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Abstract

Evolution and reuse of software are two unsolved issues nowadays. There has been several
attempts to treat with them, but until now anyone has been totally effective. Type casts
abound in systems that have been built with programming languages which do not have support
for genericty. Type casts due to the lack of genericity in programming languages difficult even
more evolution and reuse, and they are seen as a signal of bad design and implementation. We
propose a methodology to refactor code from a programming language which has no support for
genericity into code written in a programming language which it does support. As any refactoring
process, the transformation must not change the behavior or semantics of the program. One of
the direct benefits of this refactoring is that all the type casts caused for the lack of genericity
in the programming language will disappear. To validate the usefulness and applicability of our
methodology, we have built a prototype tool which implements our methodology, and transforms
code as we described before. This prototype transform code written in Java into code written
in GJ.
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Chapter 1

Introduction

1.1 Motivation

Reuse is one of the main issues that remains untackled up-until now. There have been several
attempts for improving reusability, but until now, we do not have a silver bullet that tells us
how to build reusable software, or how to reuse existing code in order to help us make new
systems. One of the most important benefits of reuse is to write new software taking advantage
of existing pieces of code. In this way, the software development process period is reduced,
and moreover the quality of the software to be built is improved, because generally the reused
parts have been proved in several systems in the past, giving us in this form a certain degree of
reliability, in the sense that those pieces of code are probably bug free.

Maintenance is one of the stages that takes more time and effort than the others in the
software development cycle. If programs could be more clearly expressed, this task would be
much easier, faster and less expensive. It would be very helpful for this task to have clean code,
and if it is not the case, it would be convenient to have a way to transform dirty code into clean
code, preserving the behavior of the old code. This is actually called reengineering of legacy
systems [25].

We cannot speak about reuse without saying something about evolution. It is not realistic
to think that a component can be totally reused in a good way the first time. We need to modify
and adapt that component several times to reach a stable state of maturity, because it is not
possible to predict all different extensions and uses it can have. These modifications are more
difficult in a tangled code, because it is difficult to understand, and in consequence difficult to
adapt and reuse. If we want a flexible reusable system, we should be able to extend or modify
it with changes that were unforeseen.

In the last years, there have been people making big efforts trying to make software sys-
tems more flexible and adequate for reuse and evolution. Examples of these attempts are the
object-oriented paradigm, the construction of frameworks, the use of design patterns [21], reuse
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contracts [22], etc. However, there are still several problems that remain unsolved trying to
adopt these techniques. One of them is, for instance, the elimination of type casts.

Type casts difficult the task of reusing, maintaining and evolving software. Type casts are
often seen as a signal of bad design and implementation. Software with a high quantity of type
casts is therefore difficult to modify, because they make programs very inflexible, and hard to
understand for people which want to reuse or maintain them, even if they were involved in their
development processes.

To illustrate that many type casts are due to the lack of genericity in some programming
languages, we present an implementation example in a Java like language, of a stack which
contains elements of any type. The example of below is written in what we will call the generic
idiom. We will say that a program is written in the generic idiom, if in every place (e.g. a
variable) where we want to store objects of several types, we declare them of types which are
supertypes (we could say a upper bound types) of all the types of the objects we want to put
in. The most common use of the generic idiom is when, in a container class, we declare the
variable where the data will be stored of type root (which is in general the top of the hierarchy of
classes), and in this way we can keep, in instances of this container class, objects of any subtype
of root. However, each time that an object is stored in this place, type information is lost. To
recover this information it is necessary to perform a type cast in every place where an object is
extracted, in order to give them by hand the lost information.

class Stack

{
Object datall;
int top;
Stack(O) { ... }
void push( Object data ) { ... %}
Object pop() { ... }
}

The following code excerpt is a really simple example of a possible use of this stack to keep
elements of type String:

Stack stack=new Stack();

stack.push("stringl");

stack.push("string2");

String s= stack.pop() ; /* --> Compile time error */
String s1= (String) stack.pop() ; /* this line is ok */
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As this example is written in the generic idiom, it is possible to insert objects which are
subtypes of Object. This situation can provoke a potential type error at run time, because the
program does not know, in the moment when is extracting data from the stack, if the elements
that were inserted are effectively of the “promised” type. This problem is generated by the
loss of type information, i.e., when an object of a type distinct of Object is inserted in the
stack, it is handled as an object of type Object, and not as an object of its original type. In
concrete, the previous example is not type safe, because we cannot detect the following situation:

Stack integerStack=new Stack();

Stack stringStack=new Stack();

integerStack.push(new Integer(1));

integerStack.push(new Integer(2));

stringStack=integerStack; /* No problem at compile time */

String s=(String) stringStack.pop(); /* However, there is a problem here */
/* promised type = String , but real type = Integer */

These kind of type casts can be avoided if the programming language supports genericity,
because these languages keep the type information of the objects that were inserted in the stack,
and the program knows that if it wants to extract an element from the stack, it will be of the
same type than the “promised” type. There are several object-oriented programming languages
that have included this feature, as for example C++ [17], Eiffel [18], Pizza [6], GJ [3] [4] and
PolyJ [5].

The following code extract is the same example, but in a pseudo language with generic
typing, also called genericity. The term genericity covers the ability to describe generic classes,
i.e. classes abstracting over some type information [29]:

class Stack<T>

{
T elements[];
int top;
Stack() { ... }
void push( T data ) { ... }
T popO { ... }
+

And one example of an application of the previous code is:
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Stack<String> stack=new Stack();
stack.push("stringl");

stack.push("string2");

String s=stack.pop(); /* now this line is ok !!! */
String si=stack.pop(;

We have declared a variable stack with a parametric type, which in this case is String,
and due to that we can retrieve elements of the stack without the necessity to perform a type
cast (because of the reasons explained before). If we want to reuse the previous code to have a
stack of integers, we only have to change the declaration of the stack variable, and of course
the elements we push into it, but we do not need to change any statement when we extract
elements. In a language with genericity, for instance GJ [3], the following code generates an
error, showing an advantage over the languages that do not use genericity but the generic idiom,
in the sense that it is feasible to detect these kind of type errors at compile time:

Stack<Integer> integerStack=new Stack<Integer>();
Stack<String> stringStack=new Stack<String>();
integerStack.push(new Integer(1));
integerStack.push(new Integer(2));
stringStack=integerStack; /* --> Compile time error */
String s=stringStack.pop();

With the help of the previous examples we have seen that a programming language that
directly supports genericity offers a clear advantage over the ones which only emulate it through
the generic idiom. In this way, we improve not just the reuse of code, but we add expressiveness
to the language as well.

Another advantage that is even more important than the previous one is the fact that
genericity is a very good way to get some global view on systems. For instance, a variable
of type Stack<String> can only be passed to code of type Stack<String>, or code typed
by Stack<T>, and in consequence, we do not lose the type information of the elements that
the stack contains internally. The previous situation is easily generalized to any type S that
internally is composed of elements of type T. Now, we type the code by S<T>, hence we do
not lose information. For example, code that inserts objects into a variable s::8S, is linked to
code that retrieves elements from s::S, because all the intermediate code is typed by S<T>,
and therefore everybody knows that the internal type is T. Figure 1.1 shows graphically the
described situation:

The knowledge that the internal structure of S consists of T’s is needed at point A and B
in the code. Genericity allows INT to transport this knowledge. With this argument we have
proved that genericity is not only useful for “container” classes. An example of the usefulness
of genericity is shown in 2.6.
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Figure 1.1: Knowledge Dependencies in a Parameterized System

Now suppose that we just use the generic idiom, then any evolution of A or B (in figure
1.1) will not cause the other to evolve too. In this case, INT is not formally parameterized and
hence the knowledge about the internal structure of S is not statically transported through the
code, i.e. if A or B evolves it is not peremptory that the other has to change (statically), but
nevertheless, dynamically, errors will occur. However, a big disadvantage of genericity, is that
INT will be parameterized by many type variables. However, this issue is currently being solved
by a clever combination of genericity and nested classes, as we explain in 2.6.

It can be useful to have a form to transform code written in the generic idiom into code
written using genericity. This kind of transformations are called refactorings. In most of
the cases, refactoring processes have been carried out manually, but there have been studies of
automation or partial automation of some kind of these operations. One of the most important
studies was achieved by W. Opdyke and R. Johnson [10] [11]. We have applied some concepts
used by Opdyke in this thesis, building a semi-automated methodology, which is in fact a
refactoring process. In contrast to what was said in [3], rewrite a library, or in general any piece
of code, to use genericity is not a trivial process. Any code refactoring process is in essence
difficult, because changes made in some part of the code are quickly propagated to other parts
of the code. The ideas of maximum cohesion and minimum coupling are hardly found in practice
in any software system, and even when these two postulates are fulfilled, a small change can
affect several other parts of the system.



CHAPTER 1. INTRODUCTION 9

1.2 Owur Solution

As we have just said, it would be nice to transform code written in the generic idiom to code
that is written using genericity, but this implies to realize major changes to the code. In order
to minimize errors during the transformation, it would be useful to have a way to do it with
the less human intervention possible, or in other words, to have a process the most automated
possible. Given that, in this thesis we propose a methodology to transform code made in a
language that does not support genericity to code with the same semantics, but written in a
programming language which does directly support generic types. This methodology is a good
help to the user who is making the transformation, and it guides him through this process try-
ing always to ask the less possible. To do that, this methodology infers useful information as
much as it can to carry out the refactoring process. Nevertheless, it is not possible to automate
it one hundred percent, because in some cases simply the methodology could choose different
valid ways to continue in the middle of the transformation, and in those cases the help of the
user is absolutely necessary to give him the desired result. To our knowledge, this is the first
methodology proposed for this kind of refactoring process.

As a way to validate the usefulness and applicability of our methodology, we have built a
prototype tool in which we can transform interactively programs in the way we explained before.
This prototype is a “mirror” of the methodology, in the sense that was built trying to make them
similar one to each other, because naturally we wanted to implement exactly our methodology
and not a slightly variation of it. As this tool is just a prototype, it only implements the most
fundamental changes of the methodology, in order to show that it is feasible to use it. We are
convinced that when the enough time and effort are available, it is viable to build a complete
tool that can handle all the possible cases present in this refactoring. We have implemented this
prototype in Java because we consider that it is the most important object-oriented language
nowadays. For the same reason, we have chosen Java as the source language of the refactoring.
As target language we have chosen GJ [3] [4], because it is a direct extension of Java (in fact,
the GJ compiler can compile any Java program without any kind of problems), making easy the
implementation of the transformations, and because it is one of the most serious and famous
languages that supports genericity.

1.3 Thesis Structure

The structure of this thesis is as follows. In chapter 2, we explain the necessary back-
ground the reader must manage in order to understand this work. We will present is this
chapter the most relevant concepts about type theory, and some concepts about refactoring. In
chapter 3, we present our methodology to solve the problem, and the tool we have built that
implements the methodology. In chapter 4, we show the validation we did in order to verify
the correctness of our methodology using the tool. Finally, we present some conclusions, re-
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marks and the possible future work necessary to improve, correct or extend our methodology
and tool. In the appendix we give some examples of transformed code realized by our prototype.



Chapter 2

Background and Terminology

In this chapter, we explain the most important concepts about type theory necessary to un-
derstand our work. Some of those important concepts that the reader should retain are: type,
type variable, parametric type, genericity, parametric polymorphism, F-bounded parametric
polymorphism and refactoring.

