
i

Acknowledgements

I would like to thank my advisors Jean Claude Royer and Annya Romanczuk for the
great support devoted me during the development of this work.

I would like also to thank Pascal André, a collaborator of this work, whose ideas were
really helpful in the composition of the semantic framework.

It was very important for me the long times of meeting we all had together.

I thank Prof. Dr. Cabral Lima and Universidade Estadual do Norte Fluminense for giving
me the great opportunity of participating in this project.

The support given by my Brazilian friends during the entire Master was essential for me
in order to conclude the works.

Finally, special thanks to my mother and my sisters that, even so far, gave me great
incentive and love during the study period.

 ii

TABLE OF CONTENTS

Acknowledgments……………………………………………………………. i

List of Figures………………………………………………………………… v

List of Tables…………………………………………………………………. vi

Abstract………………………………………………………………………. vii

Introduction…………………………………………………………………… 1

Table of Contents

Chapter One

Motivations and Difficulties towards UML Formalization………………… 3

1.1 UML Semantics: Current Form………………………………………… 3

1.2 Difficulties to UML Formalization…………………………………….. 3

1.3 Motivations to UML Formalization…………………………………….. 4

Chapter Two

UML Semantics Formalization……..………………………………………. 7

2.1 UML Precise Group: An Important Work Taken Towards Formalization 7

2.2 OO Formalization Methods Classification……………………………… 7

2.3 Formal Languages Classification……………………………………….. 8

2.4 Definitions in the Context of Formal Languages………………………. . 9

2.5 Object Oriented Analysis and Design Formalization Approaches……… 10

 2.5.1 Set-Theory Methods: RAL – Real-Time Action Logic………. 10

 2.5.2 Modular Algebraic Semantics for Object Oriented Model 13

 2.5.3 The Formal Class Approach………………………………….. 17

2.6 Conclusion and Summary………………………………………………. 19

 2.6.1 Comparison Table……………………………………………. . 20

Chapter Three

UML and ADT: a Semantic Framework Proposition……………………… 23

3.1 Main Points Considered in the Framework Composition……………… 23

iii

3.1.1 The Formalization Method Chosen…………………………… 24

3.1.2 The Formal Language Chosen…….………………………….. 24

3.1.3 ADT Structure ……………………………………………….. 24

3.2 The Translation Process from UML to ADT…………………………… 27

3.2.1 Class Translation……………………………………………… 27

 3.2.2 Association Translation………………………………………. 31

 3.2.3 Composition Translation……………………………………… 35

 3.2.4 Constraints Translation……………………………………….. 38

 3.2.5 Association Class Translation………………………………… 39

3.2.6 Generalization Translation……………………………………. 41

3.3 Conclusion and Summary………………………………………………. 43

 3.3.1 Summary Tables……………………………………………… 44

Chapter Four

Technologies Supporting the Semantic Framework ………………………. 47

4.1 The Practical Context to Apply the Framework……………………….. 47

4.2 The Larch Prover ………………………………………………………. 48

4.3 The Graphtalk Metatool………………………………………………… 49

4.3.1 Graphtalk Metamodel Level.……………………………….… 49

4.3.2 Graphtalk Model Level……………………………………….. 53

4.4 The use of C++ Programming Language….……………………………. 54

4.5 Conclusion………………………………………………………………. 55

Chapter Five

A Concrete Application of the Semantic Framework ………………………... 57

5.1 The UML Static Diagram designed in the CASE tool …………………… 57

5.2 Formal Specifications generated for the UML Static Diagram…………… 58

5.3 Checking Inconsistencies ……….……..…………….…………………… 59

5.3.1 A Composition Inconsistency………………………………….. 59

5.3.2 A Composition with Generalization Inconsistency…………….. 60

5.4 Inconsistency with Constraint: a Concrete example of Proof written in LP. 60

 iv

5.5 Conclusion…………………………….…………………………………. 62

Chapter Six

Conclusion ………………………………………………………………….. 63

6.1 Contributions…………………………………………………………….. 63

6.2 Future Work……………………………………………………………… 64

References…………………………………………………………………… 67

Appendix A: Auxiliary Abstract Data Types……………………………….. 71

Appendix B: Source Code…………………………………………………… 75

Appendix C: Abstract Data Types of the Library System………………….. 97

v

List of Figures

Figure 1. UML static diagram example ...10
Figure 2. Subtyping ..16
Figure 3. UML class representation...28
Figure 4. UML association between classes Person and Company...................................32
Figure 5. UML composition representation...36
Figure 6. UML XOR constraint ...38
Figure 7. UML subset constraint ...39
Figure 8. UML association class representation ..40
Figure 9. UML generalization representation ..42
Figure 10 . Workflow integrating different technologies ..48
Figure 11. Four steps to define a graph. ...50
Figure 12. Semantic specification window for the UML static diagram...........................51
Figure 13. Semantics of a class ..52
Figure 14. Properties of classes ...53
Figure 15. The menu option to run the translation from UML to ADT.............................54
Figure 16. UML Static Diagram drawn in the Graphtalk CASE tool................................58
Figure 17. Instance reflexivity ...60
Figure 18. An inconsistency with XOR constraint ..61

 vi

List of Tables
Table 1 – Comparison over UML Formalization Approaches. ..21
Table 2 – Formal Specifications for Classes..44
Table 3 – Formal Specifications for Associations ...45
Table 4– Formal Specifications for Compositions ..45
Table 5 – Formal Specifications for Generalizations ...46

vii

Abstract

This Thesis describes an algebraic semantic framework covering the formalization of the
main static model elements of UML. As UML is the unification of Object-Oriented
analysis and design modeling languages, the formalization process presented here can be
easily extended to other similar Object Oriented (OO for short) notation sets. Moreover it
can contribute towards a standardization of OO modeling concepts. In the semantic
framework presented in this work, model elements are formal described through
algebraic specifications defining abstract data types. Abstract data types allow the
specification of the semantics in an abstract way being really suitable to the description of
OO models. The formal specifications are written in Larch Prover (LP for short) [GG91].
LP is a theorem prover that allows verifications and validations to be applied to the
formal specifications. From these validations properties and inconsistencies about the
models can be proved what leads to early detection of errors in the software development
process. These formal specifications to be interpreted by LP are generated from a UML
CASE tool built in Graphtalk metatool [CS97a]. The integration between the CASE tool
and formal specifications is provided through a set of mapping rules established in this
work.

Introduction

Formalization of UML using Algebraic Specifications 1

Introduction

The goal of the thesis is to compose a semantic framework in order to support the
formalization of the main static model elements of UML using Algebraic Specifications.
Algebraic Specifications are used to describe abstract data types (ADT). The motivation
for this work is the assumption that many Object Oriented (OO) methods, including those
from which UML is derived, suffer from a lack of a precise semantics. This can lead to
confusions and different interpretations when analyzing a model.

The semantic framework is based on a set of mapping rules defined to the translation
from UML to algebraic specifications. These mapping rules are written in accordance to
the syntax and semantics of each UML model element considered. The semantics of the
model elements was evaluated considering the UML metamodel [UML99] and UML
model [BRJ99a]. Therefore the result of the translation process is an ADT specified to
each model element through the corresponding mapping rules established to it.

To establish these mapping rules defining the formal specifications some other
approaches on Object Oriented analysis and design formalization, some of them focusing
on UML, were evaluated and taken into account. In [LB98] a semantic framework for
part of UML, named RAL, is presented. Another algebraic approach using Larch Shared
Language (LSL for short) was also analyzed. It is described in [HHK98] being a formal,
modular approach to specify the semantics of object-oriented models expressed in UML.
LSL is an algebraic language, which in conjunction to LP and other technologies
compose the Larch family of languages and tools

In both approaches a great importance is given to model theory composition in order to
describe models and submodels. This allows the establishment of constraints among
model elements. The level of granularity considered to the formal specifications is also an
important aspect outlined in both approaches.

In the semantic framework presented here it is adopted an intermediate degree of
granularity. Formal descriptions are used to describe classes and associations as well as
some other constructs. It is also considered the idea of constraints at the model level what
is achieved through general descriptions grouping some individual model elements.

The implementation of the semantic framework is undertaken considering the integration
of different technologies: Graphtalk metatool, C++ programming language and Larch
Prover theorem prover. Graphatlk metatool is instantiated with the UML grammar to
build a CASE tool. The Graphtalk API primitives are used in the C++ source code
allowing the automation of the translation process from a UML informal model to well-
formed algebraic specifications. Larch Prover reads then these formal algebraic
specifications in the form of abstract data types supporting that checks and proofs can be
performed on them resulting in error detection on the design phase.

Introduction

2 Formalization of UML using Algebraic Specifications

As the work of this dissertation considers just the static part of UML some side -effects on
operations that depends on collaborations are not described. The formal method presented
can be extended in future in order to cover also dynamic UML concepts.

Structure of the Dissertation
Chapter one presents an overview of the current state in UML semantics and gives some
motivations and difficulties towards UML semantics formalization.

Chapter two shows the State of the Art in UML semantics formalization. It presents
formal methods and formal languages that can be used to the formalization of Object
Oriented analysis and design languages. In the core of the chapter is the presentation of
three formalization approaches existent, two of them focusing specifically in UML, and
the other one, Formal Classes approach, showing a more general formalization method
that can be applied to any OO design and analysis language.

In chapter three the core of the Thesis is described. This chapter shows the main points
considered to compose the semantic framework, as the formal syntax followed, the
process to determine the mapping rules, the structure of an ADT, going then deep in the
description of the set of mapping rules to each UML model element considered in the
formalization. The mapping rules are described based on the semantics aspect that leads
to their definition.

As explained in this introduction, the implementation of this semantic framework takes
into account different technologies that need to be well integrated in order to allow the
framework working. Each of these technologies employed and the way taken to their
integration is explained in chapter four.

Chapter five gives then the link between the theoretical part presented in chapter 3 with
the practical aspects detailed in chapter four. This chapter takes a UML Static Diagram
drawn in the CASE tool developed as part of this work and shows the results of the
translation process performed to it. Therefore the formal specifications in the form of
ADTs resultant from the implementation of the mapping rules are referenced. After the
translations are done, this chapter goes on presenting some inconsistencies that can be
detected in UML models through the use of the semantic framework.

Chapter six ends up giving some conclusions taken during the development of this work
and presenting contributions and future work that can be taken in order to complete the
semantic framework and its practical application.

Chapter One: Motivations and Difficulties towards UML Formalization

Formalization of UML using Algebraic Specifications 3

Chapter One

Motivations and Difficulties towards UML Formalization

UML, the Unified Modeling Language, is a very expressive language that can be used to
model object-oriented software systems. It is the unification of the main object-oriented
(OO) methods (Rumbaugh, Booch and Jacobson). The Object Management Group
(OMG) has approved UML in November 1997 as the standard notation for object-
oriented analysis and design.

The main motivation towards UML formalization is that its semantics is not precisely
described through UML official documents and books. In this chapter other motivations
and some difficulties encountered in order to achieve UML se mantics formalization are
presented.

 1.1 UML Semantics: Current Form

UML encompasses structural and behavioral aspects in order to describe OO software
systems. Even being a de facto standard, its semantics are semi-formal described. In
[UML99], the UML semantics document, version 1.3 (last version), the semantics of the
language is described using the metamodel. The metamodel stands a combination of
graphical notation, natural language and formal language. It gives a syntactic description
of the language but not a complete and precise specification of its semantics.

The graphic part is reflexive using a subset of the own UML notation. The formal
language is the OCL (Object Constraint Language) that has been a first approach in order
to get a precise description for the UML. It is an assertion language used to describe
navigation and constraints in Class Diagrams (the static diagram of UML). Although
OCL helps in the semantics description being used to the specification of well-
formedness rules, it does not provide a basis for controls and validations. Moreover it
does not solve some ambiguities in UML interpretations.

UML carries a complex set of notations that as explained do not gain a clear meaning
through the metamodel.

 1.2 Difficulties to UML Formalization

The lack of a precise formal semantics for the UML is justified in many ways:
? The architects of the language claim: “the state of the practice in formal

specifications does not yet address some of the more difficult language issues that
UML introduces” [UML99].

Chapter One: Motivations and Difficulties towards UML Formalization

4 Formalization of UML using Algebraic Specifications

? Formal specifications are hard to deal with for non-expert users. Developers, users of
UML, are not familiar with formal mathematical specifications and because of it they
tend to resist to their use.

? To be of industrial use, formal specifications need to be integrated to CASE tools,
supporting graphical modeling constructs, in such a way that developers can directly
manipulate the OO models they have created to analyze, transform and enhance them.

In contrast to the difficulties showed above, the own authors of the modeling language
also recognize the importance of formality. According to [CE97] the authors of the
language agree in the sense that it lacks from a precise semantics description, and that its
formalization could lead to unambiguous interpretations of the models and could permit
extensibility allowing future changes in object-oriented analysis and design.

1.3 Motivations to UML Formalization

Many motivations are given to justify the importance of formalization. They can be
grouped according to some primitives, as: clarity, consistency, correctness and
enhancement it can bring to the models. Because of these benefits, formalization is really
helpful in forward and reverse reengineering efforts as well as in the restructuring of
systems. On the other hand, a really understandable and consistent system is more
suitable for reuse. Follows some motivations towards formalization according to the
primitives stated.

? Clarity:
UML is a complex language that holds a really great number of modeling elements.
Because of its complexity and lack of precise description, its constructs are not clear
defined and the language can lead users to ambiguous interpretations of the models.
Formalization can help in clarifying the meaning of UML model elements. In [CE97] it is
stated:
“Clarity acts as a reference – if at any point, there is confusion over the exact meaning of
a particular UML component, reference can be made to the formal description to verify
its semantics.”
A deeper understanding of OO concepts is also gained, allowing the development of
more rigorous semantic analysis tools and better use of OO techniques.

? Consistency:
UML presents nine different diagrams to express different system perspectives. The
consistency among these diagrams representing a model can be ensured since all of them
are formalized and hence precisely described. This leads to a more complete and
unambiguous interpretation of a model, allowing development teams to have a better
communication and understanding among them.
Consistency can also be achieved between code and specifications. Having a precise
description of the models, implementations can be validated against the design checking
if it fulfills the specifications. On the other hand, formalization can also be a bridge from
implementation to design in a reverse engineering process.

Chapter One: Motivations and Difficulties towards UML Formalization

Formalization of UML using Algebraic Specifications 5

? Correctness:
Correctness of the models can be achieved through the application of proofs over the
formal specifications. Therefore inconsistencies can be detected. A mapping between the
model elements of UML to formal specifications can help in adapting proofs and
validations to CASE tools what leads to early detection of errors in the systems.
The establishment of proofs can be done upon the properties of a system described in
UML, forming a basis for future automatic proof techniques.
Moreover with a mapping allowing the generation of formal specifications from informal
models it is possible to identify ambiguous and inconsistent structures in the models.

? Enhancement:
Enhancement of models is expressed through design refinements. In [EBFLR98]
refinement is defined as:
“It is the process by which an abstract model of a system (containing relatively little
implementation detail) can be incrementally transformed into a model that can be readily
implemented in a specific programming language. At each stage the correctness of the
more detailed model must be verified against the abstract model.”

As UML is a diagrammatical modeling language, refinement of a UML model implies a
process of diagrammatical transformations. In this context, the definition of a set of
semantically-based transformation rules is important to provide a set of correct
transformations that are equivalencies or enhancements of models. Some properties of
models can be deduced and proved through transformations. Proving that one form of the
model is equivalent to another can make correct properties arise.
Refinements of models based on transformations are useful not only to support forward
engineering as well as reengineering efforts. Model refinements can be helpful in the
restructuring of designs.
Design Patterns can be applied in refinement steps being checked for correctness. Once
checked, a pattern can be used again and again without having to be re-checked.

Basing in the primitives previously stated and going into detailed explanations, more
justifications for formalization can arise. In [FELR97] they say:
? Developers can waste time making considerations over correct usage and

interpretation of notations. Because of the informal descriptions provided in reference
books, it is not easy to achieve an interpretation that can be considered precise.

? It is difficult to ensure model reviews, rigorous semantic analysis based on informal

techniques. In [FELR97] it is stated:
“Review meetings can be further enhanced if the notations used have a precise
semantics. The results of model validations and verifications can be presented in reviews
as evidence of the quality of the models. Rigorous semantic analysis techniques also
facilitate the early detection of modeling errors which considerably reduces the cost of
error removal.”

Chapter One: Motivations and Difficulties towards UML Formalization

6 Formalization of UML using Algebraic Specifications

? Tool support for OO modeling notations is limited because of the lack of a precise
semantics for the constructions of the language. Hence tools stay limited to cover just
syntactic concerns.

In [EBFLR98] it is stated that:

“The desire to formalize UML was originally motivated by the overall wish to develop
practical, industrial strength, formal methods. The advent of the UML as a likely de-facto
industry standard, and its recognition that as a standard it needs to be precisely
described, made UML a natural choice for a combined investigation.”

As it can be realized the motivation to formalize OO methods was not originally
motivated by UML emergence. Formalization had already been recognized as useful and
necessary not only for academic purposes but also for industrial use before UML has
appeared. Formalization aims to support reliable and precise modeling language to be
used in any context. The advent of UML as a standard OO modeling language made the
efforts turned to it.

Chapter Two: UML Semantics Formalization

Formalization of UML using Algebraic Specifications 7

Chapter Two

UML Semantics Formalization

In the previous chapter many motivations were given to justify the efforts invested in
UML formalization. This chapter starts showing some formal methods and languages to
support formalization. Afterwards, the main OO analysis and design formalization
approaches studied, some of them focusing on UML, are presented.

2.1 UML Precise Group: An Important Work Taken Towards
Formalization

Before presenting the formal methods and formalization approaches, it is necessary to
point out the importance and contributions of the UML Precise Group in the context of
UML formalization.

The authors of [EBFLR98] compound the UML Precise Group (PUML) which was
created for two main purposes: investigate the completeness of the UML semantics and
develop novel approaches to use UML more precisely. This group was formed in late
1997. By giving precise semantics to UML, the group intends to develop a formal
reference manual for the language. In [FELR97] they say:

“A major objective of the project is to develop a formal reference manual for the UML.
This will give a precise description of core components of the language and provide
inference rules for analyzing their properties. In developing the reference manual we will
build upon the semantics given in the UML semantics document by using formal
techniques to explore the described semantic base.”

In this formal reference manual, the intention is to re-express the formal semantics in
terms of a suitably expressive language, that could be a mixture of notations such as an
enhanced version of the UML metamodel, the OCL (Object Constraint Language), and
precise natural language statements.

2.2 OO Formalization Methods Classification

The classification presented in this section is also a contribution work from some
members of the UML Precise Group. In [FELR97] it is presented three general categories
for OO formalization methods: supplemental, OO-extended formal language, and
methods integration.

In the supplemental method, formal statements substitute annotations in the models that
are expressed in natural language. This clarifies the meaning of the models, but the
semantics of graphical constructs are not necessarily precisely defined.

Chapter Two: UML Semantics Formalization

8 Formalization of UML using Algebraic Specifications

In the OO-extended formal language method, an existing formal notation is extended
with OO features. This is the case of Z++ and VDM++, for example. In this case the
formal languages are really enriched and, on the other hand, OO concepts need to be
formalized in order to be able to be adapted to formal languages. The problem with this
method is the considerable gap between model elements representing real world concepts
and the mathematical representations in the formal notations.

Methods Integration approach defines the generation of formal specifications from
informal OO models. It is stated:

“…the generation of formal specifications from informal models is only possible if there
is a mapping from syntactic structures in the informal modeling domain to artifacts in the
formally defined semantic domain.”

In this case a formal description of the mapping rules becomes essential in order to check
if the formal specifications indeed capture the intended interpretations of the informal
models.

2.3 Formal Languages Classification

In [CHS+97] four major underlying models upon which the formal specification
languages can be based are described. Follows the identification of these models and
examples of formal languages classified in each one of them.

? First-order logic and set-theory.
According to [CHS +97], this approach can be defined as:
“The first-order logic and set-theory approaches are also often called model oriented
because they support the specification of a system by constructing a mathematical model
for it.”
In this group there are:
? Z language;
? Object-Z (OO extension of the Z notation);
? VDM++ (OO extension of the Vienna Development Method);
? Z++ (OO extension of the Z notation).

? Algebraic approach.
This approach uses algebraic equations in order to establish the semantics of the
operations in a specification.
Examples of languages are:
? TROLL;
? Maude;
? AS-IS (Algebraic Specification with Implicit State);
? Larch;

Chapter Two: UML Semantics Formalization

Formalization of UML using Algebraic Specifications 9

? Petri nets/algebraic nets.
This approach is described in [CHS+97] in the following way:
“Petri nets and high-level nets are two representative of the model-based class in the
sense that they describe the state of a system by means of places which contain “black
tokens” for the conventional Petri nets and structured tokens for high-level nets. A set of
transitions which consist of a pre- and a post-condition, describes how the system state
changes by consuming and producing tokens in the various places of the net.”

Examples of languages in this family are:
? CLOWN (Class Orientation with Nets);
? CO (Cooperative Objects);
? OPN (Object Petri Nets);
? COOPN/2 (Concurrent Object-Oriented Petri Nets).

? Temporal logic.
In [CHS+97] it is described as:
“Temporal logics are axiomatic formalisms that are well suited for describing
concurrent and reactive systems. A common aspect associated with temporal logics is a
notion of time and state.”
Examples of languages are:
? TRIO+;
? OO-LTL.

Follows the description of two UML formalization approaches that deal with set-theory
(Z) and algebraic formal languages.

2.4 Definitions in the Context of Formal Languages

Some definitions become necessary in order to understand the following OO analysis and
design formalization approaches and the remaining of the document. They are:

What is an Abstract Data Type (ADT)

Originally data types are defined as sets equipped with operations. Considering Abstract
Data Types many definitions can arise:

1. A class of data objects with a defined set of properties and a set of operations
that process the data objects while maintaining the properties.

2. A set of values and a set of operations on those values.
3. In [Royer99a] an ADT (Abstract Data Type) is defined as:

“An Abstract Data Type is the description of a data type. This description is said abstract
because the semantics are expressed as relations between operations.”

Chapter Two: UML Semantics Formalization

10 Formalization of UML using Algebraic Specifications

What are Terms?

By terms it can be understood an expression that refers to an object as: sizeof(Array).

What is first-order logic?

By first-order logic it is understood that equations can be written using variables that
represent all the values that can be extracted from a specific Universe. The equation can
then be proved valid by exemplification.

2.5 Object Oriented Analysis and Design Formalization Approaches

2.5.1 Set-Theory Methods: RAL – Real-Time Action Logic

In [LB98] a semantic framework for part of UML is presented. The formal framework is
termed Real-Time Action Logic (RAL). This name comes from the fact that it intends to
reason about real-time specifications. The mathematical semantic representation of UML
models is given in terms of theories. This is a Z-based approach.

A RAL theory has the form:
theory Name
types local type symbols
attributes time-varying data, representing instance or class variables

 actions actions which may affect the data, such as operations, statechart
transitions and methods

axioms logical properties and constraints between the theory elements

Theories can be defined to a whole model, submodels, or specific elements such as
classes, associations, states, etc, being in this case assembled through theory morphisms.

The Z Language employed is presented in section 2.3.

? Theory at the Model Level
A theory for a model in this approach can be defined as depicted in figure 1 – example 1.

Figure 1. UML static diagram example

Person

Company

employee employer worker

boss

*

0..1

 {Person.employer =
Person.boss.employer}

Chapter Two: UML Semantics Formalization

Formalization of UML using Algebraic Specifications 11

 Example 1:

 theory Employment
 types Person, Company
 attributes
 Person: FIN(Person)
 Company: FIN(Company)
 employee_employer: Person ? Company
 employee: Company ? FIN(Person)
 employer: Person ? FIN(Company)
 worker_boss: Person ? Person
 worker: Person ? FIN(Person)
 boss: Person ? FIN(Person)
 actions Standard predefined actions to modify classes and associations:
 create_Person(p:Person) {Person}
 kill_Person(p:Person) {Person}
 create_Company(c:Company) {Company}
 kill_Company(c:Company) {Company}
 add_link_worker_boss(p:Person, q:Person) {worker_boss, worker, boss}
 delete_link_worker_boss(p:Person, q:Person) {worker_boss,worker, boss}

 axioms

Constraints on the association links employee_employer:
forall p:Person; c:Company.(c:employer(p) ? (p,c):employee_employer

& p:employee(c) ? (p,c): employee_employer)
Cardinality Constraints:
forall p:Person.(card(employer(p)) <= 1)
forall p:Person.(card(boss(p)) <= 1)

The Constraint of the model is expressed by the formula:

 forall p:Person.(employer(p) = employer[boss(p)])

In this theory, Person represents the finite set of existing objects of class Person. In the
same way Company represents the set of Companies. Through the role employee in the
Association between Person and Company it is possible to recover the set of existing
objects of class Person linked to a Company. The same happens to the other association
roles.

The actions determine the creation and deletion of objects, as well as the addition and
deletion of links in associations.

? Representing a UML Class

A UML class is semantically represented by a theory T(C) of the form:

Chapter Two: UML Semantics Formalization

12 Formalization of UML using Algebraic Specifications

 theory T(C)
 types C
 attributes
 C: FIN(C)
 self: C ? C
 att1: C ? T1
 …..
 actions
 create_C(c:C) {C}
 kill_C(c:C) {C}
 op_l(c:C, x:X1):Y1
 …..
 axioms
 forall c:C.(self(c) = c & [create_C(c)](c:C) & [kill_C(c)]not(c:C))

Important points stated about this Class theory are:

1. Instance variables are modeled as attributes through a function type C ? T.
2. The notation [action]P denotes that every execution of action terminates with

the predicate P being true. Thus create_C(c) always adds c to the set of
existing C objects, and kill_C(c) removes it.

3. Class attributes and actions do not gain the additional C parameter as they are
independent of any particular instance.

? Representing a UML Association

Associations are described through theories, which, as in the class theory, ha ve an
attribute representing the set of all links of the association. Therefore association theory
also encompasses add_link and remove_link actions. Axioms determine the multiplicity
of the association ends and other properties of the association.

? Representing Generalization (Inheritance)

Generalization is achieved through theory morphism. In [LB98] it is stated that:

“Generalization of class C by class D in UML is directly represented by the theory T(D)
of D being the source of a signature morphism into T(C) which is the identity (each
symbol of T(D) is interpreted by itself in T(C)).”

“A theory morphism is a signature morphism s from T1 to T2 which preserves all the
axioms of the source theory. That is, T2 proves s(P) for each axiom P of T1.”

Theory morphism can be achieved by the inclusion of one theory (all its symbols and
axioms) in another. Supposing we have a theory for a superclass T(C) and a theory for a

Chapter Two: UML Semantics Formalization

Formalization of UML using Algebraic Specifications 13

subclass T(D), adjoining the axioms can make the attributes and operations of C
applicable to instances of D.

? Defining Models by Composition

Includes clause can also be used to another purpose. It can be used to compose models or
submodels by assembling element model theories as depicted in the following example.

Example 2:
theory Employment
includes WorkerBoss, EmployeeEmployer
axioms forall p: Person.(employer(p) = employer[boss(p)])

The theory Employment showed in example 1 can then be rewritten in a simpler form
just by including the theories of the associations, which in turn include the theories of the
classes Person and Company. Therefore it is possible to realize that theories can be
constructed by composition.

