Acknowledgements

I would like to thank my advisors Jean Claude Royer and Annya Romanczuk for the
great support devoted me during the development of this work.

| would like aso to thank Pascal André, a collaborator of this work, whose ideas were
really helpful in the composition of the semantic framework.

It was very important for me the long times of meeting we all had together.

| thank Prof. Dr. Cabral Lima and Universidade Estadual do Norte Fluminense for giving
me the great opportunity of participating in this project.

The support given by my Brazilian friends during the entire Master was essential for me
in order to conclude the works.

Finally, specia thanks to my mother and my sisters that, even so far, gave me great
incentive and love during the study period.

TABLE OF CONTENTS
ACKNOWIEAGMENES.t e e e e
LISt Of FIQUIES. ...ttt e e e e e e e

[0 = o 1=

(g1 (o o U1 1o o 1R
Table of Contents

Chapter One

Motivations and Difficulties towards UML Formaization.....................
1.1 UML Semantics: Current FOIM..........ooviuuieiie i ee e
1.2 Difficultiesto UML Formalization.............ooviiuiii i
1.3 Motivations to UML Formalization..............cccoeieiiiiiiniiin e,

Chapter Two
UML Semantics FOrmalization.ccouuiuiie e e e
2.1 UML Precise Group: An Important Work Taken Towards Formalization
2.2 OO Formalization Methods Classification...............coviveiiiiecnnn.
2.3 Formal Languages Classification...........o.vvveiiiiie e iiiiiiieeneens
2.4 Definitions in the Context of Formal Languages..............ccovvevvennne .
2.5 Object Oriented Analysis and Design Formalization Approaches.........
2.5.1 Set-Theory Methods: RAL — Real-Time Action Logic..........
2.5.2 Modular Algebraic Semantics for Object Oriented Model
2.5.3 The Formal Class Approach...........ccovviiiviiie i iiene
2.6 ConclusioN and SUMMIAIY......ov et et e e eneanas
2.6.1 Comparison Table.........oouiiiiiiii e .

Chapter Three
UML and ADT: a Semantic Framework Proposition.................c..ccccuuee.
3.1 Main Points Considered in the Framework Composition..................

Vi

vii

A W W W

3.1.1 The Formalization Method Chosen.............ccoeeieiiiiieannne.
3.1.2 The Forma Language ChOSEN...........covvviveiiiiiiieiieiinane,
L3 ADT SHUCKUIE ...t e
3.2 The Trandation Process from UML tO ADT.......covviiiiii i i,
321 ClasS Tranglalion.ooveuue it et e e
3.2.2 Association Trangation..........c.eoveiiiiiiiie e
3.2.3 Composition Trangdation..........c.oveeiiiiieiie e,
3.2.4 Constraints Translation.............oooveviiiieiiii e
3.2.5 Association Class Trangdation..........coeevieieiiiiieie e,
32.6 Generalization Trangdlation..........coovuvveieiiiiiiie e
3.3 Conclusion and SUMMANY........oouiuiriie i e e e
3.3.1Summary Tables.... ..o

Chapter Four

Technologies Supporting the Semantic Frameworkc.cccooeevnne.

4.1 The Practical Context to Apply the Framework................cc.ocoe e

4.2 The Larch PrOVEr ... e

4.3 The Graphtalk Metatool...............coiviiii e
4.3.1 Graphtalk Metamodel Level...........ccooviiiiiiiiiii i,
4.3.2 Graphtalk Model Level.........ccovviiiiiiiii e,

4.4 The use of C++ Programming Language...........covveveieiiieninninnnns.

A5 CONCIUSION. .. ettt e e e e e e e e e e e e e e e e

Chapter Five

A Concrete Application of the Semantic Frameworkcoene

5.1 The UML Static Diagram designed in the CASE toolcceovneee.

5.2 Formal Specifications generated for the UML Static Diagram...............

5.3 Checking INCONSISLENCIES ... v viiee i et e e e e
5.3.1 A Composition INCONSISLENCY vvveieieieiieieeie e e e
5.3.2 A Composition with Generalization Inconsistency.................

5.4 Inconsistency with Constraint: a Concrete example of Proof written in LP.

24
24
24
27
27
31

DD CONCIUSION. .. e e e e e e e e e e e e e e et

Chapter Six

CONCIUSION ..ttt e e e e e e e et e e e e e aeaas
6.1 CONLITDULIONS.t et e e e e e e
6.2 FULUIE WOTK.ot e e

REFEIENCES.t e e
Appendix A: Auxiliary Abstract Data TYPES.......ovvvviieie i iiieiieiea

Appendix B: SOUrCe COR.ieiieie e e e e

Appendix C: Abstract Data Types of the Library System.......................

&

List of Figures

Figure 1. UML gtatic diagram eXampleoooveiiiieienececeniesese e 10
Lo 0L T o] o1 o SRR 16
Figure 3. UML Class repreSentalion...........ooeeeeeerienieneseesee e e e s see e 28
Figure 4. UML association between classes Person and Companycccecevereneneeenns 32
Figure 5. UML cOMPOSItioN repreSentation...........cceieeeerieseesiemeeesieseeseessessesssesesssesnseenss 36
Figure 6. UML XOR CONSITAINT......ccuiitirriieiieiiesieseeseesseesieessesssesseseessessseessesssesssesssessses 38
Figure 7. UML SUBSEL CONSIIAINTceeiieiieeiiecie e et 39
Figure 8. UML association Class repreSentationcoeeeerererereeieesieseeseseesee e saesnens 40
Figure 9. UML generalization repreSentalionccooeveeeeieeniesieseeieesie e sesesseeseessessee s 42
Figure 10 . Workflow integrating different technologiesccccovvviiinieviivieceses 48
Figure 11. Four Stepsto define @ graph.coceeieeneeiecie et 50
Figure 12. Semantic specification window for the UML static diagram..........cc.cceeeeveennens 51
Figure 13. SemantiCS Of @ ClaSS......ccuiiiiiriiiiiese e 52
Figure 14. PropertieS Of ClaSSEScciiiiiiiiiiere ettt st sre s 53
Figure 15. The menu option to run the tranglation from UML t0 ADT......ccccoevvvvvvivennen. 4
Figure 16. UML Static Diagram drawn in the Graphtalk CASE to0l..........c.cceeeiererennens 58
Figure 17. INStanCe FEfIEXIVITYcooeieeeeesee et 60
Figure 18. An inconsistency With XOR CONSLIAINtcceeerierienininieie e 61

List of Tables

Tablel — Comparison over UML Formalization Approaches.cccccevveeveneneniennene 21
Table 2 — Formal Specifications fOr ClaSSeS........uuviiriieiinieis e e 44
Table 3 — Formal Specifications for ASSOCIAIONSc.cccueieerieniiereeieeseesee e see e e 45
Table 4- Formal Specifications for COMPOSItIONSccerereerieriiriniee e 45
Table 5— Formal Specifications for Generalizations...........c.cecerenenenieenesesescee e 46

Vi

Abstract

This Thesis describes an algebraic semantic framework covering the formalization of the
main static model elements of UML. As UML is the unification of Object-Oriented
analysis and design modeling languages, the formalization process presented here can ke
easily extended to other similar Object Oriented (OO for short) notation sets. Moreover it
can contribute towards a standardization of OO modeling concepts. In the semantic
framework presented in this work, model elements are forma described through
algebraic specifications defining abstract data types. Abstract data types alow the
specification of the semantics in an abstract way being really suitable to the description of
OO models. The formal specifications are written in Larch Prover (LP for short) [GG91].
LP is a theorem prover that alows verifications and validations to be applied to the
formal specifications. From these validations properties and inconsistencies about the
models can be proved what leads to early detection of errors in the software devel opment
process. These formal specifications to be interpreted by LP are generated from a UML
CASE tool built in Graphtalk metatool [CS97a]. The integration between the CASE tool
and formal specifications is provided through a set of mapping rules egablished in this
work.

Vi

Introduction

I ntroduction

The god of the thesis is to compose a semantic framework in order to support the
formalization of the main static model elements of UML using Algebraic Specifications.
Algebraic Specifications are used to describe abstract data types (ADT). The motivation
for this work is the assumption that many Object Oriented (OO) methods, including those
from which UML is derived, suffer from a lack of a precise semantics. This can lead to
confusions and different interpretations when analyzing a model.

The semantic framework is based on a set of mapping rules defined to the trandation
from UML to algebraic specifications. These mapping rules are written in accordance to
the syntax and semantics of each UML model element considered. The semantics of the
model elements was evaluated considering the UML metamodel [UML99] and UML
model [BRJ99a]. Therefore the result of the trandation process is an ADT specified to
each model element through the corresponding mapping rules establi shed to it.

To establish these mapping rules defining the formal specifications some other
approaches on Object Oriented analysis and design formalization, some of them focusing
on UML, were evaluated and taken into account. In [LB98] a semantic framework for
part of UML, named RAL, is presented. Another algebraic approach using Larch Shared
Language (LSL for short) was also analyzed. It is described in [HHK98] being a formal,
modular approach to specify the semantics of object-oriented models expressed in UML.
LSL is an agebraic language, which in conjunction to LP and other technologies
compose the Larch family of languages and tools

In both approaches a great importance is given to model theory composition in order to
describe models and submodels. This allows the establishment of constraints among
model elements. The level of granularity considered to the formal specificationsis aso an
important aspect outlined in both approaches.

In the semantic framework presented here it is adopted an intermediate degree of
granularity. Formal descriptions are used to describe classes and associations as well as
some other constructs. It is also considered the idea of constraints at the model level what
is achieved through general descriptions grouping some individual model elements.

The implementation of the semantic framework is undertaken considering the integration
of different technologies: Graphtalk metatool, C++ programming language and Larch
Prover theorem prover. Graphatlk metatool is instantiated with the UML grammar to
build a CASE tool. The Graphtak API primitives are used in the C++ source code
allowing the automation of the trandation process from a UML informa model to well-
formed algebraic specifications. Larch Prover reads then these formal algebraic
specifications in the form of abstract data types supporting that checks and proofs can be
performed on them resulting in error detection on the design phase.

Formalization of UML using Algebraic Specifications 1

Introduction

Asthe work of this dissertation considers just the static part of UML some side-effects on
operations that depends on collaborations are not described. The formal method presented
can be extended in future in order to cover a'so dynamic UML concepts.

Structure of the Dissertation
Chapter one presents an overview of the current state in UML semantics and gives some
motivations and difficulties towards UML semantics formalization.

Chapter two shows the State of the Art in UML semantics formalization. It presents
forma methods and forma languages that can be used to the formalization of Object
Oriented analysis and design languages. In the core of the chapter is the presentation of
three formalization approaches existent, two of them focusing specifically in UML, and
the other one, Formal Classes approach, showing a more general formalization method
that can be applied to any OO design and analysis language.

In chapter three the core of the Thesis is described. This chapter shows the main points
considered to compose the semantic framework, as the forma syntax followed, the
process to determine the mapping rules, the structure of an ADT, going then deep in the
description of the set of mapping rules to each UML model element considered in the
formalization. The mapping rules are described based on the semantics aspect that leads
to their definition.

As explained in this introduction, the implementation of this semantic framework takes
into account different technologies that need to be well integrated in order to alow the
framework working. Each of these technologies employed and the way taken to their
integration is explained in chapter four.

Chapter five gives then the link between the theoretical part presented in chapter 3 with
the practical aspects detailed in chapter four. This chapter takes a UML Static Diagram
drawn in the CASE tool developed as part of this work and shows the results of the
trandation process performed to it. Therefore the formal specifications in the form of
ADTs resultant from the implementation of the mapping rules are referenced. After the
translations are ane, this chapter goes on presenting some inconsistencies that can be
detected in UML models through the use of the semantic framework.

Chapter six ends up giving some conclusions taken during the development of this work
and presenting contributions and future work that can be taken in order to complete the
semantic framework and its practical application.

2 Formalization of UML using Algebraic Specifications

Chapter One: Motivations and Difficulties towards UML Formalization

Chapter One

M otivations and Difficultiestowards UML Formalization

UML, the Unified Modeling Language, is a very expressive language that can be used to
model object-oriented software systems. It is the unification of the main object-oriented
(O0O) methods (Rumbaugh, Booch and Jacobson). The Object Management Group
(OMG) has approved UML in November 1997 as the standard notation for object-
oriented analysis and design.

The main motivation towards UML formalization is that its semantics is not precisely
described through UML official documents and books. In this chapter other motivations
and some difficulties encountered in order to achieve UML semantics formalization are
presented.

1.1 UML Semantics. Current Form

UML encompasses structural and behaviora aspects in order to describe OO software
systems. Even being a de facto standard, its semantics are semi-formal described. In
[UML99], the UML semantics document, version 1.3 (last version), the semantics of the
language is described using the metamodel. The metamodel stands a combination of
graphical notation, natural language and formal language. It gives a syntactic description
of the language but not a complete and precise specification of its semantics.

The graphic part is reflexive using a subset of the own UML notation. The formal
language is the OCL (Object Constraint Language) that has been a first approach in order
to get a precise abscription for the UML. It is an assertion language used to describe
navigation and constraints in Class Diagrams (the static diagram of UML). Although
OCL heps in the semantics description being used to the specification of well-
formedness rules, it does not provide a basis for controls and validations. Moreover it
does not solve some ambiguitiesin UML interpretations.

UML carries a complex set of notations that as explained do not gain a clear meaning
through the metamodel .

1.2 Difficultiesto UML Formalization

The lack of a precise forma semantics for the UML is justified in many ways:

& The architects of the language claim: “the state of the practice in formal
specifications does not yet address some of the more difficult language issues that
UML introduces’ [UML99].

Formalization of UML using Algebraic Specifications 3

Chapter One: Mativations and Difficultiestowards UML Formalization

& Formal specifications are hard to deal with for non-expert users. Developers, users of
UML, are not familiar with formal mathematical specifications and because of it they
tend to resist to their use.

& To be of industrial use, formal specifications need to be integrated to CASE tools,
supporting graphical modeling constructs, in such a way that developers can directly
mani pul ate the OO models they have created to analyze, transform and enhance them.

In contrast to the difficulties showed above, the own authors of the modeling language
also recognize the importance of formality. According to [CE97] the authors of the
language agree in the sense that it lacks from a precise semantics description, and that its
formalization could lead to unambiguous interpretations of the models and could permit
extensibility allowing future changes in object-oriented analysis and design.

1.3 Motivationsto UML Formalization

Many motivations are given to justify the importance of formalization. They can be
grouped according to some primitives, as. clarity, consistency, correctness and
enhancement it can bring to the models. Because of these benefits, formalization is realy
helpful in forward and reverse reengineering efforts as well as in the restructuring of
systems. On the other hand, a realy understandable and consistent system is more
suitable for reuse. Follows some motivations towards formalization according to the
primitives stated.

& Clarity:

UML is gcomplex language that holds a really great number of modeling elements.
Because of its complexity and lack of precise description, its constructs are not clear
defined and the language can lead users to ambiguous interpretations of the models.
Formalization can help in clarifying the meaning of UML model elements. In [CE97] it is
stated:

“ Clarity acts as a reference — if at any point, there is confusion over the exact meaning of
a particular UML component, reference can be made to the formal description to verify
its semantics.”

A deeper understanding of OO concepts is also gained, allowing the development of
more rigorous semantic analysis tools and better use of OO techniques.

& Consistency:

UML presents nine different diagrams to express different system perspectives. The
consistency among these diagrams representing a model can be ensured since al of them
are formalized and hence precisely described. This leads to a more complete and
unambiguous interpretation of a model, alowing development teams to have a better
communication and understanding among them.

Consistency can also be achieved between code and specifications. Having a precise
description of the models, implementations can be validated against the design checking
if it fulfills the specifications. On the other hand, formalization can also be a bridge from
implementation to design in a reverse engineering process.

4 Formalization of UML using Algebraic Specifications

Chapter One: Motivations and Difficulties towards UML Formalization

& Correctness:

Correctness of the models can be achieved through the application of proofs over the
formal specifications. Therefore inconsistencies can be detected. A mapping between the
model elements of UML to formal specifications can help in adapting proofs and
validations to CASE tools what leads to early detection of errorsin the systems.

The establishment of proofs can be done upon the properties of a system described in
UML, forming a basis for future automatic proof techniques.

Moreover with a mapping alowing the generation of formal specifications from informal
models it is possible to identify ambiguous and inconsistent structures in the models.

& Enhancement:

Enhancement of models is expressed through design refinements. In [EBFLR98]
refinement is defined as:

“It is the process by which an abstract model of a system (containing relatively little
implementation detail) can be incrementally transformed into a model that can be readily
implemented in a specific programming language. At each stage the correctness of the
mor e detailed model must be verified against the abstract model.”

As UML is a diagrammatical modeling language, refinement of a UML model implies a
process of diagrammatical transformations. In this context, the definition of a set of
semantically-based transformation rules is important to provide a set of correct
transformations that are equivalencies or enhancements of models. Some properties of
models can be deduced and proved through transformations. Proving that one form of the
model is equivalent to another can make correct properties arise.

Refinements of models based on transformations are useful not only to support forward
engineering as well as reengineering efforts. Model refinements can be helpful in the
restructuring of designs.

Design Patterns can be applied in refinement steps being checked for correctness. Once
checked, a pattern can be used again and again without having to be re-checked.

Basing in the primitives previously stated and going into detailed explanations, more

justifications for formalization can arise. In [FELR97] they say:

& Developers can waste time making considerations over correct usage and
interpretation of notations. Because of the informal descriptions provided in reference
books, it is not easy to achieve an interpretation that can be considered precise.

& |t is difficult to ensure model reviews, rigorous semantic analysis based on informal
techniques. In [FELR97] it is stated:

“Review meetings can be further enhanced if the notations used have a precise

semantics. The results of model validations and verifications can be presented in reviews

as evidence of the quality of the models. Rigorous semantic analysis techniques also

facilitate the early detection of modeling errors which considerably reduces the cost of

error removal.”

Formalization of UML using Algebraic Specifications 5

Chapter One: Mativations and Difficultiestowards UML Formalization

& Tool support for OO modeling notations is limited because of the lack of a precise
semantics for the constructions of the language. Hence tools stay limited to cover just
syntactic concerns.

In [EBFLR98] it is stated that:

“The desire to formalize UML was originally motivated by the overall wish to develop
practical, industrial strength, formal methods. The advent of the UML as a likely de-facto
industry standard, and its recognition that as a standard it needs to be precisely
described, made UML a natural choice for a combined investigation.”

As it can be redized the motivation to formaize OO methods was not originaly
motivated by UML emergence. Formalization had already been recognized as useful and
necessary not only for academic purposes but also for industrial use before UML has
appeared. Formalization aims to support reliable and precise modeling language to be
used in any context. The advent of UML as a standard OO modeling language made the
efforts turned to it.

6 Formalization of UML using Algebraic Specifications

Chapter Two: UML Semantics Formalization

Chapter Two

UML Semantics Formalization

In the previous chapter many motivations were given to justify the efforts invested in
UML formalization. This chapter starts showing some forma methods and languages to
support formalization. Afterwards, the main OO analysis and design formalization
approaches studied, some of them focusing on UML, are presented.

2.1 UML Precise Group: An Important Work Taken Towards
Formalization

Before presenting the formal methods and formalization approaches, it is necessary to
point out the importance and contributions of the UML Precise Group in the context of
UML formalization.

The authors of [EBFLR98] compound the UML Precise Group (PUML) which was
created for two main purposes. investigate the completeness of the UML semantics and
develop novel approaches to use UML more precisely. This group was formed in late
1997. By giving precise semantics to UML, the group intends to develop a forma
reference manual for the language. In [FELR97] they say:

“ A major objective of the project is to develop a formal reference manual for the UML.
This will give a precise description of core components of the language and provide
inference rules for analyzing their properties. In developing the reference manual we will
build upon the semantics given in the UML semantics document by using formal
techniques to explore the described semantic base.”

In this formal reference manual, the intention is to re-express the formal semantics in
terms of a suitably expressive language, that could be a mixture of notations such as an
enhanced version of the UML metamodel, the OCL (Object Constraint Language), and
precise natural language statements.

2.2 OO0 Formalization M ethods Classfication

The classfication presented in this section is aso a contribution work from some
members of the UML Precise Group. In [FELR97] it is presented three genera categories
for OO formalization methods. supplemental, OO-extended formal language, and
methods integration.

In the supplemental method, formal statements substitute annotations in the models that
are expressed in natura language. This clarifies the meaning of the models, but the
semantics of graphical constructs are not necessarily precisely defined.

Formalization of UML using Algebraic Specifications 7

Chapter Two: UML Semantics Formalization

In the OO-extended formal language method, an existing formal notation is extended
with OO features. This is the case of Z++ and VDM++, for example. In this case the
formal languages are really enriched and, on the other hand, OO concepts need to be
formalized in order to be able to be adapted to formal languages. The problem with this
method is the considerable gap between model el ements representing real world concepts
and the mathematical representations in the famal notations.

Methods Integration approach defines the generation of formal specifications from
informal OO models. It is stated:

“ ...the generation of formal specifications from informal models is only possible if there
is a mapping from syntactic structures in the informal modeling domain to artifacts in the
formally defined semantic domain.”

In this case aformal description of the mapping rules becomes essential in order to check
if the formal specifications indeed capture the intended interpretations of the informal
models.

2.3 Formal Languages Classification

In [CHS'97] four major underlying models upon which the formal specification
languages can be based are described. Follows the identification of these models and
examples of formal languages classified in each one of them.

& Firgt-order logic and set-theory.

According to [CHS*97], this approach can be defined as;

“The first-order logic and set-theory approaches are also often called model oriented
because they support the specification of a system by constructing a mathematical model
for it.”

In this group there are:

& Z language;

& Object-Z (OO extension of the Z notation);

& VDM++ (OO extension of the Vienna Development Method);

& Z++ (00 extension of the Z notation).

& Algebraic approach.

This approach uses algebraic equations in order to establish the semantics of the
operations in a specification.

Examples of languages are:

& TROLL,;

& Maude;

& AS-IS (Algebraic Specification with Implicit State);

& Larch;

8 Formalization of UML using Algebraic Specifications

Chapter Two: UML Semantics Formalization

& Petri nets/algebraic nets.

This approach is described in [CHS'97] in the following way:

“ Petri nets and high-level nets are two representative of the model-based class in the
sense that they describe the state of a system by means of places which contain “ black
tokens’ for the conventional Petri nets and structured tokens for high-level nets. A set of
transitions which consist of a pre- and a post-condition, describes how the system state
changes by consuming and producing tokens in the various places of the net.”

Examples of languages in this family are:

& CLOWN (Class Orientation with Nets);

& CO (Cooperative Objects);

& OPN (Object Petri Nets);

& COOPN/2 (Concurrent Object-Oriented Petri Nets).

& Temporal logic.

In [CHS 97] it is described as:

“Temporal logics are axiomatic formalisms that are well suited for describing
concurrent and reactive systems. A common aspect associated with temporal logics is a
notion of time and state.”

Examples of languages are:

& TRIOH+,

& OO-LTL.

Follows the description of two UML formalization approaches that deal with set-theory
(2) and agebraic formal languages.

2.4 Definitions in the Context of Formal Languages

Some definitions become necessary in order to understand the following OO analysis and
design formalization approaches and the remaining of the document. They are:

What isan Abstract Data Type (ADT)

Originally data types are defined as sets equipped with operations. Considering Abstract
Data Types many definitions can arise:

1 A class of data objects with a defined set of properties and a set of operations
that process the data objects while maintaining the properties.
2 A set of values and a set of operations on those values.
3. In[Royer99a] an ADT (Abstract Data Type) is defined as:
“ An Abstract Data Type is the description of a data type. This description is said abstract
because the semantics are expressed as relations between operations.”

Formalization of UML using Algebraic Specifications 9

Chapter Two: UML Semantics Formalization

What are Terms?
By terms it can be understood an expression that refers to an object as: sizeof(Array).
What isfirst-order logic?

By first-order logic it is understood that equations can be written using variables that
represent all the values that can be extracted from a specific Universe. The equation can
then be proved valid by exemplification.

2.5 Object Oriented Analysis and Design Formalization Approaches
2.5.1 Set-Theory Methods: RAL — Real-Time Action Logic

In [LB98] a semantic framework for part of UML is presented. The forma framework is
termed Real-Time Action Logic (RAL). This name comes from the fact that it intends to

reason about real-time specifications. The mathematical semantic representation of UML
models is given in terms of theories. Thisis a Z-based approach.

A RAL theory has the form:

theory Name

typesloca type symbols

attributestime-varying data, representing instance or class variables

actions actions which may affect the data, such as operations, statechart
transitions and methods

axioms logical properties and constraints between the theory elements

Theories can be defined to a whole model, submodels, or specific elements such as
classes, associations, states, etc, being in this case assembled through theory mor phisms,

The Z Language employed is presented in section 2.3.

& Theory at the Model Level
A theory for amodel in this approach can be defined as depicted in figure 1 —example 1.

worker

employee employer
Person Company

0..Iboss

*

*~~._ | {Person.employer =
Person.boss.employer}

Figure L UML static diagram example

10 Formalization of UML using Algebraic Specifications

Chapter Two: UML Semantics Formalization

Example 1:

theory Employment

types Person, Company

attributes
Person: FIN(Person)
Company: FIN(Company)
employee_employer: Person ? Company
employee: Company ? FIN(Person)
employer: Person ? FIN(Company)
worker_boss: Person ? Person
worker: Person ? FIN(Person)
boss: Person ? FIN(Person)

actions Standard predefined actions to modify classes and associations:
create_Person(p:Person) { Person}

kill_Person(p:Person) { Person}
create_Company(c:Company) { Company}
kill_Company(c:Company) { Company}

add_link_worker_boss(p:Person, g:Person) {worker_boss, worker, boss}
delete link_worker_boss(p:Person, g:Person) {worker_boss,worker, boss}

axioms
Constraints on the association links employee_employer:
forall p:Person; c:Company.(c.:employer(p) ? (p,c):employee_employer
& p:employee(c) ? (p,c): employee _employer)
Cardinality Constraints:
forall p:Person.(card(employer(p)) <= 1)
forall p:Person.(card(boss(p)) <= 1)

The Constraint of the model is expressed by the formula:
forall p:Person.(employer(p) = employer[boss(p)])

In this theory, Person represents the finite set of existing objects of class Person. In the
same way Company represents the set of Companies. Through the role employee in the
Association between Person and Company it is possible to recover the set of existing
objects of class Person linked to a Company. The same happens to the other association

roles.

The actions determine the creation and deletion of objects, as well as the addition and
deletion of links in associations.

& Representing a UML Class

A UML class is semantically represented by atheory T(C) of the form:

Formalization of UML using Algebraic Specifications u

Chapter Two: UML Semantics Formalization

theory T(C)

typesC

attributes
C:FIN(C)
sf:C? C
atl:Cc? T1

actions
create C(c:C) {C}
kill_C(c:C) {C}
op_l(c:C, x:X1):Y1

axioms.
foral c:C.(self(c) = ¢ & [create_C(c)](c:C) & [kill_C(c)]not(c:C))

Important points stated about this Class theory are:

1 Instance variables are modeled as attributes through a function type C ? T.

2 The notation [action]P denotes that every execution of action terminates with
the predicate P being true. Thus create C(c) aways adds c to the set of
existing C objects, and kill_C(c) removesit.

3 Class attributes and actions do not gain the additional C parameter as they are
independent of any particular instance.

& Representing a UML Association

Associations are described through theories, which, as in the class theory, have an
attribute representing the set of all links of the association. Therefore association theory
also encompasses add_link and remove_link actions. Axioms determine the multiplicity
of the association ends and other properties of the association.

& Representing Generalization (Inheritance)

Generadlization is achieved through theory morphism. In [LB9§] it is stated that:

“ Generalization of class C by class D in UML is directly represented by the theory T(D)
of D being the source of a signature morphism into T(C) which is the identity (each

symbol of T(D) isinterpreted by itself in T(C)).”

“ A theory morphism is a signature morphism s from T1 to T2 which preserves all the
axioms of the source theory. That is, T2 proves S(P) for each axiom P of T1.”

Theory morphism can be achieved by the inclusion of one theory (al its symbols and
axioms) in another. Supposing we have a theory for a superclass T(C) and a theory for a

12 Formalization of UML using Algebraic Specifications

Chapter Two: UML Semantics Formalization

subclass T(D), adjoining the axioms can make the attributes and operations of C
applicable to instances of D.

