
 i

Acknowledgements

I would like to thank my all Brazilian colleague, who gave me
 a lot of support during the Master.

I thank Prof. Dr. Edson Scalabrin from Pontifícia Católica do Paraná – PUC - PR who
gave me the opportunity to participate in this project.

Special thanks to my mother and my sister that, even so far,
 gave me incentive and support in my studies.

 ii

TABLE OF CONTENTS

LIST OF FIGURES..IV

LIST OF TABLES... V

ABSTRACT ..VI

1 INTRODUCTION... 1

2 LITERATURE REVIEW... 3

2.1 REUSABLE COMPONENT DEFINITIONS ... 4
2.2 TYPES OF COMPONENTS.. 5
2.3 VIEWS ON THE REUSE SOFTWARE PROCESS .. 7
2.4 EXISTING TECHNIQUES FOR DETECTING REUSABLE COMPONENTS .. 8

2.4.1 Identifying and Qualifying Reusable Software Components.. 9
2.4.2 An Expert System Approach .. 12
2.4.3 Transform Slicing ... 14
2.4.4 Common Aspects between techniques.. 15

3 MOTIVATIONS AND DIFFICULTIES ENCOUNTERED... 17

4 A GUIDELINE TO DETECT REUSABLE COMPONENTS .. 19

4.1 THE PURPOSES OF THIS GUIDELINE ... 19
4.2 TYPES OF COMPONENTS CONSIDERED .. 19
4.3 THE SET OF STEPS ... 20

4.3.1 Step 1: Determine the types of reusable components to search for... 20
4.3.2 Step 2. Determine the application domain to identify reusable components 21
4.3.3 Step 3. Analyse the Source Code to Detect Redundancy.. 21
4.3.4 Step 4. Count the Number of Static Calls ... 22
4.3.5 Step 5: Analyse the Source Code to Detect Dependencies ... 23
4.3.6 Step 6: Measure the Depth of Inheritance of a Component .. 24
4.3.7 Step 7: Determine the potential use of the component.. 24

4.4 OUTLINED METRICS.. 24
4.4.1 Halstead Metrics ... 24
4.4.2 McCabe’s Cyclomatic number.. 26
4.4.3 Lack of Cohesion of Methods (LCOM).. 27
4.4.4 Coupling between object classes (CBO)... 29

4.5 CONCLUSIONS ... 30

5 APPLYING THE GUIDELINE IN A CASE STUDY ... 31

5.1 THE CASE STUDY: A BANKING APPLICATION... 31
5.1.1 Describing the Application ... 32
5.1.2 The Architecture of the Application ... 33

5.2 CHECKING REDUNDANCY ... 34
5.3 CHECKING DEPENDENCY .. 38
5.4 THE RESULTS OBTAINED.. 39
5.5 CONCLUSION... 39

6 CONCLUSIONS ... 41

6.1 CONTRIBUTIONS.. 41
6.2 FUTURE WORK .. 41

7 REFERENCES.. 43

 iii

APPENDIX A : UML MODEL AND TRANSLATION TERMS .. 45

APPENDIX B: SOURCE CODE... 51

 iv

List of Figures

Figure 1: Views of Reuse Process .. 7
Figure 2: Reuse Process Model .. 10
Figure 3: Expert System model .. 13
Figure 4 : Banking Application Context .. 33
Figure 5: Common Object Request Broker Architecture ... 33
Figure 6 : Demonstrating a part of a reengineering process... 36

 v

List of Tables

Table 1: Methods of Class Account ... 34
Table 2: Methods of Class Agency .. 34
Table 3: Methods of Class Bank .. 35
Table 4: Methods of Class Client ... 35
Table 5: Methods of Class Saving Account ... 35
Table 6: Metric LCOM per Classes.. 39

 vi

Abstract

The work described in this thesis addresses the field of software reuse. Software reuse is
widely considered as a way to increase the productivity in software development.
Moreover it can bring more quality and reliability to the resultant software systems.
Identifying, extracting and reengineering software components from legacy code is a
promising cost-effective way to support reuse. Considering this assumption, this thesis
deals with the composition of a Guideline that can direct the identification of reusable
software components in Object Oriented (OO) legacy system. In order to compose this
Guideline some existing techniques to detect reusable components were evaluated. From
them the main aspects concerning object-oriented concepts are taken into account. In
addition, the basic concerns of object-oriented paradigm are considered since they hold in
themselves the goal to tackle reuse. After showing the Guideline composition process and
the principles covered in its context, some of the directives stated are applied in a case
study to demonstrate their use in practice.

 Introduction

A Guideline to Detect Reusable Components 1

1 Introduction

Reuse has been considered an important solution to many of the problems in software
development. It has been claimed to be essential in improving productivity and quality of
software development with significant benefits reported by many organizations.

Although the software community does not agree on what software components are
exactly, it is recognised that they are the basic unit to practice the reuse. The increased
commercial offering of embeddable software components, the standardization of basic
software environments and the popularization of Internet have resulted in a new situation
for reusability: there are many more accessible reusable components that can achieve a
large usage.

Given the high interest in reuse and motivation to the use of available software
components, the development software environment is embracing the identification,
evaluation and selection of reusable components as important processes, with a high
potential impact on the product and project objectives. Since these activities are typically
not well defined, each project finds its own approach to perform them often under
schedule pressure and without experiences based on previous developments.

This lack of a solid basis for the reuse process causes that each time it is performed it
needs to be reinvented. Therefore, for the moment consistency is not yet guaranteed.
When a planning for this area can be defined it will be easier to the organizations to follow
previous experience gaining from the use of validated methods.

In order to provide a support to facilitate this important identification process of
candidate’s reusable components in existing software, this work suggests a Guideline to
help in the detection of reusable components in OO legacy code.

This Guideline provides a basis for evaluating and identifying candidate reusable parts for
software development. It offers oneself a series of steps and suggestions to apply in source
code to identify with more facility the possibilities of reuse in the system approached.

The idea in this work is to take advantage of the few techniques encountered in this
context. To achieve this purpose the fundamental aspects of each one of them will be
considered and combined with new statements discovered during this research.

To validate the Guideline it was necessary to apply it in an example. The results of this
experience are explained in the end of this document in order to make clear the Guideline
suggestions.

This thesis is organised as follows:
The chapter 2 covers a literature review in the area of reusable components. Chapter 3
presents the motivations and difficulties encountered to compose the Guideline in this
unexplored area. In Chapter 4 the Guideline is described considering its purposes, the type
of reusable components covered and the steps suggested. The chapter 5 specifically

Introduction

2 A Guideline to Detect Reusable Components

focuses the evaluation of the Guideline applied in a specific example in order to validate
it. The conclusions and further directions are finally given in chapter 6.

Chapter 2 : Literature Review

A Guideline to Detect Reusable Components 3

2 Literature Review

Rarely software is built completely from scratch [SJ97]. Software reuse is the process of
creating software systems from existing software rather than building from scratch. In this
way the reuse of software components can considerably reduce the development effort and
improve the quality and the reliability of new software systems.

Existing software is widely considered to be the main source for the extraction of reusable
assets. To fit new requirements, existing software (documentation, design documents,
source code, etc) are adapted composing a great extent. Nowadays, identifying, extracting
and reengineering software components from existing system is a promising way to create
these reusable assets.

The most basic of the reuse strategies is to develop an application system from scratch
only as a last resort. To support this idea it is necessary to find and select parts of source
code to compose reusable components that can be used in the development of the various
system project deliverables, and this process is not an easy task.

In [JG97] the author affirms that there is a lack of components to reuse. This aspect is due
to a host of obstacles: failure to select and strengthen components for reuse in the first
place; lack of techniques to identify, classify and package components.

Since object-oriented emerged, organizations have accumulated thousands of lines of
code. The concern of developing and identifying reusable components was not apparent
until very late and most of the applications were developed following a conventional
approach. Instead of recreating component similar to component already existing, and
considering the high cost of development, many organizations have realized that reuse
parts of applications could be a great advantage.

Building application systems from reusable components is based on the assumption that
reusable components exist somewhere, they are reasonably easy to find and understand,
and they are of good quality [JH98]. This assumption intends to give motivations to reuse
process, but according to what has been explained components are not so easy to deal with
them.

In this context of reusable components, there are still few techniques to the identification
of reusable components in a repository as well as in legacy system. The techniques
encountered will be described in order to demonstrate existing approaches in this
direction. To get a clear understanding about the techniques it is necessary before to
conceptualize reusable components defining their role, and show the two existing views in
the reuse process.

Chapter 2 : Literature Review

4 A Guideline to Detect Reusable Components

2.1 Reusable Component definitions

The best way to start talking about reusable components is giving a definition for the term
reusable component. As the software community does not yet agree on what a component
is exactly, there are several definitions for the term software component. Components are
well established in all other engineering disciplines, but until recently were unsuccessful in
the world of the software.

Many papers and books [BM94, EMT98, JGJ97, and NJ96] try to give a definition for
components but it can be realise that each author focuses his definition in the research or
the domain application in which the component was used from the usage context.

A general definition that can be given is stated in [JGJ97]:

“Software Component is any element of software life cycle that can potentially be reuse in
several contexts”.

From this definition one can see that Component and Reusable Component are superposed
terms. In the reuse context, according [Mc97], it can be distinguished two different
approaches that help us in defining components. Components can be seen as some part of
software that is identifiable and reusable. Therefore functions and classes are examples of
such components. On the other hand, components can also be seen as the higher level of
abstraction, such as patterns, frameworks and specifications.

This work is in the context of software reuse that it focuses the first approach. The
intention is to identify in Objet Oriented legacy systems parts potentially reusable.

To be more specific, for the author [SC97], components have the following characteristic
properties:
- A component is a unit of independent deployment;
- A component is a unit of third-party composition;
- A component has no persistent state.

These characteristics have various implications but one important aspect to point out is
that a component needs to be independent from its environment and from other
components. To get this independence, components basically must have an interface;
encapsulate internal details and must be documented separately. These three aspects are
very important to compose good reusable components.

In [SJ97] the author gives another important definition to consider in order to understand
the focus of this work:

“Reusable software components are self-contained, clearly identifiable artefacts that
describe and/or perform specific functions and have clear interfaces, appropriate
documentation and a defined reuse status”.

Searching in software literature it is possible to explain in more details the main aspects of
the previous definition:

Chapter 2 : Literature Review

A Guideline to Detect Reusable Components 5

- Self-containedness

Components must be self-contained. In this sense, it must be considered the concepts
of packages or modules, that is, the way of programming languages deal with the
components. For example, one module can be used as interface for a set of modules
which are the entity for reuse, then this component can be reused, or one process can
be used as the interface for a set of processes which can even run on different
machines.
For the author [SJ97] it may not always be practical to integrate all parts with a
component in order to make it self-contained, but the dependencies have to be clearly
documented.

- Identification

Components have to be clearly identifiable, through some features such as interface,
cohesion and they must be independent and executed with a specific functionality.

- Functionality
Components describe and/or perform specific functions, i.e., components must have
clearly specified functionality, that can be described through their specification and
documentation.

- Interfaces

Components must have clear interfaces and hide details that are not needed for reuse.
An interface determines how a component can be reused and interconnected with other
components [BM94]. It defines an operation or a set of operations, usually related,
defines a service that is available for a component.
Interfaces of components are crucial for their composition. Components have three
different types of interfaces, as stated by [SC97]: a programming interface, a user
interface and/or data interface. For reuse all three interfaces are important, although
programming interface is certainly the most important one.

- Documentation

It is considered indispensable for reuse. Enough information must be provided in order
to allow a component to be reused. This aspect is a problem frequently encountered in
majority of the developments.

- Reuse status

Components must be maintained to support systematic reuse [Mc94].
The reuse status contains information about who maintain them, who can be contacted
in case of problems, etc. It becomes a crucial information in the companies.

2.2 Types of Components

Since there are many definitions to reusable components considering different
environments and levels of granularity, several types of reusable components have been
provided in the literature.

Chapter 2 : Literature Review

6 A Guideline to Detect Reusable Components

Examples of Types of Reusable Components [Mc97] include software parts or
components at varying levels of abstraction and of different sizes what can be understood
as the component granularity, as well as documentation deliverables such as:

- Application package;
- Subsystems;
- Data type definition;
- Designs;
- Specifications;
- Code;
- Documentation;
- Test case and test data;

In this work just reusable components in the object-oriented context will be considered.
Although the object-oriented approach makes reuse more feasible than with other software
development methods because of mechanisms such as encapsulation and inheritance,
software reuse is not guaranteed through the use of object-oriented concepts.

Examples of Types of Reusable Components in object-oriented context specifically
include:

- Application Framework;
- Use Cases;
- Object Classes;
- Analysis and Design Models;
- Methods;
- Test packages;
- Documentation;
- System Architectures;

Chapter 2 : Literature Review

A Guideline to Detect Reusable Components 7

2.3 Views on the Reuse Software Process

Some organizations have implemented systematic reuse programs, which have resulted in
in-house libraries of reusable components. Other organizations have supported their reuse
with own techniques and tools to recover components. Consequently, these organizations
are spending much time in recovering reusable components since the choice of the
appropriate components depend on several aspects, such as experience, cost and
techniques.

Considering these situations there are two faces or sides of reuse, according to [Mc97],
that must be incorporated into the development process to support the practice of software
reuse:

Consumer Reuse: Activities for using reusable components in the creation of new
software systems – building with reuse view

Producer Reuse: Activities for creating, acquiring or reengineering reusable
components– building for reuse view

Figure 1 shows each view addresses reuse.