Composition is important to allow reuse. Theories defined in a high granularity level that
can be assembled to define a model are more suitable for reuse.

2.5.2 Modular Algebraic Semantics for Object Oriented Models

In [HHK98] they define a formal, modular approach to describe the semantics of object-
oriented models expressed in UML. The main aspect in this approach is to treat each
individual model element as an entity that can be expressed through a theory (or trait) in
Larch. The semantics of the model is then the composition of the semantic entities
representing the individual model elements. It is stated:

“…this leads to a high degree of elegance and transparency in the semantics, any results
proved about a generic trait or combination of traits will carry forward to models whose
semantics has been built using them.”

A high granularity to the formalization is considered as can be seen through the following
list.

Elements list:
? Object-type (for class);
? Set of objects of the type;
? Association;
? Cardinality of the associations;
? Subtype (dynamic and static);
? Inherited attributes;
? Invariant;

Chapter Two: UML Semantics Formalization

14 Formalization of UML using Algebraic Specifications

? Diagram.

The motivation to this highly modular approach is that formalizing each element
separated can increase reuse. Moreover formal descriptions can be used to specify
components. Precision is really important in the specification of components and
component interfaces, mainly when they are viewed as “black boxes” with hidden design
and implementation. A user of a component needs a precise certificate about what the
component does. They say:

“There is a natural progression from using this approach to build semantics of individual
models, to use it to compose models into larger models. This is what is required to
support component-based development, where components are specialized and composed
to build other components and, eventually, systems.”

In this approach it is used the Larch Shared Language (LSL for short), in which
specification modules are called traits. Traits are used to describe abstract data types and
theories having the following structure:

SpecName(parameters): trait

includes
 existing specification modules to be used
 introduces
 function signatures are listed here
 asserts

 axioms are listed here

? Representing a UML Class

In this approach classes are referenced as object types, and class diagrams as type
diagrams. The basic function in an object type specification is the one that can return the
set of existing objects of that type at a point in time. Considering an object of type A, this
basic function will have the following signature:
 A : ? -> Set[A]

In which, ? is the sort representing system states and Set[A] is the sort of finite sets of
elements of sort A. Therefore A(?) expresses the finite set of existing A objects in the
state ? .

Instance attributes for object types are represented as functions mapping the attribute
name to a value from a given type as follows.

attr1 : A, ? -> T1

Therefore to specify an object type it can be defined a basic trait including the function
that allows manipulation of the set of existing objects (example 3), and a trait including

Chapter Two: UML Semantics Formalization

Formalization of UML using Algebraic Specifications 15

functions for the object type attributes (example 4). This strong separation of concerns in
trait specifications due to the high modularity desired.

The final trait for the object type is then constructed by including the other two traits as
shown in example 5.

 Basic-Object-Type (A, A): trait
 includes
 Set(A)
 introduces
 A : ? -> Set[A]

Example 3: Basic Object-Type Trait

 This trait specifies object types by renaming A and A.

 Attributes-Object-Type (A): trait
 includes
 T1, T2
 introduces
 attr1 : A, ? -> T1
 attr2 : A, ? -> T2

Example 4: Attributes Trait

Object-Type A: trait
 includes
 Basic-Object-Type (A, A), Attributes-Object-Type (A)

Example 5: Object-Type trait

? Representing a UML Association

Given the classes A and B associated in a UML class diagram, the plain association
between them could be represented through two mapping functions with the signatures:

a : Set[instancesB], ? -> Set[instancesA]
b : Set[instancesA], ? -> Set[instancesB]

In which a and b represent the role names that maps a set of objects of one type to a set
of objects of the other type. Through these mapping rules, associations are uniformly
described. These functions can also be expressed through the signatures:
 a : B, ? -> Set[A]
 b : A, ? -> Set[B]

Mapping just one object to the connected set of objects of the other type.

Chapter Two: UML Semantics Formalization

16 Formalization of UML using Algebraic Specifications

? Specifying Multiplicity Constraints

Taking the previous association between A and B, an axiom to determine a one-to-many
multiplicity has the form:

a ? A (?) ? size(b(a, ?)) = 1

Where size is a set operation that returns the number of objects in a set. This axiom
constraints the multiplicity in B by determining the size of the Set of B elements
associated to an A element equal 1 (see also the previous functions in Representing a
UML Association). Size operation upon sets is used to determine all the possibilities of
multiplicity constraint.

? Subtyping

Subtyping is defined as:

“Subtyping is a special relationship between two object types, known as the is-a
relationship.”

In subtyping the subtype must be used anywhere the supertype is applicable and it
inherits all the attributes and associations of the supertype. Considering the following
example of inheritance between A and B, functions to express subtyping are given.

Figure 2. Subtyping

Two functions are used to express subtyping: simulates that maps an object identifier of
type B to the corresponding object identifier in A that behaves like it, and member that
tests if a B can be viewed as an A. They are expressed in the following way:

 simulates: B -> A
 memberB : A, ? -> Bool

? Inherited Attributes

Simulates function is used to the description of inherited attributes. Considering an
attribute f in class A, the following axiom to simulate it is also an attribute in B is written:

assert
f(b, ?) == f(simulates(b), ?)

 B

A
 C

r

Chapter Two: UML Semantics Formalization

Formalization of UML using Algebraic Specifications 17

? Inherited Associations

On the other hand, inherited associations are represented using role names. Considering
the example in figure 2, the association between A and C with role name r is translated
through the following function:
 r : Set[A], ? -> Set[C]

 To represent the inherited association, a new function is introduced:

r : Set[B], ? -> Set[C]

This new function r is constrained by the following axiom:
r ({b}, ?) == r({simulates(b)}, ?)

? Defining Models by Composition

A specification for a type diagram is constructed just by including all the traits defined
such as: object types, associations, cardinality constraints, subtypes, inherited role traits
and invariant traits if defined.

2.5.3 The Formal Class Approach

In [RAC94] it is defined an algebraic approach to describe Object-Oriented analysis and
design models in a formal way. The motivation to formalize Object-Oriented analysis
and design is done through:

“Object-Oriented analysis and design need formal specifications to allow proofs,
verifications and automatic processing.”

The idea is to use the notion of formal class to build the formal specifications. A formal
class is an abstraction of concrete class in languages like C++, Eiffel, CLOS or Smalltalk.
It is an algebraic specification (as abstract data type) with an object orientation. The
motivation to use an algebraic specification as abstract data type comes from the
following assumption:

“Object-Oriented Design is the construction of software systems as structured collections
of abstract data type implementations.” [MEY88]

The specification model corresponds to modular design where formal classes are
modules. The main concepts on a formal class structure are described as follows.

Chapter Two: UML Semantics Formalization

18 Formalization of UML using Algebraic Specifications

? Class Description

It is considered that a class defines a type and therefore inheritance implies subtyping. A
class defines an aspect, which allows to abstractly describe its instances. It also defines
the instance behavior.

The aspect has two parts: an abstract structure composed by a set of field selectors and a
constraint that is a predicate on this abstract structure. A field selector has the profile:
fseli : CFC -> Ti. In which, CFC represents the current formal class.

? Method Classification

A method is characterized by a profile, a precondition and axioms. Two main groups of
operations (resp. methods) are distinguished: constructors, the ones that have the current
class as resulting type, and observers , the ones having another type as resulting type.
Field selectors as previously described are observer methods.

Another classification given to methods is accordingly to the user point of view. In this
classification there are primitive methods, the ones associated to the class aspect, and
secondary methods , the ones which semantics are based on the primitive methods. The
basic constructor of a class (new<CFC>) is a primitive method. Field selectors are
primitive observers.

Secondary methods can be viewed as functional extensions of primitive ones. Their
semantics is based on primitive methods, i.e. every application of a secondary method
can be reduced to applications of primitive ones.

? Inheritance

The principles for inheritance in formal class model are:

? only secondary methods are inherited;
? redefining and masquing a method is possible;
? an inheritance link is possible between two classes if the following criterion is

true: every field selector of the superclass exists in the subclass with the same
type or a subtype.

According to the last principle, it can be realized that there is no inheritance of instance
variables.

? Type Checking

The type checking is based on usual principles:

? there are predefined types as Boolean, Integer, String and generic List[T];

Chapter Two: UML Semantics Formalization

Formalization of UML using Algebraic Specifications 19

? a class defines a type;
? variables and methods are typed;
? inheritance implies subtyping;
? typing a message is like typing an operation application;
? the method to apply is selected on the receiver type;
? methods are redefined according to a rule which is co-variant only on the

receiver type and the resulting type.

In this context it is possible to define a type checking and prove the safety of the control.

? Rewrite Rules

An abstract operational semantic to the model is given using conditional term rewriting,
i.e. one operation is rewritten using another. This is valid for secondary observers that are
expressed through primitive ones, and also for primitive observers that can be rewritten
based on constructors. For field selector, for example, the following rewritten form can
be obtained:

 fselI(new<CFC>(Xi, …, Xn)) -> Xi)

? Implementation

Translation from formal classes to OO programming languages is quite natural and
partially automatic. Such process takes as input the formal description and produces the
“skeleton” of the class: class interface, class implementation, class structure, primitive
methods code and secondary methods signature.

2.6 Conclusion and Summary

From the approaches presented in this chapter some meaningful ideas that can be reused
in algebraic specifications defining ADTs are taken into account in the work of this
thesis.

From RAL approach it is mainly considered:

? The representation of class attributes (and class operations) through a function that

does not need an instance of the corresponding type as a parameter.
? The importance in adjoining theories to specify a more general sort (or theory) in

order to be able to establish constraints among model elements.

About generalization, the formal definition in RAL is maybe not enough to express the
needed semantics. Moreover it is not so clear how the axioms are adjoined in order to

Chapter Two: UML Semantics Formalization

20 Formalization of UML using Algebraic Specifications

allow that operations and attributes of the general type be applicable in the specialized
one.

From the he study of the Modular Semantics approach, as it also makes use of an
algebraic language, lots of benefits are taken. They will be realized through the
description of the semantic framework in chapter 3.

As the intention is to allow rapid prototyping (refinement of models into code), proofs
and verifications to be applied to OO analysis and design, much Formal Class principles
are reused in the algebraic semantic framework proposed in this dissertation.

2.6.1 Comparison Table

The two approaches described for UML formalization are in fact the most complete, clear
and concrete encountered. To provide a clear view of what each approach covers or not
considering UML static aspects including model formalization, a comparison table is
presented.

UML elements/ Formal
Approaches

Z based RAL

Algebraic Modular Semantics

Class

? a theory
? represents the

set of all
existing
instances
through an
attribute

? an object type trait
including basic object -type
and instance attributes
traits

? considers the set of existing
instances through a
mapping function

Association

? a theory
? represents the

set of all
existing links

? a trait
? constrained by cardinality

traits
? defines mappings between

role names and sets of
object types

Composition No representation No representation.

Generalization

? Achieved
through theory
morphism, i.e.
the inclusion
and mapping
of operations
and axioms of
one theory into
another.

? A function simulates is
defined to map object
identifier of the subtype to
object identifier of the
supertype.

? Simulates: B -> A
? This function allows

attributes and associations
of supertypes to be also
applicable to instances of

Chapter Two: UML Semantics Formalization

Formalization of UML using Algebraic Specifications 21

subtypes.

Instance Attributes
? Explicit in the

class theory
? Attr1: C -> T1

? a trait is defined to specify
the instance attributes

? attr1: object-type, ? -> T1

Class Attributes
? explicit in the

class theory
? attr1: -> T1

No representation.

Instance Methods

? explicit actions
in the class
theory

? op_l(c:C,
x:X1):Y1

No representation.

Class Methods

? explicit actions
in the class
theory

? op_l(x:X1):Y1

No representation.

Abstract Classes No representation No representation.
Interfaces No representation No representation.

Constraints

? cardinality
constraints

? constraints
between model
elements

? for association cardinalities
? for subtyping, as disjoint

subtyping constraint
? invariants written in OCL

are translated

Model

? theories
assembled by
theory
morphisms

? a whole theory
defined with
all model
elements

? model specification (or
diagram specification)

Table 1 – Comparison over UML Formalization Approaches.

Model is considered in the table because it is really important to specify theories that
allow manipulating model elements together.

Chapter Two: UML Semantics Formalization

22 Formalization of UML using Algebraic Specifications

Chapter Three: UML and ADT: a Semantic Framework Proposition

Formalization of UML using Algebraic Specifications 23

Chapter Three

UML and ADT:
A Semantic Framework Proposition

The semantic framework proposed in this work is based on algebraic specif ications
describing Abstract Data Types (ADT). In the previous chapters the importance of UML
formalization and some approaches in this direction have been presented. From these
approaches some important outlined points are taken into account. The goal of this
chapter is to explain the algebraic formal semantic framework through the mapping rules
that support the translation from UML model elements to algebraic ADTs.

3.1 Main Points Considered in the Framework Composition

In order to compose the formal framework, the semantics of the main UML static model
elements was evaluated. The main motivation towards UML formalization is the fact that
the semantics of the UML model elements is not precisely described in the official UML
semantics document [UML99]. Consequently, in some ambiguous points it was necessary
to have recourse to other sources of information to achieve a good interpretation. Long
times of discussion were also necessary to achieve final conclusions.

According to the final interpretation of the semantics, the mapping rules were defined
having as a result the algebraic formal specifications for some UML static constructs.
This process follows the directives of Methods Integration approach formal method the
one chosen as the basis to this work. This choice is justified in the next section.

To start with the formalization, in this work it is considered the UML core concepts
respecting to the structural aspects of the UML, which are:

? Types - implemented through Classes;
? Instances - objects of a type;
? Values - a type defines the values of its instances and the value of an instance consists

of the values of its attributes at a point in time;
? Operations – description of the services that objects of a class can offer to others

affecting their behavior;
? Associations – reflects structural relationships between classes;
? Hierarchy and Inheritance – types from a hierarchy in which inheritance of structural

(attributes) and behavioral features from super to sub-types take place.

As in [CE97], the core concepts are extracted from the Core Object Model specification
presented by Houston and Josephs [HJ95] written in Z that captures a precise description
of the Object Management Group’s emerging standard for objects.

Chapter Three: UML and ADT: a Semantic Framework Proposition

24 Formalization of UML using Algebraic Specifications

Starting from the core concepts it makes feasible that future extensions to the semantic
framework can be easily proceeded.

Another important aspect to point out is that the semantic framework presented is typed.
However it is assumed that once translations to algebraic ADTs are proceeded, type-
checking problems are not carried to the specifications. The ADTs are written in Larch
Prover as will be shown in section 3.1.3.

3.1.1 The Formalization Method Chosen

The approach chosen for the formalization is the integrated one, called Methods
Integration approach (see section 2.2). This approach is justified in many ways:
? A mapping between graphical and formal constructs can uncover problems with the

modeling notations;
? It can help identifying ambiguous and inconsistent structures;
? It can help defining semantically well-formed informal models;
? The mapping rules can be adapted to a CASE tool in such a way that formal

specifications can be automatic generated from informal models (to express the
whole or at least part of the models). This can help in proving properties of the
models and in generating code from them.

The integration of the translation process to a CASE tool built in Graphtalk metatool is
explained in chapter 4 with a concrete example of the translations given in chapter 5.

The mapping rules making the bridge from UML models to formal models are explained
in section 3.2.

3.1.2 The Formal Language Chosen

The language used to write the formal specifications is Larch more specifically with the
syntax of Larch Prover. It is an algebraic method not yet extended with OO concepts.
However Larch is really suitable to the description of Abstract Data Types because it
allows the semantics of the operations to be described in an abstract way, i.e. just as
equations stating relations between them. In addition Larch Prover allows verifications
and proofs to be applied to the formal specifications. This is really helpful in order to
ensure the correctness of the models described. More information on Larch Prover is
found in chapter 4, section 4.2.

3.1.3 ADT Structure

An algebraic specification of a data type is composed of three main parts:

Chapter Three: UML and ADT: a Semantic Framework Proposition

Formalization of UML using Algebraic Specifications 25

? A heading containing information about the module, mainly they are: the name (or
sort) of the type, the imported modules (or types), and the generator names (or
constructors).

? The signatures which describe the operators syntax.
? The axioms which describe the semantics of operations.

As in Formal Classes (section 2.5.3), primitive observers (operations related to the main
aspect of the ADT) are described in terms of the constructors and secondary observers in
terms of primitive ones. Constructors (or generators) are operations that are able to
determine the values for the type being described. These assumptions are realized
through the axioms in the following ADT.

The ADT example presented here specifies a sort Set, where ~ is logical not, /\ is and, \/
is or, => is implication and = is equality.

It is followed Larch Prover syntax. The reserved words of Larch are in Italics. Notes are
between slashes.

Chapter Three: UML and ADT: a Semantic Framework Proposition

26 Formalization of UML using Algebraic Specifications

 set name SetA /defines the name of the sort – SetA – a set of A elements/
 declare sorts A, SetA, Nat /declares the types used in this specification/

declare variables a, a1: A, Xsa, Ysa: SetA /declare the variables with the
 corresponding types that will
be used in the axioms/

declare operators /defines the operators that apply to the values of the
type being defined/

 {}: -> SetA /operation that creates an empty set/
 {_}: A -> SetA /receives an element and identifies the set in

which it is present/
insert: A, SetA -> SetA /inserts an element in the Set/

_ \U _: SetA, SetA -> SetA /union of two sets/
_\in _: A, SetA -> Bool /tests if the element is in the set/
_\I _: SetA, SetA -> Bool /tests if one set is included in the other/
size : SetA -> Nat /returns the number of elements in SetA/

..
assert /semantics of the operations are described through the

 axioms written in the assert section/
 sort SetA generated by {}, insert; /constructors of the sort

SetA/

{a} = insert(a, {}); /a set with an a element is equal the insertion of a in an empty set/

~(a \in {}); /an a element is not in an empty set/
a \in insert(a1, Xsa) ? (a \eq a1 ? a \in Xsa); /a in insert a1 in set Xsa is

equivalent to that a is equal a1 or a
is in Xsa/

{} \I Xsa; /empty set is included in a set/
insert(a, Xsa) \I Ysa ? (a \in Ysa ? Xsa \I Ysa); /insert an a element in set Xsa is in

set Ysa is equivalent to a is in Ysa
 or Xsa is in Ysa/

a \in (Xsa \U Ysa) ? (a \in Xsa ? a \in Ysa); /an a element in Xsa set union to
 Ysa set is equivalent to a is in Xsa

 set or a is in Ysa set/
% axioms for size operator /comments begin with %/
size({}) = 0; /the number of elements in an empty set is 0/
(a \in Xsa) => size(insert(a, Xsa)) = size(Xsa); /the number of elements in set Xsa

 inserting an element that already
existed is equal the number of
elements originally in set Xsa/

~(a \in Xsa) => size(insert(a, Xsa)) = 1+size(Xsa); /if a is inserted in Xsa and didn’t
exist before, then the size of Xsa
will be the original size + 1
element/

..

Chapter Three: UML and ADT: a Semantic Framework Proposition

Formalization of UML using Algebraic Specifications 27

In the previous structure it is possible to see that the axioms are compound from
equations that are equalities or equivalencies between terms with variables. Variables
represent a valid value inside a Universe of its type.

These axioms are translated as rules in LP that are applied to the system any time it runs
in LP to be tested. Through these rules the semantics of the system (composed by the
semantics of each element) can be checked, properties validated and inconsistencies
detected.

3.2 The Translation Process from UML to ADT

In order to make clear the translation process from UML static model elements
(expressing the UML core concepts) to algebraic ADTs, the semantics of the model
elements according to the UML Semantics Document [UML99] and to The Unified
Modeling Language User Guide [BRJ99a] is presented. The semantics is presented
focusing on the main points considered to the formalization in this work. Afterwards
some considerations on the semantics according to the studies and discussions undertaken
are described.

The translation process is also described in two parts: first the translations that result in
the operations applicable to the type being defined are described (see declare operators
section in the previous ADT structure), after that the most significant axioms determining
the semantics of these formal operations are defined (see assert section in the previous
ADT).

The result of the translation process is one ADT specified to each model element
considering classes, associations (plain associations and compositions), generalizations,
association classes and constraints for the moment. Some other ADTs of auxiliary types
used in the formal specifications are also specified in the semantic framework, such as:
primitive types (String, Nat, etc), identity for classes, and set of objects of a class. They
are described in appendix A.

Follow the descriptions of the mapping rules for each model element considered in the
framework.

3.2.1 Class Translation

? Class Syntax and Semantics
In the UML static diagram the main building block is the Class. A Class is the abstraction
of a set of objects with the same properties (attributes), behavior (operations implemented
through methods), relationships, and semantics. For the attributes, each object of a class
has its own values, what characterizes particular concrete states for the objects. The
values for the attributes are taken from the set of values permitted by the attribute type.

Chapter Three: UML and ADT: a Semantic Framework Proposition

28 Formalization of UML using Algebraic Specifications

The behavior is shared by all the class instances. Class in UML is represented as showed
in figure 3.

Figure 3. UML class representation

The ability to describe behavioral and structural (attributes) features are inherited from
classifiers. Classifiers are defined as:

“A Classifier is an element that describes behavioral and structural features; it comes in
several specific forms, including classes, data type, interface, component, and others.”
[UML99] (Classifiers - pg. 2-27)

The operations and attributes of a class have an important feature that is their owner
scope. It can have two different values:

? Instance: each ins tance holds its own value for the feature (in case of
attributes) or the feature is applicable to the set of instances of the class
(instance methods);

? Classifier: there is just one value of the feature for all instances of the class
(class attributes) or that the feature is applicable to the class itself (class
methods).

According to [BRJ99a], examples of class attributes and operations can be:
“The most common use of classifier scoped features is for private attributes that must be
shared among a set of instances, such as for generating unique Ids among all instances of
a given classifier, and for operations that create instances of the class.” (chapter 9 – pg.
124)

Classes are identified by their name. In [BRJ99a] it is stated that:
“Every class must have a name that distinguishes it from other classes.” (chapter 4 – pg.
49)

It is also stated that:
“…the same thing in a system (such as the class Person) may appear multiple times in
the same diagram or even in different diagrams. In each case, it is the same thing.”
(chapter 7 – pg. 94)

Besides these features stated to classes there are many others that apply. However to start
with the formalization only the main features are considered as a basis. From the core
description of classes, it is possible to extend the formal specifications in future to adapt
what more becomes necessary.

 Shape
origin
size
move()
display()

name

attributes

operations

Chapter Three: UML and ADT: a Semantic Framework Proposition

Formalization of UML using Algebraic Specifications 29

? Considerations on the Semantics
A class can be viewed as the implementation of a type since it determines the operations
applicable to a set of instance values. In fact classes can be viewed as implementations of
different types through the realization of different interfaces (collections of operations
determining the services of a class). However, for the purposes of this work classes and
types are considered as semantically equivalents.
Instances of a class mean the objects of that class. In [CE97] instance is defined as the
instantiation of a type with a unique identity. In the UML it is agreed that instances have
unique identity.

? Mapping Rules
Considering a generic class A, to which general class formal specifications can be
determined, the following set of mapping rules is established:

1. As in Formal Classes [Royer99a] (see section 2.5.3), a single generator (or

constructor) is considered:
newA : T1,…,Tn -> A

2. Primitive observers are defined for each argument type of the generator. They
describe the instance attributes.
getAttr1 : A -> T1

 setAttr1 : A, T1 -> A

3. Other instance operations are defined as functional extensions of these previous

formal operations.

4. For object identity, two operations are defined:

identity : A -> IdA
 __\eq__ : A, A -> Bool
The identity operation that expresses the object identity, and the object equality
operation that will be defined as identity equality (see rule 8).

It is taken a functional model for object identity in which the identity is part of the
values of the object. Therefore the constructor of the ADT gains this new signature:
newA : IdA, T1, …,Tn -> A

In which IdA represents the type for identity of objects of type A. IdA is defined as an
ADT, which is described in appendix A.

5. Constants are defined in order to give examples of instances of the class that will be
used later to test some axioms.
oneA : -> A
anotherA : -> A

Follows now the description of the axioms stating the semantics of these formal
operations.

Chapter Three: UML and ADT: a Semantic Framework Proposition

30 Formalization of UML using Algebraic Specifications

6. Primitive Observers, i.e. the instance attribute accessors, are described in terms of the

constructor newA.
getAttr1(newA(id1, var1, …, varN)) = var1;
In which id1 is a variable expressing an identity value, var1 and varN are variables
expressing values of the attributes according to their types. Then the operation
getAttr1 obtains the value of the attribute represented by var1 in the constructor.

setAttr1(newA(id1, var1, …, varN), var11) = newA(id1, var11, …, varN);

Var11 represents another variable, i.e. another value for the same attribute expressed
through var1. The constructor newA represents the parameter of type A in the set
operation. Then the setAttr1 operation changes the value of the attribute represented
by var1 for the object.
These axioms are applicable to all the attribute accessors of the class.

7. Identity operator, expressing another primitive observer, is also described through the
constructor.
identity(newA(id1, var1 ,…, varN)) = id1;

8. As mentioned in item 4, object equality is achieved through identity equality.
a1 \eq a2 = identity(a1) \eq identity(a2);
In which a1 and a2 are variables of type A. The operation equality (\eq) between
identities is defined in the ADT for the type IdA.

9. For the constants, the following axioms take place.
oneA = newA((newIdA), var1, …, varN);
anotherA = newA((nextIdA(newIdA)), var1, …, varN);

The first constant oneA is equal a new instance of A with a new identity. And,
anotherA represents an instantiation of A with a new identity obtained through the
existing one. The newIdA and nextIdA are operations of the type IdA.

As LP does not allow genericity (see section 4.2), for each class a sort identity (as IdA for
class A) is defined.

The explicit identity adopted does not correspond exactly to the implicit one considered
in object -oriented programming languages, but it is not so simple to treat implicit
identities in algebraic ADT. Implicit identities bring some side-effects and the way in
which it can be solved is still under investigation by the collaborators of this work.

? Metalevel Specifications
In order to specify class attributes and class methods (according to the owner scope
explained in class syntax and semantics), a specification for a class in a more global level
can be given. This specification is considered at the metalevel since the own class is the

Chapter Three: UML and ADT: a Semantic Framework Proposition

Formalization of UML using Algebraic Specifications 31

generated object in this case, and therefore the operations and attributes described are
applied to the class.

Assuming the same generic class A, the following mapping rules are defined at the
metalevel. It is important to state that the sort defined in this case is the sort classA.

10. For class creation:

newClassA : String, T1, …, Tn -> classA
In which String type is used to represent the class name (its identity). The newClassA
is the constructor (or generator) of the ADT. T1,…,Tn represent the class attribute
types.

11. According to the semantics, a name identifies a class. Then the following operators
take place:
classIdentity : classA -> String

 __\eq __ : classA, classA -> Bool
 In which class equality is achieved through identity equality.

12. As the class A must be the unique instance of the type, a constant to refer to it is

defined. It will be used in the axioms instead of variables of the type.
theClassA : -> classA

13. Class Attribute Descriptors:

getClassattr1 : -> T1
setClassAttr1 : T1 -> T1
As the class attribute refers to the class itself and not to one of its instances, it does
not gain an additional parameter of type A in its signature (as in RAL approach,
section 2.5.1).

14. Class operations are defined as functional extensions of these previous operations.

Another point is that in the semantic framework the operation new is defined as the
constructor for the sort, therefore the new for class instantiation is not considered at the
metalevel as in Smalltalk approach even being considered a class operation in UML
semantics.

