flow
insensitive analysis over a a program P1 that is the Static Single Assignment version of a program
P, it is like if we had done the flow sensitive analysis of P. For a detailed explanation of SSA, see [8].

9

2.3.2 Use Sensitivity

There is also a use sensitive binding-time analysis, opposed to use insensitive. If it is
use sensitive, it allows both static and dynamic uses of a given variable. The variable
definition must then be annotated as static and dynamic. The definition will be both
executed at specialization-time and residualized.

An insight is that at specialization time the value of a variable is allowed to be
computed in certain contexts even if the variable identifier is residualized in others.
In this case, it is important to handle pointers and structures to get as much special-
ization and as few residualized constructs as possible. How to handle these matters
is described in [12].

To understand why use sensitivity is needed in the cases where it is important
to keep static as many constructs as possible, it is necessary to understand how the
context of variable use affects its binding time. Here is an explanation taken from
[10].

A static variable is a dynamic context is evaluated during specialization and the
resulting value is converted into its textual representation.When this happens, it is
said that the variable is lifted . Values for which there exists a corresponding textual
representation, such as integers, can be lifted, but values which do not have a textual
representation, such as pointers, structures and arrays, cannot be lifted, so any time a
non-liftable static variable is used in a dynamic context, its binding-time is dynamic.
If the binding-time is use insensitive, all the uses of a variable must have the same
binding time. And thus forcing the uses that appear in static context to be considered
dynamic.

For example, consider the case where a variable is assigned a static value and then
it is used multiple times. If any of the contexts are dynamic, then all of the uses
become dynamic.

Use sensitivity keeps a variable that must be residualized from interfering with
other uses of the variable which could be evaluated[12]. Even if a variable becomes
dynamic due to its dynamic context, the other variable uses in static contexts remain
static.

Use sensitivity is more precise than flow sensitivity. Flow sensitivity associates a
different binding-time value to a variable each time it is assigned. For each assignment,
however, a variable may be used used multiple times. Use sensitivity associates a
different binding time to each of these uses[10].

In this work it is performed a use insensitive analysis to favor the simplicity of the
model in order to facilitate reasoning.

10

2.3.3 Polyvariant Analysis

The binding-time analysis can be monovariant , also said to be context insensitive.
It is a kind of binding-time annotation where only one annotation is permitted per
program point. It allows only one binding-time description for each function. To
illustrate this point, consider the example of a program in a flow language taken from
[14]. Assume an initial division where variable X is known, ergo it is considered static
and Y unknown, considered dynamic.

read (X Y);

init: if Y > 42 goto xsd else dyn

dyn: X := Y;

goto xsd;

xsd: X := X + 17;

...

In a monovariant division, xsd would have a division indicating that X as well as Y

are dynamic.
The opposite of monovariant is polyvariant, when a function can have more that

one binding-time description depending ”not only of the program point but also on
how the program point was reached”[14]. In the previous example, a polyvariant
division assigns to each label a set of divisions.

For the above program, a polyvariant division would be:

• at the program point init, X static and Y are dynamic, this could be written
as the pair (S,D);

• at the program point dyn, both X and Y dynamic, shown by the pair (D,D)

and finally xsd, has a set of divisions, that is (S,D), (D,D). This set has two
elements, one indicates that X is static whereas Y is dynamic and the other that both
of them are dynamic.

One of the software engineering advantages of the Object-Oriented Paradigm is
code reuse. In an object-oriented language, individual classes can be created and
then joined to form different programs. A class can be developed as an encapsulated
program unit that implements some behavior. The abstraction permits the class to
be reused. The partial evaluator could take advantage of this style of code reuse and
know that two objects of the same class might require different treatment. There
are several polyvariant analysis that intend to produce a more precise binding-time
analysis. Examples of those are type-polyvariant and method polyvariant analysis.
A detailed presentation of them can be found in [23].

However, polyvariance can produce too much detailed information that in turn
could lead to overspecialization, and thus to a need to control it.[23] In order to

11

keep the model simple with the final objective of allowing an easy reasoning about
binding-time analysis of object-oriented programs, we stick to monovariant binding-
time analysis.

2.4 The Constraints

Constraint-Based Analysis(CBA) is one of the four main approaches to program anal-
ysis [16][17]. We explain program analysis in the following section and next describe
constraint based analysis. The ideas of this section will be needed in chapter 4.

2.4.1 Program Analysis

Program analysis offers static compile-time techniques for predicting safe and com-
putable approximations to the set of values or behaviors arising dynamically at run-
time when executing a program on a computer. A typical application is to allow com-
pilers to generate code avoiding redundant computations, e.g. by reusing available
results or by moving loop invariant computations out of loops, or avoiding superfluous
computations, e.g. of results known to be not needed or of results known already at
compile-time [16].

In order to remain computable, in program analysis one can only provide approx-
imate answers like ”the only values for variable y at ’this’ program point are 1 or
2”. Refer to [16] for detailed examples. In general, we expect the program analysis
to produce a possible larger set of possibilities that what will ever happen during
execution of the program. Nevertheless, although an analysis does not give precise
information, it may still give useful information. For example, knowing that the value
of y will be 1 or 2, still tells that y will be positive, and an integer.

2.4.2 The Constraint-Based Approach

The idea is to extract a number of inequations or constraints out of the program.

The syntactic structure of the program gives rise to a set of constraints whose
least (in a certain imposed order) solution is desired.

In other words, out of a program we obtain a set of constraints for expressing the
effect of elementary blocks (i.e. assignments, tests).

12

A constraint is an inequality on properties of program parts.
In general we have a constraint of the form:

PROPERTY1(e1) ⊇ PROPERTY2(e2)

where PROPERTY1 and PROPERTY2

are properties of the expressions e1 and e2.

This constraint states that if a property holds in PROPERTY2(e2),
then it must hold in PROPERTY1(e1).
In a more straightforward explanation: the value of the property PROPERTY1(e1)
is greater than or equal to the property PROPERTY2(e2).

For example a property of a variable could be that it has dynamic BT . In this
case the constraint would be satisfied when it holds for both e1 and e2, or when it
does not hold for neither e1 nor e2, or when it holds for e1 and not for e2 (We assume
here that static is smaller than dynamic). In other words the constraint is satisfied in
any case except that PROPERTY1(e2) holds that property and PROPERTY1(e1)
does not.

2.5 Summary

This chapter presents the fundamental concepts that will be used in further sections.
Among the most basic of them are the ideas of partial evaluation, binding-time

analysis and division among static and dynamic binding-time states, that will be used
in 3.

As well as that we have explained the different aspects related to divisions such
as flow sensitivity, use sensitivity and polyvariant analysis.

Finally we have presented an insight of constraint based analysis, on which the
analysis defined in this work relies. This constraint-based analysis explanation will
support the design of correct and precise binding-time analysis for petitCafé presented
in chapter 4.

13

14

Chapter 3

Binding-Time Analysis for
Object-Oriented Languages

3.1 Introduction

Binding-time analysis is used to discover which parts of a program are static and
which are dynamic. There are several techniques to perform binding-time analysis
(i.e. data flow analysis, constraint based, abstract interpretation and type and effect
systems [16]). In this work we are going to use constraint-based analysis.

Our binding-time analysis is performed by writing constraints on parts of the
program. These constraints define a system of inequations whose solution is the
lowest possible binding time for each part. By lowest we mean that parts should be
assigned static binding time whenever possible.
We present here a binding-time analysis for an object-oriented language subset of
Java. We define the binding time of an object in terms of the binding time of its
instance variables. Instead of considering and object dynamic because at least one
of its instance variables is dynamic, we regard the binding time state of an object
as the tuple of binding time states of its instance variables. Taking into account the
imperative features of object-oriented languages, this analysis includes references to
objects. To keep the balance between performance and binding time expressiveness,
the binding time of an object is the binding time of its class.

We define how to generate the constraints that apply to a program and, once the
equation system is solved, determine the binding time of the program constructs.

This work differs from previous works in that the problem of producing the
binding-time analysis is solved by means of Constraint-Based Analysis as in C-mix
[2] whereas other previous work solved this using Data Flow Analysis as in JSpec
[20], whose implementation is based on [12]. Secondly, to express the binding time
of complex structures such as objects we use a tuple of binding times where each

15

element is the binding time of an instance variable, whereas previous works treat it
conservatively annotating as dynamic the whole object [23] , even though parts of it
could be static.

There are two levels addressed in this work: syntactic and semantic. The syntactic
level is required to write the constraints, since the analysis is Constraint-Based and
constraint generation is syntax-directed. The semantic level helps to reason in terms
of execution and objects.

How it is organized

In the following sections, we present the heart of the model: petitCafé and the defi-
nition of binding times for objects, primitive types and references.

Section 3.2 shows the syntax for our language, petitCafé.

Then, section 3.3 defines the domain necessary to further present the Constraint
Based Analysis, expressing the model at an abstract level as well as at a syntactic
level. Objects are treated as abstractions of memory parts that can be seen in a more
concrete way or in a more abstract way.

Afterwards, section 3.5 defines the binding-time of objects and primitive types.

Finally section 3.6 presents a summary.

3.2 petitCafé

To provide a concise description of partial evaluation of class-based object-oriented
languages, we use a small class-based object-oriented language with inheritance based
on Java [9][15]. Our language is called petitCafé. Intuitively, petitCafé is a subset
of Java and any petitCafé program behaves like the syntactically equivalent Java
program. Nevertheless it has a reduced set of features compared to that of Java. As
in [23], the choice of what programming language features to include in petitCafé is
influenced by what features are found in object-oriented languages and what features
are interesting from the point of view of partial evaluation.

Object-oriented languages have as essential features encapsulation of data and
methods[3], so petitCafé has them. It also includes standard language features such
as conditional, operators and boolean and integer constants.