2.1 Types

Sometimes we classify things into different categories, which we shall call types [1]. In many
cases a type is simply a set of items. It is truth that this type definition has several problems, as
for instance subtypes are not subsets (for instance: Circles and Ellipses), but it gives us a basic
notion of what a type is. A more elaborated definition is given in [2], where a type is defined as
a set of elements in V, with V as the universe of all values. Not all subsets of V are legal types,
they must follow some properties that we will not specify here, because is out of the scope of
this thesis. We define a type system as a scheme for organizing a collection of types. There
are two different kind of types: dynamic and static. Dynamic types are types that are created
at run-time and that the compiler cannot generally anticipate. A language with dynamic types
must defer to run-time many of the traditional tasks of a compiler such as determining storage
sizes, type checking, and so on. In contrast, in most languages types are static, meaning that in
all constructs, every type is known at compile-time. From now on, every time the word “type”
is used, we mean a static type.

With types we are able to link the data elements present in a program with the real world.
For instance, we can say: Let S be a set. Note that we are saying that S is a set, but we do not
specify a concrete value for S.

A more interesting discussion is the motivation for the use of types. We could say that
the four most basic reasons for using static types are:

11
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e Early detection of errors.
e To see and discuss properties of specific types.
e More clear ideas about objects.

e Efficiency

In strongly-typed object-oriented languages like C++ [17] and Java [20], types are gener-
ally defined by classes. In Java, it is possible to define a type by means of an interface. Every
object in a strongly-typed object-oriented language must have a type. This object is an instance
of a class, so the type of the object corresponds to the type of the class. An exception to the
previous, in C++ and Java, are the called primitive types, which do not belong to the hierarchy
of classes of the language. Furthermore, if the programming language is statically-typed, every
object must have a time at compile-time. An object can have several types at the same type in
an object-oriented language. For example, in Java an object of type String is an object of type
Object as well. This allows us to treat any object of a given type as an object of its supertypes,
or in other words, we can say that an object of a given type is a “special case” of an object
of one of its supertypes. This is useful to pass objects of subtypes to functions that receives
objects of a supertype.

A type system allows us to find an inadequate use of an object. If an object of a given type
is used in a context that is not correct for an object of that type, a type error is generated. For
instance, if we want to add an object of type integer to an object of type string, we will get a
type error (except if the semantics of the programming language allows this operation between
integers and strings, as for example Perl [19]).

Properties of specific types could be, for example, an operator size. This property is valid
in types like strings and arrays, but not in integers or booleans. Sometimes the properties of a
type are extremely relevant, and they could even define a type.

2.2 Polymorphism

Programming languages where some values and variables may have more than one type are said
to be polymorphic languages. Polymorphic functions are functions whose formal parameters can
have more than one type. Polymorphic types are types whose operations are applicable to values
of more than one type [2]. Those types are also called parametric types, and the parameters
which this parametric type has, are called type variables. There are several forms of polymor-
phism as for example parametric and inclusion polymorphism.

In inclusion polymorphism an object can belong to several classes which need not be
disjoint. This kind of polymorphism is introduced in [2] in order to model polymorphism in
object-oriented programming. Subtyping is a particular case of inclusion polymorphism. Any
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TRUCK CAR MOTORCYCLE

MAZDA FORD HARLEY YAMAHA

Figure 2.1: Hierarchy of Vehicles

subtype can be used in a supertype context, allowing in this way that any operation of the
supertype can be applied to any object of a subtype. In summary, we can say that an object
can have many types at the same time. For example, in the hierarchy of figure 2.1, objects of
the class Car are instances of the class Vehicle, or in other words, objects of type Car have
type Vehicle as well. If we have, for example, a method which is applicable to an object of type
Vehicle, then it can receive objects of type Car or Motorcycle. In concrete, suppose that the
method return the year of construction of a vehicle (which is indeed a property of any vehicle),
then this method can answer even if the parameters are of type Harley, Mazda, Truck, and so
on.

In parametric polymorphism, an implicit or explicit type parameter of a polymorphic
function defines, for each application, the type of the argument. The functions that present
parametric polymorphism are also called generic functions. This is the purest form of poly-
morphism, because the same object or function can be used in different type contexts without
changes. We explain this kind of polymorphism in more detail in 2.3.

The Java programming language [20] supports all the forms of polymorphism explained
before, except parametric polymorphism. GJ [3] [4] and Pizza [6] support all of them.

In a software system, several type casts are due to the lack of genericity in the program-
ming language in which it has been built. Type casts are necessary in those cases, because the
program needs extra information that it has lost for using the generic idiom. That information
must be given by the programmer. In the context of polymorphism, a type cast means to force
an object to be of a given type. In other words, the programmer imposes the type of the object,
and in consequence, every method call of that object will correspond to an object of that type,
even if originally that object had a more specialized type.
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2.3 Parametric Polymorphism

Without genericity we are not able to model adequately polymorphic functions. For example, if
we want to build an identity function, i.e. a function that receives an object of a given type and
returns the same object, it is required to restrict to a given type to another (e.g. from integers to
integers). The ideal is to define it polymorphically for functions 7" — T from an arbitrary type
T to itself. In object-oriented languages without genericity, to emulate the identity function we
have to use the generic idiom, but ,if we take Java as example, we can define it from Object to
Object. The disadvantage of that function is that we lose type information. For instance, if we
pass an object of type String as argument, the result only ensures that the returned object is of
type Object, hence we must perform a type casts (what we could see as information explicitly
given by the programmer) to recover the knowledge we have lost. With genericity, we are able
to express that kind of function without problems. In this section, we explain the different kind
of parametric polymorphism relevant for this work.

2.3.1 Universal Parametric Polymorphism

We have defined parametric polymorphism above. In GJ and Pizza, parametric polymorphism
allows us to write classes and interfaces that operate on data without specifying the data’s type.
In C++ parametric types are also known as templates [17].

A very simple example of parametric polymorphism is given in section 1.1. In that ex-
ample, we can see that the method push is a generic function, because it has an explicit type
parameter in it. If we instantiate an object of class Stack of integers or strings, the same body
of push can be applied to both of them.

We can build classes or interfaces that have even more than one type variable. For in-
stance, a hashtable could receive a type variable for the keys, and other type variable for the
values:

class HashtableEntry<A,B>
{
A key;
B value;
int hash;
HashtableEntry<A,B> next;

HashtableEntry(A key, B value, int hash, HashtableEntry<A,B> next){ ... }
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class Hashtable<A,B> extends Dictionary<A,B>
{
private HashtableEntry<A,B> table[];
private int count;

public Hashtable(){ ... }

public int size(O{ ... }

public boolean isEmptyO{ ... }

public boolean contains(B value){ ... }
public boolean containsKey(A key){ ... }
public B get(A key){ ... }

public B put(A key, B value){ ... }
public B remove(A key){ ... }

A parametric type is useful to factor common structures of types in a single definition.
This definition does not introduce a new type, but only an equivalence between the parametric
type and a type expression in any context.

2.3.2 Bounded Polymorphism

We know that subtyping and parametric polymorphism are two important and useful concepts.
Now the question is how to join them and, why and when we want to do it.

As we have explained, we can specify variables that vary over parametric types. Some-
times, we do not need (or want) that the variables range over any type, but we want to restrict
this variation to a subtype of a particular type. The previous description is known as bounded
polymorphism. For instance, if we use the hierarchy of classes in figure 2.1, we can define a class
that has a type variable like this:

class PrintInfo<T extends Vehicle>

{
T wvehicles[];

public void showDates()
{
for(int i=0; i<vehicles.length; i++)
vehicles[i] .year();
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In this case, we are imposing a restriction to the type variable, which is that it must be a
subtype of a Vehicle. If we do that, then we ensure that the types of the objects in the array
vehicles are subtypes of Vehicle, and in consequence, the calls to the method year always
will have sense. On the contrary, if the type variable T has no bound, then we cannot guarantee
that the objects in the array will answer to that method call. In the case of GJ, this is a compile
time error, but not in the case of C++.

We want to use bounded polymorphism when we need to restrict the type variable, in
order to ensure that it will be a subtype of the bound, and therefore, we can be sure that any
instance of it will fulfill a certain set of properties. This can be seen in the following example:

type A={valuel:Int}

add-1
add-2

fun(a:A, d:Int) a.valuel:=a.valuel+d; a
T<A fun(a:T, d:Int) a.valuel:=a.valuel+d; a

type B={valuel:Int, value2:Int}

The example shows that if we want to apply add-1, we need to give an argument that is
of type A (or a subtype). If we give an object of type B to add-1, we will receive an object of
type A, and in consequence we cannot retrieve the field value2 from the result. On the other
hand, if we apply add-2 to an object of type B we do receive an object of type B, increasing
in this way the expressiveness of the language (if we ignore the existence of the type casts).
We have to note that this is not possible with inheritance or with parametric polymorphism
separately. It is not possible only with inheritance, because as we have said before, when we
pass to add-1 a subtype of A, then we will receive an object of type A, and not an object of the
same type as the argument we have passed. In consequence, all the information that the object
has before has been lost. On the other hand, if we use only parametric polymorphism, i.e. T
without bound, then the application of the method is only sound when the argument has the
field valuel. However, we cannot ensure that condition beforehand without a bound.

2.3.3 F-Bounded Polymorphism

We define F-bounded quantification, saying that an universally quantified type is F-bounded if
it has the form:

Vi< Flt)o

where F'[t] is an expression, generally containing the type variable ¢ [7].
We can visualize this in the following way: If the bound F'[t] has methods m; : 0;[t], then
the condition ¢ < F[t] ensures that ¢ must have methods m;, and moreover, these methods
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must have parameters accordingly as specified by o;[t], which are defined in terms of ¢. In
consequence, t will be the most of the time a recursive type, indicating an underlying relation
between F-bounded quantification and type recursion.

The next simple example shows a class Set parameterized with a F-bounded quantified
type variable.

class Set<T implements Comparable<T>>

{
T elems[];
void addElement(T elem){ ... }
boolean isInSet(T elem){ ... }
Set extractSubSet(T elem){ ... }
T extractMinimum(O){ ... }

}

The method extractSubSet returns a new Set created with all the elements in the receiver
that are less or equal than elem. The method extractMinimum returns the minimum element
in the set. With this we are saying implicitly that elements of type T must have an order relation.

interface Comparable<T>

{

boolean lessOrEqual(T elem)
T minimum(T elem)

The method lessOrEqual means that if the receiver is less or equal than the argument.
The method minimum returns the minimum element between the receiver and the argument.

In the previous simple example we can see that F-bounded quantification is very useful.
The reason of this, is because we cannot express the example only with bounded polymorphism,
due to the fact that we need to link the type variable with the arguments and return type of some
methods present in the Comparable interface. Effectively, if we use bounded polymorphism, we
have no way to bind (unless we use explicit type checks), for instance in the method minimum, the
return type of this method with the type variable T, but on the other hand, if we use F-bounded
polymorphism, we explicitly bind the type variable T with the parameter and return type of
the method. We verify with this example that F-bounded polymorphism is highly related with
recursive types.
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2.4 Combination of Parametric Polymorphism and In-
heritance

In the moment when we want to combine parametric polymorphism and inheritance, there are
several cases that can bring problems. These examples were shown in 1.1. The first is written
in the generic idiom, and the second is written with genericity.

First:

Stack integerStack=new Stack();
Stack stringStack=new Stack();
integerStack.push(new Integer(1));
integerStack.push(new Integer(2));
stringStack=integerStack; /* 1 */
String s=(String) stringStack.pop();

Second:

Stack<Integer> integerStack=new Stack<Integer>();
Stack<String> stringStack=new Stack<String>();
integerStack.push(new Integer(1));
integerStack.push(new Integer(2));
stringStack=integerStack; /*x 2 x/

String s=stringStack.pop();

In the first example, line 1, there is no problem at compile time, but in the moment of
retrieve an element from the stack we get a run-time error. On the other hand, in the second
example, we get a compile-time error in line 2. Due to that, it is important to distinguish when
a parametric type is subtype of another. There are three different cases where we can have a
conflict. For instance, if C' < C| then:

1. 5<A>§C<A>.
2. C<A>£C< B> if A#B.