& Defining Models by Composition

Includes clause can also be used to another purpose. It can be used to compose models or
submodels by assembling element model theories as depicted in the following example.

Example 2:

theory Employment

includes WorkerBoss, EmployeeEmployer

axioms foral p: Person.(employer(p) = employer[boss(p)])

The theory Employment showed in example 1 can then be rewritten in a simpler form
just by including the theories of the associations, which in turninclude the theories of the
classes Person and Company. Therefore it is possible to realize that theories can be
constructed by composition.

Composition is important to allow reuse. Theories defined in a high granularity level that
can be assembled to define a model are more suitable for reuse.

2.5.2 Modular Algebraic Semantics for Object Oriented Models

In [HHK98] they define a formal, modular approach to describe the semantics of object-
oriented models expressed in UML. The main aspect in this approach is to treat each
individual model element as an entity that can be expressed through a theory (or trait) in
Larch. The semantics of the model is then the composition of the semantic entities
representing the individual model elements. It is stated:

“...thisleadsto a high degree of elegance and transparency in the semantics, any results
proved about a generic trait or combination of traits will carry forward to models whose
semantics has been built using them.”

A high granularity to the formalization is considered as can be seen through the following
list.

Elements list:

Object-type (for class);

Set of objects of the type;
Association;

Cardinality of the associations;
Subtype (dynamic and static);
Inherited attributes,

Invariant;

R&RKRRERERR

Formalization of UML using Algebraic Specifications 13

Chapter Two: UML Semantics Formalization

& Diagram.

The motivation to this highly modular approach is that formalizing each element
separated can increase reuse. Moreover forma descriptions can be used to specify
components. Precision is really important in the specification of components and
component interfaces, mainly when they are viewed as “black boxes” with hidden design
and implementation. A user of a component needs a precise certificate about what the
component does. They say:

“Thereisanatural progression from using this approach to build semantics of individual
models, to use it to compose models into larger models. This is what is required to
support component-based devel opment, where components are specialized and composed
to build other components and, eventually, systems.”

In this approach it is used the Larch Shared Language (LSL for short), in which
specification modules are caled traits. Traits are used to describe abstract data types and
theories having the following structure:

SpecName(parameters): trait
includes
existing specification modules to be used
introduces
function signatures are listed here
asserts
axioms are listed here

& Representing a UML Class

In this approach classes are referenced as object types, and class diagrams as type
diagrams. The basic function in an object type specification is the one that can return the
set of existing objects of that type at a point in time. Considering an object of type A, this
basic function will have the following signature:

A:? ->Sa[A]

Inwhich, ? is the sort representing systemstates and Set[A] is the sort of finite sets of
elements of sort A. Therefore A (?) expresses the finite set of existing A objects in the
Sate ?.

Instance attributes for object types are represented as functions mapping the attribute
name to a value from a given type as follows.
attrl: A,? ->T1

Therefore to specify an object type it can be defined a basic trait including the function
that allows manipulation of the set of existing objects (example 3), and a trait including

14 Formalization of UML using Algebraic Specifications

Chapter Two: UML Semantics Formalization

functions for the object type attributes (example 4). This strong separation of concerns in
trait specifications due to the high modularity desired.

The fina trait for the object type is then constructed by including the other two traits as
shown in example 5.

Basic-Object-Type (A, A): trait
includes
Set(A)
introduces
A:? ->Sd[A]

Example 3: Basic Object-Type Trait

This trait specifies object types by renaming A and A.

Attributes-Object-Type (A): trait
includes
T4, T2
introduces
attr1: A,? ->T1
attr2: A,? ->T2

Example 4: Attributes Trait

Object-Type A: trait
includes
Basic-Object-Type (A, A), Attributes-Object-Type (A)

Example 5: Object-Type trait

& Representing a UML Association

Given the classes A and B associated in a UML class diagram, the plain association
between them could be represented through two mapping functions with the signatures:
a: Set[instancesB], ? -> Set[instancesA]
b : Set[instancesA], ? -> Set[instancesB]

Inwhich aand b represent the role names that maps a st of objects of one type to a set
of objects of the other type. Through these mapping rules, associations are uniformly
described. These functions can aso be expressed through the signatures:

a:B,? > Set[A]

b:A? -> Set[B]

Mapping just one object to the connected set of objects of the other type.

Formalization of UML using Algebraic Specifications 15

Chapter Two: UML Semantics Formalization

& Specifying Multiplicity Constraints

Taking the previous association between A and B, an axiom to determine a one-to-many
multiplicity has the form:
a? A(?)? size(b(a,?))=1

Where size is aset operation that returns the number of objects in a set. This axiom
constraints the multiplicity in B by determining the size of the Set of B elements
associated to an A element equal 1 (see also the previous functions in Representing a
UML Association). Size operation upon sets is used to determine all the possibilities of
multiplicity constraint.

& Subtyping
Subtyping is defined as:

“Subtyping is a special relationship between two object types, known as the isa
relationship.”

In subtyping the subtype must be used anywhere the supertype is applicable and it
inherits all the attributes and associations of the supertype. Considering the following
example of inheritance between A and B, functions to express subtyping are given.

' C

A

I

B

Figure 2. Subtyping

Two functions are used to express subtyping: simulates that maps an object identifier of
type B to the corresponding object identifier in A that behaves like it, and member that
testsif a B can be viewed asan A. They are expressed in the following way:

simulates: B -> A
memberB : A, ? ->Bool

2 |Inherited Attributes

Simulates function is used to the description of inherited attributes. Considering an
atribute f in class A, the following axiom to smulate it isalso an attribute in B is written:

assert
f(b, ?) == f(smulates(b), ?)

16 Formalization of UML using Algebraic Specifications

Chapter Two: UML Semantics Formalization

2 |Inherited Associations

On the other hand, inherited associations are represented using role names. Considering
the example in figure 2, the association between A and C with role name r is trandlated
through the following function:

r: Set[A], ? -> S[C]

To represent the inherited association, a new function is introduced:
r: Set[B], ? -> Set[C]

This new function r is constrained by the following axiom:

r ({b}, ?) == r({smuates(b)}, ?)

& Defining Models by Composition

A specification for a type diagram is constructed just by including all the traits defined
such as: object types, associations, cardinality constraints, subtypes, inherited role traits
and invariant traits if defined.

2.5.3 The Formal Class Approach

In[RAC94] it is defined an algebraic approach to describe Object-Oriented analysis and
design models in a forma way. The motivation to formalize Object-Oriented analysis
and design is done through:

“Object-Oriented analysis and design need formal specifications to allow proofs,
verifications and automatic processing.”

The idea is to use the notion of formal class to build the forma specifications. A formal
classis an abstraction of concrete class in languages like C++, Eiffel, CLOS or Smalltalk.
It is an agebraic specification (as abstract data type) with an object orientation. The
motivation to use an algebraic specification as abstract data type comes from the
following assumption:

“ Object-Oriented Design is the construction of software systems as structured collections
of abstract data type implementations.” [MEY 88]

The specification model corresponds to modular design where forma classes are
modules. The main concepts on aformal class structure are described as follows.

Formalization of UML using Algebraic Specifications 17

Chapter Two: UML Semantics Formalization

& ClassDescription

It is considered that a class defines a type and therefore inheritance implies subtyping. A
class defines an aspect, which allows to abstractly describe its instances. It also defines
the instance behavior.

The aspect has two parts. an abstract structure composed by a set of field selectors and a
constraint that is a predicate on this abstract structure. A field selector has the profile:
fseli. CFC -> T;. In which, CFC represents the current formal class.

& Method Classification

A method is characterized by a profile, a precondition and axioms. Two main groups of
operations (resp. methods) are distinguished: constructors, the ones that have the current
class as resulting type, and observers, the ones having another type as resulting type.
Field selectors as previously described are observer methods.

Another classification given to methods is accordingly to the user point of view. In this
classification there are primitive methods the ones associated to the class aspect, and
secondary methods, the ones which semantics are based on the primitive methods. The
basic constructor of a class ew<CFC>) is a primitive method. Field selectors are

primitive observers.
Secondary methods can be viewed as functional extensions of primitive ones. Their

semantics is based on primitive methods, i.e. every application of a secondary method
can be reduced to applications of primitive ones.

& Inheritance
The principles for inheritance in formal class model are:
& only secondary methods are inherited;
& redefining and masquing a method is possible;

& an inheritance link is possible between two classes if the following criterion is
true: every field selector of the superclass exists in the subclass with the same

type or a subtype.

According to the last principle, it can be redized that there is no inheritance of instance
variables.

& Type Checking
The type checking is based on usual principles:

5 there are predefined types as Boolean, Integer, String and generic List[T];

18 Formalization of UML using Algebraic Specifications

Chapter Two: UML Semantics Formalization

aclass defines atype;

variables and methods are typed,;

inheritance implies subtyping;

typing a message is like typing an operation application;

the method to apply is selected on the receiver type;

methods are redefined according to a rule which is co-variant only on the
receiver type and the resulting type.

KRR KRERERK

In this context it is possible to define a type checking and prove the safety of the control.

= RewriteRules

An abstract operational semantic to the model is given using conditional term rewriting,
i.e. one operation is rewritten using another. Thisis valid for secondary observers that are
expressed through primitive ones, and also for primitive observers that can be rewritten
based on constructors. For field selector, for example, the following rewritten form can
be obtained:

fseli(new<CFC>(X, ..., X)) ->Xi)

£ Implementation

Trandation from formal classes to OO programming languages is quite natural and
partially automatic. Such process takes as input the formal description and produces the
“skeleton” of the class: class interface, class implementation, class structure, primitive

methods code and secondary methods signature.

2.6 Concluson and Summary

From the approaches presented in this chapter some meaningful ideas that can be reused
in algebraic specifications defining ADTs are taken into account in the work of this
thesis.

From RAL approach it is mainly considered:

& The representation of class attributes (and class operations) through a function that
does not need an instance of the corresponding type as a parameter.

& The importance in adjoining theories to specify a more genera sort (or theory) in
order to be able to establish constraints among model elements.

About generaization, the formal definition in RAL is maybe not enough to express the
needed semantics. Moreover it is not so clear how the axioms are adjoined in order to

Formalization of UML using Algebraic Specifications 19

Chapter Two: UML Semantics Formalization

allow that operations and attributes of the general type be applicable in the specialized
one.

From the he study of the Modular Semantics approach, as it aso makes use of an
algebraic language, lots of benefits are taken. They will be redized through the
description of the semantic framework in chapter 3.

As the intention is to alow rapid prototyping (refinement of models into code), proofs
and verifications to be applied to OO analysis and design, much Formal Class principles
are reused in the algebraic semantic framework proposed in this dissertation.

2.6.1 Comparison Table

The two approaches described for UML formalization are in fact the most complete, clear
and concrete encountered. To provide a clear view of what each approach covers or not
considering UML static aspects including model formalization, a comparison table is
presented.

UML eements/ Formal Z based RAL Algebraic Modular Semantics
Approaches

& atheory & an object type trait

& representsthe including basic object-type
st of dl and instance attributes

Class existing traits
instances & consders the set of existing
through an instances through a
atribute mapping function

& atheory & atrait

& representsthe |z constrained by cardinality

_ st of dl traits
Assoclation existing links | defines mappings between
role names and sets of
object types
Composition No representation | No representation.

& Achieved & A function smulatesis
through theory defined to map object
morphism, i.e. identifier of the subtype to
theinclusion object identifier of the

. and mapping supertype.
Generalization of operations |« Simulates. B ->A
and axioms of |& This function allows
one theory into attributes and associations
another. of supertypesto be also
applicable to instances of

20 Formalization of UML using Algebraic Specifications

Chapter Two: UML Semantics Formalization

subtypes.
& Explicitinthe |z atraitisdefined to specify
Instance Attributes classtheory the instance attributes
& Attrl: C->T1 |« attrl: object-type, ? ->T1
& explicit in the
Class Attributes classtheory No representation.
& atrl: ->T1
& explicit actions
in the class
Instance M ethods theory No representation.
& op_l(c.C,
x:X1):Y1l
& explicit actions
in the class
Class Methods theory No representation.
& op_l(x:X1):Y1

Abstract Classes

No representation

No representation.

Interfaces No representation | No representation.
& cardindity & for association cardinalities
constraints & for subtyping, as digoint
Constraints & constraints subtyping constraint
between moddl | & invariants written in OCL
elements aretrandlated
& theories & model specification (or
assembled by diagram specification)
theory
M odel morphisms
& awholetheory
defined with
al model
elements

Table1 — Comparison over UML Formalization Approaches.

Model is considered in the table because it is realy important to specify theories that
allow manipulating model elements together.

Formalization of UML using Algebraic Specifications

Chapter Two: UML Semantics Formalization

22 Formalization of UML using Algebraic Specifications

Chapter Three: UML and ADT: a Semantic Framework Proposition

Chapter Three

UML and ADT:
A Semantic Framework Proposition

The semantic framework proposed in this work is based on algebraic specifications
describing Abstract Data Types (ADT). In the previous chapters the importance of UML
formalization and some approaches in this direction have been presented. From these
approaches some important outlined points are taken into account. The goa of this
chapter is to explain the algebraic formal semantic framework through the mapping rules
that support the trandation from UML model elementsto algebraic ADTSs.

3.1 Main Points Considered in the Framework Composition

In order to compose the forma framework, the semantics of the main UML static model
elements was evaluated. The main motivation towards UML formalization is the fact that
the semantics of the UML modd elements is not precisely described in the officid UML
semantics document [UML99]. Consequently, in some ambiguous points it was necessary
to have recourse to other sources of information to achieve a good interpretation. Long
times of discussion were also necessary to achieve final conclusions.

According to the final interpretation of the semantics, the mapping rules were defined
having as a result the algebraic formal specifications for some UML static constructs.
This process follows the directives of Methods Integration approach forma method the
one chosen as the basis to thiswork This choice is justified in the next section.

To start with the formalization, in this work it is considered the UML core concepts
respecting to the structural aspects of the UML, which are:

Types - implemented through Classes;

Instances - objects of atype;

Values - a type defines the values of its instances and the value of an instance consists

of the values of its attributes at a point in time;

& Operations — description of the services that objects of a class can offer to others
affecting their behavior;

& Associations —reflects structural relationships between classes;

& Hierarchy and Inheritance —types from a hierarchy in which inheritance of structural

(attributes) and behavioral features from super to sub-types take place.

R &R &

As in [CE97], the core concepts are extracted from the Core Object Model specification
presented by Houston and Josephs [HJ95] written in Z that captures a precise description
of the Object Management Group’s emerging standard for objects.

Formalization of UML using Algebraic Specifications PA]

Chapter Three: UML and ADT: a Semantic Framework Proposition

Starting from the core concepts it makes feasible that future extensions to the semantic
framework can be easily proceeded.

Another important aspect to point out is that the semantic framework presented is typed.
However it is assumed that once trandations to algebraic ADTs are proceeded, type-
checking problems are not carried to the specifications. The ADTs are written in Larch
Prover as will be shown in section 3.1.3.

3.1.1 The Formalization Method Chosen

The approach chosen for the formalization is the integrated one, called Methods
Integration approach (see section 2.2). This approach is justified in many ways.

& A mapping between graphical and formal constructs can uncover problems with the
modeling notations;

It can help identifying ambiguous and inconsistent structures;

It can help defining semantically well-formed informal models;

The mapping rules can be adapted to a CASE tool in such a way that formal

specifications can be automatic generated from informal models (to express the
whole or a least part of the models). This can help in proving properties of the
models and in generating code from them.

KRR

The integration of the trandation process to a CASE tool built in Graphtalk metatool is
explained in chapter 4 with a concrete example of the trandations given in chapter 5.

The mapping rules making the bridge from UML models to formal models are explained
in section 3.2.

3.1.2 The Formal Language Chosen

The language used to write the formal specifications is Larch more specifically with the
syntax of Larch Prover. It is an agebraic method not yet extended with OO concepts.
However Larch is really suitable to the description of Abstract Data Types because it
allows the semantics of the operations to be described in an abstract way, i.e. just as
equations stating relations between them. In addition Larch Prover allows verifications
and proofs to be applied to the formal specifications. This is realy helpful in order to
ensure the correctness of the models described. More information on Larch Prover is
found in chapter 4, section 42.

3.1.3 ADT Structure

An agebraic specification of a datatype is composed of three main parts:

24 Formalization of UML using Algebraic Specifications

Chapter Three: UML and ADT: a Semantic Framework Proposition

& A heading containing information about the module, mainly they are: the name (or
sort) of the type, the imported modules (or types), and the generator names (or
constructors).

& The signatures which describe the operators syntax.

& The axioms which describe the semantics of operations.

Asin Formal Classes (section 2.5.3), primitive observers (operations related to the main
aspect of the ADT) are described in terms of the constructors and secondary observersin
terms of primitive ones. Constructors (or generators) are operations that are able to
determine the values for the type being described. These assumptions are realized
through the axioms in the following ADT.

The ADT example presented here specifies a sort Set, where ~ is logical not, Aisand, V
isor, => isimplication and = is equality.

It is followed Larch Prover syntax. The reserved words of Larch are in Italics. Notes are
between dlashes.

Formalization of UML using Algebraic Specifications 5

Chapter Three: UML and ADT: a Semantic Framework Proposition

st hame SetA /defines the name of the sort— SetA — a set of A elements/
declare sorts A, SetA, Nat /declares the types used in this specification/
declarevariables a, al: A, Xsa, Ysa: SetA /declare the variables with the

corresponding typesthat will
be used in the axioms/

declare operators /defines the operators that apply to the values of the
type being defined/
{}: > SatA /operation that creates an empty set/
{3} A > SetA Ireceives an element and identifies the set in
whichit is present/

insert: A, SetA > SetA /inserts an element in the Set/

_\U : SaA, SetA > SaA Junion of two sets/

Ain A, SetA -> Bool hestsif the element isin the set/

A\l SetA, SetA -> Bool hestsif one set isincluded in the other/

size: SetA -> Nat Ireturns the number of elementsin SetA/
assert /semantics of the operations are described through the

axioms written in the assert section/
sort SetA generated by {}, insert; /constructors of the sort
SetA/

{a} =insert(a,{}); /asetwithanaelementisequal theinsertion of ain an empty set/

~@\in {}); /an aelement is not in an empty set/

a\ininsert(al, Xsa) ? (a\egal ? a\in Xsa); /a in insert al in set Xsa is
equivalent to that ais equal al or a
isin Xsal

{}\I Xsq /empty setisincluded in a set/

insert(a, Xsa) I Ysa ? (@a\inYsa? Xsa\l Ysa); /insert anaelement in set Xsaisin
set YsaiseguivalenttoaisinYsa
or Xsaisin Ysa/
a\in(Xsa\U Ysa) ? (a\in Xsa ? a\in Ysa); /anaelementin Xsaset union to
Ysasetisequivalenttoaisin Xsa
set or aisinYsaset/
% axioms for size operator /comments begin with %/
size({}) =0; /the number of elementsin an empty setis0/
(@\in Xsa) => size(insert(a, Xsa)) = size(Xsa); /the number of elementsin set Xsa

inserting an element that already
existed is equal the number of
elements originally in set Xsa/

~(@a\in Xsa) => size(insert(a, Xsa)) = 1+size(Xsa); /if aisinserted in Xsaand didn’t
exist before, then the size of Xsa

will bethe original size+ 1
element/

26 Formalization of UML using Algebraic Specifications

Chapter Three: UML and ADT: a Semantic Framework Proposition

In the previous structure it is possible to see that the axioms are compound from
equations that are equalities or equivalencies between terms with variables. Variables
represent a valid value inside a Universe of its type.

These axioms are trandated as rules in LP that are applied to the system any time it runs
in LP to be tested. Through these rules the semantics of the system (composed by the
semantics of each element) can be checked, properties validated and inconsistencies
detected.

3.2 The Trandation Process from UML to ADT

In order to make clear the trandation process from UML static model elements
(expressing the UML core concepts) to algebraic ADTs, the semantics of the model
elements according to the UML Semantics Document [UML99] and to The Unified
Modeling Language User Guide [BRJ99a] is presented. The semantics is presented
focusing on the main points considered to the formalization in this work. Afterwards
some considerations on the semantics according to the studies and discussions undertaken
are described.

The trandation process is aso described in two parts: first the trandations that result in
the operations applicable to the type being defined are described (see declare operators
section in the previous ADT structure), after that the most significant axioms determining
the semantics of these formal operations are defined (see assert section in the previous
ADT).

The result of the trandation process is one ADT specified to each model element
considering classes, associations (plain associations and compositions), generalizations,
association classes and constraints for the moment. Some other ADTs of auxiliary types
used in the formal specifications are also specified in the semantic framework, such as:
primitive types (String, Nat, etc), identity for classes, and set of objects of a class. They
are described in appendix A.

Follow the descriptions of the mapping rules for each model element considered in the
framework.

3.2.1 Class Trandation

& Class Syntax and Semantics

In the UML dtatic diagram the main building block is the Class. A Class is the abstraction
of aset of objects with the same properties (attributes), behavior (operations implemented
through methods), relationships, and semantics. For the attributes, each object of a class
has its own values, what characterizes particular concrete states for the objects. The
values for the attributes are taken from the set of values permitted by the attribute type.

Formalization of UML using Algebraic Specifications 2z

Chapter Three: UML and ADT: a Semantic Framework Proposition

The behavior is shared by dl the class instances. Class in UML is represented as showed
in figure 3.

Shape ________ » name
oigin -\ ________ attributes
size >
move() _
display() | -------- » operations

Figure 3. UML classrepresentation

The ability to describe behavioral and structural (attributes) features are inherited from
classifiers. Classifiers are defined as:

“ A Classifier is an element that describes behavioral and structural features; it comes in
several specific forms, including classes, data type, interface, component, and others.”
[UML99] (Classifiers - pg. 227)

The operations and attributes of a class have an important feature that is their owner
scope. It can have two different values:
& Instance: each instance holds its own value for the feature (in case of
atributes) or the feature is applicable to the set of instances of the class
(instance methods);
& Classifier: there is just one value of the feature for al instances of the class
(class attributes) or that the feature is applicable to the class itsalf (class
methods).

According to [BRJ99a], examples of class attributes and operations can be:

“The most common use of classifier scoped features is for private attributes that must be
shared among a set of instances, such as for generating unique Ids among all instances of
a given classifier, and for operations that create instances of the class.” (chapter 9 — pg.
124)

Classes are identified by their name. In [BRJ99q] it is stated that:
“ Every class must have a name that distinguishes it from other classes.” (chapter 4 — pg.
49)

It is aso stated that:
“...the same thing in a system (such as the class Person) may appear multiple times in
the same diagram or even in different diagrams. In each case, it is he same thing.”
(chapter 7 —pg. 94)

Besides these features stated to classes there are many others that apply. However to start
with the formalization only the main features are considered as a basis. From the core
description of classes, it is possible to extend the formal specifications in future to adapt
what more becomes necessary.

28 Formalization of UML using Algebraic Specifications

Chapter Three: UML and ADT: a Semantic Framework Proposition

& Congiderations on the Semantics

A class can be viewed as the implementation of a type since it determines the operations
applicable to a set of instance values. In fact classes can be viewed as implementations of
different types through the redlization of different interfaces (collections of operations
determining the services of a class). However, for the purposes of this work classes and
types are considered as semantically equivalents.

Instances of a class mean the objects of that class. In [CE97] instance is defined as the
instantiation of a type with a unique identity. In the UML it is agreed that instances have
unique identity.

& Mapping Rules
Considering a generic class A, to which general class formal specifications can be
determined, the following set of mapping rules is established:

1 As in Forma Classes [Royer99a] (see section 2.5.3), a single generator (or
constructor) is considered:
newA:T1,....Tn>A

2. Primitive observers are defined for each argument type of the generator. They
describe the instance attributes.
getAttrl: A->T1
setAttrl: A, T1->A

3. Other instance operations are defined as functional extensions of these previous
formal operations.

4. For object identity, two operations are defined:
identity : A -> 1dA
_\eg__: A A ->Bool
The identity operation that expresses the object identity, and the object equality
operation that will be defined as identity equality (see rule 8).

It is taken a functiona model for object identity in which the identity is part of the
values of the object. Therefore the constructor of the ADT gains this new signature:

newA : IdA, T1,,Tn > A

In which IdA represents the type for identity of objects of type A. IdA is defined as an
ADT, which is described in appendix A.

5. Congtants are defined in order to give examples of instances of the class that will be
used later to test some axioms.
oneA: > A
anotherA : ->A

Follows now the description of the axioms stating the semantics of these formal
operations.

Formalization of UML using Algebraic Specifications 2

Chapter Three: UML and ADT: a Semantic Framework Proposition

6. Primitive Observers, i.e. the instance attribute accessors, are described in terms of the
constructor newA.
getAttr1(newA(id1, varl, ..., varN)) = varl,
In which idl is a variable expressing an identity value, varl and varN are variables
expressing values of the attributes according to their types. Then the operation
getAttrl obtains the value of the attribute represented by varl in the constructor.

setAttr1(newA(idl, varl, ..., varN), var11) = newA(id1, var1l, ..., varN);

Varll represents another variable, i.e. another value for the same attribute expressed
through varl. The constructor newA represents the parameter of type A in the set
operation. Then the setAttrl operation changes the value of the attribute represented
by varl for the object.

These axioms are applicable to all the attribute accessors of the class.

7. ldentity operator, expressing another primitive observer, is also described through the
constructor.
identity(newA(id1, varl,..., varN)) = id1,

8. Asmentioned in item 4, object equality is achieved through identity equality.
al\eg a2 = identity(al) \eq identity(a2);
In which al and a2 are variables of type A. The operation equality (eq) between
identities is defined in the ADT for the type | dA.

9. For the constants, the following axioms take place.
oneA = newA((newldA), varl, ..., varN);
another A = newA((nextldA(newldA)), var1, ..., varN);

The first constant oneA is equal a new instance of A with a new identity. And,
anotherA represents an instantiation of A with a new identity obtained through the
existing one. The newldA and nextldA are operations of the type IdA.

As LP does not alow genericity (see section 4.2), for each class a sort identity (as IdA for
class A) is defined.

The explicit identity adopted does not correspond exactly to the implicit one considered
in object-oriented programming languages, but it is not so smple to treat implicit
identities in algebraic ADT. Implicit identities bring some side-effects and the way in
which it can be solved is still under investigation by the collaborators of this work.

& Metalevel Specifications

In order to specify class attributes and class methods (according to the owner scope
explained in class syntax and semantics), a specification for a class in a more global level
can be given. This specification is considered at the metalevel since the own class is the

30 Formalization of UML using Algebraic Specifications

Chapter Three: UML and ADT: a Semantic Framework Proposition

generated object in this case, and therefore the operations and attributes described are
applied to the class.

Assuming the same generic class A, the following mapping rules are defined at the
metalevel. It isimportant to state that the sort defined in this case is the sort classA.

10. For class creation:
newClassA : String, T1, ..., Tn > classA
In which String type is used to represent the class name (its identity). The newClassA
is the constructor (or generator) of the ADT. T1,...,Tn represent the class attribute

types.

11. According to the semantics, a name identifies a class. Then the following operators
take place:
classldentity : classA -> Sring
_\eq__ : classA, classA -> Bool
In which class equality is achieved through identity equality.

12. As the class A must be the unique instance of the type, a constant to refer to it is
defined. It will be used in the axioms instead of variables of the type.
theClassA : -> classA

13. Class Attribute Descriptors:
getClassattrl: ->T1

stClassAttrl: T1 ->T1
As the class attribute refers to the class itsalf and not to one of its instances, it does
not gain an additional parameter of type A in is signature (as in RAL approach,

section 2.5.1).
14. Class operations are defined as functional extensions of these previous operations.

Another point is that in the semantic framework the operation new is defined as the
constructor for the sort, therefore the new for class instantiation is not considered at the
metalevel as in Smalltalk approach even being considered a class operation in UML
semantics.

3.2.2 Association Trandation

& Association Syntax and Semantics
Associations are a structural relationship that can be established between classes. They

define a set of tuples relating instances of the connected classes. Associations can include
two or more association ends (the connection from the association to a class). In this
work it is considered just binary associations for the moment as depicted in figure 4.

Formalization of UML using Algebraic Specifications 3

Chapter Three: UML and ADT: a Semantic Framework Proposition

multiplicity
I 4 V.
0.1 works

~

* { Company

v
name

Figure 4. UML association between classes Person and Company

Associations can have a name, or it can be used role names to identify the association.
Role names represent the role that the classes play in the relationship. Another important
property of associations is the multiplicity. Each association end has its own multiplicity
stating “how many” elements of that class can be related to an instance of the class in the
opposite end. According to [BRJ99a], multiplicities can be: exactly one (1), zero or one
(0..1), many (0..*), or one or more (1..*). An exact number or intervals are aso possible.