Compared to the EFJ, the Extended Featherweight Java language of [23], petit-
Café extends EFJ with imperative features.

The following section provides the syntax of petitCafé. For a detailed Java syntax
see [6].

16

3.2.1 Abstract Syntax

This section presents the grammar for the petitCafé programming language. The
grammar below uses the style conventions:

• x|y means either x or y

• x∗ denotes zero or more occurrences of x

• [x] means zero or one occurrences of x

A symbol in bold is a keyword or a program separator, i.e. (,), {, } return and
if.

An assignment has the form:

assignment ::= location = assignment exp

where the left side is restricted to be a location, an obvious limitation imposed
to petitCafé with respect to Java. This is on purpose to limit the model in order to
keep it manageable. At the point of defining the left-hand side of an assignment there
were two options: to consider it a variable that was itself an Identifier that could be
qualified, i.e. Identifier {.Identifier *} as in [9], with another rule for field assignment,
or to show explicitly in the syntax that a left-hand side of an assignment can be either
the identifier of a variable or an object field.

The first option is closer to the syntax of [9], but the second one enforces the
idea that the left-hand side of an assignment can be a variable present in a pro-
gram or an object field. Variables and object fields are memory locations (see 3.3.1).
This approach makes it possible to express clearly the constraints for object fields
in 4.2.1. In section 3.3.1, the Syntactic Domain Loc, which corresponds to the set
of memory locations that can be defined in a program clearly expresses the role of
the variables present in a program and of the object fields present in a program.
Part of this idea was inspired by the subset of C syntax from [11]. In order to
be consistent, the syntax of petitCafé includes the fact that a location can be an
variable or can be an object field (named field in the syntax). But the object field
is in essence the Qualified Identifier of [9], which can be an Identifer or a qualified
identifier, (Qualified Identifier ::= Identifier {.Identifier*}).

3.2.2 Transformations

We perform the binding-time analysis under certain conditions. We assume the orig-
inally the Java program is transformed into a program that one can write using the
grammar we present in section 3.2.1, which is a subset of the Java grammar. We

17

Domains:
literal ∈ Integer

⋃
Boolean

bop ∈ BinaryOperator

uop ∈ UnaryOperator

identifier ∈ Identifier

Abstract syntax:
program ::= class def
class def ::= class class name [extends class name] {

instance variable def ∗

[constructor def]
method def ∗ }

instance variable def ::= type variable
constructor def ::= class name () block
method def ::= type method name (args) block
block ::= {stmt ∗}
method name ::= identifier

args ::= variable ∗

stmt ::= assignment
| return variable
| if variable block block
| while variable block
| variable.method name args

assignment ::= location = variable assignment exp
location ::= variable | field
variable ::= identifier

field ::= variable.field name
field name ::= identifier

variable assignment exp ::= variable bop variable
| uop variable
| variable
| this
| literal

| method invocation
| class instance creation exp

method invocation ::= location.method name (args)
| field access.method name (args)
| this.method name (args)

class instance creation exp ::= new class name (args)
primitive type ::= boolean | integer
type ::= class name | primitive type
class name ::= identifier

Figure 3.1: Syntax of Java subset

18

analyze this program written using the subset grammar. As a consequence of the
analysis we perform, we obtain a program that is written following the grammar sub-
set of Java and finally, since our grammar is a subset of the one of Java, this program
can be transformed to comply with the full grammar of Java. Using a subset of Java
is actually not a limitation although the fact that petitCafé is proper subset in this
respect still need to be checked.

Progr. Java → Progr. Subset → Analyze → Progr. Subset → Progr. Java

Figure 3.2: Transformations of the source program

To perform the binding-time analysis, we assume that all identifiers have been
renamed in order to be unique. Thus, there should be a transformation that renames
variables that have the same names and are in nesting blocks. This transformation
could be achieved by changing the name of the ’repeated name variables’ adding a
suffix corresponding to the number of the block where they appear. All this provided
that we assign virtual numbers to the block.

3.3 Domains

This model is intended to facilitate the easy reasoning about binding times of object-
oriented languages. It intends to lay the foundations for the design of correct and
precise binding-time analysis for Java. With such an aim, a clear and precise definition
of the binding-time of objects, primitive types and references based on language subset
of Java defined above is essential.

The basic features of the presented model are:

• This model is based on petitCafé, a subset of Java that this work defines.

• The binding-time analysis is monovariant, flow-insensitive and use-insensitive.

• For any instance of a given class, the binding time corresponds to that of the
class. References have the same binding time as objects.

• The binding time of objects is a set of binding-times of the object’s instance
variables.

• Primitive types can have static or dynamic binding time.

• The binding time analysis is performed using constraints. The constraint gen-
eration is syntax-directed.

19

3.3.1 Concrete and Abstract Domains

In this section we explain the domains on which this work relies.
It comprises the different binding-time types and values used to indicate the

binding-time state according to the part of the program to annotate (i.e. objects
or variables of basic types).

At the semantic level, we work at a concrete and at an abstract level. At the con-
crete level there are the values, objects and references, but at an abstract level there
is a certain binding-time, object binding-time and reference binding time respectively.

Syntactic Domain

To facilitate the explanation of the constraints applied to elementary constructs (i.e.
assignments, field access, etc.) of programs complying with petitCafé, a syntactic
domain of locations is introduced. This domain, called Loc, corresponds to the set of
memory locations that can be defined by a program.

Loc = V ar ∪ Field

where V ar is the set of variables present in a program and Field is the set of object
fields present in a program. An element of Field is of the form v.f , where v ∈ V ar

and f is a field name of the declared class of v. ∈ is the membership operator.
In conclusion the basic objective of the analysis is the computation of the function

bt defined as follows:

bt : Loc → BT

We use the function bt to express the binding-time BT (i.e. S) of the location
loc. Intuitively, a binding-time is a division, a classification of locations into static or
dynamic as was defined in section 2.2.4. The values of the binding-time type BT are
defined in 3.4.2.

Locations can be atomic or structured. If atomic, they correspond to variables of
primitive type. Structured locations correspond to objects and they are structured
because objects have fields (i.e. each field is an instance variable).

Fields, dereferencing and addressing

The mapping between the syntactic level and the semantic level is as follows: a
location is the means we use in this model to access memory. Memory access can
then be modeled by a function

value : Loc → V alue

20

which returns the value associated to a given location. Note that there are actually
different kind of memory accesses depending on the location, which can be a local
variable, an object reference or an object field (above, V ar could be further refined
into V ar = LocalV ar ∪ Reference).

More basic functions can be defined, such as
fdi : Object → V alue

which takes an object and an object and returns the value of the ith instance
variable (this is intended to express at a syntactic level how to access object fields),
and

deref : Reference → Object

which takes a location that is a reference and returns the object pointed to by the
reference. The function deref is actually a restriction of the more general function
value to references.

One can see then that, in case of a reference, the function value is the composition
of the functions deref and fdi.

Note that we have talked here about values in a very general manner. These values
can actually be either concrete or abstract. When talking about abstract values, we
actually have

value = bt and V alue = BT

Since in object-oriented languages objects are accessed via references, in this model
locations represent the syntactic element to access objects. This access is performed
in such a way that if o is an object of class O an l is a location to that object, then
the two following equations hold:

deref(l) = o

and
l = address(o)

We can think at

deref : Loc → Object

as function that takes a location and returns the object, the value pointed to by
the location. It receives a reference to an object and returns the value pointed to by
the reference. It represents the access to the object through the location, which is the
parameter. Here the object is seen as a tuple of instance values and it is to this tuple

21

that the location points to. We suppose that the binding time of the object pointed
to by a given location l is equal to bt(o).

Furthermore, address is another function that takes an abstract object and returns
its location.

In petitCafé, which is a subset of Java, to symbolize that a reference is pointing
to an instance variable, in a program we write the location followed by a point and
the object field:

location.objectF ield

To summarize:

Syntactic level location

Semantic level concrete values, objects and references

abstract BT, objectBT and referenceBT

Example of Using fdi

Let p be an object of class Point, having this class two instance variables named x

and y. In this context x is what we will call the first instance variable and y the
second one. In fact in object-oriented languages there is no notion of first instance
variable, but we produced it here there to help in the understanding of how we use
the function fdi. According to this example the following code

Point p;

...

p = new Point();

p.x = 1; // this assignment

can be translated into the function notation for references and objects as shown.
The marked assignment is represented as fd1(p) = 1; where fd1 is a function that
returns the value of the ’first’ instance variable of object p (strictly speaking the
object pointed to by p).

Syntactic and Abstract locations

Expressing constraints 4.2 is done in a syntax-directed manner, i.e. the program is
traversed and, considering the intra-procedural analysis, a set of constraints is gen-
erated for each encountered statement, depending on the grammar. The constraints
are written using locations, as they were defined in the previous paragraphs.

22

The syntactic locations are those that can be extracted from the program through
its syntax. For instance p.x and q.x are two syntactic locations.

On the contrary, abstract locations are those that represent a variable of the
program at an abstract level.

Note that there is not a one-to-one mapping between the syntactic locations and
the abstract locations.

For instance p.x and q.x are two different syntactic locations, but if p and q have
the same declared class A, it could be that they refer to the same abstract location
denoted, for instance A.x.

Abstract locations define a relationship between the syntactic locations in the
sense that two syntactic locations that refer to the same abstract location belong to
the same equivalence class.

This concept can be used to tune the precision of the analysis. Nevertheless, this
idea will not be explored in this dissertation, as show in section 3.5.2, where the
binding time of an object is that of its class.

3.4 Binding Time Domains

In the following sections we give the definition of binding-times of primitive values,
objects and references.

We begin by presenting the abstract binding-time type BT . Its role is essential
in the model, since it serves to define the binding-time of all the components.