3. C<A>£C < B> if A+B.
Let’s see an example of the first case (Suppose that SuperStack is subtype of Stack:

SuperStack<Integer> ss=new SuperStack<Integer>;



CHAPTER 2. BACKGROUND AND TERMINOLOGY 19

Stack<Integer> s= new Stack<Integer>;

s=ss;
s.push(new Integer(1));
Integer i=s.pop();

As the type variables are instantiated with the same type (Integer), then ss and s are
expecting the same type, then we have no problem in retrieving elements from the stack. Let’s
see the problems of the second and third cases with the same example (now suppose that Integer
is subtype of Number):

Stack<Number> sn=new Stack<Number>;
Stack<Integer> si=new Stack<Integer>;

sn=si; /* There is an error, but suppose it works */
sn.push(new Number(2.5));
sn.pop() .isEven(); /* isEven() is only accepted by Integers */

When we perform the pop, we are expecting that the retrieved data has type Integer,
but nevertheless it is only of type Number, then when we try to apply the method isEven, which
is valid only for integers, we get a run-time error. It is exactly the same argument for the third
case. Then, these two cases are not possible in any sound type system.

2.5 Generic Java

Generic Java (GJ) [3] [4], is an extension to the Java programming language [20] that supports
types with parameters. Although many other proposals for genericity in Java have been made,
GJ is a good combination of usefulness and simplicity. Furthermore, GJ has a good chance of
becoming Java 1.2. The syntax of a GJ program looks like a normal Java program, except that
it is possible to find more type information and fewer casts. The semantics of GJ is defined by a
translation into Java. There are two possible styles of translation. The first is the homogeneous,
which is exemplified by the generic idiom, replaces each type parameter by the type of its bound.
If the type parameter has no bound, then is replaced everywhere by the type Object, and if
it has a bound Bound is replaced by the type of Bound. The other style is the heterogeneous
translation, which for each instantiation of the type parameter makes a copy one copy of the
class. GGJ uses the homogeneous translation, replacing the type parameters for their bounds,
adding suitable type casts, and adding bridge methods so that the overriding has an adequate
behavior. In other words, GJ makes the type parameters explicit and the type casts implicit.
GJ replaces each type for its so called erasure. The erasure of a parametric type is
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obtained by deleting the parameter (Stack<T> to Stack), the erasure of a non-parametric
type is the type itself (String to String) and the erasure of a type parameter is the bound
of the type parameter (if the type parameter has no bound, its erasure is Object). In other
words, GJ translate a program using genericity in a program that uses the generic idiom. Type
casts are added everywhere a call to a method for which its return type is a type parameter is
performed. Sometimes it is necessary to create a bridge method, because overriding only occurs
when the signatures of the methods match. The following example is taken from [4] and shows
this situation:

interface Comparator<A>

{
public int compare(A x, A y);
}
class ByteComparator implements Comparator<Byte>
{
public int compare(Byte x, Byte y)
{
return x.byteValue() - y.byteValue();
}
}

The translation of the class ByteComparator is as follows:

class ByteComparator implements Comparator

{
public int compare(Byte x, Byte y)
{
return x.byteValue() - y.byteValue();
}
public int compare(Object x, Object y)
{
/* this method is the bridge */
return this.compare((Byte)x, (Byte)y);
}
}

Given that this translation deletes type information, it is possible to find at run time a
potential security hole, because, for instance, a method expecting a collection of a certain kind
of elements could receive a collection of any kind of objects. This problem is solved with the use
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of insertion of bridge methods, and in this way the user could ensure security only by declaring
adequate subclasses.

As it was said, GJ supports parametric polymorphism, including bounded polymorphism
and F-bounded polymorphism. The bounds could be a class or an interface, and in the case of
F-bounded polymorphism, they can have several type parameters as well. If a type parameter
has no bound, java.lang.0Object is assumed. One constraint for the type variables in GJ, is
that they cannot be instantiated as primitive types of Java (e.g. int, boolean, etc.).

GJ supports that new code could run with old libraries, with a technique called retrofitting.
For instance, new code could be referencing a parameterized version of the type Stack, but it
can run with old code that implements the unparameterized version of Stack. To do this, GJ
creates a dummy file containing a parameterized version of Stack, which generates the correct
type information, but has trivial code. Naturally, one has to link new code with the old unpa-
rameterized class file, but in this case it is done through the dummy file.

Sometimes it is necessary to use a parameterized type without its parameters, which is
called raw type. They are useful in casts and instance test, when perhaps there is not enough
or adequate information at run time to check the complete parameterized type. For instance,
the raw type Stack represents the type Stack<A> for some indeterminate value of A. Moreover,
it is possible to assign an object of a parameterized type to a variable of the corresponding raw

type.

2.6 Uses and Restrictions of Genericity

The most obvious case where genericity is useful, is in the construction of container classes. A
container class is a class that can keep data in it, as for example a stack, linked list, tree, heap,
and so on. A concrete example of a stack was given in 1.1. Another common use is given in
STL (Standard Template Library), which is a library for C++ that contains container, itera-
tors, algorithms parameterized classes. This Library allows straightforward implementation of
software components in economic and expressive ways, and generate remarkable levels of source
code reuse. GJ contains examples of classes and interfaces which use type parameters as well,
for instance: Hashtable, Vector, Stack, Iterator, etc.

Genericity is also gaining importance in other kind of applications. Sometimes, it is use-
ful for reusing code, as for example this case given in [27], where the authors use parametric
polymorphism to define extensible visitor classes. Let’s see what an extensible visitor is with an
example. Suppose, for instance, that a visitor can handle from v; to v, kind of variants (classes
which will be visited), and in one of the methods corresponding to a variant (let’s say the variant
i), the visitor creates an instance of itself and gives it as argument to the visit method of the
variant. Now, if we want to extend this visitor for supporting a new variant v, ; by subclassing
it, inheriting all the methods corresponding to the variants from 1 to n, and creating a new
method for the new one, then the visit method of ¢ will accept only n kind of variants. This is
produced because the method passes a visitor object which do not have support for the variant
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n + 1, i.e. this visitor object is an instance of the superclass. An extensible visitor is a visitor
which in the same previous case, will subclassify its parent class, creating the new method for
the variant n + 1, but it will also overrides the method of the variant ¢ in order to pass as
argument an object of itself, which will support the n 4 1 variants.

Now, the argument is that extensible visitors are much simpler to implement using gener-
icity than the generic idiom, because without a parameterically polymorphic type system, it
is difficult to specify the types for the visitor pattern. We present two pieces of code taken
from [27], which will clarify the previous situation. The first is an example in Pizza [6], which
implements a visitor that decides if a point is inside a geometric shape. There are shapes like
circle, square, and now we want to add a new shape Union, which represent an union between
two shapes. The methods of the visitor should return a boolean indicating if the point is inside
the shape or not. The following is a description of the classes and interfaces of the example:

e ContainsPt: Visitor of shapes.
e ContainsPtUnion: Visitor of shapes + union.

e UnionShapeVisitor: Interface of a visitor of shapes + union. This is a parametric
interface, and the return type of the methods of the variants is the type variable.

e Union: It has two instances variables, shapel and shape2, which represents the two
shapes that are in the union.

class ContainsPtUnion extends ContainsPt implements UnionShapeVisitor<boolean>

{

public boolean visitUnion( Union u )
{

return u.shapel.visit(this) || u.shape2.visit(this);

Now, if we try to implement this method in Java, and in consequence in the generic idiom,
then the result is something like this:

public Object visitUnion( Union u )
{
return new Boolean
((((Boolean) (u.shapel.visit(this))).booleanValue()) ||
(((Boolean) (u.shape2.visit(this))).booleanValue()));
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As the primitive types in Java are not subtypes of object, then we cannot use boolean, but
the wrapper class Boolean. Furthermore, it is necessary to perform type casts to recover lost
information, and in addition, the clients of this visitor will have to perform type casts as well.
To make matters worst, the use of wrapper classes compromises both the program’s robustness
and its efficiency.

One drawback of genericity in comparison with inheritance is that with inheritance we
are able to make taxonomies, i.e. inheritance is good to classify things. On the other hand,
we cannot use type parameters to classify objects into categories. Another drawback is that
type parameters can grow in a program, and that can make the code tangled and difficult to
understand. However, this is currently being solved with a combination between nested classes
and genericity [28].

2.7 Refactoring

Object-oriented software seems easier to change than conventional software. However, object-
oriented software can be hard to change, since we need to change the structure of classes and the
relationships between them. Each simple change in a process of refactoring can imply several
other changes. In our case, we are transforming Java code, promoting a variable from a Java
type to a type variable, and of course this change will be propagated throughout the entire code,
changing in some cases variable types, method signatures, class declarations, etc. Sometimes,
the promotion of a variable is impossible, due to the fact that the changes are propagated beyond
the scope of our own implementation (for instance affecting Java libraries), and in this case, we
are not allowed to change the library, because our system perhaps is not the only one using it.
Refactoring is not a magic process, we cannot completely automate this process [10] [11], and
as we said before, even sometimes it is simply not possible.

Tracking down the dependencies in the code could be very difficult and error prone, if we
do it by hand. The idea of refactoring is to try to carry out the changes with a minimum of
human intervention. Our refactoring process changes not only the class where we are promoting
a variable, but all the classes that use this class as well. If we call the transformed program
before and after the refactoring with the same input, we should obtain the same result, i.e, the
refactoring process do not change the behavior of the program.

The big goal of a software restructuring process is to preserve or increase the value of
software pieces. The restructuring of a software system could make it more flexible, reusable or
more apt for evolution. In general, software restructuring is applied in the maintenance stage,
when the lack of structure of a system is more evident and expensive. However, it could be
applied in previous stages in the software development cycle.

Little changes made to a software system could be much more dangerous than big changes,
because people tend to take small changes less seriously than big changes, and consequently they
do not test them in an adequate way. For instance, a change to the type of an instance variable
of a given class could be considered as a small change, but in fact, the changes caused by this
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little change can be propagated throughout the entire system, implying sometimes other major
changes, in a process that is called “the butterfly effect”.
There are several stumbling blocks that make refactoring difficult to do [12]:

e There is no theory on how people refactor object-oriented software. In this thesis we try
to give a methodology to make a specific kind of transformation. So, this thesis can be
seen as a contribution in the general research field of refactoring.

e Some refactoring operations need a deep understanding of the software system to be refac-
tored, that is difficult to obtain only by inspection.

e A set of refactorings should be behavior preserving and expressive. This means that most
of the complexity of the refactoring should be invisible to the user, and at the same time,
the refactoring should not change the behavior of the program.

As we have said, refactoring is not magic, and in some cases it is impossible to create a
complete automated tool to change the code. In the case of this thesis, in many occasions we
need extra information given by the user, that we cannot infer a priori. In other cases, we do
not want to automate the process even if we could chose a particular solution of several options,
because perhaps this choice could be the less adequate in the long term.

2.8 Summary

In this chapter we have presented briefly the most basic concepts necessary to understand
our work. We have started explaining types. We have given the difference between static
and dynamic types, and we have seen the advantages of using static types. Afterwards, we have
given a summarized description of what polymorphism is, and the relevant kind of polymorphism
for this work. We have learned inclusion polymorphism, universal parametric polymorphism,
bounded parametric polymorphism and F-bounded parametric polymorphism. Later, we have
review the most important points about Generic Java (GJ), including raw types, homogeneous
translation, bridge methods, erasures, retrofitting. We have said that the syntax of a GJ program
is similar to the syntax of a Java program, except for the addition of type variables. The next
section was dedicated to the usefulness and restrictions of genericity. We have shown that
genericity is gaining importance in other kind of applications different than container classes,
which has been the most common use for genericity. We have presented limitations in the use
of genericity, and how these problems are trying to be solved. Finally, we have given a short
and introductory presentation of processes of refactoring. We have explained that this work is
a contribution in the general research of this field.

