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Abstract 
 
This Thesis describes an algebraic semantic framework covering the formalization of the 
main static model elements of UML. As UML is the unification of Object-Oriented 
analysis and design modeling languages, the formalization process presented here can be 
easily extended to other similar Object Oriented (OO for short) notation sets. Moreover it 
can contribute towards a standardization of OO modeling concepts. In the semantic 
framework presented in this work, model elements are formal described through 
algebraic specifications defining abstract data types. Abstract data types allow the 
specification of the semantics in an abstract way being really suitable to the description of 
OO models. The formal specifications are written in Larch Prover (LP for short) [GG91]. 
LP is a theorem prover that allows verifications and validations to be applied to the 
formal specifications. From these validations properties and inconsistencies about the 
models can be proved what leads to early detection of errors in the software development 
process. These formal specifications to be interpreted by LP are generated from a UML 
CASE tool built in Graphtalk metatool [CS97a]. The integration between the CASE tool 
and formal specifications is provided through a set of mapping rules established in this 
work. 
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Introduction 
 
The goal of the thesis is to compose a semantic framework in order to support the 
formalization of the main static model elements of UML using Algebraic Specifications. 
Algebraic Specifications are used to describe abstract data types (ADT). The motivation 
for this work is the assumption that many Object Oriented (OO) methods, including those 
from which UML is derived, suffer from a lack of a precise semantics. This can lead to 
confusions and different interpretations when analyzing a model.  
 
The semantic framework is based on a set of mapping rules defined to the translation 
from UML to algebraic specifications. These mapping rules are written in accordance to 
the syntax and semantics of each UML model element considered. The semantics of the 
model elements was evaluated considering the UML metamodel [UML99] and UML 
model [BRJ99a]. Therefore the result of the translation process is an ADT specified to 
each model element through the corresponding mapping rules established to it. 
 
To establish these mapping rules defining the formal specifications some other 
approaches on Object Oriented analysis and design formalization, some of them focusing 
on UML, were evaluated and taken into account. In [LB98] a semantic framework for 
part of UML, named RAL, is presented. Another algebraic approach using Larch Shared 
Language (LSL for short) was also analyzed. It is described in [HHK98] being a formal, 
modular approach to specify the semantics of object-oriented models expressed in UML. 
LSL is an algebraic language, which in conjunction to LP and other technologies 
compose the Larch family of languages and tools  
 
In both approaches a great importance is given to model theory composition in order to 
describe models and submodels. This allows the establishment of constraints among 
model elements. The level of granularity considered to the formal specifications is also an 
important aspect outlined in both approaches. 
  
In the semantic framework presented here it is adopted an intermediate degree of 
granularity. Formal descriptions are used to describe classes and associations as well as 
some other constructs. It is also considered the idea of constraints at the model level what 
is achieved through general descriptions grouping some individual model elements.  
 
The implementation of the semantic framework is undertaken considering the integration 
of different technologies: Graphtalk metatool, C++ programming language and Larch 
Prover theorem prover. Graphatlk metatool is instantiated with the UML grammar to 
build a CASE tool. The Graphtalk API primitives are used in the C++ source code 
allowing the automation of the translation process from a UML informal model to well-
formed algebraic specifications. Larch Prover reads then these formal algebraic 
specifications in the form of abstract data types supporting that checks and proofs can be 
performed on them resulting in error detection on the design phase. 
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As the work of this dissertation considers just the static part of UML some side -effects on 
operations that depends on collaborations are not described. The formal method presented 
can be extended in future in order to cover also dynamic UML concepts.  
 
 
Structure of the Dissertation 
Chapter one presents an overview of the current state in UML semantics and gives some 
motivations and difficulties towards UML semantics formalization. 
 
Chapter two shows the State of the Art in UML semantics formalization. It presents 
formal methods and formal languages that can be used to the formalization of Object 
Oriented analysis and design languages. In the core of the chapter is the presentation of 
three formalization approaches existent, two of them focusing specifically in UML, and 
the other one, Formal Classes approach, showing a more general formalization method 
that can be applied to any OO design and analysis language. 
 
In chapter three the core of the Thesis is described. This chapter shows the main points 
considered to compose the semantic framework, as the formal syntax followed, the 
process to determine the mapping rules, the structure of an ADT, going then deep in the 
description of the set of mapping rules to each UML model element considered in the 
formalization. The mapping rules are described based on the semantics aspect that leads 
to their definition.  
 
As explained in this introduction, the implementation of this semantic framework takes 
into account different technologies that need to be well integrated in order to allow the 
framework working. Each of these technologies employed and the way taken to their 
integration is explained in chapter four. 
 
Chapter five gives then the link between the theoretical part presented in chapter 3 with 
the practical aspects detailed in chapter four. This chapter takes a UML Static Diagram 
drawn in the CASE tool developed as part of this work and shows the results of the 
translation process performed to it. Therefore the formal specifications in the form of 
ADTs resultant from the implementation of the mapping rules are referenced. After the 
translations are done, this chapter goes on presenting some inconsistencies that can be 
detected in UML models through the use of the semantic framework.  
 
Chapter six ends up giving some conclusions taken during the development of this work 
and presenting contributions and future work that can be taken in order to complete the 
semantic framework and its practical application.  
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Chapter One 
 

Motivations and Difficulties towards UML Formalization  
 
 
UML, the Unified Modeling Language, is a very expressive language that can be used to 
model object-oriented software systems. It is the unification of the main object-oriented 
(OO) methods (Rumbaugh, Booch and Jacobson). The Object Management Group 
(OMG) has approved UML in November 1997 as the standard notation for object-
oriented analysis and design.  
 
The main motivation towards UML formalization is that its semantics is not precisely 
described through UML official documents and books. In this chapter other motivations 
and some difficulties encountered in order to achieve UML se mantics formalization are 
presented.  

 
 
 1.1 UML Semantics: Current Form 
 
UML encompasses structural and behavioral aspects in order to describe OO software 
systems. Even being a de facto standard, its semantics are semi-formal described. In 
[UML99], the UML semantics document, version 1.3 (last version), the semantics of the 
language is described using the metamodel. The metamodel stands a combination of 
graphical notation, natural language and formal language. It gives a syntactic description 
of the language but not a complete and precise specification of its semantics. 

 
The graphic part is reflexive using a subset of the own UML notation. The formal 
language is the OCL (Object Constraint Language) that has been a first approach in order 
to get a precise description for the UML. It is an assertion language used to describe 
navigation and constraints in Class Diagrams (the static diagram of UML). Although 
OCL helps in the semantics description being used to the specification of well-
formedness rules, it does not provide a basis for controls and validations. Moreover it 
does not solve some ambiguities in UML interpretations.  

 
UML carries a complex set of notations that as explained do not gain a clear meaning 
through the metamodel.  

 
 

 1.2 Difficulties to UML Formalization 
 
The lack of a precise formal semantics for the UML is justified in many ways:  
? The architects of the language claim: “the state of the practice in formal 

specifications does not yet address some of the more difficult language issues that 
UML introduces” [UML99]. 
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? Formal specifications are hard to deal with for non-expert users. Developers, users of 
UML, are not familiar with formal mathematical specifications and because of it they 
tend to resist to their use. 

? To be of industrial use, formal specifications need to be integrated to CASE tools, 
supporting graphical modeling constructs, in such a way that developers can directly 
manipulate the OO models they have created to analyze, transform and enhance them.  

 
In contrast to the difficulties showed above, the own authors of the modeling language 
also recognize the importance of formality. According to [CE97] the authors of the 
language agree in the sense that it lacks from a precise semantics description, and that its 
formalization could lead to unambiguous interpretations of the models and could permit 
extensibility allowing future changes in object-oriented analysis and design.  
 
 
1.3 Motivations to UML Formalization   
 
Many motivations are given to justify the importance of formalization. They can be 
grouped according to some primitives, as: clarity, consistency, correctness and 
enhancement it can bring to the models. Because of these benefits, formalization is really 
helpful in forward and reverse reengineering efforts as well as in the restructuring of 
systems. On the other hand, a really understandable and consistent system is more 
suitable for reuse. Follows some motivations towards formalization according to the 
primitives stated.  
 
? Clarity: 
UML is a complex language that holds a really great number of modeling elements. 
Because of its complexity and lack of precise description, its constructs are not clear 
defined and the language can lead users to ambiguous interpretations of the models. 
Formalization can help in clarifying the meaning of UML model elements. In [CE97] it is 
stated: 
“Clarity acts as a reference – if at any point, there is confusion over the exact meaning of 
a particular UML component, reference can be made to the formal description to verify 
its semantics.”   
A deeper understanding of OO concepts is also gained, allowing the development of 
more rigorous semantic analysis tools and better use of OO techniques. 

 
? Consistency: 
UML presents nine different diagrams to express different system perspectives. The 
consistency among these diagrams representing a model can be ensured since all of them 
are formalized and hence precisely described. This leads to a more complete and 
unambiguous interpretation of a model, allowing development teams to have a better 
communication and understanding among them. 
Consistency can also be achieved between code and specifications. Having a precise 
description of the models, implementations can be validated against the design checking 
if it fulfills the specifications. On the other hand, formalization can also be a bridge from 
implementation to design in a reverse engineering process.  
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? Correctness:  
Correctness of the models can be achieved through the application of proofs over the 
formal specifications. Therefore inconsistencies can be detected. A mapping between the 
model elements of UML to formal specifications can help in adapting proofs and 
validations to CASE tools what leads to early detection of errors in the systems.   
The establishment of proofs can be done upon the properties of a system described in 
UML, forming a basis for future automatic proof techniques. 
Moreover with a mapping allowing the generation of formal specifications from informal 
models it is possible to identify ambiguous and inconsistent structures in the models.  
 
? Enhancement: 
Enhancement of models is expressed through design refinements. In [EBFLR98] 
refinement is defined as: 
“It is the process by which an abstract model of a system (containing relatively little 
implementation detail) can be incrementally transformed into a model that can be readily 
implemented in a specific programming language. At each stage the correctness of the 
more detailed model must be verified against the abstract model.” 
 
As UML is a diagrammatical modeling language, refinement of a UML model implies a 
process of diagrammatical transformations. In this context, the definition of a set of 
semantically-based transformation rules is important to provide a set of correct 
transformations that are equivalencies or enhancements of models. Some properties of 
models can be deduced and proved through transformations. Proving that one form of the 
model is equivalent to another can make correct properties arise.  
Refinements of models based on transformations are useful not only to support forward 
engineering as well as reengineering efforts.  Model refinements can be helpful in the 
restructuring of designs.  
Design Patterns can be applied in refinement steps being checked for correctness. Once 
checked, a pattern can be used again and again without having to be re-checked.  

 
Basing in the primitives previously stated and going into detailed explanations, more 
justifications for formalization can arise. In [FELR97] they say: 
? Developers can waste time making considerations over correct usage and 

interpretation of notations. Because of the informal descriptions provided in reference 
books, it is not easy to achieve an interpretation that can be considered precise. 

 
? It is difficult to ensure model reviews, rigorous semantic analysis based on informal 

techniques. In [FELR97] it is stated: 
“Review meetings can be further enhanced if the notations used have a precise 
semantics. The results of model validations and verifications can be presented in reviews 
as evidence of the quality of the models. Rigorous semantic analysis techniques also 
facilitate the early detection of modeling errors which considerably reduces the cost of 
error removal.” 
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? Tool support for OO modeling notations is limited because of the lack of a precise 
semantics for the constructions of the language. Hence tools stay limited to cover just 
syntactic concerns. 

 
In [EBFLR98] it is stated that: 

 
“The desire to formalize UML was originally motivated by the overall wish to develop 
practical, industrial strength, formal methods. The advent of the UML as a likely de-facto 
industry standard, and its recognition that as a standard it needs to be precisely 
described, made UML a natural choice for a combined investigation.” 
 
As it can be realized the motivation to formalize OO methods was not originally 
motivated by UML emergence. Formalization had already been recognized as useful and 
necessary not only for academic purposes but also for industrial use before UML has 
appeared. Formalization aims to support reliable and precise modeling language to be 
used in any context. The advent of UML as a standard OO modeling language made the 
efforts turned to it.  
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Chapter Two 
 

UML Semantics Formalization  
 
In the previous chapter many motivations were given to justify the efforts invested in 
UML formalization. This chapter starts showing some formal methods and languages to 
support formalization. Afterwards, the main OO analysis and design formalization 
approaches studied, some of them focusing on UML, are presented.  
 
 
2.1 UML Precise Group: An Important Work Taken Towards 
Formalization 
 
Before presenting the formal methods and formalization approaches, it is necessary to 
point out the importance and contributions of the UML Precise Group in the context of 
UML formalization.  
 
The authors of [EBFLR98] compound the UML Precise Group (PUML) which was 
created for two main purposes: investigate the completeness of the UML semantics and 
develop novel approaches to use UML more precisely. This group was formed in late 
1997. By giving precise semantics to UML, the group intends to develop a formal 
reference manual for the language. In [FELR97] they say: 
 
“A major objective of the project is to develop a formal reference manual for the UML. 
This will give a precise description of core components of the language and provide 
inference rules for analyzing their properties. In developing the reference manual we will 
build upon the semantics given in the UML semantics document by using formal 
techniques to explore the described semantic base.” 
 
In this formal reference manual, the intention is to re-express the formal semantics in 
terms of a suitably expressive language, that could be a mixture of notations such as an 
enhanced version of the UML metamodel, the OCL (Object Constraint Language), and 
precise natural language statements. 
 
 
2.2 OO Formalization Methods Classification 
 
The classification presented in this section is also a contribution work from some 
members of the UML Precise Group. In [FELR97] it is presented three general categories 
for OO formalization methods: supplemental, OO-extended formal language, and 
methods integration.  
 
In the supplemental method, formal statements substitute annotations in the models that 
are expressed in natural language. This clarifies the meaning of the models, but the 
semantics of graphical constructs are not necessarily precisely defined.  
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In the OO-extended formal language method, an existing formal notation is extended 
with OO features. This is the case of Z++ and VDM++, for example. In this case the 
formal languages are really enriched and, on the other hand, OO concepts need to be 
formalized in order to be able to be adapted to formal languages. The problem with this 
method is the considerable gap between model elements representing real world concepts 
and the mathematical representations in the formal notations.   

 
Methods Integration approach defines the generation of formal specifications from 
informal OO models. It is stated: 
 
“…the generation of formal specifications from informal models is only possible if there 
is a mapping from syntactic structures in the informal modeling domain to artifacts in the 
formally defined semantic domain.” 
 
In this case a formal description of the mapping rules becomes essential in order to check 
if the formal specifications indeed capture the intended interpretations of the informal 
models. 
 
 
2.3 Formal Languages Classification 
 
In [CHS+97] four major underlying models upon which the formal specification 
languages can be based are described. Follows the identification of these models and 
examples of formal languages classified in each one of them. 
 
? First-order logic and set-theory. 
According to [CHS +97], this approach can be defined as: 
“The first-order logic and set-theory approaches are also often called model oriented 
because they support the specification of a system by constructing a mathematical model 
for it.” 
In this group there are: 
? Z language; 
? Object-Z (OO extension of the Z notation); 
? VDM++ (OO extension of the Vienna Development Method); 
? Z++ (OO extension of the Z notation). 
 
? Algebraic approach. 
This approach uses algebraic equations in order to establish the semantics of the 
operations in a specification.  
Examples of languages are: 
? TROLL; 
? Maude; 
? AS-IS (Algebraic Specification with Implicit State); 
? Larch; 
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? Petri nets/algebraic nets. 
This approach is described in [CHS+97] in the following way: 
“Petri nets and high-level nets are two representative of the model-based class in the 
sense that they describe the state of a system by means of places which contain “black 
tokens” for the conventional Petri nets and structured tokens for high-level nets. A set of 
transitions which consist of a pre- and a post-condition, describes how the system state 
changes by consuming and producing tokens in the various places of the net.” 
 
Examples of languages in this family are: 
? CLOWN (Class Orientation with Nets); 
? CO (Cooperative Objects); 
? OPN (Object Petri Nets); 
? COOPN/2 (Concurrent Object-Oriented Petri Nets). 
 
? Temporal logic. 
In [CHS+97] it is described as: 
“Temporal logics are axiomatic formalisms that are well suited for describing 
concurrent and reactive systems. A common aspect associated with temporal logics is a 
notion of time and state.” 
Examples of languages are: 
? TRIO+; 
? OO-LTL. 
 
Follows the description of two UML formalization approaches that deal with set-theory 
(Z) and algebraic formal languages.  
 
 
2.4 Definitions in the Context of Formal Languages 
 
Some definitions become necessary in order to understand the following OO analysis and 
design formalization approaches and the remaining of the document. They are:   
 
What is an Abstract Data Type (ADT) 
 
Originally data types are defined as sets equipped with operations. Considering Abstract 
Data Types many definitions can arise: 
  

1. A class of data objects with a defined set of properties and a set of operations 
that process the data objects while maintaining the properties. 

2. A set of values and a set of operations on those values. 
3.   In [Royer99a] an ADT (Abstract Data Type) is defined as: 

“An Abstract Data Type is the description of a data type. This description is said abstract 
because the semantics are expressed as relations between operations.” 
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What are Terms? 
 
By terms it can be understood an expression that refers to an object as: sizeof(Array).  
 
What is first-order logic? 
 
By first-order logic it is understood that equations can be written using variables that 
represent all the values that can be extracted from a specific Universe. The equation can 
then be proved valid by exemplification. 

 
 

2.5 Object Oriented Analysis and Design Formalization Approaches 
 
2.5.1 Set-Theory Methods: RAL – Real-Time Action Logic  
 
In [LB98] a semantic framework for part of UML is presented. The formal framework is 
termed Real-Time Action Logic (RAL). This name comes from the fact that it intends to 
reason about real-time specifications. The mathematical semantic representation of UML 
models is given in terms of theories. This is a Z-based approach.  

 
A RAL theory has the form: 
theory Name  
types local type symbols 
attributes time-varying data, representing instance or class variables  

 actions actions which may affect the data, such as operations, statechart  
transitions and methods 

axioms  logical properties and constraints between the theory elements   
 
Theories can be defined to a whole model, submodels, or specific elements such as 
classes, associations, states, etc, being in this case assembled through theory morphisms.  
 
The Z Language employed is presented in section 2.3.  
  
? Theory at the Model Level 
A theory for a model in this approach can be defined as depicted in figure 1 – example 1.  
 
 
 
    
 
 
 
 
 
 

Figure 1. UML static diagram example 

 
Person 

 
Company 

employee employer worker 

boss 

* 

0..1 

 {Person.employer = 
Person.boss.employer} 
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 Example 1:  
 
 theory Employment 
 types Person, Company 
 attributes 
  Person: FIN(Person) 
  Company: FIN(Company) 
  employee_employer: Person ?  Company 
  employee: Company ?  FIN(Person) 
  employer: Person ?  FIN(Company) 
  worker_boss: Person ?  Person  
  worker: Person ?  FIN(Person) 
  boss: Person ?  FIN(Person) 
 actions Standard predefined actions to modify classes and associations: 
  create_Person(p:Person)  {Person} 
  kill_Person(p:Person)  {Person} 
  create_Company(c:Company)  {Company} 
  kill_Company(c:Company)   {Company} 
  add_link_worker_boss(p:Person, q:Person)  {worker_boss, worker, boss} 
  delete_link_worker_boss(p:Person, q:Person) {worker_boss,worker, boss} 
 
 axioms  

Constraints on the association links employee_employer: 
forall p:Person; c:Company.(c:employer(p) ?  (p,c):employee_employer  

& p:employee(c) ?  (p,c): employee_employer)   
Cardinality Constraints: 
forall p:Person.(card(employer(p)) <= 1) 
forall p:Person.(card(boss(p)) <= 1)  
 
The Constraint of the model is expressed by the formula: 

  forall p:Person.(employer(p) = employer[boss(p)]) 
 
    
In this theory, Person represents the finite set of existing objects of class Person. In the 
same way Company represents the set of Companies. Through the role employee in the 
Association between Person and Company it is possible to recover the set of existing 
objects of class Person linked to a Company. The same happens to the other association 
roles. 
 
The actions determine the creation and deletion of objects, as well as the addition and 
deletion of links in associations.   
 
 
? Representing a UML Class 
 
A UML class is semantically represented by a theory T(C) of the form: 
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 theory T(C) 
 types C 
 attributes 
  C: FIN(C) 
  self: C ?  C 
  att1: C ?  T1 
  ….. 
 actions  
  create_C(c:C)  {C}     
  kill_C(c:C)  {C} 
  op_l(c:C, x:X1):Y1 
  ….. 
 axioms  
  forall c:C.(self(c) = c & [create_C(c)](c:C) & [kill_C(c)]not(c:C))  
  
 
Important points stated about this Class theory are: 
 

1. Instance variables are modeled as attributes through a function type C ?  T. 
2. The notation [action]P denotes that every execution of action terminates with 

the predicate P being true. Thus create_C(c) always adds c to the set of 
existing C objects, and kill_C(c) removes it. 

3. Class attributes and actions do not gain the additional C parameter as they are 
independent of any particular instance.     

 
 
? Representing a UML Association 
 
Associations are described through theories, which, as in the class theory, ha ve an 
attribute representing the set of all links of the association.  Therefore association theory 
also encompasses add_link and remove_link actions. Axioms determine the multiplicity 
of the association ends and other properties of the association.    
 
? Representing Generalization (Inheritance) 

  
Generalization is achieved through theory morphism. In [LB98] it is stated that: 
 
“Generalization of class C by class D in UML is directly represented by the theory T(D) 
of D being the source of a signature morphism into T(C) which is the identity (each 
symbol of T(D) is interpreted by itself in T(C)).” 
 
“A theory morphism is a signature morphism s from T1 to T2 which preserves all the 
axioms of the source theory. That is, T2 proves s(P) for each axiom P of T1.” 
 
Theory morphism can be achieved by the inclusion of one theory (all its symbols and 
axioms) in another. Supposing we have a theory for a superclass T(C) and a theory for a 
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subclass T(D), adjoining the axioms can make the attributes and operations of C 
applicable to instances of D.  
 
 
? Defining  Models by Composition 
 
Includes clause can also be used to another purpose. It can be used to compose models or 
submodels by assembling element model theories as depicted in the following example. 

 
Example 2: 
theory Employment  
includes WorkerBoss, EmployeeEmployer 
axioms  forall p: Person.(employer(p) = employer[boss(p)])    

 
The theory Employment showed in example 1 can then be rewritten in a simpler form 
just by including the theories of the associations, which in turn include the theories of the 
classes Person and Company. Therefore it is possible to realize that theories can be 
constructed by composition.  
 
Composition is important to allow reuse. Theories defined in a high granularity level that 
can be assembled to define a model are more suitable for reuse.  
 
 
2.5.2 Modular Algebraic Semantics for Object Oriented Models  
 
In [HHK98] they define a formal, modular approach to describe the semantics of object-
oriented models expressed in UML. The main aspect in this approach is to treat each 
individual model element as an entity that can be expressed through a theory (or trait) in 
Larch. The semantics of the model is then the composition of the semantic entities 
representing the individual model elements. It is stated: 

 
“…this leads to a high degree of elegance and transparency in the semantics, any results 
proved about a generic trait or combination of traits will carry forward to models whose 
semantics has been built using them.” 

 
A high granularity to the formalization is considered as can be seen through the following 
list. 

 
Elements list:  
? Object-type (for class); 
? Set of objects of the type; 
? Association; 
? Cardinality of the associations; 
? Subtype (dynamic and static); 
? Inherited attributes; 
? Invariant; 
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? Diagram.  
 

The motivation to this highly modular approach is that formalizing each element 
separated can increase reuse. Moreover formal descriptions can be used to specify 
components. Precision is really important in the specification of components and 
component interfaces, mainly when they are viewed as “black boxes” with hidden design 
and implementation. A user of a component needs a precise certificate about what the 
component does. They say: 

 
“There is a natural progression from using this approach to build semantics of individual 
models, to use it to compose models into larger models. This is what is required to 
support component-based development, where components are specialized and composed 
to build other components and, eventually, systems.”  

 
In this approach it is used the Larch Shared Language (LSL for short), in which 
specification modules are called traits. Traits are used to describe abstract data types and 
theories having the following structure: 

 
SpecName(parameters): trait 

includes 
  existing specification modules to be used  
 introduces 
  function signatures are listed here 
 asserts  

 axioms are listed here 
 
 

? Representing a UML Class 
 

In this approach classes are referenced as object types, and class diagrams as type 
diagrams. The basic function in an object type specification is the one that can return the 
set of existing objects of that type at a point in time. Considering an object of type A, this 
basic function will have the following signature: 
 A : ?   -> Set[A] 
 
In which, ?  is the sort representing system states and Set[A] is the sort of finite sets of 
elements of sort A. Therefore A(?)  expresses the finite set of existing A objects in the 
state ? .  
 
Instance attributes for object types are represented as functions mapping the attribute 
name to a value from a given type as follows.  

attr1 : A, ?  -> T1 
  
Therefore to specify an object type it can be defined a basic trait including the function 
that allows manipulation of the set of existing objects (example 3), and a trait including 
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functions for the object type attributes (example 4). This strong separation of concerns in 
trait specifications due to the high modularity desired.  
 
The final trait for the object type is then constructed by including the other two traits as 
shown in example 5. 
 
 Basic-Object-Type (A, A): trait 
  includes 
   Set(A) 
  introduces 
   A : ?   -> Set[A] 

Example 3: Basic Object-Type Trait 
 

  This trait specifies object types by renaming A and A.  
 
 
 Attributes-Object-Type (A): trait 
  includes 
   T1, T2 
  introduces 
   attr1 : A, ?  -> T1 
   attr2 : A, ?  -> T2 

Example 4: Attributes Trait  
 

Object-Type A: trait 
  includes 
   Basic-Object-Type (A, A), Attributes-Object-Type (A) 

Example 5: Object-Type trait  
 
 

? Representing a UML Association 
 
Given the classes A and B associated in a UML class diagram, the plain association 
between them could be represented through two mapping functions with the signatures: 

a : Set[instancesB], ?  -> Set[instancesA] 
b : Set[instancesA], ?  -> Set[instancesB] 
 

In which a and b represent the role names that maps a set of objects of one type to a set 
of objects of the other type. Through these mapping rules, associations are uniformly 
described. These functions can also be expressed through the signatures:  
 a : B, ?  -> Set[A] 
 b : A, ?  -> Set[B]    
 
Mapping just one object to the connected set of objects of the other type.  
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? Specifying Multiplicity Constraints 
 
Taking the previous association between A and B, an axiom to determine a one-to-many 
multiplicity has the form: 

a ?  A (? ) ?  size(b(a, ? )) = 1 
 

Where size is a set operation that returns the number of objects in a set. This axiom 
constraints the multiplicity in B by determining the size of the Set of B elements 
associated to an A element equal 1 (see also the previous functions in Representing a 
UML Association). Size operation upon sets is used to determine all the possibilities of 
multiplicity constraint.  
 