We will observe that in the first place we have π, that corresponds to the binding
time of simple values such as constants and liftable variables. In the second place we
have Γ, the binding-time type for objects. This last type is more complex, since its
elements are tuples of binding times. The final binding-time type used in the model
is the union of the ones aforementioned.

3.4.1 The Basic Binding Times S and D

There are two binding-time values S for static and D for dynamic[4].
We call π the type of binding time representing the set of values {S,D}

π = {S,D}

Origins of binding time

Objects and variables have different structures to define their binding time will be
shown in section 3.5.2. A consequence of this is that there are two types of binding
times.

23

On the one hand there is the binding-time type corresponding to the binding
time of primitive values that belong to primitive types such as constants and liftable
variables (see an explanation of liftable variable in section 2.3.2).

On the other hand, there is the binding-time type of objects. This binding-time
type reflects the fact that an object has instance variables, each one of these having its
own binding time. It is then more complex, since its elements are tuples of binding-
times.

We will call π the binding-time type for basic types and Γ the binding-time type
for objects. The binding-time type for objects is a tuple of binding-time elements.
Each binding-time of this tuple corresponds to the binding-time of an object’s instance
variable. The first binding-time corresponds to the binding-time of the ’first’ instance
variable according to some predefined order. An instance variable i can be of a basic
type or an object. If it is of a basic type, then the corresponding i element of the
tuple will be S or D, indicating the binding-time of that instance variable. On the
contrary, if the instance variable i is an object, then the binding-time indicated in
the ith position of the tuple will be another tuple, reflecting the binding-time of the
object that has the instance variable i. Observe that this recurses downwards, ending
always in the binding-time of a basic type.

Binding time of locations

Atomic locations have binding-time values S and D. But as specified in the previous
section, locations can be atomic or structured. A structured location correspond to
objects. We can think of each instance variable as a sub-structure of a structured
location. Objects can have several instance variables, each one having its own binding-
time.1 To reflect this, the binding-time of structured locations is a tuple of binding-
times, one binding-time per sub-structure of the location. For example each element
(i.e. object field) of the structured location has its binding time. We call this binding-
time type Γ.

Γ = {t|t is n tuple whose ith element is a binding-time, 1 ≤ i ≤ n}

3.4.2 The Binding Time BT

In general, the binding-time BT is the union of the binding-time values S and D (the
values of the type π) and the binding-time values of structured locations, (the values
of Γ) which are themselves tuples.

BT = π
⋃

Γ

1Observe that either a variable or an object field can be structured locations.

24

In general we map elements of the concrete domain to elements of the abstract
domain in the following way:

Concrete domain Abstract domain

BasicType PrimitiveTypeBT (= π)

Value BT (= Γ)

Object ObjectBT

Reference ReferenceBT

Where ObjectBT and ReferenceBT are of type BT

BT = PrimitiveTypeBT
⋃

ReferenceBT
⋃

ObjectBT

3.5 Binding Times

3.5.1 The Binding Time of Primitive Values

Primitive types are integer and boolean, any variable that is an integer or boolean
can have as its binding time the value static or dynamic.

3.5.2 The Binding Time of Objects

There are two main ideas that help define the binding time of objects. The first one
is that the binding time of objects is regarded as a tuple of binding times and the
second one is that the binding time of an instance is the binding time of its concrete
type.

Binding-time of objects regarded as a tuple of binding times

Objects have instance variables which are elements of base type or objects themselves.
Since they are composed of instance variables, their binding-time can be defined by
a tuple of length equal to their number of instance variables. Each element of the
tuple is the binding time of a specific instance variable.

The binding time we are interested in for objects takes into account and main-
tains the binding time of each instance variable of an object. In fact, we define the
binding-time of an object as a tuple of binding-times where each position
in the tuple corresponds to the binding time of an instance variable.

25

Thus the binding-time of an object is defined as follows:

Let us assume

o is an object with n instance variables,

ivi is an instance variable of object o such that 1 ≤ i ≤ n

where n is the number of instance variables.

bt(o) is the binding time of object o,

bt(o) = (bt(instanceV ariable1), ..., bt(instanceV ariablen))

∀instanceV ariablei instance variable of o,
i belonging to [1..n]

where bt(instanceV ariablei) is the binding time of the ith instance variable.

An alternative approach would be to merge the instance binding times into one
to produce the binding time of the object. This approach associates the dynamic
binding-time value to an object if one or more of its instance variables is dynamic.
For instance, consider a point p with two instance variables, x and y. Let us say that
x has a static binding-time whereas y has dynamic binding time. Then with such
an approach, the object would be considered dynamic, since its instance variable y

is dynamic. This would make the model lose precision. Note the difference with
our approach, where the binding time of an object is ’divided’ into one binding-time
annotation per object instance variable.

Binding time of objects according to their class

In our model we define that an object has the same binding time as the binding
time of its class (considering an abstract level). This approach has the advantage of
simplicity: only one record of binding-time per class has to be maintained and thus
avoids to have too much information to manage (as it would be the case of registering
a different state for two instances of the same class) which would be unmanageable.
This will be discussed further below. Thus all the objects of the same class have the
same binding time.

More precisely, for any two locations l and m that points to objects of declared
class C with n instance variables, the binding-time of the locations coincide:

(bt(fd1(l), ..., (bt(fdn(l)))) = (bt(fd1(m), ..., (bt(fdn(m))))

26

where bt stands for binding time function that receives an instance variable and
returns its state, fdi is the function defined above, o is an object n instance variables.

We can define the function:

bt class : class → BT

that takes a class and maps it to the binding-time of that class. And assuming
there exists a function

declared class : location → Class

then we can write that for any location l pointing to an object of a given class C

such that declared class(l) = C the binding-time of a location l should satisfy:

bt(l) = bt class(declared class(l))

Figure 3.3 sketches this situation. We can observe that all the objects of the same
class have the same binding time.

Figure 3.3: Binding-time of objects and their class

27

Equivalence Classes

The concept of merging the binding-time of all the instances of the same type has
its counterpart at the syntactic level. This is because given two or more (syntactic)
locations that reference objects of the same type, we take only one example, an
ambassador (abstract level) of the set of syntactic locations that reference objects of
the same type.

Thus the equivalence class is the set of (syntactic) locations that reference objects of
the same type.

There are two kinds of equivalent locations, one kind corresponding to locations
which are references with the same declared class C, which can be denoted C, and
one kind correponding to fields, which can be denoted C.f for the field f of the class
C.

In order to avoid confusion the between mathematical notion of classes and the
object-oriented classes we will rather talk about equivalence locations.

If l is a location, l is its equivalent location. Then we call Loc the domain of
equivalence locations.

We define a function bt : Loc → BT , which computes the binding time of an
equivalent location. As a result, by definition, if l belongs to Loc and correponds
either to a primitive field or a reference/object:

bt(loc) = bt(loc)

In the following, for the sake of simplicity we will not distinguish any longer
between bt and bt or Loc and Loc, i.e. we will called locations the set including both
what we have so far called locations and equivalent locations and consider bt as the
function associating binding times to all these locations.

Let us assume that p.x and q.x are locations,

p.x, q.x ∈ Loc,

p.x and q.x have the same type,

then A is the equivalence class at an abstract level.

In the model this generates that:

bt(p.x) = bt class(A)

and
bt(q.x) = bt class(A)

28

with bt class(A) representing all the locations that reference objects of a certain
type.

Therefore there is only one constraint in the model. Of course the binding-time
of p.x and q.x must be the same. Using locations in this way the analysis is correct,
i.e. it will not deduce that the binding time of a field is Static when it is not.

As already mentioned, the advantage is that this analysis is easier. Otherwise,
an alias analysis is needed (i.e. p and q could reference the same object). The
disadvantage is that the analysis is less precise. This is because with this approach
all the instances of the same class must have the same binding time. Since there is
no type analysis, it is necessary then to take a safe approximation, which forces the
equivalence class to be dynamic as soon as one of its member location is dynamic,
which is to say that the binding-time of all the locations (syntactic level) is dynamic
and then that all the instances (abstract level) are dynamic.

In general, the merging of binding times depends on the availability of information
about real types. There are two cases: either there is no type analysis, or information
about concrete types is available.

In the model presented here there is no type analysis, thus the type of a location
can be any concrete type below the declared type of the object (the same approach
was presented in [23]).

On the contrary, if information about type analysis were available, then the
binding-time analysis of objects would be more precise. ”The more precise the type
inferencing algorithm, the smaller the set of types at each program point, and thus
the fewer restrictions there are on the binding time of each class” [22].

In conclusion, in this model the binding time of an instance is the binding-time
of its class.

Binding-time and inheritance

The binding-time of the equivalence classes of a program is influenced not only by
how object instances are used in the program, but also by the inheritance relation
between classes[18]. In this section we discuss this in an abstract level.

The point is that, in the abstract level, if A is a superclass of B, then the binding-
time of B should be forced dynamic given that the binding-time of A is dynamic.
This is because if one of the instance variables of A is dynamic2 then than instance
variable is inherited, and thus B has a dynamic instance variable. Figure 3.4 shows a
tree representing the Inheritance relationship against the relationship between class
binding times.

2Again at an abstract level, since that instance variable can also be an object and thus its binding
time can be that of a structured location.

29

A

↑

B

If A is superclass of B, then bt class(B) ⊇ bt class(A)

Figure 3.4: Inheritance relationship is inverse to the class binding-time relationship

Not only that, but also having no type analysis the real type of an instance is un-
known. Therefore, if its binding-time is dynamic (again referring to the abstract level)
then every possible real type that the variable could take should be also dynamic.

At the syntactic level, we say that for a given location the set of possible real
types is the declared type plus the complete set of subtypes of the declared type. A
location that becomes dynamic forces its equivalence class (that in fact is the declared
class) to become dynamic, thus all the subclasses of the one in which the location
was declared become dynamic.