In chapter 3 we explain our methodology in depth, and the relation between the previous
concepts about models of interaction and interaction machines will be clear.
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Methodology

3.1 Introduction

The present methodology describes a refactoring process, which in this case transforms code
that is written in a programming language that does not directly support genericity, but it
emulates it by means of the generic idiom (see 1.1), into code which is explicitly written using
genericity. Implicitly we are saying that the target language (the language in which the target
code is written) supports genericity (see 1.1). In the case of the source language, it could be
even the same language as the target language, but in general it is a language which has no
support for genericity. We have to give an overview of models of interactions and interaction
machines, which is a theory developed by Wegner [14] [15] [16], since the methodology presented
in this section uses some of his ideas. We will present a brief summary of the concepts that are
useful to understand our work.

There are nowadays two modes of computing, the former are the algorithms, that given
an input provide an output, and the latter are the interactions , that are sensitive to interactive
events from the exterior, which means that they can modify their behavior depending on the
initial input and the events that receive from the outside world in the middle of their processing.
Interactions cannot be modeled by Turing machines, because the output of Turing machines
only depends on the initial input. Interaction machines are defined in a way that they can
accept between two transitions a non-deterministic input from the outside world, and take this
information in account to give an output. In other words, if an interaction machine is in the
transition between the states k and k41, then the output or depends on the non-deterministic
input ix. This is the main idea we took for our methodology, even if in this case the input of the
user will not be non-deterministic. We have chosen this model because it is a scientific approach
to input/output-based applications, which we could say that constitutes the ninety percent of
modern computer science.

The methodology consists of several rules (like if-then clauses) which indicate the next
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steps to follow in order to accomplish the adequate result. The systems that are based of these
kind of rules have two different options to use them: from body to head or forward, and from
head to body or backward. Systems that apply these clauses backward are said to perform
backward chaining, and the others are said to perform forward chaining. For checking if a
given statement follows logically from a theory, backward chaining is usually the best strategy.
However, in the case of refactorings, we do not have a goal to start from, hence we must perform
forward chaining. In this case it is clear that we do not know a priori the result of the refactoring,
but we have first to apply the rules to obtain the transformed code.

We define a job as an entity which possesses a present and a future. The present of a
job is all the work that it has to do immediately, and its future is all the work it has to leave
pending, but that must be done at a given instant. In concrete, the future of a job is a set of
jobs (that have present and future as well) that will be executed. There are two different kind
of jobs: the jobs that are completely generated internally for others jobs, which we will call
working jobs, and we will denote them with the letter w, and the jobs that are generated in a
combination between other jobs and an external input (the user), which we will call event jobs,
and we will denote them with the letter €. There is another difference between these two kind
of jobs, which is that the event jobs do not have present, but only future. The important part
here is that when an event job is executed, the program will take, based on the user’s input
and incidentally information given by another job, a road from several other possible choices.
In fact, this behavior represents what we have called rules, because the following steps in the
process will depend on information given by the user and other jobs. A working job can have a
similar behavior than an event job, because it could have only future, and it could decide the
following steps depending only on information given by other jobs.

The structure of the methodology is as follows: it has two queues where the jobs will
be stored. One queue is to keep working jobs and the other is to maintain event jobs. As a
job consists of a present and a future, which actually is a set of other jobs that can belong to
either working or event jobs, after the execution of its present it will put their future jobs in
the corresponding queue. There is a kind of “monitor” or “daemon process” that is checking
always the elements of both queues, and it performs the execution of each job. This monitor
is visualized in figure 3.1. As the methodology always tries to infer the necessary information
to decide which are the next steps, it is usual that the events queue be empty almost all the
time, but in the moment when a job is pushed into this queue, the monitor always gives it the
preference of execution over the other jobs (working jobs). The main reason for that is because
an event job usually can change the “direction” of the courses of the process.

As each job needs a basic set of data to do what it has to do, it is necessary to have
auxiliary sets (now in the mathematical sense) to store useful information. As this refactoring has
to change code, sometimes it is helpful to have information about variables, methods, classes, etc.
Almost all the information will be stored in a common repository, because in this way it is easy
to search and find data that is suitable for the normal development of the process. Nevertheless,
sometimes it is not useful to have all the information in that repository. For instance, a job
could need only a local information that is given by the previous job, but this information is
not needed anymore for any other job in the process, and therefore, it is inadequate and useless
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to store it in the common repository.

We said that a job has a future, which consists of a set of other jobs. Implicitly we are
saying that in order to get a result from the input, we have to define a sequence of steps.
Sometimes, the order of execution of some jobs is not irrelevant, because it can happen that
the changes realized by two different jobs are not commutative. Due to that, it is not sufficient
to specify what each job does, but it is imperative to define this sequence to give a complete
description of the methodology.

In 3.2 we give a general explanation in how our methodology works. The careful reader
(e.g. the one who wants to implement our methodology) must read every section of this chapter.
Nevertheless, if the reader wants to have just a general understanding of this work, he/she can
skip 3.3. In section 3.3 we explain in depth the methodology. It is subdivided in several parts.
In 3.3.1 we define the present of the working jobs that are used by our methodology. In 3.3.2 we
give just an explanation of every event job. As the event jobs have no present, it is not necessary
to give a more detailed explanation. In 3.3.3 we define the future of working and event jobs.
With these last definitions the description of our methodology is complete.

3.2 General Description

In this section, we present a general description of the methodology, putting emphasis in the
most important parts, and trying to give explanations in the critical points. Although this
explanation is not a complete specification of the methodology, we believe that it is enough for
the reader who wants to understand our work. In several parts we will make references to jobs
defined in 3.3.1 and 3.3.2 as a way to be more clear, and to the definition of the auxiliary sets
given in 3.3. Hence, it can be useful to have those sections at hand when reading this informal
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description.

Essentially, the methodology is subdivided in two main parts. The former is the analysis
inside the class where we are promoting the first instance variable, and the latter is the analysis
of the changes provoked for that promotion in external classes. Following, we give a description
of each part.

The very first step is that the user gives the input indicating which instance variable he
wants to promote to a type variable, if that type variable is a new type variable or an already
existing one in the class declaration, if the type variable will have a bound, and so on. We
will store in the set AffectedVariables all the variables that will be changed in the course of
the methodology. Hence, the first instance variable should be added to this set. This process
continues until the set AffectedVariables is empty. Each cycle of this process is as follows: get
a variable from the set, remove the type casts where this variable is involved, detect the variables
that are affected for this change and put them in AffectedVariables, detect the methods that
are affected for this change and add them to AffectedMethods, and finally, add the analyzed
variable to DoneVariables in order to avoid infinite loops. As we have said, there is no job in
the methodology that pushes the initialization of the promotion of a variable, but the monitor
of the queues is who takes care about that.

In the case of the analysis of the affected variables, the first thing that is verified is if
the affected variable already belongs to DoneVariables. If it belongs to that set, we do not
need to analyze it. Otherwise, it is checked if the variable is affected in the forms described
in wyg. If the affected variable is a formal parameter of a method, we insert that method into
the set AffectedMethods. If the variable is affected in one of the forms described in w5 or
wig, we need to check if the type variable has a bound, and if it does have, we must go to the
bound to check the type of the variable or method mentioned in those jobs. If the type of the
method or variable is the same as the type variable, then the variable is effectively affected.
Note that these cases can be only possible with F-bounded polymorphism (see 2.3.3), because
it is the only way to link the type variable with the type of the variable or method present in
the bound. Figure 3.2 is an example where this situation is visualized. Furthermore, to go to
the bound means verify in the bound the type of the variable or method, but if the variable or
method is not defined in the bound (i.e. it is inherited), we have to go to check in the superclass
or superinterfaces of that bound. In all the parts where a variable is affected, it is added to
AffectedVariables.

In the case of the analysis of the affected methods, the only two ways that a variable can
affect a method (given that the case in which a variable is a formal parameter was analyzed in
the affected variables part) is either if the variable is in the return statement of the method, or
if the variable is compared with a binary expression with the method as described in wqy. If one
of those cases occurs, the method is added to AffectedMethods.

At this moment, we have analyzed all the variables that are affected in the same class
where the promotion took place. The methods have not been changed yet, except in the case
when a variable was a formal parameter. They will be changed afterwards.

If the signature of the class has been changed, in almost every place where a variable is
declared of that type (the changed class), we will need to modify that declaration. In concrete,
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when a type variable is added to the class, everywhere where a variable is declared of that
parametric type, we need to add either a type variable or a predefined type (e.g. String, Integer,
or a class or interface already defined in other part of the code). However, this is not necessary
in the case when the user wants to use a raw type. The methodology infers that if the variable
was already declared with the complete list of type parameters, then a new parameter should
be added to the declaration. On the other hand, if the class already had type variables before
the promotion, and the variable had its type as a raw type, then there is no reason to change
the raw type into a parametric type. The following example shows the previous reasoning. In
that way, our methodology avoids to ask more than the necessary. Naturally, first of all we
must collect all the variable declarations where the type is the current class. We store all these
declarations in Declarations. This part of the process finishes when Declarations is empty.
Furthermore, the changed class can appear in a method declaration as well, either as one of
the type of its formal parameters or as its return type. In the case that appears as the type of
one of its formal parameters, the declarations of the affected formal parameters are added to
Declarations. If the class appears in the return type of the method, it is changed for the new
declaration.

Before:

class A<T1,T2>

{
A<G1,G2> al; // with G1 and G2 in {T1,T2,Predefined Types}.
A a2; // raw type

}

After:

class A<T1,T2,newT>

{
A<G1,G2,newG> al; // we must add a type newG.
A a2; // we conserve the raw type.

The following step is to change the affected methods. Up-to-now, the methods present in
AffectedMethods are affected because one of the affected variables is in their return statement
(as described in war), or at least one of their formal parameters were affected, or their return
type is influenced by an affected variable (as described in wqy). If the method is affected in
the first form described in wq7, its return type is changed for the type of the variable. If it is
the second or third form described in wy7, we must check if we are in the case of F-bounded
polymorphism. If we are not in the case of F-bounded polymorphism, we ask to the user if he
wants anyway to change the return type. Other alternative option is to leave the return type
of the method untouched, but we believe that giving to the user the responsibility of taking a
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decision is the safest way to do it, because he is the only one who knows the desired semantics
of the resulting program. If the method was affected in one (or more) of its formal parameters,
the methodology does not need to realize any change in the body of the method, because it was
done in the analysis of the affected variables. Finally, if the method was affected for a variable
as described in wyg, the return type of the method is changed, and the return statement of the
method is analyzed to see if a new variable or method was affected. If that is the case, we add the
method or the variable to AffectedMethods or AffectedVariables respectively. In the case
that the signature of the method has changed, it is absolutely necessary to modify the signature
of the method in subclasses where it is overridden, and in superclasses and superinterfaces where
methods are overridden for that method. Why is this necessary? Because if we do not do that,
the semantics of the program is being changed. For instance:

Before:
class A class B extends A
{ {
void m(Integer i) {...} void m(Integer i) {...}
} }

Wrong change:

class A class B extends A
{ {

void m(Integer i) {...} void m(T i) {...}
} }

Right change:

class A class B extends A
{ {

void m(T i) {...} void m(T i) {...}
} }

In the initial case the method m is overridden in class B. If we change the formal parameter
of m in class B, we must change the signature of the method in A, because if we do no do that,
class B would have two different methods m instead of only one.