Figure 1: Views of Reuse Process

• Software development with reuse

Consumer Reuse is concerned with using reusable software parts to built new systems.
Software development with reuse is an approach to development that tries to maximize the
reuse of existing components. An obvious advantage of this approach is that overall
development cost should be reduced. Fewer software components need be specified,
designed, implemented and validated. However, it is difficult to quantify what the cost
reductions might be.

Producer Reuse Consumer Reuse

Develop for Reuse Develop with Reuse

Creating/Acquiring/
 Reengineering
ReusableComponents

Using
Reusable

Components

Chapter 2 : Literature Review

8 A Guideline to Detect Reusable Components

In some cases, development costs may not be significantly reduced. The cost of
component adaptation might occasionally cost as much as the original component
development.
The process of development with reuse is usually developing a system completes a high-
level design and specifications of the components of that design. These specifications are
used to find components to reuse.

• Software development for reuse

Producer view is concerned with creating, acquiring and reengineering reusable software
parts. A common misconception is that these components are available in existing systems
being able to be easily identified. Even the components being created as part of an
application system they are unlikely to be immediately reused. These components are
geared towards the requirements of the system in which they are originally included. To be
effectively reused, they have to be generalized satisfying a wider range of requirements.

In this context of development for reuse is more productivity to try to identify generalized
components than to develop components from scratch.

According to the two views of the Reuse Process, it makes clear to affirm that the scope of
this work collides with the Producer view.

2.4 Existing Techniques for detecting reusable components

The development of conventional software is supported by many consolidated well-
defined techniques, but Reuse is a different paradigm that does not have yet clear
techniques that detail of how it can be practice.

There are few techniques that deal with identification and extraction of reusable
components. They work in different ways, but contribute to the same objective: the
reusability.

The idea is to take advantage of these techniques in order to compose a Guideline, which
can help in the detection of components in legacy code. It is important to know how the
different steps of each technique interact and how they fit into the development process of
detection as a whole.

The act of extracting components is considered a part of a process called Reuse
Reengineering. However to consider this action of extraction it is necessary to get
techniques that can facilitate this identification of components and after that, extract them.

Chapter 2 : Literature Review

A Guideline to Detect Reusable Components 9

2.4.1 Identifying and Qualifying Reusable Software Components

This technique can be viewed as a way to reuse experience along the development of
software object products.

The basic process of the Identification and Qualification technique [CB91] concerns in
how to analyse existing components and to identify ones suitable for reuse. After they are
identified, parts could be extracted, packaged in a way appropriate for reuse, and stored in
a component repository.

It is very important to emphasize that this technique encompasses an aspect related to the
development of a catalog of components, i.e. construct a repository of reusable entities.
This repository can be searched every time a component is needed within the software
development process. Therefore this environment is not exactly the same considered in my
approach. Anyway, the core ideas of identification can be helpful in the composition of the
Guideline.

This technique is based on the partition of the traditional life cycle in two parts:

- the project, delivers software systems;
- the factory, supplies reusable software objects to the project;

The factory part concerns are the extraction and packaging of reusable components.
Besides it also works with a detailed knowledge of the application domain from which a
component is extracted.

This technique to identification and qualification of reusable software component is based
on software models and metrics. The interesting way in which these two aspects are
treated by the technique was fundamental to take advantage of it.

There are two major steps involved:

• The identification process uses software metrics to search for candidate reusable

components, taking into account the large volume of source code;

• and the second step is the “qualification”: the automatically extracted candidates are

analyzed more carefully in the context of the semantics of the source application.

The models and metrics allow a feedback and improvement that make the identification
parts and extraction process fit in a variety of environments.

Chapter 2 : Literature Review

10 A Guideline to Detect Reusable Components

The Reuse Framework and Organization

To achieve its purposes the technique suggests an organization framework that
demonstrate the project-specific activities and reuse-packaging activities, as showed in
figure 2:

Figure 2: Reuse Process Model

The framework defines two separate organizations: a Project Organization and an
Experience Factory.

The project organization develops the product, taking advantage of all sorts of package
experience from prior and even current developments. In turn, the project offers its own
experience to be packaged for other projects. Within the Experience Factory on the other
hand, an organization called component factory develops and packages software

Components

Requests

Components

 Store

Plan

 Asynchronous

Produce Package

(develop, generalize, reengineer)

 Specifications

Requirements

 Design
Release

Quality Component
Control Integration

Project
Organization

Experience Factory
(Component level)

Release

 Verify

 Synchronous
Look up

 Tailor/generate

Chapter 2 : Literature Review

A Guideline to Detect Reusable Components 11

components. It supplies code components to the project on demand, and creates and
maintains a repository for future reuse.

As a subdivision of the experience factory, the experience that the component factory
manipulates is programming and application experience as present in programs and their
documentation. As a result the component factory understands the project context and can
deliver components that fit.

The component factory has two sides: it satisfies component requests from the project
organization, and it also continuously prepares itself for answering those requests. This
represents in fact mixing synchronous and asynchronous behaviour. These activities deal
with the reception request and search in the catalog of the available components.

Considering specifically the scope of this work in which it is not approached the
repository aspect, the synchronous and asynchronous activities will not be described in
details.

• Extracting Components

The component factory analyses existing programs in two phases. First, some candidates
are chosen and packed for probable independent later reuse. Next, human intervention is
required: an engineer with knowledge of the application domain where the component was
developed analyses each component to determine the service it can provide. Afterwards,
components are stored in the repository, with all information that has been obtained about
them.

To achieve the goal of the first phase it is done fully automated using of a tool called Care
System. This tool is designed to support this activity of code examination to choose some
candidate to package.

The necessary human intervention in the second phase is the main reason for splitting the
process in two steps. The first phase reduces the amount of expensive human analysis
needed in the second phase by limiting analysis to components that really look worth
considering.

Independent program units are automatically extracted and measured according to
observable properties related to their potential for reuse. An important part of this process
is the measurement of the component potential reuse. To measure this aspect, a technique
proposes a family of such measures that can be applied to their reusability attributes
model.

The use of a quantitative model for identification of component and a qualitative, partially
subjective model for their qualification, provide a continuous improvement of both models
using feedback from their application. The reusability attributes model is the key to
automating the first phase.

Chapter 2 : Literature Review

12 A Guideline to Detect Reusable Components

• Component Identification

The reusability attributes model for identifying candidate reusable component attempts to
characterize the attributes directly through the measures of an attribute, or indirectly
through the measures of evidence of an attribute’s existence.

The technique establishes a set of acceptable values for each of the metrics. These values
can be either simple ranges of values or more sophisticated relationships among different
metrics.

The basic reusability attributes model reflects component reusability using the following
metrics mentioned. The explanation in details about its formulas can be found in the
chapter 4.

Volume and Regularity: measured using the Halstead Software Science Indicators. These
values are measured through the number of operators and operands used in a program and
seeing how well we can predict its length based on some regularity assumptions.

Cyclomatic Complexity: measured using the McCabe measure defined as the Cyclomatic
number of the control-flow graph of the program.

Reuse Frequency: measured comparing the number of static calls addressed to a
component with the number of calls addressed to a class of components that we assume
are reusable.

The calculated values for each of this metrics mean:

- For Volume and Cyclomatic Complexity: it is necessary to establish an upper and a

lower limit. In the case of volume, if the component is too small, the combined costs of
extraction, retrieval and integration exceed its value. On the other hand if the
component is too large, there’s a bigger chance of errors in the process what can lead
to a low quality component.

- For Regularity: it is calculated a closeness of an estimate by looking for a value close
to 1.

- For Reuse Frequency: it is assumed that the program uses some naming convention to
be sure that a component with a different name also represents a different
functionality. In this case it is considered only a lower limit.

2.4.2 An Expert System Approach

An Expert System [DK93] is another approach that deals with the detection of reusable
components. This technique tries to make decisions with a high degree of reliability by
identifying design rules that are known to be supportive of reuse.

Chapter 2 : Literature Review

A Guideline to Detect Reusable Components 13

Such as Identification and Qualification technique, Expert system approach considers the
concept of reusable library as a repository to store the components. It is important to
emphasize again that this aspect of ‘storage’ is not considered in the proposed Guideline.

An expert system simulates the behaviour of a human expert. So, having in mind what a
human expert would do when searching code for finding reusable components, two things
certainly need to be looked for:
- Knowledge of the domain from which the system is being examined comes from;
- and the knowledge of the domain in which the component will possibly be used.

Figure 3: Expert System model

The knowledge is restricted to design knowledge at all levels that are related to reusability.
It is supplemented by metrics such as the level of coupling between a set of programs
subsets in order to characterize reusable parts.
The Expert System model is depicted in figure 3.
All of this knowledge is captured in different set of logic rules (like in Prolog). These rules
can be classified as:

- Rules that express candidate reuse structures.

The rules consider that the developer uses techniques as data abstraction when
building a system.

- Rules that are derived from the application domain.

To enhance the searching process as to locate parts likely to be relevant to a spectrum
of systems across the problem domain, the rules can be changed as needed.

- Rules that express different style characteristics that influence reengineering.

The purpose is simply to enhance the selection process allowing that a candidate part
can be made ready to be put into a repository.

Component
Assessment

Report to user

Source Code

Knowledge Base

Domain-Specific
Knowledge

Metric Definitions

Reengineering
Knowledge

Parts Classified by:

-Effort involved in
Reengineering on Adherence
to Design Rules
-Potential Value Based on
Size and Structure

Design Knowledge

Component
Location

Represented as
Declarative Facts

Chapter 2 : Literature Review

14 A Guideline to Detect Reusable Components

Moreover based in these rules, the Knowledge Base permits the system to identify
potentially reusable parts in three ways:

- By identifying functions that are invoked multiple times.

The multiple invoked functions are denoted in logical facts that represent a call graph.
The set of Prolog facts denoting the graph would be generated during the program
analysis phase.

- By identifying functions that are loosely coupled.

Coupling means how tightly or loosely bound of a set of program subsets with each
other is related. A function that is loosely coupled is not easily treated because it must
be considered different types of coupling, as Data coupling, Common Coupling,
External Coupling and Control Coupling.

- By identifying functions and global data elements that can be grouped to form

abstract data types.

The activities of this technique are supported by a toolset called Code Miner that assists
the programmer in identifying parts of existing software putting these candidates in a reuse
library.

This toolset written in C has a Prolog interpreter and an interactive front-end. The Prolog
interpreter provides the inference engine in which reusable component candidates are
identified.

It is clear in this approach that only the identification part is automated. Human
intervention will always be needed for selecting among those candidates which ones are
really reusable assets.

2.4.3 Transform Slicing

The transform slicing approach [LV96] aims at extracting reusable functions from ill-
structured programs. Transform Slicing is an extension of Program Slicing, one that
includes statements, which contributes to transform a set of input variables into a set of
output variables.

Program Slicing belongs to a family of program decomposition techniques based on
selecting statements that are relevant for a computation, even if they are not grouped
together in the program. Transform Slicing includes statements, which contribute to
transform a set of input variables into a set of output variables.

To be able to use Transform Slicing two questions must be answered:
- How can we get a list of expected functions to be recovered together with input and

output data?
- How will we cope with the difficulty of finding the last statement of an expected

function, being the initial statements in the slicing criterion?

Chapter 2 : Literature Review

A Guideline to Detect Reusable Components 15

Transform Slicing requires the availability of knowledge about the application and
programming domain to be able to get in some way a list of expected functions. Domain
knowledge suggests the simple tasks being done in the system and these tasks are clearly
defined at least in terms of input and output variables.

For data-oriented applications, the reverse engineering process should include a data
recovery phase, to be able to produce a data model of the application system. This way,
the initial domain representation will be expanded, so the representation evolves to an
application data model. At the end of the data recovery phase, the dictionary with all the
data will contain the description of the variables and the mapping between the model and
the source code.

A further step in getting some expected functions is combining the information in the data
dictionary with the functions found in static sources or sources suggested by dynamic
sources (like domain experts, programmers…). The result of this should be a list of
expected function specifications with a function name, a description of the function, an
input and output parameter list.

2.4.4 Common Aspects between techniques

The techniques outlined above have some steps well defined and the continuous
improvement of the used metrics model can be considered satisfactory.

All the techniques studying the dependencies among software elements at code level and a
determination can be made of the reusability of those elements in other contexts. The
theoretical reusability of a component of software is defined as the amount of dependence
that exists between that component and other software components as it will see later.

One of the goals of the reuse process is to identify and extract the essential functionality
from a program and this extracted essence is not dependent on external declarations,
information, or other knowledge. Transformations are needed to derive such components
from existing software systems since inter-component dependencies arise naturally from
the customary design composition and implementation process used for software
development.

Looking at the source code, the technique Identification and Qualification help to identify
routines or units that satisfy the metric values typical of components with a high frequency
of reuse. The metrics is represented by means of statistical values and they have to be in
an allowed interval. The metrics used in this technique will be explained in section 4.3
(The Composition Process) in which the steps to be followed in the Guideline are
determined.

The expert system approach is also based on some predefined characteristics of
components known to be reusable that are then expressed in logic rules. The metrics are
represented decoratively, because a declarative language is used to express the metrics.

Chapter 2 : Literature Review

16 A Guideline to Detect Reusable Components

The major advantage of the Slicing approach is that they are completely programming
language independent because they are based on data flow analysis.

Finally, in order to compose the Guideline the main aspects of each technique that support
the identification of potential reusable components are considered. Although all the
techniques have well defined steps, it is also possible to conclude that an extraction
technique without human intervention is still non-existing.

According [MR97] “A software component is reusable if the effort required to reuse it is
remarkably smaller than the effort required to implement a component with the same
functions”. Certainly these techniques described above help us in this effort.