Another way of thinking about it is to consider that since there is no type anal-
ysis, then the real type of a location is unknown, forcing the model to take a safe
approximation and reflect the new dynamic state to all the subtypes of the declared
type.

If A is superclass of B , then bt class(B) ⊇ bt class(A)

Where ⊇ means that if A is dynamic (to a certain extent), then B is dynamic.

In summary, the model presents same linking of binding-time across classes as [22],
where it is said that ”the binding-time of two locations that are used at the same
program point (field lookup or method invocation expression) must be equal.”...” We
use monovariant binding-time, so the classes of such two objects must have the same
binding-time.” ... ”For field access or method invocation, the set of possible types
is the complete set of subtypes of the type inferred for the expression. Thus the
class that is used as the qualifying type of the self object in a field access or method
invocation has the same binding-time as its subclasses.”... Thus the binding-time of
equivalence classes are linked across a common superclass if a location belonging to
that superclass is subject to a field access or to a method invocation. In a way, this
is propagating the dynamism.

30

Binding-time of Instance variables

Instance variables can be of primitive type or objects themselves. On the one hand
if they are of base type, then their binding time can be static or dynamic. On the
other hand if are objects, their binding time is the binding time of objects, which is
a tuple as defined above.

Benefits of the definition

With the definition given above, the binding time of an object is a tuple of binding
times. This leads to a better precision of the analysis, since the fact that one instance
variable is dynamic does not mean that the whole object is annotated as dynamic
and hence that the specializer might still be able to specialize the instance variables
that are not dynamic, if there is any.

Let us consider an example to observe the benefits of the definition of object
binding time as defined above. In this case, an instance p of class Point has two
instance variables, x and y, of which bt(p.x) = S , but bt(p.y) = D.

Had we considered an object dynamic because at least one of its instance variables
had dynamic binding-time, then we would have had to consider the object as dynamic,
which would be ’understood’ by a specializer (see section 2.2.3) as a hint that all the
expressions referencing the object had to be residualized. If the analyzed program
had managed 10.000 instances of class Point of which the abscissa was known, but
not the ordinate, then it would have been the same that not knowing neither the
abscissa nor the ordinate. The known information about the abscissa would have
been useless.

On the contrary, using the approach taken in this work, where the binding-time
of the object records the binding-time state of each instance variable, the specializer
can still know that the abscissa is known at specialization time, and take appropriate
action. That action can thus save the effort of computing the 10.000 abscissas in a
residual program. And it is because the binding-time object state is not static nor
dynamic, but a tuple of binding-time states.

3.5.3 References

Because we have assignments to allow the change of an object, we consider references.
This section explains the role of the references in the Constraint-Based Analysis. We
use its syntactic counterparts, locations, to follow the syntax-directed analysis.

First we map the notion of reference at an abstract level to the syntactic notion
of location.

31

Then we explain that the binding-time of a location corresponds to the binding-
time of its related object. Thus any reference of a certain type has the same binding-
time as the equivalence class of the object it references, accordingly to what we stated
is section 3.5.2.

From references to locations

References are represented at a syntactic level by locations. Locations were presented
in section 3.3.1.

When we instantiate an object, we also create a reference to access it. Both the
instance and the reference are then associated to a certain class, that is the defined
type of the instance and the reference 3.

The type of the reference

Let Abe the type of objects that belong to class A, &A is the type of any reference
that points to an object of that type. (We use & to denote the type of a reference.)

Thus any reference that points to objects of type A has type &A, which means
that all those references have the same type.

In our model all the references that point to objects of the same type have the same
binding time, and that binding-time is the binding-time of the object referenced. Let
us consider the functions,

bt reference : reference → ReferenceBT

where bt, bt ∈ BT and

bt object : object → ObjectBT

where bt, bt ∈ BT ⇒ bt reference(r) = bt object(o)

We say that ReferenceBT = ObjectBT and dref(r) = o

Rightarrowbt reference(r) = bt object(o)

In figure 3.5 all the references to objects of a given type have the same type: &A.
As we have seen in figure 3.3, all the objects of the same class have the same binding-
time (objectBT) and the references have the same binding-time than the object they
are referencing (referenceBT).

3A type is not a class by definition, but in our language, each class corresponds to a type and

32

Figure 3.5: Type of the references

When we declare a reference we associate a type type (i.e. A) to this reference.
That type is the class of which we declare the object. But later, during the program
execution, the reference can reference objects belonging to class A or to objects that
belong to subclasses of A.

It is so because the concrete type of the object that it references can be different at
different program points. Thus, references can have a set of concrete types throughout
the execution of the program. Figure 3.6 shows an example where the declared type
of aA is A. The real type of aA is one of the types belonging to the set {A,B,C}
depending on the program point and the actual execution.

Since we can access objects only through references and if we do not forget that
the reference is just a pointer to an object that has this or that type we can relax our
notation and say that a reference points to a type.

vice-versa.

33

class A {...}

class B extends A {...}

class C extends A {...}

...

A aA = new A();

B aB = new B();

C aC = new C();

if (booleanTest) aA = aB;

else aA = aC;

Figure 3.6: Declared and real type

In summary, the relationship between the real type of an object and its class
binding time is:

concrete type : reference → C where r is a reference

and

C = {c | c is a concrete type of the objects that r

references in the program}

concrete type is a function that given a reference r associates it with the set of concrete
types of the objects that r references at different program points.

In the example above:

concrete type(aA) = {A,B,C} ⇒ bt class(A) = bt, bt ∈ BT and

bt class(B) ⊇ bt class(A) and

bt class(C) ⊇ bt class(A)

One would be tempted to calculate the binding time of a reference but we don’t
need to annotate references with their binding time. The binding-time of a reference
is the binding-time of the object it references.

Partially Static Objects and the BT of References

The binding time of a reference is the binding time of the object the reference points
to. Thus being p, q references, the binding time of p in p = q of references should be

34

the binding time of the class that q points to. For instance, in figure 3.7, supposing
we have a class Complex, what binding time would we assign to the statement labelled
(*)?

The answer is (S,D)

class Complex { double r,i; }

where r is static and i is dynamic, and the following program segment:

Complex c,d;

c = new Complex(S,D);

(*) d = c;

double res = d.r + d.i;

Figure 3.7: Assignment of a reference occurring as the left-hand side of an assignment

In JSpec[1], a special binding time SD, related to use sensitivity is used. This
binding time corresponds to a reference which should exist both at specialization and
execution time, meaning that at specialization time, the assignment should be both
executed and residualized.

We don’t have use sensitivity. Nevertheless, the binding time of a reference is
the binding time of the class it references thus the binding time of an assignment of
references should be the binding time of the class that q points to.

Another question that we can make is if the statement labelled (*) should be
residualized in the specialized program or not? The specializer could interpret this
binding time (which has both a static and a dynamic component) as an SD binding
time, meaning that it is performed both during specialization and residualized in the
program. Of course, it would be a monovariant flow-insensitive use sensitivity, but
that goes with the overall precision of the BTA. The binding time of a reference of
partially static objects occurring at the left-hand side of an assignment is an important
issue, but appears only when annotating program constructs and it is left as further
research.

In conclusion the binding time of d can be said to be ”partially static”: it is
composite and contains some dynamic fragments. This means that the assignment
will indeed have to be annotated static and dynamic when dealing with program
constructs, giving a weak form of use sensitivity.

35

3.5.4 Method Calls

We can now express the binding-time associated with a method call. In this section
we explain the binding-time of the method-calls. It serves as a foundation for the
constraint definition in next chapter.

Methods calls have two aspects to consider:

• the binding times of the arguments and

• the binding time of the returned value

The arguments are ordinary locations. Their binding times determine the binding
times of the formal parameters.

There may be various calls to the same method m in the program. Observe that
we assume that there is no method overloading, in fact, there are no two methods
with the same name.

With a monovariant analysis, two cases have to be considered:

• all the calls m(arg) are such that arg is static, m can be specialized loosing
the arguments in the specialization and into as many mi() methods as different
values of arg it had received.

For instance, if the method m(arg) is called twice, the first one with arg = 1
and the second one with arg = 2, then it can be specialized as m1() and m2() In
each one of them, every occurrence of arg inside the method body is replaced
by 1 or by 2, depending on the specialization on the method.

• there exists one instance of m(arg) such that arg is dynamic, then the special-
izer is forced to residualize m(arg) since there is a value of arg used inside the
method that will be known only at run time.

But the fact that one arg in one of the calls to m(arg) is dynamic, does not
mean that the arg of the other calls have to become dynamic. In this case,
that is, in the case of a call to m(arg) where the actual parameter is static and
m(arg) is not, the actual argument has to be lifted if possible (section 2.3.2).
Note that it is not forced upwards to be dynamic, as observed in the constraint
system (section 4.2.4).

It is also necessary to associate binding times to return values. Unfortunately,
there is no syntactic location referring to these return values directly available in the
program. This requires to create a specific location return(m) for each method m

occurring in the program.

36

3.5.5 Example of Calculating Binding Times

Let us illustrate this chapter by computing the binding times of the rectangle r in the
example of figure 3.9. We assume that s and d are static and dynamic, respectively.

class Point {

int x;

int y;

...

}

class rectangle {

Point p1;

Point p2;

...

Rectangle r;

Point p1, p2;

p1 = new Point(s, d); // (1)

p2 = new Point(d, d); // (2)

r = new Rectangle(p1, p2); // (3)

}

Figure 3.8: Example of alculating binding times

Let us note that this is not the way binding times will be computed using CBA.
Without flow sensitivity, a given location cannot have several binding times. It

is necessary to take a safe approximation, that is, the highest binding time for each
location. Hence,

bt(Point.x) = SUD = D

and
bt(Point.y) = DUD = D

As a result,
bt(r) = ((D,D), (D,D))

3.6 Summary

We have defined the concrete memory model facilitating the reasoning about binding-
times of object-oriented languages.