? Subtyping  
 
Subtyping is defined as: 

 
“Subtyping is a special relationship between two object types, known as the is-a 
relationship.” 
 
In subtyping the subtype must be used anywhere the supertype is applicable and it 
inherits all the attributes and associations of the supertype. Considering the following 
example of inheritance between A and B, functions to express subtyping are given.  
 
  
 
 
 
 
 
 

Figure 2. Subtyping 

 
Two functions are used to express subtyping: simulates that maps an object identifier of 
type B to the corresponding object identifier in A that behaves like it, and member that 
tests if a B can be viewed as an A. They are expressed in the following way: 
 
 simulates: B -> A 
 memberB : A, ?  -> Bool   
 

 
? Inherited Attributes 

 
Simulates function is used to the description of inherited attributes. Considering an 
attribute f in class A, the following axiom to simulate it is also an attribute in B is written:  

assert  
f(b, ? ) == f(simulates(b), ? )  

     

    B 

A 
     C 

r 
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? Inherited Associations  
 

On the other hand, inherited associations are represented using role names. Considering 
the example in figure 2, the association between A and C with role name r is translated 
through the following function: 
 r : Set[A], ?  -> Set[C]   
 
 To represent the inherited association, a new function is introduced:  

r : Set[B], ?  -> Set[C] 
 
This new function r is constrained by the following axiom: 
r ({b}, ? ) == r({simulates(b)}, ? ) 
 
 

? Defining  Models by Composition 
 
A specification for a type diagram is constructed just by including all the traits defined 
such as: object types, associations, cardinality constraints, subtypes, inherited role traits 
and invariant traits if defined.   

 
 
2.5.3 The Formal Class Approach  
 
In [RAC94] it is defined an algebraic approach to describe Object-Oriented analysis and 
design models in a formal way.  The motivation to formalize Object-Oriented analysis 
and design is done through: 
 
“Object-Oriented analysis and design need formal specifications to allow proofs, 
verifications and automatic processing.”  
 
The idea is to use the notion of formal class to build the formal specifications. A formal 
class is an abstraction of concrete class in languages like C++, Eiffel, CLOS or Smalltalk. 
It is an algebraic specification (as abstract data type) with an object orientation. The 
motivation to use an algebraic specification as abstract data type comes from the 
following assumption: 
 
“Object-Oriented Design is the construction of software systems as structured collections 
of abstract data type implementations.” [MEY88] 
 
The specification model corresponds to modular design where formal classes are 
modules. The main concepts on a formal class structure are described as follows. 
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? Class Description  
 

It is considered that a class defines a type and therefore inheritance implies subtyping. A 
class defines an aspect, which allows to abstractly describe its instances. It also defines 
the instance behavior.  

 
The aspect has two parts: an abstract structure composed by a set of field selectors and a 
constraint that is a predicate on this abstract structure. A field selector has the profile: 
fseli : CFC  -> Ti. In which, CFC represents the current formal class. 

 
 
? Method Classification 
 
A method is characterized by a profile, a precondition and axioms. Two main groups of 
operations (resp. methods) are distinguished: constructors, the ones that have the current 
class as resulting type, and observers , the ones having another type as resulting type. 
Field selectors as previously described are observer methods.  

 
Another classification given to methods is accordingly to the user point of view. In this 
classification there are primitive methods, the ones associated to the class aspect, and 
secondary methods , the ones which semantics are based on the primitive methods. The 
basic constructor of a class (new<CFC>) is a primitive method. Field selectors are 
primitive observers.   

 
Secondary methods can be viewed as functional extensions of primitive ones.  Their 
semantics is based on primitive methods, i.e. every application of a secondary method 
can be reduced to applications of primitive ones.    

 
? Inheritance 
 

The principles for inheritance in formal class model are: 
 
? only secondary methods are inherited; 
? redefining and masquing a method is possible; 
? an inheritance link is possible between two classes if the following criterion is 

true: every field selector of the superclass exists in the subclass with the same 
type or a subtype.  

 
According to the last principle, it can be realized that there is no inheritance of instance 
variables.  
 
? Type Checking  
 

The type checking is based on usual principles: 
 

? there are predefined types as Boolean, Integer, String and generic List[T]; 
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? a class defines a type; 
? variables and methods are typed; 
? inheritance implies subtyping; 
? typing a message is like typing an operation application; 
? the method to apply is selected on the receiver type; 
? methods are redefined according to a rule which is co-variant only on the 

receiver type and the resulting type.  
 
In this context it is possible to define a type checking and prove the safety of the control.  

 
 

? Rewrite Rules 
 
An abstract operational semantic to the model is given using conditional term rewriting, 
i.e. one operation is rewritten using another. This is valid for secondary observers that are 
expressed through primitive ones, and also for primitive observers that can be rewritten 
based on constructors. For field selector, for example, the following rewritten form can 
be obtained: 

 
 fselI(new<CFC>(Xi, …, Xn))   -> Xi)  

 
 

? Implementation 
 
Translation from formal classes to OO programming languages is quite natural and 
partially automatic. Such process takes as input the formal description and produces the 
“skeleton” of the class: class interface, class implementation, class structure, primitive 
methods code and secondary methods signature.  

 
 

2.6 Conclusion and Summary 
 
From the approaches presented in this chapter some meaningful ideas that can be reused 
in algebraic specifications defining ADTs are taken into account in the work of this 
thesis. 
 
From RAL approach it is mainly considered: 

 
? The representation of class attributes (and class operations) through a function that 

does not need an instance of the corresponding type as a parameter. 
? The importance in adjoining theories to specify a more general sort (or theory) in 

order to be able to establish constraints among model elements. 
 
About generalization, the formal definition in RAL is maybe not enough to express the 
needed semantics. Moreover it is not so clear how the axioms are adjoined in order to 
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allow that operations and attributes of the general type be applicable in the specialized 
one.   
 
From the he study of the Modular Semantics approach, as it also makes use of an 
algebraic language, lots of benefits are taken. They will be realized through the 
description of the semantic framework in chapter 3.  
 
As the intention is to allow rapid prototyping (refinement of models into code), proofs 
and verifications to be applied to OO analysis and design, much Formal Class principles 
are reused in the algebraic semantic framework proposed in this dissertation.   
 
 
2.6.1 Comparison Table 
 
The two approaches described for UML formalization are in fact the most complete, clear 
and concrete encountered. To provide a clear view of what each approach covers or not 
considering UML static aspects including model formalization, a comparison table is 
presented.  
 

UML elements/ Formal 
Approaches 

Z based RAL 
 

Algebraic Modular Semantics 
 

Class 

? a theory 
? represents the 

set of all 
existing 
instances 
through an 
attribute 

? an object type trait 
including basic object -type 
and instance attributes 
traits 

? considers the set of existing 
instances through a 
mapping function 

Association 

? a theory 
? represents the 

set of all 
existing links 

? a trait 
? constrained by cardinality 

traits 
? defines mappings between 

role names and sets of 
object types 

Composition No representation No representation. 

Generalization 

? Achieved 
through theory 
morphism, i.e. 
the inclusion 
and mapping 
of operations 
and axioms of 
one theory into 
another.  

? A function simulates is 
defined to map object 
identifier of the subtype to 
object identifier of the 
supertype.  

? Simulates: B -> A 
? This function allows 

attributes and associations 
of supertypes to be also 
applicable to instances of 
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subtypes. 

Instance Attributes 
? Explicit in the 

class theory  
? Attr1: C -> T1  

? a trait is defined to specify 
the instance attributes 

? attr1: object-type, ?  -> T1 

Class Attributes 
? explicit in the  

class theory  
? attr1:   -> T1  

 
No representation. 

Instance Methods  

? explicit actions 
in the class 
theory 

? op_l(c:C, 
x:X1):Y1 

 
 
No representation. 

Class Methods  

? explicit actions 
in the class 
theory 

? op_l(x:X1):Y1 

 
 
No representation. 

Abstract Classes No representation No representation. 
Interfaces No representation No representation. 

Constraints 

? cardinality 
constraints 

? constraints 
between model 
elements 

? for association cardinalities 
? for subtyping, as disjoint 

subtyping constraint 
? invariants written in OCL 

are translated  

Model 

? theories 
assembled by 
theory 
morphisms 

? a whole theory 
defined with 
all model 
elements 

? model specification (or 
diagram specification) 

 

Table 1  – Comparison over UML Formalization Approaches. 

 
Model is considered in the table because it is really important to specify theories that 
allow manipulating model elements together. 
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Chapter Three 
 

UML and ADT:  
A Semantic Framework Proposition 
 
The semantic framework proposed in this work is based on algebraic specif ications 
describing Abstract Data Types (ADT). In the previous chapters the importance of UML 
formalization and some approaches in this direction have been presented. From these 
approaches some important outlined points are taken into account. The goal of this 
chapter is to explain the algebraic formal semantic framework through the mapping rules 
that support the translation from UML model elements to algebraic ADTs.  
 
 
3.1 Main Points Considered in the Framework Composition 
 
In order to compose the formal framework, the semantics of the main UML static model 
elements was evaluated. The main motivation towards UML formalization is the fact that 
the semantics of the UML model elements is not precisely described in the official UML 
semantics document [UML99]. Consequently, in some ambiguous points it was necessary 
to have recourse to other sources of information to achieve a good interpretation. Long 
times of discussion were also necessary to achieve final conclusions.  
 
According to the final interpretation of the semantics, the mapping rules were defined 
having as a result the algebraic formal specifications for some UML static constructs. 
This process follows the directives of Methods Integration approach  formal method the 
one chosen as the basis to this work. This choice is justified in the next section.  
 
To start with the formalization, in this work it is considered the UML core concepts 
respecting to the structural aspects of the UML, which are:  
 
? Types - implemented through Classes; 
? Instances - objects of a type; 
? Values - a type defines the values of its instances and the value of an instance consists 

of the values of its attributes at a point in time; 
? Operations – description of the services that objects of a class can offer to others 

affecting their behavior;  
? Associations – reflects structural relationships between classes; 
? Hierarchy and Inheritance – types from a hierarchy in which inheritance of structural 

(attributes) and behavioral features from super to sub-types take place. 
 
As in [CE97], the core concepts are extracted from the Core Object Model specification 
presented by Houston and Josephs [HJ95] written in Z that captures a precise description 
of the Object Management Group’s emerging standard for objects. 
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Starting from the core concepts it makes feasible that future extensions to the semantic 
framework can be easily proceeded.  
 
Another important aspect to point out is that the semantic framework presented is typed. 
However it is assumed that once translations to algebraic ADTs are proceeded, type-
checking problems are not carried to the specifications. The ADTs are written in Larch 
Prover as will be shown in section 3.1.3.  
 
 
3.1.1 The Formalization Method Chosen  
 
The approach chosen for the formalization is the integrated one, called Methods 
Integration approach (see section 2.2). This approach is justified in many ways: 
? A mapping between graphical and formal constructs can uncover problems with the 

modeling notations; 
? It can help identifying ambiguous and inconsistent structures; 
? It can help defining semantically well-formed informal models; 
? The mapping rules can be adapted to a CASE tool in such a way that formal 

specifications can be automatic generated from informal models (to express the 
whole or at least part of the models). This can help in proving properties of the 
models and in generating code from them. 

 
The integration of the translation process to a CASE tool built in Graphtalk metatool is 
explained in chapter 4 with a concrete example of the translations given in chapter 5.  
  
The mapping rules making the bridge from UML models to formal models are explained 
in section 3.2.  
 
 
3.1.2 The Formal Language Chosen 
 
The language used to write the formal specifications is Larch more specifically with the 
syntax of Larch Prover. It is an algebraic method not yet extended with OO concepts. 
However Larch is really suitable to the description of Abstract Data Types because it 
allows the semantics of the operations to be described in an abstract way, i.e. just as 
equations stating relations between them. In addition Larch Prover allows verifications 
and proofs to be applied to the formal specifications. This is really helpful in order to 
ensure the correctness of the models described. More information on Larch Prover is 
found in chapter 4, section 4.2. 

 
 
3.1.3 ADT Structure  
 
An algebraic specification of a data type is composed of three main parts: 
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? A heading containing information about the module, mainly they are: the name (or 
sort) of the type, the imported modules (or types), and the generator names (or 
constructors). 

? The signatures which describe the operators syntax. 
? The axioms which describe the semantics of operations.  
 
As in Formal Classes (section 2.5.3), primitive observers (operations related to the main 
aspect of the ADT) are described in terms of the constructors and secondary observers in 
terms of primitive ones. Constructors (or generators) are operations that are able to 
determine the values for the type being described. These assumptions are realized 
through the axioms in the following ADT. 
 
The ADT example presented here specifies a sort Set, where ~ is logical not, /\ is and, \/ 
is or, => is implication and = is equality.  
 
It is followed Larch Prover syntax. The reserved words of Larch are in Italics. Notes are 
between slashes.  
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 set name SetA    /defines the name of  the sort – SetA – a set of A elements/ 
 declare sorts A, SetA, Nat  /declares the types used in this specification/ 

declare variables a, a1: A, Xsa, Ysa: SetA  /declare the variables with the  
 corresponding types that will  
be used in the axioms/ 

declare operators   /defines the operators that apply to the values of the 
type being defined/ 

  {}:   -> SetA  /operation that creates an empty set/  
  {_}: A   -> SetA /receives an element and identifies the set in  

which it is present/ 
insert: A, SetA  -> SetA /inserts an element in the Set/ 

_ \U _: SetA, SetA -> SetA /union of two sets/ 
_\in _: A, SetA -> Bool /tests if the element is in the set/ 
_\I _: SetA, SetA -> Bool /tests if one set is included in the other/  
size : SetA   -> Nat   /returns the number of elements in SetA/  

.. 
assert   /semantics of the operations are described through the 

 axioms written in the assert section/ 
 sort SetA generated by {}, insert;     /constructors of the sort  

SetA/ 
 

{a} = insert(a, {}); /a set with an a element is equal the insertion of a in an empty set/ 
 
~(a \in {});  /an a element is not in an empty set/ 
a \in insert(a1, Xsa) ?  (a \eq a1 ?  a \in Xsa);   /a in insert a1 in set Xsa is 

equivalent to that a is equal a1 or a 
is in Xsa/ 

{} \I Xsa;       /empty set is included in a set/ 
insert(a, Xsa) \I Ysa  ?  (a \in Ysa ?  Xsa \I Ysa);  /insert an a element in set Xsa is in  

set Ysa is equivalent to a is in Ysa 
 or Xsa is in Ysa/  

a \in (Xsa \U Ysa) ?  (a \in Xsa ?  a \in Ysa);  /an a element in Xsa set union to 
                   Ysa set is equivalent to a is in Xsa 

                                                                                                         set or a is in Ysa set/ 
% axioms for size operator /comments begin with %/   
size({}) = 0; /the number of elements in an empty set is 0/  
(a \in Xsa) => size(insert(a, Xsa)) = size(Xsa); /the number of elements in set Xsa 

 inserting an element that already  
existed is equal the number of  
elements originally in set Xsa/ 
 

~(a \in Xsa) => size(insert(a, Xsa)) = 1+size(Xsa); /if a is inserted in Xsa and didn’t  
exist before, then the size of Xsa  
will be the original size + 1 
element/ 

 
.. 
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In the previous structure it is possible to see that the axioms are compound from 
equations that are equalities or equivalencies between terms with variables. Variables 
represent a valid value inside a Universe of its type. 
 
These axioms are translated as rules in LP that are applied to the system any time it runs 
in LP to be tested. Through these rules the semantics of the system (composed by the 
semantics of each element) can be checked, properties validated and inconsistencies 
detected.  
 
 
3.2 The Translation Process from UML to ADT 
 
In order to make clear the translation process from UML static model elements 
(expressing the UML core concepts) to algebraic ADTs, the semantics of the model 
elements according to the UML Semantics Document [UML99] and to The Unified 
Modeling Language User Guide [BRJ99a] is presented. The semantics is presented 
focusing on the main points considered to the formalization in this work. Afterwards 
some considerations on the semantics according to the studies and discussions undertaken 
are described.   
 
The translation process is also described in two parts: first the translations that result in 
the operations applicable to the type being defined are described (see declare operators 
section in the previous ADT structure), after that the most significant axioms determining 
the semantics of these formal operations are defined (see assert section in the previous 
ADT).  
 
The result of the translation process is one ADT specified to each model element 
considering classes, associations (plain associations and compositions), generalizations,  
association classes and constraints for the moment. Some other ADTs of auxiliary types 
used in the formal specifications are also specified in the semantic framework, such as: 
primitive types (String, Nat, etc), identity for classes, and set of objects of a class. They 
are described in appendix A. 
 
Follow the descriptions of the mapping rules for each model element considered in the 
framework.  
 
 
3.2.1 Class Translation   

 
? Class Syntax and Semantics  
In the UML static diagram the main building block is the Class. A Class is the abstraction 
of a set of objects with the same properties (attributes), behavior (operations implemented 
through methods), relationships, and semantics. For the attributes, each object of a class 
has its own values, what characterizes particular concrete states for the objects. The 
values for the attributes are taken from the set of values permitted by the attribute type. 
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The behavior is shared by all the class instances. Class in UML is represented as showed 
in figure 3. 
 
 
 

 
 
 
 

Figure 3. UML class representation 

 
The ability to describe behavioral and structural (attributes) features are inherited from 
classifiers. Classifiers are defined as: 
 
“A Classifier is an element that describes behavioral and structural features; it comes in 
several specific forms, including classes, data type, interface, component, and others.” 
[UML99] (Classifiers - pg. 2-27) 
  
The operations and attributes of a class have an important feature that is their owner 
scope.  It can have two different values:  

? Instance: each ins tance holds its own value for the feature (in case of 
attributes) or the feature is applicable to the set of instances of the class 
(instance methods);  

? Classifier: there is just one value of the feature for all instances of the class 
(class attributes) or that the feature is applicable to the class itself (class 
methods).   

 
According to [BRJ99a], examples of class attributes and operations can be: 
“The most common use of classifier scoped features is for private attributes that must be 
shared among a set of instances, such as for generating unique Ids among all instances of 
a given classifier, and for operations that create instances of the class.” (chapter 9 – pg. 
124) 

 
Classes are identified by their name. In [BRJ99a] it is stated that: 
“Every class must have a name that distinguishes it from other classes.” (chapter 4 – pg. 
49) 
 
It is also stated that: 
“…the same thing in a system (such as the class Person) may appear multiple times in 
the same diagram or even in different diagrams. In each case, it is the same thing.” 
(chapter 7 – pg. 94) 
 
Besides these features stated to classes there are many others that apply. However to start 
with the formalization only the main features are considered as a basis. From the core 
description of classes, it is possible to extend the formal specifications in future to adapt 
what more becomes necessary.  

  Shape 
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? Considerations on the Semantics 
A class can be viewed as the implementation of a type since it determines the operations 
applicable to a set of instance values. In fact classes can be viewed as implementations of 
different types through the realization of different interfaces (collections of operations 
determining the services of a class). However, for the purposes of this work classes and 
types are considered as semantically equivalents.  
Instances of a class mean the objects of that class. In [CE97] instance is defined as the 
instantiation of a type with a unique identity. In the UML it is agreed that instances have 
unique identity.  
 
? Mapping Rules  
Considering a generic class A, to which general class formal specifications can be 
determined, the following set of mapping rules is established: 
 
1. As in Formal Classes [Royer99a] (see section 2.5.3), a single generator (or 

constructor) is considered: 
newA : T1,…,Tn -> A 
 

2. Primitive observers are defined for each argument type of the generator. They 
describe the instance attributes. 
getAttr1 :  A -> T1 

      setAttr1 :  A, T1 -> A 
 
3. Other instance operations are defined as functional extensions of these previous 

formal operations.  
 
4. For object identity, two operations are defined:  

identity : A -> IdA 
 __\eq__ :  A, A -> Bool 
The identity operation that expresses the object identity, and the object equality 
operation that will be defined as identity equality (see rule 8).  
 
It is taken a functional model for object identity in which the identity is part of the 
values of the object. Therefore the constructor of the ADT gains this new signature: 
newA : IdA, T1, …,Tn -> A  
 
In which IdA represents the type for identity of objects of type A. IdA is defined as an 
ADT, which is described in appendix A. 
 

5. Constants are defined in order to give examples of instances of the class that will be 
used later to test some axioms.  
oneA :   -> A 
anotherA :  -> A  
 

Follows now the description of the axioms stating the semantics of these formal 
operations.  
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6. Primitive Observers, i.e. the instance attribute accessors, are described in terms of the 

constructor newA. 
getAttr1(newA(id1, var1, …, varN)) = var1; 
In which id1 is a variable expressing an identity value, var1 and varN are variables 
expressing values of the attributes according to their types. Then the operation 
getAttr1 obtains the value of the attribute represented by var1 in the constructor.   
 
setAttr1(newA(id1, var1, …, varN), var11) = newA(id1, var11, …, varN); 
 
Var11 represents another variable, i.e. another value for the same attribute expressed 
through var1. The constructor newA represents the parameter of type A in the set 
operation. Then the setAttr1 operation changes the value of the attribute represented 
by var1 for the object. 
These axioms are applicable to all the attribute accessors of the class. 
  

7. Identity operator, expressing another primitive observer, is also described through the 
constructor.  
identity(newA(id1, var1 ,…, varN)) = id1; 
 

8. As mentioned in item 4, object equality is achieved through identity equality. 
a1 \eq a2 = identity(a1) \eq identity(a2); 
In which a1 and a2 are variables of type A. The operation equality (\eq) between 
identities is defined in the ADT for the type IdA. 
 

9. For the constants, the following axioms take place. 
oneA = newA((newIdA), var1, …, varN); 
anotherA = newA((nextIdA(newIdA)), var1, …, varN); 
 
The first constant oneA is equal a new instance of A with a new identity. And, 
anotherA represents an instantiation of A with a new identity obtained through the 
existing one. The newIdA and nextIdA are operations of the type IdA. 
 

As LP does not allow genericity (see section 4.2), for each class a sort identity (as IdA for 
class A) is defined.  
 
The explicit identity adopted does not correspond exactly to the implicit one considered 
in object -oriented programming languages, but it is not so simple to treat implicit 
identities in algebraic ADT. Implicit identities bring some side-effects and the way in 
which it can be solved is still under investigation by the collaborators of this work.  
 
? Metalevel Specifications  
In order to specify class attributes and class methods (according to the owner scope 
explained in class syntax and semantics), a specification for a class in a more global level 
can be given. This specification is considered at the metalevel since the own class is the 
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generated object in this case, and therefore the operations and attributes described are 
applied to the class. 
 
Assuming the same generic class A, the following mapping rules are defined at the 
metalevel. It is important to state that the sort defined in this case is the sort classA.  
 
10. For class creation: 

newClassA : String, T1, …, Tn -> classA 
In which String type is used to represent the class name (its identity). The newClassA 
is the constructor (or generator) of the ADT. T1,…,Tn represent the class attribute 
types.  
 

11. According to the semantics, a name identifies a class. Then the following operators 
take place: 
classIdentity : classA  -> String  

      __\eq __ : classA, classA -> Bool 
 In which class equality is achieved through identity equality.  
 
12. As the class A must be the unique instance of the type, a constant to refer to it is 

defined. It will be used in the axioms instead of variables of the type. 
theClassA :   -> classA 

 
13. Class Attribute Descriptors: 

getClassattr1 :  -> T1 
setClassAttr1 :  T1  -> T1 
As the class attribute refers to the class itself and not to one of its instances, it does 
not gain an additional parameter of type A in its signature (as in RAL approach, 
section 2.5.1). 
 

14. Class operations are defined as functional extensions of these previous operations.  
 
Another point is that in the semantic framework the operation new is defined as the 
constructor for the sort, therefore the new for class instantiation is not considered at the 
metalevel as in Smalltalk approach even being considered a class operation in UML 
semantics.  
 
 
3.2.2 Association Translation 
 
? Association Syntax and Semantics  
Associations are a structural relationship that can be established between classes. They 
define a set of tuples relating instances of the connected classes. Associations can include 
two or more association ends (the connection from the association to a class). In this 
work it is considered just binary associations for the moment as depicted in figure 4.  
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Figure 4. UML association between classes Person and Company 

 
Associations can have a name, or it can be used role names to identify the association. 
Role names represent the role that the classes play in the relationship. Another important 
property of associations is the multiplicity. Each association end has its own multiplicity 
stating “how many” elements of that class can be related to an instance of the class in the 
opposite end. According to [BRJ99a], multiplicities can be: exactly one (1), zero or one 
(0..1), many (0..*), or one or more (1..*). An exact number or intervals are also possible.  
 
An important restriction about associations, according to [UML99] is: 
“The instances of an association are a set of tuples relating instances of the classifiers. 
Each tuple value may appear at most once.” (Association – pg. 2-19)    
 
Taking into account these points of association semantics, the following translation for 
association is done. 
 
? Mapping Rules  
It is important to state that in the semantic framework associations are identified by a 
natural number since association names are not always provided. Role names are not yet 
considered. They are really close to interface aspect: a role can have its type determined 
by an interface, i.e. a role an abstraction presents to another can be determined by the 
service it provides. So it makes more sense to include role names when interfaces are also 
treated in the framework.  
 
Considering a generic association Assoc1 between classes A and B, the following set of 
mapping rules is established: 
    
1. First of all, an empty association (as an empty set) is considered to which links can be 

added and removed.  
void : Nat  -> Assoc1 
In which Nat represents the type for association identity, which needs to be treated in 
LP. 
 

2. The other generator (or constructor) for the association sort is addLink: 
addLink : Assoc1, A, B  -> Assoc1 
In which one instance of A and one instance of B are added as a tuple to the set of 
tuples represented by the association. The AddLink together with void operator 
determines the values for the association sort. 

name  

0..1 works  *      Person Company 

multiplicity 
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3. To allow the manipulation of the set of links, operation remove link is also described.  
re moveLink : Assoc1, A, B  -> Assoc1 
 

4. AllLeftLink and allRightLink operators map an object of a given type to a set of 
related objects of the other type.  
allLeftLink : Assoc1, B -> SetA 
allRightLink : Assoc1, A -> SetB  

  
5. Still considering links, an operator to test if two instances are related through the 

association is specified. 
isLinked :  Assoc1, A, B  -> Bool  
 

6. Operators to test if an instance is linked through the association.  
isLeftLinked : Assoc1, B -> Bool 
isRightLinked : Assoc1, A -> Bool 
 

7. Testing if the association, as it is a set, is empty. 
isEmpty : Assoc1 -> Bool 
 
The operations in rules 5 to 7 are necessary to write some proofs in the theorem 
algebraic prover LP. 
 