An important restriction about associations, according to [UML99] is:
“The instances of an association are a set of tuples relating instances of the classifiers.
Each tuple value may appear at most once.” (Association— pg. 2-19)

Taking into account these points of association semantics, the following trandation for
association is done.

& Mapping Rules

It is important to state that in the semantic framework associations are identified by a
natural number since association names are not always provided. Role names are not yet
considered. They are really close to interface aspect: a role can have its type determined
by an interface, i.e. a role an abstraction presents to another can be determined by the
service it provides. So it makes more sense to include role names when interfaces are also
treated in the framework.

Considering a generic association Assocl between classes A and B, the following set of
mapping rules is established:

1. First of all, an empty association (as an empty set) is considered to which links can be
added and removed.
void : Nat -> Assocl
In which Nat represents the type for association identity, which needs to be treated in
LP.

2. The other generator (or constructor) for the association sort is addLink:
addLink : Assocl, A, B -> Assocl
In which one instance of A and one instance of B are added as a tuple to the set of
tuples represented by the association. The AddLink together with void operator
determines the values for the association sort.

32 Formalization of UML using Algebraic Specifications

Chapter Three: UML and ADT: a Semantic Framework Proposition

3. To alow the manipulation of the set of links, operation remove link is aso described.
removelLink : Assocl, A, B -> Assocl

4. AllLeftLink and alRightLink operators map an object of a given type to a set of
related objects of the other type.
allLeftLink : Assocl, B -> SetA
allRightLink : Assocl, A -> SetB

5. Still considering links, an operator to test if two instances are related through the
association is specified.
isLinked : Assocl, A, B ->Bool

6. Operatorsto test if an instance is linked through the association.
isLeftLinked : Assocl, B ->Bool
isRightLinked : Assocl, A -> Bool

7. Testing if the association, asit is a set, is empty.
iIsEmpty : Assocl-> Bool

The operations in rules 5 to 7 are necessary to write some proofs in the theorem
algebraic prover LP.

8. Operators leftMultiplicity and rightMultiplicity are determined in order to express the
left and right multiplicity of a given instance in the association. These operators could
also be obtained by the size of the set of instances recovered through the operators
alLeftLink and alRightLink (rule 4). However they are defined in order to get a
more compl ete association description.
leftMultiplicity : Assocl, B -> Nat
rightMultiplicity : Assocl, A -> Nat

9. For association identity, the following operations are described.
identity : Assocl -> Nat
_\eg__ : Assocl, Assocl -> Bool
In which association equality is achieved through identity equality (see rule 12).

The main axioms determined in order to reflect association semantics are as follows.

10. According to association semantics, an axiom stating that tuples of instance values
cannot be equal in an association becomes necessary.
(al \eq a2) A (b1 \eg b2) => addL ink(addLink(assocl, al, bl), a2, b2) =
addLink(assocl, al, bl);
In which al and a2 are variables of type A, bl and b2 variables of type B, and assocl
a variable representing the association. Adding two links with variables that represent
the same objects is like adding this link only once.

Formalization of UML using Algebraic Specifications 3

Chapter Three: UML and ADT: a Semantic Framework Proposition

11

Multiplicity constraints are written only if the multiplicity is not free, i.e. different
from 0 or More. Axioms for multiplicity constraint make use of the size operation for
Set. Size returns the number of objects in a Set (as in the algebraic approach of
section 2.5.2).

Considering just the multiplicity at the right end the following axioms are described.
% multiplicity Just One

size(allRightLink(assocl, al)) = 1;

% optional multiplicity (0..1)
~(size(allRightLink(assocl, al)) > 1);

% minimum multiplicity 1, in the one or more (1..*) case
~(size(allRightLink(assocl, al)) < 1);

The axioms in items 12 to 17 state the semantics of someformal operations defined in the
association specification.

12.

13.

14.

15.

Stating the semantics of the operation allLeftLink (that can also be applied to
allRightLink with the adequate changes).

(b1 \eq b2) => allLeftLink(addLink(assocl, al, b2), bl) = insert(al,
allL eftLink(assocl, bl));

What says that: if bl is equal b2, then the result of alLeftLink to bl adding a link to
b2 will be the set resultant from allLeftLink to b1 plus one more element a.

~(b1l\eq b2) => allLeftLink(addL ink(assocl, al, b2), b1) = allL eftL ink(assocl,
bl);

What says that : if bl is not equal b2, then the result of alLeftLink to bl adding a link
to b2 will not afect the result of alLeftLink to bl.

allLeftLink(void(i), bl) = {} :SetB ;
The result of allLeftLink to an empty association s an empty set. The parameter i in
the operation void represents association identity.

Axioms for association identity.

identity(void(i)) =i;

identity(addLink(assocl, al, b1)) = identity(assocl);

assocl \eq assoc2 = equal (identity(assocl), identity(assoc?));

In which equality between associations is obtained in LP through identity equality.
Axioms to state that an association is empty.

iIsEmpty(void(i));

~(isEmpty(addLink(assocl, al, bl)));

Axioms stating when two instances of object types are linked

Formalization of UML using Algebraic Specifications

Chapter Three: UML and ADT: a Semantic Framework Proposition

~(isLinked(void(i),al, bl));
isLinked(addLink(assocl, al, bl), a2, b2) = ((al \eq a2 Abl \eq b2) \/
isLinked(assocl, a2, b2));

16. Axioms stating when one instance is linked through the association.
~(isLeftLinked(void(i), b1));
isLeftLinked(addLink(assocl, al, bl), b2) = ((b1 \eq b2) \/ isL eftLinked(assocl,
b2));
To the operator isRightLinked the same axioms are valid making the adequate
changes.

17. Axioms stating the semantics for leftMultiplicity and rightMultiplicity operators (rule
8).
leftM ultiplicity(void(i), bl) = 0;
(b1\eg b2) => leftMultiplicity(addLink(assocl, a2, b2), bl) =1 +
leftM ultiplicity(assocl, bl);
~(b1\eq b2) => leftM ultiplicity(addL ink(assocl, a2, b2), bl) =
leftM ultiplicity(assocl, bl);

rightMultiplicity(void(i), al) = 0;

(al \eq a2) => leftMultiplicity(addL ink(assocl, a2, b2), al) =1 +
leftM ultiplicity(assocl, al);

~(al \eq a2) => leftMultiplicity(addL ink(assocl, a2, b2), al) =
leftM ultiplicity(assocl, al);

Taking association formal description, it can be realized that specific sorts for the set of
instances of the connected classes need to be predefined. For the previous trandations,
thisis the case for SetA and SetB. The generic sort for specifying the set of instances of a
classis described in appendix A.

3.2.3 Composition Translation

& Aggregation and Composition: Syntax and Semantics

Associations can be in the form of aggregations meaning that objects of one class of the
association are consisted of instances of the other class. This kind of association is known
as “whole/part” relationship. Aggregations can be shared aggregations or compositions.
Shared aggregations are merely conceptual and do not carry extra semantics comparing to
plain associations. They are used just to show that conceptually the classes are not at the
same hierarchical level.

Composition in turn is a strong form of aggregation that determines a dependency of the
lifetime of the parts in respect to the whole. In a composition, the part cannot be shared
by severa wholes. In [UML99] it is stated that:

Formalization of UML using Algebraic Specifications)

Chapter Three: UML and ADT: a Semantic Framework Proposition

“ Composite Aggregation is a strong form of aggregation which requires that a part
instance be included in at most one composite at a time, although the owner may be
changed over time.” (Association — pg. 2-54)

The dependent lifetime is determined by [UML99]:

“Furthermore, a composite implies propagation semantics (i.e., some of the dynamic
semantics of the whole is propagated to its parts).” (Association — pg. 2-54)

This propagation of dynamic semantics implies that the whole manages the creation and
deletion of its parts. Moreover if the whole is copied or deleted, so need to be the parts as
well. This propagation of semantics could be represented through message sending
between classes. However these dynamic aspects are not yet treated in the semantic
framework in its actual stage.

A composition in UML is represented as depicted in figure 5.

Window | — whole
1 =~ S
h composition
*
Frame — part

Figure 5. UML composition representation

& Considerations on the Semantics

The semantics for composition is not clear in UML as well as for aggregations.
Aggregations as explained in UML documents are not more than plain associations with
some conceptua value, being not a powerful characterization of a relationship.

Composition in turn establishes a strong form of relationship. Taking the fact that a part
strongly belongs to its whole and that the whole manages its parts, a part could be seen as
encapsulated in the whole instance in such a way that visbility to it could only be
achieved through the whole avoiding side-effects in the system. However UML does not
fairly state composition semantics.

Taking the static concerns, the main points that can be stated for composition semantics

multiplicity at the whole side must be 1 at maximum;

a part instance cannot be part in more than one composite at a time;

instance reflexivity must be forbidden; i.e. a part cannot be part of itsdlf;

recursion must be stopped in any situation, a part cannot be part of a whole that is in
turn its part.

L

36 Formalization of UML using Algebraic Specifications

Chapter Three: UML and ADT: a Semantic Framework Proposition

In[UML99] it is assumed that:

“Both kinds of aggregations define a transitive, antisymmetric relationship (i.e., the
instances form a directed, non-cyclic graph).” (Core— pg. 2-55)

However considering that aggregations are merely conceptual and do not determine

dependency between the instances, only for compositions this assumption will be stated.

Compositions do encompasses specific semantics and therefore some extra mapping rules
need to be specified.

& Mapping Rules
Considering a composition Comp between generic classes A and B, being A the part and
B the whole, the following mapping rules take place.

1. An operation to state that A is part of B isincluded in the association specification.
isPartOf : Comp, A, B ->Bool

2. The semantics of this operation is expressed through the following axioms.
isPartOf(addL ink(compl, al, bl), a2, b2) => (al \eq a2) N\ (b1 \eq b2);
~(isPartOf(void(i), compl, al, bl));

3. An axiom to state that a part instance cannot belong by composition to more than one
composite is written.
~(b1l \eq b2) => (isPartOf(compl, al, bl) A ~(isPartOf(compl, al, b2))) V
(~(isPartOf(compl, al, bl) A (isPartOf(compl, al, b2)));

To complete composition semantics, some axioms in a more global level are added:

4. Considering compositions Compl from A to B and Comp2 from A to C in which B
and C represent the wholes, the following axioms are written to match the semantics
stating that an instance part cannot be part in more than one composite.

assert
?a:A,b:B,c: C,compl: Compl, comp2: Comp2

isPartOf(compl, a, b) => ~(isPartOf(comp2, a, c));
isPartOf(comp2, a, c) => ~(isPartOf(compl, a, b));

5. Considering two compositions Compl and Comp2 between classes A and B, the
following axioms are added to guarantee that recursion is stopped.
assert
?a: A, b: B, compl: Compl, comp2: Comp2
(isPartOf(compl, a, b)) => ~(isPartOf(comp2, b, a));

Formalization of UML using Algebraic Specifications 37

Chapter Three: UML and ADT: a Semantic Framework Proposition

6. Considering a composition Compl from A to A, the following axiom states that
instance reflexivity is forbidden.
assert
?a: A, compl: Compl
~(isPartOf(compl, a, a));

3.2.4 Constraints Translation

In the algebraic semantic framework, some UML association constraints are translated,
as. XOR, subset and derived.

& XOR Constraint

XOR is a constraint that can be established between two associations with the same
source class. Taking the following example in figure 6, it can be redlized that an
exclusive or becomes necessary. An account can be of a Person or of a Company but not
of both at the same time.

0..1] Person
Account ,

. {XOR}

0.1

Figure 6. UML XOR constraint

Anytime an XOR constraint is encountered, an operator and axiom are generated to state
the semantics determined by it. Considering a constraint XOR between generic
associations from A to B and from A to C, the following mapping rules take place.

1. Operator defined to specify the constraint XOR between two associations.
rightXOR : AssocAB, AssocAC -> Bool

2. Axiom stating the semantics of the constraint.

assert
right XOR(assocAB, assocAC) =
(~(isRightLinked(assocAB, a)) /\ (isRightLinked(assocAC, a))) \/
((isRightLinked(assocAB, a)) A ~(isRightLinked(assocAC, a)))

Meaning that each A instance must be linked to a B or a C instance at atime.

& Subset Constraint

38 Formalization of UML using Algebraic Specifications

Chapter Three: UML and ADT: a Semantic Framework Proposition

A subset constraint between two associations establishes a dependency from one in
respect to the other. It can be clear in the example depicted in figure 7.

Department

member [1..* 1| manager

Figure 7. UML subset constraint

In this example, the constraint subset is used between the two associations to imply that a
manager of a department must be one of its members.

To state that anytime there is a subset constraint, the multiplicity of the dependent
association end must be less or equal the multiplicity of the association end in which it
depends on, the following operator and axiom are written.

Consider two associations between generic classes A and B in which AssocAB2 depends
on AssocABL1 at the right side.

1. Operator defined to specify the constraint subset between the two associations.
rightSubset : AssocAB1, AssocAB2 -> Bool

2. Axiom stating the semantics of the constraint.
assert
rightSubset(assocAB1, assocAB2) =>
~(size(allRightLink(assocAB2, a)) > size(allRightLink(assocAB1, a)))

Following these steps, any constraint involving associations are possible to be formalized
in the semantic framework.

3.2.5 Association Class Translation

& Association Class Syntax and Semantics

In an association between two classes, the association itself might have properties. In the
UML, thisis modelled as an association class, which is a modelling element that has both
association and class properties. Because of its features inherited from classes and
associations, it was feasible to treat also association classes in the framework in its first
approach. Association classes are rendered in UML as depicted in figure 8.

Formalization of UML using Algebraic Specifications 0

Chapter Three: UML and ADT: a Semantic Framework Proposition

Person : Company
Job\associ ation
class

dateHired
salary

Figure 8. UML association class representation

& Mapping Rules
Considering an association class AsClassAB defined in association Assocl between
classes A and B, the following mapping rules take place.

1. Asin Classes, asingle generator (or constructor) is considered:
newAsClassAB : Nat, A, B, T1, ..., Tn -> AsClassAB
In which Nat is the type for association class identity (as used for associations in
Association Tranglation — see rule 1), A and B the types representing the classes
connected through the association and T1, ..., Tn the types of the association
attributes.

2. Association class identity operations are written.
identity : AsClassAB -> Nat
__\eq___: AsClassAB, AsClassAB -> Bool
In which association class equality is achieved through identity equality.

3. Two attributes are described.
left : AsClassAB -> A
right : AsClassAB -> B

4. Arguments of the constructor newAsClassAB expressing the attributes are described
through the functions:
getAssocAttrl: AsClassAB ->T1
setAssocAttrl : AsClassAB , T1-> AsClassAB

5. A mapping to the corresponding association is defined.
assoc_AsClassAB : ->AssocAB

40 Formalization of UML using Algebraic Specifications

Chapter Three: UML and ADT: a Semantic Framework Proposition

6. The sat of existing instances is expressed through another sort, which here is called
Sons. The operator s defined in this Sons ADT are as follows:
empty : -> Sons (generator or constructor of the empty set of instances)
add : AsClassAB, Sons-> Sons (another constructor)
first : Sons-> AsClassAB (first instance in the set)
rest : Sons-> Sons (restant set)
__\isln__: AsClassAB, Sons-> Bool

7. Then the relation between the instances of the association class and the links of the
association is defined through an axiom.
assert
newAsClassAB(i, al, bl) \isln sons_AsClassAB <=>
isLinked(assocAsClassAB, al, bl)

In which al and bl are variables representing instances of A and B respectively.

3.2.6 Generalization Trandation

& Generalization Syntax and Semantics

Generalizations are a kind of relationship in which one general thing is specialized in
some specific ones. It is known as “is-a-kind-of” relationship in which a specialized thing
is-akind-of a more genera one. The general thing is called the superclass and the more
specific things are called subclasses. The subclasses inherit al features of the super,
including behavioral and structural features. Subclasses also inherit participation in
associations from the superclass. The subclasses may even add new structure and
behavior. The most important aspect concerning generalizations is that the instances of
the subclass may be used anywhere an instance of the superclass is applied, but the
reverse is not true. This is coherent concerning to the concept of subtyping.

Another important point in generalizations is that the subclass can even change the
behavior of the parent. It can have an operation with the same signature as an operation in
the parent but with a different implementation, what is caled overridden. Through
overridden polymorphism is achieved.

Generalization is represented in UML as depicted in figure 9.

Formalization of UML using Algebraic Specifications 4

Chapter Three: UML and ADT: a Semantic Framework Proposition

&

Shape
origin
size

move()

‘ _____________________ » Qeneralization

Circle Polygon
radius points
display()

Figure 9. UML generalization representation

Mapping Rules

Considering two generic classes A and B, in which B is subclass of A, the following
mapping rules for inheritance can be established.

1

In the constructor of type B, the attributes of superclass A need aso to be considered
through the following function signature.

newB : IdB, TAL, ..., TAn,TB1, ..., TBn, ->B

In which 1dB is the identity for type B, TAL, ..., TAn represent the A instance
attribute types, and TB1, ..., TBn express the B instance attribute types.

To establish inheritance of structure a correspondence between the arguments of the
generators of the ADTs is determined through the following axiom.
assert
PAB((newB(idb, attrA1, ..., attrAn, attrB1, ..., attrBn,), (newA(ida, attr1l, ...,
attrn))) = equal(attrAl, attr1) /\ ... \ equal(attr An, attrn)

This axiom states that PAB, a structural projection from B to A, is determined
through the correspondence between the common argument types of the generators of
the super and sub classes. The first argument types of the B generator correspond to
the inherited attributes.

To determine inheritance of associations, a simulate function as in the modular
algebraic approach of section 2.5.2 is used.
simulate: B> A

Considering an association between the superclass A and a generic class C, the
following axiom determines the semantics for association inheritance.

42

Formalization of UML using Algebraic Specifications

Chapter Three: UML and ADT: a Semantic Framework Proposition

assert

?cCaA

addLink(assocAC, a, c¢) = addLink(assocAC, (simulate(newB(idl, attrl,...,
attrn)), c);

Inheritance of behavior is not yet provided in the framework.

3.3 Conclusion and Summary

The agebraic semantic framework in its actua stage encompasses the formal
specifications for the main UML satic model elements, as. Classes, Associations
(including Compositions) and Generalizations. It also covers the formal specifications
for some other static constructs of the UML Class Diagram as Association Classes and
Association Constraints. Some other static building blocks of UML can also be
incorporated in future by extension as Interfaces, variations of Classes (Abstract and
Template), other forms of relationships (dependencies and redlizations) as well as OCL
constraints in the model that can also be translated.

Since all the static aspects are formalized, UML dynamic concerns can also be treated. As
stated before, dynamic aspects are redly powerful to express side-effect in operations
through message sending between objects.

From the formal specifications generated, proofs can be applied over the models and
therefore inconsistencies are checked. In future, basing in the formal specifications
already achieved, transformations of models can be proved and rapid prototyping from
design to code can be implemented.

In order to make clear the final resultant formal specifications for each UML static model
element considered, the main mapping rules with their result are depicted in the following
tables.

Formalization of UML using Algebraic Specifications 3

Chapter Three: UML and ADT: a Semantic Framework Proposition

3.3.1 Summary Tables

The rules and axioms which numbers are pointed out in these tables can be found in the

corresponding section of the trandation from the UML model element to ADT.

Class Semantics Formal Operator Rules
and
Axioms
1. Single Generator newA : IdA, T1,...,Tn -> A
1
2. Instance Attribute Descriptors getAttrl: A -> attrlType
setAttrl: A, attrliType-> A 2,6
3. Instance Operations Extensions of the operations in items 1
and 2 3
4. Object Identity identity: A ->1dA
_\eg__: A/ A->Booal 47,8
5. Class Attributes getClassattrl: >T1 12
setClassAttrl: T1 ->T1
6. Class Operations Extensions of the operations in item 13
5.
Table 2 — Formal Specifications for Classes
Association Semantics Formal Operator (or axiom) Rules
and
Axioms
1. Generator of an Empty Set void : Nat ->Assocl
1
2. Generation of Links addLink : Assocl, A, B -> Assocl
(simulating association 2
instantiation)
3. Stating that an Association | (al \eq a2) A (b1 \eq b2) =>
cannot contain twice the same | addLink(addLink(assocl, a1, bl), a2, 10
link. b2) = addLink(assocl, al, bl);
4. Deéletion of Links removelLink : Assocl, A, B -> Assocl
3
5. Return the set of Linksfor an | allLeftLink : Assocl, B -> SetA 4,12

instance of aclassifier connected
through the association.

allRightLink : Assocl, A -> SetB

Formalization of UML using Algebraic Specifications

Chapter Three: UML and ADT: a Semantic Framework Proposition

6. Multiplicity constraints | size(allRightLink(assocl, al)) = 1; 11
established through the
application of size operation of | ~(size(allRightLink(assocl, al)) > 1);
sets over adlLeftLink and
alRightLink. ~(size(allRightLink(assocl, al)) < 1);
Table 3— Formal Specifications for Associations
Composition Semantics Formal Operator (or axiom) Rules
and
Axioms
1. State that an instance is part of | isPartOf : Comp, A, B -> Bool
another. 1
2. A part instance cannot belong | ~(b1 \eq b2) => (isPartOf(compl, al,
by composition to more than one | b1) X ~(isPartOf(compl, al, b2))) \/
composite. (~(isPartOf(compl, al, bl) A 3,4
(isPartOf(compl, al, b2)));
isPartOf(compl, a, b) =>
~(isPartOf(comp2, a, ¢));
isPartOf(comp2, a, C) =>
~(isPartOf(compl, a, b));
3. Recursion must be stopped | (isPartOf(compl, a, b)) =>
and instance reflexivity | ~(isPartOf(comp2, b, a)); 5,6
forbidden. ~(isPartOf(compl, a, a));
Table 4- Formal Specifications for Compositions
Generalization Semantics Formal Operator (or axiom) Rules
and
Axioms
1. In the constructor of the| newB: 1dB, TAL, ..., TAn, TB1, ...
subclass, the attributes of the| TBn, ->B 1
superclass need aso to be
considered.
Formalization of UML using Algebraic Specifications 45

Chapter Three: UML and ADT: a Semantic Framework Proposition

2. To establish inheritance of
atributes, a correspondence
between the arguments of the

assert
PAB((newB(idb, attrA1l, ..., attrAn,
attrB1, ..., attrBn,), (newA(ida, attrl,

generators of the super and sub | ..., attrn))) = 2

class ADTs is determined. equal(attrAl, attrl) A ... N
equal(attrAn, attrn)

4. Inheritance of associations are | assert

expressed through a smulate| ? ¢: C,a A 3,4

function.

addLink(assocAC, a, C) =
addLink(assocAC,
(smulate(newB(id1, attrl,..., attrn)),
0);

Table 5 —Formal Specifications for Generalizations

Formalization of UML using Algebraic Specifications

Chapter Four: Technologies Supporting the Semantic Framework

Chapter Four

Technologies Supporting the Semantic Framewor k

In this chapter the tools and technologies used to automate the generation of the formal
specifications from a CASE tool are explained. In this context, the Graphtalk metatool is
used to build the CASE tool, C++ is used to program the mapping rule functions and
Larch Prover interprets the formal specifications generated to conduct validations on
them. Each of these technologies and their integration are explained as follows.

4.1 The Practical Context to apply the Framework

In order to allow automatic generation of the formal specifications from a CASE tool
based on the mapping rules described (see section 3.2), some technologies and tools are
used in a suitable integrated way. First, the Graphtalk metatool was used to generate a
CASE tool for the UML. From the user model built in the CASE tool, ASCII files
containing the formal specifications following Larch Prover syntax are generated. This
generation is automated through a Dynamic Linked Library (DLL) built in C++ from
which functions can be called by Graphtalk CASE tool. The C++ source code invokes
Graphtalk APl (Application Programming Interface) functions in order to be able to
access Graphtalk repositories of information from which all the information about the
user model can be recovered.

Larch Prover ends this process by interpreting the formal specifications in the generated
files being able to prove properties and detect inconsistencies about the models. Figure 10
shows a scheme of the integration among these different technologies.

Formalization of UML using Algebraic Specifications a7

Chapter Three: UML and ADT: a Semantic Framework Proposition

Workflow:
C++
Graphtalk seUEa Larch
Prover
M etatool Gds
compilation of access /'
UML grammay through /
Graphtalk / generatel input
AP!/
functions generates
//
v \ J Y
UML CASE J ASCII files Properties and
Tool K with Formal Inconsistencies
/ Specifications Proved
Internal Repository of Data

Figure 10. Workflow integrating di fferent technologies

In the next sections, each one of these technologies is described.

4.2 ThelLarch Prover

Larch itself is not in fact alanguage but an approach to define formal specifications being
composed by a family of languages and tools. Larch Prover (LP) [GG89], the theorem
prover of the Larch family is a set of proving tools that includes: rewriting, critical pair
computation, Knuth-Bendix completion, proof by induction, proof by contradiction, and
proof by case. LP has simple syntax and semantics, allows the definition of algebraic
specifications to describe Abstract Data Types, and allows using rewrite rules to prove
properties.

Larch Prover is based on Larch Shared Language (LSL). LSL is a twotier language of
the Larch family which has a top tier that is a behavioral interface specification language
(BISL) tailored to a specific programming language, and a bottom tier that is used to
describe the mathematical vocabulary used in the pre- and post-condition specifications.
Besidesthefact that LP is based on LSL it can also uses its own input syntactic format to
the formal specifications that is the one followed in this work.

48 Formalization of UML using Algebraic Specifications

Chapter Four: Technologies Supporting the Semantic Framework

LP alows defining existential propositions (with the \E prefix), universal propositions
(prefix \A) and propositions with usua logical connectors. It also supports first order
predicate calculus with equality. The main principle behind LP is the rewrite process:
each rule defined by an axiom is rewritten based on an operation in a process that goes
until it can be concluded (terminated) or some inconsistency can be detected.

The complete command of LP uses a wel-known agorithm: the Knuth-Bendix
completion algorithm. This algorithm computes all the critical pairs and adds them in the
system. The process stops with an inconsistency, which implies that the system is not
consistent. Sometimes the process terminates without inconsistency. Otherwise the
system does not terminate. The use of LP to proceed to proofs will be presented in
chapter 5, section 5.4.

Other important aspects about LP are that it does not support genericity nor partia
algebras and the only predefined type is Boolean. The semantics of the LP operations is
expressed in axioms written through equations determining equality between terms.

4.3 The Graphtalk Metatool

To alow the automatic generation of formal specifications from a UML static model, a
UML CASE tool was developed in Graphtalk carrying the mapping rules integrated in its
context (see section 3.2). This integration is supported by a DLL built in C++ that
provides the link edition from the C++ functions to Graphtalk. Therefore Graphtalk can
invoke these functions.

Graphtalk allows both: work on the metalevel in order to generate CASE tools, and
manipulate the tools generated at the model level. The work started at the metaevel
specification.

4.3.1 Graphtalk Metamodel L evel

Graphtalk metamodel is provided with an own meta-modeling language. To generate the
CASE toal for the UML covering just the static diagram for the moment, it was necessary
to describe the semantics of the UML static model elements in Graphtalk using its meta-
modeling language. The following steps were taken in order to create the modeling tool:

& First: description of the specifications of the UML-tool in the meta-modeling

language of Graphtalk was provided. Specifications in Graphtalk are stored in a file
with .gti extension, e.g. UML..gti.

& Second: compilation of the source of the UML-tool (UML grammar) was performed
obtaining a file with .gtm extension, e.g. UML. gtm. Using this .gtm file the devel oper
can start creating his models.

Formalization of UML using Algebraic Specifications 49

Chapter Three: UML and ADT: a Semantic Framework Proposition

The first step stated needs to be taken for each kind of diagram provided by the modeling
(or CASE) tool. As the work presented here covers just the UML Static Diagram for the
moment, only the semantics of this diagram was described to compose the UML
grammar in Graphtalk.

Each diagram in Graphtak is viewed as a graph. To describe a graph, it is necessary to
work with four separate diagrams with complementary meanings.

& The semantics specification diagram defines al Graphtalk nodes and the links
between these nodes. The nodes and links are used respectively to represent UML
classes, and UML associations and generalizations.

