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Abstract

The development of distributed applications with current programming languages
is a difficult task. Aspect oriented programming (AOP) promises to provide means
for encapsulation of the so-called crosscutting concerns. However few approaches
with language support for distribution have been developed.

This thesis introduces Dhamaca, an AOP language with explicit support for
distribution. The Dhamaca language is designed as an extension of the Java lan-
guage. It provides constructs for remote pointcuts (in particularcflow andseq),
distributed advice, aspects and neighborhoods.

Some Examples are presented to show how Dhamaca can be used to write
distributed applications. In particular it has been shown how a replicated cache
implementation is easily realizable compared to implementations using standard
Java platforms, such as JBossCache.

A prototype of Dhamaca, developed by extending JAsCo, is also presented
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Chapter 1

Introduction

Modularization of concerns in software applications has been in the center of in-
terest of computer science for a long period, and many approaches have been
developed to address this interest. Object-oriented programming has been one of
the approaches that has received more attention and resources in last years. Re-
search and industrial experience with those technologies have allowed evaluation
of advantages and disadvantages of such technologies.

In particular the so-calledcrosscutting concernshave been found to be appli-
cation features that cannot be modeled in independent abstraction units of the cur-
rent programming paradigms, and most of the time the code that manages those
concerns is found scattered in the rest of the application code. The following
fundamental functionalities, among others, have been identified as crosscutting:
security [WVD01], concurrency [KG02], transactions [SLB02, KG02] and distri-
bution [SLB02, MN04]. Aspect oriented programing (AOP) [GK97] is a recent
programming paradigm that has been conceived to help developers to modularize
crosscutting concerns.

During the last years a large number of tools and languages have been de-
veloped for aspect oriented programing in sequential applications, however there
are only few approaches to address the development of distributed applications.
As the interest in distributed applications is growing thanks to popularization of
technologies like Internet, ubiquitous computing and mobile devices, the relation
of AOP and distributed programming has become an interesting topic in the AO
community. This relation is the main interest of this thesis.

Distributed applications are inherently more complex to develop than sequen-
tial centralized applications, in particular, because it is harder to deal with sep-
arate processes that communicate each other over the network, with out sharing
memory, than working with centralized shared memory systems. When a pro-
grammer is designing a distributed application she must address how to partition
the application in components over the network, how this components communi-
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cate with each other, how they synchronize, how the system will act in case of a
failure and all this under the constraint of providing a good performance. Those
requirements together with the functional requirements are particularly hard to
program because current popular programming languages do not provide means
to reason separately about distributed concerns, thus obligating the programmer
to write programs where distributed concerns and functional concerns are tangled
together in programming units. Crosscutting concerns are those that cannot be
modularized in different programming units and then they have to be written to-
gether generating the tangling of code, a modern version of the “go to” problem
[Lop97].

To address this difficulties different programming practices and different pro-
gramming languages have been proposed. This work is part of approaches that
at the language level can solve the complexity of this crosscutting concerns by
providing languages with abstraction components to encapsulate distribution con-
cerns. Making programming less error prone by enforcing coding of these issues
by language rules[Lop97]. We consider explicit support, in AOP languages, for
distributed concerns to help programmers to write programs that are easier under-
stand, maintain and evolve.

To motivate the research I will consider the implementation of distributed
replicated caches. In general it is well known that the performance of distributed
applications can be improved by getting data closer to the client with out loosing
the reliability, stability and consistency of the system.Replicated cachesthat pro-
vide a fast store close to client applications are a common solution to speed up
the performance of distributed applications. As a typical example the replicated
cache implementation presented by Jboss(tm) in [BW05] achieves a good level of
encapsulation for distributed concerns but at the cost of making functional code
tangled with mechanism used to enforce such separation (spatial crosscutting),
and creating also run time code that is not easy to understand and follow (tempo-
ral crosscutting). I will show how using Dhamaca1, the AO language for explicit
distributed programming developed in this thesis, enables writing of simple ver-
sions of a replicated cache, and how even sophisticated cache policies, that are
not easy to implement with, e.g., JbossCache[BW05], can be easily implemented
usingDhamaca.

The main contributions of this thesis belong in three groups: first, contribu-
tions at the language level; second, contributions at the implementation level; and
third, contributions at the application level (language’s application).

At the language level, based in the concept of remote pointcuts presented by

1Dhamaca is a compound name. D is for distribution, and hamaca is the Spanish word for
hammock. In hot weather noting better than having a good rest in a hammock: if programmers
use dhamaca for distributed programming they will have the time to do so.
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Muga, Chiba and Tatsubori [MN04], the proposed solution introduces three main
extensions: a distributed sequence pointcut [DFS04, WV05, AAC+05, DFL+05],
support for distributed advice and aspects[MN04, PSD+04], and a notion for ex-
plicit neighborhoods.

At the implementation level a prototype of Dhamaca has been developed by
extending JAsCo [SVJ03]. The implemented version , called DJAsCo, includes
the following contributions: distribution of aspects by means of distribution of
connectors using Jgroups [Ban05], distributed support for sequences and stateful
distributed aspects extending the work presented in [SVJ03, VS], and distributed
advice implementation.

At the application level, different examples of practical applications of the
language are presented: first an example of implementing a replicated distributed
cache as the one presented in [BW05]; then, an example of implementation of
sophisticated, and expressive, cache policies that can not be achieved cleanly with
JbossCache; also an example of implementing distribution in a non-distributed
application using the context modification allowed by theproceedconstruct; and
finally an example of testing architectural constrains in applications.

Thesis structure. The remainder of this document is structured as follows. Sec-
tion 2 presents the related work, by discussing several approaches on the lan-
guage and implementation levels. Section 3 presents our AO language for ex-
plicit distributed programming. Section 4 presents details of the implementation
of DJAsCo. And section 5 concludes.
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Chapter 2

State of the art

This chapter presents an overview of research work related to distributed AOP
languages. First, The problem of distributed crosscutting concerns, along with
approaches to address it is introduced. Followed by a discussion about history-
based AOP approaches.

2.1 The problem: crosscutting concerns in distributed
applications

In order to create distributed applications a programmer has to deal with concerns
found on sequential centralized applications (e.g. functionality, security, logging,
persistence) plus concerns for distribution. In particular a programmer has to deal
with partitioning the functional components through the network, coordination
of such components and handling of partial failures. These concerns are consid-
ered crosscutting concerns because they cannot be encapsulated and modeled in
units of abstractions of popular programming languages like Java, Smalltalk, C or
C++; thus, code developed in such languages and related to distribution concerns
became tangled with other concerns’ code. This section present related work that
address problem of code tangling of crosscutting concerns in distributed applica-
tions, showing at the end an actual example of the problem.

2.1.1 General research on distributed crosscutting concerns

The phenomenon of tangling of code related with distribution has already been
addressed in literature. Lopes showed in [Lop97] how ,using Java as developing
language, the simple inclusion of concurrency and distribution generated a very
complicated tangled code. Her work also showed how the tangling phenomenon
could be reduced. First, by enforcing programming practices generating patterns

11



and rules that should be followed when programming; and second, by providing
programming languages with specific support for implementing such concerns.
It was clear that the first approach presented some level of success but with side
effects , like generating patterns’ specific tangled code that also polluted the func-
tional code making it not easy to understand and again tangled. The second ap-
proach proved to produce programs more reliable and easy to maintain.