8. Operators leftMultiplicity and rightMultiplicity are determined in order to express the 
left and right multiplicity of a given instance in the association. These operators could 
also be obtained by the size of the set of instances recovered through the operators 
allLeftLink and allRightLink (rule 4). However they are defined in order to get a 
more complete association description. 
leftMultiplicity : Assoc1, B  -> Nat 
rightMultiplicity : Assoc1, A -> Nat 
 

9. For association identity, the following operations are described. 
identity : Assoc1  -> Nat 
__\eq__  :  Assoc1, Assoc1  -> Bool 
In which association equality is achieved through identity equality (see rule 12).  
 

The main axioms determined in order to reflect association semantics are as follows. 
 
10. According to association semantics, an axiom stating that tuples of instance values 

cannot be equal in an association becomes necessary.  
(a1 \eq a2) /\ (b1 \eq b2) => addLink(addLink(assoc1, a1, b1), a2, b2) = 
addLink(assoc1, a1, b1); 
In which a1 and a2 are variables of type A, b1 and b2 variables of type B, and assoc1 
a variable representing the association. Adding two links with variables that represent 
the same objects is like adding this link only once.  

 



Chapter Three: UML and ADT: a Semantic Framework Proposition   
 

34                                                                   Formalization of UML using Algebraic Specifications 

11. Multiplicity constraints are written only if the multiplicity is not free, i.e. different 
from 0 or More. Axioms for multiplicity constraint make use of the size operation for 
Set. Size returns the number of objects in a Set (as in the algebraic approach of 
section 2.5.2). 
Considering just the multiplicity at the right end the following axioms are described. 
%multiplicity Just One  
size(allRightLink(assoc1, a1)) = 1; 
 
%optional multiplicity (0..1)  
~(size(allRightLink(assoc1, a1)) > 1); 
  
%minimum multiplicity 1, in the one or more (1..*) case 
~(size(allRightLink(assoc1, a1)) < 1); 
  

The axioms in items 12 to 17 state the semantics of some formal operations defined in the 
association specification.   
 
12. Stating the semantics of the operation allLeftLink (that can also be applied to 

allRightLink with the adequate changes). 
 

(b1 \eq b2) => allLeftLink(addLink(assoc1, a1, b2), b1) = insert(a1, 
allLeftLink(assoc1, b1)); 
What says that: if b1 is equal b2, then the result of allLeftLink to b1 adding a link to 
b2 will be the set resultant from allLeftLink to b1 plus one more element a.  
 
~(b1 \eq b2) => allLeftLink(addLink(assoc1, a1, b2), b1) = allLeftLink(assoc1, 
b1); 
What says that : if b1 is not equal b2, then the result of allLeftLink to b1 adding a link 
to b2 will not afect the result of allLeftLink to b1.  
 
allLeftLink(void(i), b1) = {} :SetB ; 
The result of allLeftLink to an empty association is an empty set. The parameter i in 
the operation void represents association identity.  
 

13. Axioms for association identity. 
identity(void(i)) = i; 
identity(addLink(assoc1, a1, b1)) = identity(assoc1); 
assoc1 \eq assoc2 = equal(identity(assoc1), identity(assoc2)); 
 
In which equality between associations is obtained in LP through identity equality. 
 

14. Axioms to state that an association is empty.  
isEmpty(void(i)); 
~(isEmpty(addLink(assoc1, a1, b1))); 
 

15. Axioms stating when two instances of object types are linked 
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~(isLinked(void(i),a1, b1)); 
isLinked(addLink(assoc1, a1, b1), a2, b2) = ((a1 \eq a2 /\ b1 \eq b2) \/ 
isLinked(assoc1, a2, b2)); 
 

16. Axioms stating when one instance is linked through the association.  
~(isLeftLinked(void(i), b1)); 
isLeftLinked(addLink(assoc1, a1, b1), b2) = ((b1 \eq b2) \/ isLeftLinked(assoc1, 
b2)); 
To the operator isRightLinked the same axioms are valid making the adequate 
changes.  
 

17. Axioms stating the semantics for leftMultiplicity and rightMultiplicity operators (rule 
8). 
leftMultiplicity(void(i), b1) = 0; 
(b1 \eq b2) => leftMultiplicity(addLink(assoc1, a2, b2), b1) = 1 + 
leftMultiplicity(assoc1, b1); 
~(b1 \eq b2) => leftMultiplicity(addLink(assoc1, a2, b2), b1) = 
leftMultiplicity(assoc1, b1); 
 
rightMultiplicity(void(i), a1) = 0; 
(a1 \eq a2) => leftMultiplicity(addLink(assoc1, a2, b2), a1) = 1 + 
leftMultiplicity(assoc1, a1); 
~(a1 \eq a2) => leftMultiplicity(addLink(assoc1, a2, b2), a1) = 
leftMultiplicity(assoc1, a1); 
 
 

Taking association formal description, it can be realized that specific sorts for the set of 
instances of the connected classes need to be predefined. For the previous translations, 
this is the case for SetA and SetB. The generic sort for specifying the set of instances of a 
class is described in appendix A. 
 
 
3.2.3 Composition Translation 
 
? Aggregation and Composition: Syntax and Semantics  
Associations can be in the form of aggregations meaning that objects of one class of the 
association are consisted of instances of the other class. This kind of association is known 
as “whole /part” relationship. Aggregations can be shared aggregations or compositions. 
Shared aggregations are merely conceptual and do not carry extra semantics comparing to 
plain associations. They are used just to show that conceptually the classes are not at the 
same hierarchical level.  
 
Composition in turn is a strong form of aggregation that determines a dependency of the 
lifetime of the parts in respect to the whole. In a composition, the part cannot be shared 
by several wholes. In [UML99] it is stated that: 
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“Composite Aggregation is a strong form of aggregation which requires that a part 
instance be included in at most one composite at a time, although the owner may be 
changed over time.” (Association – pg. 2-54) 
 
The dependent lifetime is determined by [UML99]: 
 
“Furthermore, a composite implies propagation semantics (i.e., some of the dynamic 
semantics of the whole is propagated to its parts).” (Association – pg. 2-54) 
 
This propagation of dynamic semantics implies that the whole manages the creation and 
deletion of its parts. Moreover if the whole is copied or deleted, so need to be the parts as 
well. This propagation of semantics could be represented through message sending 
between classes. However these dynamic aspects are not yet treated in the semantic  
framework in its actual stage. 
 
A composition in UML is represented as depicted in figure 5. 
 
 
 
 
 
 
 
 
 

Figure 5. UML composition representation 

 
? Considerations on the Semantics  
The semantics for composition is not clear in UML as well as for aggregations. 
Aggregations as explained in UML documents are not more than plain associations with 
some conceptual value, being not a powerful characterization of a relationship.  
 
Composition in turn establishes a strong form of relationship. Taking the fact that a part 
strongly belongs to its whole and that the whole manages its parts, a part could be seen as 
encapsulated in the whole instance in such a way that visibility to it could only be 
achieved through the whole avoiding side-effects in the system. However UML does not 
fairly state composition semantics.    
 
Taking the static concerns, the main points that can be stated for composition semantics 
are: 
? multiplicity at the whole side must be 1 at maximum; 
? a part instance cannot be part in more than one composite at a time;  
? instance reflexivity must be forbidden; i.e. a part cannot be part of itself; 
? recursion must be stopped in any situation, a part cannot be part of a whole that is in 

turn its part.   
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In [UML99] it is assumed that: 
 
“Both kinds of aggregations define a transitive, antisymmetric relationship (i.e., the 
instances form a directed, non -cyclic graph).” (Core – pg. 2-55)  
 
However considering that aggregations are merely conceptual and do not determine 
dependency between the instances, only for compositions this assumption will be stated.  
Compositions do encompasses specific semantics and therefore some extra mapping rules 
need to be specified.   
 
 
? Mapping Rules 
Considering a composition Comp between generic classes A and B, being A the part and 
B the whole, the following mapping rules take place.  
 
1. An operation to state that A is part of B is included in the association specification. 

isPartOf : Comp, A, B  -> Bool   
 

2. The semantics of this operation is expressed through the following axioms. 
isPartOf(addLink(comp1, a1, b1), a2, b2) => (a1 \eq a2) /\ (b1 \eq b2); 
~(isPartOf(void(i), comp1, a1, b1)); 

 
3. An axiom to state that a part instance cannot belong by composition to more than one 

composite is written. 
~(b1 \eq b2) => (isPartOf(comp1, a1, b1) /\ ~(isPartOf(comp1, a1, b2))) \/  
(~(isPartOf(comp1, a1, b1)  /\ (isPartOf(comp1, a1, b2))); 
 

To complete composition semantics, some axioms in a more global level are added: 
 
4. Considering compositions Comp1 from A to B and Comp2 from A to C in which B 

and C represent the wholes, the following axioms are written to match the semantics 
stating that an instance part cannot be part in more than one composite.  
 
assert 
? a : A, b : B, c : C, comp1: Comp1, comp2: Comp2 
 
isPartOf(comp1, a, b) => ~(isPartOf(comp2, a, c)); 
isPartOf(comp2, a, c) => ~(isPartOf(comp1, a, b)); 
 

5. Considering two compositions Comp1 and Comp2 between classes A and B, the 
following axioms are added to guarantee that recursion is stopped. 
assert 
? a : A, b : B, comp1: Comp1, comp2: Comp2 
 (isPartOf(comp1, a, b)) => ~(isPartOf(comp2, b, a)); 
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6. Considering a composition Comp1 from A to A, the following axiom states that 
instance reflexivity is forbidden. 
assert 
? a : A, comp1: Comp1 
~(isPartOf(comp1, a, a)); 
 

 
3.2.4 Constraints Translation 
 
In the algebraic semantic framework, some UML association constraints are translated, 
as: XOR, subset and derived.  
 
? XOR Constraint  
XOR is a constraint that can be established between two associations with the same 
source class. Taking the following example in figure 6, it can be realized that an 
exclusive or becomes necessary. An account can be of a Person or of a Company but not 
of both at the same time.  
 
 
 
 
 
 
 
 
 
 

Figure 6. UML XOR constraint 

 
Anytime an XOR constraint is encountered, an operator and axiom are generated to state 
the semantics determined by it. Considering a constraint XOR between generic 
associations from A to B and from A to C, the following mapping rules take place. 
 
1. Operator defined to specify the constraint XOR between two associations. 

rightXOR : AssocAB, AssocAC -> Bool 
 

2. Axiom stating the semantics of the constraint. 
assert 

rightXOR(assocAB, assocAC) =  
(~(isRightLinked(assocAB, a)) /\ (isRightLinked(assocAC, a))) \/  
((isRightLinked(assocAB, a)) /\ ~(isRightLinked(assocAC, a))) 
 

Meaning that each A instance must be linked to a B or a C instance at a time. 
 

? Subset Constraint 
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A subset constraint between two associations establishes a dependency from one in 
respect to the other. It can be clear in the example depicted in figure 7. 
  
 
 
 
 
 
 
 

Figure 7. UML subset constraint 

In this example, the constraint subset is used between the two associations to imply that a 
manager of a department must be one of its members.  
 
To state that anytime there is a subset constraint, the multiplicity of the dependent 
association end must be less or equal the multiplicity of the association end in which it 
depends on, the following operator and axiom are written. 
 
Consider two associations between generic classes A and B in which AssocAB2 depends 
on AssocAB1 at the right side. 
  
1.  Operator defined to specify the constraint subset between the two associations. 

rightSubset : AssocAB1, AssocAB2 -> Bool 
 

2.   Axiom stating the semantics of the constraint. 
assert 

rightSubset(assocAB1, assocAB2) =>  
~(size(allRightLink(assocAB2, a)) >  size(allRightLink(assocAB1, a)))  

 
Following these steps, any constraint involving associations are possible to be formalized 
in the semantic framework.  
 
 
3.2.5 Association Class Translation 
 
? Association Class Syntax and Semantics  
In an association between two classes, the association itself might have properties. In the 
UML, this is modelled as an association class, which is a modelling element that has both 
association and class properties. Because of its features inherited from classes and 
associations, it was feasible to treat also association classes in the framework in its first 
approach. Association classes are rendered in UML as depicted in figure 8.  
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Figure 8. UML association class representation 

 
? Mapping Rules  
Considering an association class AsClassAB defined in association Assoc1 between 
classes A and B, the following mapping rules take place.  
 
1. As in Classes, a single generator (or constructor) is considered: 

newAsClassAB : Nat, A, B, T1, …, Tn -> AsClassAB 
In which Nat is the type for association class identity (as used for associations in 
Association Translation – see rule 1), A and B the types representing the classes 
connected through the association and T1, ..., Tn the types of the association 
attributes. 
 

2. Association class identity operations are written. 
identity : AsClassAB -> Nat 
__ \eq __ : AsClassAB, AsClassAB -> Bool 
In which association class equality is achieved through identity equality. 
 

3. Two attributes are described. 
left : AsClassAB -> A 
right : AsClassAB -> B 
 

4. Arguments of the constructor newAsClassAB expressing the attributes are described 
through the functions: 
getAssocAttr1 : AsClassAB  -> T1 
setAssocAttr1 : AsClassAB , T1 -> AsClassAB 
 

5. A mapping to the corresponding association is defined.  
assoc_AsClassAB : ->AssocAB 
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6. The set of existing instances is expressed through another sort, which here is called 
Sons. The operators defined in this Sons ADT are as follows: 
empty :  -> Sons     (generator or constructor of the empty set of instances) 
add : AsClassAB, Sons -> Sons   (another constructor) 
first : Sons -> AsClassAB   (first instance in the set) 
rest : Sons -> Sons               (restant set) 
__\isIn__ : AsClassAB, Sons -> Bool 
 

7. Then the relation between the instances of the association class and the links of the 
association is defined through an axiom. 
assert  

newAsClassAB(i, a1, b1) \isIn sons_AsClassAB <=>  
isLinked(assocAsClassAB, a1, b1) 

 
In which a1 and b1 are variables representing instances of A and B respectively.   
 
 

3.2.6 Generalization Translation 
 
? Generalization Syntax and Semantics  
Generalizations are a kind of relationship in which one general thing is specia lized in 
some specific ones. It is known as “is-a-kind-of” relationship in which a specialized thing 
is-a-kind-of a more general one. The general thing is called the superclass and the more 
specific things are called subclasses. The subclasses inherit all features of the super, 
including behavioral and structural features. Subclasses also inherit participation in 
associations from the superclass. The subclasses may even add new structure and 
behavior. The most important aspect concerning generalizations is that the instances of 
the subclass may be used anywhere an instance of the superclass is applied, but the 
reverse is not true. This is coherent concerning to the concept of subtyping. 

 
Another important point in generalizations is that the subclass can even change the 
behavior of the parent. It can have an operation with the same signature as an operation in 
the parent but with a different implementation, what is called overridden. Through 
overridden polymorphism is achieved.    
 
Generalization is represented in UML as depicted in figure 9.  
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Figure 9. UML generalization representation 

 
? Mapping Rules 
Considering two generic classes A and B, in which B is subclass of A, the following 
mapping rules for inheritance can be established.  
 
1. In the constructor of type B, the attributes of superclass A need also to be considered 

through the following function signature. 
newB : IdB, TA1, …, TAn, TB1, …, TBn,   -> B  
In which IdB is the identity for type B, TA1, …, TAn represent the A instance 
attribute types, and TB1, …, TBn express the B instance attribute types.  
 

2. To establish inheritance of structure a correspondence between the arguments of the 
generators of the ADTs is determined through the following axiom. 
assert 

PAB((newB(idb, attrA1, …, attrAn, attrB1, …, attrBn,), (newA(ida, attr1, …, 
attrn))) = equal(attrA1, attr1) /\ … /\ equal(attrAn, attrn) 

 
This axiom states that PAB, a structural projection from B to A, is determined 
through the correspondence between the common argument types of the generators of 
the super and sub classes. The first argument types of the B generator correspond to 
the inherited attributes. 
 

3. To determine inheritance of associations, a simulate function as in the modular 
algebraic approach of section 2.5.2 is used. 
simulate : B -> A  

 
4. Considering an association between the superclass A and a generic class C, the 

following axiom determines the semantics for association inheritance.   
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assert 
?  c: C, a: A 
addLink(assocAC, a, c) = addLink(assocAC, (simulate(newB(id1, attr1,…, 
attrn)), c); 
 
Inheritance of behavior is not yet provided in the framework. 
 

 
3.3 Conclusion and Summary 
 
The algebraic semantic framework in its actual stage encompasses the formal 
specifications for the main UML static model elements, as: Classes, Associations 
(including Compositions) and Generalizations.  It also covers the formal specifications 
for some other static constructs of the UML Class Diagram as Association Classes and 
Association Constraints. Some other static building blocks of UML can also be 
incorporated in future by extension as Interfaces, variations of Classes (Abstract and 
Template), other forms of relationships (dependencies and realizations) as well as OCL 
constraints in the model that can also be translated.  
 
Since all the static aspects are formalized, UML dynamic concerns can also be treated. As 
stated before, dynamic aspects are really powerful to express side -effect in operations 
through message sending between objects. 
 
From the formal specifications generated, proofs can be applied over the models and 
therefore inconsistencies are checked. In future, basing in the formal specifications 
already achieved, transformations of models can be proved and rapid prototyping from 
design to code can be implemented. 
 
In order to make clear the final resultant formal specifications for each UML static model 
element considered, the main mapping rules with their result are depicted in the following 
tables.  
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3.3.1 Summary Tables  
 
The rules and axioms which numbers are pointed out in these tables can be found in the 
corresponding section of the translation from the UML model element to ADT.  
 

Class Semantics Formal Operator 
 

Rules 
 and  
Axioms 

1. Single Generator  newA : IdA, T1,…,Tn -> A 
 

 
1 

2. Instance Attribute Descriptors getAttr1 :  A -> attr1Type 
 setAttr1 :  A, attr1Type -> A 

 
2, 6 

3. Instance Operations Extensions of the operations in items 1 
and 2 

 

 
3 

 
4. Object Identity identity : A -> IdA 

 __\eq__ :  A, A -> Bool 
 

 
4,7,8 

5. Class Attributes getClassattr1 :  -> T1 
setClassAttr1 :  T1  -> T1 

12 

6. Class Operations Extensions of the operations in item 
5. 

13 

Table 2 – Formal Specifications for Classes  

 
Association Semantics Formal Operator (or axiom) 

 
Rules 
 and  
Axioms 

1. Generator of an Empty Set  void : Nat  -> Assoc1 
 

 
1 

2. Generation of Links 
(simulating association 
instantiation) 

addLink : Assoc1, A, B  -> Assoc1  
2 

3. Stating that an Association 
cannot contain twice the same 
link. 

(a1 \eq a2) /\ (b1 \eq b2) => 
addLink(addLink(assoc1, a1, b1), a2, 
b2) = addLink(assoc1, a1, b1); 

 

 
10 

 

4. Deletion of Links 
 

removeLink : Assoc1, A, B  -> Assoc1 
 

 
3 

5. Return the set of Links for an 
instance of a classifier connected 
through the association.  

allLeftLink : Assoc1, B -> SetA 
allRightLink : Assoc1, A -> SetB  

4, 12 
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6. Multiplicity constraints 
established through the 
application of size operation of 
sets over allLeftLink and 
allRightLink.  
 

size(allRightLink(assoc1, a1)) = 1; 
 

~(size(allRightLink(assoc1, a1)) > 1); 
 
~(size(allRightLink(assoc1, a1)) < 1); 

 

11 

Table 3 – Formal Specifications for Associations 

 
Composition Semantics Formal Operator (or axiom) 

 
Rules 
 and  
Axioms 

1. State that an instance is part of 
another.  

isPartOf : Comp, A, B  -> Bool  
1 

2. A part instance cannot belong 
by composition to more than one 
composite. 

~(b1 \eq b2) => (isPartOf(comp1, a1, 
b1) /\ ~(isPartOf(comp1, a1, b2))) \/  
(~(isPartOf(comp1, a1, b1)  /\ 
(isPartOf(comp1, a1, b2))); 
 
isPartOf(comp1, a, b) => 
~(isPartOf(comp2, a, c)); 
isPartOf(comp2, a, c) => 
~(isPartOf(comp1, a, b)); 
 

 
 

3, 4 
 

3. Recursion must be stopped 
and instance reflexivity 
forbidden.  

 

(isPartOf(comp1, a, b)) => 
~(isPartOf(comp2, b, a)); 
~(isPartOf(comp1, a, a)); 

 
 
 

 
5,6 

Table 4– Formal Specifications for Compositions 

 
Generalization Semantics Formal Operator (or axiom) 

 
Rules 
 and  
Axioms 

1. In the constructor of the 
subclass, the attributes of the 
superclass need also to be 
considered. 
 

newB : IdB, TA1, …, TAn, TB1, …, 
TBn,   -> B 

 
1 
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2. To establish inheritance of 
attributes, a correspondence 
between the arguments of the 
generators of the super and sub 
class ADTs is determined. 
 

assert 
PAB((newB(idb, attrA1, …, attrAn, 
attrB1, …, attrBn,), (newA(ida, attr1, 
…, attrn))) =  
equal(attrA1, attr1) /\ … /\ 
equal(attrAn, attrn) 
 

 
 
 

2 
 

4. Inheritance of associations are 
expressed through a simulate 
function.  

assert 
?  c: C, a: A 
addLink(assocAC, a, c) = 
addLink(assocAC, 
(simulate(newB(id1, attr1,…, attrn)), 
c);  

 
3, 4 

Table 5 – Formal Specifications for Generalizations
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Chapter Four 
 

Technologies Supporting the Semantic Framework 
 
In this chapter the tools and technologies used to automate the generation of the formal 
specifications from a CASE tool are explained. In this context, the Graphtalk metatool is 
used to build the CASE tool, C++ is used to program the mapping rule functions and 
Larch Prover interprets the formal specifications generated to conduct validations on 
them. Each of these technologies and their integration are explained as follows. 
 
 
4.1 The Practical Context to apply the Framework 
  
In order to allow automatic generation of the formal specifications from a CASE tool 
based on the mapping rules described (see section 3.2), some technologies and tools are 
used in a suitable integrated way. First, the Graphtalk metatool was used to generate a 
CASE tool for the UML. From the user model built in the CASE tool, ASCII files 
containing the formal specifications following Larch Prover syntax are generated. This 
generation is automated through a Dynamic Linked Library (DLL) built in C++ from 
which functions can be called by Graphtalk CASE tool. The C++ source code invokes 
Graphtalk API (Application Programming Interface) functions in order to be able to 
access Graphtalk repositories of information from which all the information about the 
user model can be recovered.  
 
Larch Prover ends this process by interpreting the formal specifications in the generated 
files being able to prove properties and detect inconsistencies about the models. Figure 10 
shows a scheme of the integration among these different technologies.  
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Figure 9. Workflow: integration among different technologies 
 

 
 
 
 
 
 
 
 

Figure 10 . Workflow integrating different technologies 

 
In the next sections, each one of these technologies is described.  

 
 
4.2 The Larch Prover 
 
Larch itself is not in fact a language but an approach to define formal specifications being 
composed by a family of languages and tools. Larch Prover (LP) [GG89], the theorem 
prover of the Larch family is a set of proving tools that includes: rewriting, critical pair 
computation, Knuth-Bendix completion, proof by induction, proof by contradiction, and 
proof by case. LP has simple syntax and semantics, allows the definition of algebraic 
specifications to describe Abstract Data Types, and allows using rewrite rules to prove 
properties.  

 
Larch Prover is based on Larch Shared Language (LSL). LSL is a two-tier language of 
the Larch family which has a top tier that is a behavioral interface specification language 
(BISL) tailored to a specific programming language, and a bottom tier that is used to 
describe the mathematical vocabulary used in the pre- and post-condition specifications. 
Besides the fact that LP is based on LSL it can also uses its own input syntactic format to 
the formal specifications that is the one followed in this work.    

Workflow:
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LP allows defining existential propositions (with the \E prefix), universal propositions 
(prefix \A) and propositions with usual logical connectors. It also supports first order 
predicate calculus with equality. The main principle behind LP is the rewrite process: 
each rule defined by an axiom is rewritten based on an operation in a process that goes 
until it can be concluded (terminated) or some inconsistency can be detected.  
 
The complete command of LP uses a well-known algorithm: the Knuth-Bendix 
completion algorithm. This algorithm computes all the critical pairs and adds them in the 
system. The process stops with an inconsistency, which implies that the system is not 
consistent. Sometimes the process terminates without inconsistency. Otherwise the 
system does not terminate. The use of LP to proceed to proofs will be presented in 
chapter 5, section 5.4. 

 
Other important aspects about LP are that it does not support genericity nor partial 
algebras and the only predefined type is Boolean. The semantics of the LP operations is 
expressed in axioms written through equations determining equality between terms.  

  
 
4.3  The Graphtalk Metatool 
 
To allow the automatic generation of formal specifications from a UML static model, a 
UML CASE tool was developed in Graphtalk carrying the mapping rules integrated in its 
context (see section 3.2). This integration is supported by a DLL built in C++ that 
provides the link edition from the C++ functions to Graphtalk. Therefore Graphtalk can 
invoke these functions.  
 
Graphtalk allows both: work on the metalevel in order to generate CASE tools, and 
manipulate the tools generated at the model level. The work started at the metalevel 
specification.   
 
 
4.3.1 Graphtalk Metamodel Level 
 
Graphtalk metamodel is provided with an own meta-modeling language. To generate the 
CASE tool for the UML covering just the static diagram for the moment, it was necessary 
to describe the semantics of the UML static model elements in Graphtalk using its meta-
modeling language. The following steps were taken in order to create the modeling tool: 
 
? First: description of the specifications of the UML-tool in the meta-modeling 

language of Graphtalk was provided. Specifications in Graphtalk are stored in a file 
with .gti extension, e.g. UML.gti. 

 
? Second: compilation of the source of the UML-tool (UML grammar) was performed 

obtaining a file with .gtm extension, e.g. UML. gtm. Using this .gtm file the developer 
can start creating his models.  
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The first step stated needs to be taken for each kind of diagram provided by the modeling 
(or CASE) tool. As the work presented here covers just the UML Static Diagram for the 
moment, only the semantics of this diagram was described to compose the UML 
grammar in Graphtalk.  
 
Each diagram in Graphtalk is viewed as a graph. To describe a graph, it is necessary to 
work with four separate diagrams with complementary meanings:   
 
? The semantics specification diagram defines all Graphtalk nodes and the links 

between these nodes. The nodes and links are used respectively to represent UML 
classes, and UML associations and generalizations.  

 
? The property assignment diagram defines properties tha t are applied to the elements 

defined in the previous diagram. For example, the name of a class and the multiplicity 
of an association can be viewed as properties of the node representing a class and the 
link representing an association respectively. 

 
? The shape specification diagram allows a graphical form to be created for the 

elements. A UML class, for example, gets its graphical representation in this diagram.  
 
? The widget specification diagram allows widgets or other visual components to be 

defined to the CASE tool.  
 