37

Input: bt(s) = S and
bt(d) = D

Line (1): bt(p1) = bt class(Point)
= (bt(Point.x), bt(Point.y))
= (bt(s), bt(d)) = (S,D)

that is, bt(Point.x) = S and
bt(Point.y) = D

Line (2): bt(p2) = bt class(Point)
= (bt(Point.x), bt(Point.y))
= (bt(d), bt(d)) = (D,D)

that is, bt(Point.x) = D and
bt(Point.y) = D

Line (3): bt(r) = (bt(p1), bt(p2))

Figure 3.9: Calculating the binding-time of a rectangle

We have a concrete and an abstract level. At a concrete level there are values,
objects and references, whereas at the abstract level we think about binding-times,
object binding-times and reference binding-times. We have established a map be-
tween elements of both levels: objects in the concrete level have a certain object
binding-time at the abstract level. Values and references in the concrete level have
their corresponding elements at the abstract level, that is binding-time and reference
binding-time respectively.

At the syntactic level, we have introduced the notion of location and equivalence
locations. The task of the analysis is to determine the binding times of locations and
equivalence locations.

In this basic model a primitive value can only be either known/static or un-
known/dynamic. The binding-time of objects is a tuple of binding-times, one for each
instance variable, whereas all the objects of the same class have the same binding-
time. The binding-time of the references is the binding-time of the objects they
reference.

38

Chapter 4

Constraints

In chapter 2 we said that binding-time analysis of a subject program computes a
division: a classification of each location as static or dynamic.

That division is found by building a set of constraints on the binding-time (3.4.2)
of all locations.

This chapter explains actual constraint generation and presents the set of con-
straints used to calculate that division.

Expressing the constraints is done in a syntax-directed manner, i.e. the program
is traversed and a set of constraints is generated for each encountered statement,
depending on the grammar.

First, in section 4.1.2 we explain what is a constraint for the binding-time analysis
for petitCafé. Then section 4.2 shows the constraints in an abstract way.

Finally, section 4.3 presents a summary.

4.1 BTA by Solving Constraints

Expressing the constraints is done in a syntax-directed manner, i.e. the program
is traversed and a set of constraints is generated for each encountered statement,
depending on the grammar.

These constraints essentially model location dependencies due in particular to
assignments.

In a first step, the constraint solver makes a program tree and traverses it looking
for locations and annotating them static or dynamic. The purpose of this is to be
able later to analyze the whole set of annotations and deduce, by means of solving
a system of inequations, the safe state of a location. This means that, in the end,
a location is only annotated as static if it was never annotated dynamic previously,
when the constraint solver traversed the tree annotating variables. So we calculate
the binding time of variables using constraints.

39

4.1.1 Requirements

Binding-time analysis computes a division: a classification of variables among static
and dynamic according to a know input.

It is safe if the division it computes is congruent in the sense that each variable
is classified as static if it does not depend on a dynamic variable (section 2.2.3).

The analysis computes a congruent monovariant division of a source program. It
is intra-procedural, flow-insensitive and context-insensitive.

4.1.2 Constraints in petitCafé

In petitCafé a constraint is an inequality on the binding-time of locations.

For instance, if x depends on y, we want to express the congruence requirement
”if y is dynamic, then x must be dynamic too”. We wish the ordering D ⊃ S on the
binding time values, and write bt(x) ⊇ bt(y). The constraint set can be solved and
gives the binding-time for each variable [14].

Partial Order

We define ⊆ to be the order relation on the binding-time BT of the abstract locations.

The binding-time of a location can be of type π and of type Γ (since a location
can represent a variable or an object). When the binding-time of a location is of type
π, that is S or D, then we are in the π domain, otherwise we are in the Γ domain.

For the domain π, t ∈ π. We impose an ordering D ⊃ S on π:

t′ ⊇ t iff t = S or t = t′

That is, ⊇ means ”is more dynamic than”. This ordering extends pointwise to
the Γ domain.

More precisely, if τ ∈ Γ, τ = (t1, ..., ta), τ ′ = (t′
1
, ..., t′a),

(t1, ..., ta) ⊇ (t′
1
, ..., t′a) iff tj ⊇ t′j for j ∈ 1, ..., a

⊇ operator

The inequality uses the operator ⊇ . This operator, used to write the constraints,
intuitively tells that if the right part of the in-equation is dynamic, it forces the left
part to be dynamic. Nor does a change happens if the left hand side was dynamic
nor if the right hand was static. In this case, if the left hand had a static annotation,
it still can be static, but if it was ’pushed up’ by an annotation that made it be
dynamic, then in the end its final annotation will be dynamic.

To be linked to the domains, ⊇ is actually an order relationship.

40

4.2 Constraint Generation

In this section we explain actual constraint generation[5]. Rather that giving an im-
plementation view of it, which will be given in section 5.1.3, we start explaining them
from the specifications. The constraints relate to the ”abstract” locations accord-
ing to the equivalence classes (that were introduced in section 3.5.2) rather than to
syntactic locations.

This has to be done since there is not a one-to-one mapping between the ”syntac-
tic” locations and the ”abstract” locations. That is, p.x and q.x are two different
syntactic locations but if p and q have the same declared class A, it could be that
they refer to the same ”abstract” location that one could denote A.

There are only constraints on statements. Then we write the constraints for
expressions, and finally the constraint for a method invocation and new.

We present below first the constraints related to intra-procedural analysis, then
to inter-procedural analysis, and finally to class hierarchies.

4.2.1 Variable assignment

The assignment constraint is as follows:

41

Let us assume:

l ∈ Loc

e ∈ Expr (Expr is the syntactic domain of expressions)

v1, v2 ∈ variable

bop ∈ BinayOperator

uop ∈ UnaryOperator

c ∈ literal

v.f ∈ field

t ∈ Type

Then for an assignment l = e, the constraint is bt(l) ⊇ btexp(e) where btexp (of type

Expr → BT) is defined as follows:

btexp(v1bopv2) = bt(v1) ∪ bt(v2)

btexp(uopv) = bt(v)

btexp(v) = bt(v)

btexp(c) = S

btexp(v.f) = bt(v.f)

btexp((t)v) = bt(v)

btexp(.m()) = bt(return(m))

btexp(new c())= bt class(c)

where return : Method → Loc receives a method m and returns the return location

associated to m.

Observe that even though a variable is not directly assigned a dynamic expression,
there are cases where it should become dynamic anyway because of its context. For
instance if the assignment takes place in a conditional branch and the test of the
conditional is dynamic. This is done by generating a second constraint on the variable,
as we will see in 4.2.2.

42

New

The binding-time of an instance creation is as follows:

Let us assume:

l ∈ location

new class name(args) ∈ class instance creation exp

Then for an instance creation expression l = new class name(), the constraint is

bt(l) ⊇ bt class(class name)

where bt class : class → BT receives a class and returns the binding-time

of that class.

The binding time of the expression is the binding time of the self object, that is
the binding time of the new Class(fd1(deref(r)), . . . , fdn(deref(r))).

statement(m, i), (r = new Class()) ∈ i

and r is reference
and Class is a class
and fdi are instance variables
⇒ bt(r) ⊇ (bt(fd1(deref(r))), . . . , bt(fdn(deref(r))))

The binding time of the self object has the binding time type BT and is the
n-tuple of binding times of instance variables.

In case of a new expression, additional constraints must be generated to deal with
the arguments of the constructor. Basically, for each field c.f of class c corresponding
to an argument argi of the constructor, the following constraint has to be generated:

bt(c.f) ⊇ bt(argi)

Field assignment

Field assignment is an assignment of the form v.f = e, where e is an expression. The
binding time of the field depends on the binding time of e as any assignment.

As in the case of variable assignment, the binding time of a field assignment is
also decided by the places where the assignment occurs, for example if the assignment
happens in one of the branches of a conditional, then the binding time of the condi-
tional test decides also the binding time of the variable. We take into account this in

43

Conditioning Variable Assignments in section 4.2.2. In particular, the binding time
of the field is dynamic if the binding time of the expression it is assigned is dynamic.

An assignment where the left part is a field can change the binding-time of the
declared class of the object pointed to by v. This is because references have the same
binding-time as objects and objects have the binding-time of their class. Consequently
it is necessary to add a constraint to express the relationship between the binding-
time of a class and the binding-time of its objects and between the binding-time of
an object and the binding-time of its instance variables.

In this case, and for the sake of simplicity, we chose to add a constraint that
relates the binding-time of the instance variables to the binding-time of the class of
the object, that is the declared class of the reference that is pointing to the object.

Let us assume:

v.f i ∈ field

Then for any instance variable v.f i of an object, the constraint is
class bt(declared class(v)) ⊇ bt(v.f i)

Where declared class : Loc → Class receives a Location and

returns the Class associated to m,

and

bt class : Class → BT receives a class and

maps it to the binding-time of that class

Field Access

In terms of constraints the field binding-time is:

44

let us assume:

v.f ∈ field

s ∈ π

Then for a field access v.f , the constraint is:

bt(v.f) ⊇ bt class(declared class(v.f)) ,if v.f is an object

bt(v.f) ⊇ s such that s = S or s = D, if v.f is of basic type

Where declared class : Loc → Class receives a Location y returns the Class associ-

ated to m, and bt class : Class → BT receives a class and maps it to the binding-time

of that class.