Concurrency and failures are presented as crosscutting concerns by Kienzle
and Guerraoui [KG02], in their work is stated that full aspectization of these con-
siderations is not possible. To show this, an experiment using AspectJ and trans-
actions as the mechanism to handle concurrency and failures is presented. The
experiment was divided in three parts. The first part applied transactions to an
already existing application using AOP, however, the solution presented was lim-
ited, according to the authors, because the incompatibility between linearizability
of methods invocations on shared objects [HW90] and the serializability of trans-
actions [Pap79]; it was also limited because impossibility to identify irreversible
actions (E.g. I/O actions). The next step in the experiment was to aspectize the
transaction interface (begin, commit and rollback), but in the presented solution
exception handling is not aspectized in part because authors argue that in some
situations the functional and concurrent aspects are connected and they can not
be separated completely. The last part of the example tries to aspectize the trans-
actions mechanism, in this case the authors present a syntactical separation, but
they argue that this separation requires more expertise and knowledge than the
standard way of writing transactions.

Soares et al. [SLB02] reports the experience of converting an specific dis-
tributed application to a non distributed version an then incorporating the dis-
tributed concern using AspectJ. The exercise shows an interesting example of
applicability of aspects for implementing distribution, however also shows how
difficult is using AOP for distribution with current approaches, in the sense that
the utilization of current AspectJ approaches presents the need of having a high
degree of knowledge of the middleware mechanism (RMI).

2.1.2 Motivating example: policies for distributed caching

To motivate our investigation and to show that tangling is an actual issue in pro-
grams developed with current programming languages I will analyze the tangling
phenomenon for the caching subsystem of a well-known platform for distributed
application development, JbossCache [BW05]. Furthermore, this example will be
used later to illustrate the approach of my thesis.

Jboss Cache Overview. JbossCache is a cache implementation which data is
stored in a tree data structure, it supports transactions, replication, eviction poli-
cies and automatic access to backend data stores. In this implementation each
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node in the tree has one parent, and can have many children, it also has an asso-
ciated hash table with pairs key-value. The tree structure was preferred over the
hash table structure because a tree can be used as a hash table as well as a tree and
it gives support for mapping objects in a more fine grained way.

The implementation of the cache is based on a simple tree class that imple-
ments a tree data structure, the name of this class isorg.jboss.cache.TreeCache.
This main class is augmented with code to support a chain of interceptors, separat-
ing crosscutting concerns in classes called interceptors. Examples of those classes
areorg.jboss.cache.interceptors.Lockinterceptorand

org.jboss.cache.interceptors.ReplicationInterceptor.Each method invocation
to a TreeCacheobject is then processed by all the elements of the interceptor
chain.

Even though the design and coding rules are applied with care, the gener-
atedTreeCacheclass has tangled code that address distribution, concurrency and
failure safety as well as tangled code for the interceptor filter pattern (all within
a source file of 1741 LOC, with 126 methods and 27 imports). The source file
representing the tree data structure is hard understand and it’s original behavior
is hidden behind the code that implements the chain of interceptors mechanism.
Furthermore the interceptor Filter pattern implemented creates a solution that at
runtime generates time tangling making it hard to determine exactly what code
and when was ran. This file is a clear example of spatial and time tangling en-
forced by programming practices (e.g. interceptors chain) and by language mech-
anisms that, as Java does, provides synchronization mechanism orthogonal to the
OO paradigm, as stated in [Lop97].

JbossCache uses a replicated cache policy, where all data of caches is repli-
cated. Solutions to achieve more flexible policies using JBossCache leads to cross-
cutting code. To achieve such policies, with standard JBossCache, complex cache
hierarchies have to be combined with fine grained eviction policies. For example a
variation of the JBossCache standard policy where synchronization behavior with
those caches that hold a copy of the objects that have been explicitly put in the
cache by the local process and only over the specific object, is only achievable in
limited versions.

2.2 Aspectizing distribution concerns with AOP lan-
guages and frameworks for distribution

Language or framework support for distribution concerns have been addressed in
different ways by AOP research (or AOP related research). This section shows dif-
ferent approaches to address crosscutting concerns in the scene of distributed ap-
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plications. Remote pointcuts provide an interesting language construct designed
to identify join points in programs running in remote hosts. Distribution through
automatic partitioning of applications, presents ideas for frameworks that can have
explicit configuration of how components are deployed and coordinated in differ-
ent hosts, even though they do not provide explicit language extension this solu-
tion present a mechanism for separating distribution concerns . Finally, aggressive
encapsulation of distribution and concurrency section presents fundamental ideas
of separation of distribution concerns. These different ideas will provide design
guidance to Dhamaca.

2.2.1 Remote pointcuts

Remote pointcuts were introduced into AOP like language/framework constructs
to detect join points executed in different execution spaces (I refer to execution
spaces to indicate processes that do not share memory but not necessarily run in
different physical machines). Work presented in this subsection address related
work in AOP area that deal with remote pointcut mechanism as a concept. The
approaches presented show differences between supporting the remote pointcuts
by extending the API of base language or by augmenting the language.

Remote pointcuts were addressed by Pawlak et al. [PSD+04] and later by
Nishizawa et al.[MN04]. The work by Pawlak presents JAC a dynamic AO frame-
work for distribution where the concept of distributed pointcuts is introduced. A
remote pointcut construct was developed extending the Java API, the developed
construct was a method that could include the specification of a named host, al-
lowing the programmer to explicitly decide in what container a joint point should
be detected. As mentioned here JAC is provided as an API extension, and the as-
pect language and the pointcut language are implemented using OO abstractions
provided by Java, thus it does not provide new specific language constructs. When
dealing with distribution this work also address the problem of aspect distribution,
in the sense of how an aspect is deployed to various containers, the solution shown
in the paper is the replication of an aspect manager on each node and the imple-
mentation of a consistency protocol between them to communicate the events of
deployment and undeployment of an aspect (JAC implements dynamic weaving
of aspects at the byte code level).

The work presented by Nishizawa et al.[MN04] address, in a more explicit
way, remote pointcuts, presenting DJcutter,an extension of AspectJ, as a language
for modularizing distributed concerns. Their work extend a subset of AspectJ’s
constructs to make them behave as remote pointcuts and it also provides new
language constructs to reason about remote join points. A pointcut designator in-
troduced by DJcutter ishosts(hostid), this language element basically match all
the join points found in a specific host. The system also make an extension of
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cflow. However, such cflow extension is constrained because it requires the com-
munication, of the base application, to be implemented using an specific custom
socket implementation. It is important to note that join points’ state can be ex-
posed to advice, by means of value binding to pointcut parameters, usingargsand
target. By default these parameters are sent to the aspect server by copy, but the
system can be configured to pass them as remote references. Information of join
points can be also gathered using the reflection capabilities of the system. A final
feature provided with DJcutter is the possibility of telling an aspect to execute
locally, thus the aspect and the advice are distributed but once a host find a join
point it executes the advice in the local machine with out sharing information.
DJcutter uses an Aspect Server where the advice are run, then you only distribute
the remote pointcuts definitions and once they are activated in any host the aspect
server will run the advice body. The thread that invokes the pointcut is suspended
until the server finishes the execution of the advice. As we mentioned before the
weaving is executed at load time on each server.

2.2.2 Related approaches for distribution

Distribution trough automatic partitioning of applications Many research
works have been proposed on automatic partition as a mechanism to incorporate
distribution concerns to a non distributed application with out modifying the orig-
inal code. Between those studies, I am interested in work that address Java AOP
implementation techniques. This interest is motivated by two reasons: first, they
present an example of a mechanism for separating distribution concerns; and sec-
ond, because they address interesting implementation issues found when dealing
with distribution, like the problem of implementing remote references, and how
those references have to be treated in different manner depending of nature of the
object being referenced.

Aridor et al. [AFT99] apply the concept above by modifying the virtual ma-
chine making it aware of the of the cluster to create a distributed virtual machine
image. Other approaches like Addistant[TSCI01] and J-Orchestra[TS02] imple-
ment the automatic partitioning by modifying the bytecode of the application to
implement the distributed virtual machine image. These approaches document the
problem of how remote references to objects are different depending of the nature
of the object. In particular, they present different proposals of how unmodifiable
code (e.g. binary optimized code found in some core classes of Java) is treated.
Thus, it is not possible to modify this binary optimized code to introduce remote
proxy indirections, so the automatic partitioning of code, including classes with
that kind of code, must be addressed with special care.