Finally, the part of the analysis in external classes is executed. Each of these classes can
have instance variables, local variables or formal parameters, in which their type is the changed
class (what we call in the next example OriginalClass). This part is not executed if the class
where the promotion of the instance variable took place has not changed its declaration. In
other words, if the class has the same type variables as before the promotion of the instance
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variable, then, even if the class has internally changed, the external classes and interfaces have
exactly the same view of it, and in consequence, it is unnecessary and incorrect to change them.
In general, in this step it is checked if the variable declaration should be changed, and if that is
the case it is applied the methodology to that variable in that class. The same strategy to detect
if a declaration should be changed as the one used in changing the declaration in Declarations
is chosen. If a variable must be changed, because the original class has more type variables than
before, then there are several options to do it, as we show in the next example:

class OtherClass<T-1,...,T-N>

{
OriginalClass<A-1,...,A-M,?> var;

e Put a predefined type in ? (e.g. String, Integer or another type already defined in other
part of the code).

e Put in ? an already existing type variable in OtherClass (e.g. from T-1 to T-N).

e Add a new type variable T-N+1 to OtherClass, and put this new type in 7.

In case that the user chooses to change the declaration of OtherClass, all the steps of
the methodology must be executed, otherwise, the parts of the analysis in other classes (in set
Referring), and references of the class inside the same class (in set Declarations) can be
skipped.

3.3 Methodology

The present methodology allows to promote an instance variable of a class from a non-generic
type to a type variable. Nevertheless, this change is general enough, because the process to
promote a local variable or formal parameter is included in the promotion of an instance variable.
This is proved in the moment when the change of the type of an instance variable affects the
type of a local variable (e.g. in an assignment between these two variables). In order to preserve
the behavior of the code, it is necessary to change as well that affected local variable, but again
this new change can affect other instance variables, local variables, methods that belong to the
same or other classes, and so on.

To store common and useful information for all the jobs, it is necessary to conceptualize
several sets. The description of each set is as follows:

o AffectedVariables. In this set we will store all the variables which are affected in the
analysis of the current variable. These variables can be instance variables, local variables
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or even formal parameters of some method. This set has a subtle difference with the
others, which is that it can be changed after the end of the cycle where the variables were
analyzed. For instance, when we are analyzing the changes provoked for the promotion
of the first instance variable in other classes, it is possible to add more affected variables
to this set. Nevertheless, at that moment the methodology has finished to analyze the
variables, so in order to analyze all the affected variables, the monitor of the queue must
check this set to see if it has elements. If the set does have variables to analyze, the monitor
pushes a job to initialize the process of the promotion of that variable. That is the reason
why the reader will not find in the sequence any transition that pushes the initial job.

o AffectedMethods. In this set we will store all the methods which are affected for the
analysis of the current variables. These methods could be affected in their return types or
in one of their formal parameters. There is another way to affect a method, which is to
compare the result of a method with the value of an affected variable.

e DoneVariables. Here we store variables that are already analyzed. It is used to avoid
loops in the middle of the course of the methodology.

e Declarations. Every declaration of variables or methods inside the current class being
analyzed, and which contains as declared type the current class (either the raw type or
the full type with all its type variables), is kept in this set.

e Referring. We keep in this set all the declarations in classes and interfaces which contains
at least one reference to the analyzed class (the class where we have promoted the instance
variables, and where all the changes have taken place). This means that these classes have
at least one declaration of a variable (instance, local or formal parameter) in which their
type is the class that was analyzed.

As we have said before, it is not always possible to finish this process of refactoring. There
are cases where we simply cannot change the code, because the consequence of that can go
beyond of our scope. For instance, if in the middle of the methodology we need to change the
type of a variable or a method that belongs to a class defined in a library, we have to abort the
process, because we are not allowed to change a library. If we do that, other systems using that
library can be affected, and we clearly do not want that.

In 3.3.1 and 3.3.2, we will give the definition of each job present in this methodology.

3.3.1 Working Jobs

As we have said previously in this chapter, a working job is an entity which has a present and a
future. The present is given by concrete actions that the job must execute, and the future is a
set, of jobs that it has to push into the queues. Now we give the definition of every working job.
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e w;: Initialize the process of the promotion of the instance variable v to a type variable T
in class X.

® w,: Receive input from the user in answer to the question: Add the type variable T to the
class declaration of .

e w3: Receive input from the user in answer to the question: Add a bound Bound to the
type variable T.

e wy: Receive input form the user in answer to the question: Add a F-bound to the bound
Bound, and in which position of all the type variables that Bound possesses.

e w;: Change the declaration of variable v to its new type.
e wg: Remove type casts where v is involved.
e wr: Start analysis of variables affected {y;},., due to the promotion of v.

e wg: Start analysis of methods {mj}jeJ which their return type is affected due to the
promotion of v.

e wy: Add v to the set DoneVariables.

e wyp: Check if variable v affects variables {/;},., in one of the following forms:

— V=1
- MWy =V
V==
— Wi ==V
—vli=y
—pil=v

e wy;: Change declaration of class ¥. Add type variable T with its bound Bound (if it has).
e wiy: Check if y; belongs to formal parameter of method m;.
e wi3: Add method m; to set AffectedMethods.
e wyy: Check if type T has a bound.
e w5 Check if variable p; is affected in one of the following forms:
— i = r.a()

— p; == v.a()
— w; ' =wv.a()
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— v.a() == p
—va() =

e wis: Check if variable p; is affected in one of the following forms:

— ;i =r.a
— Y ==v.a
— il =va
— v.a =
— v.a ==y
—rval =y

e wy7: Check if in Bound the type of v.a() is T.
e wg: Check if in Bound the type of v.a is T.

 wig: Check if methods {m;}, ; are affected in their return type in one of the following
forms:

— return v
— return v.a()

— return v.a

® wy: Check if methods {m;},_; are affected in their return type in one of the following

forms:
—v=m
— v ==m,
—v!l=m;
—mj==v
-mjl=v
— v.a() ==m;
— va() ! =m;
— m; == v.a()
- m; ! =v.a()
— v.a=m;
— v.aa==m;

— | — m.
v.a . =m;
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—m; ==r.a
-m;!=vra

— V= p.m;

— V== [I.Mm;
—v!=pm;

— pm; ==v

— pmjl=v

— v.a() == p.m;
— va() ! = pm;
— pomj == v.a)
— pmj ! =wv.al()
- v.a= [n.m;

- rv.a == Wu.m;
—va!l=pm;
— p.m; == v.a
- pmj!l=va

e wyr: If the current class ¥ has changed its signature, find every variable and method
declaration where it appears (inside X) and add them to set Declarations.

e wyy: Check if §; (with ¢; € Declarations) is a variable or method declaration.
® wo3: Check if the declared type in variable declaration ¢; is a raw type.
e wyy: Change type of variable declaration §; to new class declaration of .

e wys: Receive input from the user in answer to the question: Use raw type or complete
class declaration (with all its type variables).

e wys: Change return type of method m; from old class declaration of ¥ to its new class
declaration (with all its type variables).

e wyr: Check if return statement of method m; has one of the following forms:

— return v
— return v.a()

— return v.a

e wyg: Check if one (or more) of the formal parameters of method m; is (are) affected.
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wog: Check if T has a bound.
wsp: Check the return type of method a() in bound Bound of type variable T.
ws1: Check the type of variable a in bound Bound of type variable T.

wsz: Change method declaration of m; in subclasses of ¥ that overrides this method, and
superclasses or superinterfaces of ¥ where this method is declared (and in consequence
where m; is overridden).

wsz: Search method m; in all superclasses and superinterfaces of X.
wsq: Search method m; in all subclasses of .

wss: Add classes {I';} wex Which have instance variables, local variables or formal param-
eters {&,},.¢ of type X to set Referring.

wss: Check if type of the variable declaration of £ has type variables (otherwise it is a raw
type).

wsr: Check if ¥ did not have type variables before the promotion of v (i.e. if T is its first
type variable).

wsg: Receive input from the user in answer to the question: Use raw type or full class
declaration (with all its parameters) in declaration of variable &;.

wsg: Receive input from the user in answer to the question: Add to the declaration of
variable &; a type variable or a predefined type (e.g. String, Integer, etc.).

wyo: Receive input from the user in answer to the question: Use an already existing type
variable in the declaration of I';, or add a new one.

wyr: Check if 'y, is a class or an interface.

w42 Add type variable to I'y.

wy3: Add p; to set AffectedVariables.

wyaq: Check if set Declarations is empty or not.

wys: Extract element from Declarations.

wyae: Check if return type of methods {nt}teT in I';, are the old declaration of X.

wyr: Check if the type of formal parameters {{,},., with © C S of method n, are the old
class declaration of X.

wyg: Add 9; to set Declarations.
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® w,y9: Extract method m; from set AffectedMethods, iff AffectedMethods is not empty.
® wso: Start the declaration change of method m;.
® ws: Change return type of method m;.

e wsy: Receive input from the user in answer to the question: Change the return type of
method m;.

e ws3: Check if return statement of method has one of the forms:

— return var (with var ! =v).
— return a() (Va method).

— return z.a() (Ya method and Vx variable).
e ws,: Extract declaration from Referring, iff it is not empty.
e ws5: Check if method was influenced by a variable as described in wsy.
We have presented the exact definition of the present of every working job in our method-

ology. In 3.2 we explain in natural language most of these jobs in order to give a clear under-
standing of them.

3.3.2 Event Jobs

This kind of jobs have only a future, or in other words, they just push jobs into the queues.
These jobs are important because they represent the changes of direction in the course of the
methodology mainly due to a decision (input) of the user. However, sometimes an event job
can have only one possible future, independently of the user’s input, but we consider that even
with only one future, it is good to see them differently than the working jobs. As they have no
present but only future, we will give a brief explanation of them.

e c1: Receive the input that is given by the user in ws and ws.

e =, Receive the input that is given by the user in wy.

e c3: Receive the input that is given by the user in wos.

e ¢4: Receive the input that is given by the user in wsg.

e c5: Receive the input that is given by the user in wsg.

e 4. Receive the input that is given by the user in wyy.
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e c7: Receive the input that is given by the user in wss.

The future of each of this jobs will be given in 3.3.3, and an informal explanation will be
given in 3.2.

3.3.3 Sequence

In this section we explain the sequence of execution of working and event jobs. Every job has a
set of jobs to be pushed into the working and event queues. If for example, a job pushes the jobs
A and B into the working queue, that means that A will be executed before B, and not vice versa.
We will use the symbol L in case that a job does not insert any other job in the queues. To
fully understand this sequence, it is necessary to read it with the description of the jobs given
in 3.3.1 and 3.3.2.

® (W] —— Wo.

® wy —> ws, if a type variable is added.

® Wy —> Wy W W7 Ws Wy Wy, if it is used an existing type variable.

® W3 £,

® £ Wy W5 Wg Wr Wy Wy Way Wag wss, if a type variable is added to the class.

® £ — W5 We Wy Wy Wy Wy, if it is used an existing type variable.

® Wy > E9.

® o — W11

o wy —1.

o wgr—1.

® W7 —— Wig Wi4-

® Wy —— W19 Wap.

® wygr— 1.

® Wiy — w19 wys, if affects other variables in the forms described in the definition of wy.

® wig — wia, if does not affect any variable in the forms described in the definition of wyg.

e Wi — L.
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® wir —> w3, if affected variable is a formal parameter of a method.

e wiy —— 1, if affected variable is not a formal parameter.

e wiztH——1.

® Wiy —> Wy Wi, if type variable has a bound.

e wyy — L, if type variable has no bound.

® w5 — wiy, if variable is affected in one of the forms described in the definition of wys.

e w5 — L, if variable is not affected in one of the following forms described in the definition
of Ww15.