Chapter 3 : Motivations X Difficulties encountered

A Guideline to Detect Reusable Components 17

3 Motivations and Difficulties encountered

This chapter presents the motivations and difficulties that are encountered to compose this
Guideline in the context of software reuse. Several aspects encourage the composition of
the Guideline, however some other aspects make difficult the process, considering mainly
the few explored area of identification of components by software community.

Many motivations are given to justify the importance of the Guideline. First of all, as
stated before, the simplest reason is that does not exist clear planning and deep research in
this specific context of reusable component identification what stimulates the approach of
this work.

Reuse with reusable components is becoming more and more important in a variety of
aspects of software engineering. Recognition of the fact that many software systems
contain many similar or even identical components that are developed from scratch over
and over again has led to efforts to reuse existing components.

Structuring a system from independent components rather than creating reusable
components as an independent activity has several advantages:

- It is easier to distribute the components among various projects to allow parallel

development;
- Maintenance is more facilitated when clear interfaces have been designed for the

components, because changes can be made locally without having unknown effects on
the whole system;

- If components’interrelations are clearly documented and kept to a minimum, it
becomes easier to exchange components and incorporate new ones into a system ;

- The resulting components are guaranteed to be relevant to the application area; and
- The cost is low and controllable.

The development of a Guideline to identify components is stimulated in order to give
support to achieve these advantages. This Guideline concerns a planning of steps to guide
and facilitate the identification of candidate reusable parts in source code.

If the time to search for reusable components is too long in the system builder’s point of
view, he will opt for building the component from scratch rather than reusing an existing
component in spite of how well the reusable components fit the current needs. To facilitate
this search, the Guideline must assure that the system approached will be examined
following directives based in a planning and therefore it is easier to know the level of
reusability of this code.

In contrast to the motivations some difficulties are also showed.

Since the process to compose the Guideline is done taking also advantage of existing
approaches, its composition is restricted. After making a research in the literature of this
area, it is possible to conclude that there is a lack of techniques to identify reusable
components and the existing ones do not approach clearly many steps.

Chapter 3 : Motivations and Difficulties encoutered

18 A Guideline to Detect Reusable Components

In general the first problem in reusing software arises from the nature of the objects to be
reused. The concept for general reuse is simple: use the same object more than once.
Although with software it is difficult to define what an object is independently of its
context. Normally, the objects are not independent of the context and this aspect is
fundamental to consider the idea of component.

In [Mc97] Reusability is defined as the extent to which a software component can be used
with or without changes in multiple software systems, versions or implementations. The
identification of the right reusable parts in the legacy system is often no-trivial task and
requires careful consideration of multiple criteria and careful balancing between
application requirements, technical characteristics and financial issues. However, the
problems and issues associated with the identification of suitable reusable components
have rarely addressed in the reuse community.

Some general criteria have been proposed by Object Oriented paradigm to help in the
search of potential reusable components. Furthermore, most of the reusable component
literature does not seem to emphasize the sensitivity of such criteria to each situation.

Considering the main objective of this guideline is to guide the process of identification of
reusable components to be reused obtained from OO source code as existing legacy
systems, various levels of difficulties can be outlined:

- Application development is normally designed for special requirement, not as a

general abstraction. The goal is to have highly reusable components available in many
reuse scenarios, not only for projects developed on/with a certain operating system
and/or programming language.

- Generalize the directives in the Guideline that satisfy a wider range of requirements in

different contexts is not always possible. Application contexts are diverse and each
one holds its own specific features according to the domain.

- Lack of documentation to meet the information needs of potential and actual reusers.

- Useful abstractions are usually created by programmers with an obsession for

simplicity and solve problems, who are willing to rewrite code several times to
produce easy-to-understand and easy-to-specialize classes.

Chapter 4 : A Guideline to Detect Reusable Components

A Guideline to Detect Reusable Components 19

4 A Guideline to Detect Reusable Components

This chapter will describe properly the essence of the Guideline, its purposes, the type of
component considered among the several types existing and the process of its
composition.

4.1 The purposes of this Guideline

What is a Guideline? What are its purposes in the specific reuse context?

In a generic way, a definition to Guideline is done in [JG97]: adapted procedures to be
followed when implementing certain actions. More specifically in the context of reuse,
according to [AK98], Guideline can be viewed as a manual application of the principles
and techniques of generic transformation and applications.

This Guideline tries to reveal several interesting and intuitively reasonable directives
related to the identification of reusable components in OO legacy system. It is important to
emphasize that the main purpose of a Guideline is not to prove the directives offered, but
just to guide users to achieve the proposed goals.

Based in different sort of criteria, the Guideline composition is done combining several
aspects of the techniques previous outlined (see section 2.4) and adding some statements.
Before showing the Guideline composition process, the type of component considered is
explained.

4.2 Types of Components Considered

Through the concepts of encapsulation, inheritance, polymorphism and data abstraction,
object-oriented encourages software reuse in a number of ways. Class definition provides
the abstraction, modularity and information hiding necessary to be considered in the
essence of reusable components. In addition methods represent the behaviour of the
classes through which system functionalities are expressed.

According to the types of components explained in section 2.2 and to the ideas stated in
the previous paragraph, the type of component considered in this Guideline are class and
method. A Class is the main building block in object oriented systems being able to
represent strongly by itself some semantics. It determines the structure and behaviour of a
group of objects expressing therefore the core concept in the object-oriented context. In
addition, the possibility to specialize classes by inheritance without the need to modify
their source code brings several advantages to reuse.

There are many other features encompassed by classes that allow them to be viewed as
components:

- Classes have names;
- Classes may realize a set of interfaces;
- Classes may participate in dependency, generalization, and association relationships;
- Classes may be nested;

Chapter 4 : A Guideline to Detect Reusable Components

20 A Guideline to Detect Reusable Components

- Classes may have instances;
- Classes may be participants in interactions.

Methods in turn represent the implementation of services that can be requested from any
object of the class to affect behaviour. Considering this, a method by itself can be reused
since the service encompassed is essential to the system functionality.

Once components can be considered in different levels of granularity, in this Guideline a
class or a group of classes, a method or a group of methods can be identified as reusable
components since they implement common semantic or functionality.

4.3 The Set of Steps

In this section the steps suggested by the Guideline in order to facilitate the search and
identification of reusable components in OO source code will be explained.
These steps determine the directives to be followed by guideline users encompassing
metrics, rules and characteristics to be observed in the source code.

4.3.1 Step 1: Determine the types of reusable components to search for

The first consideration that needs to be taken into account in order to identify components
is to determine the type of components to be searched. The component type can vary
according to the level in which the work is performed as can be seen in the following
examples of components in each level:

- Analysis level: use cases, analysis class model, class, etc.
- Design level: design class model, application framework, logic structure, class, etc.
- Implementation level: class, methods, etc.

Through these examples it can be realized that even defining the level in which the
identification is to be proceeded, types of components can be still diverse.

Therefore, it is really important not only to establish the level in which to work but also in
a specific level to be precise about the types of components to look for. Directives are not
always generic and the lack of a clear component definition can lead to the risk of don’t
achieving the expected results.

According to these statements this Guideline focus on the identification of classes and
group of classes, or methods and group of methods as components considering the level of
source code to the search. The choice for these types of components is justified in section
4.2. Before achieving the core of the Guideline, step 2 will present generic directive
dealing with the application scope.

Chapter 4 : A Guideline to Detect Reusable Components

A Guideline to Detect Reusable Components 21

4.3.2 Step 2. Determine the application domain to identify reusable components

Determine the application domain to which the component belongs is a fundamental step.
The application domain establishes the semantics of the components that need to match to
its requirements and specific features. Finding generic components that can be applied in
any application domain is a next step after identifying components for one domain. This
last assumption reflects the goal of this Guideline.

Therefore a strong knowledge of the application domain becomes necessary in order to
determine their commonalties (similarities) and variabilities (differences). When the
domain is studied, it usually is analysed from two perspectives: (1) aspects that tend to
change from system to system (that are the differences or variabilities) and (2) aspects that
remain constant in any system of the domain (that are the similarities or commonalities).
This evaluation will lead to the identification of the main application domain
functionalities that can be covered by predefined components.

Information describing existing systems in the domain approached is fundamental to
delimit and understand it. There exist several sources of system information:
documentation, requirements, analysis and design models, and source code. Analyse this
information becomes essential to determine the common functionalities that are general
enough and abstract enough to be reused.

The knowledge of the application domain is also a principle supported by the Expert
System Approach explained in section 2.3.2. As the Expert system considers, the
interaction with an expert in the application domain is also essential in order to get the
knowledge.

In the following steps other specific directives to support the identification of essential
functionalities in the application domain are described:

- considering only the system approached, in Step 3 it is stated how functionalities can

be discovered through the identification of redundancy in the source code;
- in Step 4 the number of static calls addressed to a component is also suggested as

another way to achieve this purpose.

4.3.3 Step 3. Analyse the Source Code to Detect Redundancy

To detect redundant parts in the source code the technique Redundancy Checking is used.
This techniques aims to the identification of functionality redundancy and is explained as
follows:

Redundancy Checking occurs in a software system or in a set of software systems when
multiple software components provide the same function or serve the same purpose, or
define the same data. Redundancy can occur at all levels of system abstraction as source
code, designs and requirements. When redundancy is identified and when it is feasible, a
generic reusable component should be defined and used to replace all the redundant
functions.

Chapter 4 : A Guideline to Detect Reusable Components

22 A Guideline to Detect Reusable Components

Considering components as classes and methods (see Step 1), redundancy can be viewed
in:

- For Class description Redundancy:

- If multiple classes have common properties, consider generalizing the classes to
create a supertype. The differences among the similar classes can be captured as
subtypes for the new generalized class. Consider creating an abstract class that
defines the common properties, which can then be inherited by its subclasses.

- Compare all the class descriptions to identify any class redundancies. A class

description consists of the class name, specification of the interface, data attributes,
object reference attributes, and methods signatures. A signature gives a detailed
description of the methods to use for that class.

- For object classes with the same or similar descriptions, attempt to eliminate these

redundant classes by creating a supertype to replace the redundant classes.

- For Methods Redundancy:

To identify processes that may be providing the same or very similar function, look for
methods or specifications that have:

- the same or similar signatures
- the same or similar complexity value based on the McCabe Complexity Metrics

(McCabe Complexity number) and/or Halstead Software Metrics, or
- meet the same or similar requirements.

Redundant methods can be combined and replaced into one generic method.

The metrics Halstead Software Metrics and McCabe Complexity are explained in sections
4.4.1 and 4.4.2 respectively. These metrics are also used by the technique Identifying and
Qualifying Reusable Components explained in chapter 2 (see section 2.4.1).

In this step it can be realised that a Reengineering process takes place through the
restructuring of class and methods organization. To complete this process, Reverse
Engineering must be performed in order to reflect the changes in the design.

4.3.4 Step 4. Count the Number of Static Calls

The idea in this step is to propose a ratio between the number of static calls addressed to a
given component and the average number of static calls computed in the system. If the
result shows an expressive amount of message sending to a component then this
component can be considered reusable in the context of the application domain.

Chapter 4 : A Guideline to Detect Reusable Components

A Guideline to Detect Reusable Components 23

The principles suggested are based on the Reuse Frequency metric presented in section
2.4.1 (Identifying and Qualifying Reusable Software Components).

4.3.5 Step 5: Analyse the Source Code to Detect Dependencies

The goal of this step is the evaluation of the dependencies between software components.
The theoretical reusability of a software component is defined as the amount of
dependencies that exists between that component and other software components [JI94].

Ideal examples of reusable software components can be defined as those, which have no
dependencies on other software components. In other words, the reusability of a
component can be thought of as inversely proportional to the amount of external
dependencies required by that component.

By studying the dependencies between software elements at code level, a determination
can be made of the reusability of those elements in other contexts. For example, if a
component of a program uses or depends upon another component, then it would not
normally be reusable in another system where that other component was not also present.
On the other hand, a component of a software program that does not depend on any other
software component can be used, in theory at least, in any arbitrary context.

Two main principles can support the evaluation of the dependency level of a component:
cohesion and coupling. They can be defined as follows:

Cohesion is an integral part of modular design and represents the strength of the
relationship between module elements [CK94]. A cohesive module performs a single task
and requires minimal interaction with procedures in other parts of a program. Ideally a
cohesive module should do only one thing. It is desirable to have modules which are
highly cohesive and strongly related to one another. The elements of one module should
not be strongly related to those of another module as this leads to tight coupling which is
undesirable. Good abstraction typically exhibits high cohesion.

Coupling two objects are coupled if and only if at least one of them acts upon the other
[MM95]. Since objects of the same class have the same properties, two classes are
coupled when methods declared in one class use methods or instance variables defined by
the other class. Excessive coupling between object classes prevents reuse. The more
independent a class is, the easier it is to reuse it in another application.

To measure the coupling and cohesion of a component some metrics are suggested. They
are explained in sections 4.4.3 and 4.4.4.

Another way to evaluate the level of dependency of a component is by measuring its
Depth of Inheritance as will be explained in the next step.

Chapter 4 : A Guideline to Detect Reusable Components

24 A Guideline to Detect Reusable Components

4.3.6 Step 6: Measure the Depth of Inheritance of a Component

Class Inheritance Depth can be described in: Depth of the class in the inheritance tree.
Large nesting numbers might indicate a design problem and usually results in subclasses
that are not specializations of all the superclasses. A subclass should ideally extend the
functionality of the superclass [CK94].

As it can be realized in the previous assumption, a deep class inheritance points out a
design problem that probably prejudice potential class reusability. This fact indicates that
a reengineering in the design structure might be necessary. Moreover as much as deep is
the class inheritance more dependent is the class on the behaviour and structure of the
others. Therefore, less chances it has to be reused in other contexts.