Figure 11 shows at the left side the first window of Graphtalk pointing out these diagrams 
from which the user starts working. 

 
Figure 11. Four steps to define a graph.  

 
These diagrams taken into account different Graphtalk elements. In the semantics 
specification diagram the following elements are used.  
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? Nodes 
The concept of node in Graphtalk is similar to the concept of classes in an object-oriented 
language such as C++, Java or Smalltalk. A node represents an entity that can be 
instantiated. In the case of the UML static diagram, they are used to specify the classes as 
can be seen in figure 12. Nodes represent the elements that can be instantiated in an 
instance of the graph, i.e. in an instance of the static diagram at the model level. 
 
? Links  
Links are elements, which allow instances of nodes to be linked to each other. A graph 
can contain several different types of links. For the UML static diagram, links are used to 
represent associations (including aggregations and compositions) and generalizations as 
depicted in figure 12. 
 
? Entities  
An entity is an element, which has a meaning only inside Graphtalk. It is an abstract 
element that cannot be instantiated, i.e. the elements that are modeled in Graphtalk using 
an entity are not visible in the modeling tool.  The role of an entity is to generalize other 
elements. The same entity can be an abstraction for graphs, nodes and links. A set of 
properties that is valid for a set of elements can be assigned to an entity which is the 
abstraction of these elements. An entity here is used to generalize the properties of 
associations, compositions and aggregations as shown in figure 12.   

 

Figure 12. Semantic specification window for the UML static diagram 

Considering that classes in UML have a list of attributes and a list of methods and that 
attributes and methods also have properties, a new local graph defining specific nodes 
needs to be defined as part of the static diagram graph (see figure 13). It is a local graph 
because these concepts are local to classes.  
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Figure 13. Semantics of a class 

 
Argument node is defined to represent the arguments of methods as can be seen in figure 
13. 
 
Properties for these elements are defined in the property assignment diagram as can be 
seen in figure 14 for class properties. Properties are elements that will contain a value in 
the instance of the graph at the model level (i.e. in a user design). In Graphtalk properties 
can be of different types: Text, Boolean, List, Subnode, Popup Menu, etc.  
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Figure 14. Properties of classes  

 
 
 

Shapes to the model elements are given through the shape specification diagram. The 
shapes given to each model element in the CASE tool can be viewed in the UML static 
diagram presented in chapter 5, section 5.1.   
 
Finally, widgets were used in this work to allow the definition of a menu through which 
the developer can invoke the generation of the formal specifications from the CASE tool. 
To allow the link between Graphtalk and C++ the name of the C++ module (DLL) and 
the name of the invoked C++ function were provided in the widget specification.  
 
Returning to figure 11, it can be clear the semantic diagrams defined for the UML static 
diagram (a graph in Graphtalk). 
 
 
4.3.2 Graphtalk Model Level 
 
At the model level, the developer is able to build his static diagrams in the CASE tool 
generated.  
 
To start working, the developer needs to “run” the compiled source (UML.gtm). It is 
done just by creating a new file starting from the UML.gtm file. The user models will be 
saved in a file with extension .gti.  
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Using a modeling tool in Graphtalk means instantiating an hypergraph, i.e. making an 
instance of the modeling tool. The hypergraph in Graphtalk represents the entire 
modeling tool. When it is instantiated, the grammar describing graphs (diagrams) of the 
modeling language will also be instantiated.    
 
Since the user completes his design, he can choose a menu option to ask for the 
generation of the algebraic Formal Specifications as can be seen in figure 15. The C++ 
function correspondent is then activated and processes the translations in order to get the 
files expressing the Abstract Data Types to be interpreted by Larch Prover. 
 

 
 

Figure 15. The menu option to run the translation from UML to ADT 

 
 

4.4  The use of C++ Programming Language 
 
To program in C++ the environment chosen was the Microsoft Developer Studio for 
Microsoft Visual C++ 5.0.  
 
The following steps were taken to build the Dynamic Linked Library of functions in  
C++:  
 
? First, it was necessary to start a project of type Win32 Dynamic-Link Library. Visual 

C++ defines then a workspace with the same name of the project with reference to the 
project, e.g. umltoadt.dsw (Project Workspace) and umltoadt.dsp (Project File).   

? Then, three files need to be defined: 
 
? umltoadt.def : the definition of the library with the name of the C++ function 

invoked by Graphtalk (umltranslation); 
? umltoadt.h : declares the signatures of all the functions to be used in the 

translation process by the C++ program; umltranslation is the main function that 
starts invoking the others; 

? umltoadt.cpp : the C++ source code in which the translating functions which 
signatures are declared in the umltoadt.h are programmed. The translating 
functions are programmed expressing the mapping rules for each UML model 
element described in section 3.2.  

 
In the C++ source code, ASCII files are generated with the formal specifications resultant 
from the translation process. It is generated one ASCII file for each UML model element 
of the design done in the CASE tool. It is also generated one file for each additional type 
needed (as explained in section 3.2).  
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The fonts of the umltoadt.def, umltoadt.h and umltoadt.cpp files are presented in 
appendix B.  
 
 
4.5  Conclusion 
 
In this chapter it was reported how the translation process from UML to algebraic 
specifications describing ADTs could be automated. The work realized to this automation 
took into account the integration of Graphtalk and C++ in a suitable way. In the past there 
was already a project  [JRG98] developed by students at Ecole des Mines de Nantes, 
France that made use of these technologies. The subject of the project was Ré-ingénierie 
des systèmes classiques vers des systèmes à objets, or in English Reengineering of 
classical systems to build object oriented systems.  A transformation of designs done in 
Merise to OMT modeling language was defined. This project was used as the basis to the 
development of the C++ source code and to perform its integration to the Graphtalk. 
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Chapter Five 
 
A Concrete Application of the Semantic Framework 
 
In order to demonstrate how the translation process from UML to algebraic specifications 
describing ADTs works in practice, a UML static diagram developed in the CASE tool 
built in Graphtalk is presented. It is important to state that the environment in which the 
CASE tool runs is also the Graphtalk. The files containing the formal specifications 
generated for the static diagram are mentioned in this chapter and shown in appendix C.  
 
These files will then be interpreted in Larch Prover. Therefore the results that can be 
obtained making use of the semantic framework are the properties and inconsistencies 
that Larch Prover can prove about the system. Some of them will also be described in this 
chapter.  
 
This chapter ends with some conclusions that can be taken after putting the semantic 
framework to be used in practice. 
 
 
5.1 The UML Static Diagram designed in the CASE tool  
 
The CASE study chosen in order to demonstrate a UML Static Diagram drawn in the 
CASE tool generated from Graphtalk is a Library system. It considers the classes: 
Library, Publication, Copy, User, Teacher, Student, Loan and LocalUse. Loan 
characterizes the situation in which the user takes a copy to use out off the library, while 
LocalUse characterizes the internal use of copies by users. Considering it is an academic 
library, two main groups of users are defined: Teacher and Student. Each Publication 
may have any number of copies in the library. The corresponding UML Static Diagram is 
depicted in figure 16. 
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Figure 16. UML Static Diagram drawn in the Graphtalk CASE tool 

 
As it was not so easy to use Graphtalk and the manuals were not so good, many 
improvements are still needed in the tool. The multiplicities of the associations, for 
example, are not explicitly shown in the diagram. They are described as follows: 
 
? association from Publication to Library: Many (0 or plus) to Just One; 
? association from Library to User: Just One to Many (0 or plus); 
? association from Publication to Copy: Just One to One or more; 
? composition from Copy to LocalUse (the target end is a composite aggregation): One 

or more to Just One; 
? the same for the composition from Copy to Loan: One or more to Just One; 
? association from LocalUse to User: Many (0 or plus) to Just One; 
? in the same way association from Loan to User: Many (0 or plus) to Just One.  
 
 
5.2 Formal Specifications generated for the UML Static Diagram 
 
Asking for the generation of the formal specifications for this UML Static Diagram will 
result in the following ASCII files containing the algebraic specifications: 
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? one file per Class description: Library.lp, Publication.lp, Copy.lp, LocalUse.lp, 
Loan.lp, User.lp, Teacher.lp and Student.lp; 

 
? one file describing a type Id for the objects of each type (or class) according to the 

rules in section 3.2.1: IdLibrary.lp, IdPublication.lp, IdCopy.lp, IdLocalUse.lp, 
IdLoan.lp, IdUser.lp, IdTeacher.lp and IdStudent.lp; 

 
? one file expressing a type set for each class associated to another according to the 

rules explained in section 3.2.2: SetLibrary.lp, SetPublication.lp, SetCopy.lp, 
SetLocalUse.lp, SetLoan.lp and SetUser.lp; 

 
? one file per each plain association and composition which name is composed by the 

three first letters of each class: PubLib.lp (association from Publication to Library), 
LibUse.lp (association from Library to User), PubCop.lp (association from 
Publication to Copy), CompCopLoc.lp (composition from Copy to LocalUse), 
CompCopLoa.lp (composition from Copy to Loan), LoaUse.lp (association from 
Loan to User), LocUse.lp (association from LocalUse to User); 

 
? one file per generalization: genUseTea.lp (generalization between User and Teacher) 

and genUseStu. lp (generalization between User and Student). 
 
These files, as explained before in chapter 4, will be interpreted by Larch Prover (LP) 
following then LP syntax. Therefore their extensions must be .lp. The description of some 
of these files is given in appe ndix C.  
 
 
5.3 Checking Inconsistencies 
 
Taking the previous UML Static Diagram describing a library system, an inconsistency 
can be detected by running the system formal described in LP. It is explained in the 
following section.  
 
Another example of inconsistency still related to the use of composition is done in section 
5.3.2.  
 
 
5.3.1 A Composition Inconsistency 
 
Taking the compositions between Copy and Loan and between Copy and LocalUse (see 
section 5.1), it can be realized that there is an inconsistenc y concerning multiplicities: 
multiplicity is Just One in both composites (Loan and LocalUse). According to the 
semantics of composition, a part instance cannot belong by composition to more than one 
whole at a time. The following composition axioms will de termine a rule in LP that will 
not be respected: 
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assert 
? c: Copy, l : Loan, lu : LocalUse, c1: CompCopLoa, c2: CompCopLoc 
 
isPartOf(c1, c, l) => ~(isPartOf(c2, c, lu)); 
isPartOf(c2, c, lu) => ~(isPartOf(c1, c, l)); 
 

It will generate an error when the total system runs in LP since the multiplicity just one in 
Loan and LocalUse implies: ? c: Copy, l : Loan, lu : LocalUse,  ispartOf(c1, c, l) /\ 
ispartOf(c2, c, lu).  
 
 
5.3.2 A Composition with Generalization Inconsistency 
 
Another example of inconsistency that can be detected in LP is depicted in figure 17: 
 
    
 
  
 
 
 
 
 
 
 
 
 

Figure 17. Instance reflexivity 

Assuming that an instance cannot be part of itself (see section 3.2.3) what can cause 
circular specifications, the following axioms can be used in LP to try to write proofs over 
this example stating that it is inconsistent.  

assert 
? a : A, b : B, comp: CompAB 
 
~(isPartOf(comp, a, a)); 
(isPartOf(comp, a, b)) => ~(isPartOf(comp, b, a)); 
 

 
5.4 Inconsistency with Constraint: a Concrete example of Proof written 
in LP 
 
Taking the XOR constraint and its rules explained in section 3.2.4 (item XOR 
Constraint), the following example in figure 18 can be proven inconsistent through LP: 
 
 

    A 

    B 

1..* 
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Figure 18. An inconsistency with XOR constraint 

 
A complete command in LP for XOR constraint according to the rules (in bold) that were 
explained in section 3.2.4 is as follows.  
 
% Assoc1 and Assoc2 types are simply expressed by the existential proposition P1 
assert 
\E Xas1 \E Yas1 (~(Xas1 \eq Yas1) /\ (rightMultiplicity(Xas1, a) = 1) / \ (rightMultiplicity(Yas1, a)= 1)) / \ 
rightXOR(Xas1, Yas1)) 
 
%the constraint XOR is defined by proposition P2 
% -------- constraint rightXOR 
declare operator rightXOR : assoc1, assoc2 -> Bool  
assert ~(Xas \eq Yas) =>rightXOR(Xxas, Yas) = (~(isRightLinked(Xas, a)) / \ (isRightLinked(Yas, a))) \/  
((isRightLinked(Xas, a)) / \ ~(isRightLinked(Yas, a))) 
 
%One simple example of proof is done 
prove rightMultilicity(Xas, a) = 1 => isRightLinked(Xas, a) 
   res by ind on Xas 
       <> basis subgoal 
       [] basis subgoal 
       <> induction subgoal 
   res by case a1 \eq a   %proof by case 
        <> case a1c \eq ac 
         [] case a1c \eq ac 
        <> case ~(a1c \eq ac) 
         res by =>   %proof by implication 
             <> => subgoal 
     %addition of a trivial lemma 
             assert identity(ac) \eq identity(a1c) = false 
   crit as* with as*   %critical pair computation 
   [] => subgoal 
  [] case ~(a1c \eq ac) 
  [] induction subgoal 
[] conjecture 
qed     %the proof is done 
 
A critical pair is a potential ambiguity in a set of rules. It can be either a new fact 
forgotten in the system or an irremediable inconsistent fact. This kind of proof is 
generally not automatic, an expert user must choose the way to do it. Now it can be 
illustrated that the UML sample model in figure 18 is not consistent: 
 
fix Yas1 as assoc2(a), Xas1 as assoc1(a) in P1 %elimination of \E 

       A        B 

{XOR} 

1 

1 

assoc1 

assoc2 
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instantiate Xas by as1(a), Yas by as2(a) in P2 %elimination of \A 
 
LP says that the system becomes inconsistent 
 
 
5.5 Conclusion 
 
In this chapter it was demonstrated practical examples of the translations and 
inconsistencies that can be checked. It was also demonstrated the use of LP to prove 
inconsistencies in the formal specifications.  
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Chapter Six 
 
Conclusion  
 
The formalization of Object Oriented analysis and design modeling languages has been 
claimed as a means to allow rigorous analysis, software comprehension and to guarantee 
consistency in all software development phases. The rigor imposed by formalization can 
also support early detection of errors in the development process what avoids that errors 
are carried till the implementation of the systems.   
 
Even though UML is adopted as the standard Object Oriented modeling language for 
analysis and design it is not yet formalized. 
 
The thesis of this research has been that formalizing UML through the use of a formal 
abstract language and also giving support to proceed to checks and validations on the 
formalized models can br ing several contributions to software engineering and 
reengineering processes. Moreover formalization makes many ambiguities in the 
semantics arise being able to help in solving them. 
 
 
6.1 Contributions 
 
The main contribution of this work is to provide a basis to achieve a final UML 
formalization approach that can be used to support software engineering as well as 
software reengineering efforts. Formalization plays an important role in software 
engineering and reengineering environments in the sense that it can help in guaranteeing 
consistency in many stages: among model elements used in a model, between diagrams 
used to model a system, and between design and implementation through the refinement 
of models into code (and in the other way around: recovering design from code). 
Moreover it can contribute towards the specification of a final and unambiguous 
semantics to UML model elements.  
 
In the semantic framework proposed in this thesis, the main concrete advantage taken is 
the early detection of errors that can be achieved in the analysis and design phases 
considering the software development life cycle. Avoiding that errors are carried till the 
source code is really cost effective since errors in the implemented system require really 
more effort and high cost to be eliminated. 
  
In the context explained, many other contributions can be provided in future having the 
semantic framework as a basis: 
? Improving OO legacy systems can be based on formal specifications in order to 

preserve semantics. Transformations of models based on refinements steps can be 
performed based on formal proved transformations.  
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? The formal specifications can make the link between design and implementation. 
Rapid prototyping generating source code from formal specifications has more 
chances to make it suitable to the system requirements. 

 
? Ambiguities in UML semantics are solved through formalization.  
 
? System quality and consistency are proved through the application of proofs in the 

formal specifications generated.  
 
 
6.2 Future Work 
 
In this thesis it was presented a first approach of a UML formalization method that has 
being developed making use of algebraic specifications to describe ADTs.  
 
In the semantic framework presented in this dissertation, because of the limited time 
available to its development, only some static model elements of UML are formal 
described. Concerning the Static Diagram of UML, other model elements (or variations 
of them) are still to be considered in the formalization. It is considered as the main 
elements to continue with this work: Interfaces, Dependencies, Abstract Classes, 
Realizations and Constraints written in OCL.  
 
Moreover it is considered the core semantics concerning each model element. Many other 
points can be considered in order to extend the framework: 
? Extensions to the core concepts described are needed in order to have complete 

semantics specifications for the Structural Aspects of UML.  
 
? Formalization of the remaining UML static model elements needs to be considered. 
 
? Dynamic aspects of UML are also necessary to be formal described to have a 

complete description of elements semantics. Collaborations between objects are the 
first point to cover in order to complete some aspects of the semantics, such as to 
show the propagation of the dynamic semantics from the whole to its parts in a 
composite relationship (see chapter 3, section 3.2.3). 

 
? Model transformations need to be formal proved. This is one of the most important 

points to achieve with formalization. Through proved transformations, reengineering 
and forward engineering efforts encompassing model refinements can be supported. 

 
In fact, the main point to consider now is how the results of the proofs and checks 
obtained in LP can be demonstrated in the CASE tool to allow end user direct access.  
 
As there was a real time constraint in order to develop this semantic framework, many of 
these points suggested as future extensions are still under investigation by the 
collaborators of this work. It is hoped that these extensions as soon as they are achieved, 
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they can be published and widely spread through the interested software engineering and 
academic community. 
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%%%%%%%%%%%%%%%%%%%%% 
% Entiers avec ordre < 
% et minimum 
% 5/1/99 
% Nat1.lp 
% systeme convergent 
 
set name nat 
 
declare sort Nat 
declare variables i, j, k: Nat 
declare operators 
  0 :          -> Nat 
  1 :          -> Nat 
  2 :          -> Nat 
  3 :          -> Nat 
  4 :          -> Nat 
  5 :          -> Nat 
  s       : Nat      -> Nat 
  __+__   : Nat, Nat -> Nat 
  __-__   : Nat, Nat -> Nat 
  inf   : Nat, Nat -> Bool 
  equal   : Nat, Nat -> Bool 
  .. 
 
assert  
  sort Nat generated by 0, s; 
 
  1 = s(0); 
  2 = s(1); 
  3 = s(2); 
  4 = s(3); 
  5 = s(4); 
 
  0 + i = i; 
  i + 0 = i; 
  s(i) + j = s(i + j);  
  i + s(j) = s(i + j);  
 
  0 - j = 0; 
  s(i) - 0 = s(i);  
  s(i) - s(j) = i - j; 
 
  inf(0, 0); 
  ~(inf(s(i), 0)); 
  inf(0, s(j)); 
  inf(s(i), s(j)) = inf(i, j); 
 
  ~equal(0, s(i)); 
  ~equal(s(i), 0); 
  % 0 \eq 0; OK mais ca utile 
  equal(i:Nat, i:Nat); 
  equal(s(i), s(j)) = equal(i:Nat, j:Nat); 
   
 
  .. 
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%  ac +;  on moins ca termine 
% converge oui 
 
 
%%%%%%%%%%%% 
% definition des chaines 
% 1/7/99 
% String.lp 
%------------------------ 
% charger Char.lp, Nat.lp avant 
ex Char 
ex Nat1 
 
set name string 
 
declare sorts String 
declare variables str, str1, str2 : String 
declare operators 
  empty :          -> String 
  add :         Char, String      -> String 
  concat : String, String -> String 
  length : String -> Nat 
  is_empty : String -> Bool 
  __<__ : String, String -> Bool 
 equal : String, String -> Bool 
  .. 
 
assert 
   sort  String generated by empty, add; 
 
   is_empty(empty); 
   ~is_empty(add(car1, str)); 
 
   concat(empty, str) = str; 
   concat(add(car1, str1), str) = add(car1, concat(str1, str)); 
 
   length(empty) = 0; 
   length(add(car1, str1)) = 1+length(str1); 
 
   equal(empty, empty); 
   ~equal(add(car1, str1), empty); 
   ~equal(empty, add(car1, str1)); 
   ~equal(add(car1, str1), add(car2, str2)) = equal(str1, str2); 
 
   ~(empty < empty); 
   ~(add(car1, str1) < empty); 
   (empty < add(car1, str1)); 
   add(car1, str1) < add(car2, str2) = (precede(car1, car2) \/ 
(equal(car1, car2) /\ (str1 < str2)));  
 
 
    .. 
 
% sh n empty < add(a, add(b, empty)) 
% sh n add(a, add(b, empty)) < add(a, add(b, empty)) 
% sh n add(b, add(b, empty)) < add(a, add(b, empty)) 
% sh n add(a, add(a, empty)) < add(a, add(b, empty)) 
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% sh n add(a, add(a, empty)) < add(a, empty) 
% sh n add(a, empty) < add(a, add(b, empty)) 
% sh n add(a, add(b, empty)) < add(a, add(b, add(c, empty))) 
% sh n add(a, add(b, empty)) < add(b, add(b, add(c, empty))) 
% sh n add(a, add(b, empty)) < add(b, empty)  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%specification of the identifier type for A instances 
%larch file: IdA.lp 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
set name IdA 
 
declare sorts IdA 
declare variables : idA1, idA2 : IdA 
declare operators 
newIdA :   -> IdA 
nextIdA : IdA  -> IdA 
__\eq__ : IdA, IdA  -> Bool 
.. 
 
assert 
sort IdA generated by newIdA, nextIdA; 
newIdA \eq newIdA; 
~(newIdA \eq nextIdA(idA1)); 
~(nextIdA(idA1) \eq newIdA); 
nextIdA(idA1) \eq nextIdA(idA2) = (idA1 \eq idA2); 
.. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%specification of the type Set for A Class  
%larch file: SetA.lp 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
set name SetA 
 
declare sorts A, SetA, Nat 
declare variables aA1, aA2 : A, setA1, setA2 : SetA 
declare operators 
{} :  -> SetA 
{__} : A -> SetA 
insert : A, SetA -> SetA 
__\U__ : SetA, SetA -> SetA 
__\in__ : A, SetA -> Bool 
__\I__ : SetA, SetA -> Bool 
size : SetA -> Nat 
.. 
 
assert 
sort SetA generated by {}, insert; 
{aA1} = insert(aA1, {}); 
~(aA1 \in {}); 
aA1 \in insert(aA2, setA1) <=> (aA1 \eq aA2 \/ aA1 \in setA1); 
{} \I setA1; 
insert(aA1, setA1) \I setA2 <=> (aA1 \in setA2 /\ setA1 \I setA2); 
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aA1 \in (setA1 \U setA2) <=> (aA1 \in setA1 \/ aA1 \in setA2); 
% axioms for size operator 
size({}) = 0; 
(aA1 \in setA1) => size(insert(aA1, setA1)) = size(setA1); 
~(aA1 \in setA1) => size(insert(aA1, setA1)) = 1+size(setA1); 
.. 
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UMLTOAD.DEF 
 
LIBRARY umltoadt 
DESCRIPTION 'Demons for GraphTalk' 
   
EXETYPE WINDOWS 
 
DATA SINGLE   MOVEABLE 
CODE MOVEABLE DISCARDABLE  
 
HEAPSIZE 1024     
 
EXPORTS   
umltranslation 
 
 
 
UMLTOAD.H 
 
#include <iostream> 
#include <fstream> 
#include <string> 
#include <cstdlib> 
#include <windows.h> 
#include "gti.h" 
 
using namespace std; 
 
// *************************************************** 
// Functions used for the Mapping from UML to ADT 
// *************************************************** 
 
extern "C" { 
void umltranslation(OBJ viewer, OBJ hyperUML, OBJ arg); 
// Main function for the generation of ADT from a UML model 
// This function will be invoked by an action_item in a Graphtalk menu 
// It operates on an instance of a UML Static Diagram 
} 
 
 
//****************************************************** 
//Functions to Generate the Lines in an Output Text File 
//****************************************************** 
void frecordln (ostream& gen, string& str); 
//Record strings in a text output file  
 
void frecord (ostream& gen, string& str); 
//Record strings in a text output file 
//do not skip a line each time it records a new string  
 
void fskipline (ostream& gen); 
//skip a line in the output file 
 
 
//*********************************************************************************** 
//To finish the declares operators and assert sections it necessary to write two dots. 
//This is Larch Prover syntax. 
//*********************************************************************************** 
void endSection(ostream& ffile); 
 
 
//****************************************************** 
//Translation from UML Class to Abstract Data Type 
//Translating Rule and Auxiliary Functions  
//****************************************************** 
 
void TranslateClass(OBJ viewer, OBJ unGraphUML); 
//This function will invoke all the mapping rule functions for Classes  
 
//recover the number of attributes of a class 
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SHORT genAttrNumber(OBJ unGraphUML, OBJ unClassUML); 
 
void rule1Class(ostream& fclass, string classname, OBJ unClassUML, SHORT nbAttr); 
//Rule 1 generates the name of the sort being specified 
 
void rule2Class(ostream& fclass, string classname, OBJ unClassUML, SHORT nbAttr); 
//Rule 2 constructs the section declare variables, with  
//two variables per instance attribute, two variables of the type  
//being defined and one variable of type identity  
 
void rule3Class(ostream& fclass, string classname, OBJ unClassUML, SHORT nbAttr); 
//Rule 3 starts the declare operators section of the algebraic specification 
//with the standard operations new, identity and object equality 
 
void rule4Class(ostream& fclass, string classname, OBJ unClassUML, SHORT nbAttr); 
//Rule4 generates the accessor operations for the attributes  
 
void rule5Class(ostream& fclass, string classname, OBJ unClassUML); 
//Rule 5 generates the constant operations and formaloperators  
//the constants represent examples of instances of the class 
 
void rule6Class(ostream& fclass, string classname, SHORT nbAttr, OBJ unClassUML); 
//Rule 6 starts the axioms part 
//The axioms are used to state the semantics of the operations 
////and the constants. 
 
void rule7Class(ostream& fclass, string classname, SHORT nbAttr, OBJ unClassUML); 
//Rule 7 defines the axioms for the accessors 
 
void rule9Identity(ostream& fidentity, string classname); 
//constructs the type identity in another output file 
 
 
 