® wig — wig, if variable is affected in one of the forms described in the definition of wyg.
e wig — L, of variable is not affected in one of the forms described in the definition of wsg.

® w7 —> wys, if the type of the return type of method (which is placed in the bound of the
type variable) is the same as the type variable itself.

e w7 —> L, if type of the return type of method (which is placed in the bound of the type
variable) is not the same as the type variable itself.

® wig —> wys, if the type of the variable (which is placed in the bound of the type variable)
is the same as the type variable itself.

e wig — L, if the type of the variable (which is placed in the bound of the type variable)
is not the same as the type variable itself.

® w9 —> w3, if methods are affected in one of the forms described in the definition of wqg.

® Wig — wyp, if methods are not affected in one of the forms described in the definition of
wW19.

® Wwyy —> wi3, if methods are affected in one of the forms described in the definition of wyg.

® wyy —> L, if methods are not affected in one of the forms described in the definition of
Wap-

® (Uo] > Wyy4.
e wy — 1, if Declarations is empty.
® wy — wys, if Declarations is not empty.

® Wy —— Wog.
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® Wy — Wwog3, if declaration is a variable declaration.

® Wyy > Wy W7, if declaration is a method declaration.

® Wwy3 — wsy, if type in variable declaration is a raw type.

® Wy3 > Wy, if type in variable declaration is not a raw type.

e w37 — L, if it is called by w»3 and if current class had at least one type variable before
the promotion of the instance variable.

® w37 —> wos, if it is called by wy3 and if current class did not have type variables before
the promotion of the instance variable.

® (o5 — £3.

e o3 +— 1 if a raw type will be used in the declaration.

® 3 — wyy, if a full type (with all its type variables) will be used in the declaration.
® Wy —>1.

® Wy5 — Wwog, if return type of method is the old class declaration.

e wys —> L, if return type of method is not the old class declaration.

® wog —>1.

® Wy7 —> Ws1 Wsg, if return statement is a reference to the current analyzed variable.

® Wy —— Wog wWs3g, if return statement is a method call where the receiver is the current
analyzed variable.

® Wwy; —> Wy wso, if return statement is a reference of a variable placed in the current
analyzed variable.

® wog—1.

® Wy —> W3y, if type variable has a bound.

® Wyy —> Wi, if type variable has no bound.

® w39 —> wsy, if return type of method is the same as the type variable.

e w3y — L, if return type of method is not the same as the type variable.
e w5 — L.

® Wro > £4.
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® £, — wsy, if answer is to change the return type of method.
e ¢, —— 1, if answer is not to change the return type of method.

® w3 — ws, if type of referenced variable placed in the bound is the same as the type
variable.

e w3 — L, if type of referenced variable placed in the bound is not the same as the type
variable.

® W32 7 W33 W3q Wag.

® w33 —1.

® wyy—1.

® (W35 > Wxy.

® w5, — wsg, if Referring is not empty.
e w;, — L, if Referring is empty.

® w3 — wsy, if variable is a raw type.

® w35 —> Wsg, if variable is not a raw type.

® w37 —> wag, if it is called by wsg, and if the class where the promotion took place did not
have any type variable before the promotion of the initial instance variable (i.e. now it
has 1 type variable).

e w37 — 1, if it is called by wsg, and if the class where the promotion took place had at
least one type variable before the promotion of the initial instance variable (i.e. now it
has more than one type variable).

® (W33 —— €5.
® o5 — wyy, if a type variable is added to the variable declaration.

e c5 — L1, if the raw type is used in the variable declaration (i.e. the declaration of the
variable is not changed).

® (W39 > E¢.
® £5 — wyo Wy, if a type variable is added to the variable declaration.
® c5 — wyy, if a predefined type is added to the variable declaration.

® Wy —> €7.
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® £ — Wy, if a type variable is added to the class declaration to use it in the variable
declaration.

e ¢, — 1 if an already existing type variable is used in the variable declaration.
® Wy — Wy, if current type is a class.

e wy — L, if current type is an interface.

o wWp+—1.

e wyz3——1.

® wy7 — wyg, if formal parameters have the old class declaration.

e wy; — 1, if formal parameters do not have the old class declaration.

e wyg——1.

® Wy —> ws, if AffectedMethods is not empty.

o wy — 1, if AffectedMethods is empty.

® Wsp > Wa7 Wag Wss.

® W53 — Wy, if return statement has just a reference to a variable, as described in wss.

® w53 — w3, if return statement has a method call, in any of the two forms as described
in Ws3.

® (W55 —— W51 Ws3-

We have given the definition of the sequence of jobs of our methodology. In this way
the specification is complete and any reader, who wants to implement it, should follow the
indications given in 3.3.1, 3.3.2 and in the current section. Perhaps this description has been
hard to understand, so due to that, in 3.2 we give a general, but informal, explanation of our
methodology.

3.4 Limitations

There are several limitations to our methodology. These limitations are due to the fact that
programming languages can have hundreds of different features to deal with, and moreover, pro-
grammers can combine these features making difficult the analysis of all the possible cases. One
example of the previous is the cascade method invocation, which will be analyzed afterwards.
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Other limitations are only superficial ones, because the way to treat them is exactly the same
as others already foreseen by the methodology. We have not taken into account the cases we
describe in this section, because we believe that they only make our methodology difficult to
understand, and they are not essential in this first approach developed to refactor code as we
have said before. Nevertheless, it is not excessively difficult to extend this methodology to deal
with those different cases, but anyway it is necessary to realize certain degree of effort to carry
out those modifications to the methodology.

First, we explain the limitations that are implicitly foreseen by our methodology, but they
are not explicitly included. Almost every object-oriented programming language (or we could
even say all of them) has a variable or pseudo-variable called this or self, which indicates a ref-
erence from one object to itself. We have not included this pseudo-variable in our methodology,
even if it can be treated in the same way as any other variable. We have proven this empirically
because in our prototype (see 4) we have included the pseudo-variable this of Java without
modifying the methodology. Jobs where this should be taken into account are, for instance,
W1g, W15, Wig, €tc. Other case that it is excluded is when a method is called. We have always
written in the description of the Jobs methods without arguments, which is in fact a rough
simplification of what happens in the real world. Nevertheless, everywhere in our methodology
where a method call is performed, the useful part is the type that returns, and not the type
of the arguments that possess. There is another underlying problem with this, but it is not an
issue of the methodology but of the implementation, which is that if we want to get the return
type of a method m that can be overloaded, we need to know how to distinguish them. The easy
case is when the method m is declared several times but with different number of arguments.
In this case, we can distinguish which m is being called just knowing the number of arguments
present in the method call. The hard case is when m is overloaded with the same number of
argument but with distinct types. Elementarily, it is always possible to find the method which
is called, but it can present some difficulties. In the next excerpt of code we show an example
of this case.

class A
{
public String m(F f) { return "hola"; }
public String m(G g) { return "chao"; }
}
{ // mainQ)
A a=new A();

G g=new G(); // if G is a subclass of F !!!!

a.m((F)g);
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As we have said, it is possible to know that the m that is called is m(F f) instead of m(G
g), even if the type of g is G. In the methodology this is not explicitly included, but when we
say, for instance in wsp, “check the return type of method a() in ...”, we mean that we have to
find the precise method a. In the previous example we have explicitly the information we need
to go directly for the method we are looking for, but in other cases this is not always truth, and
we need to infer a little bit more. For example:

class A
{
public String m(F f) { return "hola"; }
public String m(String s) { return "chao"; }
}
{ // mainQ)
A a=new A();
G g=new G(); // G is still a subclass of F !!!!
a.m(g); // difficulty: m(G g) does not exist !!!!
}

In this case g is declared with type G and the argument of m is of type G, but the method
that we should find is m(F f) (because G is subclass of F). How can we know which method
has to be called if the information is not explicitly given in the method call?. This is strictly
an issue of implementation, and it has nothing to do with the methodology itself. Nevertheless,
the answer is to have the hierarchy of classes and interfaces where we can extract (or infer) the
lacking information.

The following limitation is one that it was not taken into account because it made our
methodology complex, it could have taken more effort than necessary and, however, it is not
part of the core and the aim of this work. This limitation is related with the consecutive method
calls. Let’s take the example of wig. In w9 we need to check if a return statement has one of
three forms. In fact, it is possible to have more than those three forms in a real program. For
instance:

return v.a().b().c().dQ;
return v.a.b.c.d;

return v.a.b().c.dQ;
and so on...

Note that we are only looking for an expression that has the same type as the variable
v (or v in wyg), which in fact should be type variable. We have said that this is possible only
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in case that the type variable, corresponding to the type of v, be quantified by a F-bound. In
figure 3.2 shows what we are trying to explain.

The process of going to the bound and retrieve the type of the method described in wsy,
is a simplification of what should be done in reality. However, to extend this process is not an
excessively complicated problem, because it is straightforward to see that the complete operation
is a composition of successive repetitions of the “simple search” method. The cases of retrieving
the type of a variable instead of a method are exactly analogous.

We have tried to give an overview of the limitations existent in this methodology.

3.5 Final Remarks

In this chapter we have given a deep explanation of the central part of this work. In 3.3 we
have given the definition of working and event jobs, and in 3.3.3 we have given the sequence
of execution of those jobs. In conjunction, both parts conform the complete description of the
features and behavior of the methodology. In 3.2 we have given an informal explanation of the
two parts mentioned before, in order to clarify some parts in the definition that could be unclear.
In 3.4 we have explained the limitations that are still present in this methodology. Nevertheless,
we have tried to give reasons why we think that those limitations do not take away important
functionality to our work, but only add complexity and deviate our efforts to things that are
not fundamental.

In 4 we will show how we have implemented the methodology presented in this chapter. We
will explain the basic concepts we have conceptualized, in order to be able to build a prototype
tool in an object-oriented language that can perform the transformations we need to carry out
the refactoring. The architecture of that tool will be analyzed in depth in the following chapter.
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Validation

In this chapter we present how we have proven the usefulness and applicability of our method-
ology. In order to do that, we have implemented a prototype tool. This prototype that takes
the most relevant parts of the methodology, transforms code written in the Java programming
language, which uses the generic idiom, into code written in Generic Java (GJ), which uses
genericity. As this tool is a prototype, it does not consider all the cases and parts described in
the methodology, but implements the parts we consider are the most important and relevant
in our work. In 4.1 we briefly explain the calculus we used to model our transformations to
a program, and how this model can be modified in order to apply it to object-oriented pro-
gramming. In 4.2 we explain in depth the implementation of the prototype, showing that this
implementation is a perfect mirror of the theoretical description of our methodology.

4.1 Program Transformations

If we consider the methodology as a set of program transformations, we need a calculus that
represents transformations by a set of operators over abstract syntax trees [24]. The goal of this
calculus is to define a formal foundation for programs that manipulate programs as data. In this
section we give a summary of this calculus, and an adaptation of this calculus to object-oriented
languages. In 4.2 we explain how this methodology has been implemented in an object-oriented
language. The main features and limitations of this implementation will be explained, as well
as the architecture of the prototype.

47
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4.1.1 A Calculus for Program Transformations

In [24] an abstract syntax tree is considered as labeled general trees. Each labeled tree is a node
which consists of a datum and a list of children, and it has two basic operators. label extracts
the datum from the node, while children extracts the list of children:

Tree a = Node a [Tree a]
label (Node x ts) = x
children (Node x ts) = ts

Other basic operators, which are defined as functions, in the calculus are:

e relabel: this operator realizes some actions over the labels of the tree without changing its
structure. One example of this operation could be the renaming of variables of a program.

e prune: this operator substitutes a complete branch of a tree, or in other words, allows to
replace a subtree for another subtree. One example of this operation is to replace a subtree
representing an expression for a subtree representing the evaluation of the expression.

e synthesize: with this operator we can calculate a value from the tree, first calculating a
value for each child, and afterwards applying an operation to that information together
with the label of the root. For instance: the evaluation of an expression, or obtaining the
list of all the variables declared in a program.

e inherit: this operation gives information from the top to the bottom of the tree. We can
use it, for instance, if we want to label all the variables of a program with their types.