As stated above, one of the interesting implementation issues introduced by
the mentioned related work is how remote references are treated, depending of
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where the remote reference is introduced and what kind of objects are referenced.
A full description of all the approaches is out of the scope of this document, be-
cause of that I am going to detail how proxies were used in [TSCI01], this se-
lection is made because I consider their approach more general an detailed. The
model used is to implement proxies for remote references, so when a remote ref-
erence is needed a proxy is used and the proxy hides all the complexity of the
communication. Based in this model we find that different types of proxies can
be used depending of the code that wants to be modified (in the case of byte code
modification). The first case, is a proxy that replaces the original object so all the
references will be through the proxy, and it must be use when all the references
must be remote. The second case, is the one where a proxy is generated and the
code of the objects that reference the master object are modified only if they are
suppose to hold a remote reference of the original object. The third case, is the
subclass approach, where a subclass of the master object is created and depending
if the reference to the object is local or remote the system will use the original
object or the subclass version. The fourth case, is when no remote reference of
an object must exist in this case any attempt to have a remote reference will cause
creation of a new copy of the object, that will be only referenced locally.1

The work presented in [TS02] introduce an interesting implementation to man-
age unmodifiable code, basically this works shows that when two unmodifiable
objects reference each other is impossible to introduce indirect references, but a
modifiable object that references an unmodifiable object can be change and be
placed in different host. In order to achieve a clean implementation the proxies
must be aware of when a reference is passing from a modifiable scope to an un-
modifiable one so the right transformation can be applied to parameters. This
rewrite particularity give the possibility of having object mobility, meaning that
objects can move at runtime from one server to other in a particular deployment
topology.

From this series of works it is important to extract some notes in a distributed
thread model that is addressed in [AFT99]. This interest is driven by the necessity
of finding optimized solutions to the cflow construct proposed in [MN04]. The ap-
proach presented requires modification of the base code to introduce a custom im-
plementation of socket classes. Such implementation basically propose migration
of the thread stack information in each remote call. A clear improvement, at least
in network load, will be to evaluate the cflow information in a distributed way.
In other words maintaining a distributed stack like the one proposed in [AFT99],
and accessing it only when necessary. Note that the information in the stack is not
copied, instead of that each node holds a part of the full stack information.

1Remember that the distribution is not explicit in the program, in general the distribution will
be configured externally.
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Code mobility I want to broaden this discussion by including some material
about code mobility, because this concept is used in a limited form in the context
of distributed advice in Dhamaca. Many languages with support for code mobility
have been proposed , such languages can be classified into those that provide
strong mobilityand those that provideweak mobilityas presented in [CGPV97].
Strong mobility refers to the capacity of moving execution units with their code
and context between execution spaces. Weak mobility refers to allow a execution
unit in a execution space to be bound dynamically to code coming from a different
execution space. In Dhamaca’s distributed advice we will use a version of weak
mobility. Some recent work related to mobility is studying how prototype-based
object models can help create better languages for mobile devices [JD05b, JD05a].
This approach is of particular interest because it can simplify the concepts needed
to think about parameter passing (i.e. the relation class object is not a problem
any more in prototype based languages).

2.2.3 Encapsulation of distribution and concurrency

Syntactical separation of concerns is one of the points addressed by AOP ap-
proaches. To achieve such separation in distributed applications different AOP
approaches have been proposed. In this section I now discuss approaches which
treat concurrency as a particularly important concern of distributed systems.

One of the first AOP approaches that address distribution concerns was D
[LK97], this language basically introduce a framework of three languages de-
signed to provide encapsulation of distribution concurrency and functional con-
cerns. The functional language JCore is a traditional OO language for writing
objects, that in this case is a subset of Java language. COOL the coordination
language have directives to describe relations between methods, such relation can
tell if a method is auto-exclusive (only one thread at the time) or if two methods or
more are mutually exclusive. RIDL, the remote interface aspect language, allows
the programmer to specify how information is sent and what information is sent
when remote method invocation happens between different execution spaces. It
provides control over the copying semantics, allowing the programmer to restrict
the amount of the object graph that has to be copied when a parameter is pass by
copy.

Other example of work developed with the concept of aggressive encapsula-
tion of distributions concerns, concurrency in this case, is the one presented in
Sequential Object Monitors(SOM)[CMT04] as an alternative to Java Monitors.
One of the criteria used in the design of SOM was modularity, meaning that syn-
chronization code should be specified separately from application code, in order
to achieve a clean separation of concerns, and making it easy to “plug” synchro-
nization onto existing, not thread-safe, classes. Based on this criteria, the authors
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present a sequential Object Monitor, that is a standard object to which a low-cost
(thread-less) scheduler is attached.

2.3 Expressiveness through history based pointcuts

AspectJ’s pointcut language provides means to take actions based in the current
state of the computation, with the notably exception ofcflowconstruct that allows
the programmer to take actions based on the relation of join points found in the
same control flow. Proposal to extend this conception allowing the application
behavior to be modified depending on the events found in the history of the com-
putation have been proposed in [RD01, AAC+05, WV04, RD02, DFL+05]. Such
approaches provide definitions for atomics elements that can be detected in the
computation trace (e.g. events), they also provide a language to express relations
between those atomic elements and to extract values form such expressions, and
finally the provided a mechanism to attach behavior to such expressions in order
to be executed when the specific event or pattern of events is detected. Dhamaca
will be consider constructs to support explicitly event based AOP in distributed en-
vironments. This section presents a discussion of different semantics introduced
in the context of non-distributed event based AOP approaches. Support for those
semantics is considered and addressed in dhmaca’s design.

Pointcut languages for history-based approaches.Different comparison can
be made from the different pointcut languages proposed to detect event patterns in
different approaches. Expressiveness is one of such characteristics, based on this
it could be said that some approaches present pointcut languages based on regular
grammars (e.g. regular expressions) as presented in [AAC+05]; others present
pointcut languages based on context free grammars [WV04], making them more
expressive (e.g. support for nested event patterns); and finally other approaches
presents pointcut languages that are Turing complete (e.g. work by Douence et
al. [DFS04, DT04]) making them even more expressive. Other, more informal,
comparison that can be made, is based in how aspect language syntax is modified.
Having some approaches that extend the pointcut language to support constructs
to declare event patterns as presented in [WV05]; other approach is to have com-
position of aspects as that presented in [RD02, DFS04]; and finally a new language
abstraction (e.g. aspect, class) that encapsulates the pattern expression as provided
by [AAC+05, WV04]. All these approaches present different ways to express the
relation between events, and each of them present advantages to express different
features in an easier way, by example with the relation between aspects you can
avoid the complexity of thinking in the instantiation problem in sequences, be-
cause the sequence is something external to the aspect. Support for event pattern
detection presents an implicit mechanism to allow the flow of information (e.g.
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past event execution).

Variable binding. Other way to pass information is to define a mechanism for
explicitly sending information at the pointcut level. Douence et al. make a formal
presentation of an inter-crosscut pattern variables mechanism in [DFS04], with
this approach it is possible to bound values to variables, in order to be used in
the definition of future pointcuts. Allowing them to express dynamic pointcut ex-
pressions where pointcuts are modified depending in the variables bound by past
events. This mechanism is implemented intracematches[AAC+05], extending
Douence et al. work, by letting binding mechanism to determine the presence of
“multiple parallel object specific traces” inside a tracematch construct. Those par-
allel per object specific traces are matched individually depending on the values
bounded to variables (e.g. an event match the trace if it bounds the same set of
values to the same set of variables). This mechanism address in implicit way the
problem of sequence construct instantiation. Note that this definition can give to
expected/unexpected behavior by branching.