3.2.2 Association Translation

? Association Syntax and Semantics
Associations are a structural relationship that can be established between classes. They
define a set of tuples relating instances of the connected classes. Associations can include
two or more association ends (the connection from the association to a class). In this
work it is considered just binary associations for the moment as depicted in figure 4.

Chapter Three: UML and ADT: a Semantic Framework Proposition

32 Formalization of UML using Algebraic Specifications

Figure 4. UML association between classes Person and Company

Associations can have a name, or it can be used role names to identify the association.
Role names represent the role that the classes play in the relationship. Another important
property of associations is the multiplicity. Each association end has its own multiplicity
stating “how many” elements of that class can be related to an instance of the class in the
opposite end. According to [BRJ99a], multiplicities can be: exactly one (1), zero or one
(0..1), many (0..*), or one or more (1..*). An exact number or intervals are also possible.

An important restriction about associations, according to [UML99] is:
“The instances of an association are a set of tuples relating instances of the classifiers.
Each tuple value may appear at most once.” (Association – pg. 2-19)

Taking into account these points of association semantics, the following translation for
association is done.

? Mapping Rules
It is important to state that in the semantic framework associations are identified by a
natural number since association names are not always provided. Role names are not yet
considered. They are really close to interface aspect: a role can have its type determined
by an interface, i.e. a role an abstraction presents to another can be determined by the
service it provides. So it makes more sense to include role names when interfaces are also
treated in the framework.

Considering a generic association Assoc1 between classes A and B, the following set of
mapping rules is established:

1. First of all, an empty association (as an empty set) is considered to which links can be

added and removed.
void : Nat -> Assoc1
In which Nat represents the type for association identity, which needs to be treated in
LP.

2. The other generator (or constructor) for the association sort is addLink:
addLink : Assoc1, A, B -> Assoc1
In which one instance of A and one instance of B are added as a tuple to the set of
tuples represented by the association. The AddLink together with void operator
determines the values for the association sort.

name

0..1 works * Person Company

multiplicity

Chapter Three: UML and ADT: a Semantic Framework Proposition

Formalization of UML using Algebraic Specifications 33

3. To allow the manipulation of the set of links, operation remove link is also described.
re moveLink : Assoc1, A, B -> Assoc1

4. AllLeftLink and allRightLink operators map an object of a given type to a set of
related objects of the other type.
allLeftLink : Assoc1, B -> SetA
allRightLink : Assoc1, A -> SetB

5. Still considering links, an operator to test if two instances are related through the

association is specified.
isLinked : Assoc1, A, B -> Bool

6. Operators to test if an instance is linked through the association.
isLeftLinked : Assoc1, B -> Bool
isRightLinked : Assoc1, A -> Bool

7. Testing if the association, as it is a set, is empty.
isEmpty : Assoc1 -> Bool

The operations in rules 5 to 7 are necessary to write some proofs in the theorem
algebraic prover LP.

8. Operators leftMultiplicity and rightMultiplicity are determined in order to express the
left and right multiplicity of a given instance in the association. These operators could
also be obtained by the size of the set of instances recovered through the operators
allLeftLink and allRightLink (rule 4). However they are defined in order to get a
more complete association description.
leftMultiplicity : Assoc1, B -> Nat
rightMultiplicity : Assoc1, A -> Nat

9. For association identity, the following operations are described.
identity : Assoc1 -> Nat
__\eq__ : Assoc1, Assoc1 -> Bool
In which association equality is achieved through identity equality (see rule 12).

The main axioms determined in order to reflect association semantics are as follows.

10. According to association semantics, an axiom stating that tuples of instance values

cannot be equal in an association becomes necessary.
(a1 \eq a2) /\ (b1 \eq b2) => addLink(addLink(assoc1, a1, b1), a2, b2) =
addLink(assoc1, a1, b1);
In which a1 and a2 are variables of type A, b1 and b2 variables of type B, and assoc1
a variable representing the association. Adding two links with variables that represent
the same objects is like adding this link only once.

Chapter Three: UML and ADT: a Semantic Framework Proposition

34 Formalization of UML using Algebraic Specifications

11. Multiplicity constraints are written only if the multiplicity is not free, i.e. different
from 0 or More. Axioms for multiplicity constraint make use of the size operation for
Set. Size returns the number of objects in a Set (as in the algebraic approach of
section 2.5.2).
Considering just the multiplicity at the right end the following axioms are described.
%multiplicity Just One
size(allRightLink(assoc1, a1)) = 1;

%optional multiplicity (0..1)
~(size(allRightLink(assoc1, a1)) > 1);

%minimum multiplicity 1, in the one or more (1..*) case
~(size(allRightLink(assoc1, a1)) < 1);

The axioms in items 12 to 17 state the semantics of some formal operations defined in the
association specification.

12. Stating the semantics of the operation allLeftLink (that can also be applied to

allRightLink with the adequate changes).

(b1 \eq b2) => allLeftLink(addLink(assoc1, a1, b2), b1) = insert(a1,
allLeftLink(assoc1, b1));
What says that: if b1 is equal b2, then the result of allLeftLink to b1 adding a link to
b2 will be the set resultant from allLeftLink to b1 plus one more element a.

~(b1 \eq b2) => allLeftLink(addLink(assoc1, a1, b2), b1) = allLeftLink(assoc1,
b1);
What says that : if b1 is not equal b2, then the result of allLeftLink to b1 adding a link
to b2 will not afect the result of allLeftLink to b1.

allLeftLink(void(i), b1) = {} :SetB ;
The result of allLeftLink to an empty association is an empty set. The parameter i in
the operation void represents association identity.

13. Axioms for association identity.
identity(void(i)) = i;
identity(addLink(assoc1, a1, b1)) = identity(assoc1);
assoc1 \eq assoc2 = equal(identity(assoc1), identity(assoc2));

In which equality between associations is obtained in LP through identity equality.

14. Axioms to state that an association is empty.
isEmpty(void(i));
~(isEmpty(addLink(assoc1, a1, b1)));

15. Axioms stating when two instances of object types are linked

Chapter Three: UML and ADT: a Semantic Framework Proposition

Formalization of UML using Algebraic Specifications 35

~(isLinked(void(i),a1, b1));
isLinked(addLink(assoc1, a1, b1), a2, b2) = ((a1 \eq a2 /\ b1 \eq b2) \/
isLinked(assoc1, a2, b2));

16. Axioms stating when one instance is linked through the association.
~(isLeftLinked(void(i), b1));
isLeftLinked(addLink(assoc1, a1, b1), b2) = ((b1 \eq b2) \/ isLeftLinked(assoc1,
b2));
To the operator isRightLinked the same axioms are valid making the adequate
changes.

17. Axioms stating the semantics for leftMultiplicity and rightMultiplicity operators (rule
8).
leftMultiplicity(void(i), b1) = 0;
(b1 \eq b2) => leftMultiplicity(addLink(assoc1, a2, b2), b1) = 1 +
leftMultiplicity(assoc1, b1);
~(b1 \eq b2) => leftMultiplicity(addLink(assoc1, a2, b2), b1) =
leftMultiplicity(assoc1, b1);

rightMultiplicity(void(i), a1) = 0;
(a1 \eq a2) => leftMultiplicity(addLink(assoc1, a2, b2), a1) = 1 +
leftMultiplicity(assoc1, a1);
~(a1 \eq a2) => leftMultiplicity(addLink(assoc1, a2, b2), a1) =
leftMultiplicity(assoc1, a1);

Taking association formal description, it can be realized that specific sorts for the set of
instances of the connected classes need to be predefined. For the previous translations,
this is the case for SetA and SetB. The generic sort for specifying the set of instances of a
class is described in appendix A.

3.2.3 Composition Translation

? Aggregation and Composition: Syntax and Semantics
Associations can be in the form of aggregations meaning that objects of one class of the
association are consisted of instances of the other class. This kind of association is known
as “whole /part” relationship. Aggregations can be shared aggregations or compositions.
Shared aggregations are merely conceptual and do not carry extra semantics comparing to
plain associations. They are used just to show that conceptually the classes are not at the
same hierarchical level.

Composition in turn is a strong form of aggregation that determines a dependency of the
lifetime of the parts in respect to the whole. In a composition, the part cannot be shared
by several wholes. In [UML99] it is stated that:

Chapter Three: UML and ADT: a Semantic Framework Proposition

36 Formalization of UML using Algebraic Specifications

“Composite Aggregation is a strong form of aggregation which requires that a part
instance be included in at most one composite at a time, although the owner may be
changed over time.” (Association – pg. 2-54)

The dependent lifetime is determined by [UML99]:

“Furthermore, a composite implies propagation semantics (i.e., some of the dynamic
semantics of the whole is propagated to its parts).” (Association – pg. 2-54)

This propagation of dynamic semantics implies that the whole manages the creation and
deletion of its parts. Moreover if the whole is copied or deleted, so need to be the parts as
well. This propagation of semantics could be represented through message sending
between classes. However these dynamic aspects are not yet treated in the semantic
framework in its actual stage.

A composition in UML is represented as depicted in figure 5.

Figure 5. UML composition representation

? Considerations on the Semantics
The semantics for composition is not clear in UML as well as for aggregations.
Aggregations as explained in UML documents are not more than plain associations with
some conceptual value, being not a powerful characterization of a relationship.

Composition in turn establishes a strong form of relationship. Taking the fact that a part
strongly belongs to its whole and that the whole manages its parts, a part could be seen as
encapsulated in the whole instance in such a way that visibility to it could only be
achieved through the whole avoiding side-effects in the system. However UML does not
fairly state composition semantics.

Taking the static concerns, the main points that can be stated for composition semantics
are:
? multiplicity at the whole side must be 1 at maximum;
? a part instance cannot be part in more than one composite at a time;
? instance reflexivity must be forbidden; i.e. a part cannot be part of itself;
? recursion must be stopped in any situation, a part cannot be part of a whole that is in

turn its part.

Window

Frame

1

*

whole

part

composition

Chapter Three: UML and ADT: a Semantic Framework Proposition

Formalization of UML using Algebraic Specifications 37

In [UML99] it is assumed that:

“Both kinds of aggregations define a transitive, antisymmetric relationship (i.e., the
instances form a directed, non -cyclic graph).” (Core – pg. 2-55)

However considering that aggregations are merely conceptual and do not determine
dependency between the instances, only for compositions this assumption will be stated.
Compositions do encompasses specific semantics and therefore some extra mapping rules
need to be specified.

? Mapping Rules
Considering a composition Comp between generic classes A and B, being A the part and
B the whole, the following mapping rules take place.

1. An operation to state that A is part of B is included in the association specification.

isPartOf : Comp, A, B -> Bool

2. The semantics of this operation is expressed through the following axioms.
isPartOf(addLink(comp1, a1, b1), a2, b2) => (a1 \eq a2) /\ (b1 \eq b2);
~(isPartOf(void(i), comp1, a1, b1));

3. An axiom to state that a part instance cannot belong by composition to more than one

composite is written.
~(b1 \eq b2) => (isPartOf(comp1, a1, b1) /\ ~(isPartOf(comp1, a1, b2))) \/
(~(isPartOf(comp1, a1, b1) /\ (isPartOf(comp1, a1, b2)));

To complete composition semantics, some axioms in a more global level are added:

4. Considering compositions Comp1 from A to B and Comp2 from A to C in which B

and C represent the wholes, the following axioms are written to match the semantics
stating that an instance part cannot be part in more than one composite.

assert
? a : A, b : B, c : C, comp1: Comp1, comp2: Comp2

isPartOf(comp1, a, b) => ~(isPartOf(comp2, a, c));
isPartOf(comp2, a, c) => ~(isPartOf(comp1, a, b));

5. Considering two compositions Comp1 and Comp2 between classes A and B, the
following axioms are added to guarantee that recursion is stopped.
assert
? a : A, b : B, comp1: Comp1, comp2: Comp2
 (isPartOf(comp1, a, b)) => ~(isPartOf(comp2, b, a));

Chapter Three: UML and ADT: a Semantic Framework Proposition

38 Formalization of UML using Algebraic Specifications

6. Considering a composition Comp1 from A to A, the following axiom states that
instance reflexivity is forbidden.
assert
? a : A, comp1: Comp1
~(isPartOf(comp1, a, a));

3.2.4 Constraints Translation

In the algebraic semantic framework, some UML association constraints are translated,
as: XOR, subset and derived.

? XOR Constraint
XOR is a constraint that can be established between two associations with the same
source class. Taking the following example in figure 6, it can be realized that an
exclusive or becomes necessary. An account can be of a Person or of a Company but not
of both at the same time.

Figure 6. UML XOR constraint

Anytime an XOR constraint is encountered, an operator and axiom are generated to state
the semantics determined by it. Considering a constraint XOR between generic
associations from A to B and from A to C, the following mapping rules take place.

1. Operator defined to specify the constraint XOR between two associations.

rightXOR : AssocAB, AssocAC -> Bool

2. Axiom stating the semantics of the constraint.
assert

rightXOR(assocAB, assocAC) =
(~(isRightLinked(assocAB, a)) /\ (isRightLinked(assocAC, a))) \/
((isRightLinked(assocAB, a)) /\ ~(isRightLinked(assocAC, a)))

Meaning that each A instance must be linked to a B or a C instance at a time.

? Subset Constraint

Account

Company

Person

{XOR}

0..1

0..1

Chapter Three: UML and ADT: a Semantic Framework Proposition

Formalization of UML using Algebraic Specifications 39

A subset constraint between two associations establishes a dependency from one in
respect to the other. It can be clear in the example depicted in figure 7.

Figure 7. UML subset constraint

In this example, the constraint subset is used between the two associations to imply that a
manager of a department must be one of its members.

To state that anytime there is a subset constraint, the multiplicity of the dependent
association end must be less or equal the multiplicity of the association end in which it
depends on, the following operator and axiom are written.

Consider two associations between generic classes A and B in which AssocAB2 depends
on AssocAB1 at the right side.

1. Operator defined to specify the constraint subset between the two associations.

rightSubset : AssocAB1, AssocAB2 -> Bool

2. Axiom stating the semantics of the constraint.
assert

rightSubset(assocAB1, assocAB2) =>
~(size(allRightLink(assocAB2, a)) > size(allRightLink(assocAB1, a)))

Following these steps, any constraint involving associations are possible to be formalized
in the semantic framework.

3.2.5 Association Class Translation

? Association Class Syntax and Semantics
In an association between two classes, the association itself might have properties. In the
UML, this is modelled as an association class, which is a modelling element that has both
association and class properties. Because of its features inherited from classes and
associations, it was feasible to treat also association classes in the framework in its first
approach. Association classes are rendered in UML as depicted in figure 8.

 Department

 Person

{subset}

manager 1 member 1..*

Chapter Three: UML and ADT: a Semantic Framework Proposition

40 Formalization of UML using Algebraic Specifications

Figure 8. UML association class representation

? Mapping Rules
Considering an association class AsClassAB defined in association Assoc1 between
classes A and B, the following mapping rules take place.

1. As in Classes, a single generator (or constructor) is considered:

newAsClassAB : Nat, A, B, T1, …, Tn -> AsClassAB
In which Nat is the type for association class identity (as used for associations in
Association Translation – see rule 1), A and B the types representing the classes
connected through the association and T1, ..., Tn the types of the association
attributes.

2. Association class identity operations are written.
identity : AsClassAB -> Nat
__ \eq __ : AsClassAB, AsClassAB -> Bool
In which association class equality is achieved through identity equality.

3. Two attributes are described.
left : AsClassAB -> A
right : AsClassAB -> B

4. Arguments of the constructor newAsClassAB expressing the attributes are described
through the functions:
getAssocAttr1 : AsClassAB -> T1
setAssocAttr1 : AsClassAB , T1 -> AsClassAB

5. A mapping to the corresponding association is defined.
assoc_AsClassAB : ->AssocAB

 Person Company

 Job

dateHired
salary

association
class

Chapter Three: UML and ADT: a Semantic Framework Proposition

Formalization of UML using Algebraic Specifications 41

6. The set of existing instances is expressed through another sort, which here is called
Sons. The operators defined in this Sons ADT are as follows:
empty : -> Sons (generator or constructor of the empty set of instances)
add : AsClassAB, Sons -> Sons (another constructor)
first : Sons -> AsClassAB (first instance in the set)
rest : Sons -> Sons (restant set)
__\isIn__ : AsClassAB, Sons -> Bool

7. Then the relation between the instances of the association class and the links of the
association is defined through an axiom.
assert

newAsClassAB(i, a1, b1) \isIn sons_AsClassAB <=>
isLinked(assocAsClassAB, a1, b1)

In which a1 and b1 are variables representing instances of A and B respectively.

3.2.6 Generalization Translation

? Generalization Syntax and Semantics
Generalizations are a kind of relationship in which one general thing is specia lized in
some specific ones. It is known as “is-a-kind-of” relationship in which a specialized thing
is-a-kind-of a more general one. The general thing is called the superclass and the more
specific things are called subclasses. The subclasses inherit all features of the super,
including behavioral and structural features. Subclasses also inherit participation in
associations from the superclass. The subclasses may even add new structure and
behavior. The most important aspect concerning generalizations is that the instances of
the subclass may be used anywhere an instance of the superclass is applied, but the
reverse is not true. This is coherent concerning to the concept of subtyping.

Another important point in generalizations is that the subclass can even change the
behavior of the parent. It can have an operation with the same signature as an operation in
the parent but with a different implementation, what is called overridden. Through
overridden polymorphism is achieved.

Generalization is represented in UML as depicted in figure 9.

Chapter Three: UML and ADT: a Semantic Framework Proposition

42 Formalization of UML using Algebraic Specifications

Figure 9. UML generalization representation

? Mapping Rules
Considering two generic classes A and B, in which B is subclass of A, the following
mapping rules for inheritance can be established.

1. In the constructor of type B, the attributes of superclass A need also to be considered

through the following function signature.
newB : IdB, TA1, …, TAn, TB1, …, TBn, -> B
In which IdB is the identity for type B, TA1, …, TAn represent the A instance
attribute types, and TB1, …, TBn express the B instance attribute types.

2. To establish inheritance of structure a correspondence between the arguments of the
generators of the ADTs is determined through the following axiom.
assert

PAB((newB(idb, attrA1, …, attrAn, attrB1, …, attrBn,), (newA(ida, attr1, …,
attrn))) = equal(attrA1, attr1) /\ … /\ equal(attrAn, attrn)

This axiom states that PAB, a structural projection from B to A, is determined
through the correspondence between the common argument types of the generators of
the super and sub classes. The first argument types of the B generator correspond to
the inherited attributes.

3. To determine inheritance of associations, a simulate function as in the modular
algebraic approach of section 2.5.2 is used.
simulate : B -> A

4. Considering an association between the superclass A and a generic class C, the

following axiom determines the semantics for association inheritance.

 Shape
origin
size
move()
display()

 Circle
radius

 Polygon
points

display()

generalization

Chapter Three: UML and ADT: a Semantic Framework Proposition

Formalization of UML using Algebraic Specifications 43

assert
? c: C, a: A
addLink(assocAC, a, c) = addLink(assocAC, (simulate(newB(id1, attr1,…,
attrn)), c);

Inheritance of behavior is not yet provided in the framework.

3.3 Conclusion and Summary

The algebraic semantic framework in its actual stage encompasses the formal
specifications for the main UML static model elements, as: Classes, Associations
(including Compositions) and Generalizations. It also covers the formal specifications
for some other static constructs of the UML Class Diagram as Association Classes and
Association Constraints. Some other static building blocks of UML can also be
incorporated in future by extension as Interfaces, variations of Classes (Abstract and
Template), other forms of relationships (dependencies and realizations) as well as OCL
constraints in the model that can also be translated.

Since all the static aspects are formalized, UML dynamic concerns can also be treated. As
stated before, dynamic aspects are really powerful to express side -effect in operations
through message sending between objects.

From the formal specifications generated, proofs can be applied over the models and
therefore inconsistencies are checked. In future, basing in the formal specifications
already achieved, transformations of models can be proved and rapid prototyping from
design to code can be implemented.

In order to make clear the final resultant formal specifications for each UML static model
element considered, the main mapping rules with their result are depicted in the following
tables.

Chapter Three: UML and ADT: a Semantic Framework Proposition

44 Formalization of UML using Algebraic Specifications

3.3.1 Summary Tables

The rules and axioms which numbers are pointed out in these tables can be found in the
corresponding section of the translation from the UML model element to ADT.

Class Semantics Formal Operator

Rules
 and
Axioms

1. Single Generator newA : IdA, T1,…,Tn -> A

1

2. Instance Attribute Descriptors getAttr1 : A -> attr1Type
 setAttr1 : A, attr1Type -> A

2, 6

3. Instance Operations Extensions of the operations in items 1
and 2

3

4. Object Identity identity : A -> IdA

 __\eq__ : A, A -> Bool

4,7,8

5. Class Attributes getClassattr1 : -> T1
setClassAttr1 : T1 -> T1

12

6. Class Operations Extensions of the operations in item
5.

13

Table 2 – Formal Specifications for Classes

Association Semantics Formal Operator (or axiom)

Rules
 and
Axioms

1. Generator of an Empty Set void : Nat -> Assoc1

1

2. Generation of Links
(simulating association
instantiation)

addLink : Assoc1, A, B -> Assoc1
2

3. Stating that an Association
cannot contain twice the same
link.

(a1 \eq a2) /\ (b1 \eq b2) =>
addLink(addLink(assoc1, a1, b1), a2,
b2) = addLink(assoc1, a1, b1);

10

4. Deletion of Links

removeLink : Assoc1, A, B -> Assoc1

3

5. Return the set of Links for an
instance of a classifier connected
through the association.

allLeftLink : Assoc1, B -> SetA
allRightLink : Assoc1, A -> SetB

4, 12

Chapter Three: UML and ADT: a Semantic Framework Proposition

Formalization of UML using Algebraic Specifications 45

6. Multiplicity constraints
established through the
application of size operation of
sets over allLeftLink and
allRightLink.

size(allRightLink(assoc1, a1)) = 1;

~(size(allRightLink(assoc1, a1)) > 1);

~(size(allRightLink(assoc1, a1)) < 1);

11

Table 3 – Formal Specifications for Associations

Composition Semantics Formal Operator (or axiom)

Rules
 and
Axioms

1. State that an instance is part of
another.

isPartOf : Comp, A, B -> Bool
1

2. A part instance cannot belong
by composition to more than one
composite.

~(b1 \eq b2) => (isPartOf(comp1, a1,
b1) /\ ~(isPartOf(comp1, a1, b2))) \/
(~(isPartOf(comp1, a1, b1) /\
(isPartOf(comp1, a1, b2)));

isPartOf(comp1, a, b) =>
~(isPartOf(comp2, a, c));
isPartOf(comp2, a, c) =>
~(isPartOf(comp1, a, b));

3, 4

3. Recursion must be stopped
and instance reflexivity
forbidden.

(isPartOf(comp1, a, b)) =>
~(isPartOf(comp2, b, a));
~(isPartOf(comp1, a, a));

5,6

Table 4– Formal Specifications for Compositions

Generalization Semantics Formal Operator (or axiom)

Rules
 and
Axioms

1. In the constructor of the
subclass, the attributes of the
superclass need also to be
considered.

newB : IdB, TA1, …, TAn, TB1, …,
TBn, -> B

1

Chapter Three: UML and ADT: a Semantic Framework Proposition

46 Formalization of UML using Algebraic Specifications

2. To establish inheritance of
attributes, a correspondence
between the arguments of the
generators of the super and sub
class ADTs is determined.

assert
PAB((newB(idb, attrA1, …, attrAn,
attrB1, …, attrBn,), (newA(ida, attr1,
…, attrn))) =
equal(attrA1, attr1) /\ … /\
equal(attrAn, attrn)

2

4. Inheritance of associations are
expressed through a simulate
function.

assert
? c: C, a: A
addLink(assocAC, a, c) =
addLink(assocAC,
(simulate(newB(id1, attr1,…, attrn)),
c);

3, 4

Table 5 – Formal Specifications for Generalizations

Chapter Four: Technologies Supporting the Semantic Framework

Formalization of UML using Algebraic Specifications 47

Chapter Four

Technologies Supporting the Semantic Framework

In this chapter the tools and technologies used to automate the generation of the formal
specifications from a CASE tool are explained. In this context, the Graphtalk metatool is
used to build the CASE tool, C++ is used to program the mapping rule functions and
Larch Prover interprets the formal specifications generated to conduct validations on
them. Each of these technologies and their integration are explained as follows.

4.1 The Practical Context to apply the Framework

In order to allow automatic generation of the formal specifications from a CASE tool
based on the mapping rules described (see section 3.2), some technologies and tools are
used in a suitable integrated way. First, the Graphtalk metatool was used to generate a
CASE tool for the UML. From the user model built in the CASE tool, ASCII files
containing the formal specifications following Larch Prover syntax are generated. This
generation is automated through a Dynamic Linked Library (DLL) built in C++ from
which functions can be called by Graphtalk CASE tool. The C++ source code invokes
Graphtalk API (Application Programming Interface) functions in order to be able to
access Graphtalk repositories of information from which all the information about the
user model can be recovered.

Larch Prover ends this process by interpreting the formal specifications in the generated
files being able to prove properties and detect inconsistencies about the models. Figure 10
shows a scheme of the integration among these different technologies.

Chapter Three: UML and ADT: a Semantic Framework Proposition

48 Formalization of UML using Algebraic Specifications

Figure 9. Workflow: integration among different technologies

Figure 10 . Workflow integrating different technologies

In the next sections, each one of these technologies is described.

4.2 The Larch Prover

Larch itself is not in fact a language but an approach to define formal specifications being
composed by a family of languages and tools. Larch Prover (LP) [GG89], the theorem
prover of the Larch family is a set of proving tools that includes: rewriting, critical pair
computation, Knuth-Bendix completion, proof by induction, proof by contradiction, and
proof by case. LP has simple syntax and semantics, allows the definition of algebraic
specifications to describe Abstract Data Types, and allows using rewrite rules to prove
properties.

Larch Prover is based on Larch Shared Language (LSL). LSL is a two-tier language of
the Larch family which has a top tier that is a behavioral interface specification language
(BISL) tailored to a specific programming language, and a bottom tier that is used to
describe the mathematical vocabulary used in the pre- and post-condition specifications.
Besides the fact that LP is based on LSL it can also uses its own input syntactic format to
the formal specifications that is the one followed in this work.

Workflow:

Graphtalk
Metatool

UML CASE
Tool

C++
source
code

ASCII files
with Formal

Specifications

Larch
Prover

compilation of
UML grammar

Internal Repository of Data

access
through

Graphtalk
API

functions

 generates input

Properties and
Inconsistencies

Proved

 generates

Chapter Four: Technologies Supporting the Semantic Framework

Formalization of UML using Algebraic Specifications 49

LP allows defining existential propositions (with the \E prefix), universal propositions
(prefix \A) and propositions with usual logical connectors. It also supports first order
predicate calculus with equality. The main principle behind LP is the rewrite process:
each rule defined by an axiom is rewritten based on an operation in a process that goes
until it can be concluded (terminated) or some inconsistency can be detected.

The complete command of LP uses a well-known algorithm: the Knuth-Bendix
completion algorithm. This algorithm computes all the critical pairs and adds them in the
system. The process stops with an inconsistency, which implies that the system is not
consistent. Sometimes the process terminates without inconsistency. Otherwise the
system does not terminate. The use of LP to proceed to proofs will be presented in
chapter 5, section 5.4.