These operations allow that the manipulations performed in the abstract syntax tree, when
treating programs as data, will be concise and very easy to understand. Nevertheless, as they
are described by functions, and take advantage on facilities provided by functional languages,
such as high order functions (passing functions as arguments) and pattern matching, it is not
possible to implement them directly in an object-oriented language. If we want to simulate
function parameters in an object-oriented language, we can use an object which has a method
that implements the function. In that case, function application means method invocation.

The previous idea to map the functional programming style onto an object-oriented lan-
guage becomes the implementation very tangled, in which it is not possible to have the ex-
pressiveness of functional programming, and it does not take advantage of the characteristics
of object-oriented programming. In spite of that, we have tried to find a suitable approach of
these transformations for the object-oriented paradigm. In 4.1.2 we describe how we implement
the transformations mentioned before, taking advantage as much as possible of the features of
object-oriented programming.



CHAPTER 4. VALIDATION 49

Expression — Binary | Arguments |

Cast | Primary | ..

Expression

Binary Arguments Cast Primary

Figure 4.1: Grammar rule for the expressions

4.1.2 An Approach of Program Transformations in OOP

Although this implementation is not one hundred percent a direct mapping of the operators
of the calculus, we think that it emulates them in a adequate form, and also it tries to take
advantage of the object-oriented paradigm. In order to implement the transformations we need
to define a suitable representation for the abstract syntax tree, and to describe the representation
of the transformations over that tree.

We use the representation proposed by the interpreter design pattern [21] for the abstract
syntax tree. In the interpreter pattern, each grammar rule is represented by a class (which is a
node in the abstract syntax tree). The symbols on the right hand side of the rule are instance
variables of these classes. These instance variables can be other rules or nodes of the tree, or
terminal symbols which are represented by other classes or types that do not represent nodes
of the tree. Different options on the right hand side are represented by subclassing the class
which represents the rule. For example, in figure 4.1 we can see the rule of the Java grammar
for expressions and its corresponding class hierarchy. In figure 4.2 we can see an example for
the Java while statement.

The transformations on the abstract syntax tree are defined using the visitor design
pattern [23]. The visitor pattern [21] is adequate to perform different operations over the tree
depending on the node (or class), it maintains the original classes unchanged, and in addition,
it clusters all the behavior for the operation in a single class. For each operation, a different
visitor class must be defined.
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Statement

WhileStatement Expression

condition

Figure 4.2: Example of the rule for While statement

4.2 Implementation

The implementation of this prototype is a direct mapping of our methodology. In 4.2.2 we
explain how the architecture of this prototype is, showing how we have implemented all the jobs
described in our methodology, and the fusion between those jobs with the other components
of our architecture. In 4.2.1 we explain the features of the methodology that this prototype
implements, justifying why we believe that those features are the most representatives and
important in our work. Our intention with this prototype was just to build a proof for the
applicability and usefulness of our methodology, and due to that, we have focused our efforts in
developing the core of our work, and not in tangential or irrelevant parts.

As we have said before, this prototype is fully made in Java [20]. All the transformations are
implemented with visitors classes, which perform several operations over the abstract syntax
tree. The abstract syntax tree is built with the help of a GJ parser, which will be explained in
4.2.2. Also, in 4.2.2 the structure of the jobs and the queues will be explained. In appendix, we
give some examples of transformed code realized by our prototype.

4.2.1 Features

This prototype implements part of the total of the methodology. We have chosen that to
implement all the changes provoked for the promotion of an instance variable in the same class
where the promotion took place. As the reader can verify, the actions taken in the referring
classes are reduced to the process inside the same class, except that the parameters are different.
The features that actually are implemented in this prototype are:

e Change variable declaration. The prototype is able to change the type of a variable to a
type variable or to a parametric type, which can have any number of type variables. The
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user can chose if he want to use type variables in the declaration of a parametric type, or
instantiate those parameters (or some of them) with already existing types.

e Change class declaration. Type variables can be added to a class declaration. These
type variable can be declared with universal quantification (parametric polymorphism),
bounded quantification (bounded parametric polymorphism) or F-bounded quantification
(F-bounded polymorphism). In the case of F-bounded quantification, the bound can have
any number of type variables, and of course the binding between the declared type variable
and its bound can be done in any position of the list of type variables of the bound. Also,
the bound can be an interface or a class, as the user wishes.

e Elimination of type casts. Everywhere a type cast involving the analyzed variable is
performed, the prototype eliminates them.

e Analysis of affected variables. In case that the currently analyzed variable affects other
variables, the prototype adds these variables to the set of affected variables, and repeats
the same process for them, in order to propagate the changes throughout the entire code.
The prototype changes the affected variables if they are instance variables, local variables,
or even formal parameters of some method.

e Analysis of affected methods. If the formal parameters of a method are affected, then the
previous feature changes and propagates all the changes. Nevertheless, this is not enough,
because we need to change the declaration of the method in case that it was overridden in
a subclass, it overrides from a superclass or it implements from a superinterface. In case
that the affected part is the return type of the method, the prototype changes this type
for the new type, and checks if in the return statement of this method there are other
variables affected.

The features described above are only the visible ones. In order to implement those features
it is necessary to collect information from the abstract syntax tree, the user, other jobs, etc.
For instance, in the case when the currently analyzed variable is called var, it is not possible
to distinguish from other variables only with its name. Suppose that there are other variables
in the class with the same name, then our prototype must be able to recognize those variables
from the analyzed one.

We gave the most important features that our prototype implements of our methodology,
indicating why we have chosen those parts. In 4.2.2 we explain the architecture of this prototype,
i.e. its structure, components, relationships between them, etc.

4.2.2 Architecture

We understand that software architecture involves “the description of elements from which
systems are built, interactions among those elements, patterns that guide their composition, and
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JLPExpression JLPStatement JLPDeclaration
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JLPClassDecla...

.| JLPIdentifierExp...
JLPInterfaceDecla...

Figure 4.3: Hierarchy of nodes in the parser

constraints on these patterns” [26]. There are several elements that compose this prototype.
One of them is the GJ parser.

GJ Parser

The GJ parser is a modification that was done to the Java Parser created by Wolfgang
De Meuter and Johan Fabry. This new parser is entirely written in Java, and implements the
abstract syntax trees for GJ programs. It is based on the interpreter design pattern, in which
each rule is represented by a class, and at the same time this class represents a node in the
abstract syntax tree. Figure 4.3 shows a part of the hierarchy of the node classes.

The GJ parser can have as input several files containing several class and interface
definitions. Due to that, instead of having a tree, we have a forest (a set of trees) which
represents the abstract syntax trees for all those files. The root of an abstract syntax tree
is the JLPCompilationUnit node, that in simple words represents a node including all the
declarations, statements and expressions in a GJ source code file. The general structure of this
parser is to group related kind of nodes in the same package. The description of the packages is
the following:

e jlp: This package includes the GJ grammar with the instructions for generating the ab-
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stract syntax trees, the parser program generated by JavaCC and other useful classes of
the GJ parser.

e jlp.declarations: In this package we find all the classes of the parser that are related
with declarations in a GJ program. The main class in this package is JLPDeclaration,
and several other classes inherit from this class, as for instance JLPClassDeclaration,
which corresponds to the node representation of a declaration of a class in a GJ program.

e jlp.statements: The nodes in the abstract syntax tree that represent a statement of a GJ
program belong to this package. For example, the node which represents while statement,
JLPWhileStatement, is included in this package.

e jlp.expressions: All the expressions in GJ program are represented by one of the classes
present in this package. As for instance, in this package we can find the assignment
expression (JLPAssignmentExpression) and the expression which represents an addition
(JLPAdditiveExpression).

e jlp.types: It has classes that represent type in GJ programs. The main class is JLPType,
and its subclasses are JLPPrimType, which represents primitive types of GJ, and JLPClass
Type, which represents types that are defined with classes or interfaces. Other important
class that we can find here is the JLPBoundConstraint, which represents the bound of a
type variable.

e jlp.util: Some auxiliary classes are present in this package. For example, the class MyList
that implements a linked list.

e jlp.visitors: The necessary classes to traverse the abstract syntax tree are included in this
package. These classes are built following the visitor design pattern. The main class in this
package is the JLPVisitor which defines the interface for visitors over GJ abstract syntax
trees. In this package we find all the visitors that perform some kind of transformation,
as well as the visitors that only retrieves information from the abstract syntax tree.

We have extended the jlp.visitors package with the classes that implement the framework
for program transformations we explain as follows.

Our Framework for Program Transformations

Using the interpreter and visitor patterns, we have created a framework that allows implements
the transformations of GJ programs in a very concisely way [23]. There are two main classes in
this framework. The former is the InheritVisitor, and the latter is the TransformVisitor.

The InheritVisitor is a template that is built as a combination of the inherit and
synthesize functions described in 4.1.1. It passes information from the top to the bottom of the
abstract syntax tree, and collects the information generated from the bottom of the tree. This
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JLPVisitor
InheritVisitor
AffectedVariable CheckVariable TransformVisitor
ChangeVariable ChangeReturned
Declaration TypeMethod

Figure 4.4: Hierarchy of Visitors

class provides points where we can specialize for specific calculations of values to send to the
children, and to combine the values given from the children. In concrete, all the visitors that
need to retrieve information from the abstract syntax tree, but that will not modify its structure,
will be subclasses of the InheritVisitor. The InheritVisitor has two methods for each kind
of node in the abstract syntax tree. The first one is called inherit (in fact, inherit+name of the
node) and it calculates the value to be passed to the children of the node. This method must be
important for the subclasses to provide an specific function, because by default it returns null.
The second method is called reduce (reduce+name of the node) and it produces a result from
the current node and the result of the recursive visit of each children. It must be important to
provide specific functions, because as a default behavior it returns null.

The TransformVisitor is a subclass of the InheritVisitor that defines a template for
a prune operation. All the visitors that perform a transformation over the abstract syntax
tree will be a subclass of the TransformVisitor. The specific behavior is to traverse the tree,
performing some transformations in some nodes while keeping the structure of the rest of the
tree. All the reduce methods defined in InheritVisitor are important. As a default behavior,
this method reconstructs the visited node replacing the children by the values collected from the
bottom of the tree (i.e. the same children). If we want to provide a transformation of a specific
kind of node, a subclass must be created which overrides the reduce method corresponding to
that kind of node.

As examples of concrete visitors that inherit from InheritVisitor and that we have

implemented, we can mention:
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e AffectedVariableVisitor: Essentially, what this visitor does is to check if the current
analyzed variable affects other variables, as we have explained in 3.3.1. For example, as
we have said, one of the possible forms to affect a variable is by means of an assignment
expression, i.e., if the current analyzed variable is assigned to other variable or vice versa.
Due to that, we override the reduce method corresponding to the assignment expression
(reduceJLPAssignmentExpression), and we check if one of the two cases mentioned be-
fore is produced. In order to do that, previously we have to check if the current analyzed
variable is in the left or right hand side of the assignment.

e CollectHierarchyVisitor: This visitor builds the hierarchy of classes and interfaces
that is implicitly given in the system. In order to do that, we must visit every node cor-
responding to class and interface declarations, and collect the information of superclasses
and superinterfaces that is given in those nodes. Finally, we have to link that collected
information to build a tree of classes (where the root is the Object class), and a forest of
interfaces.

e BuildScopesVisitor: This visitor builds the scopes of the all the variables that exist
in the program. The result of this visitor, is that every variable will have a pointer to
its scope, which can be a class, a method, or a block (we include in this case the if, for,
while, etc.). This is useful because if in one method there are two variables with the same
name but in different scopes (e.g. two variables in two parallel while’s), and one of them
is the current analyzed variable, we do not want to add to the set AffectedVariables the
variables that are affected by the other variable with the same name.

e CheckVariableVisitor: This visitor checks if the variable that is being verified is the
same variable which is analyzed. For instance, if the currently analyzed variable is an
instance variable called var, and in a method we have a local variable called var, this
visitor checks if a variable called var in a given statement or expression is the analyzed
variable or the other one.