//************************************************************ 
//Translation from UML Associations to sorts in Larch Prover 
//************************************************************ 
 
void TranslateLinks(OBJ unClassUML); 
//recover the links from a node class 
//if the link is an association or aggregation, invokes tranlateassoc function; 
//otherwise, invokes translatecomposite 
 
void TranslateAssoc(OBJ unLinkUML, OBJ sourceClass, OBJ targetClass); 
//Translation from a UML Association to a sort in Larch Prover 
 
void rule1Assoc(OBJ unLinkUML, ostream& flink, string linkname, string sourcename, string 
targetname);  
//Rule 1 generates the name of the sort being specified  
//and a comment defining the sort to be described 
 
void rule2Assoc(ostream& flink, string linkname, string sourcename, string targetname); 
//Rule 2 constructs the section declare variables, with  
//two variables per object type, two variables per object type set,  
//two variables of type equal the type being defined, and  
//one variable of type Nat 
 
void rule3Assoc(ostream& flink, string linkname); 
//Rule 3 starts the declare operators section of the algebraic specification 
//with the standard operations void, identity and association equality 
 
void rule4Assoc(ostream& flink, string linkname, string sourcename, string targetname); 
//Rule 4 declares the operators for add and remove links in the association 
 
void rule5Assoc(OBJ unLinkUML, ostream& flink, string linkname, string sourcename, string 
targetname); 
//Rule 5 declares operators to return the set of links for a given instance, 
//and also declares the operators to test if the association isEmpy and if 
//two instances are linked 
 
void rule6Assoc(ostream& flink, string linkname, string sourcename, string targetname); 
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//Rule 6 starts the axioms part 
//The axioms are used to state the semantics of the operations. 
 
void rule7Assoc(ostream& flink, string linkname, string sourcename, string targetname, 
OBJ unLinkUML); 
//Rule 7 states the axioms for multiplicity constraints 
 
void rule8Assoc(ostream& flink, string linkname, string sourcename, string targetname); 
//Rule 8 states the axioms for association identity 
 
void rule9Set(ostream& fset, string classname);  
//Rule 9 generates the sort Set for the source and target Class  
//of the Association 
 
//Special Rules for Compositions  
string rule1Composition(string linkname); 
string rule2Composition(string linkname, string sourcename, string targetname); 
void rule3Composition(ostream& flink, string linkname, string sourcename, string 
targetname); 
void rule4Composition(ostream& flink, string linkname, string sourcename, string 
targetname); 
 
 
#include "umltoadt.h" 
 
 
UMLTOAD.CPP 
 
// *************************************************** 
// Functions to be used in the translation from UML -> ADT 
// *************************************************** 
 
 
// Main function for the generation of ADT from a UML model 
// This function will be invoked by an action_item in a Graphtalk menu 
// It operates on an instance of a UML Static Diagram 
void umltranslation(OBJ viewer, OBJ hyperUML, OBJ arg) 
{ 
 //recover all the graphs associated to a hyper UML 
 //in this version the only existent graph is the static, so only one graph 
 //will be recovered for the list 
 OBJ graphList, unGraphUML; 
  
 graphList = GtiGraphsOf(hyperUML); 
 
 while(graphList != NIL) { 
  unGraphUML = GtiCar(graphList); 
  if (GtiClassSymbol(GtiClassOf(unGraphUML)) == GtiSymbol("Static Diagram")) 
{ 
   TranslateClass(viewer, unGraphUML); 
    
  } 
  graphList = GtiCdr(graphList); 
} 
} 
 
//****************************************************** 
//Functions to Generate the Lines in an Output Text File 
//****************************************************** 
 
//Record strings in a text output file 
//skip a line each time it records a new string  
void frecordln (ostream& gen, string& str) 
{  
 gen << str << endl; 
} 
 
//Record strings in a text output file 
//do not skip a line each time it records a new string  
void frecord (ostream& gen, string& str) 
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{  
 gen << str; 
} 
 
//skip a line in the output file 
void fskipline (ostream& gen) 
{  
 gen << endl; 
} 
 
  
//*********************************************************************************** 
//To finish the declares operators and assert sections it necessary to write two dots. 
//This is Larch Prover syntax. 
//*********************************************************************************** 
void endSection(ostream& ffile) 
{ 
 string fin; 
 
 fin = ".."; 
 frecordln(ffile, fin); 
} 
 
 
//****************************************************** 
//Translation from a UML Class to a sort in Larch Prover 
//****************************************************** 
void TranslateClass(OBJ viewer, OBJ unGraphUML) 
{ 
 OBJ nodeListUML, unClassUML; 
 SHORT numberAttr; 
 //OBJ linkListUML, unLinkUML; 
  
 string  filename, classname, fileidentity; 
    
 nodeListUML = GtiNodesOf(unGraphUML); 
 while(nodeListUML != NIL) { 
  unClassUML = GtiCar(nodeListUML); 
  if (GtiClassSymbol(GtiClassOf(unClassUML)) == GtiSymbol("Class")) { 
   //generate the name of the text file for the class description 
   classname = GtiNameOf(unClassUML); 
   filename = classname + ".lp"; 
 
   //creates the file in write and text mode 
   ofstream fclass(filename.c_str()); 
 
   //recover the number of instance attributes of a class;  
   //this number is necessary to recover the attributes that will be 
used  
   //in some mapping rules 
   numberAttr = genAttrNumber(unGraphUML, unClassUML); 
 
   //calls the mapping rule functions to generate the 
   //lines in the algebraic specification 
   rule1Class(fclass, classname, unClassUML, numberAttr);  
   rule2Class(fclass, classname, unClassUML, numberAttr); 
   rule3Class(fclass, classname, unClassUML, numberAttr); 
   rule4Class(fclass, classname, unClassUML, numberAttr); 
   rule5Class(fclass, classname, unClassUML); 
   //to finalize the declare operators section 
   endSection(fclass); 
   //starts the axiom section  
   rule6Class(fclass, classname, numberAttr, unClassUML); 
   //to finalize the assert section 
   endSection(fclass); 
 
   //constructs the type identity in another output file 
   fileidentity = "Id" + classname + ".lp"; 
   //creates the file for sort Identity in write and text mode 
   ofstream fidentity(fileidentity.c_str()); 
   rule9Identity(fidentity, classname); 
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   //this type of file is closed automatically and doesn't require a 
close command 
 
   //*********** 
   //after finishing the translation for the Class, then 
   //it is invoked the translation for the links (associations, 
compositions, aggregations) 
   //for this class 
   TranslateLinks(unClassUML); 
  } 
  nodeListUML = GtiCdr(nodeListUML); //withdraw the first element of the 
list 
 } 
} 
 
//Translating Rules from UML Class to Abstract Data Type 
 
//Recover the number of attributes of a Class 
//Attributes are a SubNode property which cerries a list of attributes 
SHORT genAttrNumber(OBJ unGraphUML, OBJ unClassUML) 
{ // Test if the first Node of the list is in fact a Class 
 // In this version we only have classes as nodes, but 
 // thinking about future enhancements it is better to keep this test 
  
 //Obj unAttrUML; 
 SHORT nbAttrs; 
 
 //unAttrUML = GtiCar(GtiNodesOf(GtiCoreOf(unClassUML)));  
 //if (GtiCar(GtiNodesOf(GtiCoreOf(unClassUML))) == unClassUML)  
 //if (GtiClassSymbol(GtiClassOf(unAttrUML)) == GtiSymbol("Instance Attribute")) { 
 nbAttrs = GtiSubSubNodesCount(unClassUML, GtiSymbol("Instance Attribute List")); 
 return nbAttrs; 
    
} 
 
//Rule 1 generates the name of the sort being specified  
//and a comment defining the sort to be described 
void rule1Class(ostream& fclass, string classname, OBJ unClassUML, SHORT nbAttr) 
 
{ string specname, comment, attrname, attrtypename; 
 SHORT i, j; 
 OBJ unAttributUML; 
 string listattr[10]; 
 bool found; 
  
  
 comment = 
"%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"; 
 frecordln(fclass, comment); 
 comment = "%specification of the properties and behavior for the instances  of 
class " + classname; 
 frecordln(fclass, comment); 
 comment = "%larch file: " + classname + ".lp";   
 frecordln(fclass, comment); 
 comment = 
"%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"; 
 frecordln(fclass, comment); 
 fskipline(fclass); 
 fskipline(fclass); 
 //set name section starts the formal specification for the sort  
 specname = "set name " + classname; 
 frecordln(fclass, specname); 
 fskipline(fclass); 
 specname = "declare sorts " + classname; 
 frecord(fclass, specname); 
 //declares the identifier type 
 specname = ", Id"; 
 frecord(fclass, specname); 
 frecord(fclass, classname); 
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 //declares the type Set  
 specname = ", Set" + classname; 
 frecord(fclass, specname); 
  
 //recover the types of the attributes to the section declare sorts 
 for(i=0; i<nbAttr; i++) { 
  unAttributUML = GtiGetSubSubNode(unClassUML, GtiSymbol("Instance Attribute 
List"), i);  
     attrname = GtiNameOf(unAttributUML); 
  attrtypename = GtiNameOf(GtiGetMenu(unAttributUML, GtiSymbol("Attribute 
Type")));  
  found = false; //controls if the type already exists in the list 
  //traverses the attribute types array - listAttr - and select the 
attribute types  
  //to compose the declare sorts section; each attribute type must be 
declared 
  //only once 
  for (j=i; j>0; j--) { 
   if (attrtypename == listattr[j]) 
    found = true; 
  } 
  if (!found) 
   specname = ", " + attrtypename; 
 
  listattr[i] = attrtypename; 
 } 
 
 frecordln(fclass, specname); 
 //delete listattr; //no garbage collection in C++ 
} 
 
//Rule 2 constructs the section declare variables, with  
//two variables per instance attribute, two variables of the type  
//being defined and one variable of type identity  
void rule2Class(ostream& fclass, string classname, OBJ unClassUML, SHORT nbAttr) 
 
{ string specvariables, var1, var2, variablename, typeattr, sectionname; 
 SHORT i, count;//the goal of the variable count is to allow just two variable 
declarations per line 
 OBJ unAttributUML; 
  
 count = 0; 
 specvariables = "declare variables "; 
 var1 = "a" + classname + "1,"; 
 var2 = " a" + classname + "2"; 
 specvariables = specvariables + var1 + var2 + " : " + classname; 
 frecord(fclass, specvariables);  
 count = count + 1; 
 for(i=0; i<nbAttr; i++) { 
  unAttributUML = GtiGetSubSubNode(unClassUML, GtiSymbol("Instance Attribute 
List"), i);  
     variablename = GtiNameOf(unAttributUML); 
  //generates two variables with the attribute type 
     specvariables = variablename + "1,  " + variablename + "2 : "; 
  //recover the type of the attribute 
  typeattr = GtiNameOf(GtiGetMenu(unAttributUML, GtiSymbol("Attribute 
Type")));  
  if (count == 2)  
  {   fskipline(fclass); 
   sectionname = "declare variables "; 
   frecord(fclass, sectionname); 
  } 
  else 
  { variablename = ", "; 
   frecord(fclass, variablename); 
  } 
 
  frecord(fclass, specvariables);  
  frecord(fclass, typeattr); 
  count = count + 1; 
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 } 
 if (count == 2)  
  {   fskipline(fclass); 
   specvariables = "declare variables "; 
   frecord(fclass, specvariables); 
  }; 
 specvariables = ", id : Id"; 
 frecord(fclass, specvariables); 
 specvariables = classname; 
 frecordln(fclass, specvariables); 
} 
 
//Rule 3 starts the declare operators section of the algebraic specification 
//with the standard operations new, identity and object equality 
void rule3Class(ostream& fclass, string classname, OBJ unClassUML, SHORT nbAttr) 
 
{ OBJ unAttributUML; 
 string specoperators, typeName, comment; 
 SHORT i; 
 
 specoperators = "declare operators"; 
 fskipline(fclass); 
 frecordln(fclass, specoperators); 
 comment = "% generator"; 
 frecordln(fclass, comment); 
 specoperators = "new" + classname + " : Id" + classname; 
 for(i=0; i<nbAttr; i++) { 
  specoperators = specoperators + ","; 
  unAttributUML = GtiGetSubSubNode(unClassUML, GtiSymbol("Instance Attribute 
List"), i);  
  //recover the metaproperty type ofthe attribute 
  //in Graphtalk the default value for this property needs to be 
  //string 
  typeName = GtiNameOf(GtiGetMenu(unAttributUML, GtiSymbol("Attribute 
Type")));  
  specoperators = specoperators + " " + typeName; 
 } 
 specoperators = specoperators + " -> " + classname; 
 frecordln(fclass, specoperators); //generates the operation new 
 fskipline(fclass); 
 comment = "% operations for identity and object equality"; 
 frecordln(fclass, comment); 
 specoperators = "identity : " + classname + " -> " + "Id" + classname; 
 frecordln(fclass, specoperators); //generates the operation that returns the 
identity of an object 
 specoperators = "__\\eq__ :  " + classname + ", " + classname + " -> " + "Bool"; 
 frecordln(fclass, specoperators); //generates the operation for 
identity/functional equality 
} 
 
//Rule4 generates the accessor operations for the attributes  
void rule4Class(ostream& fclass, string classname, OBJ unClassUML, SHORT nbAttr) 
{  
 OBJ unAttributUML; 
 string accessor, typeName, attrName, comment; 
 SHORT i; 
 
 fskipline(fclass); 
 comment = "% accessors for the instance variables"; 
 frecordln(fclass, comment); 
 for(i=0; i<nbAttr; i++) { 
  //recover the attribute in the instance variables list; 
  //its name and type 
  unAttributUML = GtiGetSubSubNode(unClassUML, GtiSymbol("Instance Attribute 
List"), i);  
  attrName = GtiNameOf(unAttributUML); 
  typeName = GtiNameOf(GtiGetMenu(unAttributUML, GtiSymbol("Attribute 
Type")));  
  //the first accessor is the get, to recover a value of the attribute 
related to 
  //one object 
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  accessor = "get" + attrName + " : "; 
  accessor = accessor + " " + classname + " -> "; 
  frecord(fclass, accessor); 
  frecordln(fclass, typeName); 
  //the second accessor is the set, to change the value of the attribute to 
one object 
  accessor = "set" + attrName + " : "; 
  accessor = accessor + " " + classname + ", " + typeName + " -> "; 
  accessor = accessor + classname; 
  frecordln(fclass, accessor);  
 }  
} 
 
//Rule 5 generates the constant operations and formaloperators  
//the constants represent examples of instances of the class 
void rule5Class(ostream& fclass, string classname, OBJ unClassUML) 
{  
 string comment, constant, formalOpr, oprName;  
 SHORT nbOprs, i; 
 OBJ unOprUML; 
  
 comment = "% constants to represent examples of instances"; 
 fskipline(fclass); 
 frecordln(fclass, comment); 
 constant = "one" + classname + " : "; 
 constant = constant + " -> " + classname; 
 frecordln(fclass, constant); 
 constant = "another" + classname + " : "; 
 constant = constant + " -> " + classname; 
 frecordln(fclass, constant); 
} 
 
 
//Rule 6 starts the axioms part 
//The axioms are used to state the semantics of the operations 
//and the constants 
void rule6Class(ostream& fclass, string classname, SHORT nbAttr, OBJ unClassUML) 
{  
 string comment, axiom, constantaxiom1, constantaxiom2, attrvariable, var1, var2;  
 SHORT i; 
 OBJ unAttributUML; 
  
 comment = "% axioms"; 
 fskipline(fclass); 
 frecordln(fclass, comment); 
 axiom = "assert"; 
 frecordln(fclass, axiom); 
 axiom = "sort " + classname + " generated by " + "new" + classname + ";"; 
 frecordln(fclass, axiom); 
 comment = "%axioms for identity"; 
 frecordln(fclass, comment); 
 axiom = "identity";  
 frecord(fclass, axiom); 
 axiom = "(new" + classname + "(id"; 
 constantaxiom1 = "one" + classname + "= new"+ classname + "((newId" + classname + 
")"; 
 constantaxiom2 = "another" + classname + "= new"+ classname + "((nextId"+ 
classname + "(newId" + classname + "))"; 
 for(i=0; i<nbAttr; i++) { 
  axiom = axiom + ","; 
  constantaxiom1 = constantaxiom1 + ","; 
  constantaxiom2 = constantaxiom2 + ","; 
  unAttributUML = GtiGetSubSubNode(unClassUML, GtiSymbol("Instance Attribute 
List"), i);  
  attrvariable = GtiNameOf(unAttributUML); 
  attrvariable = attrvariable + "1"; 
  axiom = axiom + attrvariable; 
  constantaxiom1 = constantaxiom1 + attrvariable; 
  constantaxiom2 = constantaxiom2 + attrvariable; 
 } 
 axiom = axiom + ")) = id;"; 
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 constantaxiom1 = constantaxiom1 + ");"; 
 constantaxiom2 = constantaxiom2 + ");"; 
 frecordln(fclass, axiom); 
 fskipline(fclass); 
 comment = "%axioms for the constants"; 
 frecordln(fclass, comment); 
 frecordln(fclass, constantaxiom1); 
 frecordln(fclass, constantaxiom2); 
 
 //axiom to state the semantics for object equality 
 comment = "% axiom to state the semantics for object equality"; 
 frecordln(fclass, comment); 
 var1 = "a" + classname + "1"; 
 var2 = "a" + classname + "2"; 
 axiom = var1 + " \\eq " + var2 + " = " + "identity(" + var1 + ")" + " \\eq" + " 
identity(" + var2 + ");";   
 frecordln(fclass, axiom); 
 
 //call rule 7 that defines the axioms for the accesors 
 rule7Class(fclass, classname, nbAttr, unClassUML); 
 
} 
 
//Rule 7 defines the axioms for the accessors 
void rule7Class(ostream& fclass, string classname, SHORT nbAttr, OBJ unClassUML) 
{  
 string comment, axiom, axiom2, varstructure, varstructure2, mainattr, mainattr2, 
attrname1, attrname2, attrvariable;  
 SHORT i,j; 
 OBJ unAttributUML; 
 
 fskipline(fclass); 
 comment = "% axioms to state the semantics of the attribute accessors"; 
 frecordln(fclass, comment); 
 
 //for each instance attribute, two axioms are generated being each one to one 
accessor 
   
  for (i=0; i<nbAttr; i++) { 
   unAttributUML = GtiGetSubSubNode(unClassUML, GtiSymbol("Instance 
Attribute List"), i);  
   attrname1     = GtiNameOf(unAttributUML); 
   mainattr     = attrname1 + "1"; 
   mainattr2  = attrname1 + "2";  
   axiom = "get"+ attrname1 + "(" + "new" + classname + "(id"; 
   axiom2 = "set"+ attrname1 + "(" + "new" + classname + "(id"; 
   j = 0; 
   
   varstructure = ""; 
   varstructure2 = ""; 
   while (j < nbAttr)  
   { 
    unAttributUML = GtiGetSubSubNode(unClassUML, 
GtiSymbol("Instance Attribute List"), j);  
    attrname2    = GtiNameOf(unAttributUML); 
    attrvariable = attrname2 + "1"; 
    varstructure = varstructure + ", "+ attrvariable; 
    if (attrname1 == attrname2) 
     attrvariable = attrname2 + "2"; 
    else 
     attrvariable = attrname2 + "1"; 
    varstructure2 = varstructure2 + ", " + attrvariable; 
    j++; 
   } 
   axiom = axiom + varstructure + "))" + " = " + mainattr + ";"; 
   frecordln(fclass, axiom); 
   axiom2 = axiom2 + varstructure + ")," + mainattr2 + ")"; 
   axiom2 = axiom2 + " = " + "new" + classname + "(id" + varstructure2 
+ ");"; 
   frecordln(fclass, axiom2); 
  } 
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} 
 
//Rule 8 defines the axioms for the constants 
 
//Rule 9 defines a type Identity specific to a class 
void rule9Identity(ostream& fidentity, string classname) { 
  
 string sortname, sentence, comment; 
  
 sortname = "Id" + classname; 
 
 comment = "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"; 
 frecordln(fidentity, comment); 
 comment = "%specification of the identifier type for " + classname + " isntances"; 
 frecordln(fidentity, comment); 
 comment = "%larch file: " + sortname + ".lp";   
 frecordln(fidentity, comment); 
 comment = "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"; 
 frecordln(fidentity, comment); 
  
 fskipline(fidentity); 
 sentence = "set name " + sortname; 
 frecordln(fidentity, sentence); 
 fskipline(fidentity); 
 
 sentence = "declare sorts " + sortname; 
 frecordln(fidentity, sentence); 
 sentence = "declare variables : id" + classname + "1, "; 
 sentence = sentence +  "id" + classname + "2" + " : " + sortname; 
 frecordln(fidentity, sentence); 
 sentence = "declare operators"; 
 frecordln(fidentity, sentence); 
 sentence = "new" + sortname + " : " + "  -> " + sortname; 
 frecordln(fidentity, sentence); 
 sentence = "next" + sortname + " : " + sortname + "  -> " + sortname; 
 frecordln(fidentity, sentence); 
 sentence = "__\\eq__ : " + sortname + ", " + sortname + "  -> " + "Bool"; 
 frecordln(fidentity, sentence); 
 endSection(fidentity); 
 
 //axioms 
 fskipline(fidentity); 
 sentence = "assert"; 
 frecordln(fidentity, sentence); 
 sentence = "sort " + sortname + " generated by new" + sortname + ", next" + 
sortname + ";"; 
 frecordln(fidentity, sentence); 
 sentence = "new"+ sortname + " \\eq " + "new" + sortname + ";"; 
 frecordln(fidentity, sentence); 
 sentence = "~(new" + sortname + " \\eq " + "next" + sortname + "(id" + classname + 
"1));"; 
 frecordln(fidentity, sentence); 
 sentence = "~(next" + sortname + "(id" + classname + "1)" + " \\eq " + "new" + 
sortname + ");"; 
 frecordln(fidentity, sentence); 
 sentence = "next" + sortname + "(id" + classname + "1)" + " \\eq " + "next" + 
sortname + "(id" + classname + "2)" + " = "; 
 sentence = sentence + "(id" + classname + "1" + " \\eq id" + classname + "2);"; 
 frecordln(fidentity, sentence); 
 endSection(fidentity); 
} 
 
 
 
//************************************************************ 
//Translation from UML Associations to sorts in Larch Prover 
//************************************************************ 
 
//recover the links from a node class 
//if the link is an association or aggregation, invokes tranlateassoc function; 
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//otherwise, invokes translatecomposite 
void TranslateLinks(OBJ unClassUML) 
{ 
 OBJ listLinkUML, unLinkUML, sourceClass, targetClass; 
 string filename;  
 
 listLinkUML = GtiFromLinksOf(unClassUML); 
 
 //Recover the first link of the list  
   //Recover the target node of the Link 
    
    
 if (listLinkUML != NIL){  
  unLinkUML = GtiCar(listLinkUML); 
  sourceClass = GtiLinkOrg(unLinkUML); 
  targetClass = unClassUML; 
   
  while(listLinkUML != NIL) { 
   if (GtiClassSymbol(GtiClassOf(unLinkUML)) == GtiSymbol("Association 
Link"))  
    TranslateAssoc(unLinkUML, sourceClass, targetClass); 
   if (GtiClassSymbol(GtiClassOf(unLinkUML)) == GtiSymbol("Composition 
Link"))  
    TranslateAssoc(unLinkUML, sourceClass, targetClass); 
    
       
   listLinkUML = GtiCdr(listLinkUML); 
   unLinkUML = GtiCar(listLinkUML); 
  } 
  GtiDropList(listLinkUML); 
 } 
} 
 
 
//Translation from a UML Association to a sort in Larch Prover 
void TranslateAssoc(OBJ unLinkUML, OBJ sourceClass, OBJ targetClass) 
{ 
 
 string  sourcename, targetname, linkname, filename;   
    
  
 linkname = GtiGetString(unLinkUML, GtiSymbol("Name")); 
 if (GtiClassSymbol(GtiClassOf(unLinkUML)) == GtiSymbol("Composition Link"))  
  linkname = rule1Composition(linkname); 
 filename = linkname + ".lp"; 
 
 //creates the file in write and text mode 
 ofstream flink(filename.c_str()); 
 sourcename = GtiNameOf(sourceClass); 
 targetname = GtiNameOf(targetClass); 
 
 //the translation rules 
    rule1Assoc(unLinkUML, flink, linkname, sourcename, targetname);  
 rule2Assoc(flink, linkname, sourcename, targetname); 
 rule3Assoc(flink, linkname);  
 rule4Assoc(flink, linkname, sourcename, targetname); 
 rule5Assoc(unLinkUML, flink, linkname, sourcename, targetname); 
 //to finalize the declare operators section 
 endSection(flink); 
 
 //starts the axiom section  
 rule6Assoc(flink, linkname, sourcename, targetname); 
 rule7Assoc(flink, linkname, sourcename, targetname, unLinkUML); 
 rule8Assoc(flink, linkname, sourcename, targetname); 
 //to finalize the assert section 
 endSection(flink); 
  
 //constructs the type Set for each Class connected through the association; 
 //each type Set will be generated in one LP file 
 //first, the file Set for the source Class 
    filename = "Set" + sourcename + ".lp"; 
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 ofstream fset(filename.c_str()); 
 rule9Set(fset, sourcename); 
 //after, the file Set for the target Class 
    filename = "Set" + targetname + ".lp"; 
 ofstream fset1(filename.c_str()); 
 rule9Set(fset1, targetname); 
} 
 
 
//Rule 1 generates the name of the sort being specified  
//and a comment defining the sort to be described 
void rule1Assoc(OBJ unLinkUML, ostream& flink, string linkname, string sourcename, string 
targetname)  
{  
 string specname, comment; 
    
 comment = 
"%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"; 
 frecordln(flink, comment); 
 if (GtiClassSymbol(GtiClassOf(unLinkUML)) == GtiSymbol("Composition Link"))  
  comment = rule2Composition(linkname, sourcename, targetname); 
 else 
  comment = "%specification of the association " + linkname + " between 
Classes: " + sourcename + " and " + targetname; 
 frecordln(flink, comment); 
 comment = "%larch file: " + linkname + ".lp";   
 frecordln(flink, comment); 
 comment = 
"%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"; 
 frecordln(flink, comment); 
 fskipline(flink); 
 fskipline(flink); 
 
 //set name section starts the formal specification for the sort  
 specname = "set name " + linkname; 
 frecordln(flink, specname); 
 fskipline(flink); 
  
 //declares the association sort 
 //declares the source class and target class as object types 
 specname = "declare sorts " + linkname + ", " + sourcename + ", " + targetname; 
 frecord(flink, specname); 
 
  
 //declares the type Nat that is the type for the association identifier 
 specname = ", Nat"; 
 frecord(flink, specname); 
 
 //declares the types Set related to the Set of instances of the object types 
associated 
 specname = ", Set" + sourcename + ", Set" + targetname;  
 frecordln(flink, specname); 
  
}  
 
//Rule 2 constructs the section declare variables, with  
//two variables per object type, two variables per object type set,  
//two variables of type equal the type being defined, and  
//one variable of type Nat 
void rule2Assoc(ostream& flink, string linkname, string sourcename, string targetname) 
 
{ string specvariables, var1, var2; 
 
 
  
 specvariables = "declare variables "; 
 frecord(flink, specvariables);  
 