Other important aspects about LP are that it does not support genericity nor partial
algebras and the only predefined type is Boolean. The semantics of the LP operations is
expressed in axioms written through equations determining equality between terms.

4.3 The Graphtalk Metatool

To allow the automatic generation of formal specifications from a UML static model, a
UML CASE tool was developed in Graphtalk carrying the mapping rules integrated in its
context (see section 3.2). This integration is supported by a DLL built in C++ that
provides the link edition from the C++ functions to Graphtalk. Therefore Graphtalk can
invoke these functions.

Graphtalk allows both: work on the metalevel in order to generate CASE tools, and
manipulate the tools generated at the model level. The work started at the metalevel
specification.

4.3.1 Graphtalk Metamodel Level

Graphtalk metamodel is provided with an own meta-modeling language. To generate the
CASE tool for the UML covering just the static diagram for the moment, it was necessary
to describe the semantics of the UML static model elements in Graphtalk using its meta-
modeling language. The following steps were taken in order to create the modeling tool:

? First: description of the specifications of the UML-tool in the meta-modeling

language of Graphtalk was provided. Specifications in Graphtalk are stored in a file
with .gti extension, e.g. UML.gti.

? Second: compilation of the source of the UML-tool (UML grammar) was performed

obtaining a file with .gtm extension, e.g. UML. gtm. Using this .gtm file the developer
can start creating his models.

Chapter Three: UML and ADT: a Semantic Framework Proposition

50 Formalization of UML using Algebraic Specifications

The first step stated needs to be taken for each kind of diagram provided by the modeling
(or CASE) tool. As the work presented here covers just the UML Static Diagram for the
moment, only the semantics of this diagram was described to compose the UML
grammar in Graphtalk.

Each diagram in Graphtalk is viewed as a graph. To describe a graph, it is necessary to
work with four separate diagrams with complementary meanings:

? The semantics specification diagram defines all Graphtalk nodes and the links

between these nodes. The nodes and links are used respectively to represent UML
classes, and UML associations and generalizations.

? The property assignment diagram defines properties tha t are applied to the elements

defined in the previous diagram. For example, the name of a class and the multiplicity
of an association can be viewed as properties of the node representing a class and the
link representing an association respectively.

? The shape specification diagram allows a graphical form to be created for the

elements. A UML class, for example, gets its graphical representation in this diagram.

? The widget specification diagram allows widgets or other visual components to be

defined to the CASE tool.

Figure 11 shows at the left side the first window of Graphtalk pointing out these diagrams
from which the user starts working.

Figure 11. Four steps to define a graph.

These diagrams taken into account different Graphtalk elements. In the semantics
specification diagram the following elements are used.

Chapter Four: Technologies Supporting the Semantic Framework

Formalization of UML using Algebraic Specifications 51

? Nodes
The concept of node in Graphtalk is similar to the concept of classes in an object-oriented
language such as C++, Java or Smalltalk. A node represents an entity that can be
instantiated. In the case of the UML static diagram, they are used to specify the classes as
can be seen in figure 12. Nodes represent the elements that can be instantiated in an
instance of the graph, i.e. in an instance of the static diagram at the model level.

? Links
Links are elements, which allow instances of nodes to be linked to each other. A graph
can contain several different types of links. For the UML static diagram, links are used to
represent associations (including aggregations and compositions) and generalizations as
depicted in figure 12.

? Entities
An entity is an element, which has a meaning only inside Graphtalk. It is an abstract
element that cannot be instantiated, i.e. the elements that are modeled in Graphtalk using
an entity are not visible in the modeling tool. The role of an entity is to generalize other
elements. The same entity can be an abstraction for graphs, nodes and links. A set of
properties that is valid for a set of elements can be assigned to an entity which is the
abstraction of these elements. An entity here is used to generalize the properties of
associations, compositions and aggregations as shown in figure 12.

Figure 12. Semantic specification window for the UML static diagram

Considering that classes in UML have a list of attributes and a list of methods and that
attributes and methods also have properties, a new local graph defining specific nodes
needs to be defined as part of the static diagram graph (see figure 13). It is a local graph
because these concepts are local to classes.

Chapter Three: UML and ADT: a Semantic Framework Proposition

52 Formalization of UML using Algebraic Specifications

Figure 13. Semantics of a class

Argument node is defined to represent the arguments of methods as can be seen in figure
13.

Properties for these elements are defined in the property assignment diagram as can be
seen in figure 14 for class properties. Properties are elements that will contain a value in
the instance of the graph at the model level (i.e. in a user design). In Graphtalk properties
can be of different types: Text, Boolean, List, Subnode, Popup Menu, etc.

Chapter Four: Technologies Supporting the Semantic Framework

Formalization of UML using Algebraic Specifications 53

Figure 14. Properties of classes

Shapes to the model elements are given through the shape specification diagram. The
shapes given to each model element in the CASE tool can be viewed in the UML static
diagram presented in chapter 5, section 5.1.

Finally, widgets were used in this work to allow the definition of a menu through which
the developer can invoke the generation of the formal specifications from the CASE tool.
To allow the link between Graphtalk and C++ the name of the C++ module (DLL) and
the name of the invoked C++ function were provided in the widget specification.

Returning to figure 11, it can be clear the semantic diagrams defined for the UML static
diagram (a graph in Graphtalk).

4.3.2 Graphtalk Model Level

At the model level, the developer is able to build his static diagrams in the CASE tool
generated.

To start working, the developer needs to “run” the compiled source (UML.gtm). It is
done just by creating a new file starting from the UML.gtm file. The user models will be
saved in a file with extension .gti.

Chapter Three: UML and ADT: a Semantic Framework Proposition

54 Formalization of UML using Algebraic Specifications

Using a modeling tool in Graphtalk means instantiating an hypergraph, i.e. making an
instance of the modeling tool. The hypergraph in Graphtalk represents the entire
modeling tool. When it is instantiated, the grammar describing graphs (diagrams) of the
modeling language will also be instantiated.

Since the user completes his design, he can choose a menu option to ask for the
generation of the algebraic Formal Specifications as can be seen in figure 15. The C++
function correspondent is then activated and processes the translations in order to get the
files expressing the Abstract Data Types to be interpreted by Larch Prover.

Figure 15. The menu option to run the translation from UML to ADT

4.4 The use of C++ Programming Language

To program in C++ the environment chosen was the Microsoft Developer Studio for
Microsoft Visual C++ 5.0.

The following steps were taken to build the Dynamic Linked Library of functions in
C++:

? First, it was necessary to start a project of type Win32 Dynamic-Link Library. Visual

C++ defines then a workspace with the same name of the project with reference to the
project, e.g. umltoadt.dsw (Project Workspace) and umltoadt.dsp (Project File).

? Then, three files need to be defined:

? umltoadt.def : the definition of the library with the name of the C++ function

invoked by Graphtalk (umltranslation);
? umltoadt.h : declares the signatures of all the functions to be used in the

translation process by the C++ program; umltranslation is the main function that
starts invoking the others;

? umltoadt.cpp : the C++ source code in which the translating functions which
signatures are declared in the umltoadt.h are programmed. The translating
functions are programmed expressing the mapping rules for each UML model
element described in section 3.2.

In the C++ source code, ASCII files are generated with the formal specifications resultant
from the translation process. It is generated one ASCII file for each UML model element
of the design done in the CASE tool. It is also generated one file for each additional type
needed (as explained in section 3.2).

Chapter Four: Technologies Supporting the Semantic Framework

Formalization of UML using Algebraic Specifications 55

The fonts of the umltoadt.def, umltoadt.h and umltoadt.cpp files are presented in
appendix B.

4.5 Conclusion

In this chapter it was reported how the translation process from UML to algebraic
specifications describing ADTs could be automated. The work realized to this automation
took into account the integration of Graphtalk and C++ in a suitable way. In the past there
was already a project [JRG98] developed by students at Ecole des Mines de Nantes,
France that made use of these technologies. The subject of the project was Ré-ingénierie
des systèmes classiques vers des systèmes à objets, or in English Reengineering of
classical systems to build object oriented systems. A transformation of designs done in
Merise to OMT modeling language was defined. This project was used as the basis to the
development of the C++ source code and to perform its integration to the Graphtalk.

Chapter Three: UML and ADT: a Semantic Framework Proposition

56 Formalization of UML using Algebraic Specifications

Chapter Five: A Concrete Application of the Semantic Framework

Formalization of UML using Algebraic Specifications 57

Chapter Five

A Concrete Application of the Semantic Framework

In order to demonstrate how the translation process from UML to algebraic specifications
describing ADTs works in practice, a UML static diagram developed in the CASE tool
built in Graphtalk is presented. It is important to state that the environment in which the
CASE tool runs is also the Graphtalk. The files containing the formal specifications
generated for the static diagram are mentioned in this chapter and shown in appendix C.

These files will then be interpreted in Larch Prover. Therefore the results that can be
obtained making use of the semantic framework are the properties and inconsistencies
that Larch Prover can prove about the system. Some of them will also be described in this
chapter.

This chapter ends with some conclusions that can be taken after putting the semantic
framework to be used in practice.

5.1 The UML Static Diagram designed in the CASE tool

The CASE study chosen in order to demonstrate a UML Static Diagram drawn in the
CASE tool generated from Graphtalk is a Library system. It considers the classes:
Library, Publication, Copy, User, Teacher, Student, Loan and LocalUse. Loan
characterizes the situation in which the user takes a copy to use out off the library, while
LocalUse characterizes the internal use of copies by users. Considering it is an academic
library, two main groups of users are defined: Teacher and Student. Each Publication
may have any number of copies in the library. The corresponding UML Static Diagram is
depicted in figure 16.

Chapter Five: A Concrete Application of the Semantic Framework

58 Formalization of UML using Algebraic Specifications

Figure 16. UML Static Diagram drawn in the Graphtalk CASE tool

As it was not so easy to use Graphtalk and the manuals were not so good, many
improvements are still needed in the tool. The multiplicities of the associations, for
example, are not explicitly shown in the diagram. They are described as follows:

? association from Publication to Library: Many (0 or plus) to Just One;
? association from Library to User: Just One to Many (0 or plus);
? association from Publication to Copy: Just One to One or more;
? composition from Copy to LocalUse (the target end is a composite aggregation): One

or more to Just One;
? the same for the composition from Copy to Loan: One or more to Just One;
? association from LocalUse to User: Many (0 or plus) to Just One;
? in the same way association from Loan to User: Many (0 or plus) to Just One.

5.2 Formal Specifications generated for the UML Static Diagram

Asking for the generation of the formal specifications for this UML Static Diagram will
result in the following ASCII files containing the algebraic specifications:

Chapter Five: A Concrete Application of the Semantic Framework

Formalization of UML using Algebraic Specifications 59

? one file per Class description: Library.lp, Publication.lp, Copy.lp, LocalUse.lp,
Loan.lp, User.lp, Teacher.lp and Student.lp;

? one file describing a type Id for the objects of each type (or class) according to the

rules in section 3.2.1: IdLibrary.lp, IdPublication.lp, IdCopy.lp, IdLocalUse.lp,
IdLoan.lp, IdUser.lp, IdTeacher.lp and IdStudent.lp;

? one file expressing a type set for each class associated to another according to the

rules explained in section 3.2.2: SetLibrary.lp, SetPublication.lp, SetCopy.lp,
SetLocalUse.lp, SetLoan.lp and SetUser.lp;

? one file per each plain association and composition which name is composed by the

three first letters of each class: PubLib.lp (association from Publication to Library),
LibUse.lp (association from Library to User), PubCop.lp (association from
Publication to Copy), CompCopLoc.lp (composition from Copy to LocalUse),
CompCopLoa.lp (composition from Copy to Loan), LoaUse.lp (association from
Loan to User), LocUse.lp (association from LocalUse to User);

? one file per generalization: genUseTea.lp (generalization between User and Teacher)

and genUseStu. lp (generalization between User and Student).

These files, as explained before in chapter 4, will be interpreted by Larch Prover (LP)
following then LP syntax. Therefore their extensions must be .lp. The description of some
of these files is given in appe ndix C.

5.3 Checking Inconsistencies

Taking the previous UML Static Diagram describing a library system, an inconsistency
can be detected by running the system formal described in LP. It is explained in the
following section.

Another example of inconsistency still related to the use of composition is done in section
5.3.2.

5.3.1 A Composition Inconsistency

Taking the compositions between Copy and Loan and between Copy and LocalUse (see
section 5.1), it can be realized that there is an inconsistenc y concerning multiplicities:
multiplicity is Just One in both composites (Loan and LocalUse). According to the
semantics of composition, a part instance cannot belong by composition to more than one
whole at a time. The following composition axioms will de termine a rule in LP that will
not be respected:

Chapter Five: A Concrete Application of the Semantic Framework

60 Formalization of UML using Algebraic Specifications

assert
? c: Copy, l : Loan, lu : LocalUse, c1: CompCopLoa, c2: CompCopLoc

isPartOf(c1, c, l) => ~(isPartOf(c2, c, lu));
isPartOf(c2, c, lu) => ~(isPartOf(c1, c, l));

It will generate an error when the total system runs in LP since the multiplicity just one in
Loan and LocalUse implies: ? c: Copy, l : Loan, lu : LocalUse, ispartOf(c1, c, l) /\
ispartOf(c2, c, lu).

5.3.2 A Composition with Generalization Inconsistency

Another example of inconsistency that can be detected in LP is depicted in figure 17:

Figure 17. Instance reflexivity

Assuming that an instance cannot be part of itself (see section 3.2.3) what can cause
circular specifications, the following axioms can be used in LP to try to write proofs over
this example stating that it is inconsistent.

assert
? a : A, b : B, comp: CompAB

~(isPartOf(comp, a, a));
(isPartOf(comp, a, b)) => ~(isPartOf(comp, b, a));

5.4 Inconsistency with Constraint: a Concrete example of Proof written
in LP

Taking the XOR constraint and its rules explained in section 3.2.4 (item XOR
Constraint), the following example in figure 18 can be proven inconsistent through LP:

 A

 B

1..*

Chapter Five: A Concrete Application of the Semantic Framework

Formalization of UML using Algebraic Specifications 61

Figure 18. An inconsistency with XOR constraint

A complete command in LP for XOR constraint according to the rules (in bold) that were
explained in section 3.2.4 is as follows.

% Assoc1 and Assoc2 types are simply expressed by the existential proposition P1
assert
\E Xas1 \E Yas1 (~(Xas1 \eq Yas1) /\ (rightMultiplicity(Xas1, a) = 1) / \ (rightMultiplicity(Yas1, a)= 1)) / \
rightXOR(Xas1, Yas1))

%the constraint XOR is defined by proposition P2
% -------- constraint rightXOR
declare operator rightXOR : assoc1, assoc2 -> Bool
assert ~(Xas \eq Yas) =>rightXOR(Xxas, Yas) = (~(isRightLinked(Xas, a)) / \ (isRightLinked(Yas, a))) \/
((isRightLinked(Xas, a)) / \ ~(isRightLinked(Yas, a)))

%One simple example of proof is done
prove rightMultilicity(Xas, a) = 1 => isRightLinked(Xas, a)
 res by ind on Xas
 <> basis subgoal
 [] basis subgoal
 <> induction subgoal
 res by case a1 \eq a %proof by case
 <> case a1c \eq ac
 [] case a1c \eq ac
 <> case ~(a1c \eq ac)
 res by => %proof by implication
 <> => subgoal
 %addition of a trivial lemma
 assert identity(ac) \eq identity(a1c) = false
 crit as* with as* %critical pair computation
 [] => subgoal
 [] case ~(a1c \eq ac)
 [] induction subgoal
[] conjecture
qed %the proof is done

A critical pair is a potential ambiguity in a set of rules. It can be either a new fact
forgotten in the system or an irremediable inconsistent fact. This kind of proof is
generally not automatic, an expert user must choose the way to do it. Now it can be
illustrated that the UML sample model in figure 18 is not consistent:

fix Yas1 as assoc2(a), Xas1 as assoc1(a) in P1 %elimination of \E

 A B

{XOR}

1

1

assoc1

assoc2

Chapter Five: A Concrete Application of the Semantic Framework

62 Formalization of UML using Algebraic Specifications

instantiate Xas by as1(a), Yas by as2(a) in P2 %elimination of \A

LP says that the system becomes inconsistent

5.5 Conclusion

In this chapter it was demonstrated practical examples of the translations and
inconsistencies that can be checked. It was also demonstrated the use of LP to prove
inconsistencies in the formal specifications.

Chapter Six: Conclusion

Formalization of UML using Algebraic Specifications 63

Chapter Six

Conclusion

The formalization of Object Oriented analysis and design modeling languages has been
claimed as a means to allow rigorous analysis, software comprehension and to guarantee
consistency in all software development phases. The rigor imposed by formalization can
also support early detection of errors in the development process what avoids that errors
are carried till the implementation of the systems.

Even though UML is adopted as the standard Object Oriented modeling language for
analysis and design it is not yet formalized.

The thesis of this research has been that formalizing UML through the use of a formal
abstract language and also giving support to proceed to checks and validations on the
formalized models can br ing several contributions to software engineering and
reengineering processes. Moreover formalization makes many ambiguities in the
semantics arise being able to help in solving them.

6.1 Contributions

The main contribution of this work is to provide a basis to achieve a final UML
formalization approach that can be used to support software engineering as well as
software reengineering efforts. Formalization plays an important role in software
engineering and reengineering environments in the sense that it can help in guaranteeing
consistency in many stages: among model elements used in a model, between diagrams
used to model a system, and between design and implementation through the refinement
of models into code (and in the other way around: recovering design from code).
Moreover it can contribute towards the specification of a final and unambiguous
semantics to UML model elements.

In the semantic framework proposed in this thesis, the main concrete advantage taken is
the early detection of errors that can be achieved in the analysis and design phases
considering the software development life cycle. Avoiding that errors are carried till the
source code is really cost effective since errors in the implemented system require really
more effort and high cost to be eliminated.

In the context explained, many other contributions can be provided in future having the
semantic framework as a basis:
? Improving OO legacy systems can be based on formal specifications in order to

preserve semantics. Transformations of models based on refinements steps can be
performed based on formal proved transformations.

Chapter Six: Conclusions

64 Formalization of UML using Algebraic Specifications

? The formal specifications can make the link between design and implementation.
Rapid prototyping generating source code from formal specifications has more
chances to make it suitable to the system requirements.

? Ambiguities in UML semantics are solved through formalization.

? System quality and consistency are proved through the application of proofs in the

formal specifications generated.

6.2 Future Work

In this thesis it was presented a first approach of a UML formalization method that has
being developed making use of algebraic specifications to describe ADTs.

In the semantic framework presented in this dissertation, because of the limited time
available to its development, only some static model elements of UML are formal
described. Concerning the Static Diagram of UML, other model elements (or variations
of them) are still to be considered in the formalization. It is considered as the main
elements to continue with this work: Interfaces, Dependencies, Abstract Classes,
Realizations and Constraints written in OCL.

Moreover it is considered the core semantics concerning each model element. Many other
points can be considered in order to extend the framework:
? Extensions to the core concepts described are needed in order to have complete

semantics specifications for the Structural Aspects of UML.

? Formalization of the remaining UML static model elements needs to be considered.

? Dynamic aspects of UML are also necessary to be formal described to have a

complete description of elements semantics. Collaborations between objects are the
first point to cover in order to complete some aspects of the semantics, such as to
show the propagation of the dynamic semantics from the whole to its parts in a
composite relationship (see chapter 3, section 3.2.3).

? Model transformations need to be formal proved. This is one of the most important

points to achieve with formalization. Through proved transformations, reengineering
and forward engineering efforts encompassing model refinements can be supported.

In fact, the main point to consider now is how the results of the proofs and checks
obtained in LP can be demonstrated in the CASE tool to allow end user direct access.

As there was a real time constraint in order to develop this semantic framework, many of
these points suggested as future extensions are still under investigation by the
collaborators of this work. It is hoped that these extensions as soon as they are achieved,

Chapter Six: Conclusion

Formalization of UML using Algebraic Specifications 65

they can be published and widely spread through the interested software engineering and
academic community.

Chapter Six: Conclusions

66 Formalization of UML using Algebraic Specifications

References

Formalization of UML using Algebraic Specifications 67

References:

[ADV99] Verónica Argañaraz, Ilse Dierickx, and Aline Vasconcelos. A Pattern
Representation Tool with UML. EMOOSE – European Master of Science
in Object Oriented Software Engineering. Ecole des Mines de Nantes,
France. Vrije Universiteit Brussel (VUB), Belgium. February 1999.

[BRJ99a] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling

Language User Guide. Rational Software Corporation. Copyright ? 1999
by Addison Wesley Longman, Inc.

[BRJ99b] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling

Language Reference Manual. Rational Software Corporation. Copyright
? 1999 by Addison Wesley Longman, Inc.

[CE97] Tony Clark and Andy Evans. Foundations of the Unified Modeling

Language. In NFM97: 2nd BCS-FACS Northern Formal Methods
Workshop, Ilkley, UK, September 1997.

[CHS+97] Ercüment Canver, Friedrich von Henke, Detlef Schwier, Marie-Claude

Gaudel, Nicolas Guelfi, Olivier Biberstein, Didier Buchs. Comparison of
Object-Oriented Formal Methods. Universität Ulm 1997.

[CP99] Miro Casanova Paes . Formal Representation of UML. EMOOSE –

European Master of Science in Object-Oriented and Software Engineering
Technologies. Ecole des Mines de Nantes, France. Vrije Universiteit
Brussel (VUB), Belgium. February 1999.

[CS97a] Computer Sciences Corporation. Graphtalk v3.5 User Manuel. 1997.

[CS97b] Computer Sciences Corporation. Graphtalk v3 API manual volume 1.

1997.

[CS97c] Computer Sciences Corporation. Graphtalk v3 API manual volume 2.

1997.

[EBFLR98] A.Evans, J-M. Bruel, R. France, K. Lano, and B. Rumpe. Making UML

Precise. OOPSLA'98 Conference on object-Oriented Programming
Systems, Languages, and Applications. Vancouver, October 1998.

[FELR97] Robert France, Andy Evans, Kevin Lano, and Bernhard Rumpe. The

UML as a Formal Modeling Notation. OOPSLA'97 Workshop on Object-
oriented Behavioral Semantics, p. 75-81. Atlanta, Georgia, USA, October
1997.

References

68 Formalization of UML using Algebraic Specifications

[GG89] Stephan Garland and John Guttag. An Overview of LP, the Larch Prover.
In Proc. of the third International Conference on Rewriting Techniques
and Applications, volume 355 of Lecture Notes in Computer Science.
Springer-Verlag, 1989.

[GG91] Stephen J. Garland and John V. Guttag. A Guide to LP, the Larch Prover.

MIT Laboratory for Computer Science, December 1991.

[HHK98] Ali Hamie, John Howse, Stuart Kent. Modular Semantics for Object-

Oriented Models. Proceedings of Northern Formal Methods Workshop,
eWics Series, Springer Verlag. September 1998.

[HJ95] I. Houston and M. Josephs. The OMG’s Core Object Model and

compatible extensions to it. Computer Standards and Interfaces, vol 17,
nos 5 – 6, 1995.

[HR87] Horst Reichel. Initial Computability Algebraic Specifications and Partial

Algebras. International Series of Monographs on Computer Science No. 2.
Oxford Science Publications – 1987.

[JRG98] David Jaillet, Thierry Roussel, Nicolas Grelier. Projet Transversal

D’Informatique – Ré-ingénierie des sys tèmes classiques vers des systèmes
à objets. Ecole des Mines de Nantes, France. Fi95-info. April, 1998.

[LB98] K. Lano and J. Bicarregui. Semantics and Transformations for UML

Models. UML’98 International Workshop. Mulhouse, France. June, 1998.

[MEY88] Bertrand Meyer. Object-Oriented Software Construction. International

Series in Computer Science. Prentice Hall, 1988.

[MW93] M. Ward. “Abstracting a Specification from Code”. Journal of Software

Maintenance: Research and Practice, vol 5, 1993, pp. 101- 122.

[PA99] Pascal André. On Formalism in Object-Oriented Methods – the Object

Identity Problem. MSF – IRIN – Université de Nantes. April 1999.
Internal Document.

[RAC94] Jean-Claude Royer, Pascal André, Dan Chiorean. Object Design with
Formal Classes. MSF – IRIN – Université de Nantes. April 1994.

[Royer99a] Jean Claude Royer. Abstract Data Types and Formal Classes. IRIN –

Université de Nantes. April 1999.

[Royer99b] Jean Claude Royer. UML and ADT: A First Approach to Semantics and

Verifications. IRIN – Université de Nantes. June 1999. Internal Document.

References

Formalization of UML using Algebraic Specifications 69

[UML99] OMG Unified Modeling Language Specification. UML Semantics.
Version 1.3. January 1999.

References

70 Formalization of UML using Algebraic Specifications

Appendix A: Auxiliary Data Types

Formalization of UML using Algebraic Specifications 71

%%%%%%%%%%%%%%%%%%%%%
% Entiers avec ordre <
% et minimum
% 5/1/99
% Nat1.lp
% systeme convergent

set name nat

declare sort Nat
declare variables i, j, k: Nat
declare operators
 0 : -> Nat
 1 : -> Nat
 2 : -> Nat
 3 : -> Nat
 4 : -> Nat
 5 : -> Nat
 s : Nat -> Nat
 __+__ : Nat, Nat -> Nat
 __-__ : Nat, Nat -> Nat
 inf : Nat, Nat -> Bool
 equal : Nat, Nat -> Bool
 ..

assert
 sort Nat generated by 0, s;

 1 = s(0);
 2 = s(1);
 3 = s(2);
 4 = s(3);
 5 = s(4);

 0 + i = i;
 i + 0 = i;
 s(i) + j = s(i + j);
 i + s(j) = s(i + j);

 0 - j = 0;
 s(i) - 0 = s(i);
 s(i) - s(j) = i - j;

 inf(0, 0);
 ~(inf(s(i), 0));
 inf(0, s(j));
 inf(s(i), s(j)) = inf(i, j);

 ~equal(0, s(i));
 ~equal(s(i), 0);
 % 0 \eq 0; OK mais ca utile
 equal(i:Nat, i:Nat);
 equal(s(i), s(j)) = equal(i:Nat, j:Nat);

 ..

Appendix A: Auxiliary Abstract Data Types

72 Formalization of UML using Algebraic Specifications

% ac +; on moins ca termine
% converge oui

%%%%%%%%%%%%
% definition des chaines
% 1/7/99
% String.lp
%------------------------
% charger Char.lp, Nat.lp avant
ex Char
ex Nat1

set name string

declare sorts String
declare variables str, str1, str2 : String
declare operators
 empty : -> String
 add : Char, String -> String
 concat : String, String -> String
 length : String -> Nat
 is_empty : String -> Bool
 __<__ : String, String -> Bool
 equal : String, String -> Bool
 ..

assert
 sort String generated by empty, add;

 is_empty(empty);
 ~is_empty(add(car1, str));

 concat(empty, str) = str;
 concat(add(car1, str1), str) = add(car1, concat(str1, str));

 length(empty) = 0;
 length(add(car1, str1)) = 1+length(str1);

 equal(empty, empty);
 ~equal(add(car1, str1), empty);
 ~equal(empty, add(car1, str1));
 ~equal(add(car1, str1), add(car2, str2)) = equal(str1, str2);

 ~(empty < empty);
 ~(add(car1, str1) < empty);
 (empty < add(car1, str1));
 add(car1, str1) < add(car2, str2) = (precede(car1, car2) \/
(equal(car1, car2) /\ (str1 < str2)));

 ..