Depth of Inheritance is a measure that is easy achieved and provided by many tools
supporting metrics.

4.3.7 Step 7: Determine the potential use of the component

Taking advantage of the commonalties explained in the step 2 it is possible to determine
the potential use of the component through the comparison of this component identified in
a similar context.

When a component is common, that is likely to be needed frequently in projects or
frequently included in a system, it can be searched in other software projects to determine
if the same or similar component was or is being developed for those projects. If so,
attempt to reuse the component or to plan its development jointly with those projects to
enable the component to be used in this project, in the other project(s), and in possible
future projects.

4.4 Outlined Metrics

This section describes the metrics suggested by this Guideline.

The following two sets of Complexity metrics are used to measure the complexity of a
program and also can be used to detect redundancies in software programs. If two or more
components have the same or similar complexity characteristics, they are likely to be
providing the same function and may be redundant.

Afterwards, metrics to measure coupling and cohesion are explained.

4.4.1 Halstead Metrics

Halstead’s Software Science Complexity Metrics was developed by M.H.Halstead [Mc97]
to measure the complexity characteristics of software programs, principally to attempt to
estimate the programming effort.

Chapter 4 : A Guideline to Detect Reusable Components

A Guideline to Detect Reusable Components 25

Halstead’s Metrics are based on counting the number of unique operators and operands in
a program. The measurable and countable properties are:

n1 = number of unique or distinct operators appearing in that implementation
n2 = number of unique or distinct operands appearing in that implementation
N1 = total usage of all of the operators appearing in that implementation
N2 = total usage of all of the operands appearing in that implementation

 From these metrics Halstead defines:

i. the vocabulary n as n = n1 + n2
ii. the implementation length N as N = N1 + N2

Operators are reserved programming language words such as ADD, GREATER THAN,
MOVE, READ, IF, CALL; arithmetic operators such as +,-,*,/; and logical operators such
as GREATER THAN or EQUAL TO. The number of operands consists of the numbers of
literal expressions, constants and variables.

For e.g., the assignment statement

p = q

has one operator and two operands

The Halstead measures are calculated using these four parameters. These measures are
listed below.

Program length

N = n1 log n1 + n2 log n2

Actual Halstead length

Halstead length = N1 + N2

Program's vocabulary

Program vocabulary = n1 + n2

Volume

Volume = (N1 + N2) * log (n1 + n2)

Level

Level = (2/n1)*(n2/N2)

Chapter 4 : A Guideline to Detect Reusable Components

26 A Guideline to Detect Reusable Components

Difficulty

Difficulty = 1/Level

Effort

Effort = (Volume/Level)/(18*60) Minutes

Bug Predicted

Bugs predicted = Volume/3000

Advantages of Halstead :

i. Do not require in-depth analysis of programming structure.
ii. Predicts rate of error.
iii. Predicts maintenance effort.
iv. Useful in scheduling and reporting projects.
v. Measure overall quality of programs.
vi. Simple to calculate.
vii. Can be used for any programming language.
viii. Numerous industry studies support the use of Halstead in predicting

programming effort and mean number of programming bugs.

Drawbacks of Halstead:

i. It depends on completed code.
ii. It has little or no use as a predictive estimating model. But McCabe’s

model is more suited to application at the design level.

4.4.2 McCabe’s Cyclomatic number

Cyclomatic number proposed by McCabe [HS96] is one of the widely used measures to
understand the structural complexity of a program and it can be used to detect software
redundancies. This number, based on a graph-theoretic concept, counts the number of
linearly independent paths through the program. In practice it is a count of the number of
test conditions in a program. They can be calculated by hand or by automatic complexity
metrics tools.

If G is the control flowgraph of program P, and G has e edges (arcs) and n nodes, then
Cyclomatic number V (G) = e - n + 2

Or, more simply, if d is the number of decision nodes in G, then Cyclomatic number
V (G) = d + 1

Chapter 4 : A Guideline to Detect Reusable Components

A Guideline to Detect Reusable Components 27

The value of d for the Java constructs is given below

if..then 1
if..then..else 1
for 1
while 1
do..while 1
case statements 1

On the basis of empirical research, McCabe claimed that modules with high values of V
(G) were those most likely to be fault-prone and unmaintainable.

Advantages of McCabe Cyclomatic Complexity :

i. It can be used as a ease of maintenance metric.
ii. Used as a quality metric, gives relative complexity of various designs.
iii. It can be computed early in life cycle than of Halstead’s metrics.
iv. Measures the minimum effort and best areas of concentration for testing.
v. It guides the testing process by limiting the program logic during

development.
vi. Is easy to apply.

Drawbacks of McCabe Cyclomatic Complexity:

i. The Cyclomatic complexity is a measure of the program’s control

complexity and not the data complexity
ii. The same weight is placed on nested and non-nested loops. However,

deeply nested conditional structures are harder to understand than non-
nested structures.

iii. It may give a misleading figure with regard to a lot of simple comparisons
and decision structures. Whereas the fan-in fan-out method would probably
be more applicable as it can track the data flow

4.4.3 Lack of Cohesion of Methods (LCOM)

The original object-oriented cohesion metric, LCOM, is given by Chidamber and Kemerer
[CK94]. Lack of Cohesion of Methods (LCOM) is a measure of the structural cohesion of
classes.

LCOM is defined as a count of the number of method pairs whose similarity is zero minus
the count of method pairs whose similarity is not zero. The degree of similarity, between
two methods is given by :

If there are no common properties then similarity = 0.

Chapter 4 : A Guideline to Detect Reusable Components

28 A Guideline to Detect Reusable Components

Consider a class C with n methods M1,M2...Mn. Let {Ij} = set of instance variables used
by method Mi. There are n such sets {I1}...{In}.

If P = {(Ii,Ij), Ii intersection Ij is equal to nullset} and
 Q = {(Ii,Ij), Ii intersection Ij is not equal to nullset} then

LCOM(Chidamber - Kemerer) = P - Q, if (P > Q)
 = O, Otherwise.

For a perfectly cohesive class the value of LCOM(Chidamber-Kemerer) is 0, and for a
totally non-cohesive class the LCOM(Chidamber-Kemerer) value equals (n(n-1))/2 where
n represents the total number of methods present in the class.

LCOM (Li - Henry):

Li and Henry defined LCOM as the number of disjoint sets of methods, where any two
methods in the same set share at least one local instance variable.

In LCOM(Li-Henry), a value of 1 represents a perfectly cohesive class, whereas for a
totally non-cohesive class the value equals the total number of methods present in the
class.

LCOM (Henderson - Sellers):

Consider a set of methods {Mi} (i=1,...m) accessing a set of attributes {Aj} (j=1,...a). Let
the number of methods which access each datum be Mu(Aj). Then

LCOM(Henderson-Sellers) = (((1/a)sigma j = 1 to a Mu(Aj)) - m) / (1 - m).

The value of LCOM(Henderson-Sellers) is 0 for a perfectly cohesive class and greater
than 0 for non-cohesive classes.

Example :

Given, member variables: I,J,K,L and member functions A,B,C,D

Member function A accesses variables {I,L}
Member function B accesses no variables
Member function C accesses variables {J,L}
Member function D accesses variables {K}

Then the value of Lack of Cohesion of Methods based on these three methods is given
below:

LCOM(Chidamber-Kemerer) = 4 (Since P=5, Q=1 and P > Q)

Chapter 4 : A Guideline to Detect Reusable Components

A Guideline to Detect Reusable Components 29

LCOM(Li-Henry) = 3 (Disjoint sets are {A,C}, {B}, {D})

LCOM(Henderson-Sellers) = 0.916(m=4, a=4, Mu(Aj) = 5)

4.4.4 Coupling between object classes (CBO)

Coupling between object classes (CBO) for a class is a count of the number of other
classes to which it is coupled [CK94 and MM95]. CBO relates to the notion thatt an object
is coupled to another object if one of them acts on the other, i.e., methods of one use
methods or instance variables of another.

This metric can be calculated by Analytical Evaluation of Coupling Between Objects
(CBO) [CK94] . CBO for a class is a count of the number of other classes to which it is
coupled. CBO relates to the notion that an object is coupled to another object if one of
them acts on the other, i.e., methods of one use methods or instance variables of another.
Two classes are coupled when methods declared in one class use methods or instance
variables defined by the other class.

As per assumption 1, there exist classes P, Q and R such that µ(P) ≠ µ(Q) and µ(P) = µ (R)
thereby satisfying properties 1 and 2. Inter-class coupling occurs when methods of one
class use methods or instance variables of another class, i.e., coupling depends on the
manner in which methods are designed and not on the functionality provided by P.
Therefore, Property 3 is satisfied. Let P and Q be any two classes with µ(P) = ηP and µ(Q)
= ηQ. If P and Q are combined, the resulting class will have ηP + ηQ -∂ couples, where ηP
is the number of couples reduced due to the combination. That is µ (P+Q) = ηP + ηQ -∂,
where ∂ is some function of the methods P and Q. Clearly, ηP -∂ ≥ 0 and ηQ -∂ ≥ 0 since
the reduction in couples cannot be greater than the original number of couples. Therefore,

ηP + ηQ -∂ ≥ ηP for all P and Q and
ηP + ηQ -∂ ≥ η Q for all P and Q

i.e. µ (P+Q) ≥ (P) and µ (P+Q) ≥ (Q) for all P and Q. Thus, Property 4 is satisfied. Let P
and Q be two classes such that µ(P) =µ(Q)= η, and let R be another class with µ(R)=r.

µ (P+Q) = η+r - ∂, similarly
µ (P+Q) = η+r -β.

Given that ∂ and β are independent functions, they will not be equal, i.e. µ (P+R) is not
equal to µ (Q+R), satisfying Property 5. For any two classes P and Q, µ (P+Q) = ηP + ηQ-
∂.

µ (P+Q) = µ(P) + µ(Q) - ∂ which implies that
µ (P+Q) ≤ µ(P) + µ(Q) for all P and Q

Therefore Property 6 is not satisfied.

Chapter 4 : A Guideline to Detect Reusable Components

30 A Guideline to Detect Reusable Components

4.5 Conclusions

This chapter has presented the core of this dissertation by explaining the set of steps that
can be followed in order to detect reusable components in OO legacy code.

In this context there are still some aspects that need to be considered. Detect components
is not enough to guarantee their reuse. To be reusable they need to be completed with
some essential features :

Well defined Interface - According to [BG98] “an interface is a collection of operations
that are used to specify a service of a component”. Interfaces are the glue that binds
component together determining what each component can require to another. Besides
interfaces break the direct dependency between components since they make the role of a
bridge allowing their communication. It is important to state that to be used, a component
needs to be in a context in which all the services it needs are provided by the interfaces of
other components.

Documentation – Information is needed to understand, identify, compare, modify
(specialize) and integrate the component. A very basic reuse truism is that to identify a
component to reuse and then reuse it in the creation of a new system, the reuser must
understand what it does. A primary inhibitor to reuse is component understanding. In
addition, information more specific to reuse, such as under what conditions it can be
reused and how to go about reusing is needed.

Certification – Reusers will not want to utilize reusable components unless they are
confident in the component’s validity. Every reusable component should be subject to a
certification process. The process will depend upon the types of reusable components.
Certification information should be “carried along” with the reusable component as part of
its documentation. As stated in [SM97]: The idea behind the certification of component is
to guarantee that a specific set of guidelines has been met.

Chapter 5 : Applying the Guideline in a Case Study

A Guideline to Detect Reusable Components 31

5 Applying the Guideline in a Case Study

In order to demonstrate the application of the Guideline, some of the directives suggested
by each step are used in practice. The case study chosen is a banking application
developed by a student at Ecole des Mines de Nantes, France.

This chapter stars explaining the case study through its environment and design, going
then deep in the source code in order to support the Guideline application.

5.1 The Case Study: A Banking Application

The application used to demonstrate the Guideline is a banking application implemented
in JAVA programming language and making use of the CORBA (Common Object
Request Broker Architecture) concepts. The application [GP99] was developed by a
student at Ecole des Mines de Nantes during his graduation period.

This application was suggested as the case study in this work because of three main
reasons.

- This application is an OO-legacy system. Therefore it is in accordance with the

purposes of this Guideline allowing its use.
- Banking application can also be considered as a generic application. Consequently it

allows an easy understanding of its functionalities inside a well-known context.
- It is really simple and considering the time constraint it would be not possible to

analyse a more complex example.

Banking applications deal with a set of financial aspects for a rapidly growing electronic
market. Since this market evolves quickly, bank services must compete in providing
efficient innovative services to end users and commercial customers. Besides, by its
nature, the banking application applies distributed computation.

The norm CORBA allows the creation of distributed applications in a heterogeneous
environment. CORBA has also an another important feature that is the Interface Definition
Language (IDL). This application utilizes the logical ORBACUS 3.1 to support every
feature of CORBA IDL.

Java is an object-oriented programming language which programs can be executed on
many different platforms without recompilation, even when they have a graphical user
interface. Therefore, it has interesting features to support software reuse. The portability
feature not only increases widespread use of such programs, but also provides a platform
for increased reusability of components.

Among CORBA’s advantages are: the use of an object-oriented paradigm, the hiding of
the programming language and the operating system differences supporting distributed
systems. Moreover CORBA IDL is used in order to ensure programming language
independence. It describes a component interface being then mapped to the programming
language in which the component is implemented.

Chapter 5 : Applying the Guideline in a Case Study

32 A Guideline to Detect Reusable Components

5.1.1 Describing the Application

According to the step 2 (see section 4.3.2), a deep study of the application becomes
essential to get a strong knowledge of the domain in which the application is inserted. In
this work, the study was based on the various sources of information available about the
system, as the design in a UML Class Diagram, a textual description and the source code.
Now some explanation of the application resultant from this study is presented.