& The property assignment diagram defines properties that are applied to the elements
defined in the previous diagram. For example, the name of a class and the multiplicity
of an association can be viewed as properties of the node representing a class and the
link representing an association respectively.

& The shape specification diagram allows a graphical form to be created for the
elements. A UML class, for example, gets its graphical representation in this diagram.

& The widget specification diagram allows widgets or other visua components to be
defined to the CASE tool.

Figure 11 shows at the left side the first window of Graphtalk pointing out these diagrams
from which the user starts working.

{2 GraphTalk - UML [_[O] =]

GraphT alk “ Drefinition of the graph hierarchy

Tl Semnartic ation “ ML - Static Diagram - Camposition of Clazses
Property Azsignment “ kAL - Static Diagram - Composzstion of Links
45 Shape Specification
@z Widget Specification

Figure 11. Four steps to define a graph.

These diagrams taken into account different Graphtalk elements. In the semantics
specification diagram the following elements are used.

50 Formalization of UML using Algebraic Specifications

Chapter Four: Technologies Supporting the Semantic Framework

& Nodes

The concept of node in Graphtalk is similar to the concept of classes in an object-oriented
language such as C++, Java or Smadltak. A node represents an entity that can be
instantiated. In the case of the UML static diagram, they are used to specify the classes as
can be seen in figure 12. Nodes represent the elements that can be instantiated in an
instance of the graph, i.e. in an instance of the static dagram at the model level.

& Links

Links are elements, which allow instances of nodes to be linked to each other. A graph
can contain several different types of links. For the UML static diagram, links are used to
represent associations (including aggregations and compositions) and generalizations as
depicted in figure 12.

& Entities

An entity is an element, which has a meaning only inside Graphtalk. It is an abstract
element that cannot be instantiated, i.e. the elements that are modeled in Graphtalk using
an entity are not visible in the modeling tool. The role of an entity is to generalize other
elements. The same entity can be an abstraction for graphs, nodes and links. A set of
properties that is valid for a set of elements can be assigned to an entity which is the
abstraction of these elements. An entity here is used to generaize the properties of
associations, compositions and aggregations as shown in figure 12.

Class[1]

—_—

Generalization Link[4] >

Azsociation Link[1]

otatic Diagram([1]

Entity
Asgsociation

Composition Link[3]

Aggregation Link[2]

Figure 12. Semantic specification window for the UML static diagram

Considering that classes in UML have a list of attributes and a list of methods and that
attributes and methods also have properties, a new local graph defining specific nodes
needs to be defined as part of the static diagram graph (see figure 13). It is aloca graph
because these concepts are local to classes.

Formalization of UML using Algebraic Specifications 51

Chapter Three: UML and ADT: a Semantic Framework Proposition

Class Attribute

—_ -

Entity
Attribute

Instance Attribute

B ———

Class Method

—_ -

atatic Diagram (local) Entity

Entity Method

Instance Method

-—_ -

Argument
=

Figure 13. Semantics of aclass

Argument node is defined to represent the arguments of methods as can be seen in figure

13.

Properties for these elements are cEfined in the property assignment diagram as can be
seen in figure 14 for class properties. Properties are elements that will contain avaue in
the instance of the graph at the model level (i.e. in a user design). In Graphtalk properties

can be of different types: Text, Boolean, List, Subnode, Popup Menu, etc.

52 Formalization of UML using Algebraic Specifications

Chapter Four: Technologies Supporting the Semantic Framework

SubMNode [N] .
Class Attribute Listi1) Class Attribute A | Fopup henu

—_— Afdtribute Typel1)

SubMode [M] : 1
Instance Attribute Lish1) Instance Attribute

B ——

e SubMode [N]
Instance Methods List1) Instance Method

B SubMaode [H]
A Argument Lish1)

. y
3 SubMode [M] ;
Class Methods List(1) Class Method
Argument

R

’P-ql\

Class[1] o

A

—_ -

N

4

Fopup Menu
Argument TypelD)

Figure 14. Properties of classes

Shapes to the model elements are given through the shape specification diagram. The
shapes given to each model element in the CASE tool can be viewed in the UML static
diagram presented in chapter 5, section 5.1.

Finally, widgets were used in this work to allow the definition of a menu through which
the developer can invoke the generation of the formal specifications from the CASE tool.
To alow the link between Graphtalk and C++ the name of the C++ module (DLL) and
the name of the invoked C++ function were provided in the widget specification.

Returning to figure 11, it can be clear the semantic diagrams defined for the UML static
diagram (a graph in Graphtalk).
4.3.2 Graphtalk Model Level

At the model level, the developer is able to build his static diagrams in the CASE tool
generated.

To start working, the developer needs to “run” the compiled source (UML.gtm). It is
done just by creating a new file starting from the UML.gtm file. The user models will be
saved in afile with extension .gti.

Formalization of UML using Algebraic Specifications 53

Chapter Three: UML and ADT: a Semantic Framework Proposition

Using a modeling tool in Graphtalk means instantiating an hypergraph, i.e. making an
instance of the modeling tool. The hypergraph in Graphtalk represents the entire
modeling tool. When it is instantiated, the grammar describing graphs (diagrams) of the
modeling language will aso be instantiated.

Since the user completes his design, he can choose a menu option to ask for the
generation of the algebraic Formal Specifications as can be seen in figure 15. The C++
function correspondent is then activated and processes the trandations in order to get the
files expressing the Abstract Data Types to be interpreted by Larch Prover.

_f;'- GraphT alk Meta-T ool
Il Fichier Edition Affi

braic ication

chage

Figure 15. The menu option to run the translation from UML to ADT

4.4 The use of C++ Programming Language

To program in C++ the environment chosen was the Microsoft Developer Studio for
Microsoft Visual C++ 5.0.

The following steps were taken to build the Dynamic Linked Library of functions in
C++:

& Fird, it was necessary to start a project of type Win32 Dynamic-Link Library. Visual
C++ defines then a workspace with the same name of the project with reference to the
project, e.g. umltoadt.dsw (Project Workspace) and umltoadt.dsp (Project File).

& Then, three files need to be defined:

& umltoadt.def : the definition of the library with the name of the C++ function
invoked by Graphtalk (umltranslation);

& umltoadt.h : declares the signatures of al the functions to be used in the
trandation process by the C++ program; umltranslation is the main function that
starts invoking the others;

& umltoadt.cpp : the C++ source code in which the trandating functions which
signatures are declared in the umltoadt.h are programmed. The translating
functions are programmed expressing the mapping rules for each UML model
element described in section 3.2.

In the C++ source code, ASCII files are generated with the formal specifications resultant
from the translation process. It is generated one ASCII file for each UML model element
of the design done in the CASE tool. It is aso generated one file for each additional type
needed (as explained in section 3.2).

4 Formalization of UML using Algebraic Specifications

Chapter Four: Technologies Supporting the Semantic Framework

The fonts of the umltoadt.def, umltoadt.h and umltoadt.cpp files are presented in
appendix B.

4.5 Conclusion

In this chapter it was reported how the trandation process from UML to agebraic
specifications describing ADTs could be automated. The work realized to this automation
took into account the integration of Graphtalk and C++ in a suitable way. In the past there
was aready a project [JRG98] developed by students at Ecole des Mines de Nantes,
France that made use of these technologies. The subject of the project was Réingénierie
des systémes classiques vers des systémes a objets, or in English Reengineering of
classical systems to build object oriented systems. A transformation of designs done in
Merise to OMT modeling language was defined. This project was used as the basis to the
development of the C++ source code and to perform its integration to the Graphtalk.

Formalization of UML using Algebraic Specifications %

Chapter Three: UML and ADT: a Semantic Framework Proposition

56 Formalization of UML using Algebraic Specifications

Chapter Five: A Concrete Application of the Semantic Framework

Chapter Five

A Concrete Application of the Semantic Framework

In order to demonstrate how the trangdlation process from UML to algebraic specifications
describing ADTs works in practice, a UML static diagram developed in the CASE tool
built in Graphtalk is presented. It is important to state that the environment in which the
CASE tool runs is aso the Graphtalk. The files containing the formal specifications
generated for the static diagram are mentioned in this chapter and shown in appendix C.

These files will then be interpreted in Larch Prover. Therefore the results that can be
obtained making use of the semantic framework are the properties and inconsistencies
that Larch Prover can prove about the system. Some of them will also be described in this
chapter.

This chapter ends with some conclusions that can be taken after putting the semantic
framework to be used in practice.

5.1 The UML Static Diagram designed in the CASE tool

The CASE study chosen in order to demonstrate a UML Static Diagram drawn in the
CASE tool generated from Graphtalk is a Library system. It considers the classes:
Library, Publication, Copy, User, Teacher, Student, Loan and LocalUse. Loan
characterizes the dtuation in which the user takes a copy to use out off the library, while
LocalUse characterizes the internal use of copies by users. Considering it is an academic
library, two main groups of users are defined: Teacher and Student. Each Publication
may hawe any number of copiesin the library. The corresponding UML Static Diagram is
depicted in figure 16.

Formalization of UML using Algebraic Specifications 57

Chapter Five: A Concrete Application of the Semantic Framework

Librarny
Teacher Student
libMame
area Course
address
telephone ;
listUzers) User
listPublications]) e L
address
Fublication d
Localllse el
title .
hours active
author Laan .
listLoans)
publishingHouse numberLoan]]
listResenvations))
listCopies] situation
duration
getlaan)
Copy
cancelloan)
copyMumber
renewblaan)

Figure 16. UML Static Diagram drawn in the Graphtalk CASE tool

As it was not so easy to use Graphtak and the manuals were not so good, many
improvements are still needed in the tool. The multiplicities of the associations, for
example, are not explicitly shown in the diagram. They are described as follows:

association from Publication to Library: Many (0 or plus) to Just One;

association from Library to User: Just One to Many (O or plus);

association from Publication to Copy: Just One to One or more;

composition from Copy to LocalUse (the target end is a composite aggregation): One
or more to Just One;

the same for the composition from Copy to Loan: One or more to Just One;
association from LocaUse to User: Many (0 or plus) to Just One;

in the same way association from Loan to User: Many (0 or plus) to Just One.

K& KRR

R &R &

5.2 Formal Specifications generated for the UML Static Diagram

Asking for the generation of the formal specifications for this UML Static Diagram will
result in the following ASCI|I files containing the algebraic specifications:

58 Formalization of UML using Algebraic Specifications

Chapter Five: A Concrete Application of the Semantic Framework

& one file per Class description: Library.lp, Publication.lp, Copy.lp, LocalUselp,
Loan.lp, User.lp, Teacher.lp and Student.lp;

& one file describing a type Id for the objects of each type (or class) according to the
rules in section 3.2.1: IdLibrary.lp, IdPublication.Ip, IdCopy.lp, IdLocalUselp,
IdLoan.Ip, IdUser .Ip, IdTeacher.lp and | dStudent.Ip;

& one file expressing a type set for each class associated to another according to the
rules explained in section 3.2.2: SetLibrary.lp, SetPublication.lp, SetCopy.lp,
SetlL ocalUse.lp, Setl oan.lp and SetUser .Ip;

& one file per each plain association and composition which name is composed by the
three first letters of each class: PubLib.lp (association from Publication to Library),
LibUselp (association from Library to User), PubCop.lp (association from
Publication to Copy), CompCopLoc.lp (composition from Copy to LocalUse),
CompCopL oa.lp (composition from Copy to Loan), LoaUse.lp (association from
Loanto User), LocUselp (association from LocalUse to User);

& one file per generdization: genUseTea.lp (generdization between User and Teacher)
and genUseStu. I p (generalization between User and Student).

These files, as explained before in chapter 4, will be interpreted by Larch Prover (LP)

following then LP syntax. Therefore their extensions must be .Ip. The description of some
of these filesis given in gppendix C.

5.3 Checking Inconsistencies

Taking the previous UML Static Diagram describing a library system, an inconsistency

can be detected by running the system formal described in LP. It is explained in the
following section.

Another example of inconsistency still related to the use of composition is done in section
5.3.2.

5.3.1 A Composition Inconsistency

Taking the compositions between Copy and Loan and between Copy and LocalUse (see
section 5.1), it can be redlized that there is an inconsistency concerning multiplicities:
multiplicity is Just One in both composites (Loan and LocalUse). According to the
semantics of composition, a part instance cannot belong by composition to more than one
whole at a time. The following composition axioms will determine a rule in LP that will
not be respected:

Formalization of UML using Algebraic Specifications 5

Chapter Five: A Concrete Application of the Semantic Framework

assert
?c: Copy, | : Loan, lu: LocalUsg, c1: CompCopL o0a, c2: CompCopL oc

isPartOf(cl, c, |) => ~(isPartOf(c2, c, Iu));
isPartOf(c2, c, lu) => ~(isPartOf(c1, c, I));

It will generate an error when the total system runsin LP since the multiplicity just onein
Loan and LocalUse implies: ? ¢c: Copy, | : Loan, lu : LocalUse, ispartOf(cl, c, 1) A
ispartOf(c2, c, lu).

5.3.2 A Composition with Generalization Inconsistency

Another example of inconsistency that can be detected in LP is depicted in figure 17:

*
1. A

1

B

.

Figure 17. Instance reflexivity

Assuming that an instance cannot be part of itself (see section 3.2.3) what can cause
circular specifications, the following axioms can be used in LP to try to write proofs over
this example stating that it is inconsistent.

assert
?a: A, b: B, comp: CompAB

~(isPartOf(comp, a, a));
(isPartOf(comp, a, b)) => ~(isPartOf(comp, b, a));

5.4 Inconsistency with Constraint: a Goncrete example of Proof written
inLP

Taking the XOR constraint and its rules explained in section 3.2.4 (item XOR
Constraint), the following example in figure 18 can be proven inconsistent through LP:

60 Formalization of UML using Algebraic Specifications

Chapter Five: A Concrete Application of the Semantic Framework

A assocl 1 B
| {XOR}
assoc’/ 1

Figure 18. An inconsistency with XOR constraint

A complete command in LP for XOR constraint according to the rules (in bold) that were
explained in section 3.2.4 is as follows.

% Assocl and Assoc2 types are simply expressed by the existential proposition P1

assert

\E Xasl \E Yasl (~(Xasl \eq Yasl) /\ (rightMultiplicity(Xasl, a) = 1) /\ (rightMultiplicity(Y asl, a)= 1)) /\
rightXOR(Xasl, Yasl))

%the constraint XOR is defined by proposition P2

% ------- constraint right XOR

declare operator rightXOR : assocl, assoc2 -> Bool

assert ~(Xas\eq Yas) =>rightX OR(Xxas, Yas) = (~(isRightLinked(Xas, a)) /\ (isRightLinked(Yas, a))) \/
((isRightLinked(Xas, a)) /\ ~(isRightLinked(Y as, a)))

% One simple example of proof isdone
prove rightMultilicity(Xas, @) = 1 => isRightLinked(Xas, a)
resby ind on Xas
<> basis subgoal
[] basis subgoal
<> induction subgoal

resby caseal \eqg a %proof by case
<> casealc\egac
[] casealc\eqac
<> case ~(alc\eq ac)
res by => %proof by implication

<> => subgoal
%addition of atrivial lemma
assert identity(ac) \eq identity(alc) = false
crit as* with as* %critical pair computation
[1 => subgoal
[] case ~(alc\eq ac)
[] induction subgoal
[] conjecture
ged %the proof is done

A critical pair is a potential ambiguity in a set of rules. It can be ether a new fact
forgotten in the system or an irremediable inconsistent fact. This kind of proof is

generaly not automatic, an expert user must choose the way to do it. Now it can be
illustrated that the UML sample model in figure 18 is not consistent:

fix Yasl as assoc2(a), Xasl as assocl(a) in P1 %elimination of \E

Formalization of UML using Algebraic Specifications 61

Chapter Five: A Concrete Application of the Semantic Framework

instantiate Xas by asl(a), Yasby as2(a) in P2 %elimination of \A

LP saysthat the system becomes inconsi stent

5.5 Conclusion

In this chapter it was demonstrated practical examples of the trandations and
inconsistencies that can be checked. It was aso demonstrated the use of LP to prove
inconsistencies in the formal specifications.

62 Formalization of UML using Algebraic Specifications

Chapter Six: Conclusion

Chapter Six

Conclusion

The formaization of Object Oriented analysis and design modeling languages has been
clamed as a means to allow rigorous analysis, software comprehension and to guarantee
consistency in all software development phases. The rigor imposed by formalization can
also support early detection of errors in the development process what avoids that errors
are carried till the implementation of the systems.

Even though UML is adopted as the standard Object Oriented modeling language for
analysis and design it is not yet formalized.

The thesis of this research has been that formalizing UML through the use of a formal
abstract language and also giving support to proceed to checks and validations on the
formalized models can bring several contributions to software engineering and
reengineering processes. Moreover formalization makes many ambiguities in the
semantics arise being able to help in solving them.

6.1 Contributions

The main contribution of this work is to provide a basis to achieve a final UML
formalization approach that can be used to support software engineering as well as
software reengineering efforts. Formalization plays an important role in software
engineering and reengineering environments in the sense that it can help in guaranteeing
consistency in many stages. among model elements used in a model, between diagrams
used to model a system, and between design and implementation through the refinement
of models into code (and in the other way around: recovering design from code).
Moreover it can contribute towards the specification of a final and unambiguous
semantics to UML model elements.

In the semantic framework proposed in this thesis, the main concrete advantage taken is
the early detection of errors that can be achieved in the analysis and design phases
considering the software development life cycle. Avoiding that errors are carried till the
source code is really cost effective since errors in the implemented system require really
more effort and high cast to be eliminated.

In the context explained, many other contributions can be provided in future having the

semantic framework as a basis:

& Improving OO legacy systems can be based on formal specifications in order to
preserve semantics. Transformations of models based on refinements steps can be
performed based on formal proved transformations.

Formalization of UML using Algebraic Specifications 63

Chapter Six: Conclusions

& The formal specifications can make the link between design and implementation.
Rapid prototyping generating source code from formal specifications has more
charces to make it suitable to the system requirements.

& Ambiguitiesin UML semantics are solved through formalization.

& System quality and consistency are proved through the application of proofs in the
formal specifications generated.

6.2 Future Work

In this thesis it was presented a first approach of a UML formalization method that has
being developed making use of algebraic specifications to describe ADTSs.

In the semantic framework presented in this dissertation, because of the limited time
available to its development, only some static model elements of UML are formal
described. Concerning the Static Diagram of UML, other model elements (or variations
of them) are till to be considered in the formalization. It is considered as the main
elements to continue with this work: Interfaces, Dependencies, Abstract Classes,
Redlizations and Constraints written in OCL.

Moreover it is considered the core semantics concerning each model element. Many other

points can be considered in order to extend the framework:

& Extensions to the core concepts described are needed in order to have complete
semantics specifications for the Structural Aspects of UML.

& Formalization of the remaining UML static model elements needs to be considered.

& Dynamic aspects of UML are also necessary to be formal described to have a
complete description of elements semantics. Collaborations between objects are the
first point to cover in order to complete some aspects of the semantics, such as to
show the propagation of the dynamic semantics from the whole to its parts in a
composite relationship (see chapter 3, section 3.2.3).

& Model transformations need to be formal proved. This is one of the most important
points to achieve with formalization. Through proved transformations, reengineering
and forward engineering efforts encompassing model refinements can be supported.

In fact, the main point to consider now is how the results of the proofs and checks
obtained in LP can be demonstrated in the CASE tool to alow end user direct access.

As there was areal time constraint in order to develop this semantic framework, many of
these points suggested as future extensions are still under investigation by the
collaborators of this work. It is hoped that these extensions as soon as they are achieved,

64 Formalization of UML using Algebraic Specifications

Chapter Six: Conclusion

they can be published and widely spread through the interested software engineering and
academic community.

Formalization of UML using Algebraic Specifications &b

Chapter Six: Conclusions

66 Formalization of UML using Algebraic Specifications

References

References:

[ADV99]

[BRJ9OH]

[BRJ9%K]

[CE97]

[CHS'97]

[CP99]

[CS974]

[CS97h]

[CS97(]

[EBFLROS]

[FELR97]

Veronica Argafiaraz, |lse Dierickx, and Aline Vasconcelos. A Pattern
Representation Tool with UML. EMOOSE — European Master of Science
in Object Oriented Software Engineering. Ecole des Mines de Nantes,
France. Vrije Universiteit Brussel (VUB), Belgium. February 1999.

Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling
Language User Guide. Rational Software Corporation. Copyright ? 1999
by Addison Wedley Longman, Inc.

Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling
Language Reference Manual. Rational Software Corporation. Copyright
? 1999 by Addison Wedley Longman, Inc.

Tony Clark and Andy Evans. Foundations of the Unified Modeling
Language. In NFM97: 2nd BCSFACS Northern Formal Methods
Workshop, Ilkley, UK, September 1997.

Erciiment Canver, Friedrich von Henke, Detlef Schwier, Marie- Claude
Gaudel, Nicolas Guelfi, Olivier Biberstein, Didier Buchs. Comparison of
Object-Oriented Formal Methods. Universitédt Ulm 1997.

Miro Casanova Paes . Formal Representation of UML EMOOSE —
European Master of Science in Object-Oriented and Software Engineering
Technologies. Ecole des Mines de Nantes, France. Vrije Universiteit
Brussel (VUB), Belgium. February 1999.

Computer Sciences Corporation. Graphtalk v3.5 User Manuel. 1997.

Computer Sciences Corporation. Graphtalk v3 APl manual volume 1.
1997.

Computer Sciences Corporation. Graphtalk v3 APl manual volume 2.
1997.

A.Evans, }M. Brudl, R. France, K. Lano, and B. Rumpe. Making UML
Precise. OOPSLA'98 Conference on object-Oriented Programming
Systems, Languages, and Applications. Vancouver, October 1998.

Robert France, Andy Evans, Kevin Lano, and Bernhard Rumpe. The
UML as a Formal Modeling Notation. OOPSLA'97 Workshop on Object-
oriented Behavioral Semantics, p. 75-81. Atlanta, Georgia, USA, October
1997.

Formalization of UML using Algebraic Specifications 67

References

[GG89] Stephan Garland and John Guttag. An Overview of LP, the Larch Prover.
In Proc. of the third International Conference on Rewriting Techniques
and Applications, volume 355 of Lecture Notes in Computer Science.
Springer-Verlag, 1989.

[GG9]] Stephen J. Garland and John V. Guttag. A Guide to LP, the Larch Prover.
MIT Laboratory for Computer Science, December 1991.

[HHK 98] Ali Hamie, John Howse, Stuart Kent. Modular Semantics for Object-
Oriented Models. Proceedings of Northern Formal Methods Workshop,
eWics Series, Springer Verlag. September 1998.

[HI95] I. Houston and M. Josephs. The OMG’ s Core Object Model and
compatible extensions to it. Computer Standards and Interfaces, vol 17,
nos5 — 6, 1995.

[HR87] Horst Reichdl. Initial Computability Algebraic Specifications and Partial

Algebras. International Series of Monographs on Computer Science No. 2.
Oxford Science Publications — 1987.

[JRGO8] David Jaillet, Thierry Roussel, Nicolas Grelier. Projet Transversal
D’ Informatique — Ré-ingénierie des systémes classiques vers des systémes
a objets. Ecole des Mines de Nantes, France. Fi95-info. April, 1998.

[LB98] K. Lano and J. Bicarregui. Semantics and Transformations for UML
Models. UML’98 International Workshop. Mulhouse, France. June, 1998.

[MEY88] Bertrand Meyer. Object-Oriented Software Construction. International
Series in Computer Science. Prentice Hall, 1988.

[MW93] M. Ward. “ Abstracting a Specification from Code” . Journa of Software
Maintenance: Research and Practice, vol 5, 1993, pp. 101- 122.

[PA99] Pascal André. On Formalism in Object-Oriented Methods— the Object

Identity Problem MSF — IRIN — Université de Nantes. April 1999.
Internal Document.

[RACH] Jean-Claude Royer, Pascal André, Dan Chiorean. Object Design with
Formal Classes. MSF —IRIN — Université de Nantes. April 1994.

[Royer99a] Jean Claude Royer. Abstract Data Types and Formal Classes. IRIN —
Université de Nantes. April 1999.

[Royer99b] Jean Claude Royer. UML and ADT: A First Approach to Semantics and
Verifications. IRIN — Université de Nantes. June 1999. Interna Document.

68 Formalization of UML using Algebraic Specifications

References

[UML99 OMG Unified Modeling Language Specification. UML Semantics.
Version 1.3. January 1999.

Formalization of UML using Algebraic Specifications 6

References

70 Formalization of UML using Algebraic Specifications

Appendix A: Auxiliary Data Types

0B/
% Entiers avec ordre <
% et m ni num

% 5/ 1/ 99

% Nat1.1p

% syst eme convergent

set nane nat

decl are sort Nat

declare variables i, j, k: Nat
decl are operators
0 : -> Nat
1: -> Nat
2 -> Nat
3 -> Nat
4 -> Nat
5 -> Nat
S . Nat -> Nat
o+ : Nat, Nat -> Nat
- . Nat, Nat -> Nat
i nf . Nat, Nat -> Bool
equal : Nat, Nat -> Bool
assert

sort Nat generated by 0, s;

s(0);
s(1);
s(2);
s(3);
s(4);

abhwnN kR
[T L I TR |

s(i) +] =s(i +j);
i i) =s(i +]);

inf(0, 0);

~(inf(s(i), 0));
inf(0, s(j));

inf(s(i), s(j)) =inf(i, j);

~equal (0, s(i));

~equal (s(i), 0);

%0 \eq O; OK mais ca utile
equal (i:Nat, i:Nat);

equal (s(i), s(j)) = equal (i: Nat,

Formalization of UML using Algebraic Specifications

Appendix A: Auxiliary Abstract Data Types

% ac +; on noins ca term ne
% conver ge oui

%08B8888888 N

% definition des chai nes

% 1/ 7/ 99

% String.lp

F R

% charger Char.|p, Nat.l|p avant
ex Char

ex Natl

set name string

declare sorts String
decl are variables str, strl, str2 : String
decl are operators
enpty : -> String
add : Char, String -> String
concat : String, String -> String
length : String -> Nat
is_enpty : String -> Bool
__<__ : String, String -> Bool
equal : String, String -> Bool

assert
sort String generated by enpty, add;

is_enpty(enpty);
~i s_enpty(add(carl, str));

concat (enpty, str) = str;
concat (add(carl, strl), str) = add(carl, concat(strl, str));

I ength(empty) = O;
| engt h(add(carl1, strl)) = 1+l ength(strl);

equal (enpty, enpty);

~equal (add(carl, strl), enpty);

~equal (enmpty, add(carl, strl));

~equal (add(carl, strl), add(car2, str2)) = equal (strl, str2);

~(enmpty < enpty);

~(add(carl, strl) < enpty);

(enmpty < add(carl, strl));

add(carl, strl) < add(car2, str2) = (precede(carl, car2) \/
(equal (carl, car2) /\ (strl < str2)));

% sh n enpty < add(a, add(b, enpty))

% sh n add(a, add(b, enmpty)) < add(a, add(b, enpty))
% sh n add(b, add(b, enmpty)) < add(a, add(b, enpty))
% sh n add(a, add(a, enpty)) < add(a, add(b, enpty))

72 Formalization of UML using Algebraic Specifications

Appendix A: Auxiliary Data Types

% sh n add(a, add(a, enpty)) < add(a, enpty)
% sh n add(a, enpty) < add(a, add(b, enpty))
% sh n add(a, add(b, enpty)) < add(a, add(b, add(c, enpty)))
% sh n add(a, add(b, enpty)) < add(b, add(b, add(c, enpty)))
% sh n add(a, add(b, enpty)) < add(b, enpty)

W 08 VL, 0
er type for A instances

set nanme |dA

decl are sorts |dA
decl are variables : idAl, idA2 : IdA
decl are operators

new dA : -> | dA

nextl dA : IdA -> IdA
_\eq__ : IdA, IdA -> Bool
assert

sort | dA generated by newl dA, nextldA;

newl dA \ eq newl dA;

~(newl dA \eq next | dA(i dAl));

~(next 1 dA(i dAl) \eq new dA);

next | dA(i dAl) \eq next|dA(idA2) = (idAl \eq idA2);

set nanme Set A

decl are sorts A, SetA, Nat

decl are variables aAl, aA2 : A, setAl, setA2 : SetA
decl are operators

{} : -> SetA

{_} : A-> SetA

insert : A SetA -> SetA

_\U__: SetA, SetA -> SetA
_\in__ : A SetA -> Bool
_\I__: SetA, SetA -> Bool

size : SetA -> Nat

assert

sort Set A generated by {}, insert;

{aAl} = insert(aAl, {});

~(aAl \in {});

aAl \in insert(aA2, setAl) <=> (aAl \eq aA2 \/ aAl \in setAl);

{} \I setAl;

insert(aAl, setAl) \| setA2 <=> (aAl \in setA2 /\ setAl \| setA2);

Formalization of UML using Algebraic Specifications P&

Appendix A: Auxiliary Abstract Data Types

aAl \in (setAl \U setA2) <=> (aAl \in setAl \/ aAl \in setA2);
% axi oms for size operator

size({}) = 0;

(aAl \in setAl) => size(insert(aAl, setAl)) = size(setAl);
~(aAl \in setAl) => size(insert(aAl, setAl)) = 1l+size(setAl);

74 Formalization of UML using Algebraic Specifications

Appendix B: Source Code

UMLTOAD. DEF

LI BRARY uni t oadt
DESCRI PTI ON ' Denons for G aphTal k'

EXETYPE W NDONS

DATA SINGLE MOVEABLE
CODE MOVEABLE DI SCARDABLE

HEAPSI ZE 1024

EXPORTS
um transl ation

UMLTQAD. H

#i ncl ude <i ostreane
#i ncl ude <fstreane
#incl ude <string>

#i ncl ude <cstdlib>
#i ncl ude <w ndows. h>
#i ncl ude "gti.h"

usi ng nanespace std;

[] FRFARK KKK KR Kk kK k Rk ok Rk kKK KKK KKK KKKk Kk Rk kR ok kR ok kK Kk k ok ok ok

/1 Functions used for the Mapping fromUWM to ADT

[] RFAKK KKK KKK A KK A K KKK I RK AKX KA F AR IR KK AR KA h KA * AKX h kK

extern "C'

void umtranslation(OBJ viewer, OBJ hyperUM, OBJ arg);
/1 Main function for the generation of ADT froma UV nodel

/1 This function will be invoked by an action_itemin a Gaphtal k nenu

// It operates on an instance of a UML Static D agram

}

//**

//Functions to CGenerate the Lines in an Qutput Text File
//**
void frecordln (ostrean& gen, string& str);

//Record strings in a text output file

void frecord (ostrean& gen, string& str);
//Record strings in a text output file
//do not skip aline each time it records a new string

voi d fskipline (ostrean& gen);
//skip alinein the output file

//***

//To finish the declares operators and assert sections it necessary to wite two dots.