Sequences and event patterns. As mentioned before these languages modify
the behavior of a program by allowing the programmer to reason about the history
trace of events in the computation, one of the common constructors encountered
is the sequence of events that basically define a sequential pattern. Such construc-
tors have been extended introducing more sophisticated means like detection of
events regular expressions [WV04, AAC+05]; or introducing constructs to com-
pose aspects, such constructs allows the programmer to create parallel execution,
recursive composition and selection of aspects as proposed in [RD02, DFL+05].
One interesting issue that appears when sequences are introduced is the concept
of when and how instantiation happens, as mentioned before one a way to do it
is to define instantiation in terms of variable binding as presented in[AAC+05];
other way is to make instantiation explicit, in such a case you can have such in-
stantiation by attaching an instance to an aspect instance[AAC+05, WV05] or by
providing external constructs that relate aspects (Aspects and sequences at the
same level)[DFL+05]. The semantics of the sequence instantiation introduced in
JAsCo stateful aspects is simply an single instance attached to an aspect instance
that is enough to create a language extension that allows to create finite state ma-
chines. This subject will be discussed in detail in section 4.1.

The advice language.Finally each language provide mechanism to extend
behavior in the interesting points, once they are detected. Such mechanism can
modify global values and local values and they also can use the values that are
bound by the pointcuts in the advice signature variables.
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2.4 Summary and conclusions

In this section I present the problem of tangling of crosscutting concerns in dis-
tributed applications. Showing, that writing distributed applications is tough, and
is even more difficult is to maintain and debug distributed applications created
with popular programming languages. An actual example of tangled code in dis-
tributed applications is showed based in JbossCache source code. It is also showed
that the problem of code tangling can be lessened by improving programming
practices or improving language support for encapsulating distribution concerns.

Improving language support for encapsulating distribution concerns in AOP
presents an open space for research. This due to the fact that most of the cur-
rent AOP research approaches are targeted to sequential applications and not to
distributed applications. Dhamaca is an AOP language with explicit support for
distribution concerns an approach that takes advantage of this open space for re-
search.

Dhamaca design is driven by ideas provided in different approaches that were
discussed in this section. From the information analyzed the design directives that
were extracted for my designs are:

• Dhamaca will have support for remote pointcuts. Presenting explicit con-
structs at the pointcut language level.

• It will also present support for detecting patterns of events in the distributed
computation trace. Presenting difference semantics for the event pattern
detection constructs.

• It will present constructs to have distributed advice support. Allowing the
programmer to reason explicitly about in what execution space an advice
should run.

• It will promote encapsulation of distribution concerns in aspects.
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Chapter 3

Explicit programming with the
Dhamaca language

This chapter presents Dhamaca, an AOP language with explicit support for distri-
bution. I present also a motivating example to introduce the language, followed
by a definition of the syntax and informal semantics, and finally a detailed presen-
tation of diverse application examples.

3.1 A motivating example: cache replication

A common practice in enterprise application design is to separate the application
architecture in multiple tiers, examples of such architecture are enterprise trans-
actional web sites, such systems can have a servers that provides presentation ser-
vices to clients and communicate with applications servers that provides business
services that at the same time are communicated with robust backends [Jac03].
This kind of architecture is used to allow insertion of firewalls between layers (i.e
to increase security of data expose to clients) and to create clusters. Clusters are
created to improve reliability and performance of the whole application. This is
achieved by means of distributing client requests to different members of the clus-
ter, and assuring that if a cluster’s node crash, clients’ requests will be handled
by the remaining active members of the cluster. To improve performance in dis-
tributed applications it is also commonly used to realize caches [GJL05, Bor01],
i.e., data stores which are close and therefore rapidly accessible from clients. It
is also known that the inclusion of synchronization between those caches, one
in each different node in the cluster, can be useful in enterprise applications to
improve reliability[BW05, Bor01]. Figure 3.1 shows an instantiation of an archi-
tecture described above, where the presentation layer is supported by a cluster of
servers that interact with another cluster of servers in the application layer that
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Figure 3.1: Multitier cluster architecture

finally interacts with a robust backend. The arrows show a typical scenario of
communication but not the only one. As mentioned above over such architectures
is possible to dramatically increase performance by introducing caches. The re-
liability of such applications can be improved by the introduction of replication
between those caches [BW05, Bor01].

As analyzed before in section 2.1.2 on page 12, the implementation of a repli-
cated cache solution is per se an example of a distributed application, that suffers
the problem of spatial tangling when implemented and the problem of time tan-
gling when deployed in a cluster environment as the one described above. This
problem is even worse when the deployment of the cache implementation is con-
sidered in different layers of the application (e.g. between the presentation servers
and application server; and between application server and backed servers).

To introduce Dhamaca we will consider an example where we want to im-
plement a general solution for a replicated cache similar to the ones proposed in
[BW05, Bor01]. Listing 3.1presents a simple version of an cache class imple-
menting a simple caching mechanism using aHashtable. It exposes two methods,
get to get information from the cache andput that puts information in the cache.
This is a plain version that does not includes any replication code. In order to
extend the behavior of this solution to a replicated one, we introduce a replication
aspect as presented in Listing 3.2, this simple aspect introduces replication to the
solution. Line number 2 present the header of the aspect that indicates that the
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1

2 import java.util.*;
3

4 Class Cache{
5

6 private static Cache _instance= new Cache();
7

8 public Hashtable cache = new HashTable();
9

10 public Cache(){}
11

12 public static Cache getInstance(){
13

14 return _instance;
15

16 }
17

18 public Object get(String s){
19

20 User u = cache.get("/user/"+ s);
21

22 }
23

24 return u;
25

26 }
27

28 public void put(String userId, User u){
29

30 cache.put("/user/"+ s, u);
31

32 }
33

34 }

Listing 3.1: Cache with simple cache implementation example.
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1

2 global aspect CacheReplication{
3

4 pointcut cachePcut(Object key, Object o): call(* Cache.put(Object,Object))
5

6 && args(key,o) && !host(localhost) && !on(jphost);
7

8 before (Object key, Object o): cachePcut(key,o){
9

10 Cache.getInstance.cache.put(key, o);
11

12 }
13

14 }

Listing 3.2: Replicated cache aspect example.

aspect will be distributed globally and it will have an singleton instance on each
host, thus controlling instantiation and distributed deployment conditions. Lines
4 to 8 show the pointcut language, thecall pointcut picks out the join points in the
Cacheclass when the put method is called; theargspointcut binds the values of
the arguments passed in the method invocation to the arguments of the pointcut;
the !host(localhost)pointcut matches the join points that originated in hosts dif-
ferent from the one where the aspect is deployed; the!on(jphost)pointcut matches
all the joinpoints that are intercepted by an aspect that is not deployed in the host
where the join point was executed, so this joinpoint controls whether an advice is
executed or not depending on the host where the advice is deployed. Note that the
hostpointcut let the programmer to express restrictions on the host where the join
point is originated; theon construct let the programmer to express restrictions on
the host where the advice is executed; and finally there are two constants intro-
duced to facilitate writing of aspects with out knowing the distribution technicals
details like the ip address and port of the node, these constants arelocalhostthat
is the host where the aspect is deployed andjphostthat represents the host where
the join point, under evaluation, occurred. Lines 8-12 shows a simple advice code
that simply put in the cache the element, performing the actual replication.

As a summary, the aspect is distributed to all the host participating in the
solution, and it is instantiated creating a singleton instance on each host. Then
when an invocation of theputmethod in a Cache class occurs, the appropriate join
point is distributed to all the participating hosts where it is evaluated individually
by each aspect instance. In such an evaluation the join point is matched in all the
aspects that are not deployed in the host where the join point was originated.

The above example presents the implementation, using Dhamaca, of an actual
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distributed application. This implementation ,however , represent a little set of the
distribution policies that need to be implemented in a distributed cache solution.
To achieve more expressive policies in a cache solution it is necessary to have
more expressive constructs to reason about distribution concerns. As shown in
section 3.5.1, to achieve more sophisticated policies it is necessary to support
sequence like constructs (e.g. like those introduced in 2.3).