This application is based mainly on the following classes:

Class Agency – This class has all features that characterize a bank agency, such as: its
address, reference of server bank, list of clients, list of accounts and the persistence of the
clients. The Class Agency also provides the basic operations to create, delete, search and
list its clients.

Class Account – This class encompasses the basic operations to deposit and to withdraw
money. Besides it provides the control on the maximum limit authorised, the type and the
number of account. It has a reference to a client and an agency, offering in this way the
possibility to recover rapidly the related information.

Class Saving Account –This class inherits from class Account. It adds to the Account
structure just two attributes exchange and limit_Max. The notion of polymorphism is used
in the methods deposit and withdrawal that are overridden in Saving Account. It is not
authorised withdrawals that can lead to negative balance.

Class Bank – This class covers a reference to all the agencies connected to Bank Server
(see section 5.1.2).

Class Client – This class expresses all the information about client, such as: identification
number, name, and first name, date of birthday, address and sex. It has a reference to the
agency in which the client has accounts. This class provides the basic operations to create,
delete, list and search accounts of a client.

The original UML Class diagram of this application showing classes structure, their
operations and relationships is depicted in Appendix A. Considering that the Case Study is
in French, in the same Appendix following the diagram, a translation of terms from
French to English is presented.

The source code of these main classes analysed is provided in Appendix B.

Chapter 5 : Applying the Guideline in a Case Study

A Guideline to Detect Reusable Components 33

5.1.2 The Architecture of the Application

The banking application is distributed in workstations divided in various sites connected
through a Local Area Network (LAN). The LAN’s are connected through a Wide Area
Network (WAN). A Bank server, some Agency servers and shared clients of Agency
servers are showed in figure 4.

Figure 4 : Banking Application Context

The clients can be clerk, financial service, and commerce, cash dispenser, etc.

The application developed implemented only server classes in Java and a graphic interface
to the client part. The bus proposed by OMG (Object Management Group) allows a
transparent communication between clients and servers as represented in figure 5.

Figure 5: Common Object Request Broker Architecture

After explaining the main functionalities and architecture of the banking application, in
the following sections the use of Guideline directives in order to detect reusable
components in the source code will be presented.

Server
BANK

Server
AGENCY

Server
AGENCY

Client Client
Client

Client
Client

Client

Object Request Broker (ORB)

Server
Agency

Server
Bank

 Clerk

… …

Commerce
 Cash
Dispenser

Chapter 5 : Applying the Guideline in a Case Study

34 A Guideline to Detect Reusable Components

5.2 Checking Redundancy

According to the step 3 (see section 4.3.3) the goal of this directive is to detect redundancy
among classes and methods. It is necessary to focus in the functionality aspect to achieve
this purpose. Some metrics are suggested in this direction.

As an automatic way to calculate metrics the Tool JStyle is used. JStyle analyses Java
source code to offer comments on the code and to generate useful metrics. This tool does a
static analysis of Java source code to uncover flaws like naming convention violations,
improper exception handling and efficiency impeding coding practices. Among the
metrics calculated by JStyle tool, the ones used to apply the Guideline are: Halstead
Measures, Cyclomatic Number and LCOM (Lack of Cohesion of Methods).

Reminding the statements outlined in Step 3, it must be analysed the same or similar
complexity value based on the McCabe Complexity Metrics and/or Halstead Software
Metrics to detect method redundancy. JStyle computes Cyclomatic Number for every
method in a class, not to the module as a whole. Therefore the values produced by JStyle
for these metrics for the main methods of the banking application are as follows:

Class Account

Methods/ Metrics Cyclomatic

Number
Program
Length

Volume Development
Effort

operations 2 54.7052 179.307 2.34806
deposit 1 154.257 584.738 3.92533
withdrawal 2 198.054 759.677 8.46284

Table 1: Methods of Class Account

Class Agency

Methods/ Metrics Cyclomatic

Number
Program
Length

Volume Development
Effort

search_account 4 133.662 393.463 6.55771
list_agency_account 2 57.7052 187.647 2.59379
create_a_client 5 202.922 702.957 13.556
del_a_client 4 106.606 312.478 3.61664
search_a_client 4 117.593 353.296 5.77503
list_clients 2 57.7052 187.647 2.59379
add_Account 1 9.50978 15.5098 0.0215414
del_Account 3 91.1253 260.056 2.44497
recreate 2 93.4869 260.056 1.41643
change 5 243.525 856.536 11.783

Table 2: Methods of Class Agency

Chapter 5 : Applying the Guideline in a Case Study

A Guideline to Detect Reusable Components 35

Class Bank

Methods/ Metrics Cyclomatic

Number
Program
Length

Volume Development
Effort

insert_an_agency 13 134.544 1296.41 41.7432
delete_an_agency 7 128.362 685 13.5661
search_an_agency 7 144.546 754.005 19.1216
delete_Adress_Agency 7 128.362 625 11.4776
recreate_Adress 2 93.4869 260.056 1.41643
change_Adress 2 113.93 354.633 2.76517
list_Agences 2 57.7052 187.647 2.59379
list_Adress_Agences 2 57.7052 187.647 2.59379

Table 3: Methods of Class Bank

Class Client

Methods/ Metrics Cyclomatic

Number
Program
Length

Volume Development
Effort

create_an_account 1 48.7291 104 0.404444
delete_an_account 4 122.603 351.748 4.274471
list_ client_account 2 57.7052 187.647 2.59379
Deposit 9 372.12 2582.89 103.709
search_account 4 128.09 375 5.70602

Table 4: Methods of Class Client

Class Saving Account

Methods/ Metrics Cyclomatic

Number
Program
Length

Volume Development
Effort

exchange 1 2 4.75489 0.00440267
type_account 1 2 4.75489 0.00440267
limit_Max 1 2 4.75489 0.00440267
deposit 2 106.709 278.827 2.79687
withdrawal 2 106.709 278.827 2.79687

Table 5: Methods of Class Saving Account

* Development Effort in mins

The methods search_account of class Client and search_account of class Agency, as well
as list_account_agency and list_account_client of Agency and Client respectively,
present redundant functionality according to the assumptions of step 3: similar names,
similar requirements and similar values in metrics Halstead and McCabe. It can be
realized that considering the Halstead metrics (see section 4.4.1) just the most significant
measures are taken into account.

As stated in the Guideline, the solution to this situation can be the creation of one generic
component (method) to each tuple of redundant ones that can replace their functionality
in the application. Therefore, a new method list_account with a parameter account[] (an
object list of accounts) is created. It is placed in the class Account which better meets its

Chapter 5 : Applying the Guideline in a Case Study

36 A Guideline to Detect Reusable Components

functionality. In the same way, a generic search_account method with a parameter
account[] (the list of accounts to be searched) is created in the class Account. The
substituted methods are extracted from the original classes. Objects of classes Agency and
Client can then require this service to objects of type Account.

Figure 6 : Demonstrating a part of a reengineering process

Through snippets of the source code, presented as follows, it is possible to confirm this
redundant functionality between those pairs of methods.

Account
number : string
ty peAccount : string
v alueMax : f loat
client : Client
agency : Agency
operations : Banking Operation[]

number()
ty pe_Account()
limit_Max()
cilent()
agency ()
operations()
deposit()
withdrawal()
search_account()
list_account()

client has

Client
name : string
f irstname : string
dateBirth : string
adress : Adress
sex : Sex
agency : Agency
number_Client : int
accounts : Account[]

name()
f irstname()
sex()
dateBirth()
adress()
adress()
agency ()
number_Client()
create_an_Account()
delete_an_Account()
search_account()
opname()
list_client_account()
deposit()

an agency has

Agency
adress : Adress
bank : Bank
account_client : account[]
clients : Client[]

adress()
bank()
search_account()
list_agency _account()
create a client()
del_a_Client()
search_a_Client()
list_of _Clients()
add_Account()
del_Account()
recreate()
change()

1..*

1..*

11

1..*

11

1..*

Chapter 5 : Applying the Guideline in a Case Study

A Guideline to Detect Reusable Components 37

Class Client – Method list_Client_Account

 public Compte[] liste_des_Comptes_de_client(){

 int i=0;
 Compte[] aux_desComptes;
 aux_desComptes= new Compte[lesComptes.size()];

 while(i<lesComptes.size()) {
 aux_desComptes[i]=(Compte)lesComptes.elementAt(i);
 i++;
 }
 return aux_desComptes;
 }

Class Agency – Method List_Agency_Account

 public Compte[] liste_des_Comptes_de_agence() {
 int i=0;
 Compte[] aux_desComptes_Client;
 aux_desComptes_Client= new
Compte[desComptes_Client.size()];

 while(i<desComptes_Client.size()) {

 aux_desComptes_Client[i]=(Compte)desComptes_Client.elementAt(i);
 i++;
 }
 return aux_desComptes_Client;
 }

Class Client - Method search_account

 public Compte rechercher_le_Compte(String numero_Compte)
 throws ProblemeClient{

 boolean ok=false;
 int i=0;

 while(((i<lesComptes.size()) && (ok==false))) {
 if((((Compte)lesComptes.elementAt(i)).numero()).equals
(numero_Compte)) {
 ok=true;
 }
 i++;
 }

 if(ok==true) {
 return (Compte)lesComptes.elementAt(i);
 }
 else {

Chapter 5 : Applying the Guideline in a Case Study

38 A Guideline to Detect Reusable Components

 throw new ProblemeClient("Le compte avec le numero
"+numero_Compte+
 " n'exite pas !");
 }

Class Agency - Method search_account

 public Compte rechercher_le_Compte(String numero_Compte)
 throws ProblemeAgence {
 boolean ok=false;
 int i=0;

 while(((i<desComptes_Client.size()) && (ok==false))) {

 if((((Compte)desComptes_Client.elementAt(i)).numero()).equals(nume
ro_Compte)) {
 ok=true;
 i--;
 }
 i++;
 }
 if(ok==true) {
 return (Compte)desComptes_Client.elementAt(i);
 }
 else {
 throw new ProblemeAgence("Le compte
"+numero_Compte+
 " n'exite pas !");
 }
 }

Concluding, it can be reliased that the classes Client and Agency present some redundant
funtionality, however their structures and main functionalities are not equal. Therefore, the
similar funtionality can not be factored out to a superclass, but just extracted and placed in
another correct class.

5.3 Checking Dependency

Dependency between classes can be checked through the evalutaion of their level of
coupling and cohesion as stated in step 5 of the Guideline (see section 4.3.5). To get
coupling and cohesion measures some metrics can be applied to the classes. The ones used
here are LCOM (Lack of Cohesive of Methods) to calculate cohesion, see section 4.4.3,
and CBO (Coupling between Object Classes) to calculate coupling, see section 4.4.4.
LCOM is given by the JStyle tool which was mentioned in the previous section. Three
values of LCOM are obtained as can be seen in the following table.

Chapter 5 : Applying the Guideline in a Case Study

A Guideline to Detect Reusable Components 39

Classes /
LCOM

Account Agency Bank Client Saving
Account

LCOM
(Chidamber-
Kemerer)

45 91 66 136 15

LCOM
(Li-Henry)

10 14 12 17 6

LCOM
(Henderson-
Sellers)

0.944444 0.846154 0.840909 0.945313 0.933333

Table 6: Metric LCOM per Classes

Through this table it can be realized that the values of the metric LCOM are really
showing totally none cohesive classes in the system. For example, taking the classic
Chidamber-Kemerer LCOM metric, a totally cohesive class is considered when the result
value is close to 0, while totally non cohesive classes present the LCOM value equal (n(n-
1))/2, in which n represents the total number of methods present in the class. Taking class
Bank, for example :

n = 12 => (n(n-1))/2 = (12(12-1))/2 = 66

Totally non cohesive classes imply high level of coupling between them. Therefore, CBO
metric does not need necessarily to be calculated in this example. According to the
directives of step 5, no classes in this case study can be considered as reusable
components. They are not independent enough, or they are totally dependend on others to
describe a clear functionality that can be resued in any other context.

5.4 The results obtained

As determined in step 2 a deep study of the banking application domain was taken in order
to apply Guideline directives. After applying some directives two methods were identified
as components in the application (see section 5.2) according to the types of components
determined in step 1.

Considering the example is really simple, and the level of coupling between classes is too
high, no class could be pointed out as a candidate reusable component. The depth of
inheritance, another measure that can be used to determine class dependency (see step 6 of
the Guideline – section 4.3.6) was not possible to be applied in the example. There was,
considering the functionality of the application and not CORBA aspects, just one
inheritance with one level in the system.

5.5 Conclusion

The experience with this case study indicates that the Guideline is feasible in an
operational context, and that its use in complex systems must be encouraged supporting

Chapter 5 : Applying the Guideline in a Case Study

40 A Guideline to Detect Reusable Components

further validations. The directives applied were just to exemplify the use of the Guideline.
It was not possible to apply all the directives suggested because of the limited time
available.

Considering the use of CORBA in the case study, once a component is identified CORBA
can be helpful in the definition of its interface through the IDL. As stated before in section
4.5, the relationship between component and interface is very important. CORBA as the
most common component-based operating system facilities the use of interfaces as the
glue that binds components together.

Chapter 6 : Conclusions

A Guideline to Detect Reusable Components 41

6 Conclusions

In the software industry nowadays one of the main issues considered is how to evolve the
existing softwares in order to support the rapidly changing world we live in. Political,
economic and social factors are always changing and the softwares need to be able to
efficiently follow this evolution in order to continue producing expected results.
Companies compete on small in quickly introducing innovative services. In order to
continue in the marketing, this innovation needs to be supported with an efficient response
time. Considering these aspects, software reuse has become the key part of companies
software engineering strategy in order to support software improvement and evolution.