% sh n empty < add(a, add(b, empty))
% sh n add(a, add(b, empty)) < add(a, add(b, empty))
% sh n add(b, add(b, empty)) < add(a, add(b, empty))
% sh n add(a, add(a, empty)) < add(a, add(b, empty))

Appendix A: Auxiliary Data Types

Formalization of UML using Algebraic Specifications 73

% sh n add(a, add(a, empty)) < add(a, empty)
% sh n add(a, empty) < add(a, add(b, empty))
% sh n add(a, add(b, empty)) < add(a, add(b, add(c, empty)))
% sh n add(a, add(b, empty)) < add(b, add(b, add(c, empty)))
% sh n add(a, add(b, empty)) < add(b, empty)

%%
%specification of the identifier type for A instances
%larch file: IdA.lp
%%

set name IdA

declare sorts IdA
declare variables : idA1, idA2 : IdA
declare operators
newIdA : -> IdA
nextIdA : IdA -> IdA
__\eq__ : IdA, IdA -> Bool
..

assert
sort IdA generated by newIdA, nextIdA;
newIdA \eq newIdA;
~(newIdA \eq nextIdA(idA1));
~(nextIdA(idA1) \eq newIdA);
nextIdA(idA1) \eq nextIdA(idA2) = (idA1 \eq idA2);
..

%%%
%specification of the type Set for A Class
%larch file: SetA.lp
%%%

set name SetA

declare sorts A, SetA, Nat
declare variables aA1, aA2 : A, setA1, setA2 : SetA
declare operators
{} : -> SetA
{__} : A -> SetA
insert : A, SetA -> SetA
__\U__ : SetA, SetA -> SetA
__\in__ : A, SetA -> Bool
__\I__ : SetA, SetA -> Bool
size : SetA -> Nat
..

assert
sort SetA generated by {}, insert;
{aA1} = insert(aA1, {});
~(aA1 \in {});
aA1 \in insert(aA2, setA1) <=> (aA1 \eq aA2 \/ aA1 \in setA1);
{} \I setA1;
insert(aA1, setA1) \I setA2 <=> (aA1 \in setA2 /\ setA1 \I setA2);

Appendix A: Auxiliary Abstract Data Types

74 Formalization of UML using Algebraic Specifications

aA1 \in (setA1 \U setA2) <=> (aA1 \in setA1 \/ aA1 \in setA2);
% axioms for size operator
size({}) = 0;
(aA1 \in setA1) => size(insert(aA1, setA1)) = size(setA1);
~(aA1 \in setA1) => size(insert(aA1, setA1)) = 1+size(setA1);
..

Appendix B: Source Code

Formalization of UML using Algebraic Specifications 75

UMLTOAD.DEF

LIBRARY umltoadt
DESCRIPTION 'Demons for GraphTalk'

EXETYPE WINDOWS

DATA SINGLE MOVEABLE
CODE MOVEABLE DISCARDABLE

HEAPSIZE 1024

EXPORTS
umltranslation

UMLTOAD.H

#include <iostream>
#include <fstream>
#include <string>
#include <cstdlib>
#include <windows.h>
#include "gti.h"

using namespace std;

// ***
// Functions used for the Mapping from UML to ADT
// ***

extern "C" {
void umltranslation(OBJ viewer, OBJ hyperUML, OBJ arg);
// Main function for the generation of ADT from a UML model
// This function will be invoked by an action_item in a Graphtalk menu
// It operates on an instance of a UML Static Diagram
}

//**
//Functions to Generate the Lines in an Output Text File
//**
void frecordln (ostream& gen, string& str);
//Record strings in a text output file

void frecord (ostream& gen, string& str);
//Record strings in a text output file
//do not skip a line each time it records a new string

void fskipline (ostream& gen);
//skip a line in the output file

//***
//To finish the declares operators and assert sections it necessary to write two dots.
//This is Larch Prover syntax.
//***
void endSection(ostream& ffile);

//**
//Translation from UML Class to Abstract Data Type
//Translating Rule and Auxiliary Functions
//**

void TranslateClass(OBJ viewer, OBJ unGraphUML);
//This function will invoke all the mapping rule functions for Classes

//recover the number of attributes of a class

Appendix B: Source Code

76 Formalization of UML using Algebraic Specifications

SHORT genAttrNumber(OBJ unGraphUML, OBJ unClassUML);

void rule1Class(ostream& fclass, string classname, OBJ unClassUML, SHORT nbAttr);
//Rule 1 generates the name of the sort being specified

void rule2Class(ostream& fclass, string classname, OBJ unClassUML, SHORT nbAttr);
//Rule 2 constructs the section declare variables, with
//two variables per instance attribute, two variables of the type
//being defined and one variable of type identity

void rule3Class(ostream& fclass, string classname, OBJ unClassUML, SHORT nbAttr);
//Rule 3 starts the declare operators section of the algebraic specification
//with the standard operations new, identity and object equality

void rule4Class(ostream& fclass, string classname, OBJ unClassUML, SHORT nbAttr);
//Rule4 generates the accessor operations for the attributes

void rule5Class(ostream& fclass, string classname, OBJ unClassUML);
//Rule 5 generates the constant operations and formaloperators
//the constants represent examples of instances of the class

void rule6Class(ostream& fclass, string classname, SHORT nbAttr, OBJ unClassUML);
//Rule 6 starts the axioms part
//The axioms are used to state the semantics of the operations
////and the constants.

void rule7Class(ostream& fclass, string classname, SHORT nbAttr, OBJ unClassUML);
//Rule 7 defines the axioms for the accessors

void rule9Identity(ostream& fidentity, string classname);
//constructs the type identity in another output file

//**
//Translation from UML Associations to sorts in Larch Prover
//**

void TranslateLinks(OBJ unClassUML);
//recover the links from a node class
//if the link is an association or aggregation, invokes tranlateassoc function;
//otherwise, invokes translatecomposite

void TranslateAssoc(OBJ unLinkUML, OBJ sourceClass, OBJ targetClass);
//Translation from a UML Association to a sort in Larch Prover

void rule1Assoc(OBJ unLinkUML, ostream& flink, string linkname, string sourcename, string
targetname);
//Rule 1 generates the name of the sort being specified
//and a comment defining the sort to be described

void rule2Assoc(ostream& flink, string linkname, string sourcename, string targetname);
//Rule 2 constructs the section declare variables, with
//two variables per object type, two variables per object type set,
//two variables of type equal the type being defined, and
//one variable of type Nat

void rule3Assoc(ostream& flink, string linkname);
//Rule 3 starts the declare operators section of the algebraic specification
//with the standard operations void, identity and association equality

void rule4Assoc(ostream& flink, string linkname, string sourcename, string targetname);
//Rule 4 declares the operators for add and remove links in the association

void rule5Assoc(OBJ unLinkUML, ostream& flink, string linkname, string sourcename, string
targetname);
//Rule 5 declares operators to return the set of links for a given instance,
//and also declares the operators to test if the association isEmpy and if
//two instances are linked

void rule6Assoc(ostream& flink, string linkname, string sourcename, string targetname);

Appendix B: Source Code

Formalization of UML using Algebraic Specifications 77

//Rule 6 starts the axioms part
//The axioms are used to state the semantics of the operations.

void rule7Assoc(ostream& flink, string linkname, string sourcename, string targetname,
OBJ unLinkUML);
//Rule 7 states the axioms for multiplicity constraints

void rule8Assoc(ostream& flink, string linkname, string sourcename, string targetname);
//Rule 8 states the axioms for association identity

void rule9Set(ostream& fset, string classname);
//Rule 9 generates the sort Set for the source and target Class
//of the Association

//Special Rules for Compositions
string rule1Composition(string linkname);
string rule2Composition(string linkname, string sourcename, string targetname);
void rule3Composition(ostream& flink, string linkname, string sourcename, string
targetname);
void rule4Composition(ostream& flink, string linkname, string sourcename, string
targetname);

#include "umltoadt.h"

UMLTOAD.CPP

// ***
// Functions to be used in the translation from UML -> ADT
// ***

// Main function for the generation of ADT from a UML model
// This function will be invoked by an action_item in a Graphtalk menu
// It operates on an instance of a UML Static Diagram
void umltranslation(OBJ viewer, OBJ hyperUML, OBJ arg)
{
 //recover all the graphs associated to a hyper UML
 //in this version the only existent graph is the static, so only one graph
 //will be recovered for the list
 OBJ graphList, unGraphUML;

 graphList = GtiGraphsOf(hyperUML);

 while(graphList != NIL) {
 unGraphUML = GtiCar(graphList);
 if (GtiClassSymbol(GtiClassOf(unGraphUML)) == GtiSymbol("Static Diagram"))
{
 TranslateClass(viewer, unGraphUML);

 }
 graphList = GtiCdr(graphList);
}
}

//**
//Functions to Generate the Lines in an Output Text File
//**

//Record strings in a text output file
//skip a line each time it records a new string
void frecordln (ostream& gen, string& str)
{
 gen << str << endl;
}

//Record strings in a text output file
//do not skip a line each time it records a new string
void frecord (ostream& gen, string& str)

Appendix B: Source Code

78 Formalization of UML using Algebraic Specifications

{
 gen << str;
}

//skip a line in the output file
void fskipline (ostream& gen)
{
 gen << endl;
}

//***
//To finish the declares operators and assert sections it necessary to write two dots.
//This is Larch Prover syntax.
//***
void endSection(ostream& ffile)
{
 string fin;

 fin = "..";
 frecordln(ffile, fin);
}

//**
//Translation from a UML Class to a sort in Larch Prover
//**
void TranslateClass(OBJ viewer, OBJ unGraphUML)
{
 OBJ nodeListUML, unClassUML;
 SHORT numberAttr;
 //OBJ linkListUML, unLinkUML;

 string filename, classname, fileidentity;

 nodeListUML = GtiNodesOf(unGraphUML);
 while(nodeListUML != NIL) {
 unClassUML = GtiCar(nodeListUML);
 if (GtiClassSymbol(GtiClassOf(unClassUML)) == GtiSymbol("Class")) {
 //generate the name of the text file for the class description
 classname = GtiNameOf(unClassUML);
 filename = classname + ".lp";

 //creates the file in write and text mode
 ofstream fclass(filename.c_str());

 //recover the number of instance attributes of a class;
 //this number is necessary to recover the attributes that will be
used
 //in some mapping rules
 numberAttr = genAttrNumber(unGraphUML, unClassUML);

 //calls the mapping rule functions to generate the
 //lines in the algebraic specification
 rule1Class(fclass, classname, unClassUML, numberAttr);
 rule2Class(fclass, classname, unClassUML, numberAttr);
 rule3Class(fclass, classname, unClassUML, numberAttr);
 rule4Class(fclass, classname, unClassUML, numberAttr);
 rule5Class(fclass, classname, unClassUML);
 //to finalize the declare operators section
 endSection(fclass);
 //starts the axiom section
 rule6Class(fclass, classname, numberAttr, unClassUML);
 //to finalize the assert section
 endSection(fclass);

 //constructs the type identity in another output file
 fileidentity = "Id" + classname + ".lp";
 //creates the file for sort Identity in write and text mode
 ofstream fidentity(fileidentity.c_str());
 rule9Identity(fidentity, classname);

Appendix B: Source Code

Formalization of UML using Algebraic Specifications 79

 //this type of file is closed automatically and doesn't require a
close command

 //***********
 //after finishing the translation for the Class, then
 //it is invoked the translation for the links (associations,
compositions, aggregations)
 //for this class
 TranslateLinks(unClassUML);
 }
 nodeListUML = GtiCdr(nodeListUML); //withdraw the first element of the
list
 }
}

//Translating Rules from UML Class to Abstract Data Type

//Recover the number of attributes of a Class
//Attributes are a SubNode property which cerries a list of attributes
SHORT genAttrNumber(OBJ unGraphUML, OBJ unClassUML)
{ // Test if the first Node of the list is in fact a Class
 // In this version we only have classes as nodes, but
 // thinking about future enhancements it is better to keep this test

 //Obj unAttrUML;
 SHORT nbAttrs;

 //unAttrUML = GtiCar(GtiNodesOf(GtiCoreOf(unClassUML)));
 //if (GtiCar(GtiNodesOf(GtiCoreOf(unClassUML))) == unClassUML)
 //if (GtiClassSymbol(GtiClassOf(unAttrUML)) == GtiSymbol("Instance Attribute")) {
 nbAttrs = GtiSubSubNodesCount(unClassUML, GtiSymbol("Instance Attribute List"));
 return nbAttrs;

}

//Rule 1 generates the name of the sort being specified
//and a comment defining the sort to be described
void rule1Class(ostream& fclass, string classname, OBJ unClassUML, SHORT nbAttr)

{ string specname, comment, attrname, attrtypename;
 SHORT i, j;
 OBJ unAttributUML;
 string listattr[10];
 bool found;

 comment =
"%%%";
 frecordln(fclass, comment);
 comment = "%specification of the properties and behavior for the instances of
class " + classname;
 frecordln(fclass, comment);
 comment = "%larch file: " + classname + ".lp";
 frecordln(fclass, comment);
 comment =
"%%%";
 frecordln(fclass, comment);
 fskipline(fclass);
 fskipline(fclass);
 //set name section starts the formal specification for the sort
 specname = "set name " + classname;
 frecordln(fclass, specname);
 fskipline(fclass);
 specname = "declare sorts " + classname;
 frecord(fclass, specname);
 //declares the identifier type
 specname = ", Id";
 frecord(fclass, specname);
 frecord(fclass, classname);

Appendix B: Source Code

80 Formalization of UML using Algebraic Specifications

 //declares the type Set
 specname = ", Set" + classname;
 frecord(fclass, specname);

 //recover the types of the attributes to the section declare sorts
 for(i=0; i<nbAttr; i++) {
 unAttributUML = GtiGetSubSubNode(unClassUML, GtiSymbol("Instance Attribute
List"), i);
 attrname = GtiNameOf(unAttributUML);
 attrtypename = GtiNameOf(GtiGetMenu(unAttributUML, GtiSymbol("Attribute
Type")));
 found = false; //controls if the type already exists in the list
 //traverses the attribute types array - listAttr - and select the
attribute types
 //to compose the declare sorts section; each attribute type must be
declared
 //only once
 for (j=i; j>0; j--) {
 if (attrtypename == listattr[j])
 found = true;
 }
 if (!found)
 specname = ", " + attrtypename;

 listattr[i] = attrtypename;
 }

 frecordln(fclass, specname);
 //delete listattr; //no garbage collection in C++
}

//Rule 2 constructs the section declare variables, with
//two variables per instance attribute, two variables of the type
//being defined and one variable of type identity
void rule2Class(ostream& fclass, string classname, OBJ unClassUML, SHORT nbAttr)

{ string specvariables, var1, var2, variablename, typeattr, sectionname;
 SHORT i, count;//the goal of the variable count is to allow just two variable
declarations per line
 OBJ unAttributUML;

 count = 0;
 specvariables = "declare variables ";
 var1 = "a" + classname + "1,";
 var2 = " a" + classname + "2";
 specvariables = specvariables + var1 + var2 + " : " + classname;
 frecord(fclass, specvariables);
 count = count + 1;
 for(i=0; i<nbAttr; i++) {
 unAttributUML = GtiGetSubSubNode(unClassUML, GtiSymbol("Instance Attribute
List"), i);
 variablename = GtiNameOf(unAttributUML);
 //generates two variables with the attribute type
 specvariables = variablename + "1, " + variablename + "2 : ";
 //recover the type of the attribute
 typeattr = GtiNameOf(GtiGetMenu(unAttributUML, GtiSymbol("Attribute
Type")));
 if (count == 2)
 { fskipline(fclass);
 sectionname = "declare variables ";
 frecord(fclass, sectionname);
 }
 else
 { variablename = ", ";
 frecord(fclass, variablename);
 }

 frecord(fclass, specvariables);
 frecord(fclass, typeattr);
 count = count + 1;

Appendix B: Source Code

Formalization of UML using Algebraic Specifications 81

 }
 if (count == 2)
 { fskipline(fclass);
 specvariables = "declare variables ";
 frecord(fclass, specvariables);
 };
 specvariables = ", id : Id";
 frecord(fclass, specvariables);
 specvariables = classname;
 frecordln(fclass, specvariables);
}

//Rule 3 starts the declare operators section of the algebraic specification
//with the standard operations new, identity and object equality
void rule3Class(ostream& fclass, string classname, OBJ unClassUML, SHORT nbAttr)

{ OBJ unAttributUML;
 string specoperators, typeName, comment;
 SHORT i;

 specoperators = "declare operators";
 fskipline(fclass);
 frecordln(fclass, specoperators);
 comment = "% generator";
 frecordln(fclass, comment);
 specoperators = "new" + classname + " : Id" + classname;
 for(i=0; i<nbAttr; i++) {
 specoperators = specoperators + ",";
 unAttributUML = GtiGetSubSubNode(unClassUML, GtiSymbol("Instance Attribute
List"), i);
 //recover the metaproperty type ofthe attribute
 //in Graphtalk the default value for this property needs to be
 //string
 typeName = GtiNameOf(GtiGetMenu(unAttributUML, GtiSymbol("Attribute
Type")));
 specoperators = specoperators + " " + typeName;
 }
 specoperators = specoperators + " -> " + classname;
 frecordln(fclass, specoperators); //generates the operation new
 fskipline(fclass);
 comment = "% operations for identity and object equality";
 frecordln(fclass, comment);
 specoperators = "identity : " + classname + " -> " + "Id" + classname;
 frecordln(fclass, specoperators); //generates the operation that returns the
identity of an object
 specoperators = "__\\eq__ : " + classname + ", " + classname + " -> " + "Bool";
 frecordln(fclass, specoperators); //generates the operation for
identity/functional equality
}

//Rule4 generates the accessor operations for the attributes
void rule4Class(ostream& fclass, string classname, OBJ unClassUML, SHORT nbAttr)
{
 OBJ unAttributUML;
 string accessor, typeName, attrName, comment;
 SHORT i;

 fskipline(fclass);
 comment = "% accessors for the instance variables";
 frecordln(fclass, comment);
 for(i=0; i<nbAttr; i++) {
 //recover the attribute in the instance variables list;
 //its name and type
 unAttributUML = GtiGetSubSubNode(unClassUML, GtiSymbol("Instance Attribute
List"), i);
 attrName = GtiNameOf(unAttributUML);
 typeName = GtiNameOf(GtiGetMenu(unAttributUML, GtiSymbol("Attribute
Type")));
 //the first accessor is the get, to recover a value of the attribute
related to
 //one object

Appendix B: Source Code

82 Formalization of UML using Algebraic Specifications

 accessor = "get" + attrName + " : ";
 accessor = accessor + " " + classname + " -> ";
 frecord(fclass, accessor);
 frecordln(fclass, typeName);
 //the second accessor is the set, to change the value of the attribute to
one object
 accessor = "set" + attrName + " : ";
 accessor = accessor + " " + classname + ", " + typeName + " -> ";
 accessor = accessor + classname;
 frecordln(fclass, accessor);
 }
}

//Rule 5 generates the constant operations and formaloperators
//the constants represent examples of instances of the class
void rule5Class(ostream& fclass, string classname, OBJ unClassUML)
{
 string comment, constant, formalOpr, oprName;
 SHORT nbOprs, i;
 OBJ unOprUML;

 comment = "% constants to represent examples of instances";
 fskipline(fclass);
 frecordln(fclass, comment);
 constant = "one" + classname + " : ";
 constant = constant + " -> " + classname;
 frecordln(fclass, constant);
 constant = "another" + classname + " : ";
 constant = constant + " -> " + classname;
 frecordln(fclass, constant);
}

//Rule 6 starts the axioms part
//The axioms are used to state the semantics of the operations
//and the constants
void rule6Class(ostream& fclass, string classname, SHORT nbAttr, OBJ unClassUML)
{
 string comment, axiom, constantaxiom1, constantaxiom2, attrvariable, var1, var2;
 SHORT i;
 OBJ unAttributUML;

 comment = "% axioms";
 fskipline(fclass);
 frecordln(fclass, comment);
 axiom = "assert";
 frecordln(fclass, axiom);
 axiom = "sort " + classname + " generated by " + "new" + classname + ";";
 frecordln(fclass, axiom);
 comment = "%axioms for identity";
 frecordln(fclass, comment);
 axiom = "identity";
 frecord(fclass, axiom);
 axiom = "(new" + classname + "(id";
 constantaxiom1 = "one" + classname + "= new"+ classname + "((newId" + classname +
")";
 constantaxiom2 = "another" + classname + "= new"+ classname + "((nextId"+
classname + "(newId" + classname + "))";
 for(i=0; i<nbAttr; i++) {
 axiom = axiom + ",";
 constantaxiom1 = constantaxiom1 + ",";
 constantaxiom2 = constantaxiom2 + ",";
 unAttributUML = GtiGetSubSubNode(unClassUML, GtiSymbol("Instance Attribute
List"), i);
 attrvariable = GtiNameOf(unAttributUML);
 attrvariable = attrvariable + "1";
 axiom = axiom + attrvariable;
 constantaxiom1 = constantaxiom1 + attrvariable;
 constantaxiom2 = constantaxiom2 + attrvariable;
 }
 axiom = axiom + ")) = id;";

Appendix B: Source Code

Formalization of UML using Algebraic Specifications 83

 constantaxiom1 = constantaxiom1 + ");";
 constantaxiom2 = constantaxiom2 + ");";
 frecordln(fclass, axiom);
 fskipline(fclass);
 comment = "%axioms for the constants";
 frecordln(fclass, comment);
 frecordln(fclass, constantaxiom1);
 frecordln(fclass, constantaxiom2);

 //axiom to state the semantics for object equality
 comment = "% axiom to state the semantics for object equality";
 frecordln(fclass, comment);
 var1 = "a" + classname + "1";
 var2 = "a" + classname + "2";
 axiom = var1 + " \\eq " + var2 + " = " + "identity(" + var1 + ")" + " \\eq" + "
identity(" + var2 + ");";
 frecordln(fclass, axiom);

 //call rule 7 that defines the axioms for the accesors
 rule7Class(fclass, classname, nbAttr, unClassUML);

}

//Rule 7 defines the axioms for the accessors
void rule7Class(ostream& fclass, string classname, SHORT nbAttr, OBJ unClassUML)
{
 string comment, axiom, axiom2, varstructure, varstructure2, mainattr, mainattr2,
attrname1, attrname2, attrvariable;
 SHORT i,j;
 OBJ unAttributUML;

 fskipline(fclass);
 comment = "% axioms to state the semantics of the attribute accessors";
 frecordln(fclass, comment);

 //for each instance attribute, two axioms are generated being each one to one
accessor

 for (i=0; i<nbAttr; i++) {
 unAttributUML = GtiGetSubSubNode(unClassUML, GtiSymbol("Instance
Attribute List"), i);
 attrname1 = GtiNameOf(unAttributUML);
 mainattr = attrname1 + "1";
 mainattr2 = attrname1 + "2";
 axiom = "get"+ attrname1 + "(" + "new" + classname + "(id";
 axiom2 = "set"+ attrname1 + "(" + "new" + classname + "(id";
 j = 0;

 varstructure = "";
 varstructure2 = "";
 while (j < nbAttr)
 {
 unAttributUML = GtiGetSubSubNode(unClassUML,
GtiSymbol("Instance Attribute List"), j);
 attrname2 = GtiNameOf(unAttributUML);
 attrvariable = attrname2 + "1";
 varstructure = varstructure + ", "+ attrvariable;
 if (attrname1 == attrname2)
 attrvariable = attrname2 + "2";
 else
 attrvariable = attrname2 + "1";
 varstructure2 = varstructure2 + ", " + attrvariable;
 j++;
 }
 axiom = axiom + varstructure + "))" + " = " + mainattr + ";";
 frecordln(fclass, axiom);
 axiom2 = axiom2 + varstructure + ")," + mainattr2 + ")";
 axiom2 = axiom2 + " = " + "new" + classname + "(id" + varstructure2
+ ");";
 frecordln(fclass, axiom2);
 }

Appendix B: Source Code

84 Formalization of UML using Algebraic Specifications

}

//Rule 8 defines the axioms for the constants

//Rule 9 defines a type Identity specific to a class
void rule9Identity(ostream& fidentity, string classname) {

 string sortname, sentence, comment;

 sortname = "Id" + classname;

 comment = "%%";
 frecordln(fidentity, comment);
 comment = "%specification of the identifier type for " + classname + " isntances";
 frecordln(fidentity, comment);
 comment = "%larch file: " + sortname + ".lp";
 frecordln(fidentity, comment);
 comment = "%%";
 frecordln(fidentity, comment);

 fskipline(fidentity);
 sentence = "set name " + sortname;
 frecordln(fidentity, sentence);
 fskipline(fidentity);

 sentence = "declare sorts " + sortname;
 frecordln(fidentity, sentence);
 sentence = "declare variables : id" + classname + "1, ";
 sentence = sentence + "id" + classname + "2" + " : " + sortname;
 frecordln(fidentity, sentence);
 sentence = "declare operators";
 frecordln(fidentity, sentence);
 sentence = "new" + sortname + " : " + " -> " + sortname;
 frecordln(fidentity, sentence);
 sentence = "next" + sortname + " : " + sortname + " -> " + sortname;
 frecordln(fidentity, sentence);
 sentence = "__\\eq__ : " + sortname + ", " + sortname + " -> " + "Bool";
 frecordln(fidentity, sentence);
 endSection(fidentity);

 //axioms
 fskipline(fidentity);
 sentence = "assert";
 frecordln(fidentity, sentence);
 sentence = "sort " + sortname + " generated by new" + sortname + ", next" +
sortname + ";";
 frecordln(fidentity, sentence);
 sentence = "new"+ sortname + " \\eq " + "new" + sortname + ";";
 frecordln(fidentity, sentence);
 sentence = "~(new" + sortname + " \\eq " + "next" + sortname + "(id" + classname +
"1));";
 frecordln(fidentity, sentence);
 sentence = "~(next" + sortname + "(id" + classname + "1)" + " \\eq " + "new" +
sortname + ");";
 frecordln(fidentity, sentence);
 sentence = "next" + sortname + "(id" + classname + "1)" + " \\eq " + "next" +
sortname + "(id" + classname + "2)" + " = ";
 sentence = sentence + "(id" + classname + "1" + " \\eq id" + classname + "2);";
 frecordln(fidentity, sentence);
 endSection(fidentity);
}

//**
//Translation from UML Associations to sorts in Larch Prover
//**

//recover the links from a node class
//if the link is an association or aggregation, invokes tranlateassoc function;

Appendix B: Source Code

Formalization of UML using Algebraic Specifications 85

//otherwise, invokes translatecomposite
void TranslateLinks(OBJ unClassUML)
{
 OBJ listLinkUML, unLinkUML, sourceClass, targetClass;
 string filename;

 listLinkUML = GtiFromLinksOf(unClassUML);