Finally, the example above present improvements over previous work, like the
one presented by Chiba et al.[MN04], by adding the concept of explicit control
over distributed advice execution, also presenting the possibility of having mul-
tiple parallel advice execution in specific hosts. Another feature introduced by
Dhamaca is the possibility to reason about the deployment behavior of aspects,
meaning that the programmer can control where aspects are deployed.

3.2 Syntax and informal semantics

This section introduces the informal semantics of the language. Dhamaca is an
extension of the Java language that uses some of the constructs an ideas intro-
duced by AspectJ[GKG01], extending such approaches by adding a remote join
point model[MN04, PSD+04] and sequences to provide expressive constructs in
order to have explicit distribution support. It also introduce an explicit notion of
neighborhood.

3.2.1 Join points, neighborhoods and nodes

Dhamaca’s join point model consist of method calls only. The semantic of method
calls are modified by the introduction of the concept of groups of nodes. A node
is any runtime instance of Dhamaca processes (programs written in Dhamaca).
More than one node can be running in a machine. A group of such nodes will
be called a neighborhood, in fact in a deployed distributed application it can be
many neighborhoods. Note that a node can also belong to many neighborhoods.
These groups are created by runtime instances of Dhamaca processes (nodes),
such instances can join and leave the groups at any time.

Dhamaca’s joinpoints are augmented with the information of node and neigh-
borhoods to which the node belongs, and those augmented joinpoints are dis-
tributed as messages to all the members of application when they occur. This
constitute the distributed joinpoint model of Dhamaca, and will be the base for
building remote pointcuts.
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3.2.2 Pointcuts

This section introduces the pointcut language definition, as mentioned before the
constructs provided by dhamaca are remote pointcuts. Remote pointcuts are lan-
guage constructs for identifying joinpoints in the execution of program in a remote
node. Figure 3.2 shows the pointcut language.

P ::= PPrim|PSeq|PDist |PNeigh
| P‖P|P&& P| !P

PPrim ::= call(Signature) | target(TypeIdExpr) |args({TypeIdExpr})
| c f low(P)

typeIdExpr ::= JavaType| Identi f ier

PDist ::= host(HExpr)
| on(HExpr)

PSeq ::= seq({PSeqStep})
| step(PSeq,stepId)

PNeigh ::= neighborhood(NExpr)
| onneighborhood(NExpr)

HExpr ::= localhost| jphost| ” ipAddr : port” |Identi f ier

PSeqStep ::= [Identi f ier :]P[>> NextStateExpr] [RegExprCard]

RegExprCard ::= +| ∗ |{n,m}

NextStateExpr ::= StepId
| StepId‖NextStateExpr

StepId ::= Identi f ier|Int

Identi f ier ::= //Java valid identi f ier
JavaType ::= //Java valid type expression
Int, ipAdd, port ::= //integer expression
NExpr ::= //A valid Java string expression

Figure 3.2: Pointcut language
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Pointcuts are constructed from primitive pointcutsPPrim, sequence pointcut
PSeq, distribution pointcutPDist, neighborhood pointcutPNeigh, or any logical
composition of a pointcut expression using ||(or), &&(and) and!(negation)oper-
ators.

Primitive pointcutsPPrim, are those introduced in AspectJ and also present in
Dhamaca:call, target, argsandcflow.These constructs present the same behavior
as the constructs of the same name found in AspectJ[GKG01].

Pointcutcall(signature)matches calls to methods with matching signatures
signatures, wheresignatureis a method signature pattern as those defined in As-
pectJ. It is important to remember that each pointcut construct will detect join
points in any host unless something different is specified explicitly (e.g., using the
distribution pointcuts).

Pointcuttarget(T)matches all the join points where a method is called on an
object of typeT, whereT is a type as introduced in Java language; it is also possi-
ble to write the constructor using the syntaxtarget(t),with t being a valid identifier
of a parameter defined in the pointcut signature(see aspect language definition),
and it will match the join points where a method is called on objects of the same
type as the parameter t, with the additional behavior that the target object will be
bound to the parameter t.

Pointcutargs(T,T,T,...)will match all the method calls with the same argu-
ments as those presented in the constructor; whitT being a type as defined in Java
language byT; if the programmer uses parameters identifiers (e.g.t) in addition
the parameters values of the method call will be bound to the parameters defined
in the pointcut signature.

Next line introducescflow(P), this construct have the same behavior as that de-
fined in[MN04] where the cflow information is maintained across different remote
method call invocation in different participant hosts. This constructor identifies all
the join points that occur between the start and end of the method specified by the
constructor, this definition includes the join points that are executed in remote
hosts.

The constructorhost(HExpr)matches all the join points that appear in an spe-
cific host, represented byhostExpr.The host expression passed as parameter can
be: an string with the ip address and the port representing a node; any of two
provided constantslocalhostandjphost; or an identifier of a string parameter de-
fined in the signature of the pointcut.localhostis the representation of the node
where the aspect is deployed.jphost represents the node where the join point
under evaluation was generated. When an identifier is passed as a parameter an
string representing the node (i.e., String of the form “ipAddress:port”) is bound
to the specified parameter defined in the pointcut signature(see aspect language
definition).

The termseq({PSeqStep})matches sequences of pointcuts. The events defined
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in the sequence are matched individually once they happen. This basic behav-
ior can be modified by the constructstep(pSeq, stepId)that will only match the
step identified bystepId in the sequence. Note that to match the joinpoint that
completes the full sequence (i.e., match the sequence when it has finished) the
programmer can use a construct likestep(seq(s1:pSeq1, s2:pSeq2, send:pSeq3),
send).An aspect can has as many sequences definition as desired, and each join
point will be capable of changing all the sequences states when evaluated inside
an aspect. The sequence expression can be also defined using regular expression
notations (see non-terminal PSeqExpr).

The last defined constructs are the ones related to the neighborhood concept,
these have a similar behavior as thehostsconstruct.neighborhood(NExpr)match
all the join points that are originated in a host that belongs to the specified neigh-
borhood (set of nodes). Likewise the constructonneighborhood(NExpr)match all
the join points when the aspect evaluating a join point belongs to the specified
neighborhood.nExpr is a string construct as defined by Java language that de-
fines the name of the neighborhood. The names of the neighborhood are created
dynamically in the advice, when nodes ask to be included in a neighborhood that
does not exist yet, it will be created with the demanding node as the only element.
Also this neighborhood will exist until the last element is removed. A node can
belong to many neighborhoods, and many neighborhood can be defined.

3.2.3 Aspect and advice language

The aspect language is presented in Figure 3.3.
The non-terminalAspDeclpresents the basic syntax for an aspect. Theglobal|local

modifier indicates if the aspect will be deployed locally or globally, in other words
if it will be distributed to be loaded in other nodes or if is going to be loaded only
locally. Note that the default behavior of an aspect is ti be distributed globally
and to create one singleton instance on each node where is deployed. An aspect is
marked by theaspectkeyword, followed by the aspect’s class and a list of element
declarations, i.e., variable, pointcut or advice declarations. The aspect declaration
can be modified by “per” clauses that modify the instantiation behavior, a deep
explanation of that feature can be found in section 3.4.