 //variables for the type being defined 
 var1 = linkname + "1, "; 
 var2 = linkname + "2"; 
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 specvariables = var1 + var2 + " : " + linkname + ", "; 
 frecord(flink, specvariables);  
  
 //variables for the source object type of the link 
 var1 = "a" + sourcename + "1,"; 
 var2 = " a" + sourcename + "2"; 
 specvariables = var1 + var2 + " : " + sourcename + ", "; 
 frecord(flink, specvariables);  
  
 //variables for the target object type of the link 
 var1 = "a" + targetname + "1,"; 
 var2 = " a" + targetname + "2"; 
 specvariables = var1 + var2 + " : " + targetname; 
 frecordln(flink, specvariables);  
  
 //skip line 
 specvariables = "declare variables "; 
 frecord(flink, specvariables);  
 
 //variables for the Set of source objects type 
 var1 = "Set" + sourcename + "1"; 
 var2 = ", Set" + sourcename + "2"; 
 specvariables = var1 + var2 + " : " + "Set" + sourcename + ", "; 
 frecord(flink, specvariables);  
 
 //variables for the Set of target objects type 
 var1 = "Set"; 
 var1 = var1 + targetname + "1, "; 
 var2 = "Set" + targetname + "2"; 
 specvariables = var1 + var2 + " : " + "Set" + targetname + ", "; 
 frecord(flink, specvariables);  
 
 //variable of type Natural for the association identity 
 var1 = "i : Nat"; 
 frecordln(flink, var1); 
} 
 
//Rule 3 starts the declare operators section of the algebraic specification 
//with the standard operations void, identity and association equality 
void rule3Assoc(ostream& flink, string linkname) 
 
{ string specoperators, comment; 
  
 
 specoperators = "declare operators"; 
 fskipline(flink); 
 frecordln(flink, specoperators); 
  
 //operation void for the generation of an empty association 
 comment = "%generator of an empty association"; 
 frecordln(flink, comment); 
 specoperators = "void : Nat -> " + linkname; 
 frecordln(flink, specoperators); 
 
 //operations for association identity needed for Larch Prover 
 comment = "%association identity"; 
 fskipline(flink); 
 frecordln(flink, comment); 
 specoperators = "identity : " + linkname + "  -> Nat"; 
 frecordln(flink, specoperators); 
 
 specoperators = "__\\eq__  : " + linkname + ", " + linkname + "  -> Bool"; 
 frecordln(flink, specoperators); 
} 
 
//Rule 4 declares the operators for add and remove links in the association 
void rule4Assoc(ostream& flink, string linkname, string sourcename, string targetname) 
 
{ string specoperators, comment; 
   
 comment = "%operators to create and remove links "; 
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 fskipline(flink); 
 frecordln(flink, comment); 
 
 //addlink 
 specoperators = "addLink : "; 
 specoperators = specoperators + linkname + ", " + sourcename + ", " + targetname; 
 specoperators = specoperators + " -> " + linkname; 
 frecordln(flink, specoperators); 
 
 //removelink 
 specoperators = "removeLink : "; 
 specoperators = specoperators + linkname + ", " + sourcename + ", " + targetname; 
 specoperators = specoperators + " -> " + linkname; 
 frecordln(flink, specoperators); 
   
} 
 
//Rule 5 declares operators to return the set of links for a given instance, 
//and also declares the operators to test if the association isEmpy and if 
//two instances are linked; declares also the constants for the multiplicities 
void rule5Assoc(OBJ unLinkUML, ostream& flink, string linkname, string sourcename, string 
targetname) 
 
{ string specoperators, comment; 
   
 //tests if two instances are linked through the association 
 comment = "%operator to test if two instances are linked"; 
 fskipline(flink); 
 frecordln(flink, comment); 
 specoperators = "isLinked : "; 
 specoperators = specoperators + linkname + ", " + sourcename + ", " + targetname; 
 specoperators = specoperators + " -> Bool"; 
 frecordln(flink, specoperators); 
 
 //tests if one instance is linked through the association 
 comment = "%operator to test if one instance is linked"; 
 fskipline(flink); 
 frecordln(flink, comment); 
 specoperators = "isLeftLinked : "; 
 specoperators = specoperators + linkname + ", " + targetname; 
 specoperators = specoperators + " -> Bool"; 
 frecordln(flink, specoperators); 
 
 specoperators = "isRightLinked : "; 
 specoperators = specoperators + linkname + ", " + sourcename; 
 specoperators = specoperators + " -> Bool"; 
 frecordln(flink, specoperators); 
 
 
 //tests if the association isEmpty 
 comment = "%operator to test if the association is Empty"; 
 fskipline(flink); 
 frecordln(flink, comment); 
 specoperators = "isEmpty : "; 
 specoperators = specoperators + linkname; 
 specoperators = specoperators + " -> Bool"; 
 frecordln(flink, specoperators); 
 
 //return the Set of instances of an object type linked to an instance  
 //of the other object type connected through the association 
 comment = "%operator to return the Set of instances linked to a given instance"; 
 fskipline(flink); 
 frecordln(flink, comment); 
 specoperators = "allLeftLink : "; 
 specoperators = specoperators + linkname + ", " + targetname; 
 specoperators = specoperators + " -> Set" + sourcename; 
 frecordln(flink, specoperators); 
 
 specoperators = "allRightLink : "; 
 specoperators = specoperators + linkname + ", " + sourcename; 
 specoperators = specoperators + " -> Set" + targetname; 
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 frecordln(flink, specoperators); 
 
 //constants to the association multiplicities 
 fskipline(flink); 
 comment = "%operators for multiplicity values"; 
 frecordln(flink, comment); 
 specoperators = "leftMultiplicity : " + linkname + ", " + targetname + " -> Nat"; 
 frecordln(flink, specoperators); 
 specoperators = "rightMultiplicity : " + linkname + ", " + sourcename + "  -> 
Nat"; 
 frecordln(flink, specoperators); 
 
 if (GtiClassSymbol(GtiClassOf(unLinkUML)) == GtiSymbol("Composition Link"))  
  rule3Composition(flink, linkname, sourcename, targetname); 
 
} 
 
//Rule 6 starts the axioms part 
//The axioms are used to state the semantics of the operations. 
void rule6Assoc(ostream& flink, string linkname, string sourcename, string targetname) 
{  
 string comment, axiom;  
 
 comment = "% axioms"; 
 fskipline(flink); 
 frecordln(flink, comment); 
 axiom = "assert"; 
 frecordln(flink, axiom); 
 axiom = "sort " + linkname + " generated by " + "void, addLink;"; 
 frecordln(flink, axiom); 
 fskipline(flink); 
 
 //axioms to state that an association cannot contain twice the same link 
 comment = "%axiom to state that tuples of instance values cannot be equal in an 
association"; 
 frecordln(flink, comment); 
 axiom = "(a" + sourcename + "1" + " \\eq " + "a" + sourcename + "2)"; 
 axiom = axiom + " /\\ "; 
 axiom = axiom + "(a" + targetname + "1" + " \\eq " + "a" + targetname + "2)" + " 
=> "; 
 frecord(flink, axiom); 
 axiom = "addLink(addLink(" + linkname + "1" + ", a" + sourcename + "1, a" + 
targetname + "1), "; 
 axiom = axiom + "a" + sourcename + "2, " + "a" + targetname + "2)" + " = addLink(" 
+ linkname + "1, "; 
 axiom = axiom + "a" + sourcename + "1, " + "a" + targetname + "1);"; 
 frecordln(flink, axiom); 
 
 //axioms for the operation isEmpty 
 fskipline(flink); 
 comment = "%axioms for the isEmpty operation"; 
 frecordln(flink, comment); 
 axiom = "isEmpty(void(i));"; 
 frecordln(flink, axiom); 
 axiom = "~(isEmpty(addLink(" + linkname + "1, " + "a" + sourcename + "1, " + "a" + 
targetname + "1)));" ; 
 frecordln(flink, axiom); 
 
 //axioms to test if two instances are linked - operator isLinked 
 fskipline(flink); 
 comment = "%state when two instances of object types are linked"; 
 frecordln(flink, comment); 
 axiom = "~(isLinked(void(i),"; 
 axiom = axiom + "a" + sourcename + "1, " + "a" + targetname + "1));"; 
 frecordln(flink, axiom); 
 axiom = "isLinked(addLink(" + linkname + "1, " + "a" + sourcename + "1, " + "a" + 
targetname + "1),"; 
 axiom = axiom + "a" + sourcename + "2, " + "a" + targetname + "2) = "; 
 axiom = axiom + "((a" + sourcename + "1 \\eq " + "a" + sourcename + "2"; 
 axiom = axiom + " /\\ " + "a" + targetname + "1" + " \\eq " + "a" + targetname + 
"2)"; 
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 axiom = axiom + " \\/ " + "isLinked(" + linkname + "1, " + "a" + sourcename + "2, 
" + "a" + targetname + "2" + "));"; 
 frecordln(flink, axiom); 
 
 //axioms to state the semantics of the operations allLefLink 
 //and allRightLink in terms of addLink generator 
 fskipline(flink); 
 comment = "%state the semantics for the operations allLeftLink and allRightLink 
through addLink generator"; 
 frecordln(flink, comment); 
 axiom = "(a" + targetname + "1 \\eq a" + targetname + "2) => "; 
 axiom = axiom + "allLeftLink(addLink(" + linkname + "1, a" + sourcename + "1, a" + 
targetname + "2), a" + targetname + "1)"; 
 axiom = axiom + " = insert(a" + sourcename + "1, allLeftLink(" + linkname + "1, a" 
+ targetname + "1));"; 
 frecordln(flink, axiom); 
 
 axiom = "(a" + sourcename + "1 \\eq a" + sourcename + "2) => "; 
 axiom = axiom + "allRightLink(addLink(" + linkname + "1, a" + sourcename + "2, a" 
+ targetname + "1), a" + sourcename + "1)"; 
 axiom = axiom + " = insert(a" + targetname + "1, allRightLink(" + linkname + "1, 
a" + sourcename + "1));"; 
 frecordln(flink, axiom); 
 
 axiom = "~(a" + targetname + "1 \\eq a" + targetname + "2) => "; 
 axiom = axiom + "allLeftLink(addLink(" + linkname + "1, a" + sourcename + "1, a" + 
targetname + "2), a" + targetname + "1)"; 
 axiom = axiom + " = allLeftLink(" + linkname + "1, a" + targetname + "1);"; 
 frecordln(flink, axiom); 
 axiom = "~(a" + sourcename + "1 \\eq a" + sourcename + "2) => "; 
 axiom = axiom + "allRightLink(addLink(" + linkname + "1, a" + sourcename + "2, a" 
+ targetname + "1), a" + sourcename + "1)"; 
 axiom = axiom + " = allRightLink(" + linkname + "1, a" + sourcename + "1);"; 
 frecordln(flink, axiom); 
 
 //semantics for allLeftLink and allRightLink in terms of void generator 
 fskipline(flink); 
 comment = "%state the semantics for allLeftLink and allRightLink through void 
generator"; 
 frecordln(flink, comment); 
 axiom = "allLeftLink(void(i), a" + targetname + "1) = {}: Set" + targetname + ";"; 
 frecordln(flink, axiom); 
 axiom = "allRightLink(void(i), a" + sourcename + "1) = {}: Set" + sourcename + 
";"; 
 frecordln(flink, axiom); 
 
 
 //axioms to state when an instance is linked 
 fskipline(flink); 
 comment = "%state when one instance is linked through the association"; 
 frecordln(flink, comment); 
 axiom = "~(isLeftLinked(void(i), a" + targetname + "1));"; 
 frecordln(flink, axiom); 
 axiom = "~(isRightLinked(void(i), a" + sourcename + "1));"; 
 frecordln(flink, axiom); 
 
 
 axiom = "isLeftLinked(addLink(" + linkname + "1, a" + sourcename + "1, a" + 
targetname + "1), a" + targetname + "2) = (("; 
 axiom = axiom + "a" + targetname + "1" + " \\eq " + "a" + targetname + "2) \\/ 
isLeftLinked("; 
 axiom = axiom + linkname + "1, a" + targetname + "2));";  
 frecordln(flink, axiom); 
 
 axiom = "isRightLinked(addLink(" + linkname + "1, a" + sourcename + "1, a" + 
targetname + "1), a" + sourcename + "2) = (("; 
 axiom = axiom + "a" + sourcename + "1" + " \\eq " + "a" + sourcename + "2) \\/ 
isRightLinked("; 
 axiom = axiom + linkname + "1, a" + sourcename + "2));";  
 frecordln(flink, axiom); 
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 //left and rightMultiplicity axioms 
 comment = "%axioms for left and rightMultiplicity operators"; 
 fskipline(flink); 
 frecordln(flink, comment); 
 axiom = "leftMultiplicity(void(i), a" + targetname + "1) = 0;"; 
 frecordln(flink, axiom); 
 axiom = "rightMultiplicity(void(i), a" + sourcename + "1) = 0;"; 
 frecordln(flink, axiom); 
 
 axiom = "(a" + targetname + "1" + " \\eq " + "a" + targetname + "2) => "; 
 axiom = axiom + "leftMultiplicity(addLink(" + linkname + "1, a" + sourcename + "2, 
a" + targetname + "2),"; 
 axiom = axiom + "a" + targetname + "1) = leftMultiplicity( "+ linkname + "1, a" + 
targetname + "1) + 1;"; 
 frecordln(flink, axiom); 
 
 axiom = "~(a" + targetname + "1" + " \\eq " + "a" + targetname + "2) => "; 
 axiom = axiom + "leftMultiplicity(addLink(" + linkname + "1, a" + sourcename + "2, 
a" + targetname + "2),"; 
 axiom = axiom + "a" + targetname + "1) = leftMultiplicity( "+ linkname + "1, a" + 
targetname + "1);"; 
 frecordln(flink, axiom); 
 
 
 fskipline(flink); 
 axiom = "(a" + sourcename + "1" + " \\eq " + "a" + sourcename + "2) => "; 
 axiom = axiom + "rightMultiplicity(addLink(" + linkname + "1, a" + sourcename + 
"2, a" + targetname + "2),"; 
 axiom = axiom + "a" + sourcename + "1) = rightMultiplicity( "+ linkname + "1, a" + 
sourcename + "1) + 1;"; 
 frecordln(flink, axiom); 
 
 axiom = "~(a" + sourcename + "1" + " \\eq " + "a" + sourcename + "2) => "; 
 axiom = axiom + "rightMultiplicity(addLink(" + linkname + "1, a" + sourcename + 
"2, a" + targetname + "2),"; 
 axiom = axiom + "a" + sourcename + "1) = rightMultiplicity( "+ linkname + "1, a" + 
sourcename + "1);"; 
 frecordln(flink, axiom); 
 
 
} 
 
//Rule 7 states the axioms to recover the multiplicity values  
//and axioms for multiplicity constraints 
void rule7Assoc(ostream& flink, string linkname, string sourcename, string targetname, 
OBJ unLinkUML) 
{  
 string comment, axiom, multsource, multtarget; 
 
  
 //multiplicity constraints 
 fskipline(flink); 
 comment = "%axioms for multiplicity constraints: written only if multiplicity is 
not free, i.e. different from 0 or More"; 
 frecordln(flink, comment); 
  
 //recover the value for the properties multiplicity target and  
 //multiplicity source of the link 
 multsource = GtiNameOf(GtiGetMenu(unLinkUML, GtiSymbol("Multiplicity Source"))); 
 comment = "%source multiplicity is " + multsource; 
 frecordln(flink, comment); 
 multtarget = GtiNameOf(GtiGetMenu(unLinkUML, GtiSymbol("Multiplicity Target"))); 
 comment = "%target multiplicity is " + multtarget; 
 frecordln(flink, comment); 
   
 //axioms to state multiplicity constraints at the source end of the association 
 if (multsource == "Just One") { 
  axiom = "size(allLeftLink(" + linkname + "1, a" + targetname + "1))"; 
  axiom =  axiom + " = 1;"; 
  frecordln(flink, axiom);} 
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 else 
  if (multsource == "Optional (0 or 1)") { 
   axiom = "~(size(allLeftLink(" + linkname + "1, a" + targetname + 
")) > 1;"; 
   frecordln(flink, axiom); } 
  else 
   if (multsource == "1 or more") { 
    axiom = "~(size(allLeftLink(" + linkname + "1, a" + 
targetname + ")) < 1;"; 
    frecordln(flink, axiom); 
   }; 
   
 //axioms to state multiplicity constraints at the target end of the association 
  
 if (multtarget == "Just One") { 
  axiom = "size(allRightLink(" + linkname + "1, a" + sourcename + "1))"; 
  axiom =  axiom + " = 1;"; 
  frecordln(flink, axiom); } 
 else 
  if (multtarget == "Optional (0 or 1)") { 
   axiom = "~(size(allRightLink(" + linkname + "1, a" + sourcename + 
")) > 1;"; 
   frecordln(flink, axiom); } 
    
  else 
   if (multtarget == "1 or more") { 
    axiom = "~(size(allRightLink(" + linkname + "1, a" + 
sourcename + ")) < 1;"; 
    frecordln(flink, axiom); 
    }; 
 
  if (GtiClassSymbol(GtiClassOf(unLinkUML)) == GtiSymbol("Composition 
Link"))  
   rule4Composition(flink, linkname, sourcename, targetname); 
 
} 
 
 
//Rule 8 states the axioms for association identity 
void rule8Assoc(ostream& flink, string linkname, string sourcename, string targetname) 
{  
 string comment, axiom; 
 
  
 fskipline(flink); 
 comment = "%axioms for association identity"; 
 frecordln(flink, comment); 
  
 axiom = "identity(void(i)) = i;"; 
 frecordln(flink, axiom); 
 axiom = "identity(addLink(" + linkname + "1" + ", " + "a" + sourcename + "1" + ", 
"; 
 axiom = axiom + "a" + targetname + "1" + "))" + " = " + "identity" + "(" + 
linkname + "1" + ");"; 
 frecordln(flink, axiom); 
 axiom = linkname + "1" + " \\eq " + linkname + "2"; 
 axiom = axiom + " = " + "identity(" + linkname + "1" + ")" + " \\eq " + 
"identity(" + linkname + "2" + ")"; 
 frecordln(flink, axiom); 
} 
 
//Rule 9 generates the sort Set for the source and target Class  
//of the Association 
void rule9Set(ostream& fset, string classname)  
{  
 string specname, comment, specvariables, specoperator, axiom; 
    
 comment = 
"%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"; 
 frecordln(fset, comment); 
 comment = "%specification of the type Set for " + classname + " Class "; 
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 frecordln(fset, comment); 
 comment = "%larch file: Set" + classname + ".lp";   
 frecordln(fset, comment); 
 comment = 
"%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"; 
 frecordln(fset, comment); 
 fskipline(fset); 
 fskipline(fset); 
 
 //set name section starts the formal specification for the sort  
 specname = "set name Set" + classname; 
 frecordln(fset, specname); 
 fskipline(fset); 
  
 //declares used sorts 
 specname = "declare sorts " + classname + ", " + "Set" + classname + ", Nat"; 
 frecordln(fset, specname); 
  
 //declare variables 
 specvariables = "declare variables "; 
 frecord(fset, specvariables);  
 specvariables = "a" + classname + "1, "; 
 specvariables = specvariables + "a" + classname + "2"; 
 specvariables = specvariables + " : " + classname + ", "; 
 frecord(fset, specvariables);  
 specvariables = "set" + classname + "1" + ", set" + classname + "2 : Set" + 
classname; 
 frecordln(fset, specvariables);  
 
 //declare operators for Set 
 specname = "declare operators"; 
 frecordln(fset, specname); 
 specoperator = "{} :  -> Set" + classname; 
 frecordln(fset, specoperator); 
 specoperator = "{__} : " + classname + " -> " + "Set" + classname; 
 frecordln(fset, specoperator); 
 specoperator = "insert : " + classname + ", Set" + classname + " -> Set" + 
classname;  
 frecordln(fset, specoperator); 
 specoperator = "__\\U__ : Set" + classname + ", Set" + classname + " -> Set" + 
classname; 
 frecordln(fset, specoperator); 
 specoperator = "__\\in__ : " + classname + ", Set" + classname + " -> Bool"; 
 frecordln(fset, specoperator); 
 specoperator = "__\\I__ : Set" + classname + ", Set" + classname + " -> Bool"; 
 frecordln(fset, specoperator); 
 specoperator = "size : Set" + classname + " -> Nat"; 
 frecordln(fset, specoperator); 
 
 //ends operators section 
 endSection(fset); 
 
 //axioms section 
 axiom = "assert"; 
 fskipline(fset); 
 frecordln(fset, axiom); 
 //generators 
 axiom = "sort Set" + classname + " generated by {}, insert;"; 
 frecordln(fset, axiom); 
 fskipline(fset); 
 
 //axioms for the operations 
 axiom = "{a" + classname + "1} = insert(a" + classname + "1, {});"; 
 frecordln(fset, axiom); 
 axiom = "~(a" + classname + "1 \\in {});"; 
 frecordln(fset, axiom); 
 axiom = "a" + classname + "1 \\in insert(a" + classname + "2, set" + classname + 
"1) <=> (a" + classname + "1"; 
 axiom = axiom + " \\eq a" + classname + "2 \\/ a" + classname + "1 \\in set" + 
classname + "1);"; 
 frecordln(fset, axiom); 
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 axiom = "{} \\I set" + classname + "1;"; 
 frecordln(fset, axiom); 
 axiom = "insert(a" + classname + "1, set" + classname + "1) \\I set" + classname + 
"2 <=> (a" + classname + "1"; 
 axiom = axiom + " \\in set" + classname + "2 /\\ set" + classname + "1 \\I set" + 
classname + "2);"; 
 frecordln(fset, axiom); 
 axiom = "a" + classname + "1 \\in (set" + classname + "1 \\U set" + classname + 
"2) <=> (a" + classname + "1 \\in set" + classname + "1 \\/ a"; 
 axiom = axiom + classname + "1 \\in set" + classname + "2);"; 
 frecordln(fset, axiom); 
 
 //axioms for the size operator 
 fskipline(fset); 
 comment = "% axioms for size operator"; 
 frecordln(fset, comment); 
 axiom = "size({}) = 0;"; 
 frecordln(fset, axiom); 
 axiom = "(a" + classname + "1 \\in set" + classname + "1) => size(insert(a" + 
classname + "1, set" + classname + "1)) = size(set" + classname + "1);"; 
 frecordln(fset, axiom); 
 axiom = "~(a" + classname + "1 \\in set" + classname + "1) => size(insert(a" + 
classname + "1, set" + classname + "1)) = 1+size(set" + classname + "1);"; 
 frecordln(fset, axiom); 
 
 //ends axioms section 
 endSection(fset); 
} 
 
 
//Special Rules for Compositions  
string rule1Composition(string linkname) 
{ 
 string compname;  
 
 compname = "Comp" + linkname;  
 return compname; 
} 
 
 
//Special Rules for Compositions  
string rule2Composition(string linkname, string sourcename, string targetname) 
{ 
 string comment; 
 
 comment = "%specification of the composition " + linkname + " between Classes: " + 
sourcename + " and " + targetname; 
 return comment; 
} 
 
//Special Rules for Compositions  
void rule3Composition(ostream& flink, string linkname, string sourcename, string 
targetname) 
{ 
 
 string  formaloperator, comment;  
  
  
 fskipline(flink); 
 comment = "%special operator for Composition"; 
 frecordln(flink, comment); 
 
 formaloperator = "isPartOf : " + linkname + ", " + sourcename + ", " + targetname 
+ "  -> Bool"; 
 frecordln(flink, formaloperator); 
} 
 
//Special Rules for Compositions  
void rule4Composition(ostream& flink, string linkname, string sourcename, string 
targetname) 
{ 
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 string  axiom, comment;  
  
  
 fskipline(flink); 
 comment = "%special axioms for Composition"; 
 frecordln(flink, comment); 
 
 axiom = "isPartOf(addLink(" + linkname + "1, a" + sourcename + "1, a" + targetname 
+ "1), a" + sourcename + "2, a" + targetname + "2)"; 
 axiom = axiom + " => (a" + sourcename + "1 \\eq a" + sourcename + "2)"; 
 axiom = axiom + " /\\ (a" + targetname + "1 \\eq a" + targetname + "2);"; 
 frecordln(flink, axiom); 
 
 axiom = "~(isPartOf(void(i), a" + sourcename + "1, a" + targetname + "1);"; 
 frecordln(flink, axiom); 
 
 fskipline(flink); 
 axiom = "~(a" + targetname + "1 \\eq a" + targetname + "2)"; 
 axiom = axiom + " => (isPartOf(" + linkname + "1, a" + sourcename + "1, a" + 
targetname + "1) /\\"; 
 axiom = axiom + "(~(isPartOf(" + linkname + "1, a" + sourcename + "1, a" + 
targetname + "2))))"; 
 axiom = axiom + " \\/ (isPartOf(" + linkname + "1, a" + sourcename + "1, a" + 
targetname + "2) /\\"; 
 axiom = axiom + "(~(isPartOf(" + linkname + "1, a" + sourcename + "1, a" + 
targetname + "1))));"; 
 
 frecordln(flink, axiom); 
} 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%specification of the properties and behavior for the instances  of 
class Library 
%larch file: Library.lp 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
set name Library 
 
declare sorts Library, IdLibrary, SetLibrary, String 
declare variables aLibrary1, aLibrary2 : Library, libName1,  libName2 : 
String 
declare variables address1,  address2 : String, telephone1,  telephone2 
: String, id : IdLibrary 
 
declare operators 
% generator 
newLibrary : IdLibrary, String, String, String -> Library 
 
% operations for identity and object equality 
identity : Library -> IdLibrary 
__\eq__ :  Library, Library -> Bool 
 
% accessors for the instance variables 
getlibName :  Library -> String 
setlibName :  Library, String -> Library 
getaddress :  Library -> String 
setaddress :  Library, String -> Library 
gettelephone :  Library -> String 
settelephone :  Library, String -> Library 
 
% constants to represent examples of instances 
oneLibrary :  -> Library 
anotherLibrary :  -> Library 
 
.. 
% axioms 
assert 
sort Library generated by newLibrary; 
%axioms for identity 
identity(newLibrary(id,libName1,address1,telephone1)) = id; 
 
%axioms for the constants 
oneLibrary= newLibrary((newIdLibrary),libName1,address1,telephone1); 
anotherLibrary= 
newLibrary((nextIdLibrary(newIdLibrary)),libName1,address1,telephone1); 
% axiom to state the semantics for object equality 
aLibrary1 \eq aLibrary2 = identity(aLibrary1) \eq identity(aLibrary2); 
 