 //Recover the first link of the list
 //Recover the target node of the Link

 if (listLinkUML != NIL){
 unLinkUML = GtiCar(listLinkUML);
 sourceClass = GtiLinkOrg(unLinkUML);
 targetClass = unClassUML;

 while(listLinkUML != NIL) {
 if (GtiClassSymbol(GtiClassOf(unLinkUML)) == GtiSymbol("Association
Link"))
 TranslateAssoc(unLinkUML, sourceClass, targetClass);
 if (GtiClassSymbol(GtiClassOf(unLinkUML)) == GtiSymbol("Composition
Link"))
 TranslateAssoc(unLinkUML, sourceClass, targetClass);

 listLinkUML = GtiCdr(listLinkUML);
 unLinkUML = GtiCar(listLinkUML);
 }
 GtiDropList(listLinkUML);
 }
}

//Translation from a UML Association to a sort in Larch Prover
void TranslateAssoc(OBJ unLinkUML, OBJ sourceClass, OBJ targetClass)
{

 string sourcename, targetname, linkname, filename;

 linkname = GtiGetString(unLinkUML, GtiSymbol("Name"));
 if (GtiClassSymbol(GtiClassOf(unLinkUML)) == GtiSymbol("Composition Link"))
 linkname = rule1Composition(linkname);
 filename = linkname + ".lp";

 //creates the file in write and text mode
 ofstream flink(filename.c_str());
 sourcename = GtiNameOf(sourceClass);
 targetname = GtiNameOf(targetClass);

 //the translation rules
 rule1Assoc(unLinkUML, flink, linkname, sourcename, targetname);
 rule2Assoc(flink, linkname, sourcename, targetname);
 rule3Assoc(flink, linkname);
 rule4Assoc(flink, linkname, sourcename, targetname);
 rule5Assoc(unLinkUML, flink, linkname, sourcename, targetname);
 //to finalize the declare operators section
 endSection(flink);

 //starts the axiom section
 rule6Assoc(flink, linkname, sourcename, targetname);
 rule7Assoc(flink, linkname, sourcename, targetname, unLinkUML);
 rule8Assoc(flink, linkname, sourcename, targetname);
 //to finalize the assert section
 endSection(flink);

 //constructs the type Set for each Class connected through the association;
 //each type Set will be generated in one LP file
 //first, the file Set for the source Class
 filename = "Set" + sourcename + ".lp";

Appendix B: Source Code

86 Formalization of UML using Algebraic Specifications

 ofstream fset(filename.c_str());
 rule9Set(fset, sourcename);
 //after, the file Set for the target Class
 filename = "Set" + targetname + ".lp";
 ofstream fset1(filename.c_str());
 rule9Set(fset1, targetname);
}

//Rule 1 generates the name of the sort being specified
//and a comment defining the sort to be described
void rule1Assoc(OBJ unLinkUML, ostream& flink, string linkname, string sourcename, string
targetname)
{
 string specname, comment;

 comment =
"%%%";
 frecordln(flink, comment);
 if (GtiClassSymbol(GtiClassOf(unLinkUML)) == GtiSymbol("Composition Link"))
 comment = rule2Composition(linkname, sourcename, targetname);
 else
 comment = "%specification of the association " + linkname + " between
Classes: " + sourcename + " and " + targetname;
 frecordln(flink, comment);
 comment = "%larch file: " + linkname + ".lp";
 frecordln(flink, comment);
 comment =
"%%%";
 frecordln(flink, comment);
 fskipline(flink);
 fskipline(flink);

 //set name section starts the formal specification for the sort
 specname = "set name " + linkname;
 frecordln(flink, specname);
 fskipline(flink);

 //declares the association sort
 //declares the source class and target class as object types
 specname = "declare sorts " + linkname + ", " + sourcename + ", " + targetname;
 frecord(flink, specname);

 //declares the type Nat that is the type for the association identifier
 specname = ", Nat";
 frecord(flink, specname);

 //declares the types Set related to the Set of instances of the object types
associated
 specname = ", Set" + sourcename + ", Set" + targetname;
 frecordln(flink, specname);

}

//Rule 2 constructs the section declare variables, with
//two variables per object type, two variables per object type set,
//two variables of type equal the type being defined, and
//one variable of type Nat
void rule2Assoc(ostream& flink, string linkname, string sourcename, string targetname)

{ string specvariables, var1, var2;

 specvariables = "declare variables ";
 frecord(flink, specvariables);

 //variables for the type being defined
 var1 = linkname + "1, ";
 var2 = linkname + "2";

Appendix B: Source Code

Formalization of UML using Algebraic Specifications 87

 specvariables = var1 + var2 + " : " + linkname + ", ";
 frecord(flink, specvariables);

 //variables for the source object type of the link
 var1 = "a" + sourcename + "1,";
 var2 = " a" + sourcename + "2";
 specvariables = var1 + var2 + " : " + sourcename + ", ";
 frecord(flink, specvariables);

 //variables for the target object type of the link
 var1 = "a" + targetname + "1,";
 var2 = " a" + targetname + "2";
 specvariables = var1 + var2 + " : " + targetname;
 frecordln(flink, specvariables);

 //skip line
 specvariables = "declare variables ";
 frecord(flink, specvariables);

 //variables for the Set of source objects type
 var1 = "Set" + sourcename + "1";
 var2 = ", Set" + sourcename + "2";
 specvariables = var1 + var2 + " : " + "Set" + sourcename + ", ";
 frecord(flink, specvariables);

 //variables for the Set of target objects type
 var1 = "Set";
 var1 = var1 + targetname + "1, ";
 var2 = "Set" + targetname + "2";
 specvariables = var1 + var2 + " : " + "Set" + targetname + ", ";
 frecord(flink, specvariables);

 //variable of type Natural for the association identity
 var1 = "i : Nat";
 frecordln(flink, var1);
}

//Rule 3 starts the declare operators section of the algebraic specification
//with the standard operations void, identity and association equality
void rule3Assoc(ostream& flink, string linkname)

{ string specoperators, comment;

 specoperators = "declare operators";
 fskipline(flink);
 frecordln(flink, specoperators);

 //operation void for the generation of an empty association
 comment = "%generator of an empty association";
 frecordln(flink, comment);
 specoperators = "void : Nat -> " + linkname;
 frecordln(flink, specoperators);

 //operations for association identity needed for Larch Prover
 comment = "%association identity";
 fskipline(flink);
 frecordln(flink, comment);
 specoperators = "identity : " + linkname + " -> Nat";
 frecordln(flink, specoperators);

 specoperators = "__\\eq__ : " + linkname + ", " + linkname + " -> Bool";
 frecordln(flink, specoperators);
}

//Rule 4 declares the operators for add and remove links in the association
void rule4Assoc(ostream& flink, string linkname, string sourcename, string targetname)

{ string specoperators, comment;

 comment = "%operators to create and remove links ";

Appendix B: Source Code

88 Formalization of UML using Algebraic Specifications

 fskipline(flink);
 frecordln(flink, comment);

 //addlink
 specoperators = "addLink : ";
 specoperators = specoperators + linkname + ", " + sourcename + ", " + targetname;
 specoperators = specoperators + " -> " + linkname;
 frecordln(flink, specoperators);

 //removelink
 specoperators = "removeLink : ";
 specoperators = specoperators + linkname + ", " + sourcename + ", " + targetname;
 specoperators = specoperators + " -> " + linkname;
 frecordln(flink, specoperators);

}

//Rule 5 declares operators to return the set of links for a given instance,
//and also declares the operators to test if the association isEmpy and if
//two instances are linked; declares also the constants for the multiplicities
void rule5Assoc(OBJ unLinkUML, ostream& flink, string linkname, string sourcename, string
targetname)

{ string specoperators, comment;

 //tests if two instances are linked through the association
 comment = "%operator to test if two instances are linked";
 fskipline(flink);
 frecordln(flink, comment);
 specoperators = "isLinked : ";
 specoperators = specoperators + linkname + ", " + sourcename + ", " + targetname;
 specoperators = specoperators + " -> Bool";
 frecordln(flink, specoperators);

 //tests if one instance is linked through the association
 comment = "%operator to test if one instance is linked";
 fskipline(flink);
 frecordln(flink, comment);
 specoperators = "isLeftLinked : ";
 specoperators = specoperators + linkname + ", " + targetname;
 specoperators = specoperators + " -> Bool";
 frecordln(flink, specoperators);

 specoperators = "isRightLinked : ";
 specoperators = specoperators + linkname + ", " + sourcename;
 specoperators = specoperators + " -> Bool";
 frecordln(flink, specoperators);

 //tests if the association isEmpty
 comment = "%operator to test if the association is Empty";
 fskipline(flink);
 frecordln(flink, comment);
 specoperators = "isEmpty : ";
 specoperators = specoperators + linkname;
 specoperators = specoperators + " -> Bool";
 frecordln(flink, specoperators);

 //return the Set of instances of an object type linked to an instance
 //of the other object type connected through the association
 comment = "%operator to return the Set of instances linked to a given instance";
 fskipline(flink);
 frecordln(flink, comment);
 specoperators = "allLeftLink : ";
 specoperators = specoperators + linkname + ", " + targetname;
 specoperators = specoperators + " -> Set" + sourcename;
 frecordln(flink, specoperators);

 specoperators = "allRightLink : ";
 specoperators = specoperators + linkname + ", " + sourcename;
 specoperators = specoperators + " -> Set" + targetname;

Appendix B: Source Code

Formalization of UML using Algebraic Specifications 89

 frecordln(flink, specoperators);

 //constants to the association multiplicities
 fskipline(flink);
 comment = "%operators for multiplicity values";
 frecordln(flink, comment);
 specoperators = "leftMultiplicity : " + linkname + ", " + targetname + " -> Nat";
 frecordln(flink, specoperators);
 specoperators = "rightMultiplicity : " + linkname + ", " + sourcename + " ->
Nat";
 frecordln(flink, specoperators);

 if (GtiClassSymbol(GtiClassOf(unLinkUML)) == GtiSymbol("Composition Link"))
 rule3Composition(flink, linkname, sourcename, targetname);

}

//Rule 6 starts the axioms part
//The axioms are used to state the semantics of the operations.
void rule6Assoc(ostream& flink, string linkname, string sourcename, string targetname)
{
 string comment, axiom;

 comment = "% axioms";
 fskipline(flink);
 frecordln(flink, comment);
 axiom = "assert";
 frecordln(flink, axiom);
 axiom = "sort " + linkname + " generated by " + "void, addLink;";
 frecordln(flink, axiom);
 fskipline(flink);

 //axioms to state that an association cannot contain twice the same link
 comment = "%axiom to state that tuples of instance values cannot be equal in an
association";
 frecordln(flink, comment);
 axiom = "(a" + sourcename + "1" + " \\eq " + "a" + sourcename + "2)";
 axiom = axiom + " /\\ ";
 axiom = axiom + "(a" + targetname + "1" + " \\eq " + "a" + targetname + "2)" + "
=> ";
 frecord(flink, axiom);
 axiom = "addLink(addLink(" + linkname + "1" + ", a" + sourcename + "1, a" +
targetname + "1), ";
 axiom = axiom + "a" + sourcename + "2, " + "a" + targetname + "2)" + " = addLink("
+ linkname + "1, ";
 axiom = axiom + "a" + sourcename + "1, " + "a" + targetname + "1);";
 frecordln(flink, axiom);

 //axioms for the operation isEmpty
 fskipline(flink);
 comment = "%axioms for the isEmpty operation";
 frecordln(flink, comment);
 axiom = "isEmpty(void(i));";
 frecordln(flink, axiom);
 axiom = "~(isEmpty(addLink(" + linkname + "1, " + "a" + sourcename + "1, " + "a" +
targetname + "1)));" ;
 frecordln(flink, axiom);

 //axioms to test if two instances are linked - operator isLinked
 fskipline(flink);
 comment = "%state when two instances of object types are linked";
 frecordln(flink, comment);
 axiom = "~(isLinked(void(i),";
 axiom = axiom + "a" + sourcename + "1, " + "a" + targetname + "1));";
 frecordln(flink, axiom);
 axiom = "isLinked(addLink(" + linkname + "1, " + "a" + sourcename + "1, " + "a" +
targetname + "1),";
 axiom = axiom + "a" + sourcename + "2, " + "a" + targetname + "2) = ";
 axiom = axiom + "((a" + sourcename + "1 \\eq " + "a" + sourcename + "2";
 axiom = axiom + " /\\ " + "a" + targetname + "1" + " \\eq " + "a" + targetname +
"2)";

Appendix B: Source Code

90 Formalization of UML using Algebraic Specifications

 axiom = axiom + " \\/ " + "isLinked(" + linkname + "1, " + "a" + sourcename + "2,
" + "a" + targetname + "2" + "));";
 frecordln(flink, axiom);

 //axioms to state the semantics of the operations allLefLink
 //and allRightLink in terms of addLink generator
 fskipline(flink);
 comment = "%state the semantics for the operations allLeftLink and allRightLink
through addLink generator";
 frecordln(flink, comment);
 axiom = "(a" + targetname + "1 \\eq a" + targetname + "2) => ";
 axiom = axiom + "allLeftLink(addLink(" + linkname + "1, a" + sourcename + "1, a" +
targetname + "2), a" + targetname + "1)";
 axiom = axiom + " = insert(a" + sourcename + "1, allLeftLink(" + linkname + "1, a"
+ targetname + "1));";
 frecordln(flink, axiom);

 axiom = "(a" + sourcename + "1 \\eq a" + sourcename + "2) => ";
 axiom = axiom + "allRightLink(addLink(" + linkname + "1, a" + sourcename + "2, a"
+ targetname + "1), a" + sourcename + "1)";
 axiom = axiom + " = insert(a" + targetname + "1, allRightLink(" + linkname + "1,
a" + sourcename + "1));";
 frecordln(flink, axiom);

 axiom = "~(a" + targetname + "1 \\eq a" + targetname + "2) => ";
 axiom = axiom + "allLeftLink(addLink(" + linkname + "1, a" + sourcename + "1, a" +
targetname + "2), a" + targetname + "1)";
 axiom = axiom + " = allLeftLink(" + linkname + "1, a" + targetname + "1);";
 frecordln(flink, axiom);
 axiom = "~(a" + sourcename + "1 \\eq a" + sourcename + "2) => ";
 axiom = axiom + "allRightLink(addLink(" + linkname + "1, a" + sourcename + "2, a"
+ targetname + "1), a" + sourcename + "1)";
 axiom = axiom + " = allRightLink(" + linkname + "1, a" + sourcename + "1);";
 frecordln(flink, axiom);

 //semantics for allLeftLink and allRightLink in terms of void generator
 fskipline(flink);
 comment = "%state the semantics for allLeftLink and allRightLink through void
generator";
 frecordln(flink, comment);
 axiom = "allLeftLink(void(i), a" + targetname + "1) = {}: Set" + targetname + ";";
 frecordln(flink, axiom);
 axiom = "allRightLink(void(i), a" + sourcename + "1) = {}: Set" + sourcename +
";";
 frecordln(flink, axiom);

 //axioms to state when an instance is linked
 fskipline(flink);
 comment = "%state when one instance is linked through the association";
 frecordln(flink, comment);
 axiom = "~(isLeftLinked(void(i), a" + targetname + "1));";
 frecordln(flink, axiom);
 axiom = "~(isRightLinked(void(i), a" + sourcename + "1));";
 frecordln(flink, axiom);

 axiom = "isLeftLinked(addLink(" + linkname + "1, a" + sourcename + "1, a" +
targetname + "1), a" + targetname + "2) = ((";
 axiom = axiom + "a" + targetname + "1" + " \\eq " + "a" + targetname + "2) \\/
isLeftLinked(";
 axiom = axiom + linkname + "1, a" + targetname + "2));";
 frecordln(flink, axiom);

 axiom = "isRightLinked(addLink(" + linkname + "1, a" + sourcename + "1, a" +
targetname + "1), a" + sourcename + "2) = ((";
 axiom = axiom + "a" + sourcename + "1" + " \\eq " + "a" + sourcename + "2) \\/
isRightLinked(";
 axiom = axiom + linkname + "1, a" + sourcename + "2));";
 frecordln(flink, axiom);

Appendix B: Source Code

Formalization of UML using Algebraic Specifications 91

 //left and rightMultiplicity axioms
 comment = "%axioms for left and rightMultiplicity operators";
 fskipline(flink);
 frecordln(flink, comment);
 axiom = "leftMultiplicity(void(i), a" + targetname + "1) = 0;";
 frecordln(flink, axiom);
 axiom = "rightMultiplicity(void(i), a" + sourcename + "1) = 0;";
 frecordln(flink, axiom);

 axiom = "(a" + targetname + "1" + " \\eq " + "a" + targetname + "2) => ";
 axiom = axiom + "leftMultiplicity(addLink(" + linkname + "1, a" + sourcename + "2,
a" + targetname + "2),";
 axiom = axiom + "a" + targetname + "1) = leftMultiplicity("+ linkname + "1, a" +
targetname + "1) + 1;";
 frecordln(flink, axiom);

 axiom = "~(a" + targetname + "1" + " \\eq " + "a" + targetname + "2) => ";
 axiom = axiom + "leftMultiplicity(addLink(" + linkname + "1, a" + sourcename + "2,
a" + targetname + "2),";
 axiom = axiom + "a" + targetname + "1) = leftMultiplicity("+ linkname + "1, a" +
targetname + "1);";
 frecordln(flink, axiom);

 fskipline(flink);
 axiom = "(a" + sourcename + "1" + " \\eq " + "a" + sourcename + "2) => ";
 axiom = axiom + "rightMultiplicity(addLink(" + linkname + "1, a" + sourcename +
"2, a" + targetname + "2),";
 axiom = axiom + "a" + sourcename + "1) = rightMultiplicity("+ linkname + "1, a" +
sourcename + "1) + 1;";
 frecordln(flink, axiom);

 axiom = "~(a" + sourcename + "1" + " \\eq " + "a" + sourcename + "2) => ";
 axiom = axiom + "rightMultiplicity(addLink(" + linkname + "1, a" + sourcename +
"2, a" + targetname + "2),";
 axiom = axiom + "a" + sourcename + "1) = rightMultiplicity("+ linkname + "1, a" +
sourcename + "1);";
 frecordln(flink, axiom);

}

//Rule 7 states the axioms to recover the multiplicity values
//and axioms for multiplicity constraints
void rule7Assoc(ostream& flink, string linkname, string sourcename, string targetname,
OBJ unLinkUML)
{
 string comment, axiom, multsource, multtarget;

 //multiplicity constraints
 fskipline(flink);
 comment = "%axioms for multiplicity constraints: written only if multiplicity is
not free, i.e. different from 0 or More";
 frecordln(flink, comment);

 //recover the value for the properties multiplicity target and
 //multiplicity source of the link
 multsource = GtiNameOf(GtiGetMenu(unLinkUML, GtiSymbol("Multiplicity Source")));
 comment = "%source multiplicity is " + multsource;
 frecordln(flink, comment);
 multtarget = GtiNameOf(GtiGetMenu(unLinkUML, GtiSymbol("Multiplicity Target")));
 comment = "%target multiplicity is " + multtarget;
 frecordln(flink, comment);

 //axioms to state multiplicity constraints at the source end of the association
 if (multsource == "Just One") {
 axiom = "size(allLeftLink(" + linkname + "1, a" + targetname + "1))";
 axiom = axiom + " = 1;";
 frecordln(flink, axiom);}

Appendix B: Source Code

92 Formalization of UML using Algebraic Specifications

 else
 if (multsource == "Optional (0 or 1)") {
 axiom = "~(size(allLeftLink(" + linkname + "1, a" + targetname +
")) > 1;";
 frecordln(flink, axiom); }
 else
 if (multsource == "1 or more") {
 axiom = "~(size(allLeftLink(" + linkname + "1, a" +
targetname + ")) < 1;";
 frecordln(flink, axiom);
 };

 //axioms to state multiplicity constraints at the target end of the association

 if (multtarget == "Just One") {
 axiom = "size(allRightLink(" + linkname + "1, a" + sourcename + "1))";
 axiom = axiom + " = 1;";
 frecordln(flink, axiom); }
 else
 if (multtarget == "Optional (0 or 1)") {
 axiom = "~(size(allRightLink(" + linkname + "1, a" + sourcename +
")) > 1;";
 frecordln(flink, axiom); }

 else
 if (multtarget == "1 or more") {
 axiom = "~(size(allRightLink(" + linkname + "1, a" +
sourcename + ")) < 1;";
 frecordln(flink, axiom);
 };

 if (GtiClassSymbol(GtiClassOf(unLinkUML)) == GtiSymbol("Composition
Link"))
 rule4Composition(flink, linkname, sourcename, targetname);

}

//Rule 8 states the axioms for association identity
void rule8Assoc(ostream& flink, string linkname, string sourcename, string targetname)
{
 string comment, axiom;

 fskipline(flink);
 comment = "%axioms for association identity";
 frecordln(flink, comment);

 axiom = "identity(void(i)) = i;";
 frecordln(flink, axiom);
 axiom = "identity(addLink(" + linkname + "1" + ", " + "a" + sourcename + "1" + ",
";
 axiom = axiom + "a" + targetname + "1" + "))" + " = " + "identity" + "(" +
linkname + "1" + ");";
 frecordln(flink, axiom);
 axiom = linkname + "1" + " \\eq " + linkname + "2";
 axiom = axiom + " = " + "identity(" + linkname + "1" + ")" + " \\eq " +
"identity(" + linkname + "2" + ")";
 frecordln(flink, axiom);
}

//Rule 9 generates the sort Set for the source and target Class
//of the Association
void rule9Set(ostream& fset, string classname)
{
 string specname, comment, specvariables, specoperator, axiom;

 comment =
"%%%";
 frecordln(fset, comment);
 comment = "%specification of the type Set for " + classname + " Class ";

Appendix B: Source Code

Formalization of UML using Algebraic Specifications 93

 frecordln(fset, comment);
 comment = "%larch file: Set" + classname + ".lp";
 frecordln(fset, comment);
 comment =
"%%%";
 frecordln(fset, comment);
 fskipline(fset);
 fskipline(fset);

 //set name section starts the formal specification for the sort
 specname = "set name Set" + classname;
 frecordln(fset, specname);
 fskipline(fset);

 //declares used sorts
 specname = "declare sorts " + classname + ", " + "Set" + classname + ", Nat";
 frecordln(fset, specname);

 //declare variables
 specvariables = "declare variables ";
 frecord(fset, specvariables);
 specvariables = "a" + classname + "1, ";
 specvariables = specvariables + "a" + classname + "2";
 specvariables = specvariables + " : " + classname + ", ";
 frecord(fset, specvariables);
 specvariables = "set" + classname + "1" + ", set" + classname + "2 : Set" +
classname;
 frecordln(fset, specvariables);

 //declare operators for Set
 specname = "declare operators";
 frecordln(fset, specname);
 specoperator = "{} : -> Set" + classname;
 frecordln(fset, specoperator);
 specoperator = "{__} : " + classname + " -> " + "Set" + classname;
 frecordln(fset, specoperator);
 specoperator = "insert : " + classname + ", Set" + classname + " -> Set" +
classname;
 frecordln(fset, specoperator);
 specoperator = "__\\U__ : Set" + classname + ", Set" + classname + " -> Set" +
classname;
 frecordln(fset, specoperator);
 specoperator = "__\\in__ : " + classname + ", Set" + classname + " -> Bool";
 frecordln(fset, specoperator);
 specoperator = "__\\I__ : Set" + classname + ", Set" + classname + " -> Bool";
 frecordln(fset, specoperator);
 specoperator = "size : Set" + classname + " -> Nat";
 frecordln(fset, specoperator);

 //ends operators section
 endSection(fset);

 //axioms section
 axiom = "assert";
 fskipline(fset);
 frecordln(fset, axiom);
 //generators
 axiom = "sort Set" + classname + " generated by {}, insert;";
 frecordln(fset, axiom);
 fskipline(fset);

 //axioms for the operations
 axiom = "{a" + classname + "1} = insert(a" + classname + "1, {});";
 frecordln(fset, axiom);
 axiom = "~(a" + classname + "1 \\in {});";
 frecordln(fset, axiom);
 axiom = "a" + classname + "1 \\in insert(a" + classname + "2, set" + classname +
"1) <=> (a" + classname + "1";
 axiom = axiom + " \\eq a" + classname + "2 \\/ a" + classname + "1 \\in set" +
classname + "1);";
 frecordln(fset, axiom);

Appendix B: Source Code

94 Formalization of UML using Algebraic Specifications

 axiom = "{} \\I set" + classname + "1;";
 frecordln(fset, axiom);
 axiom = "insert(a" + classname + "1, set" + classname + "1) \\I set" + classname +
"2 <=> (a" + classname + "1";
 axiom = axiom + " \\in set" + classname + "2 /\\ set" + classname + "1 \\I set" +
classname + "2);";
 frecordln(fset, axiom);
 axiom = "a" + classname + "1 \\in (set" + classname + "1 \\U set" + classname +
"2) <=> (a" + classname + "1 \\in set" + classname + "1 \\/ a";
 axiom = axiom + classname + "1 \\in set" + classname + "2);";
 frecordln(fset, axiom);

 //axioms for the size operator
 fskipline(fset);
 comment = "% axioms for size operator";
 frecordln(fset, comment);
 axiom = "size({}) = 0;";
 frecordln(fset, axiom);
 axiom = "(a" + classname + "1 \\in set" + classname + "1) => size(insert(a" +
classname + "1, set" + classname + "1)) = size(set" + classname + "1);";
 frecordln(fset, axiom);
 axiom = "~(a" + classname + "1 \\in set" + classname + "1) => size(insert(a" +
classname + "1, set" + classname + "1)) = 1+size(set" + classname + "1);";
 frecordln(fset, axiom);

 //ends axioms section
 endSection(fset);
}

//Special Rules for Compositions
string rule1Composition(string linkname)
{
 string compname;

 compname = "Comp" + linkname;
 return compname;
}

//Special Rules for Compositions
string rule2Composition(string linkname, string sourcename, string targetname)
{
 string comment;

 comment = "%specification of the composition " + linkname + " between Classes: " +
sourcename + " and " + targetname;
 return comment;
}

//Special Rules for Compositions
void rule3Composition(ostream& flink, string linkname, string sourcename, string
targetname)
{

 string formaloperator, comment;

 fskipline(flink);
 comment = "%special operator for Composition";
 frecordln(flink, comment);

 formaloperator = "isPartOf : " + linkname + ", " + sourcename + ", " + targetname
+ " -> Bool";
 frecordln(flink, formaloperator);
}

//Special Rules for Compositions
void rule4Composition(ostream& flink, string linkname, string sourcename, string
targetname)
{

Appendix B: Source Code

Formalization of UML using Algebraic Specifications 95

 string axiom, comment;

 fskipline(flink);
 comment = "%special axioms for Composition";
 frecordln(flink, comment);

 axiom = "isPartOf(addLink(" + linkname + "1, a" + sourcename + "1, a" + targetname
+ "1), a" + sourcename + "2, a" + targetname + "2)";
 axiom = axiom + " => (a" + sourcename + "1 \\eq a" + sourcename + "2)";
 axiom = axiom + " /\\ (a" + targetname + "1 \\eq a" + targetname + "2);";
 frecordln(flink, axiom);

 axiom = "~(isPartOf(void(i), a" + sourcename + "1, a" + targetname + "1);";
 frecordln(flink, axiom);

 fskipline(flink);
 axiom = "~(a" + targetname + "1 \\eq a" + targetname + "2)";
 axiom = axiom + " => (isPartOf(" + linkname + "1, a" + sourcename + "1, a" +
targetname + "1) /\\";
 axiom = axiom + "(~(isPartOf(" + linkname + "1, a" + sourcename + "1, a" +
targetname + "2))))";
 axiom = axiom + " \\/ (isPartOf(" + linkname + "1, a" + sourcename + "1, a" +
targetname + "2) /\\";
 axiom = axiom + "(~(isPartOf(" + linkname + "1, a" + sourcename + "1, a" +
targetname + "1))));";

 frecordln(flink, axiom);
}

Appendix B: Source Code

96 Formalization of UML using Algebraic Specifications

Appendix C: Abstract Data Type of the Library System

Formalization of UML using Algebraic Specifications 97

%%%
%specification of the properties and behavior for the instances of
class Library
%larch file: Library.lp
%%%

set name Library

declare sorts Library, IdLibrary, SetLibrary, String
declare variables aLibrary1, aLibrary2 : Library, libName1, libName2 :
String
declare variables address1, address2 : String, telephone1, telephone2
: String, id : IdLibrary

declare operators
% generator
newLibrary : IdLibrary, String, String, String -> Library

% operations for identity and object equality
identity : Library -> IdLibrary
__\eq__ : Library, Library -> Bool

% accessors for the instance variables
getlibName : Library -> String
setlibName : Library, String -> Library
getaddress : Library -> String
setaddress : Library, String -> Library
gettelephone : Library -> String
settelephone : Library, String -> Library

% constants to represent examples of instances
oneLibrary : -> Library
anotherLibrary : -> Library

..
% axioms
assert
sort Library generated by newLibrary;
%axioms for identity
identity(newLibrary(id,libName1,address1,telephone1)) = id;

%axioms for the constants
oneLibrary= newLibrary((newIdLibrary),libName1,address1,telephone1);
anotherLibrary=
newLibrary((nextIdLibrary(newIdLibrary)),libName1,address1,telephone1);
% axiom to state the semantics for object equality
aLibrary1 \eq aLibrary2 = identity(aLibrary1) \eq identity(aLibrary2);

% axioms to state the semantics of the attribute accessors
getlibName(newLibrary(id, libName1, address1, telephone1)) = libName1;
setlibName(newLibrary(id, libName1, address1, telephone1),libName2) =
newLibrary(id, libName2, address1, telephone1);
getaddress(newLibrary(id, libName1, address1, telephone1)) = address1;
setaddress(newLibrary(id, libName1, address1, telephone1),address2) =
newLibrary(id, libName1, address2, telephone1);

Appendix C: Abstract Data Type of the Library System

98 Formalization of UML using Algebraic Specifications

gettelephone(newLibrary(id, libName1, address1, telephone1)) =
telephone1;
settelephone(newLibrary(id, libName1, address1, telephone1),telephone2)
= newLibrary(id, libName1, address1, telephone2);
..