Now we give an explanation of some visitors that inherit from TransformVisitor. For
instance:

e ChangeReturnedTypeMethodVisitor: This visitor changes the return type of a me-
thod. In order to do that, we have important the reduce method corresponding to method
declaration node. Now, this method assign the new type to the return type field of the
node, and returns the new node with the modification.

e ChangeVariableDeclarationVisitor: This visitor changes the declaration of a variable.
There are several cases where we can change a declaration of a variable, as for instance,
a formal parameter declaration node, an instance variable declaration node or a local
variable declaration node. We have to redefine the reduce methods corresponding to those
nodes in order to transform the abstract syntax tree.
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e CastTradorVisitor: All the type casts where the currently analyzed variable is present
are eliminated with this visitor. In this case, we only have to check if the analyzed
variable is present in the cast expression. The reduce method corresponding to a JLPCast
Expression is redefined in order to delete the type cast.

As we can see, all the visitors that inherit from InheritVisitor do not change the struc-
ture of the tree, but only they retrieve useful information that the jobs can use in the future.
On the other hand, all the visitors that inherit from TransformVisitor perform some kind of
transformation over the abstract syntax tree.

Prototype

The rest of the parts of the prototype correspond to the core of the implementation of the
methodology, with the exception of the visitors we have explained before. We have to remark
that we have implemented the queues as stacks, but obviously in the moment when we are
pushing elements, we internally reverse those element before insert them in the stack. This
structure of packages of this part is as follows:

e browser: We find in this package the class that initializes all the other parts included
in this package. This class, called Browser, receives the forest of abstract syntax trees
that the GJ parser generates. It initializes the collection of basic information necessary
for the other parts of the methodology. For instance, it initializes a visitor which builds
the hierarchies of classes and interfaces, and another one that identifies instance and local
variables.

e browser.elements: In this package we have the class that contains all the common
information useful for the course of the methodology. This class is called ProcessData
and each job has an object (which is common for all the jobs) of this class.

e browser.elements.working: In this package we can find all the working jobs of the
methodology. Each job is represented as a class. Each job has a method called execute,
which initializes the present and future of the job. Generally, the present is implemented
as a method call that can execute other methods, or even it can create other objects (e.g.
visitor objects) to perform some specific action. The method execute returns an array,
which consists of two temporary stack with the jobs that will be pushed into the “final”
stacks. The first temporary stack contains the jobs that will be put into the working stack,
and the second contains the jobs that will be put into the event stack. All the working
jobs inherit from WorkingJob (which belongs to the browser.elements package).

e browser.elements.event: In this package we can find all the event jobs. All of them
inherit from EventJob, which belongs to the browser.elements package. In the execute
there is no action to perform, but only other jobs to put in the stacks.
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e browser.util: In this package we find some classes useful for the process of refactoring.
For instance, there are classes for the construction of the hierarchy of classes and interfaces,
as well as a class representing the structure which stores the scopes of every variable present
in the program.

e browser.stack: All the classes related with the stacks are included in this package. For
instance, the class StackJob, which represent a stack of jobs. Also, we can find classes
related with the jobs, for example the information of methods and variables useful for each
job (e.g classes Variable and Method).

e browser.managers: Two classes are found in this package. The first one is ManagerStack,
which represents what we have called “monitor” or “daemon process” (see 3), i.e. it is
the coordinator between the two stacks. It has the two stacks as instance variables, and
the common data of the process (an object of class ProcessData). The second class is
MetaManager, which acts as a bridge between the object of class Browser and the monitor
of class ManagerStack.

The general structure of the classes and their relationships is shown in figure 4.5. As we
have said, every job has an instance variable of type ProcessData, but this object must be
static, or in other words, all the jobs must share the same object of that type. The reason of
the previous is because if one job changes a value of a datum in that object, the other jobs must
be able to see that change. In concrete, given that the currently analyzed variable is indicated
in the object of type ProcessData, if one job changes this variable, the other jobs must be
updated of this change to continue normally with the process.

4.3 Conclusions

We have seen the architecture of this prototype with its features and its limitations. We
believe that with this prototype we have shown that our methodology is applicable and useful.
With enough time and effort, this methodology can be completely implemented, and as the
initial idea was, the tool can be like a browser where the user can transform the code and see
the changes immediately.
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Chapter 5

Conclusions

In this chapter we will discuss the results we have obtained in this thesis, the conclusions we
can present, and their relation with the initial goal and motivation. In order to do that, first in
5.1 we will reformulate our goal and motivation.

5.1 Initial Goal and Motivation

The initial goal of this thesis was the construction of a methodology that can transform code
written in the generic idiom, or in general in a language without support for generic typing,
into code written with genericity. As validation a prototype tool should be developed using an
object-oriented language. We have chosen Java [20] because it is the most popular and most
used object-oriented language nowadays. The target language, which naturally must support
genericity, is GJ because is a natural extension of Java which was built to support generic types.

Our motivation to do so relied in the fact that legacy systems written using the generic
idiom are difficult to evolve. We have shown that systems parameterized with several generic
types, are easier to evolve than systems without those parameters. One of the most overridden
reasons of the previous problem is that a modification of a part of the legacy system involves
changes in other parts that compose it. With this we do not mean that with genericity the
components of a system have no coupling, but we mean that with parameters those parts have
more independence from one another. For instance, type casts due to the lack of genericity
in a programming language are present throughout the entire system, so if we modify one of
the parts of the system (written in the generic idiom), those type casts are potential points of
conflict with the modified part (see 1.1).

Our aim in building a prototype was to prove that our methodology is not only theory,
but it can applied to real code, and in this way, we are proving its usefulness as well.

29
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5.2 Summary and Results

To achieve our goal, we have started explaining the motivation of the problem. We have seen
the usefulness that genericity provides us with, and which are the problems of code written
using the generic idiom. We have given examples with code to show that what we are saying
is not an utopia, but it is a real and common problem. We have presented our approach to a
solution, saying briefly what we wanted to do. We have presented the two central parts of our
work, explaining why our work is useful, and how we will prove it.

Afterwards, we have presented an introductory chapter with all the background and ter-
minology necessary to understand our work in the best way. In that chapter we have started
explaining briefly the very basic concept of type theory. Consequently, we have given a summary
of the kind of polymorphism, showing their characteristics and why they are directly related to
our methodology and implementation. The next step was to explain the language we wanted to
use for the transformed code, i.e. we have given an introductory description of GJ [3] [4]. All
the most important features of GJ that are used in this work were analyzed in that description.
Finally, we have explained what a process of refactoring is, and its connection to our work. With
that chapter the reader should be able to understand the totality of the methodology and our
implementation.

We then proceeded with the core of this thesis, which is the definition and description of
our methodology. The methodology is the main result of this thesis, and it was one of the orig-
inal goals we wanted to obtain. There we have explained the general idea of this methodology,
and we have shown a different way to describe it. We took this idea from the theory of models
of interaction and interaction machines created by Peter Wegner [14] [15] [16]. Afterwards, we
have explained in depth the methodology, including the definition of working jobs, event jobs
and their sequence. This description is the full definition of the methodology, and it is enough
to build a tool that implements it. In fact, this is how we implemented our prototype, follow-
ing this methodology step by step. For those readers who just want a general, but sufficient
description to figure out this work, we have given an informal and complete description of the
methodology in natural language, with some examples to visualize it in a better way. Finally,
we have presented what we think are the most important limitations and restrictions of the
methodology, why we did not take those cases into account, and why it is not impossible or
extremely difficult to include them, even if that requires time and effort.

In the final chapter we have presented the validation of the usefulness and applicability of
our methodology. The first part of that chapter was to explain a calculus we studied to perform
program transformations, and how they can help us in the construction of out prototype. We
have adapted this calculus to make it suitable for object-oriented programming. Following in
that chapter, we have explained what features of the methodology we have implemented, and
how and why we have chosen them instead of others. Finally, we have shown the architecture
of the prototype, including components like the GJ parser, the implementation of the stacks,
jobs, visitors, etc. One relevant part of this implementation are the visitor classes we have built
in order to perform the transformations, and in consequence, to carry out the entire refactoring
process. We have presented a framework we have built where it is easy to program transforma-
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tions over abstract syntax trees.
All those steps were taken in order to achieve our initial goal. In the appendix we give
some examples of applications of our prototype to code, and their results.

5.3 Further Work

In the part of the methodology, we can say that all the limitations and restrictions presented
in 3.4 can be realized as future work. We believe this is not extremely difficult to do, but of
course as in every process of refactoring, they must be done very carefully. In this moment, the
methodology starts promoting an instance variable from a “normal” type to a type variable.
However, this is not the only possibility to add genericity to a program. For instance other
options are add a type variable to a class or interface, add a type variable to a method (in GJ
is possible to declare “local” type variables), promote other kind of variables, or promote them
to parametric types and not to type variables (even if those extensions are implicitly included
in our methodology), etc.

In the part of the implementation, the obvious extension that it needs is to take into
account external or referring classes. This is included in the methodology, but it is not imple-
mented by the prototype. Other extension is to make this tool user friendly. we mean with
that, to build an interface like a kind of browser (e.g. like VisualAge for Java or VisualWorks
for Smalltalk) where the user graphically can refactor the code.

5.4 Final conclusion

To conclude this thesis, we say that, even with all the restrictions and limitations, our work has
achieved our initial goal. We have proven, even if the prototype is not a complete implementa-
tion, that our methodology is not just theory, but it is absolutely applicable to real code, and
in consequence, it is useful for refactoring systems.
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Appendix A

Example 1

In this example we will promote the instance variable var to a type variable T, which has a
F-bound (in this case it is an interface) called NewBound.

public class A

{
Integer var;
public void m(String z, Integer c)
{
Integer var;
Integer a=(Integer)this.var;
Integer h;
Integer b;
h=(Integer)var;
c=(Integer)a;
if ( b!'=(Integer)c )
{
System.out.println("Hola Mundo");
}
}
public Integer n()
{
return var;
}
}
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This is the result of the refactoring:

public class A<T implements NewBound<T>>
{

T var;

public void m(String z,T c)
{
Integer var;
T a = this.var;

Integer h;

T b;

h = (Integer)var;

c = a;

if (b!=c)
{
System.out.println("Hola Mundo");
}

}

public T n()

{

return (var);

}
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Appendix B

Example 2

In this second example we promote the variable var to a type variable T, but this time T has no
bound (universal parametric polymorphism).

public class A
{

Integer var;
Integer b;

public Integer n()

{
String s="Chao";
System.out.println(s);
Integer i=var;
return i;

+

public Integer m(Integer c)

{
Integer var;
Integer a=(Integer)this.var;
Integer h;
h=(Integer)var;
c=(Integer)a;

int i=0;
while( i<100 )
{
if( ¢c==b )
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return a;

The result of the refactoring is:

public class A<T>

{

T var;
T b;

public T n()
{
String s = "Chao";
System.out.println(s);

T i = var;
return (i);
}

public T m(T c)
{
Integer var;
T a = this.var;
Integer h;
h = (Integer)var;
c = a;
int i = 0;
while (i<100)
{
if (c==b)
i++;
3
return (a);

¥

i++;
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