The hardware industry has walked in this direction for many years realising that reuse in
fact facilitates an engineering process. Software industry in turn has been devoting efforts
in this direction just in the last years. Object Oriented paradigm tries to address this issue
but not with complete practical results in large-scale software. Many results are still
expected in this sense.

The thesis of this research has been that detecting components in legacy systems is the
first and fundamental step in order to support reuse. Therefore the work presented focused
on the description of a Guideline that can help in identifying reusable components in OO
legacy systems. This Guideline was developed to consolidate some of the best existing
practices.

6.1 Contributions

Considering the detection of reusable components is still an unexplored area, this thesis
has also the purpose to contribute to the research in this context opening new ways for its
investigation. Moreover, taking an industrial context in which reusable components have
been receiving a great importance, the use of this guideline can be a way to help in taking
advantage of source code making them more reusable. Therefore more quality is ensured
in systems evolution and new development processes, since existing components have
been tested and approved before.

In addition companies have been investing lots of money in developing software systems
from scratch for many years. Simply replacing these systems by new ones because of
requirements change is not cost-effective. Therefore taking advantage from legacy code
has been accepted as a good alternative to save money.

6.2 Future work

We are still far from the ideal scenario of composing the most software systems from
existing components. To be able to use components, it is essential to know early in the
development process which components are available. Then, a good knowledge of the
application domain becomes essential in order to match the existing components to the
expected requirements.

Chapter 6 : Conclusions

42 A Guideline to Detect Reusable Components

The Guideline presented covers the main aspects researched in order to support the
identification of components in OO legacy code. It is really not a complete Guideline
considering time constraint and the fact that each time it is applied more statements can be
concluded. Composing a Guideline can be seen as a recursive process. Therefore
extending this Guideline can be considered as a continuous investigation process in the
area of reusable software components.

The case study reported in this work provided initial results and practical feedback on the
main aspects of this Guideline to detect reusable components. It seems that the Guideline
addresses important and often ignored aspects in the source code. Although this initial
experience from the use of the Guideline is encouraging, further and more formal
experiments are required to validate the process.

Detecting components as proposed in this thesis is not the only step necessary to make
them reusable. Another fundamental aspect that needs also to be considered is the form to
be given to a component in order to allow its application in any context. This form is
mainly based on the interface aspect. Components are linked to a system through the
services it can offer.

There exist many emerging component-based software technologies that try to reach this
goal of establishing well-defined and clear component interfaces. The main aspect is to
separate component implementations from the interfaces. This is an important aspect that
can be considered as extensions of existing Guidelines in the area of reusable components.

Since there is still a long way to go until systematic reuse of software components
becomes concrete, it is required that more investigation and research in this area is
undertaken achieving many of the points suggested as future extensions. It is hopped that
as soon as these results are achieved, they can be widely spread helping industries and
software community in general to progress in the software engineering process.

Chapter 7 : References

A Guideline to Detect Reusable Components 43

7 References

[AK98] Anish Arora and Sandeep S. Kulkarni. Component Based Design of

Multitolerant Systems. IEEE Transactions on software Engineering. Vol.24
No1pages 63-78 January 1998.

[BB90] John W.Bailey and Victor R. Basili. Software Reclamation: Improving

Post-Development Reusability. 8th Annual National Conference on Ada
Technology 1990 pages 477-498.

[BG98] Grady Booch., James Rumbaugh and Ivar Jacobson, The unified modeling

language user guide1998.

[BM94] Bertrand.Meyer. Reusable Software: The base oriented component

libraries, 1994.

[CB91] Gianluigi Caldiera and Victor R. Basili. Identifying and qualifying reusable

software components. IEEE Computer pages 61-70, February 1991.

[CK94] Shyam R. Chidamber and Chris F. Kemerer. A Metrics Suite for Object

Oriented Design. IEEE Transactions on Software engineering, Vol. 20, nr.
6, june 1994.

[DW98] Desmond F. D’Souza and Alan Cameron Wills. Objects, components, and

Frameworks with UML – The Catalysis Approach, 1998.

[DK93] Michael F. Dunn and John C. Knight. Automating the detection of reusable

parts in existing software. In Proceedings of the 15th International
Conference on Software Engeeniring, pages 381-390, 1993.

[EM98] Michel Ezran, Maurizio Morisio and Colin Tully. Pratical Software Reuse:

The essential guide, 1998.

[GO95] David Garlan, Robert Allen and John Ockerbloom. Why it’s hard to build

systems out of existing parts. Proceedings of the Seventeenth International
Conference on Software Engineering, Seattle WA, April 1995.

[GP99] Pascal Grolleau. Projet: Service Bancaire avec CORBA et JAVA – Ecole

des Mines de Nantes, February, 1999.

[HS96] Henderson-Sellers, Brian. Object-oriented metrics: measures of complexity,

1996 Chapter 1 pages 1-25.

[JG97] Ivar Jacobson, Martin Griss and Patrik Jonsson. Software Reuse –

Architecture, Process and Organization for Business Success, ACM Press
Books, 1997.

Chapter 7 : References

44 A Guideline to Detect Reusable Components

[JH98] Christian Damsgaard Jensen and Daniel Hagimont. Protection

Reconfiguration for Reusable Software. IEEE Computer, 1998 pages 74-80

[JI94] Ivar Jacobson. Object-Oriented Software Engineering – A Use Case Driven

Approach, 1994.

[KA96] Rick Kazman, Paul Clements, Len Bass and Gregory Abowd. Classifying

Architectural Elements as a Foundation for Mechanism Matching. USA 96

[LV96] Filipo Lanubile and Giuseppe Visaggio. Extracting reusable functions by

Flow Graph-Based Program slicing. IEEE Transactions on software
Engineering. Vol.23 No4 pages 246-259, April 97.

[Mc94] Carma McClure. Reuse: Re-engineering the Software Process. Extended

Inteligence, Inc 1994.

[Mc97] Carma McClure. Software Reuse Techniques – Adding Reuse to the

Systems Development Process,1994.

[MM95] Martin Hitz and Behzad Montazeri – Measuring Coupling and Cohesion In

Object-Oriented System. Symposium on Applied Computing. Oct, 1995.

[MN91] Maiden, Neil. Analogy as a paradigm for specification reuse. Software

Engineering Journal, January 1991.

[MR97] Melody M. Moore and Spencer Rugaber. Domain Analysis for

Transformational Reuse. IEEE Computer,1997 pages 156-162.

[NJ96] James M. Neighbors – Bayfront Technologies, Inc. Finding Reusable

Software Components in Large Systems. IEEE Proceedings of WCRE’96
pages 2-9

[SC97] Clemens Szyperski. Component Software Beyond Object-Oriented

Programming, 1997. Chapters 1 and 4.

[SJ97] Johannes Samentinger. Software Engineering with Reusable Components,

1997.

[RA93] Robert S. Arnold. Software Reengineering, 1993.Chapter 11 pages 475-

516.

[WB97] Nelson H. Weiderman, John K. Bergey, Dennis B. Smith and Scott R.

Tilley. Approaches to Legacy System Evolution.Technical Report –
Software Engineering Institute, Carnegie Mellon University Pittsburgh,
December 1997.

Appendix A : UML Diagram and Translation Terms

A Guideline to Detect Reusable Components 45

Appendix A : UML Model and Translation Terms

The original UML diagram (in French) provided in the Case Study documentation.

une agence a

le client a la banque a

l'a agence a

le client est

le client a

Banque
nom : string
adresse : Adress
desAgences : UneAgency []
annuaireAgences : Adresse[]

nom()
adresse()
inserer_une_agence()
retirer_une_agence()
rechercher_1_agence()
retirer_Adresse_Agence()
liste_des_agences()
liste_Adress_agences()
enregistrer_Adresses()
changer_Adresses()

Agence
adresse : Adresse
banque : Banque
desComptes : compte[]
desClients : Client[]

adresse()
banque()
rechercher_le_compte()
list_des_comptes_de_agence()
creer_un_ client()
detruire_le_Client()
rechercher_le_Client()
liste_des_Clients()
ajouter_Compte()
detruire_un_compte()
enregistrer()
charger()

1

1..*

1

1..*

Liv ret
taux : f loat
ty peCompte : string
plaf ondMax : f loat

taux()
ty pe_duCompte()
limite_Max()
depot()
retrait()

Sexe
masculin : string
f eminin : string

Adresse
v ille : string
rue : string
codePostal : string
telephone : string

1

1

1

1

1

1

1

1

Client
nom : string
prenom : string
dateDeNaissance : string
adresse : Adresse
sexe : Sexe
agence : Agence
numero_Client : int
comptes : Comptes[]

nom()
prenom()
sexe()
dateDeNaissance()
adresse()
adresse()
agence()
numero_Client()
creer_un_Compte()
detruire_un_Compte()
recherche_le_compte()
liste_des_comptes_de_client()
v irement()

1

1..*

1

1..*

1

1..*

1

1..*

1

1

1

1

1
1

1
1

Compte
numero : string
ty peduCompte : string
decov ertMax : f loat
client : Client
agence : Agence
lesOperations : Operation Bancaire[]

numero()
ty pe_duCompte()
limite_Max()
cilent()
agence()
_lesOperations()
retrait()

1
1..*

1
1..*

OperationBancaire
debit : f loat
credit : f loat
solde : f loat
date : string
heure : string

1..*

1

1..*

1

le compte à

le client a

la banque a

Appendix A : UML Diagram and Translation Terms

46 A Guideline to Detect Reusable Components

The same UML diagram in English.

an agency has

a client has
a bank has

an agency has

client is

client has

Bank
name : string
adress : Adress
agencies : AnAgency []
listAgencies : Adress[]

name()
adress()
insert_an_agency ()
delete_an_agency ()
search_an_agency ()
delete_Adress_Agency ()
list_of _agences()
list_adress_agences()
recreate_Adress()
change_Adress()

Agency
adress : Adress
bank : Bank
account_client : account[]
clients : Client[]

adress()
bank()
search_account()
list_agence_account()
create a client()
del_a_Client()
search_a_Client()
list_of _Clients()
add_Account()
del_Account()
recreate()
change()

1

1..*

1

1..*

Sav ings Account
exchange : f loat
ty peAccount : string
limitMax : f loat

exchange()
ty pe_Account()
limit_Max()
deposit()
withdrawal()

Sex
masculine : string
f eminine : string

Adress
city : string
street : string
zipCode : string
telephone : string

1

1

1

1

1

1

1

1

Client
name : string
f irstname : string
dateBirth : string
adress : Adress
sex : Sex
agency : Agency
number_Client : int
accounts : Account[]

name()
f irstname()
sex()
dateBirth()
adress()
adress()
agency ()
number_Client()
create_an_Account()
delete_an_Account()
list_client_account()
search_account()
deposit()

1

1..*

1

1..*

1

1..*

1

1..*

1

1

1

1

1

1

1

1

Account
number : string
ty peAccount : string
v alueMax : f loat
client : Client
agency : Agency
operations : Banking Operation[]

number()
ty pe_Account()
limit_Max()
cilent()
agency ()
operations()
deposit()
withdrawal()

1

1..*

1

1..*

Banking_Operation
debit : f loat
credit : f loat
balance : f loat
date : string
time : string

1..*

1

1..*

1

account has

client has

a bank has

Appendix A : UML Diagram and Translation Terms

A Guideline to Detect Reusable Components 47

Translation Terms

Class Compte : Account

Attributes
numero number
typeducompte typeaccount
decouvertMax valueMax
client client
agence agency
lesOperations operations
Methods
limite_Max limit_Max
retrait withdrawal

Classe Agence : Agency

Attributes
adresse address
banque bank
desComptes_Clients account_client
desClients clients
Methods
rechercher_le_Compte search_account
liste_des_Comptes_de_agence list_agency_account
creer_un_client create_a_client
detruire_un_client del_a_client
rechercher_le_Client search_a_client
liste_des_Clients list_clients
ajouter_Compte add_account
detruire_Compte del_account
enregistrer recreate
charger change

Appendix A : UML Diagram and Translation Terms

48 A Guideline to Detect Reusable Components

Classe Client : Client

Attributes
nom name
prenom firstname
dateDeNaissance dateBirthday
adresse address
numero_Client number_client
lesComptes accounts
Methods
creer_un_compte create_an_account
creer_un_livret create_saving_account
detruire_un_compte delete_an_account
recherche_le_compte search_an_account
liste_des_Comptes_des_clients list_client_account
virement deposit

Classe Livret : Savings Account

Attributes
taux exchange
typeducompte typeaccount
plafondMax limitMax
Methods
depot deposit
retrait withdrawal

Classe Banque : Bank

Attributes
nom name
adresse address
desAgences agencies
annuaireAgences listAgencies
Methods
inserer_une_agence insert_an_angency
retirer_une_agence delete_an_agency
rechercher_une_agence search_an_agency
retirer_Adress_Agence delete_an_agency
enregistrer_Adresses recreate_Addresses
charger_Adresses change_Addresses

Appendix A : UML Diagram and Translation Terms

A Guideline to Detect Reusable Components 49

Classe Operation Bancaire : Banking Operation

Attributes
debit Debit
credit Credit
solde Balance
date Date
heure Time

Classe Sexe : Sex

Attributes
masculin Masculine
feminin Feminine

Classe Adresse : Adress

Attributes
ville city
rue street
codePostal zipCode
telephone telephone

Associations Names

le client a client has
le compte a account has
une agence a an agency has
le client est client is
l’agence a agency has
la banque a bank has