If a field i is of primitive type, then its binding-time is S or D. If i is not a
primitive type, then the binding time of i is a BT that can be more complex (a tuple
for instance).
The binding time of the instance variable i of an object depends on what it is the
instance variable, because the binding time has a different types depending on if the
instance variable is an object or a value of a primitive type. If it is an object, then
the field access will have a binding time of type Γ, since it is the binding time of the
object that is stored in the instance variable. On the contrary, if it is a value of a
base type what is in the instance variable i of object g(r), then the binding time will
be of type π whose values can be S or D.
As we saw in section 3.5.2, the binding time of an object is a tuple formed of binding
times. An element i of this tuple is the union of the binding times of instance variable
i, if it exists, on all the objects that belong to classes that object o have as real type
throughout the analyzed program.
Considering this, we can say that:

statement(m, i),x.field i∈ i where x.field i is actually a reference to an object or
primitive type that is a field of the object pointed to by r, so x.field i is fd i(x)

• fdi(deref(r)) is the ith instance variable of the object that is being pointed to
by r

• r is a reference

• deref(r) is the object to which the instance variables belong.

45

Here there is a statement i in a method m, the statement i has a Field access

1. If the instance variable fdi of object deref(r) is an object, let’s say deref(r)
⇒ bt(fdi(deref(r))) =

⋃
(bt(classOfj(object)))∀ class j to which the object can

belong.

2. the instance variable fdi of object deref(r) is a value of a base type
⇒ fdi(deref(r)) = v where v is a value
⇒ bt(fdi(deref(r))) = bt(v)1

It happens that objects are referenced to by references, in this case our object o

is referenced by the reference r. We can here use the fd and deref functions defined
in section 3.3.1 since a field access is nothing more than a reference to an object that
is de-referenced and pinpointed a certain object’s instance variable. In terms of our
functions, that is to say that to access instance variable i of an object pointed to by
r, we just apply the composition of deref with fd, for instance fdi(deref(r)).

4.2.2 Conditional

The binding time of a conditional depends on the binding time of its test condition2.
Let us assume:

block1, block2 ∈ block

test ∈ variable

Then for a conditional Iftestblock1block2, the constraint is bt(If) ⊇ bt(test)

In another format, we write the same: statement(m, i), conditionali = i,
bt(conditionali) ⊇ bt(test(i))
We say that in a method m there is a statement conditionali whose binding time

depends on the binding time of the test of the conditional.
Here conditionali = i express that the sentence i is a conditional.

Conditional Nesting

But two ore more ifs can be nested one into another. In this case the binding time
of the inner if depends on the binding time of the outer if, that is, of the if that

1v is the actual argument sent to the expression
2The test condition is the conditional condition that decides, depending on its value, if either the

true branch or the false branch is going to be executed.

46

has the branch in which the inner if is. Later we will call this outer if the enclosing
conditional of the first one. To reflect the fact that if the enclosing if is dynamic, the
inner one must also be dynamic, there exists the following constraint:

Let us assume:

If1 test1 block1 block2 ∈ stmt

If2 test2 block3 block4 ∈ stmt

test1, test2 ∈ variable

block1, block2, block3, block4 ∈ block

Where If2 is nested into If1. That is,

If2test2 block3 block4 ∈ block1 or

If2test2 block3 block4 ∈ block2

Then bt(If2) ⊇ bt(test1)

Conditional Assignments

As we said before, the assignment depends on the conditional. Given an assign-
ment of the form x = expression, where x is a variable name and expression a
valid variable asignment expression, if that assignment is a statement of one of the
branches of an conditional, then the binding time of x depends directly on the binding
time of the test of the conditional. This is because if the test is dynamic, then x is
dynamic, and the specializer doesn’t know that a branch will be eliminated at spe-
cialization time. So the x should be regarded as dynamic if the conditional’s test is
dynamic. This raises the following constraint:

47

Let us assume:

l ∈ Loc

e ∈ variableassignmentexp

If1 test1 block1 block2 ∈ stmt

l = e ∈ block1 or l = e ∈ block2

Then for the assignment l = e, the constraint is

bt(l) ⊇ btexp(e)

if x is the left hand side of an assignment that appears in one of the branches of
the ifi then generates the constraint bt(x) ⊇ bt(if1).

4.2.3 While

The handling of while statements does not present any special difficulty once condi-
tional statements are handled.

4.2.4 Method Invocation

The analysis we make is monovariant (see section 2.3.3), which means that for each
method invocation in the future only one specialization will be produced. In terms
of binding-time analysis, this means that the binding time of each formal parameter
is the uppermost state of the binding time of the corresponding actual parameter in
each call. So if in one method call the actual parameter argi is static, but in another
call to the same method the actual parameter argi is dynamic, then the binding-time
analysis should inform that the formal parameter formi corresponding to the actual
parameter argi should be considered dynamic. It is the same case as for variable
assignment, if we think that the actual parameter is assigned to the formal parameter
in each method call.

As said in 3.5.4, we assume that there is no method overloading, in fact, there
are no two methods with the same name. Taking this into account, the constraint
generation for method calls has two aspects: the constraint generation for the call
and constraint generation for returning from the call (if the method does not return
void).

The following sections show the different constraints that apply to method invo-
cation according to the aforementioned two aspects of a method call.

48

Constraint generation for the call

The binding time of the formal arguments respect to the binding time of the ac-
tual arguments follows the same principles as the assignment. We can see that the
constraints for this are the same as for the assignment formi = argi.

Let us assume:

argi, formi ∈ location

arg1, ..., argn ∈ args∀i ∈ [1..n]

form1, ..., formn ∈ args∀i ∈ [1..n]

form1, ..., formn ∈ method def∀i ∈ [1..n]

m ∈ method name

x ∈ location

o ∈ location

Then for an method call x = o.m(arg1, ..., argn), the constraint is

bt(formi) ⊇ bt(argi)

Or in another way: for a method mc whose method definition is mc(fomi1, ..., formn),
the method call of mc on the object referenced by o,
o.mc(form1, ..., formn)

Given the call (o.mc(form1, ..., formn)
statement(m, i), (x = o.mc(form1, ..., formn) ∈ i ∧ formj is the formal argument
corresponding to the actual argument argj ∀j ∈ [1, n] then generate the constraint
bt(formj) ⊇ bt(argj)

49

Let us assume:

arg1, ..., argn ∈ args ∀i ∈ [1, n]

m ∈ method name

form1, ..., formn ∈ location ∀i ∈ [1, n]

o.m(args) ∈ method invocation

x ∈ location

o ∈ location

Then for an method call x = o.m(arg1, ..., argn), the constraint is

bt(x.m(arg1, ..., argn)) ⊇ bt(return(m))

and also

bt(x) ⊇ bt(return(m))

4.2.5 Class Hierarchy

The binding-time of the class A depends on the binding-time of its superclass.

Let us assume:

A,B ∈ class name

A is superclass of B

vA.f, vB.f ∈ field

vA, vB ∈ variable

ffield name of the declared class of vA

Then for any field f that B inherits from A there is the constraint:

bt(vB.f) ⊇ bt(vA.f)

50

4.3 Summary

We have presented actual constraint generation. We have defined the expression of
the constraints with the variants in terms of the arguments. These expressions can
be used to calculate the division among the values static and dynamic that had been
defined in chapter 3.

The set of constraints is the basis of our binding-time analysis implementation
(design and prototype) and determines the precision of the binding-time analysis.

These constraints essentially model location dependencies due, in particular, to as-
signments. Once the constraints are established, a solution in terms of static/dynamic
states of the locations is found, so that the constraints are met. We will see in the
next chapter how solve the problem of finding which locations can be static and which
should dynamic so that all the constraints are satisfied.

51

52

Chapter 5

Constraint Solving

In chapter 4 we presented the constraints for petitCafé in an abstract way. In this
section we show how to turn those constraints into REQS lingo. In particular how to
turn inequations into equations.

First, section 5.1 presents the equation solver REQS and it shows how to turn the
basic constraints from abstract expressions into an equation system that REQS can
solve.

Then, section 5.2 presents petitAnalyzer, a tool to traverse the tree of the source
program extracting relevant information.

Afterwards, section 5.3 explains the process making the BTA of a petitCafé pro-
gram and give examples.

Finally, section 5.4 presents a summary.

5.1 The Equation Solver

So far we have the set of constraints and programs that we would like to analyze.
The set of constraints was defined in section 4.2 and the programs are the ones that
we can write following the grammar defined in section 3.2.1.

As said before, the constraints, generated for a concrete program, define an in-
equation system that reflects the relationship between the different program parts.
In particular, they define the relationship with respect to the binding times. For
instance, the assignment x = y, implies that if y is dynamic, then x should be an-
notated as dynamic. The variable assignment in section 4.2.1 enforces this. But this
constraint system has to be solved, thus we use an equation solver to do it.

We use REQS (”résolution de système d’équations récursives”)[19] to solve equa-
tions. REQS is a program that solves recursive-equation systems produced in the
context of static analysis of programs. It is independent of the application domain

53

because it solves a system of equations on a domain of properties. That system
should be the result of an analysis of the specific domain. The solution to this system
represents the information looked for.

Now we have to build a bridge between the inequation constraint system and the
equation system written in REQS lingo. Consequently we show the how to transform
the abstract constraints so that can understand them. Then we write a program that
traverses the tree of the program we want to analyze, detects the parts that we look for
(assignments, conditionals and method calls) and writes the relationship information
between those parts. Using this information we produce REQS equations.

5.1.1 REQS Basics

REQS is a program solving recursive-equation systems. It offers a number of prede-
fined lattices (i.e boolean, T2) and allows using basic operators (i.e equality operator).
Using them we build the equation systems that REQS solve.

Lattice

In particular REQS offers the predefined lattices ’T2’ 1 and boolean. We use T2, a
lattice of two elements, top and bottom, where ⊥ ⊆ >

We map the binding-time values S and D to ⊥ and > respectively. ⊥ and > are
represented by the T2 predefined constants ’BOTTOM and ’TOP respectively. For
instance,

y = ’BOTTOM

indicates that y is ⊥, that maps to S (static), one of the values of the domain we
are interested in. On the contrary,

x = ’TOP
indicates that variable x is D (dynamic). Thus, to write the equation system in REQS
lingo, we can use as many variables as we need, but in the domain of values used by
REQS, there are only two values: ⊥ and >.