The non-terminalPcutDeclpresents the syntax used to write pointcuts defini-
tions, in this case the keywordpointcut is used to designate a pointcut construct,
an Identifierstring represent the name of the aspect, and theParamPatternis the
signature of the pointcut. This signature contains the variables that will be bound
with values extracted from the joinpoint and that can be used in the advice. The
aspect can have as many pointcut definitions as needed by the programmer. The
modifier triggering is used to indicate that the pointcut can crate instances of the
aspect depending of the set of bindings provided by that specific pointcut, this
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AspDecl ::= [LocalityExpr] aspect IdAsp[instExpr]′{′{elemDecl}′}′

LocalityExpr ::= global| local

InstExpr ::= perthread| perob ject| perclass| perbinding

ElemDecl ::= Vardecl|PcutAdvDe f

PcutAdvDe f ::= [PcutDecl]AdviceDecl

PcutDecl ::= [triggering] pointcut Identi f ier(paramPattern)

Vardecl ::= javaVearDecl

ParamPattern ::= ( javaType Identi f ier)?
| javaType Identi f ier(, JavaType Identi f ier)∗

AdviceDecl ::= AdvicePrim(ParamPattern) : PcutInvo[: on(HExpr)]′{′{Body}′}′

PcutInvo ::= Identi f ier(ParamPattern) |P

AdvicePrim ::= be f ore|around|a f ter

Body ::= JavaInstr
| proceed(identi f ierPattern)
| addneighborhood(NExpr)
| removeneighborhood(NExpr)

Identi f ierPattern ::= (identi f ier)?| identi f ier(, identi f ier)?

HExpr ::= localhost| jphost| ” ipAddr : port” |Identi f ier

JavaInstr ::= //Java valid instruction

Identi f ier ::= //Java valid identi f ier

JavaType ::= //Java valid type expression

Int, ipAdd, port ::= //integer expression

NExpr ::= //A valid Java string expression

Figure 3.3: Aspect language29



option is activated only if the pointcut is used as a step of a sequence definition,
this concept will be explained section 3.4.

Advice AdvicePrim(paramPattern) : PcutInvo[ :on(HExpr)]{{Body}}is de-
clared using AspectJ-like weaving modifiersAdvicePrim(before or after or around).
The advice’sParamPatterndetermines the parameters that will be used in the ad-
vice and it has to be the same as the named pointcut used in the definition. Then
the programmer can compose a pointcut using named pointcuts and/or the point-
cut language. Advice bodies are constructed as follows:JavaInstris a primitive
of the Java language or a valid expression to express programs in the language.
Theproceed() construct is available when thearoundadvice is used, this instruc-
tion will execute the advised join point with the parameters given in the proceed
declaration, this construct is of particular importance because the execution con-
text can be changed by modifying the parameters passed to theproceedconstruct.
The advice language is augmented with the constructsaddneighborhoodandre-
moveneighborhood, with these constructs the programmer can tell at runtime if a
node joins or leave a specific neighborhood. I will show how this construct can be
exploited in the section 3.5.

Note that the advice constructor can be modified by aonexpression, the differ-
ences of this constructor and the one presented in the pointcut language are: first,
this one generates a synchronous call in the specified host to a first class advice
object that is executed in the context of the remote node, so it has access to the
static information on that host; second, it can use the values binded by the pointcut
in the variables of the pointcut definition, thus it can dynamically decide where
to execute the call. This concept will be covered in example of section 3.5.2 on
page 36.

3.3 Discussion of sequence variants

Sequence relationships, in particular regular ones, have received a lot of inter-
est during last years in AOP[RD02, WV05, DFS04, DFL+05, AAC+05, WV04].
This sequence relationships are particular useful in a distributed setting, i.e., in or-
der to express all sorts of communication protocols[DFL+05, WV04]. One of the
examples proposed at the end of this chapter is intended to express a cache with
sophisticated cache policies. Such example shows how sequence can be used to
build a protocol that will neighborhood communication between different nodes
(see section 3.5.1 for details).

dhamaca provides explicit support for sequences, this support is provided by
the pointcut language. The sequence can have different semantics that can be
controlled specifically by the pointcut language:

• The first case of sequence is a sequence pointcut that is triggered at each
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change of the state in the sequence, this is the default behavior and to
achieve it theseqconstructor has to be used.

• The second case is where particular steps of a sequence can be advised. In
this case a step expression is used to modify the sequence default behavior,
this constructor receives a sequence and astepIdvalue that represents ex-
plicitly what step of the sequence should be detected, the resulting pointcut
can be advised accordingly.

• The third case of sequence is a sequence that is advised when all events of
the sequence have occurred, this behavior achieved using a constructor like
step(seq(s1:pSeq1, s2:pSeq2, send:pSeq3), send)constructor. This is just
using the step constructor to advice the last event of the sequence.

• A fourth kind of sequence can be created by specifying at each step what
will be the next step or combination of steps in the sequence, thus it will
be possible to have a definition for stateful aspects as presented in [DFS04,
WV05]. Note that the special constructs1||s2,wheres1 ands2 are ids of
steps in the sequence, has the meaning of leaving the sequence in any of
those states, and the one selected will be the one who’s event arrives first.

• finally a fifth kind of sequence will be the one crated in side an aspect that
is modified by the keywordperbinding, such an aspect will be instantiated
when the first event of sequence appears, binding a new set of values to
the variables defined in the pointcut signature. Thus, a new aspect instance
will be created each time that a triggering pointcut defined as an step of a
sequence is found, only if there is not an instance of such aspect with the
same set of values bounded to the signature variables (see section 3.5.1).

Listing 3.3 shows some specific examples to clarify the semantics of the sequence
construct.The example defines a simple three step sequence that detects when the
update of a user has been done inside a transaction. Line number 14 shows a
pointcut that define the intersection between a sequence pointcut and a primitive
call pointcut, the resultant behavior is that the intersection of the two set of events
defined by each pointcut is detected. In this case the second step in the sequence
will trigger the advice execution. Line number 16 shows how the step construc-
tor can be used to express the same behavior, extracting the second step in the
sequence. Lines 18 and 20 show how it can be achieved in different ways the
behavior of triggering an advice only when the full sequence has been completed.

The language supports regular expressions notation as syntactic sugar for se-
quence expressions, note that in the example the second step in the sequence defi-
nition is modified by a *, this will mean that the second step can be matched many
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1

2 pointcut transacStart(): call(* transacManager.startTransaction(..));
3

4 pointcut userUpdate(): call(**.obasco.User.set*(..));
5

6 pointcut transacEnd(): call(*transacManager.endTransaction(..));
7

8 pointcut userPersisted(): call(*persistanceManager.persistUser(..))
9

10 pointcut seqUserUpdate(): seq(transacStart(), userUpdate()*,
11

12 transacEnd(), seqEnd: userPersisted());
13

14 before (): seqUserUpdate() && userUpdate(){//advice of the second jp
of the sequence}

15

16 before (): step(seqUserUpdate(),2){//advice of the second jp of the
sequence}

17

18 before (): seqUserUpdate() && userPersisted(){//advice of the last jp
of the sequence}

19

20 before (): step(seqUserUpdate(), seqEnd){//advice the sequence when
completed}

Listing 3.3: Sequence pointcut examples.
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times before the occurrence of a end of transaction event. The modifiers supported
are: the * modifier means that 0 or more join point will be detected, the + modifier
will indicate that at least one join point must be detected and {n,m} will indicate
that a join point will be detected a minimum of n times and a maximum of m
times. if The * modifier is used in the last pointcut of a sequence, the sequence
will not be consumed and it will remain active in the last state until the end of the
program.

3.4 Discussion of Aspects instantiation and deploy-
ment

One problem that arise when you are designing Aspect Languages, is how an
aspect is instantiated and what does the instantiation means. When the problem is
considered in a distributed environment the question of how an aspect is deployed
had to be considered too. For our language the instantiation won’t be related with
the scope of lookup of the pointcuts, in our case the scope and the instantiation
will be handled in a different way. This separation will give the programmer a
better flexibility in the implementation of programs using the aspect language.

The default behavior for instantiation and deployment, when no modifiers are
used in aspect declaration, is: the aspect will be deployed to all the nodes and
there a singleton instance of the aspect will be created.