%%%
%specification of the properties and behavior for the instances of
class User
%larch file: User.lp
%%%

set name User

declare sorts User, IdUser, SetUser, Boolean
declare variables aUser1, aUser2 : User, name1, name2 : String
declare variables address1, address2 : String, code1, code2 : Nat,
active1, active2 : Boolean, id : IdUser

declare operators
% generator
newUser : IdUser, String, String, Nat, Boolean -> User

% operations for identity and object equality
identity : User -> IdUser
__\eq__ : User, User -> Bool

% accessors for the instance variables
getname : User -> String
setname : User, String -> User
getaddress : User -> String
setaddress : User, String -> User
getcode : User -> Nat
setcode : User, Nat -> User
getactive : User -> Boolean
setactive : User, Boolean -> User

% constants to represent examples of instances
oneUser : -> User
anotherUser : -> User

..
% axioms
assert
sort User generated by newUser;
%axioms for identity
identity(newUser(id,name1,address1,code1,active1)) = id;

%axioms for the constants
oneUser= newUser((newIdUser),name1,address1,code1,active1);
anotherUser=
newUser((nextIdUser(newIdUser)),name1,address1,code1,active1);
% axiom to state the semantics for object equality
aUser1 \eq aUser2 = identity(aUser1) \eq identity(aUser2);

Appendix C: Abstract Data Type of the Library System

Formalization of UML using Algebraic Specifications 99

% axioms to state the semantics of the attribute accessors
getname(newUser(id, name1, address1, code1, active1)) = name1;
setname(newUser(id, name1, address1, code1, active1),name2) =
newUser(id, name2, address1, code1, active1);
getaddress(newUser(id, name1, address1, code1, active1)) = address1;
setaddress(newUser(id, name1, address1, code1, active1),address2) =
newUser(id, name1, address2, code1, active1);
getcode(newUser(id, name1, address1, code1, active1)) = code1;
setcode(newUser(id, name1, address1, code1, active1),code2) =
newUser(id, name1, address1, code2, active1);
getactive(newUser(id, name1, address1, code1, active1)) = active1;
setactive(newUser(id, name1, address1, code1, active1),active2) =
newUser(id, name1, address1, code1, active2);
..

%%%
%specification of the properties and behavior for the instances of
class Publication
%larch file: Publication.lp
%%%

set name Publication

declare sorts Publication, IdPublication, SetPublication, String
declare variables aPublication1, aPublication2 : Publication, title1,
title2 : String
declare variables author1, author2 : String, publishingHouse1,
publishingHouse2 : String, id : IdPublication

declare operators
% generator
newPublication : IdPublication, String, String, String -> Publication

% operations for identity and object equality
identity : Publication -> IdPublication
__\eq__ : Publication, Publication -> Bool

% accessors for the instance variables
gettitle : Publication -> String
settitle : Publication, String -> Publication
getauthor : Publication -> String
setauthor : Publication, String -> Publication
getpublishingHouse : Publication -> String
setpublishingHouse : Publication, String -> Publication

% constants to represent examples of instances
onePublication : -> Publication
anotherPublication : -> Publication

..
% axioms
assert
sort Publication generated by newPublication;
%axioms for identity
identity(newPublication(id,title1,author1,publishingHouse1)) = id;

Appendix C: Abstract Data Type of the Library System

100 Formalization of UML using Algebraic Specifications

%axioms for the constants
onePublication=
newPublication((newIdPublication),title1,author1,publishingHouse1);
anotherPublication=
newPublication((nextIdPublication(newIdPublication)),title1,author1,pub
lishingHouse1);
% axiom to state the semantics for object equality
aPublication1 \eq aPublication2 = identity(aPublication1) \eq
identity(aPublication2);

% axioms to state the semantics of the attribute accessors
gettitle(newPublication(id, title1, author1, publishingHouse1)) =
title1;
settitle(newPublication(id, title1, author1, publishingHouse1),title2)
= newPublication(id, title2, author1, publishingHouse1);
getauthor(newPublication(id, title1, author1, publishingHouse1)) =
author1;
setauthor(newPublication(id, title1, author1,
publishingHouse1),author2) = newPublication(id, title1, author2,
publishingHouse1);
getpublishingHouse(newPublication(id, title1, author1,
publishingHouse1)) = publishingHouse1;
setpublishingHouse(newPublication(id, title1, author1,
publishingHouse1),publishingHouse2) = newPublication(id, title1,
author1, publishingHouse2);
..

%%%
%specification of the properties and behavior for the instances of
class Copy
%larch file: Copy.lp
%%%

set name Copy

declare sorts Copy, IdCopy, SetCopy, Nat
declare variables aCopy1, aCopy2 : Copy, copyNumber1, copyNumber2 :
Nat
declare variables , id : IdCopy

declare operators
% generator
newCopy : IdCopy, Nat -> Copy

% operations for identity and object equality
identity : Copy -> IdCopy
__\eq__ : Copy, Copy -> Bool

% accessors for the instance variables
getcopyNumber : Copy -> Nat
setcopyNumber : Copy, Nat -> Copy

% constants to represent examples of instances
oneCopy : -> Copy
anotherCopy : -> Copy

Appendix C: Abstract Data Type of the Library System

Formalization of UML using Algebraic Specifications 101

..
% axioms
assert
sort Copy generated by newCopy;
%axioms for identity
identity(newCopy(id,copyNumber1)) = id;

%axioms for the constants
oneCopy= newCopy((newIdCopy),copyNumber1);
anotherCopy= newCopy((nextIdCopy(newIdCopy)),copyNumber1);
% axiom to state the semantics for object equality
aCopy1 \eq aCopy2 = identity(aCopy1) \eq identity(aCopy2);

% axioms to state the semantics of the attribute accessors
getcopyNumber(newCopy(id, copyNumber1)) = copyNumber1;
setcopyNumber(newCopy(id, copyNumber1),copyNumber2) = newCopy(id,
copyNumber2);
..

%%%
%specification of the properties and behavior for the instances of
class Loan
%larch file: Loan.lp
%%%

set name Loan

declare sorts Loan, IdLoan, SetLoan, Nat
declare variables aLoan1, aLoan2 : Loan, numberLoan1, numberLoan2 :
Nat
declare variables situation1, situation2 : Boolean, duration1,
duration2 : Nat, id : IdLoan

declare operators
% generator
newLoan : IdLoan, Nat, Boolean, Nat -> Loan

% operations for identity and object equality
identity : Loan -> IdLoan
__\eq__ : Loan, Loan -> Bool

% accessors for the instance variables
getnumberLoan : Loan -> Nat
setnumberLoan : Loan, Nat -> Loan
getsituation : Loan -> Boolean
setsituation : Loan, Boolean -> Loan
getduration : Loan -> Nat
setduration : Loan, Nat -> Loan

% constants to represent examples of instances
oneLoan : -> Loan
anotherLoan : -> Loan

..
% axioms

Appendix C: Abstract Data Type of the Library System

102 Formalization of UML using Algebraic Specifications

assert
sort Loan generated by newLoan;
%axioms for identity
identity(newLoan(id,numberLoan1,situation1,duration1)) = id;

%axioms for the constants
oneLoan= newLoan((newIdLoan),numberLoan1,situation1,duration1);
anotherLoan=
newLoan((nextIdLoan(newIdLoan)),numberLoan1,situation1,duration1);
% axiom to state the semantics for object equality
aLoan1 \eq aLoan2 = identity(aLoan1) \eq identity(aLoan2);

% axioms to state the semantics of the attribute accessors
getnumberLoan(newLoan(id, numberLoan1, situation1, duration1)) =
numberLoan1;
setnumberLoan(newLoan(id, numberLoan1, situation1,
duration1),numberLoan2) = newLoan(id, numberLoan2, situation1,
duration1);
getsituation(newLoan(id, numberLoan1, situation1, duration1)) =
situation1;
setsituation(newLoan(id, numberLoan1, situation1,
duration1),situation2) = newLoan(id, numberLoan1, situation2,
duration1);
getduration(newLoan(id, numberLoan1, situation1, duration1)) =
duration1;
setduration(newLoan(id, numberLoan1, situation1, duration1),duration2)
= newLoan(id, numberLoan1, situation1, duration2);
..

%%%
%specification of the properties and behavior for the instances of
class LocalUse
%larch file: LocalUse.lp
%%%

set name LocalUse

declare sorts LocalUse, IdLocalUse, SetLocalUse, Nat
declare variables aLocalUse1, aLocalUse2 : LocalUse, hours1, hours2 :
Nat
declare variables , id : IdLocalUse

declare operators
% generator
newLocalUse : IdLocalUse, Nat -> LocalUse

% operations for identity and object equality
identity : LocalUse -> IdLocalUse
__\eq__ : LocalUse, LocalUse -> Bool

% accessors for the instance variables
gethours : LocalUse -> Nat
sethours : LocalUse, Nat -> LocalUse

% constants to represent examples of instances
oneLocalUse : -> LocalUse

Appendix C: Abstract Data Type of the Library System

Formalization of UML using Algebraic Specifications 103

anotherLocalUse : -> LocalUse

..

% axioms
assert
sort LocalUse generated by newLocalUse;
%axioms for identity
identity(newLocalUse(id,hours1)) = id;

%axioms for the constants
oneLocalUse= newLocalUse((newIdLocalUse),hours1);
anotherLocalUse= newLocalUse((nextIdLocalUse(newIdLocalUse)),hours1);
% axiom to state the semantics for object equality
aLocalUse1 \eq aLocalUse2 = identity(aLocalUse1) \eq
identity(aLocalUse2);

% axioms to state the semantics of the attribute accessors
gethours(newLocalUse(id, hours1)) = hours1;
sethours(newLocalUse(id, hours1),hours2) = newLocalUse(id, hours2);
..

%%%
%specification of the association LibUse between Classes: Loan and User
%larch file: LibUse.lp
%%%

set name LibUse

declare sorts LibUse, Loan, User, Nat, SetLoan, SetUser
declare variables LibUse1, LibUse2 : LibUse, aLoan1, aLoan2 : Loan,
aUser1, aUser2 : User
declare variables SetLoan1, SetLoan2 : SetLoan, SetUser1, SetUser2 :
SetUser, i : Nat

declare operators
%generator of an empty association
void : Nat -> LibUse

%association identity
identity : LibUse -> Nat
__\eq__ : LibUse, LibUse -> Bool

%operators to create and remove links
addLink : LibUse, Loan, User -> LibUse
removeLink : LibUse, Loan, User -> LibUse

%operator to test if two instances are linked
isLinked : LibUse, Loan, User -> Bool

%operator to test if one instance is linked
isLeftLinked : LibUse, User -> Bool
isRightLinked : LibUse, Loan -> Bool

%operator to test if the association is Empty

Appendix C: Abstract Data Type of the Library System

104 Formalization of UML using Algebraic Specifications

isEmpty : LibUse -> Bool

%operator to return the Set of instances linked to a given instance
allLeftLink : LibUse, User -> SetLoan
allRightLink : LibUse, Loan -> SetUser

%operators for multiplicity values
leftMultiplicity : LibUse, User -> Nat
rightMultiplicity : LibUse, Loan -> Nat
..

% axioms
assert
sort LibUse generated by void, addLink;

%axiom to state that tuples of instance values cannot be equal in an
association
(aLoan1 \eq aLoan2) /\ (aUser1 \eq aUser2) => addLink(addLink(LibUse1,
aLoan1, aUser1), aLoan2, aUser2) = addLink(LibUse1, aLoan1, aUser1);

%axioms for the isEmpty operation
isEmpty(void(i));
~(isEmpty(addLink(LibUse1, aLoan1, aUser1)));

%state when two instances of object types are linked
~(isLinked(void(i),aLoan1, aUser1));
isLinked(addLink(LibUse1, aLoan1, aUser1),aLoan2, aUser2) = ((aLoan1
\eq aLoan2 /\ aUser1 \eq aUser2) \/ isLinked(LibUse1, aLoan2, aUser2));

%state the semantics for the operations allLeftLink and allRightLink
through addLink generator
(aUser1 \eq aUser2) => allLeftLink(addLink(LibUse1, aLoan1, aUser2),
aUser1) = insert(aLoan1, allLeftLink(LibUse1, aUser1));
(aLoan1 \eq aLoan2) => allRightLink(addLink(LibUse1, aLoan2, aUser1),
aLoan1) = insert(aUser1, allRightLink(LibUse1, aLoan1));
~(aUser1 \eq aUser2) => allLeftLink(addLink(LibUse1, aLoan1, aUser2),
aUser1) = allLeftLink(LibUse1, aUser1);
~(aLoan1 \eq aLoan2) => allRightLink(addLink(LibUse1, aLoan2, aUser1),
aLoan1) = allRightLink(LibUse1, aLoan1);

%state the semantics for allLeftLink and allRightLink through void
generator
allLeftLink(void(i), aUser1) = {}: SetUser;
allRightLink(void(i), aLoan1) = {}: SetLoan;

%state when one instance is linked through the association
~(isLeftLinked(void(i), aUser1));
~(isRightLinked(void(i), aLoan1));
isLeftLinked(addLink(LibUse1, aLoan1, aUser1), aUser2) = ((aUser1 \eq
aUser2) \/ isLeftLinked(LibUse1, aUser2));
isRightLinked(addLink(LibUse1, aLoan1, aUser1), aLoan2) = ((aLoan1 \eq
aLoan2) \/ isRightLinked(LibUse1, aLoan2));

%axioms for left and rightMultiplicity operators
leftMultiplicity(void(i), aUser1) = 0;
rightMultiplicity(void(i), aLoan1) = 0;

Appendix C: Abstract Data Type of the Library System

Formalization of UML using Algebraic Specifications 105

(aUser1 \eq aUser2) => leftMultiplicity(addLink(LibUse1, aLoan2,
aUser2),aUser1) = leftMultiplicity(LibUse1, aUser1) + 1;
~(aUser1 \eq aUser2) => leftMultiplicity(addLink(LibUse1, aLoan2,
aUser2),aUser1) = leftMultiplicity(LibUse1, aUser1);

(aLoan1 \eq aLoan2) => rightMultiplicity(addLink(LibUse1, aLoan2,
aUser2),aLoan1) = rightMultiplicity(LibUse1, aLoan1) + 1;
~(aLoan1 \eq aLoan2) => rightMultiplicity(addLink(LibUse1, aLoan2,
aUser2),aLoan1) = rightMultiplicity(LibUse1, aLoan1);

%axioms for multiplicity constraints: written only if multiplicity is
not free, i.e. different from 0 or More
%source multiplicity is Just One
%target multiplicity is Many (0 or plus)
size(allLeftLink(LibUse1, aUser1)) = 1;

%axioms for association identity
identity(void(i)) = i;
identity(addLink(LibUse1, aLoan1, aUser1)) = identity(LibUse1);
LibUse1 \eq LibUse2 = identity(LibUse1) \eq identity(LibUse2)
..

%%%
%specification of the association LoaUse between Classes: Loan and User
%larch file: LoaUse.lp
%%%

set name LoaUse

declare sorts LoaUse, Loan, User, Nat, SetLoan, SetUser
declare variables LoaUse1, LoaUse2 : LoaUse, aLoan1, aLoan2 : Loan,
aUser1, aUser2 : User
declare variables SetLoan1, SetLoan2 : SetLoan, SetUser1, SetUser2 :
SetUser, i : Nat

declare operators
%generator of an empty association
void : Nat -> LoaUse

%association identity
identity : LoaUse -> Nat
__\eq__ : LoaUse, LoaUse -> Bool

%operators to create and remove links
addLink : LoaUse, Loan, User -> LoaUse
removeLink : LoaUse, Loan, User -> LoaUse

%operator to test if two instances are linked
isLinked : LoaUse, Loan, User -> Bool

%operator to test if one instance is linked
isLeftLinked : LoaUse, User -> Bool
isRightLinked : LoaUse, Loan -> Bool

%operator to test if the association is Empty
isEmpty : LoaUse -> Bool

Appendix C: Abstract Data Type of the Library System

106 Formalization of UML using Algebraic Specifications

%operator to return the Set of instances linked to a given instance
allLeftLink : LoaUse, User -> SetLoan
allRightLink : LoaUse, Loan -> SetUser

%operators for multiplicity values
leftMultiplicity : LoaUse, User -> Nat
rightMultiplicity : LoaUse, Loan -> Nat
..

% axioms
assert
sort LoaUse generated by void, addLink;

%axiom to state that tuples of instance values cannot be equal in an
association
(aLoan1 \eq aLoan2) /\ (aUser1 \eq aUser2) => addLink(addLink(LoaUse1,
aLoan1, aUser1), aLoan2, aUser2) = addLink(LoaUse1, aLoan1, aUser1);

%axioms for the isEmpty operation
isEmpty(void(i));
~(isEmpty(addLink(LoaUse1, aLoan1, aUser1)));

%state when two instances of object types are linked
~(isLinked(void(i),aLoan1, aUser1));
isLinked(addLink(LoaUse1, aLoan1, aUser1),aLoan2, aUser2) = ((aLoan1
\eq aLoan2 /\ aUser1 \eq aUser2) \/ isLinked(LoaUse1, aLoan2, aUser2));

%state the semantics for the operations allLeftLink and allRightLink
through addLink generator
(aUser1 \eq aUser2) => allLeftLink(addLink(LoaUse1, aLoan1, aUser2),
aUser1) = insert(aLoan1, allLeftLink(LoaUse1, aUser1));
(aLoan1 \eq aLoan2) => allRightLink(addLink(LoaUse1, aLoan2, aUser1),
aLoan1) = insert(aUser1, allRightLink(LoaUse1, aLoan1));
~(aUser1 \eq aUser2) => allLeftLink(addLink(LoaUse1, aLoan1, aUser2),
aUser1) = allLeftLink(LoaUse1, aUser1);
~(aLoan1 \eq aLoan2) => allRightLink(addLink(LoaUse1, aLoan2, aUser1),
aLoan1) = allRightLink(LoaUse1, aLoan1);

%state the semantics for allLeftLink and allRightLink through void
generator
allLeftLink(void(i), aUser1) = {}: SetUser;
allRightLink(void(i), aLoan1) = {}: SetLoan;

%state when one instance is linked through the association
~(isLeftLinked(void(i), aUser1));
~(isRightLinked(void(i), aLoan1));
isLeftLinked(addLink(LoaUse1, aLoan1, aUser1), aUser2) = ((aUser1 \eq
aUser2) \/ isLeftLinked(LoaUse1, aUser2));
isRightLinked(addLink(LoaUse1, aLoan1, aUser1), aLoan2) = ((aLoan1 \eq
aLoan2) \/ isRightLinked(LoaUse1, aLoan2));

%axioms for left and rightMultiplicity operators
leftMultiplicity(void(i), aUser1) = 0;
rightMultiplicity(void(i), aLoan1) = 0;
(aUser1 \eq aUser2) => leftMultiplicity(addLink(LoaUse1, aLoan2,
aUser2),aUser1) = leftMultiplicity(LoaUse1, aUser1) + 1;

Appendix C: Abstract Data Type of the Library System

Formalization of UML using Algebraic Specifications 107

~(aUser1 \eq aUser2) => leftMultiplicity(addLink(LoaUse1, aLoan2,
aUser2),aUser1) = leftMultiplicity(LoaUse1, aUser1);

(aLoan1 \eq aLoan2) => rightMultiplicity(addLink(LoaUse1, aLoan2,
aUser2),aLoan1) = rightMultiplicity(LoaUse1, aLoan1) + 1;
~(aLoan1 \eq aLoan2) => rightMultiplicity(addLink(LoaUse1, aLoan2,
aUser2),aLoan1) = rightMultiplicity(LoaUse1, aLoan1);

%axioms for multiplicity constraints: written only if multiplicity is
not free, i.e. different from 0 or More
%source multiplicity is Many (0 or plus)
%target multiplicity is Just One
size(allRightLink(LoaUse1, aLoan1)) = 1;

%axioms for association identity
identity(void(i)) = i;
identity(addLink(LoaUse1, aLoan1, aUser1)) = identity(LoaUse1);
LoaUse1 \eq LoaUse2 = identity(LoaUse1) \eq identity(LoaUse2)
..

%%%
%specification of the association LocUse between Classes: Loan and User
%larch file: LocUse.lp
%%%

set name LocUse

declare sorts LocUse, Loan, User, Nat, SetLoan, SetUser
declare variables LocUse1, LocUse2 : LocUse, aLoan1, aLoan2 : Loan,
aUser1, aUser2 : User
declare variables SetLoan1, SetLoan2 : SetLoan, SetUser1, SetUser2 :
SetUser, i : Nat

declare operators
%generator of an empty association
void : Nat -> LocUse

%association identity
identity : LocUse -> Nat
__\eq__ : LocUse, LocUse -> Bool

%operators to create and remove links
addLink : LocUse, Loan, User -> LocUse
removeLink : LocUse, Loan, User -> LocUse

%operator to test if two instances are linked
isLinked : LocUse, Loan, User -> Bool

%operator to test if one instance is linked
isLeftLinked : LocUse, User -> Bool
isRightLinked : LocUse, Loan -> Bool

%operator to test if the association is Empty
isEmpty : LocUse -> Bool

Appendix C: Abstract Data Type of the Library System

108 Formalization of UML using Algebraic Specifications

%operator to return the Set of instances linked to a given instance
allLeftLink : LocUse, User -> SetLoan
allRightLink : LocUse, Loan -> SetUser

%operators for multiplicity values
leftMultiplicity : LocUse, User -> Nat
rightMultiplicity : LocUse, Loan -> Nat
..

% axioms
assert
sort LocUse generated by void, addLink;

%axiom to state that tuples of instance values cannot be equal in an
association
(aLoan1 \eq aLoan2) /\ (aUser1 \eq aUser2) => addLink(addLink(LocUse1,
aLoan1, aUser1), aLoan2, aUser2) = addLink(LocUse1, aLoan1, aUser1);

%axioms for the isEmpty operation
isEmpty(void(i));
~(isEmpty(addLink(LocUse1, aLoan1, aUser1)));

%state when two instances of object types are linked
~(isLinked(void(i),aLoan1, aUser1));
isLinked(addLink(LocUse1, aLoan1, aUser1),aLoan2, aUser2) = ((aLoan1
\eq aLoan2 /\ aUser1 \eq aUser2) \/ isLinked(LocUse1, aLoan2, aUser2));

%state the semantics for the operations allLeftLink and allRightLink
through addLink generator
(aUser1 \eq aUser2) => allLeftLink(addLink(LocUse1, aLoan1, aUser2),
aUser1) = insert(aLoan1, allLeftLink(LocUse1, aUser1));
(aLoan1 \eq aLoan2) => allRightLink(addLink(LocUse1, aLoan2, aUser1),
aLoan1) = insert(aUser1, allRightLink(LocUse1, aLoan1));
~(aUser1 \eq aUser2) => allLeftLink(addLink(LocUse1, aLoan1, aUser2),
aUser1) = allLeftLink(LocUse1, aUser1);
~(aLoan1 \eq aLoan2) => allRightLink(addLink(LocUse1, aLoan2, aUser1),
aLoan1) = allRightLink(LocUse1, aLoan1);

%state the semantics for allLeftLink and allRightLink through void
generator
allLeftLink(void(i), aUser1) = {}: SetUser;
allRightLink(void(i), aLoan1) = {}: SetLoan;

%state when one instance is linked through the association
~(isLeftLinked(void(i), aUser1));
~(isRightLinked(void(i), aLoan1));
isLeftLinked(addLink(LocUse1, aLoan1, aUser1), aUser2) = ((aUser1 \eq
aUser2) \/ isLeftLinked(LocUse1, aUser2));
isRightLinked(addLink(LocUse1, aLoan1, aUser1), aLoan2) = ((aLoan1 \eq
aLoan2) \/ isRightLinked(LocUse1, aLoan2));

%axioms for left and rightMultiplicity operators
leftMultiplicity(void(i), aUser1) = 0;
rightMultiplicity(void(i), aLoan1) = 0;
(aUser1 \eq aUser2) => leftMultiplicity(addLink(LocUse1, aLoan2,
aUser2),aUser1) = leftMultiplicity(LocUse1, aUser1) + 1;

Appendix C: Abstract Data Type of the Library System

Formalization of UML using Algebraic Specifications 109

~(aUser1 \eq aUser2) => leftMultiplicity(addLink(LocUse1, aLoan2,
aUser2),aUser1) = leftMultiplicity(LocUse1, aUser1);

(aLoan1 \eq aLoan2) => rightMultiplicity(addLink(LocUse1, aLoan2,
aUser2),aLoan1) = rightMultiplicity(LocUse1, aLoan1) + 1;
~(aLoan1 \eq aLoan2) => rightMultiplicity(addLink(LocUse1, aLoan2,
aUser2),aLoan1) = rightMultiplicity(LocUse1, aLoan1);

%axioms for multiplicity constraints: written only if multiplicity is
not free, i.e. different from 0 or More
%source multiplicity is Many (0 or plus)
%target multiplicity is Just One
size(allRightLink(LocUse1, aLoan1)) = 1;

%axioms for association identity
identity(void(i)) = i;
identity(addLink(LocUse1, aLoan1, aUser1)) = identity(LocUse1);
LocUse1 \eq LocUse2 = identity(LocUse1) \eq identity(LocUse2)
..