Appendix A : UML Diagram and Translation Terms

50 A Guideline to Detect Reusable Components

Appendix B : Source Code

A Guideline to Detect Reusable Components 51

Appendix B: Source Code

In this Appendix it will be found the main classes of source code of the Banking
Application

 AgenceImpl.java
 BanqueImpl.java
 ClientImpl.java
 CompteImpl.java
 LivretImpl.java

//==
// Implementation des méthodes de la classe Agence
//==

//Pour la gestion des entrées et des sorties
import java.io.*;
import java.util.*;
import java.lang.String;
import bancaire.*;

public class AgenceImpl extends _AgenceImplBase implements Serializable{

 //==
 //Les variables d'instance
 //==

 private Adresse adresse_Agence;
 private Banque la_Banque;
 private Vector desComptes_Client= new Vector();
 private Vector desClients= new Vector();
 private int dernier_Numero_Client=0;

 //==
 //constructeur de la class ClientImpl
 //==

 public AgenceImpl(String ville, String rue, String codePostal,
 String telephone, Banque banque) {

 adresse_Agence= new Adresse(ville, rue, codePostal,
telephone);
 la_Banque=banque;
 }
 public AgenceImpl() {
 }

 public void ajouter_Compte(Compte unCompte) {
 desComptes_Client.addElement(unCompte);
 }

 public Adresse adresse() {
 return adresse_Agence;
 }

Appendix B : Source Code

52 A Guideline to Detect Reusable Components

 public Banque banque() {
 return la_Banque;
 }

 public Compte[] liste_des_Comptes_de_agence() {

 int i=0;
 Compte[] aux_desComptes_Client;
 aux_desComptes_Client= new
Compte[desComptes_Client.size()];

 while(i<desComptes_Client.size()) {

 aux_desComptes_Client[i]=(Compte)desComptes_Client.elementAt(i);
 i++;
 }
 return aux_desComptes_Client;
 }

 public Client[] liste_des_Clients() {

 int i=0;
 Client[] aux_desClients;
 aux_desClients= new Client[desClients.size()];
 while(i<desClients.size()) {
 aux_desClients[i]=(Client)desClients.elementAt(i);
 i++;
 }
 return aux_desClients;
 }

 public void detruire_un_Compte(String numero_Compte)
 throws ProblemeAgence {

 boolean ok=false;
 int i=0;

 while(((i<desComptes_Client.size()) && (ok==false))) {

 if((((Compte)desComptes_Client.elementAt(i)).numero()).equals(nume
ro_Compte)) {
 desComptes_Client.removeElementAt(i);
 ok=true;
 }
 i++;
 }
 }

 public Compte rechercher_le_Compte(String numero_Compte)
 throws ProblemeAgence {
 boolean ok=false;
 int i=0;

 while(((i<desComptes_Client.size()) && (ok==false))) {

 if((((Compte)desComptes_Client.elementAt(i)).numero()).equals(nume
ro_Compte)) {
 ok=true;

Appendix B : Source Code

A Guideline to Detect Reusable Components 53

 i--;
 }
 i++;
 }

 if(ok==true) {
 return (Compte)desComptes_Client.elementAt(i);
 }
 else {
 throw new ProblemeAgence("Le compte
"+numero_Compte+
 " n'exite pas !");

 }
 }

 public Client creer_un_Client(String nom_Client, String
prenom_Client,
 String date_Nais_Client, Sexe s, Adresse a) throws
ProblemeAgence {

 String nomClient=nom_Client.toUpperCase();
 boolean ok=false;
 int resultat=0;
 int i=0;

 dernier_Numero_Client= dernier_Numero_Client+1;

 Client unClient= new ClientImpl(nomClient,
prenom_Client,
 date_Nais_Client, s, a, this, dernier_Numero_Client);

 if(desClients.size()==0) {

 desClients.addElement(unClient);
 }
 else {

 while(((i<desClients.size()) && (ok==false))) {

 resultat=(((Client)desClients.elementAt(i)).nom()).compareTo(nomCl
ient);
 if(resultat > 0) {
 desClients.insertElementAt(unClient, i);
 ok=true;
 }
 i++;
 }
 if(i>=desClients.size()) {
 desClients.addElement(unClient);
 }
 }
 return unClient;
 }

 public void detruire_un_Client(int numero_du_Client) throws
ProblemeAgence {

Appendix B : Source Code

54 A Guideline to Detect Reusable Components

 boolean ok=false;
 int i=0;

 while(((i<desClients.size()) && (ok==false))) {

 if((((Client)desClients.elementAt(i)).numero_Client())==numero_du_
Client) {
 desClients.removeElementAt(i);
 ok=true;
 }
 i++;
 }

 if(ok==false){
 throw new ProblemeAgence("Le client n'exite pas !");

 }

 }

 public Client rechercher_le_Client(int numero_du_Client) throws
ProblemeAgence {

 boolean ok=false;
 int i=0;

 while(((i<desClients.size()) && (ok==false))) {

 if((((Client)desClients.elementAt(i)).numero_Client())==numero_du_
Client) {
 ok=true;
 i--;
 }
 i++;
 }

 if(ok==true) {
 return (Client)desClients.elementAt(i);
 }
 else {
 throw new ProblemeAgence("Le client n'exite pas
!");
 }
 }

 public void charger() {

 ObjectInputStream in;
 String lesClients= "Clients.age";
 Object unClient;
 int aux_numero;

 try {
 in= new ObjectInputStream(new
FileInputStream(lesClients));
 try {
 while((unClient= in.readObject()) != null) {
 desClients.addElement(unClient);

Appendix B : Source Code

A Guideline to Detect Reusable Components 55

 aux_numero=((Client)unClient).numero_Client();
 if(aux_numero > dernier_Numero_Client) {
 dernier_Numero_Client=aux_numero;
 }
 }
 }
 catch(IOException ex0) {
 ex0.printStackTrace();
 }
 catch(ClassNotFoundException ex1) {
 ex1.printStackTrace();
 }
 finally {
 in.close();
 }
 }
 catch(IOException ex) {
 ex.printStackTrace();
 }

 Enumeration enum_Clients= desClients.elements();
 Compte [] les_Comptes_duClients=null;

 while(enum_Clients.hasMoreElements()) {

 les_Comptes_duClients=((Client)enum_Clients.nextElement()).liste_d
es_Comptes_de_client();
 int i=0;

 while(i<les_Comptes_duClients.length) {

 desComptes_Client.addElement(les_Comptes_duClients[i]);
 i++;
 }
 }
 }

 public void enregistrer() {

 Enumeration enum_Clients= desClients.elements();

 ObjectOutputStream out;
 String lesClients= "Clients.age";

 try {
 out= new ObjectOutputStream(new
FileOutputStream(lesClients));
 while(enum_Clients.hasMoreElements()) {
 out.writeObject(enum_Clients.nextElement());
 }
 out.close();
 }
 catch(IOException ex) {
 ex.printStackTrace();
 }
 }
}

Appendix B : Source Code

56 A Guideline to Detect Reusable Components

//==
// Implementation des méthodes de la classe Banque
//==

import java.io.*;
import java.util.*;
import java.lang.String;
import bancaire.*;

public class BanqueImpl extends _BanqueImplBase {

 //==
 //Les variables d'instance
 //==

 private String nom;
 private Adresse adresse_Banque;
 private Vector desAgences= new Vector();
 private Vector annuaireAgences= new Vector();

 //==
 //constructeur de la class BanqueImpl
 //==

 public BanqueImpl(String nom, String ville, String rue,
 String codePostal, String telephone){
 this.nom=nom;
 adresse_Banque= new Adresse(ville, rue, codePostal,
telephone);
 }
 public BanqueImpl(){
 }

 public String nom() {
 return nom;
 }

 public Adresse adresse() {
 return adresse_Banque;
 }

 public void inserer_une_Agence(Adresse adresse, Agence agence)
throws ProblemeBanque {

 boolean ok=false;
 int i=0;

 while(((i<desAgences.size()) && (ok==false))) {

if(((((UneAgence)desAgences.elementAt(i)).adresse).ville).equals(adresse
.ville)) {

if(((((UneAgence)desAgences.elementAt(i)).adresse).rue).equals(adresse.r
ue)) {

Appendix B : Source Code

A Guideline to Detect Reusable Components 57

if(((((UneAgence)desAgences.elementAt(i)).adresse).codePostal).equals(ad
resse.codePostal)) {

if(((((UneAgence)desAgences.elementAt(i)).adresse).telephone).equals(adr
esse.telephone)) {
 ok=true;
 }
 }
 }
 }
 i++;
 }

 if(ok==false) {
 UneAgence uneAgence= new UneAgence(adresse, agence);
 desAgences.addElement(uneAgence);
 }

 ok=false;
 i=0;

 while(((i<annuaireAgences.size()) && (ok==false))) {

if((((Adresse)annuaireAgences.elementAt(i)).ville).equals(adresse.ville)
) {

if((((Adresse)annuaireAgences.elementAt(i)).rue).equals(adresse.rue)) {

if((((Adresse)annuaireAgences.elementAt(i)).codePostal).equals(adresse.c
odePostal)) {

if((((Adresse)annuaireAgences.elementAt(i)).telephone).equals(adresse.te
lephone)) {
 ok=true;
 }
 }
 }
 }
 i++;
 }

 if(ok==false) {
 annuaireAgences.addElement(adresse);
 }
 }

 public void retirer_une_Agence(Adresse adresse) throws
ProblemeBanque {

 boolean ok=false;
 int i=0;

 while(((i<desAgences.size()) && (ok==false))) {

if(((((UneAgence)desAgences.elementAt(i)).adresse).ville).equals(adresse
.ville)) {

Appendix B : Source Code

58 A Guideline to Detect Reusable Components

if(((((UneAgence)desAgences.elementAt(i)).adresse).rue).equals(adresse.r
ue)) {

if(((((UneAgence)desAgences.elementAt(i)).adresse).codePostal).equals(ad
resse.codePostal)) {

if(((((UneAgence)desAgences.elementAt(i)).adresse).telephone).equals(adr
esse.telephone)) {
 desAgences.removeElementAt(i);
 ok=true;
 }
 }
 }
 }
 i++;
 }

 if(ok==false){
 throw new ProblemeBanque("L'agence n'est pas connectee
!");
 }
 }

 public Agence rechercher_l_Agence(Adresse adresse) throws
ProblemeBanque {

 boolean ok=false;
 int i=0;

 while(((i<desAgences.size()) && (ok==false))) {

if(((((UneAgence)desAgences.elementAt(i)).adresse).ville).equals(adresse
.ville)) {

if(((((UneAgence)desAgences.elementAt(i)).adresse).rue).equals(adresse.r
ue)) {

if(((((UneAgence)desAgences.elementAt(i)).adresse).codePostal).equals(ad
resse.codePostal)) {

if(((((UneAgence)desAgences.elementAt(i)).adresse).telephone).equals(adr
esse.telephone)) {
 ok=true;
 i--;
 }
 }
 }
 }
 i++;
 }

 if(ok==true) {
 return ((UneAgence)desAgences.elementAt(i)).agence;
 }
 else {
 throw new ProblemeBanque("L'agence n'est pas
connectee !");

Appendix B : Source Code

A Guideline to Detect Reusable Components 59

 }
 }

 public void retirer_Adresse_Agence(Adresse adresse) throws
ProblemeBanque {

 boolean ok=false;
 int i=0;

 while(((i<annuaireAgences.size()) && (ok==false))) {

if((((Adresse)annuaireAgences.elementAt(i)).ville).equals(adresse.ville)
) {

if((((Adresse)annuaireAgences.elementAt(i)).rue).equals(adresse.rue)) {

if((((Adresse)annuaireAgences.elementAt(i)).codePostal).equals(adresse.c
odePostal)) {

if((((Adresse)annuaireAgences.elementAt(i)).telephone).equals(adresse.te
lephone)) {
 annuaireAgences.removeElementAt(i);
 ok=true;
 }
 }
 }
 }
 i++;
 }

 if(ok==false){
 throw new ProblemeBanque("L'adresse n'existe pas !");

 }

 }

 public UneAgence[] liste_des_Agences() {

 int i=0;
 UneAgence[] aux_desAgences;
 aux_desAgences= new UneAgence[desAgences.size()];

 while(i<desAgences.size()) {
 aux_desAgences[i]=(UneAgence)desAgences.elementAt(i);
 i++;
 }
 return aux_desAgences;
 }

 public Adresse[] liste_Adresse_Agences() {

 int i=0;
 Adresse[] aux_AnnuaireAgences;
 aux_AnnuaireAgences= new
Adresse[annuaireAgences.size()];

 while(i<annuaireAgences.size()) {

Appendix B : Source Code

60 A Guideline to Detect Reusable Components

 aux_AnnuaireAgences[i]=(Adresse)annuaireAgences.elementAt(i);
 i++;
 }
 return aux_AnnuaireAgences;
 }

 public void charger_Adresses() {

 ObjectInputStream in;
 String lesAdresses= "AnnuaireAgences.ban";

 Object uneAdresse;

 try {
 in= new ObjectInputStream(new
FileInputStream(lesAdresses));
 try {
 while((uneAdresse= in.readObject()) != null) {
 annuaireAgences.addElement(uneAdresse);
 }
 }
 catch(IOException ex0) {
 ex0.printStackTrace();
 }
 catch(ClassNotFoundException ex1) {
 ex1.printStackTrace();
 }
 finally {
 in.close();
 }
 }
 catch(IOException ex) {
 ex.printStackTrace();
 }
 }

 public void enregistrer_Adresses() {

 Enumeration enum_Adresses= annuaireAgences.elements();