//This is Larch Prover syntax.

//***

voi d endSection(ostrean& ffile);

//**

//Translation fromUW Cass to Abstract Data Type

//Transl ating Rul e and Auxiliary Functions
//**

void Transl ated ass(OBJ vi ewer, OBJ unG aphUM.);

//This function will invoke all the mapping rule functions for d asses

/lrecover the nunber of attributes of a class

Formalization of UML using Algebraic Specifications

Appendix B: Source Code

SHORT genAttr Nunber (OBJ unG aphUML, OBJ und assUW);

void rul eld ass(ostrean& fclass, string classnane, OBJ und assUM., SHORT nbAttr);
//Rule 1 generates the nane of the sort being specified

voi d rul e2d ass(ostrean& fclass, string classnane, OBJ und assUML, SHORT nbAttr);
//Rule 2 constructs the section declare variables, with

//two variables per instance attribute, two variables of the type

/I bei ng defined and one variable of type identity

voi d rul e3d ass(ostrean& fclass, string classnane, OBJ und assUML, SHORT nbAttr);
//Rule 3 starts the declare operators section of the al gebraic specification
//with the standard operations new, identity and object equality

voi d rul e4d ass(ostrean& fclass, string classnane, OBJ und assUML, SHORT nbAttr);
/1 Rul e4 generates the accessor operations for the attributes

voi d rul e5d ass(ostrean& fclass, string classname, OBJ und assUWM);
//Rul e 5 generates the constant operations and fornal operators
//the constants represent exanples of instances of the class

voi d rul e6d ass(ostream& fclass, string classnane, SHORT nbAttr, OBJ und assUW);
//Rule 6 starts the axi onms part

//The axions are used to state the senmantics of the operations

//1/and the constants.

voi d rul e7q ass(ostream& fclass, string classnane, SHORT nbAttr, OBJ und assUW);
//Rule 7 defines the axions for the accessors

void rule9ldentity(ostrean& fidentity, string classnane);
/lconstructs the type identity in another output file

//**

//Translation from UM Associations to sorts in Larch Prover
//**

voi d Transl at eLi nks(OBJ und assUM.) ;

/lrecover the links froma node class

//if the link is an association or aggregation, invokes tranl ateassoc function;
/1 ot herwi se, invokes transl ateconposite

voi d Transl at eAssoc(OBJ unLi nkUML, OBJ sourced ass, OBJ targetd ass);
//Translation froma UML Association to a sort in Larch Prover

voi d rul elAssoc(OBJ unLi nkUML, ostreanm& flink, string |inkname, string sourcenane, string
target nane);

//Rule 1 generates the name of the sort being specified

//and a comrent defining the sort to be described

voi d rul e2Assoc(ostrean& flink, string |linknanme, string sourcenane, string targetnane);
//Rule 2 constructs the section declare variables, with

//two variabl es per object type, two variables per object type set,

//two variables of type equal the type being defined, and

//one variable of type Nat

voi d rul e3Assoc(ostrean& flink, string |inknane);
//Rule 3 starts the declare operators section of the al gebraic specification
//with the standard operations void, identity and association equality

voi d rul e4Assoc(ostrean& flink, string |linkname, string sourcenane, string targetnane);
//Rule 4 declares the operators for add and renove links in the association

voi d rul e5Assoc(OBJ unLi nkUML, ostrean& flink, string |inkname, string sourcenane, string
tar get nane) ;

//Rule 5 decl ares operators to return the set of links for a given instance,

//and al so declares the operators to test if the association isEmpy and if

//two instances are |inked

voi d rul e6Assoc(ostrean& flink, string linkname, string sourcenane, string targetnane);

76 Formalization of UML using Algebraic Specifications

Appendix B: Source Code

//Rule 6 starts the axi oms part
//The axions are used to state the semantics of the operations.

voi d rul e7Assoc(ostrean& flink, string |linkname, string sourcenane, string targetnane,
OBJ unLi nkUW) ;
//Rule 7 states the axioms for multiplicity constraints

voi d rul e8Assoc(ostrean& flink, string |linkname, string sourcenane, string targetnane);
//Rule 8 states the axions for association identity

voi d rul e9Set (ostrean& fset, string classnane);
//Rule 9 generates the sort Set for the source and target d ass
/1 of the Association

// Speci al Rules for Conpositions

string rul elConposition(string |inknane);

string rul e2Conposi tion(string |inknanme, string sourcenane, string targetnane);
voi d rul e3Conposition(ostrean®& flink, string |inknanme, string sourcenane, string
t ar get nane) ;

voi d rul e4Conposition(ostrean& flink, string linknanme, string sourcenane, string
t ar get nane) ;

#i ncl ude "um t oadt. h"

UMLTOAD. CPP

// EEEE RS E RS EE SRR EEEEEE SRR EEEEEEEEEEEEEEEEEEEEEEEE SRS

/1 Functions to be used in the translation fromUWM -> ADT
// IR R R R R SRR R RS SRS SRR R SRR R R RS RS R R R R R R R R EREEREEEEEEEEES

// Main function for the generation of ADT froma UML nodel

/1 This function will be invoked by an action_itemin a Gaphtalk menu
/1 1t operates on an instance of a UML Static D agram

void um translation(OBJ viewer, OBJ hyperUWM, OBJ arg)

{
//recover all the graphs associated to a hyper UML
//in this version the only existent graph is the static, so only one graph
//will be recovered for the |ist
OBJ graphLi st, unGraphUW;
graphLi st = Gi GraphsO (hyper UMW) ;
whi | e(graphList !'= NL) {
unG aphUML = Qi Car (graphList);
if (&idassSynbol (GidassO (unGaphUW)) == Qi Synbol ("Static Diagrant))
{
Transl at ed ass(vi ewer, unG aphUW);
} . . .
graphList = Qi Cdr(graphList);
}
}

//**

//Functions to CGenerate the Lines in an Qutput Text File
//**

//Record strings in a text output file
//skip aline each tinme it records a new string
void frecordln (ostrean& gen, string& str)

{
}

//Record strings in a text output file
//do not skip aline each time it records a new string
void frecord (ostream& gen, string& str)

gen << str << endl;

Formalization of UML using Algebraic Specifications i

Appendix B: Source Code

{
}

gen << str;

//skip aline in the output file
voi d fskipline (ostrean& gen)

{
}

gen << endl;

[] R KR kK ok kK ok kK ok ok ok kR kK ok kR ok ok K kK ok R kR ok Rk ok ok ok ok ok kR ok R R R ok R kR R Rk R ko kK kK kK

/1 To finish the declares operators and assert sections it necessary to wite two dots.

//This is Larch Prover syntax.
//~k***~k***~k~k******************************~k**

voi d endSection(ostrean® ffile)

string fin;

fin="..";
frecordin(ffile, fin);

[] xR K KK kK kK ok ok kK kR kK Kk R K R K R R R R R R kR kR Rk ko Rk K ko

//Translation froma UML. dass to a sort in Larch Prover

[] R R KK kK ke ok ok ok kK kR ok kK Kk R K R K R R R R KR R R kR Rk kK Rk K ko

voi d Transl ateCd ass(OBJ viewer, OBJ unG aphUW)

{
OBJ nodeLi st UML, und assUMW;
SHORT numnber Attr;
//OBJ |inkListUM, unLi nkUM;
string filename, classnane, fileidentity;
nodeLi stUML = @i NodesOf (unG aphUM.) ;
whi | e(nodeLi stUM. I'= NI'L) {
und assUML = @& i Car (nodeLi st UML) ;
if (&idassSynbol (GidassO(undassUM)) == @i Synbol ("d ass")) {
//generate the nane of the text file for the class description
classnane = G i NameOf (und assUW) ;
filename = classnane + ".Ip";
//creates the file in wite and text node
of streamfclass(filename.c_str());
/lrecover the nunber of instance attributes of a class;
//this nunber is necessary to recover the attributes that will be
used
//in some mapping rul es
nunber Attr = genAttrNunber (unG aphUML, und assUW);
//calls the mapping rule functions to generate the
//lines in the al gebraic specification
rul eld ass(fcl ass, classname, unC assUM., nunberAttr);
rul e2d ass(fcl ass, classnane, und assUM., nunberAttr);
rul e3C ass(fcl ass, classnane, und assUM., nunberAttr);
rul e4d ass(fcl ass, classnane, und assUM., nunberAttr);
rul e5C ass(fclass, classname, unC assUW);
//to finalize the declare operators section
endSection(fcl ass);
//starts the axi omsection
rul e6d ass(fcl ass, classnane, nunberAttr, und assUW);
//to finalize the assert section
endSection(fcl ass);
//constructs the type identity i n another output file
fileidentity = "1d" + classname + ".|p";
//creates the file for sort ldentity in wite and text node
of streamfidentity(fileidentity.c_str());
rule9ldentity(fidentity, classnane);
78 Formalization of UML using Algebraic Specifications

Appendix B: Source Code

//this type of file is closed automatically and doesn't require a
cl ose comand

//***********

//after finishing the translation for the dass, then

//it is invoked the translation for the links (associations,
conposi tions, aggregations)

//for this class

Transl at eLi nks(und assUM.);

}
nodelLi stUML = G i Cdr (nodeLi stUML); //withdraw the first element of the
Iist

}
//Translating Rules fromUW O ass to Abstract Data Type

/I Recover the nunber of attributes of a Oass
//Attributes are a SubNode property which cerries a list of attributes
SHORT genAttrNunber (OBJ unG aphUML, OBJ unCd assUW.)
{ /] Test if the first Node of the list is in fact a Cass
/1 In this version we only have cl asses as nodes, but
[/ thinking about future enhancements it is better to keep this test

[/ Coj unAttrUW;
SHORT nbAttrs;

/funAttrUML = Gi Car (G i NodesOf (G i CoreO (und assUWM))) ;

[1if (QiCar(QiNodesOr (@i CoreC* (und assUM))) == und assUW)

/[/if (QidassSynbol (GidassO(unAttrUWM)) == Qi Synbol ("I nstance Attribute")) {
nbAttrs = G i SubSubNodesCount (und assUM., G i Synbol ("Instance Attribute List"));
return nbAttrs;

}

//Rule 1 generates the name of the sort being specified
//and a comrent defining the sort to be described
voi d rul eld ass(ostreanm& fcl ass, string classnane, OBJ und assUML, SHORT nbAttr)

{ string specnane, comment, attrnane, attrtypenang;
SHORT i, j;
OBJ unAttribut UM;
string listattr[10];
bool found;

frecordl n(fclass, comrent);

comment = "Y%pecification of the properties and behavior for the instances of
class " + cl assnaneg;

frecordl n(fclass, coment);

comment = "%arch file: " + classname + ".Ip";

frecordl n(fclass, coment);

frecordl n(fclass, comment);

f ski pline(fclass);

f ski pline(fclass);

//set name section starts the fornmal specification for the sort

specnane = "set name " + cl assnane;
frecordl n(fcl ass, specnane);

f ski pline(fclass);

specnanme = "declare sorts " + classnane;
frecord(fclass, specnane);

//declares the identifier type

specnanme = ", |d";

frecord(fclass, specnane);
frecord(fclass, classnane);

Formalization of UML using Algebraic Specifications el

Appendix B: Source Code

//decl ares the type Set
specnanme = ", Set" + classnane;
frecord(fcl ass, specnane);

//recover the types of the attributes to the section declare sorts
for(i=0; i<nbAttr; i++) {
unAttributUML = G i Get SubSubNode(und assUM., G i Synbol ("I nstance Attribute
List"), i);
attrnane = Gi NameO (unAttribut UML) ;
attrtypename = Qi NameOf (&1 Get Menu(unAttri but UM, Qi Synbol ("Attribute
Type")));
found = false; //controls if the type already exists in the |ist
//traverses the attribute types array - listAttr - and select the
attribute types
//to conpose the declare sorts section; each attribute type nust be

decl ared
//only once
for (j=i; j>0; j--) {
if (attrtypenane == listattr[j])
found = true;
}
if (!found)
specnane = ", " + attrtypenane;
listattr[i] = attrtypenang;
}

frecordl n(fclass, specnane);
/ldelete listattr; //no garbage collection in C++

}

//Rule 2 constructs the section declare variables, with

//two variables per instance attribute, two variables of the type

/I bei ng defined and one variable of type identity

voi d rul e2d ass(ostrean® fcl ass, string classnane, OBJ und assUM., SHORT nbAttr)

{ string specvariables, varl, var2, variablenane, typeattr, sectionnang;

SHORT i, count;//the goal of the variable count is to allow just two variable
decl arations per line

OBJ unAttribut UM;

count = 0;

specvari ables = "declare variables ";

varl = "a" + classnane + "1,";

var2 =" a" + classnane + "2";

specvari abl es = specvariables + varl + var2 + " : " + classnang;

frecord(fclass, specvari ables);
count = count + 1;
for(i=0; i<nbAttr; i++) {
unAttributUML = G i Get SubSubNode(und assUM., G i Synbol ("I nstance Attribute
List"), i);
)) vari abl ename = G i NameOf (unAttribut UML) ;
//generates two variables with the attribute type
specvariables = variablenane + "1, " + variablenane + "2 : ";
//recover the type of the attribute
typeattr = Gi NameOf (G i Get Menu(unAttribut UM, Gi Synbol ("Attribute
Type")));
if (count == 2)
{ fskipline(fclass);
sectionnane = "declare variables "
frecord(fclass, sectionnane);

}

el se

{ vari abl enane = ", ";
frecord(fclass, variabl enane);

}

frecord(fclass, specvariables);
frecord(fclass, typeattr);
count = count + 1;

80 Formalization of UML using Algebraic Specifications

Appendix B: Source Code

i}f (count == 2)
{ fski pline(fclass);
specvari ables = "declare variables ";
frecord(fclass, specvariables);
b
specvariables =", id : Id";
frecord(fclass, specvari ables);
specvari abl es = cl assnane;
frecordl n(fcl ass, specvariables);

}

//Rule 3 starts the declare operators section of the al gebraic specification
//with the standard operations new, identity and object equality
voi d rul e3C ass(ostrean® fcl ass, string classnane, OBJ und assUM., SHORT nbAttr)

{ OBJ unAttribut UM;
string specoperators, typeNane, conment;
SHORT i ;
specoperators = "decl are operators”;

f ski pline(fclass);
frecordl n(fcl ass, specoperators);
coment = "% generator";
frecordl n(fclass, comrent);
specoperators = "new' + classname + " : 1d" + classnang;
for(i=0; i<nbAttr; i++) {
specoperators = specoperators + ",";
unAttributUML = G i Get SubSubNode(und assUM., G i Synbol ("I nstance Attribute

List"), i);

//recover the metaproperty type ofthe attribute

/1in Gaphtalk the default value for this property needs to be

/lstring

typeName = G i NameOf (G i Get Menu(unAttribut UML, G i Synbol ("Attribute
Type")));

specoperators = specoperators + " " + typeNane;

}

specoperators = specoperators + " ->" + cl assnane;
frecordl n(fclass, specoperators); //generates the operation new
f ski pline(fclass);

comment = "% operations for identity and object equality";
frecordl n(fclass, comment);
specoperators = "identity : " + classnane + " -> " + "|d" + classhane;

frecordl n(fclass, specoperators); //generates the operation that returns the
identity of an object

specoperators = "_\\eq__ : + classnane + ", " + classname + " ->" + "Bool";

frecordl n(fclass, specoperators); //generates the operation for
identity/functional equality

//Rul e4 generates the accessor operations for the attributes
voi d rul e4d ass(ostream& fclass, string classnane, OBJ unC assUM., SHORT nbAttr)
{

OBJ unAttribut UM;

string accessor, typeNane, attrNane, conment;

SHORT i ;

f ski pline(fclass);
comment = "% accessors for the instance variabl es";
frecordl n(fclass, comrent);
for(i=0; i<nbAttr; i++) {
/lrecover the attribute in the instance variables list;
//its name and type
unAttributUML = G i Get SubSubNode(und assUML, G i Synbol ("I nstance Attribute

List"), i);

attrName = Qi NameOf (unAttribut UML) ;

typeName = G i NameOf (G i Get Menu(unAttribut UM, Gi Synbol ("Attribute
Type")));

//the first accessor is the get, to recover a value of the attribute
related to

// one obj ect

Formalization of UML using Algebraic Specifications 8l

Appendix B: Source Code

accessor = "get" + attrNanme + " @ ",

accessor = accessor + " " + classname + " ->";

frecord(fclass, accessor);

frecordl n(fclass, typeNane);

//the second accessor is the set, to change the value of the attribute to

one obj ect
accessor = "set" + attrName + " @ ",
accessor = accessor + " " + classnane + ", " + typeName + " ->";
accessor = accessor + classnane;
frecordl n(fclass, accessor);
}
}

//Rul e 5 generates the constant operations and fornal operators
//the constants represent exanples of instances of the class
voi d rul e5d ass(ostrean® fclass, string classnane, OBJ und assUW)

string comment, constant, formal Qor, oprNaneg;
SHORT nbQprs, i;
OBJ unCpr UM.;

comment = "% constants to represent exanpl es of instances";
f ski pline(fclass);
frecordl n(fclass, coment);

constant = "one" + classnane + " : "
constant = constant + " ->" + classnane;
frecordl n(fclass, constant);

constant = "another" + classnane + " : "

constant = constant + " ->" + cl assnane;
frecordl n(fclass, constant);

//Rule 6 starts the axi ons part

//The axions are used to state the semantics of the operations

//and the constants

voi d rul e6d ass(ostrean® fcl ass, string classname, SHORT nbAttr, OBJ und assUW)

{

")

string comment, axi om constantaxioml, constantaxion®, attrvariable, varl, var2;
SHORT i ;
OBJ unAttribut UM;

conmmrent = "% axi ons";

f ski pline(fclass);

frecordl n(fclass, coment);

axi om = "assert";

frecordl n(fclass, axiom;

axiom= "sort " + classnane + " generated by " + "new' + classnane + ";";
frecordl n(fclass, axiom;

coment = "%xions for identity";
frecordl n(fclass, comrent);
axiom= "identity";

frecord(fclass, axiom;
axiom= "(new' + classnanme + "(id";
constantaxi onl = "one" + classname + "= new'+ classname + "((newl d' + classnane +

const antaxi on2 = "another" + classnane + "= new'+ classnane + "((nextld"+

classnane + "(new d" + classnane + "))";

for(i=0; i<nbAttr; i++) {
axiom= axiom+ ", ";
constantaxi onl = constantaxionl + ",";
const ant axi on2 = constantaxi on2 + ", ";

unAttributUML = G i Get SubSubNode(und assUM.,, G i Synbol ("I nstance Attribute

List"), i);
attrvariable = Gi NameO (unAttri but UML) ;
attrvariable = attrvariable + "1";
axi om = axiom + attrvariabl e;
const ant axi oml = const ant axi oml + attrvari abl e;
const ant axi on2 = constantaxi on?2 + attrvari abl e;
}
axiom= axiom+ ")) =id;";
82 Formalization of UML using Algebraic Specifications

Appendix B: Source Code

constant axi omlL = constantaxi oml + ");";
const ant axi on2 = constantaxion2 + ");";
frecordl n(fclass, axiom;

f ski pline(fclass);

coment = "%xions for the constants";
frecordl n(fclass, comrent);

frecordl n(fclass, constantaxioml);
frecordl n(fclass, constantaxion®);

//axiomto state the semantics for object equality

coment = "% axiomto state the semantics for object equality”;

frecordl n(fclass, comrent);

varl = "a" + classname + "1";

var2 = "a" + classnane + "2";

axiom=varl + " \\eq " +var2 +" =" + "identity(" +varl + ")" +" \\eq" +"

identity(" + var2 + ");";
frecordl n(fclass, axion;

//call rule 7 that defines the axi ons for the accesors
rul e7d ass(fcl ass, classnane, nbAttr, und assUW);

}

//Rule 7 defines the axions for the accessors
void rul e7q ass(ostrean® fclass, string classnanme, SHORT nbAttr, OBJ unCl assUW)

{

string comrent, axiom axionR, varstructure, varstructure2, mainattr, mainattr2,
attrnamel, attrnane2, attrvariable;

SHORT i, j;

OBJ unAttribut UML;

f ski pline(fclass);
coment = "% axions to state the semantics of the attribute accessors";
frecordl n(fclass, comrent);

//for each instance attribute, two axi ons are generated bei ng each one to one
accessor

for (i=0; i<nbAttr; i++) {
unAttributUML = G i Get SubSubNode(und assUML, G i Synbol ("1 nstance
Attribute List"), i);

attrnanel = G i NameOf (unAttri but UM);

mai nattr = attrnamel + "1";

nmai nattr2 = attrnamel + "2";

axiom= "get"+ attrnanel + "(" + "new' + classnanme + "(id";
axiomR = "set"+ attrnamel + "(" + "new' + classname + "(id";
j =0

varstructure =
varstructure2 = "";
while (j < nbAttr)
{

unAttributUML = & i Get SubSubNode(und assUM.,
G i Synbol ("Instance Attribute List"), j);
attrname2 G i NameOf (unAttri but UML) ;
attrvariabl e attrnanme2 + "1";
varstructure = varstructure + ", "+ attrvariabl e;
if (attrnanmel == attrnane2)

attrvariable = attrname2 + "2";

el se
attrvariable = attrname2 + "1";

varstructure2 = varstructure2 + ", " + attrvariable;

o+
axi om = axi om + varstructure + "))" + " =" + pminattr + ";";
frecordl n(fclass, axion;
axi on2 axion2 + varstructure + ")," + mainattr2 + ")";
axion2 = axion + " =" + "new' + classnane + "(id" + varstructure2

frecordl n(fclass, axionR);

Formalization of UML using Algebraic Specifications t2¢]

Appendix B: Source Code

}

//Rule 8 defines the axions for the constants

//Rule 9 defines a type ldentity specific to a class
void rul e9ldentity(ostreanm& fidentity, string classnane) {

string sortnane, sentence, conment;

sortnane = "1d" + cl assnane;

coment = LL% LL

frecordl n(fidentity, comment);

comment = "Y%pecification of the identifier type for " + classnane + " isntances";
frecordl n(fidentity, comment);

comrent = "%arch file: " + sortname + ".Ip";

frecordl n(fidentity, comment);

comrent = :

frecordl n(fide

fskipline(fidentity);

sentence = "set name " + sortnane;

frecordln(fidentity, sentence);

fskipline(fidentity);

sentence = "declare sorts " + sortnane;

frecordln(fidentity, sentence);

sentence = "declare variables : id" + classname + "1, ";

sentence = sentence + "id" + classnane + "2" + " : " + sortnane;
frecordl n(fidentity, sentence);

sentence = "decl are operators";

frecordl n(fidentity, sentence);

sentence = "new' + sortnane + " @ " + " ->" + sortnane;

frecordl n(fidentity, sentence);

sentence = "next" + sortnane + " @ " + sortname + " ->" + sortnane;
frecordl n(fidentity, sentence);

sentence = "_\\eq__ : " + sortname + ", " + sortnane + " ->" + "Bool";
frecordl n(fidentity, sentence);

endSection(fidentity);

/I axi ons

fskipline(fidentity);

sentence = "assert";

frecordln(fidentity, sentence);

sentence = "sort " + sortnane + " generated by new' + sortname + ", next" +

sortnane + ";";
frecordl n(fidentity, sentence);

sentence = "new'+ sortnane + " \\eq " + "new' + sortnane + ";";
frecordln(fidentity, sentence);
sentence = "~(new' + sortname + " \\eq " + "next" + sortnane + "(id" + classhane +

")

frecordl n(fidentity, sentence);

sentence = "~(next" + sortname + "(id" + classnane + "1)" + " \\eq " + "new' +
sortnane + ");";

frecordln(fidentity, sentence);

sentence = "next" + sortnane + "(id" + classnanme + "1)" + " \\eq " + "next" +
sortname + "(id" + classname + "2)" + " = ";

sentence = sentence + "(id" + classnane + "1" + " \\eq id" + classname + "2);";

frecordl n(fidentity, sentence);

endSection(fidentity);

AR AR AR SRS EEEEEEREEEEEEEEEEREEEEEEEEEEEEE R EEEEEE

//Translation fromUM Associations to sorts in Larch Prover

IR SRR EEEE AR AR RS EEEEEEEEREEEEEREEEEREEEEEREEEEEEEEEE

/lrecover the links froma node class
//if the link is an association or aggregation, invokes tranl ateassoc function;

84 Formalization of UML using Algebraic Specifications

Appendix B: Source Code

//otherw se, invokes transl ateconposite
voi d Transl at eLi nks(OBJ und assUW.)