Deployment behavior can only be modified to restrict the distribution of the
aspect, thus with the modifierlocal in the aspect declaration, the aspect will be
deployed only in the node where it physically deployed. Note that Dhamaca has
a dynamic behavior, meaning that aspects can be loaded and unloaded at runtime.

Instantiation.Instantiation is controlled by the “per” clauses, these clauses are
perthread, perobject, perclass,andperbinding. Theperthreadclause creates an
aspect instance for each thread in the application, and the aspect will detect events
only in that specific thread. Theperobjectclause will create an instance of aspect
for each target object, and the aspect will detect only events of that object. The
perclassclause will create an instance of an aspect per each class and will detect
events in objects of that class, it is important to note that this aspect will have a
global reach, meaning that they will detect events of objects of that class in any
node of the distributed application. Finally theperbindingclause will instantiate
an aspect for each set of values binded to variables of the signature of a sequence
pointcut, thus a new instance of the aspect will be created for each new set of
values bound to variables by atriggeringpointcut defined in a sequence. This last
concept will by clarified in the examples section.
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3.5 Applications of distributed aspects

3.5.1 Sophisticated cache policies

Modern web applications deal with sessions of different users, these sessions can
hold references to objects needed for the application to perform some tasks. Web
applications are also a good example of applications that tend to run in clusters.
Nowadays it is common to find web applications that serve different enterprises
(for example the enterprise zones in one bank’s web sites, i.e., sites of all sub-
sidiaries, or applications deployed in Application Service Provider web sites); let
us assume that such an application has a large object representing the enterprise,
and that object is referenced by all the sessions of users that belong to a given
enterprise. If we want to have this object in a replicated cache in the cluster, com-
mon cache architectures (cf. the description of the JbossCache in section 2.1.2)
make it necessary to have all the enterprise objects replicated in all the caches
independently from whether they are used in the specific cluster node or not. This
is a waste of memory, so it is useful to have a more sophisticated cache policy,
one that only locally adds an object but replicates when an object is updated or
removed. Furthermore, it is important to note that the replicated behavior is only
desirable in the nodes that hold a copy of the modified object. Solutions to this
problem produce tangled code because crosscutting between the functional code
and the distribution code(spatial tangling); they also create a complicated tan-
gled trace because entropy introduce by the uncertainty of the node behavior (e.g.
Which node is going to ask for what object at what time).

The example in listing 3.4 shows a replicated cache policy as described above
implemented with Dhamaca. The joinpoints of interest in the problem are the lo-
cal addition of a value to the local cache (addInstr) and the updation of non-local
caches (updateIstr). The first pointcutaddInstr is defined as a triggering event,
meaning that this event will generate an instance of the aspect if there is no in-
stance in the current host with the same bound values. The event is also defined as
local, because of that the triggering condition will only apply when a local event
occurs. The next pointcut defined in the example isupdateIstr, this pointcut rep-
resents events that are calls to the put method in the cache on other machines. The
third pointcut defines the sequence that will be attached to the aspect, the sequence
is defined by a regular expression consisting in the occurrence of the eventaddIn-
str followed by multiple occurrences of the eventupdateIstr,each occurrence is
advised. After the pointcut definitions we have two advice definitions. The first
advice definition is triggered when the first event occurs, adding the current host
to a neighborhood. The last advice is used to listen events in the neighborhood
and accordingly modifies the cache contents. Note that the name of the neighbor-
hood is given by the name of an identifier of the data that is stored, thus all the
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1

2 aspect AdaptiveCachePolicy perbinding{
3

4

5

6 triggering pointcut addInstr(String h, String fqn, Cache c):
7

8 host(h) && host(localhost) && call(* Cache.put(String Object))
9

10 && args(fqn, Object) && target(c);
11

12

13

14 pointcut updateInstr(String fqn, Object o):
15

16 call(* Cache.put(String, Object)) &&
17

18 args(fqn, Object) && !host(localhost) && onneighborhood(fqn);
19

20

21

22 pointcut cachePolicy(Host h, String fqn, Object o, Cache c):
23

24 seq(s1: addInstr(h, fqn, c), s2: update(fqn, o)*);
25

26

27

28 after (String h, String fqn, Object o, Cache c):
29

30 step(cachePolicy(h, fqn, o, c), s1) {
31

32 addneighborhood(fqn);
33

34 }
35

36 after (String h, String fqn, Object o, Cache c):
37

38 cachePolicy(h, fqn, o, c){
39

40 c.cache.put(fqn, o);
41

42 }
43

44 }

Listing 3.4: Sophysticated cache policy example.
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caches that include this data in their caches will join a neighborhood where data
of that explicit object is synchronized.

This simple aspect modifies the cache behavior presented in section 3.1 as de-
scribed previously: objects are included locally in the cache and the cache works
as a replicated one in case of further updates of the object. Note that now the ob-
jects are only replicated on the nodes that have asked for them explicitly (avoiding
the problem of waste of memory), and the cache synchronization is triggered by
a remote joinpoint that activates the put instruction in the second advice of the
aspect.

3.5.2 Simplifying RMI-based distributed applications

Distribution considered as a crosscutting concern has been analyzed among oth-
ers by Soares et al. [SLB02] by means of an aspect-engineered version of a health
care watcher system. The system was a manually-implemented tangled distributed
system, that was converted to a non-distributed version and then distribution was
added using AO techniques. In order to implement distribution, the authors use
aspects to automatically add RMI code in the non distributed version of the soft-
ware. A a particular characteristic of these application is that three aspects had to
be considered: first an aspect to handle client distribution concern ; second an as-
pect to handle server distribution concerns; third an aspect to handle serialization
issues. In the cited paper, they present a solution to change the context of the tar-
get object by a remote object in the advice using theproceed() construct, however
the proposal is not functional mainly because of implementation details of RMI
(The distributed object is a remote interface and not the actual object). So the
authors finally had to advice each method of the interface to call a method of the
remote object. Using our approach the distributed version can implemented using
only one aspect, that handles all the client/server concerns and also the distributed
execution. The aspect is presented in Listing 3.5 .

The example shows the use of theon()construct at the advice level, and shows
the interesting application of theproceed()construct, by changing the context of
the execution by providing a new target object in the remote host. Note that at this
level the behavior ofonat the advice level is a synchronous behavior, the advice is
treated as an independent object that can be sent and executed in different context.
In fact such an advice can be send through the network and it can access the static
context of the remote application, in this particular example configuring a full
remote method invocation ( thus using dhmaca’s support for weak mobility).

Note that the advice signature is modified by theon("hostServer")construct,
this will causefacadeCallsjoinpoint to trigger advice synchronous execution on
thehostServer.Once in thehostServer,the message is bound to an advice with the
same code as the original advice, there theproceedinstruction will be executed
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1

2 pointcut facadeCalls(HWFacade f):
3

4 target(f) && call(* *(..)) &&
5

6 !call(static * *(..)) && this (HttpServlet);
7

8 Object around(HWFacade f) throws /*..*/ :
9

10 facadeCalls(f) :on("hostServer"){
11

12 return proceed (HWFacade.getInstance());
13

14 }

Listing 3.5: Distribution aspect Example.

with a new parameter that replaces the target of the method invocation, by giving
the remote instance of the facade.

3.5.3 Test of architectural constraints

The work presented by Chiba et al. [MN04], uses a test framework to show the
applications of remote pointcuts. The example presented here, extends the idea
of applying remote pointcuts in test frameworks, to detect possible architectural
violations in a deployed system. Let us analyze the case where we have three
servers: h0 holds a middleware application, h1 holds a web application, and h2
holds a backend application. There are two rules, the first one is that all interaction
between h1 and h2 should be done through h0 and that all data base updates in
h2 triggered from h1 should be included in transactions. The pointcuts to handle
these rules are showed in Listing 3.6. ThepathPCpointcut is the one that specifies
the allowed path, thetransactionSeqpointcut is the one that restricts the execution
of operations inside a transaction, and finally thearchRulepointcut detects the
calls to thesetmethods onReqServerclasses in the hosth0 that violate the rules
specified by the above pointcuts.