 ObjectOutputStream out;
 String lesAdresses= "AnnuaireAgences.ban";

 try {
 out= new ObjectOutputStream(new
FileOutputStream(lesAdresses));
 while(enum_Adresses.hasMoreElements()) {
 out.writeObject(enum_Adresses.nextElement());
 }
 out.close();
 }
 catch(IOException ex) {
 ex.printStackTrace();
 }
 }

}

Appendix B : Source Code

A Guideline to Detect Reusable Components 61

//==
// Implementation des méthodes de la classe Client
//==

//Pour la gestion des entrées et des sorties
import java.io.*;
import java.util.*;
import bancaire.*;
import org.omg.CORBA.*;

public class ClientImpl extends _ClientImplBase implements Serializable{

 //==
 //Les variables d'instance
 //==

 private String nom;
 private String prenom;
 private String dateDeNaissance;
 private Sexe sexe;
 private Adresse adresse;
 private Agence agence;
 private int numero_Client;
 private Vector lesComptes=new Vector();

 //==
 //constructeur de la class ClientImpl
 //==

 public ClientImpl(String nom_Client, String prenom_Client,
 String dateDeNaissance_Client, Sexe s,
 Adresse a, Agence ag, int le_numero_Client) {

 nom=nom_Client;
 prenom=prenom_Client;
 dateDeNaissance=dateDeNaissance_Client;
 sexe=s;
 adresse=a;
 agence=ag;
 numero_Client=le_numero_Client;
 }

 public ClientImpl() {
 }

 public String nom() {
 return nom;
 }

 public String prenom() {
 return prenom;
 }

 public String dateDeNaissance() {
 return dateDeNaissance;
 }

Appendix B : Source Code

62 A Guideline to Detect Reusable Components

 public Sexe sexe() {
 //remarque:
 //Sexe sexe= Sexe.from_int(Sexe.FEMININ); //Faux
 //Sexe sexe= Sexe.from_int(1); //Vrai
 //Sexe sexe= Sexe.FEMININ; //vrai
 return sexe;
 }

 public Agence agence(){
 return agence;
 }

 public Adresse adresse(){
 return adresse;
 }

 public void adresse(Adresse adresse){
 this.adresse=adresse;
 }

 public int numero_Client(){
 return numero_Client;
 }

 public Compte creer_un_Compte(String numero, Client client,
 Agence agence, float solde){

 Compte nouveau_Compte= new CompteImpl(numero, client,
 agence, solde);
 lesComptes.addElement(nouveau_Compte);
 agence.ajouter_Compte(nouveau_Compte);
 return nouveau_Compte;
 }

 public Livret creer_un_Livret(String numero, Client client,
 Agence agence, float solde, float taux){

 LivretImpl nouveau_livret= new LivretImpl(numero,
client,
 agence, solde, taux);
 _LivretImplBase_tie nouveau_livret_tie=new
_LivretImplBase_tie(nouveau_livret);

 lesComptes.addElement(nouveau_livret);
 agence.ajouter_Compte(nouveau_livret);
 return (Livret)nouveau_livret_tie;
 }

 public void detruire_un_Compte(String numero_Compte)
 throws ProblemeClient {

 boolean ok=false;
 int i=0;

 while(((i<lesComptes.size()) && (ok==false))) {

Appendix B : Source Code

A Guideline to Detect Reusable Components 63

 if((((Compte)lesComptes.elementAt(i)).numero()).equals(numero_Comp
te)) {
 lesComptes.removeElementAt(i);
 ok=true;
 }
 i++;
 }

 if(ok==false){
 throw new ProblemeClient("Le compte avec le numero
"+numero_Compte+
 " n'exite pas !");

 }
 }

 public Compte recherche_le_Compte(String numero_Compte)
 throws ProblemeClient{

 boolean ok=false;
 int i=0;

 while(((i<lesComptes.size()) && (ok==false))) {

 if((((Compte)lesComptes.elementAt(i)).numero()).equals(numero_Comp
te)) {
 ok=true;
 }
 i++;
 }

 if(ok==true) {
 return (Compte)lesComptes.elementAt(i);
 }
 else {
 throw new ProblemeClient("Le compte avec le numero
"+numero_Compte+
 " n'exite pas !");

 }
 }

 public Compte[] liste_des_Comptes_de_client(){

 int i=0;
 Compte[] aux_desComptes;
 aux_desComptes= new Compte[lesComptes.size()];

 while(i<lesComptes.size()) {
 aux_desComptes[i]=(Compte)lesComptes.elementAt(i);
 i++;
 }
 return aux_desComptes;
 }

 public void virement(String numero_Compte1, String numero_Compte2,
 float montant, StringHolder message1,
 StringHolder message2) throws ProblemeClient {

Appendix B : Source Code

64 A Guideline to Detect Reusable Components

 boolean okj=false;
 boolean okk=false;
 StringHolder aux_message1=new StringHolder();
 StringHolder aux_message2=new StringHolder();
 String aux_Message="OK";
 message2.value=new String(aux_Message);
 message1.value=new String(aux_Message);
 int i=0;
 int j=0;
 int k=0;

 while(((i<lesComptes.size()) && !((okj!=false) &&
(okk!=false)))) {

 if((((Compte)lesComptes.elementAt(i)).numero()).equals(numero_Comp
te1)) {
 j=i;
 okj=true;
 }

 if((((Compte)lesComptes.elementAt(i)).numero()).equals(numero_Comp
te2)) {
 k=i;
 okk=true;
 }
 i++;
 }

 if((okj==true) && (okk==true)) {

 OperationBancaire [] lesOperations1;
 OperationBancaire [] lesOperations2;

 lesOperations1=((Compte)lesComptes.elementAt(j))._lesOperations();
 OperationBancaire derniereOperation1=

 (OperationBancaire)lesOperations1[lesOperations1.length-1];
 float dernierSolde1=derniereOperation1.solde;
 float solde1=dernierSolde1-montant;

 lesOperations2=((Compte)lesComptes.elementAt(k))._lesOperations();
 OperationBancaire derniereOperation2=

 (OperationBancaire)lesOperations2[lesOperations2.length-1];
 float dernierSolde2=derniereOperation2.solde;
 float solde2=dernierSolde2+montant;

 if(solde1>= -
(((Compte)lesComptes.elementAt(j)).limite_Max())) {
 if(solde2<=
(((Compte)lesComptes.elementAt(k)).limite_Max())) {

 ((Compte)lesComptes.elementAt(j)).retrait(montant, aux_message1);
 String aux1=""+aux_message1.value;
 message1.value=new String(aux1);

Appendix B : Source Code

A Guideline to Detect Reusable Components 65

 ((Compte)lesComptes.elementAt(k)).depot(montant, aux_message2);
 String aux2=""+aux_message2.value;

 message2.value=new String(aux2);

 }
 else {

 aux_Message=""+((Compte)lesComptes.elementAt(k)).limite_Max();
 message2.value=new String(aux_Message);
 }
 }
 else {

 aux_Message=""+((Compte)lesComptes.elementAt(j)).limite_Max();
 message1.value=new String(aux_Message);
 }
 }
 else {
 if(j==0) {
 throw new ProblemeClient("Le compte avec le
numero "+numero_Compte1+
 " n'exite pas !");
 }
 if(k==0) {
 throw new ProblemeClient("Le compte avec le
numero "+numero_Compte2+
 " n'exite pas !");
 }
 }
 }

 public void interets_Bancaires() {

 int i=0;
 float aux_Taux=0;
 float aux_Solde=0;
 float aux_Interet=0;
 OperationBancaire [] lesOperations;

 while(i<lesComptes.size()) {

 if((((Compte)lesComptes.elementAt(i)).type_duCompte()).equals("LIV
RET")) {

 StringHolder message= new StringHolder();

 aux_Taux=((LivretImpl)lesComptes.elementAt(i)).taux();

 lesOperations=((Compte)lesComptes.elementAt(i))._lesOperations();
 aux_Solde=lesOperations[(lesOperations.length)-
1].solde;
 aux_Interet=aux_Solde*aux_Taux;

 ((Compte)lesComptes.elementAt(i)).depot(aux_Interet, message);
 }

Appendix B : Source Code

66 A Guideline to Detect Reusable Components

 i++;
 }
 }
}

//==
// Implementation des méthodes de la classe Compte
//==

//Pour la gestion des entrées et des sorties
import java.io.*;
import bancaire.*;
import java.util.*;
import java.util.Calendar;
import org.omg.CORBA.*;

public class CompteImpl extends _CompteImplBase implements Serializable{

 //==
 //Les variables d'instance
 //==

 protected String numero;
 private String typeduCompte;
 private float decouvertMax;
 protected Client client;
 protected Agence agence;
 protected Vector lesOperations=new Vector();

 //==
 //constructeur de la class ClientImpl
 //==

 public CompteImpl(String numero, Client client, Agence agence,
float decouvertMax){
 this.numero=numero;
 typeduCompte="COMPTE";
 this.client=client;
 this.agence=agence;
 this.decouvertMax=decouvertMax;
 GregorianCalendar date=new GregorianCalendar();
 String heure="à "+date.get(Calendar.HOUR_OF_DAY)+":"
 +date.get(Calendar.MINUTE);
 String laDate="le "+date.get(Calendar.DAY_OF_MONTH)+":"
 +date.get(Calendar.MONTH)+":"
 +date.get(Calendar.YEAR);
 OperationBancaire uneOperation=
 new OperationBancaire(0,0,0,laDate,heure);
 lesOperations.addElement(uneOperation);
 }
 public CompteImpl(){
 }

 public String numero() {
 return numero;
 }

 public String type_duCompte() {
 return typeduCompte;

Appendix B : Source Code

A Guideline to Detect Reusable Components 67

 }

 public float limite_Max() {
 return decouvertMax;
 }

 public Client client() {
 return client;
 }

 public Agence agence() {
 return agence;
 }

 public OperationBancaire[] _lesOperations() {

 int i=0;
 OperationBancaire[] aux_OperationBancaire=
 new OperationBancaire[lesOperations.size()];

 while(i<lesOperations.size()) {
 aux_OperationBancaire[i]=
 (OperationBancaire)lesOperations.elementAt(i);
 i++;
 }
 return aux_OperationBancaire;
 }

 public void depot(float montant, StringHolder message) {

 OperationBancaire derniereOperation=
 (OperationBancaire)lesOperations.lastElement();
 float dernierSolde=derniereOperation.solde;
 float solde=dernierSolde+montant;
 GregorianCalendar date=new GregorianCalendar();

 String heure="à "+date.get(Calendar.HOUR_OF_DAY)+":"
 +date.get(Calendar.MINUTE);
 String laDate="le "+date.get(Calendar.DAY_OF_MONTH)+":"
 +date.get(Calendar.MONTH)+":"
 +date.get(Calendar.YEAR);
 OperationBancaire uneOperation=
 new OperationBancaire(0,montant,solde,laDate,heure);

 lesOperations.addElement(uneOperation);
 message.value=new String("OK");
 }

 public void retrait(float montant, StringHolder message) {

 OperationBancaire derniereOperation=
 (OperationBancaire)lesOperations.lastElement();
 float dernierSolde=derniereOperation.solde;
 float solde=dernierSolde-montant;
 GregorianCalendar date=new GregorianCalendar();
 String lemessage;

 if(solde>=-decouvertMax) {

Appendix B : Source Code

68 A Guideline to Detect Reusable Components

 String heure="à "+date.get(Calendar.HOUR_OF_DAY)+":"
 +date.get(Calendar.MINUTE);
 String laDate="le "+date.get(Calendar.DAY_OF_MONTH)+":"
 +date.get(Calendar.MONTH)+":"
 +date.get(Calendar.YEAR);
 OperationBancaire uneOperation=
 new
OperationBancaire(montant,0,solde,laDate,heure);

 lesOperations.addElement(uneOperation);
 message.value=new String("OK");
 }
 else {
 String aux_Message=""+decouvertMax;
 message.value=new String(aux_Message);
 }
 }
}

//==
// Implementation des méthodes de la classe Livret
//==

//Pour la gestion des entrées et des sorties
import java.io.*;
import bancaire.*;
import org.omg.CORBA.*;

public class LivretImpl extends CompteImpl
 implements LivretOperations, Serializable{

 //==
 //Les variables d'instance
 //==

 private String typeduCompte;
 private float plafondMax;
 protected float taux;

 //==
 //constructeur de la class ClientImpl
 //==

 public LivretImpl(String numero,Client client,Agence agence,
 float plafondMax, float taux){
 super(numero, client, agence, 0);
 this.plafondMax=plafondMax;
 typeduCompte="LIVRET";
 this.taux=taux;
 }

 public String type_duCompte() {
 return typeduCompte;
 }

 public float limite_Max() {
 return plafondMax;
 }

Appendix B : Source Code

A Guideline to Detect Reusable Components 69

 public float taux() {
 return taux;
 }

 public void depot(float montant, StringHolder message) {

 OperationBancaire[] lesOperations = super._lesOperations();
 float dernierSolde=lesOperations[lesOperations.length-
1].solde;
 float solde=dernierSolde+montant;

 if(solde<=plafondMax) {
 super.depot(montant, message);
 }
 else {
 String aux_Message=""+plafondMax;
 message.value=new String(aux_Message);
 }
 }

 public void retrait(float montant, StringHolder message) {

 OperationBancaire[] lesOperations = super._lesOperations();
 float dernierSolde=lesOperations[lesOperations.length-
1].solde;
 float solde=dernierSolde-montant;

 if(solde>=0) {
 super.retrait(montant, message);
 }
 else {
 String aux_Message=""+0;
 message.value=new String(aux_Message); }
 }
}