{
OBJ i stLinkUWL, unLinkUWM., sourced ass, targetd ass;

string fil enang;
l'istLinkUM. = Qi FronLi nksOf (und assUW.) ;

/1 Recover the first link of the |ist
// Recover the target node of the Link

if (listLinkUML !'= NIL){
unLi nkUML = Qi Car (| i stLi nkUM) ;
sourced ass = G i Li nkOrg(unLi nkUWM) ;
target G ass = und assUM,;

while(listLinkUML '= NIL) {
if (@&idassSynbol (GidassO (unLinkUWML)) == @i Synbol ("Associ ation
Li nk"))
Transl at eAssoc(unLi nkUML, sourced ass, targetd ass);
if (GidassSynbol (GidassO (unLinkUW)) == G i Synbol (" Conposition
Li nk"))
Transl at eAssoc(unLi nkUM., sourced ass, targetd ass);

listLinkUML = Gi Cdr (listLinkUW);
unLi nkUML = Gi Car (i stLinkUW);

}
G i DroplLi st (l'istLinkUW);

//Translation froma UM. Association to a sort in Larch Prover
voi d Transl at eAssoc(OBJ unLi nkUML, OBJ sourceC ass, OBJ targetd ass)

{

string sourcenane, targetnane, |inknane, filenane;

l'inknane = G i Get String(unLi nkUML, G i Synbol (" Nane"));

if (@idassSynbol (&id assO (unLinkUW)) == &i Synbol (" Conposition Link"))
i nknane = rul elConposi tion(linknane);

filename = linknane + ".1p";

/lcreates the file in wite and text node

ofstreamflink(filenane.c_str());
sourcename = @i Nanef (sourced ass);

t ar get nane G i NameOr (target d ass);
//the translation rules
rul elAssoc(unLi nkUM., flink, |inknane, sourcenane, targetnane);
rul e2Assoc(flink, |inkname, sourcenare, targetnane);
rul e3Assoc(flink, Iinknane);
rul e4Assoc(flink, linknane, sourcenane, targetnarme);
rul e5Assoc(unLi nkUML, flink, |inkname, sourcenane, targetnane);

//to finalize the declare operators section
endSection(flink);

//starts the axi omsection

rul e6Assoc(flink, |inkname, sourcenane, targetnane);
rul e7Assoc(flink, linknanme, sourcenane, targetnane, unLi nkUW);
rul e8Assoc(flink, |inkname, sourcenane, targetnane);

//to finalize the assert section
endSection(flink);

//constructs the type Set for each C ass connected through the associ ation;
//each type Set will be generated in one LP file
/lfirst, the file Set for the source O ass

filename = "Set" + sourcenane + ".Ip";

Formalization of UML using Algebraic Specifications &

Appendix B: Source Code

of stream fset (filenanme.c_str());

rul e9Set (fset, sourcenane);

/lafter, the file Set for the target d ass
filename = "Set" + targetnane + ".Ip";

of streamfset1(filenane.c_str());

rul e9Set (fset1, targetnane);

//Rule 1 generates the name of the sort being specified

//and a comrent defining the sort to be described

voi d rul elAssoc(OBJ unLi nkUML, ostrean& flink, string |inknane, string sourcenane, string
t ar get nane)

string specnane, coment;

frecordl n(flink, coment);

if (&idassSynbol (&id assOf (unLinkUML)) == & i Synbol (" Conposition Link"))
comment = rul e2Conposi tion(linkname, sourcenane, targetnane);

el se
comrent = "Yspecification of the association " + |linkname + " between

Cl asses: " + sourcenane + " and " + targetnane;

frecordl n(flink, comrent);

comment = "%arch file: " + linknane + ".|p";

frecordl n(flink, comrent);

coment =

frecordl n(flink, coment);
fskipline(flink);
fskipline(flink);

//set name section starts the formal specification for the sort
specnane = "set nane " + |inknane;

frecordl n(flink, specnane);

fskipline(flink);

// decl ares the association sort
//decl ares the source class and target class as object types
specnane = "declare sorts " + linkname + ", " + sourcenane +

frecord(flink, specnane);

+ target name;

//declares the type Nat that is the type for the association identifier
specnane =", Nat";
frecord(flink, specnane);

//declares the types Set related to the Set of instances of the object types
associ at ed

specnane = ", Set" + sourcenane + ", Set" + targetnane;

frecordl n(flink, specnane);

}

/I Rule 2 constructs the section declare variables, with

//two variabl es per object type, two variables per object type set,

//two variabl es of type equal the type bei ng defined, and

//one variable of type Nat

voi d rul e2Assoc(ostream& flink, string |inknane, string sourcenane, string targetnane)

{ string specvariables, varl, var2;

specvari ables = "declare variables ";
frecord(flink, specvariables);

//variables for the type being defined

varl = linknane + "1, “;
var2 = |linkname + "2";

86 Formalization of UML using Algebraic Specifications

Appendix B: Source Code

}

specvariables = varl + var2 +
frecord(flink, specvariables);

" " + linkname + ", ";

//variables for the source object type of the link

varl = "a" + sourcenane + "1,";
var2 = " a" + sourcenane + "2";
specvariables = varl + var2 + " : " + sourcenanme + ", ";

frecord(flink, specvariables);

//variables for the target object type of the link

varl = "a" + targetname + "1,";
var2 =" a" + targetname + "2";
specvariables = varl + var2 + " : " + targetnang;

frecordl n(flink, specvariables);

/1skip line

specvari ables = "declare variables ";

frecord(flink, specvariables);

//variables for the Set of source objects type
varl = "Set" + sourcenanme + "1";

var2 =", Set" + sourcenane + "2";
specvariables = varl + var2 +
frecord(flink, specvariables);

"o " 4+ "Set" + sourcenane +

//variables for the Set of target objects type

varl = "Set";

varl = varl + targetname + "1,
var2 = "Set" + targetnane + "2";
specvariables = varl + var2 +
frecord(flink, specvariables);

//variable of type Natural for

varl ="i : Nat";

frecordln(flink, varl);

"o " 4+ "Set" + targetnane + ",

the association identity

//Rule 3 starts the declare operators section of the al gebraic specification
//with the standard operations void,
voi d rul e3Assoc(ostrean& flink, strin

{

}

string specoperators,

conment ;

identity and association equality
g |inkname)

specoperators = "decl are operators"”;

fskipline(flink);

frecordl n(flink, specoperators);

//operation void for the generation of an enpty association

coment = "%generator of an enpty association";
frecordl n(flink, comrent);
specoperators = "void : Nat ->" + |inknang;

frecordl n(flink, specoperators);

//operations for association identity needed for Larch Prover
comrent = "%ssociation identity";

fskipline(flink);

frecordl n(flink, coment);
specoperators = "identity :
frecordl n(flink, specoperators);

specoperators = "_ \\eq__
frecordl n(flink, specoperators);

" + linkname + " -> Nat";

" + linkname + ", + linknanme +

-> Bool ";

//Rule 4 declares the operators for add and renove links in the association
voi d rul e4Assoc(ostream& flink, strin

{

string specoperators,

comrent = "%operators to create and renove links ";

coment ;

g linknanme, string sourcenane, string targetnane)

Formalization of UML using Algebraic Specifications

Appendix B: Source Code

fskipline(flink);

frecordl n(flink, coment);

/1 addl i nk

specoperators = "addLink : ";

specoperators = specoperators + linknane + ", " + sourcenanme + ", " + targetnang;
specoperators = specoperators + " ->" + |inknaneg;

frecordl n(flink, specoperators);

//renovel i nk

specoperators = "renovelLink : ";

specoperators = specoperators + linknane + ", " + sourcename + ", " + targetnane;
specoperators = specoperators + " ->" + |inknane;

frecordl n(flink, specoperators);

}

//Rule 5 declares operators to return the set of links for a given instance,
//and al so declares the operators to test if the association isEmpy and if

//two instances are |linked; declares also the constants for the nmultiplicities
voi d rul e5Assoc(OBJ unLi nkUML, ostrean& flink, string |inkname, string sourcenang,
t ar get nane)

string

{ string specoperators, conment;

/ltests if two instances are |inked through the association
comrent = "%operator to test if two instances are |inked";
fskipline(flink);

frecordl n(flink, coment);

specoperators = "isLinked : ";
specoperators = specoperators + |inknane +
specoperators = specoperators + " -> Bool";
frecordl n(flink, specoperators);

+ sourcenane +

+ target nane,

//tests if one instance is |linked through the association
comrent = "%operator to test if one instance is |inked";
fskipline(flink);

frecordl n(flink, comrent);

specoperators = "isLeftlLinked : ";

specoperators specoperators + |inkname + ", "
specoperators = specoperators + " -> Bool";
frecordl n(flink, specoperators);

+ target nane;

specoperators = "i sRi ghtLinked : ";
specoperators specoperators + |inknanme +
specoperators specoperators + " -> Bool ";

frecordl n(flink, specoperators);

+ sourcenane,

//tests if the association isEnpty
comrent = "%operator to test if the association is Enpty";
fskipline(flink);

frecordl n(flink, comrent);

specoperators = "isEnpty : ";
specoperators = specoperators + |inknane;
specoperators = specoperators + " -> Bool";

frecordl n(flink, specoperators);

/lreturn the Set of instances of an object type linked to an instance
//of the other object type connected through the association

coment = "%operator to return the Set of instances linked to a given
fskipline(flink);
frecordl n(flink,
specoper at or s
specoper at ors
specoperators
frecordl n(flink,

i nst ance";

conment) ;
"al |l LeftLink : ";
specoperators + linkname + ", " + targetnane;
specoperators + " -> Set" + sourcenane;
specoperat ors);

specoper at or s
specoper at or s
specoper at or s

"al|RightLink : ";
specoperators + |inknane +
specoperators + "

+ sour cenane;

-> Set" + targetnang;

Formalization of UML using Algebraic Specifications

Appendix B: Source Code

frecordl n(flink, specoperators);

//constants to the association multiplicities
fskipline(flink);

comment = "%perators for multiplicity val ues";
frecordl n(flink, comrent);
specoperators = "leftMiultiplicity : " + linknane + ", " + targetnane + " -> Nat";
frecordl n(flink, specoperators);
specoperators = "rightMiltiplicity : " + linknane + ", " + sourcenanme + " ->
Nat " ;
frecordl n(flink, specoperators);
if (GidassSynbol (GidassO (unLi nkUML)) == G i Synbol (" Conposition Link"))
rul e3Conposi tion(flink, |inkname, sourcenane, targetnane);
}

//Rule 6 starts the axi ons part
//The axions are used to state the senantics of the operations.
voi d rul e6Assoc(ostrean& flink, string |inknane, string sourcenane, string targetnane)

{

string comment, axiom

coment = "% axi ons";
fskipline(flink);

frecordl n(flink, comrent);
axiom = "assert";

frecordl n(flink, axiom;
axiom= "sort " + |inknane +
frecordl n(flink, axiom;
fskipline(flink);

generated by " + "void, addLink;";

/laxions to state that an association cannot contain tw ce the same |ink
comment = "%xiomto state that tuples of instance values cannot be equal in an
associ ation";
frecordl n(flink, comrent);
axiom= "(a" + sourcenane + "1" + " \\eq " + "a" + sourcenane + "2)";
axiom = axiom+ " /\\ ";
axiom = axiom+ "(a" + targetnane + "1" + " \\eq " + "a@" + targetnane + "2)" + "
=>
frecord(flink, axiom;
axi om = "addLi nk(addLi nk(" + linkname + "1" + ", a" + sourcenane + "1, a" +
targetnanme + "1), ";

axiom = axi om+ "a" + sourcenane + "2, " + "a@" + targetname + "2)" + " = addLink("
+ linknane + "1, ";
axiom = axiom+ "a" + sourcenane + "1, " + "a" + targetname + "1);";

frecordl n(flink, axiom;

//axions for the operation isEnpty

fskipline(flink);

comrent = "%xions for the isEnpty operation”;

frecordl n(flink, coment);

axiom = "isEnpty(void(i));";

frecordl n(flink, axiom;

axi om = "~(i senpty(addLi nk(" + linknane + "1, " + "a" + sourcenane + "1, " + "a" +
targetname + "1)));" ;

frecordl n(flink, axion;

/laxioms to test if two instances are |inked - operator isLinked
fskipline(flink);

comment = "%tate when two instances of object types are |inked";
frecordl n(flink, comrent);
axi om = "~(i sLi nked(void(i),";

axi om = axiom+ "a" + sourcenanme + "1, " + "a" + targetnane + "1));";
frecordl n(flink, axiom;

axi om = "isLi nked(addLi nk(" + linknane + "1, " + "a" + sourcenanme + "1, " + "a" +
targetnanme + "1),";

axi om = axiom+ "a" + sourcenane + "2, " + "a" + targetname + "2) =";

axiom = axiom+ "((a" + sourcenane + "1 \\eq " + "a" + sourcenane + "2";

axiom= axiom+ " /\\ " + "a" + targetname + "1" + " \\eq " + "a" + targetname +

"2)";

Formalization of UML using Algebraic Specifications &

Appendix B: Source Code

axiom= axiom+ " \\/ " + "i sLi nked(" + linknane + "1, " + "a" + sourcename + "2,
+ targetnane + "2" + "));"
frecordl n(flink, axion;

"oy ong

//axions to state the senmantics of the operations allLefLink

//and al | RightLink in terns of addLi nk generator

fskipline(flink);

comrent = "U%tate the semantics for the operations alllLeftLink and al | R ghtLink
through addLi nk generator";

frecordl n(flink, comrent);

axiom= "(a" + targetname + "1\\eq a" + targetnane + "2) =>";

axi om = axi om + "all LeftLi nk(addLi nk(" + Iinkname + "1, a" + sourcenane + "1, a" +
targetname + "2), a" + targetname + "1)";

axiom= axiom+ " = insert(a" + sourcenanme + "1, alllLeftLink(" + linkpame + "1, a"
+ targetnane + "1));"'

frecordl n(flink, axion;

axiom= "(a" + sourcenane + "1\\eq a" + sourcenane + "2) =>";

axi om = axi om + "al | R ght Li nk(addLi nk(" + l'inknane + "1, a" + sourcename + "2, a"
+ targetnane + "1), a" + sourcenane + "1)";

axi om = axi om+ " = insert(a" + targetname + "1, allRightLink(" + linknane + "1,
a" + sourcenane + "1));"

frecordl n(flink, “axi on;

axiom= "~(a" + targetnane + "1 \\eq a" + targetnane + "2) => ",
axi om = axi om + "al | LeftLi nk(addLi nk(" + I'inknane + "1, a" + sourcenanme + "1, a" +
targetnane + "2), a" + targetnane + "1)";

axiom= axiom+ " = allLeftLink(" + linkname + "1, a" + targetnane + "1);"
frecordln(flink axi on ;
axi om = ~(a + sourcenane + "1 \\eq a" + sourcenane + "2) =>";

axi om = axi om + "al | R ght Li nk(addLi nk(" + linknamre + "1, a" + sourcenane + "2, a"
+ targetnanme + "1), a" + sourcenanme + "1)";

axiom = axiom+ " = all R ghtLink(" "+ linkname + "1, a" + sourcenane + "1);°

frecordl n(flink, axionm;

//semantics for alllLeftLink and all RightLink in terns of void generator

fskipline(flink);

comment = "Y%tate the semantics for allLeftLink and all Ri ghtLink through void
generator";

frecordl n(flink, comrent);

axiom = "all LeftLink(void(i), a" + targetname + "1) = {}: Set" + targetname + ";";

frecordl n(flink, axion;

axiom= "all Ri ghtLink(void(i), a" + sourcenane + "1) ={}: Set" + sourcenane +

frecordl n(flink, axiom;

//axions to state when an instance is |inked
fskipline(flink);

comment = "%tate when one instance is |linked through the association";
frecordl n(flink, comrent);

axiom = "~(isLeftLinked(void(i), a" + targetname + "1));"

frecordl n(flink, axiom;

axiom = "~(i sRightLinked(void(i), a" + sourcename + "1));"

frecordl n(flink, axiom;

axi om = "isLeftLinked(addLi nk(" + linkname + "1, a" + sourcenane + "1, a" +
targetname + "1), a" + targetnane + "2) = ((";

axiom= axiom+ "a" + targetnane + "1" +
i sLeftLinked(";

axi om = axiom+ |inkname + "1, a" + targetnane + "2));"

frecordl n(flink, axiom;

"

\\eqg " + "a" + targetnane + "2) \\/

axi om = "i sRi ght Li nked(addLi nk(" + linknane + "1, a" + sourcenane + "1, a" +
targetname + "1), a" + sourcenane + "2) = ((";

axiom= axiom+ "a" + sourcenane + "1" + " \\eq " + "a" + sourcenane + "2) \\/
i sSRi ght Li nked(";

axi om = axiom+ |linkname + "1, a" + sourcenane + "2));"

frecordl n(flink, axion;

0 Formalization of UML using Algebraic Specifications

Appendix B: Source Code

//left and rightMiltiplicity axi omrs

conment = "%xions for left and rightMiltiplicity operators”;
fskipline(flink);

frecordl n(flink, coment);

axiom= "leftMultiplicity(void(i), a
frecordl n(flink, axiom;

axiom= "rightMultiplicity(void(i), a" + sourcenane + "1) = 0;";
frecordl n(flink, axiom;

+ targetname + "1) = 0;";

axiom= "(a" + targetnane + "1" + " \\eq " + "a" + targetnane + "2) =>";

axiom = axiom+ "leftMltiplicity(addLi nk(" + linknane + "1, a" + sourcenane + "2,
a" + targetnane + "2),";

axiom= axiom+ "a" + targetname + "1) = leftMiltiplicity("+ linknane + "1, a" +
targetname + "1) + 1;";

frecordl n(flink, axion;

axiom= "~(a" + targetname + "1" + " \\eq " + "a" + targetname + "2) =>";

axiom= axiom+ "leftMiltiplicity(addLi nk(" + linknane + "1, a" + sourcenanme + "2,
a" + targetnane + "2),";

axiom= axiom+ "a" + targetnane + "1) = leftMiltiplicity("+ linknane + "1, a" +
targetnanme + "1);";

frecordl n(flink, axionm;

fskipline(flink);

axiom = "(a" + sourcenane + "1" + " \\eq + "a" + sourcename + "2) =>";

axiom = axiom+ "rightMiltiplicity(addLi nk(" + linkname + "1, a" + sourcenane +
"2, a" + targetnanme + "2),";

axiom = axiom+ "a
sourcenane + "1) + 1;";

frecordl n(flink, axiom;

+ sourcenane + "1) = rightMiltiplicity("+ linknane + "1, a" +

axiom= "~(a" + sourcenanme + "1" + " \\eq " + "a" + sourcenane + "2) =>";
axiom = axiom+ "rightMiltiplicity(addLi nk(" + |linkname + "1, a" + sourcenane +
"2, a" + targetnanme + "2),";
axiom= axiom+ "a" + sourcenarme + "1) = rightMiltiplicity("+ linknane + "1, a" +
sourcenane + "1);";
frecordl n(flink, axiom;

}

//Rule 7 states the axions to recover the multiplicity val ues

//and axions for multiplicity constraints

voi d rul e7Assoc(ostrean® flink, string |inkname, string sourcenane, string targetnane,
OBJ unLi nkUWL)

{

string comrent, axiom nultsource, nulttarget;

/lmultiplicity constraints

fskipline(flink);

comment = "%xionms for multiplicity constraints: witten only if multiplicity is
not free, i.e. different fromO or Mre";

frecordl n(flink, coment);

//recover the value for the properties nultiplicity target and

/Imultiplicity source of the link

mul t source = Gi NaneOf (& i Get Menu(unLi nkUML, G Synbol ("Ml tiplicity Source")));
comment = "%ource multiplicity is " + nultsource;

frecordl n(flink, comrent);

multtarget = Gi NanmeOf (G i Get Menu(unLi nkUML, G i Synbol ("Ml tiplicity Target")));
comrent = "%arget nultiplicity is " + nulttarget;

frecordl n(flink, coment);

//axioms to state nultiplicity constraints at the source end of the association

if (multsource == "Just One")
axiom = "size(all LeftLink(" + linkname + "1, a" + targetname + "1))";
axiom= axiom+ " =1;";

frecordl n(flink, axiom;}

Formalization of UML using Algebraic Specifications a

Appendix B: Source Code

el se
if (multsource == "Optional (0 or 1)") {
axi om = "~(size(al | LeftLink(" + linknane + "1, a" + targetnane +
") > L
frecordl n(flink, axion); }
el se
if (multsource == "1 or nore")
axiom = "~(size(all LeftLink(" + linknane + "1, a" +

targetname + ")) < 1;";
frecordl n(flink, axiom;

b
//axionms to state nultiplicity constraints at the target end of the association
if (multtarget == "Just One")
axiom = "size(al |l RightLink(" + linkname + "1, a" + sourcenane + "1))";
axiom= axiom+ " = 1;";
frecordl n(flink, axion); }
el se
if (multtarget == "QOptional (0 or 1)") {
axiom = "~(size(all RightLink(" + linknamre + "1, a" + sourcenanme +
"y > Lt
frecordl n(flink, axion); }
el se
if (multtarget == "1 or nore")
axi om = "~(size(all R ghtLink(" + |linkname + "1, a" +

sourcenane + ")) < 1;";
frecordl n(flink, axiom;

}s

if (&idassSynbol (&GidassO (unLinkUML)) == @i Synbol (" Conposition
Li nk"))
rul e4Conposi tion(flink, I|inknanme, sourcenane, targetnane);

//Rule 8 states the axioms for association identity
voi d rul eBAssoc(ostream& flink, string |inkname, string sourcenane, string targetnane)

string coment, axi om
fskipline(flink);

comrent = "%xions for association identity";
frecordl n(flink, comrent);

axiom= "identity(void(i)) =1i;";

frecordl n(flink, axiom;

axiom = "identity(addLi nk(" + linknane + "1" + ", " + "a" + sourcename + "1" + ",
axiom = axiom+ "a" + targetname + "1" + "))" + " =" + "identity" + "(" +

I'i nkname + "1" + ");";

frecordl n(flink, axiom;

axiom= linknane + "1" + " \\eq " + |linknane + "2";

axiom= axiom+ " =" + "identity(" + linkname + "1" + ")" + " \\eq " +
"identity(" + linkname + "2" + ")";

frecordl n(flink, axion;
}

//Rule 9 generates the sort Set for the source and target d ass
/1 of the Association
void rul e9Set (ostrean& fset, string classnane)

{

string specnanme, comment, specvari abl es, specoperator, axiom

n(fset, comment);

"Uspecification of the type Set for " + classname + " dass ";

92 Formalization of UML using Algebraic Specifications

Appendix B: Source Code

frecordl n(fset, comment);

comrent = "%arch file: Set" + classnanme + ".Ip";
frecordl n(fset, comment);

coment =

frecordl n(fset, comment);
fskipline(fset);
fskipline(fset);

//set name section starts the formal specification for the sort
specnane = "set nanme Set" + cl assnane;

frecordl n(fset, specnane);

fskipline(fset);

[/ decl ares used sorts
specnane = "declare sorts
frecordl n(fset, specnane);

+ classname + ", " + "Set" + classnane + ", Nat";

//decl are vari abl es

specvari ables = "declare variables ";

frecord(fset, specvariables);

specvari abl es "a" + classnane + "1, ";

"a" + classnanme + "2";

specvari abl es = specvariables + "a

specvari abl es = specvariables + " : " + classname + ", ";

frecord(fset, specvariables);

specvariables = "set" + classnane + "1" + ", set" + classname + "2 : Set" +
cl assnane;

frecordl n(fset, specvari abl es);

//decl are operators for Set

specnane = "decl are operators";

frecordl n(fset, specnane);

specoperator = "{} : -> Set" + classnang;

frecordl n(fset, specoperator);

specoperator = "{_} : " + classname + " -> " + "Set" + classnane;

frecordl n(fset, specoperator);

specoperator = "insert : " + classname + ", Set" + classnane + " -> Set" +
cl assnane;

frecordl n(fset, specoperator);

specoperator = "__\\U__ : Set" + classnane + ", Set" + classname + " -> Set" +
cl assnane;

frecordl n(fset, specoperator);

specoperator = "__\\in__ : " +classnane + ", Set" + classname + " -> Bool";

frecordl n(fset, specoperator);

specoperator = "__\\l__ : Set" + classnane + ", Set" + classnhame + " -> Bool";

frecordl n(fset, specoperator);

specoperator = "size : Set" + classnane + " -> Nat";

frecordl n(fset, specoperator);

// ends operators section
endSection(fset);

/[axi ons section

axi om = "assert";
fskipline(fset);

frecordl n(fset, axion;

/1 generators

axiom = "sort Set" + classnanme +
frecordl n(fset, axion);
fskipline(fset);

generated by {}, insert;";

//axions for the operations

axiom= "{a" + classnane + "1} = insert(a" + classname + "1, {});";
frecordl n(fset, axiomn;
axiom= "~(a" + classnane + "1\\in {});";

frecordl n(fset, axion;

axiom= "a" + classname + "1 \\in insert(a" + classnane + "2, set" + classnane +
"1) <=> (a" + classnane + "1";

axiom= axiom+ " \\eq a" + classnane + "2 \\/ a" + classname + "1 \\in set" +
cl assname + "1);";

frecordl n(fset, axion;

Formalization of UML using Algebraic Specifications B

Appendix B: Source Code

axiom= "{} \\l set" + classname + "1;";

frecordl n(fset, axion;

axi om = "insert(a" + classname + "1, set
"2 <=> (a" + classnane + "1";

axiom= axiom+ " \\in set" + classname + "2 /\\ set" + classnane + "1\\| set" +
cl assname + "2);";

frecordl n(fset, axion;

axiom= "a" + classnanme + "1 \\in (set" + classnane + "1 \\U set" + classnane +
"2) <=> (a" + classnane + "1 \\in set" + classnane + "1 \\/ a";

axi om = axi om + classnane + "1\\in set" + classname + "2);";

frecordl n(fset, axion;

+ classnane + "1) \\| set" + classnane +

//axi oms for the size operator

fskipline(fset);

coment = "% axi ons for size operator”;

frecordl n(fset, comment);

axiom = "size({}) = 0;";

frecordl n(fset, axion;

axiom= "(a" + classname + "1 \\in set" + classnane + "1) => size(insert(a" +
classnane + "1, set" + classname + "1)) = size(set" + classnanme + "1);";

frecordl n(fset, axion;

axiom= "~(a" + classnane + "1\\in set" + classnane + "1) => size(insert(a" +
classnane + "1, set" + classnane + "1)) = 1+size(set" + classname + "1);";

frecordl n(fset, axion;

// ends axi ons section
endSection(fset);

/1 Speci al Rules for Conpositions
string rul elConposition(string |inknane)

string conpnang;

conmpnanme = "Conp" + |inknarme;
return conpnarne;

// Speci al Rules for Conpositions
string rul e2Conposi tion(string |inknane, string sourcenane, string targetnane)

{

string comrent;

conment = "%pecification of the conposition " + linkname + " between O asses: " +
sourcenane + " and " + targetnane;

return comment;
}

// Speci al Rules for Conpositions
voi d rul e3Conposition(ostream& flink, string |inkname, string sourcenane, string
t ar get nane)

string fornal operator, comment;

fskipline(flink);
comrent = "Y%pecial operator for Conposition";
frecordl n(flink, coment);

formal operator = "isPartOF : " + linkname + ", " + sourcenamre + ", " + targetnane
+" > Bool":

frecordl n(flink, formal operator);
}

// Speci al Rules for Conpositions
voi d rul e4Conposition(ostrean& flink, string linknane, string sourcenane, string
t ar get nane)

A Formalization of UML using Algebraic Specifications

Appendix B: Source Code

string axiom comrent;

fskipline(flink);
comrent = "%peci al axions for Conposition";
frecordl n(flink, coment);

axiom = "isPartf (addLi nk(" + linknamre + "1, a" + sourcenane + "1, a" + targetnanme
+ "1), a" + sourcenane + "2, a" + targetname + "2)";

axiom= axiom+ " => (a" + sourcenane + "1 \\eq a" + sourcenane + "2)";

axiom = axiom+ " /\\ (a" + targetnane + "1 \\eq a" + targetname + "2);";

frecordl n(flink, axiom;

axiom= "~(isPartOf (void(i), a" + sourcenanme + "1, a" + targetnane + "1);";
frecordl n(flink, axion;

fskipline(flink);

axiom= "~(a" + targetname + "1 \\eq a" + targetname + "2)";

axiom= axiom+ " => (isPartX (" + linknane + "1, a" + sourcenane + "1, a" +
targetname + "1) /\\";

axiom= axiom+ "(~(isPartOf (" + linknane + "1, a" + sourcenane + "1, a" +
targetname + "2))))";

axiom= axiom+ " \\/ (isPartOf (" + linknanme + "1, a" + sourcenane + "1, a" +
targetname + "2) /\\";

axiom= axiom+ "(~(isPartOf (" + linknane + "1, a" + sourcenane + "1, a" +
targetnane + "1))));";

frecordl n(flink, axiom;

Formalization of UML using Algebraic Specifications b

Appendix B: Source Code

96 Formalization of UML using Algebraic Specifications

Appendix C: Abstract Data Type of the Library System

VBB
%specification of the properties and behavior for the instances of
class Library

% arch file: Library.