Operators equality, INTER and UNION

REQS does not have the operator for inequations, applied to the lattice we use, T2,
but it does provide the equality, INTER and UNION operators.

• equality between two operands, (i.e. x = y) means that the left operand has
the same value (’TOP or ’BOTTOM) as the right operand.

• UNION returns the upper binding-time out of two elements of the lattice T2.

1T for treillis, lattice in French

54

• INTER returns the lower binding-time out of two elements of the lattice T2.

Let us assume the domain πR = {⊥,>}
The UNION operator is defined ∪ : (πR, πR) → πR

where:

∪(>,>) = > (5.1)

∪(⊥,>) = > (5.2)

∪(>,⊥) = > (5.3)

∪(⊥,⊥) = ⊥ (5.4)

And for the same domain πR = {⊥,>}
The INTER operator is defined ∩ : (πR, πR) → πR

where:

∩(>,>) = > (5.5)

∩(⊥,>) = ⊥ (5.6)

∩(>,⊥) = ⊥ (5.7)

∩(⊥,⊥) = ⊥ (5.8)

For the basic case of inequation used to write the constraints:

bt(l1) ⊇ bt(l2) (5.9)

the equation written in REQS lingo is:

l1 = ∪(∩ l2 ′TOP) l1

The proof takes into account all cases according to the values of l1 and l2:

In order to give the proof we will use an auxiliary function, new value : variable →
πr that takes a REQS variable and returns the value result of applying the REQS
equation aforementioned.

We will use > and ⊥ instead of ’TOP and ’BOTTOM for the proof to be consistent
with the definition of lattice T2. Nevertheless, in the examples we will use ’TOP and
’BOTTOM, the constants defined for T2, since that is the way to write the equations
defined in REQS.

The four cases according to the combinations of ⊥ and > that l1 and l2 can
present are:

55

Case 1: l1 = >, l2 = >

new value(l1) = ∪ (∩ l2 >) l1

= ∪ (∩ >>) > replacing l1 and l2 for their values

= ∪ > > for 5.5

= > for 5.1

Result of applying the equation is new value(l1) = >

Case 2: l1 = ⊥, l2 = >

new value(l1) = ∪ (∩ l2 >) l1

= ∪ (∩ >>) ⊥ replacing l1 and l2 for their values

= ∪ > ⊥ for 5.5

= > for 5.3

Result of applying the equation is new value(l1) = >

Case 3: l1 = >, l2 = ⊥

new value(l1) = ∪ (∩ l2 >) l1

= ∪ (∩ ⊥>) > replacing l1 and l2 for their values

= ∪ ⊥ > for 5.6

= > for 5.2

Result of applying the equation is new value(l1) = >

Case 4: l1 = ⊥, l2 = ⊥

new value(l1) = ∪ (∩ l2 >) l1

= ∪ (∩ ⊥>) ⊥ replacing l1 and l2 for their values

= ∪ ⊥ ⊥ for 5.6

= ⊥ for 5.4

Result of applying the equation is new value(l1) = ⊥

56

When it happens that new value(l1) = > and l1 is ⊥, REQS assigns the value >
to l1 in an attempt to solve the equation system. This is exactly what interests us,
since it means that it is solving the equation system taking into account the constraint
5.9. In particular, it is the case when l1 = ⊥ and l2 = >.

5.1.2 Turning Inequations into Equations

For REQS to answer the inequation system given for the constraints applied to the
source program, we need to map the operators present in our constraint system into
the operators provided by REQS.

REQS solves an equation system, but we can translate the ⊇ operator we used to
write our previously defined constraints into equations that REQS accepts.

Example of REQS solving bt(l1) ⊇ bt(l2)

We show through an example how REQS behaves when it finds the following speci-
fication.

type l1, l2, aux T2

l2 = ’TOP

l1 = ’BOTTOM

aux = (INTER l2 ’TOP)

l1 = (UNION aux l1)

This code expresses in REQS lingo the basic abstract constraint bt(l1) ⊇ bt(l2),
in this case with l1 static and l2 dynamic. Note that l1 and l2 could be variable of
primitive type.

Figure 5.1 shows the graph shown by REQS when running the example.
As expected, REQS answers that l1 should be annotated as dynamic. It is right

because l2 was dynamic (’TOP in REQS lingo)2 and l1 as well as l2 were bound by
the constraint bt(l1) ⊇ bt(l2). Figure 5.2 shows the answer of REQS3.

5.1.3 Constraints in REQS

The answer of the petitAnalyzer needs to be translated to a system of equations that
REQS can analyze. This section show how to translate the constraint system in terms
of the ’abstract’ inequations into REQS.

2’BOTTOM is static in REQS lingo.
3”T” for ’TOP, had it answered ’BOTTOM, it had shown a ”B”.

57

Figure 5.1: Graph shown by REQS

Figure 5.2: REQS answer solving bt(l1) ⊇ bt(l2)

To show the transition we take the program part (i.e. assignment) and the tuples
that are produced for the first analyzer and indicate how to write this piece of the
system in code understandable by REQS.

Literal

When the source program analyzer finds one literal, it records that it has found a
literal by mapping it to the predefined tuple element value.

Example:

Int y;

y = 2;

This code is translated into the abstract tuple (see section 5.2):

(assignment, y, value)

Any value element of a tuple is mapped to the ’BOTTOM value of the domain
of lattice T2 in REQS. In fact, we can translate that into REQS in the following way:

58

type value, y T2

value = ’BOTTOM

y = value

Figure 5.3 shows the graph that REQS presents.

Figure 5.3: Graph presented by REQS with constants

Finally REQS indicates that y is static. Its answer is:

value: B

y: B

Assignment

When the analyzer finds an assignment i.e. l 1 = l 2 it produces the tuple:

(assignment, l 1,l 2)

For example, assume that expression is static in

Int x;

x = expression;

The source program analyzer associates the text above with the tuple

(assignment, x, expression)

And finally generates the REQS code

type x, expression T2

expression = ’BOTTOM

x = expression

59

To this system, REQS answers that x is ”B”, for ’BOTTOM, which translated to the
domain of our model, means that x is static.

Had expression been dynamic, REQS code would have been:

type x, expression T2

expression = ’TOP

x = expression

And REQS would have answered that x is ”T”, for ’TOP, meaning that x is
dynamic.

Sometimes it may happen that a variable is affected by constraints several times.
For instance if a variable appears in the left-hand side of more than one assignment
statement as in this example:

x = 1;

x = dynamic_expression;

In this case, the assignment constraint should be applied twice. This corresponds
to the set of tuples

(assignment, x, value)

(assignment, x, dynamic expression)

Which, translated into REQS equations, gives (de stands for a dynamic variable,
it is a short name for dynamic expression):

type x,x1,x2,value,de T2

de = ’TOP

value = ’BOTTOM

x1 = value

x2 = de

x = (UNION x1 x2)

The UNION operator, as expected, makes x be ’TOP. Figure 5.4 shows the graph
produced by REQS. It shows the dependency of x with respect to value and de.

Finally the answer of REQS is:

value: B

de: T

x2: T

x: T

x1: B

60

Figure 5.4: TOP prevailing over BOTTOM

Conditional

When there is a conditional in the code, there are several constraints that can apply.
They are explained in 4.2.2. There is the conditional constraint, which derives in
the application of a constraint on the expression to produce the binding time of the
conditional test condition. This expression can also lead to add several constraints,
depending on the expression.
Here it is an example of a constrained conditional.

t= x == 0;

if (t) a = 1; //t is the condition test

else a = 2;

The output of the petitAnalyzer is:

• (if, if1, testif1), conditional constraint. It is to enforce that the if depends on
the test

• (testif, testif1, expression test), testifi ⊇ expression constraint. It is to say
that testif1 depends on the expression of the test

• expression constraints. There are two:

(expression, expression test, x)

This is to say that the expression called expression test depends on x, and

61

(expression, expression test, 0)

idem, but it depends on 0, a value

• (assignment, a, ifi), conditional assignment constraint. To say that if a is in
the left side of an assignment in one of the branches of ifi, then the assignment
depends of the binding time of an if, in particular, on the binding time of ifi.

Here is an example of a system written in such a way that REQS can understand
and then solve it.

Type i, test, x, zero, a, one, two, a1 T2

i = (UNION (INTER test ’TOP) i1) //i depends on the test

test = (UNION (INTER x ’TOP) test1)

test = (UNION (INTER zero ’TOP) test1)

one = ’BOTTOM

two = ’BOTTOM

a1 = one

a1 = two

a = (UNION (INTER i ’TOP) a1) //a depends on the if

5.1.4 Example

The following example shows how the analysis is performed.

public class Example {

int test;

/** Creates a new instance of Example */

public Example() {

}

public void method () {

test=0;

}

}

Given as example the Example program, the first analyzer shows the tree that
contains an assignment and gives as a result: (assignment, test, value)

When we translate this into REQS constraints using the Variable Assignment
pattern, we obtain code like the following one:

62

type x,value T2

value = ’BOTTOM

x = value

Which once solved by REQS gives the solution:

x: B

value: B

5.2 petitAnalyzer

We call petitAnalyzer the program that we made and that traverses the abstract syn-
tax tree (AST) of the program to be analyzed and exposes the relevant relationships
between the parts. It receives as input a program to analyze, traverses its AST look-
ing for assignments, conditionals and method calls and returns a set of tuples. Each
tuple indicates the statement found, for instance assignment, the name of the part
whose binding time is affected by the statement, and the name of the part whose
binding time affects the previous element of the tuple.

For example given the assignment x = y, the analyzer tells that it found an as-
signment, on the variable x and that the binding time that affects x binding time is
the binding time of y.