% axioms to state the semantics of the attribute accessors 
getlibName(newLibrary(id, libName1, address1, telephone1)) = libName1; 
setlibName(newLibrary(id, libName1, address1, telephone1),libName2) = 
newLibrary(id, libName2, address1, telephone1); 
getaddress(newLibrary(id, libName1, address1, telephone1)) = address1; 
setaddress(newLibrary(id, libName1, address1, telephone1),address2) = 
newLibrary(id, libName1, address2, telephone1); 
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gettelephone(newLibrary(id, libName1, address1, telephone1)) = 
telephone1; 
settelephone(newLibrary(id, libName1, address1, telephone1),telephone2) 
= newLibrary(id, libName1, address1, telephone2); 
.. 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%specification of the properties and behavior for the instances  of 
class User 
%larch file: User.lp 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
set name User 
 
declare sorts User, IdUser, SetUser, Boolean 
declare variables aUser1, aUser2 : User, name1,  name2 : String 
declare variables address1,  address2 : String, code1,  code2 : Nat, 
active1,  active2 : Boolean, id : IdUser 
 
declare operators 
% generator 
newUser : IdUser, String, String, Nat, Boolean -> User 
 
% operations for identity and object equality 
identity : User -> IdUser 
__\eq__ :  User, User -> Bool 
 
% accessors for the instance variables 
getname :  User -> String 
setname :  User, String -> User 
getaddress :  User -> String 
setaddress :  User, String -> User 
getcode :  User -> Nat 
setcode :  User, Nat -> User 
getactive :  User -> Boolean 
setactive :  User, Boolean -> User 
 
% constants to represent examples of instances 
oneUser :  -> User 
anotherUser :  -> User 
 
.. 
% axioms 
assert 
sort User generated by newUser; 
%axioms for identity 
identity(newUser(id,name1,address1,code1,active1)) = id; 
 
%axioms for the constants 
oneUser= newUser((newIdUser),name1,address1,code1,active1); 
anotherUser= 
newUser((nextIdUser(newIdUser)),name1,address1,code1,active1); 
% axiom to state the semantics for object equality 
aUser1 \eq aUser2 = identity(aUser1) \eq identity(aUser2); 
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% axioms to state the semantics of the attribute accessors 
getname(newUser(id, name1, address1, code1, active1)) = name1; 
setname(newUser(id, name1, address1, code1, active1),name2) = 
newUser(id, name2, address1, code1, active1); 
getaddress(newUser(id, name1, address1, code1, active1)) = address1; 
setaddress(newUser(id, name1, address1, code1, active1),address2) = 
newUser(id, name1, address2, code1, active1); 
getcode(newUser(id, name1, address1, code1, active1)) = code1; 
setcode(newUser(id, name1, address1, code1, active1),code2) = 
newUser(id, name1, address1, code2, active1); 
getactive(newUser(id, name1, address1, code1, active1)) = active1; 
setactive(newUser(id, name1, address1, code1, active1),active2) = 
newUser(id, name1, address1, code1, active2); 
.. 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%specification of the properties and behavior for the instances  of 
class Publication 
%larch file: Publication.lp 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
set name Publication 
 
declare sorts Publication, IdPublication, SetPublication, String 
declare variables aPublication1, aPublication2 : Publication, title1,  
title2 : String 
declare variables author1,  author2 : String, publishingHouse1,  
publishingHouse2 : String, id : IdPublication 
 
declare operators 
% generator 
newPublication : IdPublication, String, String, String -> Publication 
 
% operations for identity and object equality 
identity : Publication -> IdPublication 
__\eq__ :  Publication, Publication -> Bool 
 
% accessors for the instance variables 
gettitle :  Publication -> String 
settitle :  Publication, String -> Publication 
getauthor :  Publication -> String 
setauthor :  Publication, String -> Publication 
getpublishingHouse :  Publication -> String 
setpublishingHouse :  Publication, String -> Publication 
 
% constants to represent examples of instances 
onePublication :  -> Publication 
anotherPublication :  -> Publication 
 
.. 
% axioms 
assert 
sort Publication generated by newPublication; 
%axioms for identity 
identity(newPublication(id,title1,author1,publishingHouse1)) = id; 
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%axioms for the constants 
onePublication= 
newPublication((newIdPublication),title1,author1,publishingHouse1); 
anotherPublication= 
newPublication((nextIdPublication(newIdPublication)),title1,author1,pub
lishingHouse1); 
% axiom to state the semantics for object equality 
aPublication1 \eq aPublication2 = identity(aPublication1) \eq 
identity(aPublication2); 
 
% axioms to state the semantics of the attribute accessors 
gettitle(newPublication(id, title1, author1, publishingHouse1)) = 
title1; 
settitle(newPublication(id, title1, author1, publishingHouse1),title2) 
= newPublication(id, title2, author1, publishingHouse1); 
getauthor(newPublication(id, title1, author1, publishingHouse1)) = 
author1; 
setauthor(newPublication(id, title1, author1, 
publishingHouse1),author2) = newPublication(id, title1, author2, 
publishingHouse1); 
getpublishingHouse(newPublication(id, title1, author1, 
publishingHouse1)) = publishingHouse1; 
setpublishingHouse(newPublication(id, title1, author1, 
publishingHouse1),publishingHouse2) = newPublication(id, title1, 
author1, publishingHouse2); 
.. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%specification of the properties and behavior for the instances  of 
class Copy 
%larch file: Copy.lp 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
set name Copy 
 
declare sorts Copy, IdCopy, SetCopy, Nat 
declare variables aCopy1, aCopy2 : Copy, copyNumber1,  copyNumber2 : 
Nat 
declare variables , id : IdCopy 
 
declare operators 
% generator 
newCopy : IdCopy, Nat -> Copy 
 
% operations for identity and object equality 
identity : Copy -> IdCopy 
__\eq__ :  Copy, Copy -> Bool 
 
% accessors for the instance variables 
getcopyNumber :  Copy -> Nat 
setcopyNumber :  Copy, Nat -> Copy 
 
% constants to represent examples of instances 
oneCopy :  -> Copy 
anotherCopy :  -> Copy 
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.. 
% axioms 
assert 
sort Copy generated by newCopy; 
%axioms for identity 
identity(newCopy(id,copyNumber1)) = id; 
 
%axioms for the constants 
oneCopy= newCopy((newIdCopy),copyNumber1); 
anotherCopy= newCopy((nextIdCopy(newIdCopy)),copyNumber1); 
% axiom to state the semantics for object equality 
aCopy1 \eq aCopy2 = identity(aCopy1) \eq identity(aCopy2); 
 
% axioms to state the semantics of the attribute accessors 
getcopyNumber(newCopy(id, copyNumber1)) = copyNumber1; 
setcopyNumber(newCopy(id, copyNumber1),copyNumber2) = newCopy(id, 
copyNumber2); 
.. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%specification of the properties and behavior for the instances  of 
class Loan 
%larch file: Loan.lp 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
set name Loan 
 
declare sorts Loan, IdLoan, SetLoan, Nat 
declare variables aLoan1, aLoan2 : Loan, numberLoan1,  numberLoan2 : 
Nat 
declare variables situation1,  situation2 : Boolean, duration1,  
duration2 : Nat, id : IdLoan 
 
declare operators 
% generator 
newLoan : IdLoan, Nat, Boolean, Nat -> Loan 
 
% operations for identity and object equality 
identity : Loan -> IdLoan 
__\eq__ :  Loan, Loan -> Bool 
 
% accessors for the instance variables 
getnumberLoan :  Loan -> Nat 
setnumberLoan :  Loan, Nat -> Loan 
getsituation :  Loan -> Boolean 
setsituation :  Loan, Boolean -> Loan 
getduration :  Loan -> Nat 
setduration :  Loan, Nat -> Loan 
 
% constants to represent examples of instances 
oneLoan :  -> Loan 
anotherLoan :  -> Loan 
 
.. 
% axioms 
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assert 
sort Loan generated by newLoan; 
%axioms for identity 
identity(newLoan(id,numberLoan1,situation1,duration1)) = id; 
 
%axioms for the constants 
oneLoan= newLoan((newIdLoan),numberLoan1,situation1,duration1); 
anotherLoan= 
newLoan((nextIdLoan(newIdLoan)),numberLoan1,situation1,duration1); 
% axiom to state the semantics for object equality 
aLoan1 \eq aLoan2 = identity(aLoan1) \eq identity(aLoan2); 
 
% axioms to state the semantics of the attribute accessors 
getnumberLoan(newLoan(id, numberLoan1, situation1, duration1)) = 
numberLoan1; 
setnumberLoan(newLoan(id, numberLoan1, situation1, 
duration1),numberLoan2) = newLoan(id, numberLoan2, situation1, 
duration1); 
getsituation(newLoan(id, numberLoan1, situation1, duration1)) = 
situation1; 
setsituation(newLoan(id, numberLoan1, situation1, 
duration1),situation2) = newLoan(id, numberLoan1, situation2, 
duration1); 
getduration(newLoan(id, numberLoan1, situation1, duration1)) = 
duration1; 
setduration(newLoan(id, numberLoan1, situation1, duration1),duration2) 
= newLoan(id, numberLoan1, situation1, duration2); 
.. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%specification of the properties and behavior for the instances  of 
class LocalUse 
%larch file: LocalUse.lp 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
set name LocalUse 
 
declare sorts LocalUse, IdLocalUse, SetLocalUse, Nat 
declare variables aLocalUse1, aLocalUse2 : LocalUse, hours1,  hours2 : 
Nat 
declare variables , id : IdLocalUse 
 
declare operators 
% generator 
newLocalUse : IdLocalUse, Nat -> LocalUse 
 
% operations for identity and object equality 
identity : LocalUse -> IdLocalUse 
__\eq__ :  LocalUse, LocalUse -> Bool 
 
% accessors for the instance variables 
gethours :  LocalUse -> Nat 
sethours :  LocalUse, Nat -> LocalUse 
 
% constants to represent examples of instances 
oneLocalUse :  -> LocalUse 
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anotherLocalUse :  -> LocalUse 
 
.. 
 
% axioms 
assert 
sort LocalUse generated by newLocalUse; 
%axioms for identity 
identity(newLocalUse(id,hours1)) = id; 
 
%axioms for the constants 
oneLocalUse= newLocalUse((newIdLocalUse),hours1); 
anotherLocalUse= newLocalUse((nextIdLocalUse(newIdLocalUse)),hours1); 
% axiom to state the semantics for object equality 
aLocalUse1 \eq aLocalUse2 = identity(aLocalUse1) \eq 
identity(aLocalUse2); 
 
% axioms to state the semantics of the attribute accessors 
gethours(newLocalUse(id, hours1)) = hours1; 
sethours(newLocalUse(id, hours1),hours2) = newLocalUse(id, hours2); 
.. 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%specification of the association LibUse between Classes: Loan and User 
%larch file: LibUse.lp 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
set name LibUse 
 
declare sorts LibUse, Loan, User, Nat, SetLoan, SetUser 
declare variables LibUse1, LibUse2 : LibUse, aLoan1, aLoan2 : Loan, 
aUser1, aUser2 : User 
declare variables SetLoan1, SetLoan2 : SetLoan, SetUser1, SetUser2 : 
SetUser, i : Nat 
 
declare operators 
%generator of an empty association 
void : Nat -> LibUse 
 
%association identity 
identity : LibUse  -> Nat 
__\eq__  : LibUse, LibUse  -> Bool 
 
%operators to create and remove links  
addLink : LibUse, Loan, User -> LibUse 
removeLink : LibUse, Loan, User -> LibUse 
 
%operator to test if two instances are linked 
isLinked : LibUse, Loan, User -> Bool 
 
%operator to test if one instance is linked 
isLeftLinked : LibUse, User -> Bool 
isRightLinked : LibUse, Loan -> Bool 
 
%operator to test if the association is Empty 
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isEmpty : LibUse -> Bool 
 
%operator to return the Set of instances linked to a given instance 
allLeftLink : LibUse, User -> SetLoan 
allRightLink : LibUse, Loan -> SetUser 
 
%operators for multiplicity values 
leftMultiplicity : LibUse, User -> Nat 
rightMultiplicity : LibUse, Loan  -> Nat 
.. 
 
% axioms 
assert 
sort LibUse generated by void, addLink; 
 
%axiom to state that tuples of instance values cannot be equal in an 
association 
(aLoan1 \eq aLoan2) /\ (aUser1 \eq aUser2) => addLink(addLink(LibUse1, 
aLoan1, aUser1), aLoan2, aUser2) = addLink(LibUse1, aLoan1, aUser1); 
 
%axioms for the isEmpty operation 
isEmpty(void(i)); 
~(isEmpty(addLink(LibUse1, aLoan1, aUser1))); 
 
%state when two instances of object types are linked 
~(isLinked(void(i),aLoan1, aUser1)); 
isLinked(addLink(LibUse1, aLoan1, aUser1),aLoan2, aUser2) = ((aLoan1 
\eq aLoan2 /\ aUser1 \eq aUser2) \/ isLinked(LibUse1, aLoan2, aUser2)); 
 
%state the semantics for the operations allLeftLink and allRightLink 
through addLink generator 
(aUser1 \eq aUser2) => allLeftLink(addLink(LibUse1, aLoan1, aUser2), 
aUser1) = insert(aLoan1, allLeftLink(LibUse1, aUser1)); 
(aLoan1 \eq aLoan2) => allRightLink(addLink(LibUse1, aLoan2, aUser1), 
aLoan1) = insert(aUser1, allRightLink(LibUse1, aLoan1)); 
~(aUser1 \eq aUser2) => allLeftLink(addLink(LibUse1, aLoan1, aUser2), 
aUser1) = allLeftLink(LibUse1, aUser1); 
~(aLoan1 \eq aLoan2) => allRightLink(addLink(LibUse1, aLoan2, aUser1), 
aLoan1) = allRightLink(LibUse1, aLoan1); 
 
%state the semantics for allLeftLink and allRightLink through void 
generator 
allLeftLink(void(i), aUser1) = {}: SetUser; 
allRightLink(void(i), aLoan1) = {}: SetLoan; 
 
%state when one instance is linked through the association 
~(isLeftLinked(void(i), aUser1)); 
~(isRightLinked(void(i), aLoan1)); 
isLeftLinked(addLink(LibUse1, aLoan1, aUser1), aUser2) = ((aUser1 \eq 
aUser2) \/ isLeftLinked(LibUse1, aUser2)); 
isRightLinked(addLink(LibUse1, aLoan1, aUser1), aLoan2) = ((aLoan1 \eq 
aLoan2) \/ isRightLinked(LibUse1, aLoan2)); 
 
%axioms for left and rightMultiplicity operators 
leftMultiplicity(void(i), aUser1) = 0; 
rightMultiplicity(void(i), aLoan1) = 0; 
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(aUser1 \eq aUser2) => leftMultiplicity(addLink(LibUse1, aLoan2, 
aUser2),aUser1) = leftMultiplicity( LibUse1, aUser1) + 1; 
~(aUser1 \eq aUser2) => leftMultiplicity(addLink(LibUse1, aLoan2, 
aUser2),aUser1) = leftMultiplicity( LibUse1, aUser1); 
 
(aLoan1 \eq aLoan2) => rightMultiplicity(addLink(LibUse1, aLoan2, 
aUser2),aLoan1) = rightMultiplicity( LibUse1, aLoan1) + 1; 
~(aLoan1 \eq aLoan2) => rightMultiplicity(addLink(LibUse1, aLoan2, 
aUser2),aLoan1) = rightMultiplicity( LibUse1, aLoan1); 
 
%axioms for multiplicity constraints: written only if multiplicity is 
not free, i.e. different from 0 or More 
%source multiplicity is Just One 
%target multiplicity is Many (0 or plus) 
size(allLeftLink(LibUse1, aUser1)) = 1; 
 
%axioms for association identity 
identity(void(i)) = i; 
identity(addLink(LibUse1, aLoan1, aUser1)) = identity(LibUse1); 
LibUse1 \eq LibUse2 = identity(LibUse1) \eq identity(LibUse2) 
.. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%specification of the association LoaUse between Classes: Loan and User 
%larch file: LoaUse.lp 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
set name LoaUse 
 
declare sorts LoaUse, Loan, User, Nat, SetLoan, SetUser 
declare variables LoaUse1, LoaUse2 : LoaUse, aLoan1, aLoan2 : Loan, 
aUser1, aUser2 : User 
declare variables SetLoan1, SetLoan2 : SetLoan, SetUser1, SetUser2 : 
SetUser, i : Nat 
 
declare operators 
%generator of an empty association 
void : Nat -> LoaUse 
 
%association identity 
identity : LoaUse  -> Nat 
__\eq__  : LoaUse, LoaUse  -> Bool 
 
%operators to create and remove links  
addLink : LoaUse, Loan, User -> LoaUse 
removeLink : LoaUse, Loan, User -> LoaUse 
 
%operator to test if two instances are linked 
isLinked : LoaUse, Loan, User -> Bool 
 
%operator to test if one instance is linked 
isLeftLinked : LoaUse, User -> Bool 
isRightLinked : LoaUse, Loan -> Bool 
 
%operator to test if the association is Empty 
isEmpty : LoaUse -> Bool 
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%operator to return the Set of instances linked to a given instance 
allLeftLink : LoaUse, User -> SetLoan 
allRightLink : LoaUse, Loan -> SetUser 
 
%operators for multiplicity values 
leftMultiplicity : LoaUse, User -> Nat 
rightMultiplicity : LoaUse, Loan  -> Nat 
.. 
 
% axioms 
assert 
sort LoaUse generated by void, addLink; 
 
%axiom to state that tuples of instance values cannot be equal in an 
association 
(aLoan1 \eq aLoan2) /\ (aUser1 \eq aUser2) => addLink(addLink(LoaUse1, 
aLoan1, aUser1), aLoan2, aUser2) = addLink(LoaUse1, aLoan1, aUser1); 
 
%axioms for the isEmpty operation 
isEmpty(void(i)); 
~(isEmpty(addLink(LoaUse1, aLoan1, aUser1))); 
 
%state when two instances of object types are linked 
~(isLinked(void(i),aLoan1, aUser1)); 
isLinked(addLink(LoaUse1, aLoan1, aUser1),aLoan2, aUser2) = ((aLoan1 
\eq aLoan2 /\ aUser1 \eq aUser2) \/ isLinked(LoaUse1, aLoan2, aUser2)); 
 
%state the semantics for the operations allLeftLink and allRightLink 
through addLink generator 
(aUser1 \eq aUser2) => allLeftLink(addLink(LoaUse1, aLoan1, aUser2), 
aUser1) = insert(aLoan1, allLeftLink(LoaUse1, aUser1)); 
(aLoan1 \eq aLoan2) => allRightLink(addLink(LoaUse1, aLoan2, aUser1), 
aLoan1) = insert(aUser1, allRightLink(LoaUse1, aLoan1)); 
~(aUser1 \eq aUser2) => allLeftLink(addLink(LoaUse1, aLoan1, aUser2), 
aUser1) = allLeftLink(LoaUse1, aUser1); 
~(aLoan1 \eq aLoan2) => allRightLink(addLink(LoaUse1, aLoan2, aUser1), 
aLoan1) = allRightLink(LoaUse1, aLoan1); 
 
%state the semantics for allLeftLink and allRightLink through void 
generator 
allLeftLink(void(i), aUser1) = {}: SetUser; 
allRightLink(void(i), aLoan1) = {}: SetLoan; 
 
%state when one instance is linked through the association 
~(isLeftLinked(void(i), aUser1)); 
~(isRightLinked(void(i), aLoan1)); 
isLeftLinked(addLink(LoaUse1, aLoan1, aUser1), aUser2) = ((aUser1 \eq 
aUser2) \/ isLeftLinked(LoaUse1, aUser2)); 
isRightLinked(addLink(LoaUse1, aLoan1, aUser1), aLoan2) = ((aLoan1 \eq 
aLoan2) \/ isRightLinked(LoaUse1, aLoan2)); 
 
%axioms for left and rightMultiplicity operators 
leftMultiplicity(void(i), aUser1) = 0; 
rightMultiplicity(void(i), aLoan1) = 0; 
(aUser1 \eq aUser2) => leftMultiplicity(addLink(LoaUse1, aLoan2, 
aUser2),aUser1) = leftMultiplicity( LoaUse1, aUser1) + 1; 
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~(aUser1 \eq aUser2) => leftMultiplicity(addLink(LoaUse1, aLoan2, 
aUser2),aUser1) = leftMultiplicity( LoaUse1, aUser1); 
 
(aLoan1 \eq aLoan2) => rightMultiplicity(addLink(LoaUse1, aLoan2, 
aUser2),aLoan1) = rightMultiplicity( LoaUse1, aLoan1) + 1; 
~(aLoan1 \eq aLoan2) => rightMultiplicity(addLink(LoaUse1, aLoan2, 
aUser2),aLoan1) = rightMultiplicity( LoaUse1, aLoan1); 
 
%axioms for multiplicity constraints: written only if multiplicity is 
not free, i.e. different from 0 or More 
%source multiplicity is Many (0 or plus) 
%target multiplicity is Just One 
size(allRightLink(LoaUse1, aLoan1)) = 1; 
 
%axioms for association identity 
identity(void(i)) = i; 
identity(addLink(LoaUse1, aLoan1, aUser1)) = identity(LoaUse1); 
LoaUse1 \eq LoaUse2 = identity(LoaUse1) \eq identity(LoaUse2) 
.. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%specification of the association LocUse between Classes: Loan and User 
%larch file: LocUse.lp 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
set name LocUse 
 
declare sorts LocUse, Loan, User, Nat, SetLoan, SetUser 
declare variables LocUse1, LocUse2 : LocUse, aLoan1, aLoan2 : Loan, 
aUser1, aUser2 : User 
declare variables SetLoan1, SetLoan2 : SetLoan, SetUser1, SetUser2 : 
SetUser, i : Nat 
 
declare operators 
%generator of an empty association 
void : Nat -> LocUse 
 
%association identity 
identity : LocUse  -> Nat 
__\eq__  : LocUse, LocUse  -> Bool 
 
%operators to create and remove links  
addLink : LocUse, Loan, User -> LocUse 
removeLink : LocUse, Loan, User -> LocUse 
 
%operator to test if two instances are linked 
isLinked : LocUse, Loan, User -> Bool 
 
%operator to test if one instance is linked 
isLeftLinked : LocUse, User -> Bool 
isRightLinked : LocUse, Loan -> Bool 
 
%operator to test if the association is Empty 
isEmpty : LocUse -> Bool 
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%operator to return the Set of instances linked to a given instance 
allLeftLink : LocUse, User -> SetLoan 
allRightLink : LocUse, Loan -> SetUser 
 
%operators for multiplicity values 
leftMultiplicity : LocUse, User -> Nat 
rightMultiplicity : LocUse, Loan  -> Nat 
.. 
 
% axioms 
assert 
sort LocUse generated by void, addLink; 
 
%axiom to state that tuples of instance values cannot be equal in an 
association 
(aLoan1 \eq aLoan2) /\ (aUser1 \eq aUser2) => addLink(addLink(LocUse1, 
aLoan1, aUser1), aLoan2, aUser2) = addLink(LocUse1, aLoan1, aUser1); 
 
%axioms for the isEmpty operation 
isEmpty(void(i)); 
~(isEmpty(addLink(LocUse1, aLoan1, aUser1))); 
 
%state when two instances of object types are linked 
~(isLinked(void(i),aLoan1, aUser1)); 
isLinked(addLink(LocUse1, aLoan1, aUser1),aLoan2, aUser2) = ((aLoan1 
\eq aLoan2 /\ aUser1 \eq aUser2) \/ isLinked(LocUse1, aLoan2, aUser2)); 
 
%state the semantics for the operations allLeftLink and allRightLink 
through addLink generator 
(aUser1 \eq aUser2) => allLeftLink(addLink(LocUse1, aLoan1, aUser2), 
aUser1) = insert(aLoan1, allLeftLink(LocUse1, aUser1)); 
(aLoan1 \eq aLoan2) => allRightLink(addLink(LocUse1, aLoan2, aUser1), 
aLoan1) = insert(aUser1, allRightLink(LocUse1, aLoan1)); 
~(aUser1 \eq aUser2) => allLeftLink(addLink(LocUse1, aLoan1, aUser2), 
aUser1) = allLeftLink(LocUse1, aUser1); 
~(aLoan1 \eq aLoan2) => allRightLink(addLink(LocUse1, aLoan2, aUser1), 
aLoan1) = allRightLink(LocUse1, aLoan1); 
 
%state the semantics for allLeftLink and allRightLink through void 
generator 
allLeftLink(void(i), aUser1) = {}: SetUser; 
allRightLink(void(i), aLoan1) = {}: SetLoan; 
 
%state when one instance is linked through the association 
~(isLeftLinked(void(i), aUser1)); 
~(isRightLinked(void(i), aLoan1)); 
isLeftLinked(addLink(LocUse1, aLoan1, aUser1), aUser2) = ((aUser1 \eq 
aUser2) \/ isLeftLinked(LocUse1, aUser2)); 
isRightLinked(addLink(LocUse1, aLoan1, aUser1), aLoan2) = ((aLoan1 \eq 
aLoan2) \/ isRightLinked(LocUse1, aLoan2)); 
 
%axioms for left and rightMultiplicity operators 
leftMultiplicity(void(i), aUser1) = 0; 
rightMultiplicity(void(i), aLoan1) = 0; 
(aUser1 \eq aUser2) => leftMultiplicity(addLink(LocUse1, aLoan2, 
aUser2),aUser1) = leftMultiplicity( LocUse1, aUser1) + 1; 
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~(aUser1 \eq aUser2) => leftMultiplicity(addLink(LocUse1, aLoan2, 
aUser2),aUser1) = leftMultiplicity( LocUse1, aUser1); 
 
(aLoan1 \eq aLoan2) => rightMultiplicity(addLink(LocUse1, aLoan2, 
aUser2),aLoan1) = rightMultiplicity( LocUse1, aLoan1) + 1; 
~(aLoan1 \eq aLoan2) => rightMultiplicity(addLink(LocUse1, aLoan2, 
aUser2),aLoan1) = rightMultiplicity( LocUse1, aLoan1); 
 
%axioms for multiplicity constraints: written only if multiplicity is 
not free, i.e. different from 0 or More 
%source multiplicity is Many (0 or plus) 
%target multiplicity is Just One 
size(allRightLink(LocUse1, aLoan1)) = 1; 
 
%axioms for association identity 
identity(void(i)) = i; 
identity(addLink(LocUse1, aLoan1, aUser1)) = identity(LocUse1); 
LocUse1 \eq LocUse2 = identity(LocUse1) \eq identity(LocUse2) 
.. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%specification of the association PubCop between Classes: Publication 
and Copy 
%larch file: PubCop.lp 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
set name PubCop 
 
declare sorts PubCop, Publication, Copy, Nat, SetPublication, SetCopy 
declare variables PubCop1, PubCop2 : PubCop, aPublication1, 
aPublication2 : Publication, aCopy1, aCopy2 : Copy 
declare variables SetPublication1, SetPublication2 : SetPublication, 
SetCopy1, SetCopy2 : SetCopy, i : Nat 
 
declare operators 
%generator of an empty association 
void : Nat -> PubCop 
 
%association identity 
identity : PubCop  -> Nat 
__\eq__  : PubCop, PubCop  -> Bool 
 
%operators to create and remove links  
addLink : PubCop, Publication, Copy -> PubCop 
removeLink : PubCop, Publication, Copy -> PubCop 
 
%operator to test if two instances are linked 
isLinked : PubCop, Publication, Copy -> Bool 
 
%operator to test if one instance is linked 
isLeftLinked : PubCop, Copy -> Bool 
isRightLinked : PubCop, Publication -> Bool 
 
%operator to test if the association is Empty 
isEmpty : PubCop -> Bool 
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%operator to return the Set of instances linked to a given instance 
allLeftLink : PubCop, Copy -> SetPublication 
allRightLink : PubCop, Publication -> SetCopy 
 
%operators for multiplicity values 
leftMultiplicity : PubCop, Copy -> Nat 
rightMultiplicity : PubCop, Publication  -> Nat 
.. 
 