(V7 0/0/0/8/8/8/8

set nane Library

decl are sorts Library, IldLibrary, SetlLibrary, String

decl are variabl es aLibraryl, aLibrary2 : Library, |ibNanel, |ibNane2 :

String

decl are vari abl es addressl, address2 : String, telephonel, telephone2
String, id : IdLibrary

decl are operators
% gener at or
newLi brary : ldLibrary, String, String, String -> Library

% operations for identity and object equality
identity : Library -> IdLibrary
_\eq__ : Library, Library -> Boo

% accessors for the instance variables
getlibName : Library -> String

setlibName : Library, String -> Library
getaddress : Library -> String

setaddress : Library, String -> Library
gettel ephone : Library -> String

settel ephone : Library, String -> Library

% constants to represent exanples of instances

onelLi brary : -> Library
anot herLi brary : -> Library
% axi oms

assert

sort Library generated by newLibrary;
%axi oms for identity
identity(newLi brary(id,!|ibNanmel, addressl1,tel ephonel)) = id;

%xi ons for the constants

onelLi brary= newLi brary((new dLi brary),|ibNanmel, addressl, t el ephonel)
anot her Li brary=

newLi brary((nextldLi brary(new dLi brary)), i bNanel, addressl, tel ephonel);
% axiomto state the semantics for object equality

aLi braryl \eq aLibrary2 = identity(aLibraryl) \eq identity(aLibrary?2);

% axioms to state the semantics of the attribute accessors

getli bName(newli brary(id, |ibNanmel, addressl, tel ephonel)) = |ibNanel;
setl|i bNanme(newLi brary(id, |ibNamel, addressl, tel ephonel),|ibNane2) =
newLi brary(id, |ibNanme2, addressl, telephonel);

get address(newLi brary(id, |ibNanel, addressl, telephonel)) = addressl;
set address(newLi brary(id, |ibNanmel, addressl, tel ephonel), address2) =
newLi brary(id, |ibNanel, address2, telephonel);

Formalization of UML using Algebraic Specifications 97

Appendix C: Abstract Data Type of the Library System

gettel ephone(newLi brary(id, |ibNamel, addressl, tel ephonel)) =

t el ephonel;

settel ephone(newLi brary(id, |ibNanel, addressl, tel ephonel),tel ephone2)
= newLi brary(id, |ibNanmel, addressl, tel ephone2);

%specification of the properties and behavior for the instances of
cl ass User
% arch file: User.Ip

0

0

(V7

set nanme User

decl are sorts User, |dUser, SetUser, Bool ean

decl are variables aUserl, aUser2 : User, namel, nanme2 : String
decl are variabl es addressl, address2 : String, codel, code2 : Nat,
activel, active2 : Boolean, id : I|dUser

decl are operators
% gener at or
newUser : ldUser, String, String, Nat, Boolean -> User

% operations for identity and object equality
identity : User -> I|dUser
__\eg__ : User, User -> Bool

% accessors for the instance vari abl es

getnane : User -> String

setnane : User, String -> User
getaddress : User -> String
setaddress : User, String -> User
getcode : User -> Nat

set code : User, Nat -> User
getactive : User -> Bool ean
setactive : User, Bool ean -> User

% constants to represent exanples of instances
oneUser : -> User
anot her User : -> User

% axi oms

assert

sort User generated by newlUser;

%axi onms for identity

i dentity(newUser (id, namel, addressl, codel, activel)) = id;

%axi ons for the constants

oneUser = newUser ((newl dUser), nanel, addr essl, codel, acti vel);
anot her User =

newUser ((next | dUser (new dUser)), nanel, addressl, codel, activel);
% axiomto state the semantics for object equality

aUserl \eq aUser2 = identity(aUserl) \eq identity(aUser2);

98 Formalization of UML using Algebraic Specifications

Appendix C: Abstract Data Type of the Library System

% axionms to state the semantics of the attribute accessors

get nane(newUser (i d, namel, addressl, codel, activel)) = nanel;

set nane(newUser (i d, nanmel, addressl, codel, activel),nane2) =
newUser (i d, nane2, addressl, codel, activel);

get address(newUser (i d, nanel, addressl, codel, activel)) = addressl;
set address(newUser (i d, nanel, addressl, codel, activel), address2) =
newUser (i d, namel, address2, codel, activel);

get code(newUser (i d, nanmel, addressl, codel, activel)) = codel;

set code(newUser (i d, nanel, addressl, codel, activel),code2) =
newUser (i d, nanel, addressl, code2, activel);

getactive(newUser (id, nanmel, addressl, codel, activel)) = activel;
setactive(newUser (id, nanmel, addressl, codel, activel),active2) =
newUser (i d, namel, addressl, codel, active2);

%specification of the properties and behavior for the instances of
cl ass Publication

% arch file: Publication.
0, ® 8

set nane Publication

decl are sorts Publication, |dPublication, SetPublication, String

decl are vari abl es aPublicationl, aPublication2 : Publication, titlel,
title2 : String

decl are variables authorl, author2 : String, publishingHousel,

publ i shi ngHouse2 : String, id : I|dPublication

decl are operators
% gener at or
newPubl i cation : IdPublication, String, String, String -> Publication

% operations for identity and object equality
identity : Publication -> |dPublication
_\eq__ : Publication, Publication -> Bool

% accessors for the instance vari abl es

gettitle : Publication -> String

settitle : Publication, String -> Publication

getauthor : Publication -> String

setauthor : Publication, String -> Publication

get publ i shingHouse : Publication -> String

set publ i shi ngHouse : Publication, String -> Publication

% constants to represent exanples of instances

onePublication : -> Publication

anot her Publ i cation : -> Publication
% axi ons

assert

sort Publication generated by newPublication
%axions for identity
identity(newPublication(id,titlel,authorl, publishingHousel)) = id;

Formalization of UML using Algebraic Specifications PO

Appendix C: Abstract Data Type of the Library System

%axi oms for the constants

onePubl i cation=

newPubl i cati on((newl dPublication),titlel, authorl, publishi ngHousel);

anot her Publ i cati on=

newPubl i cati on((next!dPublication(new dPublication)),titlel, authorl, pub
| i shi ngHousel);

% axiomto state the semantics for object equality

aPublicationl \eq aPublication2 = identity(aPublicationl) \eq

i dentity(aPublication2);

% axi ons to state the semantics of the attribute accessors
gettitle(newPublication(id, titlel, authorl, publishingHousel)) =
titlel,;

settitle(newPublication(id, titlel, authorl, publishingHousel),title?2)
= newPubl ication(id, title2, authorl, publishingHousel);

get aut hor (newPubl i cation(id, titlel, authorl, publishingHousel)) =
aut hor 1;

set aut hor (newPubl i cation(id, titlel, authorl,

publ i shi ngHousel), aut hor2) = newPublication(id, titlel, author2
publ i shi ngHousel);

get publ i shi ngHouse(newPubl i cation(id, titlel, authorl,

publ i shi ngHousel)) = publi shi ngHousel;

set publ i shi ngHouse(newPublication(id, titlel, authorl,

publ i shi ngHousel), publ i shi ngHouse2) = newPublication(id, titlel,
aut hor1, publishi ngHouse2);

%specification of the properties and behavior for the instances of
cl ass Copy
% arch file: Copy.l

i. 07070 07070

set name Copy

decl are sorts Copy, |dCopy, SetCopy, Nat

decl are vari abl es aCopyl, aCopy2 : Copy, copyNunmberl, copyNunber?2 :
Nat

declare variables , id : |dCopy

decl are operators
% gener at or
newCopy : |1dCopy, Nat -> Copy

% operations for identity and object equality
identity : Copy -> |dCopy
__\eq__ : Copy, Copy -> Bool

% accessors for the instance vari abl es
get copyNunber : Copy -> Nat
set copyNunber : Copy, Nat -> Copy

% constants to represent exanples of instances
oneCopy : -> Copy
anot her Copy : -> Copy

100 Formalization of UML using Algebraic Specifications

Appendix C: Abstract Data Type of the Library System

% axi oms

assert

sort Copy generated by newCopy;

%axi ons for identity

i dentity(newCopy(id, copyNunberl1)) = id;

%axi ons for the constants

oneCopy= newCopy((new dCopy), copyNunber1);

anot her Copy= newCopy((next | dCopy(newl dCopy)), copyNunber 1) ;
% axiomto state the semantics for object equality

aCopyl \eq aCopy2 = identity(aCopyl) \eq identity(aCopy2);

% axions to state the semantics of the attribute accessors

get copyNunber (newCopy(i d, copyNunberl1l)) = copyNunber1l;

set copyNunber (newCopy(i d, copyNunber 1), copyNunber2) = newCopy(i d,
copyNunber 2) ;

%specification of the properties and behavior for the instances of
cl ass Loan

% arch f
0/9/0/0/0 0

set nanme Loan

decl are sorts Loan, |dLoan, SetlLoan, Nat

decl are vari abl es aLoanl, alLoan2 : Loan, nunberLoanl, numnberLoan2
Nat

decl are vari ables situationl, situation2 : Bool ean, durationl
duration2 : Nat, id : ldLoan

decl are operators
% gener at or
newLoan : |dLoan, Nat, Bool ean, Nat -> Loan

% operations for identity and object equality
identity : Loan -> lIdLoan
_\eq__ : Loan, Loan -> Bool

% accessors for the instance vari abl es

get nunmber Loan : Loan -> Nat

set nunberLoan : Loan, Nat -> Loan
getsituation : Loan -> Bool ean
setsituation : Loan, Boolean -> Loan
getduration : Loan -> Nat
setduration : Loan, Nat -> Loan

% constants to represent exanples of instances
onelLoan : -> Loan
anot her Loan : -> Loan

% axi ons

Formalization of UML using Algebraic Specifications 101

Appendix C: Abstract Data Type of the Library System

assert

sort Loan generated by newLoan;

%xi oms for identity

i dentity(newLoan(id, nunberLoanl, situationl, durationl)) = id;

%axi ons for the constants

oneLoan= newLoan((new dLoan), nunber Loanl, situationl, durationl);
anot her Loan=

newLoan((next | dLoan(newi dLoan)), nunber Loanl, si tuationl, durationl);
% axiomto state the semantics for object equality

aLoanl \eq aLoan2 = identity(aLoanl) \eq identity(aLoan2);

% axi onms to state the semantics of the attribute accessors

get nunber Loan(newLoan(i d, nunberLoanl, situationl, durationl)) =
nunber Loanl;

set number Loan(newLoan(i d, nunberLoanl, situationl,
durationl), number Loan2) = newLoan(id, nunberlLoan2, situationl,
durationl);

getsituation(newLoan(id, nunberlLoanl, situationl, durationl)) =
situationl

setsituation(newLoan(id, nunberLoanl, situationl

durationl), situation2) = newLoan(id, nunberLoanl, situation2,
durationl);

getduration(newLoan(id, nunberLoanl, situationl, durationl)) =
durationil;

setduration(newLoan(id, nunberlLoanl, situationl, durationl), duration2)
= newLoan(id, numberlLoanl, situationl, duration2);

Y%specification of the properties and behavior for the instances of
cl ass Local Use
% arch file: Local Use.lp

(7

07 0/70/070707070

set nane Local Use

decl are sorts Local Use, |dLocal Use, SetlLocal Use, Nat

decl are vari abl es alLocal Usel, alLocal Use2 : Local Use, hoursli, hours2 :
Nat

decl are variables , id : ldLocal Use

decl are operators
% gener at or
newLocal Use : IdLocal Use, Nat -> Local Use

% operations for identity and object equality
identity : Local Use -> IdLocal Use
_\eq__ : Local Use, Local Use -> Bool

% accessors for the instance vari abl es
gethours : Local Use -> Nat
sethours : Local Use, Nat -> Local Use

% constants to represent exanples of instances
onelLocal Use : -> Local Use

102 Formalization of UML using Algebraic Specifications

Appendix C: Abstract Data Type of the Library System

anot her Local Use : -> Local Use

% axi oms

assert

sort Local Use generated by newLocal Use;
%xi oms for identity

i dentity(newLocal Use(id, hoursl)) = id;

%axi oms for the constants

onelLocal Use= newlLocal Use((newl dLocal Use), hoursl);

anot her Local Use= newLocal Use((nextl dLocal Use(newl dLocal Use)), hoursl);
% axiomto state the semantics for object equality

alLocal Usel \eq alLocal Use2 = identity(alLocal Usel) \eq

identity(aLocal Use2);

% axi ons to state the semantics of the attribute accessors
get hour s(newLocal Use(id, hoursl)) = hoursl,;
set hour s(newLocal Use(id, hoursl), hours2) = newlLocal Use(id, hours2);

set name LibUse

decl are sorts LibUse, Loan, User, Nat, SetlLoan, SetUser

decl are vari abl es Li bUsel, LibUse2 : LibUse, alLoanl, alLoan2 : Loan,
aUser 1, aUser2 : User

decl are vari abl es SetlLoanl, SetlLoan2 : SetlLoan, SetUserl, SetUser?2 :
Set User, i : Nat

decl are operators
%generator of an enpty associ ation
void : Nat -> Li bUse

%associ ation identity
identity : LibUse -> Nat
_\eq__ : LibUse, LibUse -> Bool

Y%operators to create and renove |inks
addLi nk : LibUse, Loan, User -> LibUse
renovelLi nk : LibUse, Loan, User -> LibUse

Yoperator to test if two instances are |inked
i sLinked : LibUse, Loan, User -> Bool

Yoperator to test if one instance is |inked
i sLeftLinked : LibUse, User -> Bool
i sRi ght Li nked : LibUse, Loan -> Bool

Y%operator to test if the association is Enmpty

Formalization of UML using Algebraic Specifications 103

Appendix C: Abstract Data Type of the Library System

i sEnpty : LibUse -> Bool

Y%operator to return the Set of instances linked to a given instance
al I LeftLink : LibUse, User -> SetLoan
al | RightLink : LibUse, Loan -> SetUser

Y%operators for multiplicity val ues
leftMultiplicity : LibUse, User -> Nat
rightMultiplicity : LibUse, Loan -> Nat

% axi ons
assert
sort LibUse generated by void, addLink;

%axiomto state that tuples of instance val ues cannot be equal in an
associ ati on

(aLoanl \eq alLoan2) /\ (aUserl \eq aUser2) => addLi nk(addLi nk(Li bUsel,
aLoanl, aUserl), alLoan2, aUser2) = addLink(LibUsel, alLoanl, aUserl);

%axi oms for the i sEnpty operation

i sEnpty(void(i));
~(i seEnpty(addLi nk(Li bUsel, aLoanl, aUserl)));

%tate when two instances of object types are |inked
~(isLinked(void(i),aLoanl, aUserl));

i sLi nked(addLi nk(Li bUsel, alLoanl, aUserl),aloan2, aUser2) = ((aLoanl
\eq aLoan2 /\ aUserl \eq aUser2) \/ isLinked(LibUsel, alLoan2, aUser2));

%state the semantics for the operations allLeftLink and all Ri ghtLink
t hrough addLi nk gener at or
(aUserl \eq aUser2) => all LeftLink(addLi nk(LibUsel, alLoanl, aUser?2),

aUser1l) = insert(aLoanl, allLeftLink(LibUsel, aUser1l));
(aLoanl \eq alLoan2) => all Ri ghtLi nk(addLi nk(Li bUsel, alLoan2, aUserl),
aLoanl) = insert(aUserl, allRightLink(LibUsel, alLoanl));

~(aUserl \eq aUser2) => all LeftLink(addLi nk(Li bUsel, alLoanl, aUser2),
aUser1l) = all LeftLink(LibUsel, aUserl);

~(aLoanl \eq alLoan2) => all Ri ghtLi nk(addLi nk(Li bUsel, alLoan2, aUserl),
alLoanl) = all Ri ghtLink(LibUsel, alLoanl);

%state the semantics for alllLeftLink and allRi ghtLink through void
gener at or

al I LeftLink(void(i), aUserl) = {}: SetUser;

al I Ri ghtLi nk(void(i), aLoanl) = {}: SetLoan;

%t at e when one instance is |linked through the association
~(isLeftLinked(void(i), aUserl));

~(i sRi ghtLi nked(void(i), alLoanl));

i sLeftLi nked(addLi nk(Li bUsel, aLoanl, aUser1), aUser2) = ((aUserl \eq
aUser2) \/ isLeftLinked(LibUsel, aUser2));

i sRi ght Li nked(addLi nk(Li bUsel, alLoanl, aUser1), alLoan2) = ((aLoanl \eq
aLoan2) \/ isRightLinked(LibUsel, alLoan2));

%axionms for left and rightMultiplicity operators
leftMul tiplicity(void(i), aUserl) = 0;
rightMultiplicity(void(i), aLoanl) = O;

104 Formalization of UML using Algebraic Specifications

Appendix C: Abstract Data Type of the Library System

(aUserl \eq aUser2) => leftMiltiplicity(addLi nk(LibUsel, alLoan2,

aUser2),aUserl) = leftMiltiplicity(LibUsel, aUserl) + 1;
~(aUserl \eq aUser2) => leftMiltiplicity(addLi nk(Li bUsel, alLoan2,
aUser2),aUserl) = leftMiltiplicity(LibUsel, aUserl);

(aLoanl \eq aLoan2) => rightMiltiplicity(addLi nk(Li bUsel, alLoan2,
aUser 2),alLoanl) = rightMultiplicity(LibUsel, alLoanl) + 1;
~(aLoanl \eq aLoan2) => rightMiltiplicity(addLink(Li bUsel, alLoan2,
aUser 2),aloanl) = rightMiltiplicity(LibUsel, alLoanl);

%axions for nmultiplicity constraints: witten only if rmultiplicity is
not free, i.e. different fromO or Mre

%source nultiplicity is Just One

% arget multiplicity is Many (0 or plus)

si ze(al | LeftLink(Li bUsel, aUserl)) = 1;

%axi onms for association identity

identity(void(i)) =1i;

i dentity(addLi nk(Li bUsel, alLoanl, aUserl)) = identity(LibUsel);
Li bUsel \eq LibUse2 = identity(LibUsel) \eq identity(LibUse2)

set nane LoaUse

decl are sorts LoaUse, Loan, User, Nat, SetlLoan, SetUser

decl are vari abl es LoaUsel, LoaUse2 : LoaUse, alLoanl, alLoan2 : Loan,
aUser 1, aUser2 : User

decl are vari abl es SetLoanl, SetlLoan2 : SetlLoan, SetUserl, SetUser2 :
Set User, i : Nat

decl are operators
%generator of an enpty association
void : Nat -> LoaUse

%associ ation identity
identity : LoaUse -> Nat
_\eq__ : LoaUse, LoaUse -> Bool

Y%operators to create and renove links
addLi nk : LoaUse, Loan, User -> LoaUse
renovelLi nk : LoaUse, Loan, User -> LoaUse

Yoperator to test if two instances are |inked
i sLinked : LoaUse, Loan, User -> Bool

Y%operator to test if one instance is |inked
isLeftLi nked : LoaUse, User -> Bool
i sRi ghtLi nked : LoaUse, Loan -> Bool

Yoperator to test if the association is Enpty
i sEnpty : LoaUse -> Bool

Formalization of UML using Algebraic Specifications 105

Appendix C: Abstract Data Type of the Library System

Yoperator to return the Set of instances linked to a given instance
all LeftLink : LoaUse, User -> SetlLoan
al | RightLink : LoaUse, Loan -> SetUser

Y%operators for multiplicity val ues
leftMultiplicity : LoaUse, User -> Nat
rightMultiplicity : LoaUse, Loan -> Nat

% axi ons
assert
sort LoaUse generated by void, addLink;

%xiomto state that tuples of instance values cannot be equal in an
associ ation

(aLoanl \eq alLoan2) /\ (aUserl \eq aUser2) => addLi nk(addLi nk(LoaUsel,
aLoanl, aUser1), alLoan2, aUser?2) = addLi nk(LoaUsel, alLoanl, aUser1l);

%axi oms for the i sEnpty operation
i sEnmpty(void(i));
~(i sEnpt y(addLi nk(LoaUsel, alLoanl, aUserl)));

%tate when two instances of object types are |inked

~(i sLinked(void(i), aLoanl, aUserl));

i sLi nked(addLi nk(LoaUsel, alLoanl, aUserl),alLoan2, aUser2) = ((alLoanl
\eq aLoan2 /\ aUserl \eq aUser2) \/ isLinked(LoaUsel, alLoan2, aUser2));

%state the semantics for the operations allLeftLink and all Ri ghtLink
t hrough addLi nk generat or
(aUserl \eq aUser2) => all LeftLink(addLi nk(LoaUsel, alLoanl, aUser2),

aUser1l) = insert(aLoanl, allLeftLink(LoaUsel, aUser1l));
(aLoanl \eq aLoan2) => all Ri ghtLink(addLi nk(LoaUsel, alLoan2, aUserl),
aLoanl) = insert(aUserl, allRightLink(LoaUsel, alLoanl));

~(aUserl \eq aUser2) => all LeftLink(addLi nk(LoaUsel, alLoanl, aUser2),
aUser1l) = all LeftLink(LoaUsel, aUserl);

~(aLoanl \eq alLoan2) => all Ri ghtLi nk(addLi nk(LoaUsel, alLoan2, aUserl),
aLoanl) = all RightLink(LoaUsel, alLoanl);

%tate the semantics for allLeftLink and all Ri ghtLink through void
gener at or

al I LeftLink(void(i), aUserl) = {}: SetUser;

al I Ri ghtLi nk(void(i), aLoanl) = {}: SetLoan;

%state when one instance is |inked through the association
~(isLeftLinked(void(i), aUserl));

~(i sRi ghtLi nked(void(i), alLoanl));

i sLeftLi nked(addLi nk(LoaUsel, alLoanl, aUserl), aUser2) = ((aUserl \eq
aUser2) \/ isLeftLinked(LoaUsel, aUser2));

i sRi ght Li nked(addLi nk(LoaUsel, alLoanl, aUserl), alLoan2) = ((aLoanl \eq
aLoan2) \/ isRightLinked(LoaUsel, alLoan2?));

%axioms for left and rightMultiplicity operators

leftMul tiplicity(void(i), aUserl) = 0;
rightMultiplicity(void(i), aLoanl) = O;

(aUserl \eq aUser2) => leftMiltiplicity(addLi nk(LoaUsel, alLoan2,
aUser2),aUserl) = leftMultiplicity(LoaUsel, aUserl) + 1;

106 Formalization of UML using Algebraic Specifications

Appendix C: Abstract Data Type of the Library System

~(aUserl \eq aUser2) => leftMiltiplicity(addLi nk(LoaUsel, alLoan2,
aUser2),aUserl) = leftMiltiplicity(LoaUsel, aUserl);

(aLoanl \eq alLoan2) => rightMiltiplicity(addLi nk(LoaUsel, alLoan2,
aUser 2),alLoanl) = rightMultiplicity(LoaUsel, alLoanl) + 1;
~(aLoanl \eq aLoan2) => rightMiltiplicity(addLi nk(LoaUsel, alLoan2,
aUser2),aloanl) = rightMiultiplicity(LoaUsel, alLoanl);

%axions for nmultiplicity constraints: witten only if multiplicity is
not free, i.e. different fromO or Mre

%ource nultiplicity is Many (0 or plus)

% arget nultiplicity is Just One

size(al | Ri ghtLi nk(LoaUsel, alLoanl)) = 1;

%xi onms for association identity

identity(void(i)) =1i;

i dentity(addLi nk(LoaUsel, alLoanl, aUserl1l)) = identity(LoaUsel);
LoaUsel \eq LoaUse2 = identity(LoaUsel) \eq identity(LoaUse2)

V)
Y%specification of the association LocUse between Cl asses: Loan and User
% arch file: LocUse. |

.l 0,/0,/0/0 0/0/0/0/0/0

/07070 070/0/0/70/70

set nanme LocUse

decl are sorts LocUse, Loan, User, Nat, SetlLoan, SetUser

decl are vari abl es LocUsel, LocUse2 : LocUse, alLoanl, alLoan2 : Loan,
aUser 1, aUser2 : User

decl are vari abl es SetlLoanl, SetlLoan2 : SetlLoan, SetUserl, SetUser?2 :
Set User, i : Nat

decl are operators
%gener at or of an enpty associ ation
void : Nat -> LocUse

%associ ation identity
identity : LocUse -> Nat
_\eq__ : LocUse, LocUse -> Bool

Y%operators to create and renove |inks
addLi nk : LocUse, Loan, User -> LocUse
renovelLi nk : LocUse, Loan, User -> LocUse

Y%operator to test if two instances are |linked
i sLinked : LocUse, Loan, User -> Bool

Yoperator to test if one instance is |linked

i sLeftLinked : LocUse, User -> Bool
i sRi ght Li nked : LocUse, Loan -> Bool

Y%operator to test if the association is Enpty
i sEnpty : LocUse -> Bool

Formalization of UML using Algebraic Specifications 107

Appendix C: Abstract Data Type of the Library System

Yoperator to return the Set of instances linked to a given instance
all LeftLink : LocUse, User -> SetlLoan
al | RightLink : LocUse, Loan -> SetUser

Y%operators for multiplicity val ues
leftMultiplicity : LocUse, User -> Nat
rightMultiplicity : LocUse, Loan -> Nat

% axi ons
assert
sort LocUse generated by void, addLink;

%axi omto state that tuples of instance val ues cannot be equal in an
associ ation

(aLoanl \eq alLoan2) /\ (aUserl \eq aUser?2) => addLi nk(addLi nk(LocUsel,
aLoanl, aUserl), alLoan2, aUser2) = addLink(LocUsel, aloanl, aUser1l);

%axi oms for the i sEnpty operation

i sEmpty(void(i));
~(i sEnpty(addLi nk(LocUsel, alLoanl, aUserl)));

%tate when two instances of object types are |inked

~(i sLinked(void(i),aLoanl, aUser1));

i sLi nked(addLi nk(LocUsel, alLoanl, aUserl),alLoan2, aUser2) = ((aLoanl
\eq aLoan2 /\ aUserl \eq aUser2) \/ isLinked(LocUsel, alLoan2, aUser2));

%tate the semantics for the operations allLeftLink and all Ri ghtLink
t hrough addLi nk generat or
(aUserl \eq aUser2) => all LeftLink(addLi nk(LocUsel, alLoanl, aUser2),

aUserl) = insert(aLoanl, allLeftLink(LocUsel, aUserl));
(aLoanl \eq alLoan2) => all Ri ghtLink(addLi nk(LocUsel, alLoan2, aUserl),
aLoanl) = insert(aUserl, allRightLink(LocUsel, alLoanl));

~(aUserl \eq aUser2) => all LeftLink(addLi nk(LocUsel, alLoanl, aUser2),
aUserl) = allLeftLink(LocUsel, aUserl);

~(aLoanl \eq alLoan2) => all Ri ghtLi nk(addLi nk(LocUsel, alLoan2, aUserl),
aLoanl) = all RightLink(LocUsel, aloanl);

Y%state the semantics for allLeftLink and all Ri ghtLink through void
gener at or

al I LeftLink(void(i), aUserl) = {}: SetUser;

al Il Ri ght Li nk(void(i), aLoanl) = {}: SetlLoan;

%state when one instance is |inked through the association
~(isLeftLinked(void(i), aUserl));

~(i sRi ght Li nked(void(i), alLoanl));

i sLeftLi nked(addLi nk(LocUsel, alLoanl, aUserl), aUser2) = ((aUserl \eq
aUser2) \/ isLeftLinked(LocUsel, aUser2));

i sRi ght Li nked(addLi nk(LocUsel, alLoanl, aUserl), alLoan2) = ((aLoanl \eq
aLoan2) \/ isRightLinked(LocUsel, alLoan2));

%axioms for left and rightMultiplicity operators

leftMul tiplicity(void(i), aUserl) = 0;
rightMultiplicity(void(i), alLoanl) = O;

(aUserl \eq aUser2) => leftMiltiplicity(addLi nk(LocUsel, alLoan2,
aUser2),aUserl) = leftMultiplicity(LocUsel, aUserl) + 1;

108 Formalization of UML using Algebraic Specifications

Appendix C: Abstract Data Type of the Library System

~(aUserl \eq aUser2) => leftMiltiplicity(addLi nk(LocUsel, alLoan2,
aUser2),aUserl) = leftMiltiplicity(LocUsel, aUserl);

(aLoanl \eq alLoan2) => rightMiltiplicity(addLi nk(LocUsel, alLoan2,
aUser 2),alLoanl) = rightMultiplicity(LocUsel, alLoanl) + 1;
~(aLoanl \eq aLoan2) => rightMiltiplicity(addLi nk(LocUsel, alLoan2,
aUser 2),aloanl) = rightMiltiplicity(LocUsel, alLoanl);

%axions for nmultiplicity constraints: witten only if multiplicity is
not free, i.e. different fromO or Mre

%ource nultiplicity is Many (0 or plus)

% arget nultiplicity is Just One

size(al | Ri ghtLink(LocUsel, alLoanl)) = 1;

%xi onms for association identity

identity(void(i)) =1i;

i dentity(addLi nk(LocUsel, alLoanl, aUserl1l)) = identity(LocUsel);
LocUsel \eq LocUse2 = identity(LocUsel) \eq identity(LocUse2)