Figure 5.5 shows petitAnalyzer analyzing a petitCafé program. We can observe
that in order to express that it founds the assignment x = y in the source program,
petitAnalyzer shows the tuple (assignment, x, y) as it shows the upper right text
area.

It is because there is a constraint on x, variable assignment, that says that there
is a relationship between the binding-time of x and the binding-time of y.

The relationship is that if y is dynamic, then x is forced upward to be dynamic. We
say upward because, as said before, dynamic prevails over static. Thus the constraint
variable assignment makes that the final result is variable x dynamic.

Another example is y = 2 In this case the binding time of 2 is static because it
is a constant, so it is bound by the constant constraint. The analyzer should simply
inform that an assignment has been found on the y and that y is assigned some value
that is static. (assignment, y, value)

(assignment, y, value)

Figure 5.6 shows the AST displayer, ASTDisplayer, showing the parsed tree of
our program.

63

Figure 5.5: petitAnalyzer

5.2.1 Showing the Annotated Program

Once that we have the information about how to annotate each program part, we show
the source petitCafé program colored. We show it with HighLight, a program that we
made and that receives a petitCafé program and the information about the binding-
time of the program parts and produces as output the program with the dynamic parts
in red and the static parts in blue. So far it takes into account variables of primitive
types with assignments and conditionals. Figure 5.7 shows HighLight displaying an
annotated program.

64

Figure 5.6: ASTDisplayer showing part of the parse tree

5.3 An overview of BTA of petitCafé programs

We perform BTA on petitCafé (a subset of Java) programs in order to find which
program elements are static (known at specialization time) and which dynamic (un-
known at specialization time). We rely on constraint-based program analysis [16].
Thus, in a first step we define the syntax for petitCafé and define the model on which
we will work (i.e. how to express the binding-time of an object, locations, abstract
and syntactic level).

Then we write a set of abstract constraints that defines an inequation system
based on the model and on the characteristics of object-oriented languages, in par-
ticular Java. The goal is to have an inequation system that reflects the relationship
between elements of the program in object-oriented languages. So that if there exists
a relationship between two elements and the binding-time of one element affects the
binding-time of another, that relationship is written as a constraint in the inequation

65

Figure 5.7: HighLight showing the annotated program according to the BTA per-
formed

system.
Consequently, the solution of that inequation system shows which program parts

of the source program are static and which dynamic.
In particular we use the equation solver named REQS to find this solution. Be-

sides we wrote and used a program, petitAnalyzer, to look for relevant information in
the source program (e.g. assignments). petitAnalyzer looks for assignments and con-
ditionals in the source program and using the abstract constraint inequation system
aforementioned (it is embedded in its logic) answers an equivalent equation system
written in REQS lingo.

The overall process to find the BTA of a petitCafé program is, thus, the following:

1. Traverse the source program with petitAnalyzer. This returns the equation
system written in REQS lingo.

2. Make REQS solve the system produced by petitAnalyzer.

Figure 5.8 shows this process.

5.4 Summary

We have presented an equation solver and explained how it can be used to solve
inequation systems built with the constraints of chapter 4. We have shown how to
turn the inequations into equations that can be understood by the equation solver
and given examples as well.

Afterwards, we have presented a program that traverses a source program (the
one to analyze) looking for assignments and conditionals on variables of basic type,
producing the code for the equation solver.

Finally we have given an overview of the process.

66

Figure 5.8: Binding-time analysis complete process

67

68

Chapter 6

Conclusion

In this chapter we recapitulate the motivations and goals of this work and what has
been accomplished. Afterwards, we give our insight into what could be future work
based on our approach and a final conclusion.

6.1 Motivation and Goal

Object-oriented languages allow the easy construction of general software compo-
nents, but this pays the toll of inefficiency. Binding-time analysis is a fundamental
technique for partial evaluation and partial evaluation allows to map generic software
into specific implementations dedicated to specific purpose.

Our goal was to design model that helped concrete reasoning about binding-time
analysis for object-oriented languages. That model had to be simple and flexible,
capturing the basic characteristics of BTA for object-oriented languages.

The design would lay the foundations of correct and precise BTAs for Java, start-
ing from the definitions of of the semantics of Java and relying on constraint-based
program analysis.

6.2 Summary

To achieve our goal, we defined petitCafé, a subset of Java with the essential charac-
teristics specific of object-oriented languages.

Moreover, we modelled a simple BTA for petitCafé using constraints and imple-
mented a small prototype taking into account some of the issues included in the
model. In order to do this, we studied the theoretical framework for program analysis
provided by constraint-based analysis.

69

Then, we defined the constraints necessary to perform the BTA of programs based
on the object-oriented paradigm, using the subset of Java we had previously defined.

Thus we created a simple and yet flexible model to facilitate reasoning about
BTA for object-oriented languages. It considers the binding time of objects as tuple
of binding times, recording the state of the instance variables and consequently adding
a degree of precision.

Furthermore, we defined the software architecture making it possible to apply the
constraints to a petitCafé program, creating an equation system, using an equation
solver to answer it and producing the source program annotated according to the
BTA performed.

6.3 Future Work

We leave as future work a proof of correctness of the constraint system.
As well as that, a short term work that would improve this work is the extension

of the prototype (i.e to include method calls and field access).
A next step would be to actually support Java by defining the forward and back-

ward translations from Java to petitCafé.
In addition, a next step would be to improve the BTA model, for instance, in

order to include flow sensitivity (via an SSA transformation), use sensitivity and
polyvariance.

Then to add support for Java features such as reflection, exceptions and multi-
threading.

In general, and maybe one of the most interesting works, would be to apply
partial evaluation to the domain of software components, using it to configure each
component to a specific functionality, as well as to optimize component interaction.

6.4 Final Conclusion

Our model captures the essence of binding-time analysis for the object-oriented
paradigm. Its simplicity and flexibility facilitates the creation of extensions that
are needed in order to analyze realistic programs. Furthermore, our model serves as
a first base for reasoning about fundamental characteristics of binding-time analysis
for object-oriented programs.

70

Bibliography

[1] Documentation of the first public release of JSPec.

http://compose.labri.fr/prototypes/jspec/doc/.

[2] L.O. Andersen. Program Analysis and Specialization for the C Programming

Language. PhD thesis, DIKU, University of Copenhagen, May 1994.

[3] A.W. Appel. Modern compiler implementation in Java. Cambridge University

Press, 1998.

[4] Kenichi Asai. Binding-time analysis for both static and dynamic expressions. In

Static Analysis Symposium, pages 117–133, 1999.

[5] Frédéric Besson. Forme équationnelle de l’analyse de flot de contrôle. IRISA,

Working paper, 2001.

[6] E. Börger and W. Schulte. Programmer friendly modular definition of the se-

mantics of Java. In J. Alves-Foss, editor, Formal Syntax and Semantics of Java,

Lecture Notes in Computer Science. Springer-Verlag, 1998.

[7] C. Consel and S.C. Khoo. Parameterized partial evaluation. ACM Transactions

on Programming Languages and Systems, 15(3):463–493, July 1993.

[8] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-

neth Zadeck. Efficiently computing static single assignment form and the control

dependence graph. ACM Transactions on Programming Languages and Systems,

13(4):451–490, October 1991.

[9] James Gosling et al. The Java Language Specification Second Edition. Addison-

Wesley, 2000.

71

[10] L. Hornof. Static Analyses for the Effective Specialization of Realistic Applica-

tions. PhD thesis, Université de Rennes I, June 1997.

[11] L. Hornof and J. Noyé. Accurate binding-time analysis for imperative languages:

Flow, context and return sensitivity. In ACM SIGPLAN Symposium on Partial

Evaluation and Semantics-Based Program Manipulation, pages 63–73, Amster-

dam, The Netherlands, June 1997. ACM Press. ACM SIGPLAN Notices, 32(12).

[12] L. Hornof, J. Noyé, and C. Consel. Effective specialization of realistic programs

via use sensitivity. In P. Van Hentenryck, editor, Proceedings of the Fourth Inter-

national Symposium on Static Analysis, SAS’97, volume 1302 of Lecture Notes

in Computer Science, pages 293–314, Paris, France, September 1997. Springer-

Verlag.

[13] N.D. Jones. An introduction to partial evaluation. ACM Computing Surveys,

28(3):480–503, September 1996.

[14] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic

Program Generation. International Series in Computer Science. Prentice Hall,

1993.

[15] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-

Wesley, 1996.

[16] F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis.

Springer-Verlag, 1999.

[17] H.R. Nielson and F. Nielson. Semantics with Applications. Wiley Professional

Computing. John Wiley & Sons, 1991.

[18] N. Oxhoj, J. Palsberg, and M.I. Schwartzbach. Making type inference practical.

In ECOOP’92 - Object-Oriented Programming - 6th European Conference, vol-

ume 615 of Lecture Notes in Computer Science, pages 329–349. Springer-Verlag,

1992.

[19] F. Ployette. L’outil de résolution de système d’équations récursives reqs, 1999.

http://www.irisa.fr/lande/REQS/docHtml/REQS.html.

[20] U. Schultz and C. Consel. Automatic program specialization for java. Technical

report, DAIMI, University of Aarhus, December 2000.

72

[21] U. Schultz, J. Lawall, C. Consel, and G. Muller. Towards automatic specializa-

tion of Java programs. In R. Guerraoui, editor, ECOOP’99 - Object-Oriented

Programming - 13th European Conference, volume 1648 of Lecture Notes in Com-

puter Science, pages 367–390, Lisbon, Portugal, June 1999. Springer-Verlag.

[22] Ulrik P. Schultz. Partial evaluation for class-based object-oriented languages.

Lecture Notes in Computer Science, 2053, 2001.

[23] U.P. Schultz. Object-Oriented Software Engineering Using Partial Evaluation.

PhD thesis, Université de Rennes I, December 2000.

73