%%%
%specification of the association PubCop between Classes: Publication
and Copy
%larch file: PubCop.lp
%%%

set name PubCop

declare sorts PubCop, Publication, Copy, Nat, SetPublication, SetCopy
declare variables PubCop1, PubCop2 : PubCop, aPublication1,
aPublication2 : Publication, aCopy1, aCopy2 : Copy
declare variables SetPublication1, SetPublication2 : SetPublication,
SetCopy1, SetCopy2 : SetCopy, i : Nat

declare operators
%generator of an empty association
void : Nat -> PubCop

%association identity
identity : PubCop -> Nat
__\eq__ : PubCop, PubCop -> Bool

%operators to create and remove links
addLink : PubCop, Publication, Copy -> PubCop
removeLink : PubCop, Publication, Copy -> PubCop

%operator to test if two instances are linked
isLinked : PubCop, Publication, Copy -> Bool

%operator to test if one instance is linked
isLeftLinked : PubCop, Copy -> Bool
isRightLinked : PubCop, Publication -> Bool

%operator to test if the association is Empty
isEmpty : PubCop -> Bool

Appendix C: Abstract Data Type of the Library System

110 Formalization of UML using Algebraic Specifications

%operator to return the Set of instances linked to a given instance
allLeftLink : PubCop, Copy -> SetPublication
allRightLink : PubCop, Publication -> SetCopy

%operators for multiplicity values
leftMultiplicity : PubCop, Copy -> Nat
rightMultiplicity : PubCop, Publication -> Nat
..

% axioms
assert
sort PubCop generated by void, addLink;

%axiom to state that tuples of instance values cannot be equal in an
association
(aPublication1 \eq aPublication2) /\ (aCopy1 \eq aCopy2) =>
addLink(addLink(PubCop1, aPublication1, aCopy1), aPublication2, aCopy2)
= addLink(PubCop1, aPublication1, aCopy1);

%axioms for the isEmpty operation
isEmpty(void(i));
~(isEmpty(addLink(PubCop1, aPublication1, aCopy1)));

%state when two instances of object types are linked
~(isLinked(void(i),aPublication1, aCopy1));
isLinked(addLink(PubCop1, aPublication1, aCopy1),aPublication2, aCopy2)
= ((aPublication1 \eq aPublication2 /\ aCopy1 \eq aCopy2) \/
isLinked(PubCop1, aPublication2, aCopy2));

%state the semantics for the operations allLeftLink and allRightLink
through addLink generator
(aCopy1 \eq aCopy2) => allLeftLink(addLink(PubCop1, aPublication1,
aCopy2), aCopy1) = insert(aPublication1, allLeftLink(PubCop1, aCopy1));
(aPublication1 \eq aPublication2) => allRightLink(addLink(PubCop1,
aPublication2, aCopy1), aPublication1) = insert(aCopy1,
allRightLink(PubCop1, aPublication1));
~(aCopy1 \eq aCopy2) => allLeftLink(addLink(PubCop1, aPublication1,
aCopy2), aCopy1) = allLeftLink(PubCop1, aCopy1);
~(aPublication1 \eq aPublication2) => allRightLink(addLink(PubCop1,
aPublication2, aCopy1), aPublication1) = allRightLink(PubCop1,
aPublication1);

%state the semantics for allLeftLink and allRightLink through void
generator
allLeftLink(void(i), aCopy1) = {}: SetCopy;
allRightLink(void(i), aPublication1) = {}: SetPublication;

%state when one instance is linked through the association
~(isLeftLinked(void(i), aCopy1));
~(isRightLinked(void(i), aPublication1));
isLeftLinked(addLink(PubCop1, aPublication1, aCopy1), aCopy2) =
((aCopy1 \eq aCopy2) \/ isLeftLinked(PubCop1, aCopy2));
isRightLinked(addLink(PubCop1, aPublication1, aCopy1), aPublication2) =
((aPublication1 \eq aPublication2) \/ isRightLinked(PubCop1,
aPublication2));

Appendix C: Abstract Data Type of the Library System

Formalization of UML using Algebraic Specifications 111

%axioms for left and rightMultiplicity operators
leftMultiplicity(void(i), aCopy1) = 0;
rightMultiplicity(void(i), aPublication1) = 0;
(aCopy1 \eq aCopy2) => leftMultiplicity(addLink(PubCop1, aPublication2,
aCopy2),aCopy1) = leftMultiplicity(PubCop1, aCopy1) + 1;
~(aCopy1 \eq aCopy2) => leftMultiplicity(addLink(PubCop1,
aPublication2, aCopy2),aCopy1) = leftMultiplicity(PubCop1, aCopy1);

(aPublication1 \eq aPublication2) => rightMultiplicity(addLink(PubCop1,
aPublication2, aCopy2),aPublication1) = rightMultiplicity(PubCop1,
aPublication1) + 1;
~(aPublication1 \eq aPublication2) =>
rightMultiplicity(addLink(PubCop1, aPublication2,
aCopy2),aPublication1) = rightMultiplicity(PubCop1, aPublication1);

%axioms for multiplicity constraints: written only if multiplicity is
not free, i.e. different from 0 or More
%source multiplicity is Just One
%target multiplicity is 1 or more
size(allLeftLink(PubCop1, aCopy1)) = 1;
~(size(allRightLink(PubCop1, aPublication)) < 1;

%axioms for association identity
identity(void(i)) = i;
identity(addLink(PubCop1, aPublication1, aCopy1)) = identity(PubCop1);
PubCop1 \eq PubCop2 = identity(PubCop1) \eq identity(PubCop2)
..

%%%
%specification of the association PubLib between Classes: Publication
and Library
%larch file: PubLib.lp
%%%

set name PubLib

declare sorts PubLib, Publication, Library, Nat, SetPublication,
SetLibrary
declare variables PubLib1, PubLib2 : PubLib, aPublication1,
aPublication2 : Publication, aLibrary1, aLibrary2 : Library
declare variables SetPublication1, SetPublication2 : SetPublication,
SetLibrary1, SetLibrary2 : SetLibrary, i : Nat

declare operators
%generator of an empty association
void : Nat -> PubLib

%association identity
identity : PubLib -> Nat
__\eq__ : PubLib, PubLib -> Bool

%operators to create and remove links
addLink : PubLib, Publication, Library -> PubLib
removeLink : PubLib, Publication, Library -> PubLib

Appendix C: Abstract Data Type of the Library System

112 Formalization of UML using Algebraic Specifications

%operator to test if two instances are linked
isLinked : PubLib, Publication, Library -> Bool

%operator to test if one instance is linked
isLeftLinked : PubLib, Library -> Bool
isRightLinked : PubLib, Publication -> Bool

%operator to test if the association is Empty
isEmpty : PubLib -> Bool

%operator to return the Set of instances linked to a given instance
allLeftLink : PubLib, Library -> SetPublication
allRightLink : PubLib, Publication -> SetLibrary

%operators for multiplicity values
leftMultiplicity : PubLib, Library -> Nat
rightMultiplicity : PubLib, Publication -> Nat
..

% axioms
assert
sort PubLib generated by void, addLink;

%axiom to state that tuples of instance values cannot be equal in an
association
(aPublication1 \eq aPublication2) /\ (aLibrary1 \eq aLibrary2) =>
addLink(addLink(PubLib1, aPublication1, aLibrary1), aPublication2,
aLibrary2) = addLink(PubLib1, aPublication1, aLibrary1);

%axioms for the isEmpty operation
isEmpty(void(i));
~(isEmpty(addLink(PubLib1, aPublication1, aLibrary1)));

%state when two instances of object types are linked
~(isLinked(void(i),aPublication1, aLibrary1));
isLinked(addLink(PubLib1, aPublication1, aLibrary1),aPublication2,
aLibrary2) = ((aPublication1 \eq aPublication2 /\ aLibrary1 \eq
aLibrary2) \/ isLinked(PubLib1, aPublication2, aLibrary2));

%state the semantics for the operations allLeftLink and allRightLink
through addLink generator
(aLibrary1 \eq aLibrary2) => allLeftLink(addLink(PubLib1,
aPublication1, aLibrary2), aLibrary1) = insert(aPublication1,
allLeftLink(PubLib1, aLibrary1));
(aPublication1 \eq aPublication2) => allRightLink(addLink(PubLib1,
aPublication2, aLibrary1), aPublication1) = insert(aLibrary1,
allRightLink(PubLib1, aPublication1));
~(aLibrary1 \eq aLibrary2) => allLeftLink(addLink(PubLib1,
aPublication1, aLibrary2), aLibrary1) = allLeftLink(PubLib1,
aLibrary1);
~(aPublication1 \eq aPublication2) => allRightLink(addLink(PubLib1,
aPublication2, aLibrary1), aPublication1) = allRightLink(PubLib1,
aPublication1);

%state the semantics for allLeftLink and allRightLink through void
generator
allLeftLink(void(i), aLibrary1) = {}: SetLibrary;

Appendix C: Abstract Data Type of the Library System

Formalization of UML using Algebraic Specifications 113

allRightLink(void(i), aPublication1) = {}: SetPublication;

%state when one instance is linked through the association
~(isLeftLinked(void(i), aLibrary1));
~(isRightLinked(void(i), aPublication1));
isLeftLinked(addLink(PubLib1, aPublication1, aLibrary1), aLibrary2) =
((aLibrary1 \eq aLibrary2) \/ isLeftLinked(PubLib1, aLibrary2));
isRightLinked(addLink(PubLib1, aPublication1, aLibrary1),
aPublication2) = ((aPublication1 \eq aPublication2) \/
isRightLinked(PubLib1, aPublication2));

%axioms for left and rightMultiplicity operators
leftMultiplicity(void(i), aLibrary1) = 0;
rightMultiplicity(void(i), aPublication1) = 0;
(aLibrary1 \eq aLibrary2) => leftMultiplicity(addLink(PubLib1,
aPublication2, aLibrary2),aLibrary1) = leftMultiplicity(PubLib1,
aLibrary1) + 1;
~(aLibrary1 \eq aLibrary2) => leftMultiplicity(addLink(PubLib1,
aPublication2, aLibrary2),aLibrary1) = leftMultiplicity(PubLib1,
aLibrary1);

(aPublication1 \eq aPublication2) => rightMultiplicity(addLink(PubLib1,
aPublication2, aLibrary2),aPublication1) = rightMultiplicity(PubLib1,
aPublication1) + 1;
~(aPublication1 \eq aPublication2) =>
rightMultiplicity(addLink(PubLib1, aPublication2,
aLibrary2),aPublication1) = rightMultiplicity(PubLib1, aPublication1);

%axioms for multiplicity constraints: written only if multiplicity is
not free, i.e. different from 0 or More
%source multiplicity is Many (0 or plus)
%target multiplicity is Just One
size(allRightLink(PubLib1, aPublication1)) = 1;

%axioms for association identity
identity(void(i)) = i;
identity(addLink(PubLib1, aPublication1, aLibrary1)) =
identity(PubLib1);
PubLib1 \eq PubLib2 = identity(PubLib1) \eq identity(PubLib2)
..

%%%
%specification of the composition CompCopLoa between Classes: Copy and
Loan
%larch file: CompCopLoa.lp
%%%

set name CompCopLoa

declare sorts CompCopLoa, Copy, Loan, Nat, SetCopy, SetLoan
declare variables CompCopLoa1, CompCopLoa2 : CompCopLoa, aCopy1, aCopy2
: Copy, aLoan1, aLoan2 : Loan
declare variables SetCopy1, SetCopy2 : SetCopy, SetLoan1, SetLoan2 :
SetLoan, i : Nat

Appendix C: Abstract Data Type of the Library System

114 Formalization of UML using Algebraic Specifications

declare operators
%generator of an empty association
void : Nat -> CompCopLoa

%association identity
identity : CompCopLoa -> Nat
__\eq__ : CompCopLoa, CompCopLoa -> Bool

%operators to create and remove links
addLink : CompCopLoa, Copy, Loan -> CompCopLoa
removeLink : CompCopLoa, Copy, Loan -> CompCopLoa

%operator to test if two instances are linked
isLinked : CompCopLoa, Copy, Loan -> Bool

%operator to test if one instance is linked
isLeftLinked : CompCopLoa, Loan -> Bool
isRightLinked : CompCopLoa, Copy -> Bool

%operator to test if the association is Empty
isEmpty : CompCopLoa -> Bool

%operator to return the Set of instances linked to a given instance
allLeftLink : CompCopLoa, Loan -> SetCopy
allRightLink : CompCopLoa, Copy -> SetLoan

%operators for multiplicity values
leftMultiplicity : CompCopLoa, Loan -> Nat
rightMultiplicity : CompCopLoa, Copy -> Nat

%special operator for Composition
isPartOf : CompCopLoa, Copy, Loan -> Bool
..

% axioms
assert
sort CompCopLoa generated by void, addLink;

%axiom to state that tuples of instance values cannot be equal in an
association
(aCopy1 \eq aCopy2) /\ (aLoan1 \eq aLoan2) =>
addLink(addLink(CompCopLoa1, aCopy1, aLoan1), aCopy2, aLoan2) =
addLink(CompCopLoa1, aCopy1, aLoan1);

%axioms for the isEmpty operation
isEmpty(void(i));
~(isEmpty(addLink(CompCopLoa1, aCopy1, aLoan1)));

%state when two instances of object types are linked
~(isLinked(void(i),aCopy1, aLoan1));
isLinked(addLink(CompCopLoa1, aCopy1, aLoan1),aCopy2, aLoan2) =
((aCopy1 \eq aCopy2 /\ aLoan1 \eq aLoan2) \/ isLinked(CompCopLoa1,
aCopy2, aLoan2));

%state the semantics for the operations allLeftLink and allRightLink
through addLink generator

Appendix C: Abstract Data Type of the Library System

Formalization of UML using Algebraic Specifications 115

(aLoan1 \eq aLoan2) => allLeftLink(addLink(CompCopLoa1, aCopy1,
aLoan2), aLoan1) = insert(aCopy1, allLeftLink(CompCopLoa1, aLoan1));
(aCopy1 \eq aCopy2) => allRightLink(addLink(CompCopLoa1, aCopy2,
aLoan1), aCopy1) = insert(aLoan1, allRightLink(CompCopLoa1, aCopy1));
~(aLoan1 \eq aLoan2) => allLeftLink(addLink(CompCopLoa1, aCopy1,
aLoan2), aLoan1) = allLeftLink(CompCopLoa1, aLoan1);
~(aCopy1 \eq aCopy2) => allRightLink(addLink(CompCopLoa1, aCopy2,
aLoan1), aCopy1) = allRightLink(CompCopLoa1, aCopy1);

%state the semantics for allLeftLink and allRightLink through void
generator
allLeftLink(void(i), aLoan1) = {}: SetLoan;
allRightLink(void(i), aCopy1) = {}: SetCopy;

%state when one instance is linked through the association
~(isLeftLinked(void(i), aLoan1));
~(isRightLinked(void(i), aCopy1));
isLeftLinked(addLink(CompCopLoa1, aCopy1, aLoan1), aLoan2) = ((aLoan1
\eq aLoan2) \/ isLeftLinked(CompCopLoa1, aLoan2));
isRightLinked(addLink(CompCopLoa1, aCopy1, aLoan1), aCopy2) = ((aCopy1
\eq aCopy2) \/ isRightLinked(CompCopLoa1, aCopy2));

%axioms for left and rightMultiplicity operators
leftMultiplicity(void(i), aLoan1) = 0;
rightMultiplicity(void(i), aCopy1) = 0;
(aLoan1 \eq aLoan2) => leftMultiplicity(addLink(CompCopLoa1, aCopy2,
aLoan2),aLoan1) = leftMultiplicity(CompCopLoa1, aLoan1) + 1;
~(aLoan1 \eq aLoan2) => leftMultiplicity(addLink(CompCopLoa1, aCopy2,
aLoan2),aLoan1) = leftMultiplicity(CompCopLoa1, aLoan1);

(aCopy1 \eq aCopy2) => rightMultiplicity(addLink(CompCopLoa1, aCopy2,
aLoan2),aCopy1) = rightMultiplicity(CompCopLoa1, aCopy1) + 1;
~(aCopy1 \eq aCopy2) => rightMultiplicity(addLink(CompCopLoa1, aCopy2,
aLoan2),aCopy1) = rightMultiplicity(CompCopLoa1, aCopy1);

%axioms for multiplicity constraints: written only if multiplicity is
not free, i.e. different from 0 or More
%source multiplicity is 1 or more
%target multiplicity is Just One
~(size(allLeftLink(CompCopLoa1, aLoan)) < 1;
size(allRightLink(CompCopLoa1, aCopy1)) = 1;

%special axioms for Composition
isPartOf(addLink(CompCopLoa1, aCopy1, aLoan1), aCopy2, aLoan2) =>
(aCopy1 \eq aCopy2) /\ (aLoan1 \eq aLoan2);
~(isPartOf(void(i), aCopy1, aLoan1);

~(aLoan1 \eq aLoan2) => (isPartOf(CompCopLoa1, aCopy1, aLoan1)
/\(~(isPartOf(CompCopLoa1, aCopy1, aLoan2)))) \/ (isPartOf(CompCopLoa1,
aCopy1, aLoan2) /\(~(isPartOf(CompCopLoa1, aCopy1, aLoan1))));

%axioms for association identity
identity(void(i)) = i;
identity(addLink(CompCopLoa1, aCopy1, aLoan1)) = identity(CompCopLoa1);
CompCopLoa1 \eq CompCopLoa2 = identity(CompCopLoa1) \eq
identity(CompCopLoa2)
..

Appendix C: Abstract Data Type of the Library System

116 Formalization of UML using Algebraic Specifications

%%%
%specification of the composition CompCopLoc between Classes: Copy and
LocalUse
%larch file: CompCopLoc.lp
%%%

set name CompCopLoc

declare sorts CompCopLoc, Copy, LocalUse, Nat, SetCopy, SetLocalUse
declare variables CompCopLoc1, CompCopLoc2 : CompCopLoc, aCopy1, aCopy2
: Copy, aLocalUse1, aLocalUse2 : LocalUse
declare variables SetCopy1, SetCopy2 : SetCopy, SetLocalUse1,
SetLocalUse2 : SetLocalUse, i : Nat

declare operators
%generator of an empty association
void : Nat -> CompCopLoc

%association identity
identity : CompCopLoc -> Nat
__\eq__ : CompCopLoc, CompCopLoc -> Bool

%operators to create and remove links
addLink : CompCopLoc, Copy, LocalUse -> CompCopLoc
removeLink : CompCopLoc, Copy, LocalUse -> CompCopLoc

%operator to test if two instances are linked
isLinked : CompCopLoc, Copy, LocalUse -> Bool

%operator to test if one instance is linked
isLeftLinked : CompCopLoc, LocalUse -> Bool
isRightLinked : CompCopLoc, Copy -> Bool

%operator to test if the association is Empty
isEmpty : CompCopLoc -> Bool

%operator to return the Set of instances linked to a given instance
allLeftLink : CompCopLoc, LocalUse -> SetCopy
allRightLink : CompCopLoc, Copy -> SetLocalUse

%operators for multiplicity values
leftMultiplicity : CompCopLoc, LocalUse -> Nat
rightMultiplicity : CompCopLoc, Copy -> Nat

%special operator for Composition
isPartOf : CompCopLoc, Copy, LocalUse -> Bool
..

% axioms
assert
sort CompCopLoc generated by void, addLink;

%axiom to state that tuples of instance values cannot be equal in an
association

Appendix C: Abstract Data Type of the Library System

Formalization of UML using Algebraic Specifications 117

(aCopy1 \eq aCopy2) /\ (aLocalUse1 \eq aLocalUse2) =>
addLink(addLink(CompCopLoc1, aCopy1, aLocalUse1), aCopy2, aLocalUse2) =
addLink(CompCopLoc1, aCopy1, aLocalUse1);

%axioms for the isEmpty operation
isEmpty(void(i));
~(isEmpty(addLink(CompCopLoc1, aCopy1, aLocalUse1)));

%state when two instances of object types are linked
~(isLinked(void(i),aCopy1, aLocalUse1));
isLinked(addLink(CompCopLoc1, aCopy1, aLocalUse1),aCopy2, aLocalUse2) =
((aCopy1 \eq aCopy2 /\ aLocalUse1 \eq aLocalUse2) \/
isLinked(CompCopLoc1, aCopy2, aLocalUse2));

%state the semantics for the operations allLeftLink and allRightLink
through addLink generator
(aLocalUse1 \eq aLocalUse2) => allLeftLink(addLink(CompCopLoc1, aCopy1,
aLocalUse2), aLocalUse1) = insert(aCopy1, allLeftLink(CompCopLoc1,
aLocalUse1));
(aCopy1 \eq aCopy2) => allRightLink(addLink(CompCopLoc1, aCopy2,
aLocalUse1), aCopy1) = insert(aLocalUse1, allRightLink(CompCopLoc1,
aCopy1));
~(aLocalUse1 \eq aLocalUse2) => allLeftLink(addLink(CompCopLoc1,
aCopy1, aLocalUse2), aLocalUse1) = allLeftLink(CompCopLoc1,
aLocalUse1);
~(aCopy1 \eq aCopy2) => allRightLink(addLink(CompCopLoc1, aCopy2,
aLocalUse1), aCopy1) = allRightLink(CompCopLoc1, aCopy1);

%state the semantics for allLeftLink and allRightLink through void
generator
allLeftLink(void(i), aLocalUse1) = {}: SetLocalUse;
allRightLink(void(i), aCopy1) = {}: SetCopy;

%state when one instance is linked through the association
~(isLeftLinked(void(i), aLocalUse1));
~(isRightLinked(void(i), aCopy1));
isLeftLinked(addLink(CompCopLoc1, aCopy1, aLocalUse1), aLocalUse2) =
((aLocalUse1 \eq aLocalUse2) \/ isLeftLinked(CompCopLoc1, aLocalUse2));
isRightLinked(addLink(CompCopLoc1, aCopy1, aLocalUse1), aCopy2) =
((aCopy1 \eq aCopy2) \/ isRightLinked(CompCopLoc1, aCopy2));

%axioms for left and rightMultiplicity operators
leftMultiplicity(void(i), aLocalUse1) = 0;
rightMultiplicity(void(i), aCopy1) = 0;
(aLocalUse1 \eq aLocalUse2) => leftMultiplicity(addLink(CompCopLoc1,
aCopy2, aLocalUse2),aLocalUse1) = leftMultiplicity(CompCopLoc1,
aLocalUse1) + 1;
~(aLocalUse1 \eq aLocalUse2) => leftMultiplicity(addLink(CompCopLoc1,
aCopy2, aLocalUse2),aLocalUse1) = leftMultiplicity(CompCopLoc1,
aLocalUse1);

(aCopy1 \eq aCopy2) => rightMultiplicity(addLink(CompCopLoc1, aCopy2,
aLocalUse2),aCopy1) = rightMultiplicity(CompCopLoc1, aCopy1) + 1;
~(aCopy1 \eq aCopy2) => rightMultiplicity(addLink(CompCopLoc1, aCopy2,
aLocalUse2),aCopy1) = rightMultiplicity(CompCopLoc1, aCopy1);

Appendix C: Abstract Data Type of the Library System

118 Formalization of UML using Algebraic Specifications

%axioms for multiplicity constraints: written only if multiplicity is
not free, i.e. different from 0 or More
%source multiplicity is 1 or more
%target multiplicity is Just One
~(size(allLeftLink(CompCopLoc1, aLocalUse)) < 1;
size(allRightLink(CompCopLoc1, aCopy1)) = 1;

%special axioms for Composition
isPartOf(addLink(CompCopLoc1, aCopy1, aLocalUse1), aCopy2, aLocalUse2)
=> (aCopy1 \eq aCopy2) /\ (aLocalUse1 \eq aLocalUse2);
~(isPartOf(void(i), aCopy1, aLocalUse1);

~(aLocalUse1 \eq aLocalUse2) => (isPartOf(CompCopLoc1, aCopy1,
aLocalUse1) /\(~(isPartOf(CompCopLoc1, aCopy1, aLocalUse2)))) \/
(isPartOf(CompCopLoc1, aCopy1, aLocalUse2) /\(~(isPartOf(CompCopLoc1,
aCopy1, aLocalUse1))));

%axioms for association identity
identity(void(i)) = i;
identity(addLink(CompCopLoc1, aCopy1, aLocalUse1)) =
identity(CompCopLoc1);
CompCopLoc1 \eq CompCopLoc2 = identity(CompCopLoc1) \eq
identity(CompCopLoc2)
..

%%
%specification of the identifier type for Library isntances
%larch file: IdLibrary.lp
%%

set name IdLibrary

declare sorts IdLibrary
declare variables : idLibrary1, idLibrary2 : IdLibrary
declare operators
newIdLibrary : -> IdLibrary
nextIdLibrary : IdLibrary -> IdLibrary
__\eq__ : IdLibrary, IdLibrary -> Bool
..

assert
sort IdLibrary generated by newIdLibrary, nextIdLibrary;
newIdLibrary \eq newIdLibrary;
~(newIdLibrary \eq nextIdLibrary(idLibrary1));
~(nextIdLibrary(idLibrary1) \eq newIdLibrary);
nextIdLibrary(idLibrary1) \eq nextIdLibrary(idLibrary2) = (idLibrary1
\eq idLibrary2);
..

%%%
%%%%%%
%specification of the type Set for User Class
%larch file: SetUser.lp
%%%
%%%%%%

Appendix C: Abstract Data Type of the Library System

Formalization of UML using Algebraic Specifications 119

set name SetUser

declare sorts User, SetUser, Nat
declare variables aUser1, aUser2 : User, setUser1, setUser2 : SetUser
declare operators
{} : -> SetUser
{__} : User -> SetUser
insert : User, SetUser -> SetUser
__\U__ : SetUser, SetUser -> SetUser
__\in__ : User, SetUser -> Bool
__\I__ : SetUser, SetUser -> Bool
size : SetUser -> Nat
..

assert
sort SetUser generated by {}, insert;

{aUser1} = insert(aUser1, {});
~(aUser1 \in {});
aUser1 \in insert(aUser2, setUser1) <=> (aUser1 \eq aUser2 \/ aUser1
\in setUser1);
{} \I setUser1;
insert(aUser1, setUser1) \I setUser2 <=> (aUser1 \in setUser2 /\
setUser1 \I setUser2);
aUser1 \in (setUser1 \U setUser2) <=> (aUser1 \in setUser1 \/ aUser1
\in setUser2);

% axioms for size operator
size({}) = 0;
(aUser1 \in setUser1) => size(insert(aUser1, setUser1)) =
size(setUser1);
~(aUser1 \in setUser1) => size(insert(aUser1, setUser1)) =
1+size(setUser1);
..