Y%specification of the association PubCop between Cl asses: Publication
and Copy

% arch

file: PubCop.

set nanme PubCop

decl are sorts PubCop, Publication, Copy, Nat, SetPublication, SetCopy
decl are vari abl es PubCopl, PubCop2 : PubCop, aPublicationl,
aPublication2 : Publication, aCopyl, aCopy2 : Copy

decl are vari abl es SetPublicationl, SetPublication2 : SetPublication,
Set Copyl, SetCopy2 : SetCopy, i : Nat

decl are operators
%generator of an enpty association
void : Nat -> PubCop

%associ ation identity
identity : PubCop -> Nat
__\eq__ : PubCop, PubCop -> Bool

Y%operators to create and renove links
addLi nk : PubCop, Publication, Copy -> PubCop
renmovelLi nk : PubCop, Publication, Copy -> PubCop

Y%operator to test if two instances are |inked
i sLinked : PubCop, Publication, Copy -> Bool

Yoperator to test if one instance is |linked
i sLeftLinked : PubCop, Copy -> Bool
i sRi ght Li nked : PubCop, Publication -> Bool

Yoperator to test if the association is Enpty
i sSEnpty : PubCop -> Bool

Formalization of UML using Algebraic Specifications 109

Appendix C: Abstract Data Type of the Library System

Yoperator to return the Set of instances linked to a given instance
al I LeftLink : PubCop, Copy -> SetPublication
all Ri ghtLink : PubCop, Publication -> SetCopy

Y%operators for multiplicity val ues
leftMultiplicity : PubCop, Copy -> Nat
rightMultiplicity : PubCop, Publication -> Nat

% axi ons
assert
sort PubCop generated by void, addLink;

%xiomto state that tuples of instance values cannot be equal in an
associ ation

(aPublicationl \eq aPublication2) /\ (aCopyl \eq aCopy2) =>

addLi nk(addLi nk(PubCopl, aPublicationl, aCopyl), aPublication2, aCopy2)
= addLi nk(PubCopl, aPublicationl, aCopyl);

%axi oms for the i sEnpty operation

i sEnpty(void(i));
~(i sEnpt y(addLi nk(PubCopl, aPublicationl, aCopyl)));

%tate when two instances of object types are |inked

~(isLi nked(void(i),aPublicationl, aCopyl));

i sLi nked(addLi nk(PubCopl1, aPublicationl, aCopyl), aPublication2, aCopy2)
= ((aPublicationl \eq aPublication2 /\ aCopyl \eq aCopy2) \/

i sLi nked(PubCopl, aPublication2, aCopy2));

%state the semantics for the operations alllLeftLink and allRi ghtLink
t hrough addLi nk generat or
(aCopyl \eq aCopy2) => all LeftLink(addLi nk(PubCopl, aPublicationl

aCopy2), aCopyl) = insert(aPublicationl, allLeftLink(PubCopl, aCopyl));
(aPublicationl \eq aPublication2) => allRi ghtLink(addLi nk(PubCop1,
aPublication2, aCopyl), aPublicationl) = insert(aCopyl,

al I Ri ght Li nk(PubCopl, aPublicationl));

~(aCopyl \eq aCopy2) => allLeftLink(addLi nk(PubCopl, aPublicationl
aCopy2), aCopyl) = allLeftLink(PubCopl, aCopyl);

~(aPublicationl \eq aPublication2) => allRi ghtLink(addLi nk(PubCopl
aPubl i cation2, aCopyl), aPublicationl) = allRi ghtLink(PubCopl,
aPubl i cationl);

Y%state the semantics for allLeftLink and all Ri ghtLink through void
gener at or

all LeftLink(void(i), aCopyl) = {}: Set Copy;

al Il Ri ghtLi nk(void(i), aPublicationl) = {}: SetPublication;

%state when one instance is |inked through the association
~(isLeftLinked(void(i), aCopyl));

~(i sRi ght Li nked(void(i), aPublicationl));

i sLeftLi nked(addLi nk(PubCopl, aPublicationl, aCopyl), aCopy2) =
((aCopyl \eq aCopy2) \/ isLeftLinked(PubCopl, aCopy2));

i sRi ght Li nked(addLi nk(PubCopl, aPublicationl, aCopyl), aPublication2) =
((aPublicationl \eq aPublication2) \/ isRightLinked(PubCopl,
aPubl i cation2))

110 Formalization of UML using Algebraic Specifications

Appendix C: Abstract Data Type of the Library System

%axioms for left and rightMultiplicity operators

leftMul tiplicity(void(i), aCopyl) = 0

rightMultiplicity(void(i), aPublicationl) =0

(aCopyl \eq aCopy2) => leftMiltiplicity(addLi nk(PubCopl, aPublication2,
aCopy2),aCopyl) = leftMiltiplicity(PubCopl, aCopyl) + 1

~(aCopyl \eq aCopy2) => leftMiltiplicity(addLi nk(PubCopl,
aPubl i cation2, aCopy2), aCopyl) = leftMiltiplicity(PubCopl, aCopyl);

(aPublicationl \eq aPublication2) => rightMiltiplicity(addLi nk(PubCopl
aPubl i cation2, aCopy2),aPublicationl) = rightMultiplicity(PubCopl
aPublicationl) + 1;

~(aPublicationl \eq aPublication2) =>

rightMiltiplicity(addLi nk(PubCopl, aPublication2,

aCopy?2), aPublicationl) = rightMiltiplicity(PubCopl, aPublicationl);

%axions for nultiplicity constraints: witten only if nmultiplicity is
not free, i.e. different fromO or Mire

%source multiplicity is Just One

% arget multiplicity is 1 or nore

si ze(al |l LeftLi nk(PubCopl, aCopyl)) = 1;

~(si ze(al I Ri ghtLink(PubCopl, aPublication)) < 1;

%axi ons for association identity

identity(void(i)) =i

i dentity(addLi nk(PubCopl, aPublicationl, aCopyl)) = identity(PubCopl);
PubCopl \eq PubCop2 = identity(PubCopl) \eq identity(PubCop2)

set name PubLib

decl are sorts PubLib, Publication, Library, Nat, SetPublication,
Set Li brary

decl are vari abl es PubLi bl, PubLi b2 : PubLib, aPublicationl
aPublication2 : Publication, aLibraryl, alLibrary2 : Library

decl are vari abl es Set Publicationl, SetPublication2 : SetPublication,
SetLi braryl, SetlLibrary2 : SetLibrary, i : Nat

decl are operators
%generat or of an enpty associ ation
void : Nat -> PubLib

%associ ation identity
identity : PubLib -> Nat
_\eq__ : PubLib, PubLib -> Boo

Y%operators to create and renove links
addLi nk : PubLi b, Publication, Library -> PubLib
renovelLi nk : PubLi b, Publication, Library -> PubLib

Formalization of UML using Algebraic Specifications 111

Appendix C: Abstract Data Type of the Library System

Yoperator to test if two instances are |linked
i sLinked : PubLi b, Publication, Library -> Boo

Y%operator to test if one instance is |inked
i sLeftLinked : PubLib, Library -> Boo
i sRi ght Li nked : PubLib, Publication -> Boo

Yoperator to test if the association is Enpty
i sEnpty : PubLib -> Bool

Y%operator to return the Set of instances linked to a given instance
al I LeftLink : PubLib, Library -> SetPublication
al | RightLi nk : PubLib, Publication -> SetlLibrary

Y%operators for multiplicity val ues
leftMul tiplicity : PubLib, Library -> Nat
rightMultiplicity : PubLib, Publication -> Nat

% axi ons
assert
sort PubLib generated by void, addLink;

%axi omto state that tuples of instance val ues cannot be equal in an
associ ation

(aPublicationl \eq aPublication2) /\ (aLibraryl \eq aLibrary2) =>
addLi nk(addLi nk(PubLi b1, aPublicationl, aLibraryl), aPublication2,
aLi brary2) = addLi nk(PubLi b1, aPublicationl, aLibraryl);

%axi oms for the i sEnpty operation
i sEmpty(void(i));
~(i sEnpty(addLi nk(PubLi bl, aPublicationl, aLibraryl)));

%t ate when two instances of object types are |inked
~(isLinked(void(i),aPublicationl, aLibraryl));

i sLi nked(addLi nk(PubLi bl, aPublicationl, aLibraryl), aPublication2,
aLi brary2) = ((aPublicationl \eq aPublication2 /\ aLibraryl \eq
aLi brary2) \/ isLinked(PubLibl, aPublication2, aLibrary2));

%tate the semantics for the operations allLeftLink and all Ri ghtLink
t hrough addLi nk generat or

(aLi braryl \eq aLibrary2) => all LeftLink(addLi nk(PubLi b1,
aPublicationl, aLibrary2), alLibraryl) = insert(aPublicationl,

al I Lef t Li nk(PubLi b1, aLibraryl));

(aPublicationl \eq aPublication2) => allRightLink(addLi nk(PubLi bl
aPublication2, aLibraryl), aPublicationl) = insert(aLibraryl,

al I Ri ght Li nk(PubLi b1, aPublicationl));

~(aLi braryl \'eq aLibrary2) => all LeftLink(addLi nk(PubLi b1,
aPublicationl, aLibrary2), aLibraryl) = all LeftLink(PubLibl,

aLi braryl);

~(aPublicationl \eq aPublication2) => allRi ghtLink(addLi nk(PubLi bl
aPublication2, aLibraryl), aPublicationl) = all Ri ghtLink(PubLibl,
aPubl i cationl);

%state the semantics for alllLeftLink and all Ri ghtLink through void
gener at or
al | LeftLink(void(i), aLibraryl) = {}: SetLibrary;

112 Formalization of UML using Algebraic Specifications

Appendix C: Abstract Data Type of the Library System

al | Ri ght Li nk(void(i), aPublicationl) = {}: SetPublication

%state when one instance is |inked through the association
~(isLeftLinked(void(i), aLibraryl));

~(i sRi ght Li nked(void(i), aPublicationl));

i sLeftLi nked(addLi nk(PubLi bl, aPublicationl, aLibraryl), aLibrary2) =
((aLi braryl \eq aLibrary2) \/ isLeftLinked(PubLibl, aLibrary2));

i sRi ght Li nked(addLi nk(PubLi b1, aPublicationl, alLibraryl),
aPublication2) = ((aPublicationl \eq aPublication2) \/

i sRi ght Li nked(PubLi b1, aPublication2));

%axioms for left and rightMultiplicity operators

leftMul tiplicity(void(i), aLibraryl) = 0;
rightMultiplicity(void(i), aPublicationl) =0

(aLibraryl \'eq aLibrary2) => leftMiltiplicity(addLi nk(PubLi b1,
aPubl i cation2, aLibrary?2),alLibraryl) = leftMiltiplicity(PubLibl,
aLi braryl) + 1;

~(aLi braryl \eq aLibrary2) => leftMiltiplicity(addLi nk(PubLi bl
aPublication2, aLibrary2),alibraryl) = leftMiltiplicity(PubLibl,
aLi braryl);

(aPublicationl \eq aPublication2) => rightMiltiplicity(addLi nk(PubLi bl
aPublication2, alLibrary2),aPublicationl) = rightMultiplicity(PubLibl,
aPublicationl) + 1;

~(aPublicationl \eq aPublication2) =>
rightMiltiplicity(addLi nk(PubLi bl, aPublication2,

aLi brary2), aPublicationl) = rightMltiplicity(PubLibl, aPublicationl);

%axions for multiplicity constraints: witten only if multiplicity is
not free, i.e. different fromO or Mre

%source nultiplicity is Many (0 or plus)

% arget nultiplicity is Just One

si ze(al | Ri ghtLi nk(PubLi b1, aPublicationl)) = 1;

%axi onms for association identity

identity(void(i)) =1i;

i dentity(addLi nk(PubLi bl, aPublicationl, aLibraryl)) =

i dentity(PubLibl);

PubLi bl \'eq PubLib2 = identity(PubLibl) \eq identity(PubLib2)

set nanme ConpCoplLoa

decl are sorts ConpCoplLoa, Copy, Loan, Nat, SetCopy, SetlLoan

decl are vari abl es CompGopLoal, ConmpCopLoa2 : ConpCopLoa, aCopyl, aCopy2
: Copy, aloanl, alLoan2 : Loan

decl are vari abl es Set Copyl, SetCopy2 : SetCopy, SetlLoanl, SetLoan2

Set Loan, i : Nat

Formalization of UML using Algebraic Specifications 113

Appendix C: Abstract Data Type of the Library System

decl are operators
%generator of an enpty association
void : Nat -> ConmpCopLoa

%associ ation identity
identity : ConmpCopLoa -> Nat
_\eq__ : ConpCopLoa, ConmpCopLoa -> Boo

Yoperators to create and renove links
addLi nk : ConpCopLoa, Copy, Loan -> ConpCopLoa
removelLi nk : ConpCopLoa, Copy, Loan -> ConpCopLoa

Yoperator to test if two instances are |inked
i sLinked : ConpCopLoa, Copy, Loan -> Boo

Y%operator to test if one instance is |inked
i sLeftLinked : ConmpCopLoa, Loan -> Bool
i sRi ght Li nked : ConpCopLoa, Copy -> Bool

Yoperator to test if the association is Enpty
i sEnpty : ConpCopLoa -> Bool

Y%operator to return the Set of instances linked to a given instance
al I LeftLink : ConpCoplLoa, Loan -> Set Copy
al Il RightLi nk : ConpCopLoa, Copy -> SetLoan

Y%operators for multiplicity val ues
leftMultiplicity : ConpCopLoa, Loan -> Nat
rightMultiplicity : ConpCopLoa, Copy -> Nat

%speci al operator for Conposition
isPartOf : ConpCopLoa, Copy, Loan -> Boo

% axi ons
assert
sort ConpCoplLoa generated by void, addLink;

%xiomto state that tuples of instance values cannot be equal in an
associ ation

(aCopyl \eq aCopy2) /\ (aLoanl \eq aLoan2) =>

addLi nk(addLi nk(ConpCopLoal, aCopyl, alLoanl), aCopy2, alLoan2) =
addLi nk(ConpCopLoal, aCopyl, alLoanl);

%axi oms for the i sEnpty operation
i sEnpty(void(i));
~(i sEnpt y(addLi nk(ConpCopLoal, aCopyl, alLoanl)));

%state when two i nstances of object types are |inked
~(isLinked(void(i),aCopyl, alLoanl));

i sLi nked(addLi nk(ConpCopLoal, aCopyl, alLoanl), aCopy2, alLoan2) =
((aCopyl \eq aCopy2 /\ alLoanl \eq aLoan2) \/ i sLinked(ConpCoplLoal,
aCopy2, alLoan2));

%state the semantics for the operations alllLeftLink and all Ri ghtLink
t hrough addLi nk generat or

114 Formalization of UML using Algebraic Specifications

Appendix C: Abstract Data Type of the Library System

(aLoanl \eq alLoan2) => all LeftLink(addLi nk(ConpCopLoal, aCopyl,
aLoan2), alLoanl) = insert(aCopyl, allLeftLink(ConpCopLoal, alLoanl));
(aCopyl \eq aCopy2) => all Ri ghtLink(addLi nk(ConmpCopLoal, aCopy2,
aLoanl), aCopyl) = insert(aLoanl, allRi ghtLink(ConmpCopLoal, aCopyl));
~(aLoanl \eq alLoan2) => all LeftLink(addLi nk(ConpCopLoal, aCopyl,
alLoan2), alLoanl) = all LeftLi nk(ConpCopLoal, alLoanl);

~(aCopyl \eq aCopy2) => all Ri ghtLink(addLi nk(ConpCopLoal, aCopy?2,
alLoanl), aCopyl) = allRi ghtLi nk(ConpCopLoal, aCopyl);

%state the semantics for alllLeftLink and all Ri ghtLink through void
gener at or

al I LeftLink(void(i), aLoanl) = {}: SetlLoan

al Il Ri ghtLi nk(void(i), aCopyl) = {}: SetCopy;

%state when one instance is linked through the associ ation
~(isLeftLinked(void(i), alLoanl));

~(i sRi ght Li nked(void(i), aCopyl));

i sLeftLi nked(addLi nk(ConpCopLoal, aCopyl, alLoanl), alLoan2) = ((aLoanl
\eq aLoan2) \/ isLeftLinked(ConpCopLoal, alLoan2));

i sRi ght Li nked(addLi nk(ConpCopLoal, aCopyl, alLoanl), aCopy2) = ((aCopyl
\eq aCopy2) \/ isRightLinked(ConpCopLoal, aCopy2));

%axioms for left and rightMultiplicity operators
leftMultiplicity(void(i), aLoanl) = 0;

rightMultiplicity(void(i), aCopyl) = O;

(aLoanl \eq aLoan2) => leftMiltiplicity(addLi nk(ConpCopLoal, aCopy?2,

alLoan2), alLoanl) = leftMiltiplicity(ConpCopLoal, alLoanl) + 1;
~(aLoanl \eq aLoan2) => leftMiltiplicity(addLi nk(ConpCopLoal, aCopy?2,
aLoan2),alLoanl) = leftMiltiplicity(ConpCopLoal, alLoanl);

(aCopyl \eq aCopy2) => rightMiltiplicity(addLi nk(ConpCopLoal, aCopy2
aLoan2), aCopyl) = rightMultiplicity(ConmpCopLoal, aCopyl) + 1;
~(aCopyl \eq aCopy2) => rightMiltiplicity(addLi nk(ConpCopLoal, aCopy2,
aLoan2), aCopyl) = rightMiltiplicity(ConpCopLoal, aCopyl);

%xionms for nmultiplicity constraints: witten only if multiplicity is
not free, i.e. different fromO or Mre
%source nmultiplicity is 1 or nore

% arget nmultiplicity is Just One
~(size(al |l LeftLink(ConmpCopLoal, alLoan)

) <
si ze(al | Ri ghtLi nk(ConmpCopLoal, aCopyl)) =

1
l .

%speci al axions for Conposition

i sPart Of (addLi nk(ConpCopLoal, aCopyl, alLoanl), aCopy2, alLoan2) =>
(aCopyl \eq aCopy2) /\ (aLoanl \eq alLoan2?);

~(isPartOf (void(i), aCopyl, aloanl);

~(aLoanl \eq alLoan2) => (isPartOf (ConpCopLoal, aCopyl, alLoanl)
I\ (~(isPartOf (ConpCopLoal, aCopyl, alLoan2)))) \/ (isPart O (ConmpCoplLoal
aCopyl, alLoan2) /\(~(isPartO (ConpCopLoal, aCopyl, alLoanl))));

%axi onms for association identity

identity(void(i)) =i

i dentity(addLi nk(ConpCopLoal, aCopyl, alLoanl)) = identity(ConpCopLoal);
ConpCoplLoal \eq ConpCopLoa2 = identity(ConpCopLoal) \eq

i dentity(ConpCopLoa2)

Formalization of UML using Algebraic Specifications 115

Appendix C: Abstract Data Type of the Library System

Y%specification of the conposition ConpCopLoc between Cl asses: Copy and
Local Use
% arch file: ConmpCopLoc. |

i. 0707070

set nanme ConpCoplLoc

decl are sorts ConpCopLoc, Copy, Local Use, Nat, SetCopy, SetLocal Use
decl are vari abl es ConpCopLocl, CompCopLoc2 : ConpCopLoc, aCopyl, aCopy2
. Copy, alocal Usel, alocal Use2 : Local Use

decl are vari abl es Set Copyl, SetCopy2 : SetCopy, SetLlocal Usel,

Set Local Use2 : SetlLocal Use, i : Nat

decl are operators
%generator of an enpty associ ation
void : Nat -> ConpCoplLoc

%associ ation identity
identity : ConmpCopLoc -> Nat
__\eq__ : ConmpCopLoc, ConpCopLoc -> Bool

Y%operators to create and renove links
addLink : CompCoplLoc, Copy, Local Use -> ConpCoploc
removelink : ConmpCoplLoc, Copy, Local Use -> ConpCoplLoc

Y%operator to test if two instances are |inked
i sLi nked : ConpCopLoc, Copy, Local Use -> Bool

Yoperator to test if one instance is |linked
i sLeftLinked : ConmpCopLoc, Local Use -> Bool
i sRi ghtLi nked : ConpCopLoc, Copy -> Bool

Yoperator to test if the association is Enpty
i sEnpty : ConpCopLoc -> Bool

Yoperator to return the Set of instances |linked to a given instance
al I LeftLink : CompCoplLoc, Local Use -> Set Copy
al I Ri ght Li nk : ConpCopLoc, Copy -> SetLocal Use

Y%operators for multiplicity val ues
leftMultiplicity : ConmpCopLoc, Local Use -> Nat
rightMultiplicity : CompCopLoc, Copy -> Nat

%speci al operator for Conposition
isPartOf : ConmpCopLoc, Copy, Local Use -> Bool

% axi oms
assert
sort ConpCoplLoc generated by void, addLink;

%axi omto state that tuples of instance val ues cannot be equal in an
associ ation

116 Formalization of UML using Algebraic Specifications

Appendix C: Abstract Data Type of the Library System

(aCopyl \eq aCopy2) /\ (aLocal Usel \eq alLocal Use2) =>
addLi nk(addLi nk(ConpCopLocl, aCopyl, alLocal Usel), aCopy2, alocal Use2)
addLi nk(ConpCopLocl, aCopyl, alocal Usel);

%axi ons for the isEnpty operation

i sEmpty(void(i));
~(i seEnpt y(addLi nk(ConpCopLocl, aCopyl, alLocal Usel)));

%state when two instances of object types are |inked
~(isLinked(void(i),aCopyl, alLocal Usel));

i sLi nked(addLi nk(ConpCopLocl, aCopyl, alLocal Usel), aCopy2, alocal Use2)
((aCopyl \eq aCopy2 /\ alLocal Usel \eq alLocal Use2) \/

i sLi nked(ConmpCopLocl, aCopy2, alLocal Use2));

Ystate the semantics for the operations alllLeftLink and all Ri ghtLink
t hrough addLi nk generat or

(aLocal Usel \eq alLocal Use2) => all LeftLink(addLi nk(ConpCopLocl, aCopyl,
aLocal Use2), alocal Usel) = insert(aCopyl, allLeftLink(ConmpCopLocl,
alLocal Usel));

(aCopyl \eq aCopy2) => all Ri ghtLink(addLi nk(ConmpCopLocl, aCopy2,
aLocal Usel), aCopyl) = insert(aLocal Usel, allRi ghtLink(ConpCoplLoc1l,
aCopyl));

~(aLocal Usel \eq alLocal Use2) => all LeftLink(addLi nk(ConpCopLocl,
aCopyl, alocal Use2), alLocal Usel) = all LeftLi nk(ConpCoplLocl,

aLocal Usel);

~(aCopyl \eq aCopy2) => all Ri ghtLink(addLi nk(ConmpCopLocl, aCopy?2,
alLocal Usel), aCopyl) = allRi ghtLink(ConmpCopLocl, aCopyl);

%state the semantics for allLeftLink and all Ri ghtLink through void
gener at or

al I LeftLink(void(i), aLocal Usel) = {}: SetLocal Use;

al I Ri ghtLi nk(void(i), aCopyl) = {}: SetCopy;

%t at e when one instance is |linked through the association
~(isLeftLinked(void(i), alLocal Usel));

~(i sRi ghtLi nked(void(i), aCopyl));

i sLeftLinked(addLi nk(ConpCopLocl, aCopyl, alLocal Usel), alLocal Use2) =
((aLocal Usel \eq alLocal Use2) \/ isLeftLinked(ConmpCopLocl, alLocal Use2));
i sRi ght Li nked(addLi nk(ConpCopLoc1, aCopyl, alLocal Usel), aCopy2) =
((aCopyl \eq aCopy2) \/ isRightLinked(ConmpCopLocl, aCopy2));

%axioms for left and rightMultiplicity operators

leftMul tiplicity(void(i), alLocal Usel) = O;

rightMultiplicity(void(i), aCopyl) = O;

(aLocal Usel \eq alLocal Use2) => leftMiltiplicity(addLi nk(ConmpCoplLocl,
aCopy2, alocal Use2), aLocal Usel) = leftMiltiplicity(ConmpCoplLocl,
aLocal Usel) + 1;

~(aLocal Usel \eq alLocal Use2) => |leftMiltiplicity(addLi nk(ConpCopLoc1,
aCopy2, alocal Use2), aLocal Usel) = leftMiltiplicity(ConmpCoplLocl,
alLocal Usel);

(aCopyl \eq aCopy2) => rightMiltiplicity(addLi nk(ConpCopLocl, aCopy2,
alLocal Use2), aCopyl) = rightMiultiplicity(CompCopLocl, aCopyl) + 1;
~(aCopyl \eq aCopy2) => rightMiltiplicity(addLi nk(ConpCopLocl, aCopy2,
aLocal Use2), aCopyl) = rightMultiplicity(ConpCopLocl, aCopyl);

Formalization of UML using Algebraic Specifications 117

Appendix C: Abstract Data Type of the Library System

%axions for nultiplicity constraints: witten only if multiplicity is
not free, i.e. different fromO or Mre

%source multiplicity is 1 or nore

% arget multiplicity is Just One

~(size(al | LeftLink(ConmpCopLocl, alLocal Use)) < 1;

si ze(al | Ri ghtLi nk(ConpCopLocl, aCopyl)) = 1;

%speci al axioms for Conposition

i sPart Of (addLi nk(CompCopLocl, aCopyl, alocal Usel), aCopy2, alLocal Use2)
=> (aCopyl \eq aCopy2) /\ (aLocal Usel \eq alLocal Use2);

~(isPartOf (void(i), aCopyl, alLocal Usel);

~(aLocal Usel \eq alLocal Use2) => (isPart O (ConpCopLocl, aCopyl,

aLocal Usel) /\(~(isPartCOf (ConpCopLocl, aCopyl, alLocal Use2)))) \/

(i sPart Of (CompCopLocl, aCopyl, alocal Use2) /\(~(isPartOf (ConpCopLocl,
aCopyl, alocal Usel))));

%axi ons for association identity

identity(void(i)) = i;

i dentity(addLi nk(ConpCopLocl, aCopyl, alocal Usel)) =

i dentity(ConpCoplLocl);

ConmpCopLocl \eq ConmpCopLoc2 = identity(ConpCopLocl) \eq
i dentity(CompCoplLoc?2)

o
=
@ S

ry isntances

set nanme IdLibrary

decl are sorts |dLibrary
decl are variables : idLibraryl, idLibrary2 : IdLibrary
decl are operators

newl dLi brary : -> |dLibrary

next | dLi brary : ldLibrary -> IdLibrary
_\eq__ : ldLibrary, IdLibrary -> Bool
assert

sort |dLi brary generated by new dLi brary, nextldLibrary;

newl dLi brary \eq new dLi brary;

~(new dLi brary \eq nextldLibrary(idLibraryl));

~(nextldLi brary(idLibraryl) \eq new dLi brary);

next | dLi brary(idLi braryl) \eq nextldLi brary(idLi brary2) = (idLibraryl
\eq idLibrary2);

ype Set for User Cl ass

118 Formalization of UML using Algebraic Specifications

Appendix C: Abstract Data Type of the Library System

set nane Set User

decl are sorts User, SetUser, Nat

decl are vari abl es aUser1, aUser2 : User, setUserl, setUser2 : SetUser
decl are operators

{} : -> SetUser

{__} : User -> SetUser

insert : User, SetUser -> SetUser

_\U__ : SetUser, SetUser -> SetUser
_\in__ : User, SetUser -> Bool
_\l__: SetUser, SetUser -> Bool

size : SetUser -> Nat

assert
sort SetUser generated by {}, insert;

{aUser1} = insert(aUserl, {});

~(aUserl \in {});

aUserl \in insert(aUser2, setUserl) <=> (aUserl \eq aUser2 \/ aUserl
\in setUserl);

{} \I setUserl;

insert(aUserl, setUserl) \| setUser2 <=> (aUserl \in setUser2 /\
setUserl \| setUser?2);

aUserl \in (setUserl \U setUser2) <=> (aUserl \in setUserl \/ aUserl
\in setUser2);

% axi ons for size operator

size({}) = 0;

(aUserl \in setUserl) => size(insert(aUserl, setUserl)) =
si ze(set User1);

~(aUserl \in setUserl) => size(insert(aUserl, setUserl)) =
1+si ze(setUserl);

Formalization of UML using Algebraic Specifications 119