% axioms 
assert 
sort PubCop generated by void, addLink; 
 
%axiom to state that tuples of instance values cannot be equal in an 
association 
(aPublication1 \eq aPublication2) /\ (aCopy1 \eq aCopy2) => 
addLink(addLink(PubCop1, aPublication1, aCopy1), aPublication2, aCopy2) 
= addLink(PubCop1, aPublication1, aCopy1); 
 
%axioms for the isEmpty operation 
isEmpty(void(i)); 
~(isEmpty(addLink(PubCop1, aPublication1, aCopy1))); 
 
%state when two instances of object types are linked 
~(isLinked(void(i),aPublication1, aCopy1)); 
isLinked(addLink(PubCop1, aPublication1, aCopy1),aPublication2, aCopy2) 
= ((aPublication1 \eq aPublication2 /\ aCopy1 \eq aCopy2) \/ 
isLinked(PubCop1, aPublication2, aCopy2)); 
 
%state the semantics for the operations allLeftLink and allRightLink 
through addLink generator 
(aCopy1 \eq aCopy2) => allLeftLink(addLink(PubCop1, aPublication1, 
aCopy2), aCopy1) = insert(aPublication1, allLeftLink(PubCop1, aCopy1)); 
(aPublication1 \eq aPublication2) => allRightLink(addLink(PubCop1, 
aPublication2, aCopy1), aPublication1) = insert(aCopy1, 
allRightLink(PubCop1, aPublication1)); 
~(aCopy1 \eq aCopy2) => allLeftLink(addLink(PubCop1, aPublication1, 
aCopy2), aCopy1) = allLeftLink(PubCop1, aCopy1); 
~(aPublication1 \eq aPublication2) => allRightLink(addLink(PubCop1, 
aPublication2, aCopy1), aPublication1) = allRightLink(PubCop1, 
aPublication1); 
 
%state the semantics for allLeftLink and allRightLink through void 
generator 
allLeftLink(void(i), aCopy1) = {}: SetCopy; 
allRightLink(void(i), aPublication1) = {}: SetPublication; 
 
%state when one instance is linked through the association 
~(isLeftLinked(void(i), aCopy1)); 
~(isRightLinked(void(i), aPublication1)); 
isLeftLinked(addLink(PubCop1, aPublication1, aCopy1), aCopy2) = 
((aCopy1 \eq aCopy2) \/ isLeftLinked(PubCop1, aCopy2)); 
isRightLinked(addLink(PubCop1, aPublication1, aCopy1), aPublication2) = 
((aPublication1 \eq aPublication2) \/ isRightLinked(PubCop1, 
aPublication2)); 
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%axioms for left and rightMultiplicity operators 
leftMultiplicity(void(i), aCopy1) = 0; 
rightMultiplicity(void(i), aPublication1) = 0; 
(aCopy1 \eq aCopy2) => leftMultiplicity(addLink(PubCop1, aPublication2, 
aCopy2),aCopy1) = leftMultiplicity( PubCop1, aCopy1) + 1; 
~(aCopy1 \eq aCopy2) => leftMultiplicity(addLink(PubCop1, 
aPublication2, aCopy2),aCopy1) = leftMultiplicity( PubCop1, aCopy1); 
 
(aPublication1 \eq aPublication2) => rightMultiplicity(addLink(PubCop1, 
aPublication2, aCopy2),aPublication1) = rightMultiplicity( PubCop1, 
aPublication1) + 1; 
~(aPublication1 \eq aPublication2) => 
rightMultiplicity(addLink(PubCop1, aPublication2, 
aCopy2),aPublication1) = rightMultiplicity( PubCop1, aPublication1); 
 
%axioms for multiplicity constraints: written only if multiplicity is 
not free, i.e. different from 0 or More 
%source multiplicity is Just One 
%target multiplicity is 1 or more 
size(allLeftLink(PubCop1, aCopy1)) = 1; 
~(size(allRightLink(PubCop1, aPublication)) < 1; 
 
%axioms for association identity 
identity(void(i)) = i; 
identity(addLink(PubCop1, aPublication1, aCopy1)) = identity(PubCop1); 
PubCop1 \eq PubCop2 = identity(PubCop1) \eq identity(PubCop2) 
.. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%specification of the association PubLib between Classes: Publication 
and Library 
%larch file: PubLib.lp 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
set name PubLib 
 
declare sorts PubLib, Publication, Library, Nat, SetPublication, 
SetLibrary 
declare variables PubLib1, PubLib2 : PubLib, aPublication1, 
aPublication2 : Publication, aLibrary1, aLibrary2 : Library 
declare variables SetPublication1, SetPublication2 : SetPublication, 
SetLibrary1, SetLibrary2 : SetLibrary, i : Nat 
 
declare operators 
%generator of an empty association 
void : Nat -> PubLib 
 
%association identity 
identity : PubLib  -> Nat 
__\eq__  : PubLib, PubLib  -> Bool 
 
%operators to create and remove links  
addLink : PubLib, Publication, Library -> PubLib 
removeLink : PubLib, Publication, Library -> PubLib 
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%operator to test if two instances are linked 
isLinked : PubLib, Publication, Library -> Bool 
 
%operator to test if one instance is linked 
isLeftLinked : PubLib, Library -> Bool 
isRightLinked : PubLib, Publication -> Bool 
 
%operator to test if the association is Empty 
isEmpty : PubLib -> Bool 
 
%operator to return the Set of instances linked to a given instance 
allLeftLink : PubLib, Library -> SetPublication 
allRightLink : PubLib, Publication -> SetLibrary 
 
%operators for multiplicity values 
leftMultiplicity : PubLib, Library -> Nat 
rightMultiplicity : PubLib, Publication  -> Nat 
.. 
 
% axioms 
assert 
sort PubLib generated by void, addLink; 
 
%axiom to state that tuples of instance values cannot be equal in an 
association 
(aPublication1 \eq aPublication2) /\ (aLibrary1 \eq aLibrary2) => 
addLink(addLink(PubLib1, aPublication1, aLibrary1), aPublication2, 
aLibrary2) = addLink(PubLib1, aPublication1, aLibrary1); 
 
%axioms for the isEmpty operation 
isEmpty(void(i)); 
~(isEmpty(addLink(PubLib1, aPublication1, aLibrary1))); 
 
%state when two instances of object types are linked 
~(isLinked(void(i),aPublication1, aLibrary1)); 
isLinked(addLink(PubLib1, aPublication1, aLibrary1),aPublication2, 
aLibrary2) = ((aPublication1 \eq aPublication2 /\ aLibrary1 \eq 
aLibrary2) \/ isLinked(PubLib1, aPublication2, aLibrary2)); 
 
%state the semantics for the operations allLeftLink and allRightLink 
through addLink generator 
(aLibrary1 \eq aLibrary2) => allLeftLink(addLink(PubLib1, 
aPublication1, aLibrary2), aLibrary1) = insert(aPublication1, 
allLeftLink(PubLib1, aLibrary1)); 
(aPublication1 \eq aPublication2) => allRightLink(addLink(PubLib1, 
aPublication2, aLibrary1), aPublication1) = insert(aLibrary1, 
allRightLink(PubLib1, aPublication1)); 
~(aLibrary1 \eq aLibrary2) => allLeftLink(addLink(PubLib1, 
aPublication1, aLibrary2), aLibrary1) = allLeftLink(PubLib1, 
aLibrary1); 
~(aPublication1 \eq aPublication2) => allRightLink(addLink(PubLib1, 
aPublication2, aLibrary1), aPublication1) = allRightLink(PubLib1, 
aPublication1); 
 
%state the semantics for allLeftLink and allRightLink through void 
generator 
allLeftLink(void(i), aLibrary1) = {}: SetLibrary; 
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allRightLink(void(i), aPublication1) = {}: SetPublication; 
 
%state when one instance is linked through the association 
~(isLeftLinked(void(i), aLibrary1)); 
~(isRightLinked(void(i), aPublication1)); 
isLeftLinked(addLink(PubLib1, aPublication1, aLibrary1), aLibrary2) = 
((aLibrary1 \eq aLibrary2) \/ isLeftLinked(PubLib1, aLibrary2)); 
isRightLinked(addLink(PubLib1, aPublication1, aLibrary1), 
aPublication2) = ((aPublication1 \eq aPublication2) \/ 
isRightLinked(PubLib1, aPublication2)); 
 
%axioms for left and rightMultiplicity operators 
leftMultiplicity(void(i), aLibrary1) = 0; 
rightMultiplicity(void(i), aPublication1) = 0; 
(aLibrary1 \eq aLibrary2) => leftMultiplicity(addLink(PubLib1, 
aPublication2, aLibrary2),aLibrary1) = leftMultiplicity( PubLib1, 
aLibrary1) + 1; 
~(aLibrary1 \eq aLibrary2) => leftMultiplicity(addLink(PubLib1, 
aPublication2, aLibrary2),aLibrary1) = leftMultiplicity( PubLib1, 
aLibrary1); 
 
(aPublication1 \eq aPublication2) => rightMultiplicity(addLink(PubLib1, 
aPublication2, aLibrary2),aPublication1) = rightMultiplicity( PubLib1, 
aPublication1) + 1; 
~(aPublication1 \eq aPublication2) => 
rightMultiplicity(addLink(PubLib1, aPublication2, 
aLibrary2),aPublication1) = rightMultiplicity( PubLib1, aPublication1); 
 
%axioms for multiplicity constraints: written only if multiplicity is 
not free, i.e. different from 0 or More 
%source multiplicity is Many (0 or plus) 
%target multiplicity is Just One 
size(allRightLink(PubLib1, aPublication1)) = 1; 
 
%axioms for association identity 
identity(void(i)) = i; 
identity(addLink(PubLib1, aPublication1, aLibrary1)) = 
identity(PubLib1); 
PubLib1 \eq PubLib2 = identity(PubLib1) \eq identity(PubLib2) 
.. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%specification of the composition CompCopLoa between Classes: Copy and 
Loan 
%larch file: CompCopLoa.lp 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
set name CompCopLoa 
 
declare sorts CompCopLoa, Copy, Loan, Nat, SetCopy, SetLoan 
declare variables CompCopLoa1, CompCopLoa2 : CompCopLoa, aCopy1, aCopy2 
: Copy, aLoan1, aLoan2 : Loan 
declare variables SetCopy1, SetCopy2 : SetCopy, SetLoan1, SetLoan2 : 
SetLoan, i : Nat 
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declare operators 
%generator of an empty association 
void : Nat -> CompCopLoa 
 
%association identity 
identity : CompCopLoa  -> Nat 
__\eq__  : CompCopLoa, CompCopLoa  -> Bool 
 
%operators to create and remove links  
addLink : CompCopLoa, Copy, Loan -> CompCopLoa 
removeLink : CompCopLoa, Copy, Loan -> CompCopLoa 
 
%operator to test if two instances are linked 
isLinked : CompCopLoa, Copy, Loan -> Bool 
 
%operator to test if one instance is linked 
isLeftLinked : CompCopLoa, Loan -> Bool 
isRightLinked : CompCopLoa, Copy -> Bool 
 
%operator to test if the association is Empty 
isEmpty : CompCopLoa -> Bool 
 
%operator to return the Set of instances linked to a given instance 
allLeftLink : CompCopLoa, Loan -> SetCopy 
allRightLink : CompCopLoa, Copy -> SetLoan 
 
%operators for multiplicity values 
leftMultiplicity : CompCopLoa, Loan -> Nat 
rightMultiplicity : CompCopLoa, Copy  -> Nat 
 
%special operator for Composition 
isPartOf : CompCopLoa, Copy, Loan  -> Bool 
.. 
 
% axioms 
assert 
sort CompCopLoa generated by void, addLink; 
 
%axiom to state that tuples of instance values cannot be equal in an 
association 
(aCopy1 \eq aCopy2) /\ (aLoan1 \eq aLoan2) => 
addLink(addLink(CompCopLoa1, aCopy1, aLoan1), aCopy2, aLoan2) = 
addLink(CompCopLoa1, aCopy1, aLoan1); 
 
%axioms for the isEmpty operation 
isEmpty(void(i)); 
~(isEmpty(addLink(CompCopLoa1, aCopy1, aLoan1))); 
 
%state when two instances of object types are linked 
~(isLinked(void(i),aCopy1, aLoan1)); 
isLinked(addLink(CompCopLoa1, aCopy1, aLoan1),aCopy2, aLoan2) = 
((aCopy1 \eq aCopy2 /\ aLoan1 \eq aLoan2) \/ isLinked(CompCopLoa1, 
aCopy2, aLoan2)); 
 
%state the semantics for the operations allLeftLink and allRightLink 
through addLink generator 
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(aLoan1 \eq aLoan2) => allLeftLink(addLink(CompCopLoa1, aCopy1, 
aLoan2), aLoan1) = insert(aCopy1, allLeftLink(CompCopLoa1, aLoan1)); 
(aCopy1 \eq aCopy2) => allRightLink(addLink(CompCopLoa1, aCopy2, 
aLoan1), aCopy1) = insert(aLoan1, allRightLink(CompCopLoa1, aCopy1)); 
~(aLoan1 \eq aLoan2) => allLeftLink(addLink(CompCopLoa1, aCopy1, 
aLoan2), aLoan1) = allLeftLink(CompCopLoa1, aLoan1); 
~(aCopy1 \eq aCopy2) => allRightLink(addLink(CompCopLoa1, aCopy2, 
aLoan1), aCopy1) = allRightLink(CompCopLoa1, aCopy1); 
 
%state the semantics for allLeftLink and allRightLink through void 
generator 
allLeftLink(void(i), aLoan1) = {}: SetLoan; 
allRightLink(void(i), aCopy1) = {}: SetCopy; 
 
%state when one instance is linked through the association 
~(isLeftLinked(void(i), aLoan1)); 
~(isRightLinked(void(i), aCopy1)); 
isLeftLinked(addLink(CompCopLoa1, aCopy1, aLoan1), aLoan2) = ((aLoan1 
\eq aLoan2) \/ isLeftLinked(CompCopLoa1, aLoan2)); 
isRightLinked(addLink(CompCopLoa1, aCopy1, aLoan1), aCopy2) = ((aCopy1 
\eq aCopy2) \/ isRightLinked(CompCopLoa1, aCopy2)); 
 
%axioms for left and rightMultiplicity operators 
leftMultiplicity(void(i), aLoan1) = 0; 
rightMultiplicity(void(i), aCopy1) = 0; 
(aLoan1 \eq aLoan2) => leftMultiplicity(addLink(CompCopLoa1, aCopy2, 
aLoan2),aLoan1) = leftMultiplicity( CompCopLoa1, aLoan1) + 1; 
~(aLoan1 \eq aLoan2) => leftMultiplicity(addLink(CompCopLoa1, aCopy2, 
aLoan2),aLoan1) = leftMultiplicity( CompCopLoa1, aLoan1); 
 
(aCopy1 \eq aCopy2) => rightMultiplicity(addLink(CompCopLoa1, aCopy2, 
aLoan2),aCopy1) = rightMultiplicity( CompCopLoa1, aCopy1) + 1; 
~(aCopy1 \eq aCopy2) => rightMultiplicity(addLink(CompCopLoa1, aCopy2, 
aLoan2),aCopy1) = rightMultiplicity( CompCopLoa1, aCopy1); 
 
%axioms for multiplicity constraints: written only if multiplicity is 
not free, i.e. different from 0 or More 
%source multiplicity is 1 or more 
%target multiplicity is Just One 
~(size(allLeftLink(CompCopLoa1, aLoan)) < 1; 
size(allRightLink(CompCopLoa1, aCopy1)) = 1; 
 
%special axioms for Composition 
isPartOf(addLink(CompCopLoa1, aCopy1, aLoan1), aCopy2, aLoan2) => 
(aCopy1 \eq aCopy2) /\ (aLoan1 \eq aLoan2); 
~(isPartOf(void(i), aCopy1, aLoan1); 
 
~(aLoan1 \eq aLoan2) => (isPartOf(CompCopLoa1, aCopy1, aLoan1) 
/\(~(isPartOf(CompCopLoa1, aCopy1, aLoan2)))) \/ (isPartOf(CompCopLoa1, 
aCopy1, aLoan2) /\(~(isPartOf(CompCopLoa1, aCopy1, aLoan1)))); 
 
%axioms for association identity 
identity(void(i)) = i; 
identity(addLink(CompCopLoa1, aCopy1, aLoan1)) = identity(CompCopLoa1); 
CompCopLoa1 \eq CompCopLoa2 = identity(CompCopLoa1) \eq 
identity(CompCopLoa2) 
.. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%specification of the composition CompCopLoc between Classes: Copy and 
LocalUse 
%larch file: CompCopLoc.lp 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
set name CompCopLoc 
 
declare sorts CompCopLoc, Copy, LocalUse, Nat, SetCopy, SetLocalUse 
declare variables CompCopLoc1, CompCopLoc2 : CompCopLoc, aCopy1, aCopy2 
: Copy, aLocalUse1, aLocalUse2 : LocalUse 
declare variables SetCopy1, SetCopy2 : SetCopy, SetLocalUse1, 
SetLocalUse2 : SetLocalUse, i : Nat 
 
declare operators 
%generator of an empty association 
void : Nat -> CompCopLoc 
 
%association identity 
identity : CompCopLoc  -> Nat 
__\eq__  : CompCopLoc, CompCopLoc  -> Bool 
 
%operators to create and remove links  
addLink : CompCopLoc, Copy, LocalUse -> CompCopLoc 
removeLink : CompCopLoc, Copy, LocalUse -> CompCopLoc 
 
%operator to test if two instances are linked 
isLinked : CompCopLoc, Copy, LocalUse -> Bool 
 
%operator to test if one instance is linked 
isLeftLinked : CompCopLoc, LocalUse -> Bool 
isRightLinked : CompCopLoc, Copy -> Bool 
 
%operator to test if the association is Empty 
isEmpty : CompCopLoc -> Bool 
 
%operator to return the Set of instances linked to a given instance 
allLeftLink : CompCopLoc, LocalUse -> SetCopy 
allRightLink : CompCopLoc, Copy -> SetLocalUse 
 
%operators for multiplicity values 
leftMultiplicity : CompCopLoc, LocalUse -> Nat 
rightMultiplicity : CompCopLoc, Copy  -> Nat 
 
%special operator for Composition 
isPartOf : CompCopLoc, Copy, LocalUse  -> Bool 
.. 
 
% axioms 
assert 
sort CompCopLoc generated by void, addLink; 
 
%axiom to state that tuples of instance values cannot be equal in an 
association 
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(aCopy1 \eq aCopy2) /\ (aLocalUse1 \eq aLocalUse2) => 
addLink(addLink(CompCopLoc1, aCopy1, aLocalUse1), aCopy2, aLocalUse2) = 
addLink(CompCopLoc1, aCopy1, aLocalUse1); 
 
%axioms for the isEmpty operation 
isEmpty(void(i)); 
~(isEmpty(addLink(CompCopLoc1, aCopy1, aLocalUse1))); 
 
%state when two instances of object types are linked 
~(isLinked(void(i),aCopy1, aLocalUse1)); 
isLinked(addLink(CompCopLoc1, aCopy1, aLocalUse1),aCopy2, aLocalUse2) = 
((aCopy1 \eq aCopy2 /\ aLocalUse1 \eq aLocalUse2) \/ 
isLinked(CompCopLoc1, aCopy2, aLocalUse2)); 
 
%state the semantics for the operations allLeftLink and allRightLink 
through addLink generator 
(aLocalUse1 \eq aLocalUse2) => allLeftLink(addLink(CompCopLoc1, aCopy1, 
aLocalUse2), aLocalUse1) = insert(aCopy1, allLeftLink(CompCopLoc1, 
aLocalUse1)); 
(aCopy1 \eq aCopy2) => allRightLink(addLink(CompCopLoc1, aCopy2, 
aLocalUse1), aCopy1) = insert(aLocalUse1, allRightLink(CompCopLoc1, 
aCopy1)); 
~(aLocalUse1 \eq aLocalUse2) => allLeftLink(addLink(CompCopLoc1, 
aCopy1, aLocalUse2), aLocalUse1) = allLeftLink(CompCopLoc1, 
aLocalUse1); 
~(aCopy1 \eq aCopy2) => allRightLink(addLink(CompCopLoc1, aCopy2, 
aLocalUse1), aCopy1) = allRightLink(CompCopLoc1, aCopy1); 
 
%state the semantics for allLeftLink and allRightLink through void 
generator 
allLeftLink(void(i), aLocalUse1) = {}: SetLocalUse; 
allRightLink(void(i), aCopy1) = {}: SetCopy; 
 
%state when one instance is linked through the association 
~(isLeftLinked(void(i), aLocalUse1)); 
~(isRightLinked(void(i), aCopy1)); 
isLeftLinked(addLink(CompCopLoc1, aCopy1, aLocalUse1), aLocalUse2) = 
((aLocalUse1 \eq aLocalUse2) \/ isLeftLinked(CompCopLoc1, aLocalUse2)); 
isRightLinked(addLink(CompCopLoc1, aCopy1, aLocalUse1), aCopy2) = 
((aCopy1 \eq aCopy2) \/ isRightLinked(CompCopLoc1, aCopy2)); 
 
%axioms for left and rightMultiplicity operators 
leftMultiplicity(void(i), aLocalUse1) = 0; 
rightMultiplicity(void(i), aCopy1) = 0; 
(aLocalUse1 \eq aLocalUse2) => leftMultiplicity(addLink(CompCopLoc1, 
aCopy2, aLocalUse2),aLocalUse1) = leftMultiplicity( CompCopLoc1, 
aLocalUse1) + 1; 
~(aLocalUse1 \eq aLocalUse2) => leftMultiplicity(addLink(CompCopLoc1, 
aCopy2, aLocalUse2),aLocalUse1) = leftMultiplicity( CompCopLoc1, 
aLocalUse1); 
 
(aCopy1 \eq aCopy2) => rightMultiplicity(addLink(CompCopLoc1, aCopy2, 
aLocalUse2),aCopy1) = rightMultiplicity( CompCopLoc1, aCopy1) + 1; 
~(aCopy1 \eq aCopy2) => rightMultiplicity(addLink(CompCopLoc1, aCopy2, 
aLocalUse2),aCopy1) = rightMultiplicity( CompCopLoc1, aCopy1); 
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%axioms for multiplicity constraints: written only if multiplicity is 
not free, i.e. different from 0 or More 
%source multiplicity is 1 or more 
%target multiplicity is Just One 
~(size(allLeftLink(CompCopLoc1, aLocalUse)) < 1; 
size(allRightLink(CompCopLoc1, aCopy1)) = 1; 
 
%special axioms for Composition 
isPartOf(addLink(CompCopLoc1, aCopy1, aLocalUse1), aCopy2, aLocalUse2) 
=> (aCopy1 \eq aCopy2) /\ (aLocalUse1 \eq aLocalUse2); 
~(isPartOf(void(i), aCopy1, aLocalUse1); 
 
~(aLocalUse1 \eq aLocalUse2) => (isPartOf(CompCopLoc1, aCopy1, 
aLocalUse1) /\(~(isPartOf(CompCopLoc1, aCopy1, aLocalUse2)))) \/ 
(isPartOf(CompCopLoc1, aCopy1, aLocalUse2) /\(~(isPartOf(CompCopLoc1, 
aCopy1, aLocalUse1)))); 
 
%axioms for association identity 
identity(void(i)) = i; 
identity(addLink(CompCopLoc1, aCopy1, aLocalUse1)) = 
identity(CompCopLoc1); 
CompCopLoc1 \eq CompCopLoc2 = identity(CompCopLoc1) \eq 
identity(CompCopLoc2) 
.. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%specification of the identifier type for Library isntances 
%larch file: IdLibrary.lp 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
set name IdLibrary 
 
declare sorts IdLibrary 
declare variables : idLibrary1, idLibrary2 : IdLibrary 
declare operators 
newIdLibrary :   -> IdLibrary 
nextIdLibrary : IdLibrary  -> IdLibrary 
__\eq__ : IdLibrary, IdLibrary  -> Bool 
.. 
 
assert 
sort IdLibrary generated by newIdLibrary, nextIdLibrary; 
newIdLibrary \eq newIdLibrary; 
~(newIdLibrary \eq nextIdLibrary(idLibrary1)); 
~(nextIdLibrary(idLibrary1) \eq newIdLibrary); 
nextIdLibrary(idLibrary1) \eq nextIdLibrary(idLibrary2) = (idLibrary1 
\eq idLibrary2); 
.. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
%specification of the type Set for User Class  
%larch file: SetUser.lp 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
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set name SetUser 
 
declare sorts User, SetUser, Nat 
declare variables aUser1, aUser2 : User, setUser1, setUser2 : SetUser 
declare operators 
{} :  -> SetUser 
{__} : User -> SetUser 
insert : User, SetUser -> SetUser 
__\U__ : SetUser, SetUser -> SetUser 
__\in__ : User, SetUser -> Bool 
__\I__ : SetUser, SetUser -> Bool 
size : SetUser -> Nat 
.. 
 
assert 
sort SetUser generated by {}, insert; 
 
{aUser1} = insert(aUser1, {}); 
~(aUser1 \in {}); 
aUser1 \in insert(aUser2, setUser1) <=> (aUser1 \eq aUser2 \/ aUser1 
\in setUser1); 
{} \I setUser1; 
insert(aUser1, setUser1) \I setUser2 <=> (aUser1 \in setUser2 /\ 
setUser1 \I setUser2); 
aUser1 \in (setUser1 \U setUser2) <=> (aUser1 \in setUser1 \/ aUser1 
\in setUser2); 
 
% axioms for size operator 
size({}) = 0; 
(aUser1 \in setUser1) => size(insert(aUser1, setUser1)) = 
size(setUser1); 
~(aUser1 \in setUser1) => size(insert(aUser1, setUser1)) = 
1+size(setUser1); 
.. 
 
 
 
 
 