Note that this example shows an extension over the test framework presented
in [MN04]. Here updates are checked to be made inside a transaction using se-
quences, thus avoiding the need of having control flow relation between calls.
This kind of test are difficult to support without support for distributed sequences.
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1

2 pointcut pathPC() :
3

4 cflow (call(* *.*(..)) && host(h1))
5

6 && cflow (call(* *.*(..)) && host(h0)) &&
7

8 call(* reqserver.set*(..)) && host(h2);
9

10

11

12 pointcut transactionSeq():
13

14 seq(call(* obasco.txmanager.start ()),
15

16 *call(* *.*(..)) && host(h0),
17

18 call(* obasco.txmanager.end());
19

20

21

22 pointcut archRule():
23

24 call(* reqserver.set*(..)) && host(h2) &&
25

26 (!pathPC() || !transactionSeq())

Listing 3.6: Architectural constrains.
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3.5.4 Conclusion

This section has shown the advantages of Dhamaca by providing concrete ex-
amples. Explicit neighborhood support in combination with remote pointcuts
and distributed sequence support have been used to express context-dependant
dynamic protocols and sub-protocols inside a distributed application, e.g., for
sophisticated cache policies. It also has been shown how distribution can be
achieved easily by using explicit distributed advice determination and avoiding
common problems of remote interfaces. Finally, test frameworks can be extended
to detect complex event patterns in distributed computation traces to check archi-
tectural constraints within distributed systems.
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Chapter 4

DJAsCo: a prototype
implementation

In this chapter I present DJAsCo, the implementation of the main features pro-
posed by Dhamaca. It has been implemented on top of JAsCo [VS] [SVJ03], a
dynamic AOP approach originally designed to combine ideas of aspect-oriented
and component-oriented programming. This chapter will present a brief introduc-
tion to the JAsCo language, after that I will present the details of the proposed
extension to be implemented and finally you will find the implementation details
of the first DJAsCo version.

4.1 Introduction to JAsCo

JAsCo is a dynamic AOP extension of Java that was conceived originally to recon-
cile aspects and components. To achieve that it introduces two additional entities
to the language:aspect beansandconnectors.The main idea is that a programmer
can produce independent aspect beans that can be bound at deployment time to ac-
tual components using connectors. Aspect beans are an extension of Java beans
and are specified in an independent way, with out relating them to any specific
component specification. These aspect beans contains one or more hooks that can
be advised using before,around and after like constructors like in AspectJ. Figure
4.1 shows a simple logging aspect that prints the joinpoint info of the method that
is being call. Basically in the aspect a hook called printTrace is defined such hook
will be bind to a method (or set of methods) and will execute thebeforeadvice
before the execution of the method. The advice just print the object that represent
the joinpoint that is being advised.

Binding of concrete components methods to hooks in the aspect bean is done
in the connector, the connector is used to deploy one or more instances of aspect
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1

2 class PrintTrace {
3

4 hook PrintTrace {
5

6 PrintTrace(method(..args)) {
7

8 execution(method);
9

10 }
11

12 before () {
13

14 System.out.println("Aspect’s before advice: " +
15

16 "jp: " +thisJoinPointObject);
17

18 }
19

20 }
21

22 }

Listing 4.1: Aspect bean example

beans, binding the actual components’ methods to the corresponding hooks. No-
tice that aspect instantiation is expressed explicitly in the language. Figure 4.2
shows a connector that create an instance of the aspect bean and binds all meth-
ods to the argument of the hook, in this case the aspect will trace all the method
executions in all the classes of the component or base program.
Note that in the connector the programmer can use wild cards to attach different
methods to the corresponding hooks, explicit precedence can be expressed in the
connector and even advice granularity can be expressed in this way.

An interesting feature found in JAsCo is support for stateful aspects as de-
scribed in the formal model presented by Südholt et al. [DFS04]. This feature
allows the language to support protocol history conditions to trigger the advice
execution in aspects, thus a programmer can specify a sequence of events and she
can advice them individually or defining a common advice to all the transitions.
In the language construct proposed, a finite state machine can be defined by spec-
ifying the states and the sate transition rules. note that events are joinpoints that
match a defined pointcut in the construct. Figure1 4.3shows an stateful aspect
where three methods are defined in the signature of the hook:starmethod, run-

1This example was extracted from[WV05].

41



1

2 static connector PrintConnector {
3

4 test.PrintTrace.PrintTrace hook0 =
5

6 new test.PrintTrace.PrintTrace(* *(*));
7

8 hook0.before ();
9

10 }

Listing 4.2: Connector bean example

1

2 class statefulBean {
3

4 hook StatefulHook {
5

6 StatefulHook(startmethod(..args1),
7

8 runningmethod(..args2),
9

10 stopmethod(..args3)) {
11

12 start >p1;
13

14 p1: execution(startmethod) > p3||p2;
15

16 p3: execution(stopmethod) > p1;
17

18 p2: execution(runningmethod) > p3||p2;
19

20 }
21

22 before p2 (){
23

24 //do the logging:
25

26 System.out.println("executing: P2 ");
27

28 }
29

30 }
31

32 }

Listing 4.3: Stateful bean example
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Figure 4.1: JAsCo run-time Architecture

ningmethodandstopmethod. Then, with such methods, a protocol is defined. In
the first line astart construct indicates the first sate of the stateful aspect. In the
first named statep1 the program specify that when a execution of the startmethod
event is triggered the program will change its sate to a kind of dual state where the
application will be in parallel in statep3andp2, and the next state will depend of
what change condition is satisfied first, by example if the first event to happen is a
call to the stopmethod the state of the aspect will change top1; on the other hand
if the next event is a call torunningmethod, the program will change the state as
defined in p2, in this case it will go to the same state as before (p2||p3).

4.2 JAsCo architecture and its efficient execution

This chapter introduce some of the architecture features found in JAsCo. The
characteristics presented are: JAsCo runtime architecture, JAsCo dynamic fea-
tures, and JAsCo’s Hotswap and Jutta optimizations.

The JAsCo team propose the runtime architecture shown in figure 4.1 , in
the figure there is an already instrumented component with traps in its methods
(JAsCo performs dynamic trapping of methods driven by connector definitions).
The central connector registry serves as the main addressing element in the JAsCo
runtime environment, in the registry all the connector and hooks are registered and
whenever a trapped method call occurs is reached in the component, such an event
is notified to the connector registry who looks for all the interested connectors and
hooks calling the respective methods.

43



JAsCo is a dynamic AOP language, as such aspects can be deployed and unde-
ployed at runtime. The basic mechanism to support that is the centralized control
gave by the connector registry, this part of the system is monitoring the classpath
of the application and it detects each time that a new connector is present activat-
ing it and its hooks. Likewise the system also detect when a connector is took off
form the classpath to achieve undeployment.

This architecture facilitates the dynamic behavior of JAsCo, because the con-
nector registry is always looking for the active connector each time that a trap is
reached, however instrumenting all the methods of all the classes and processing
all the traps in the connector registry gives a big overhead to the application, in
order to solve this problem two main points have been attacked: the instrumen-
tation phase and the aspect interpretation phase. For the instrumentation phase
the JAsCo’s developers propose to use Hotswap by means of the instrumentation
api introduced in Java 1.5, with this optimization JAsCo achieves that only the
methods that are of interest for some connector are instrumented. Thus when a
connector is loaded the JAsCo Hotswap mechanism instruments traps only in the
methods in which the connector is interested. The other proposed optimization
is the introduction of Jutta, a just in time compiler for aspects, basically the Jutta
systems creates and caches a highly optimized code fragment for a given join-
point, this code executes the advice in the order specified in the connector. This
cached code is sensitive to loading and unloading of connectors, meaning that the
dynamic properties are kept and when a new connector is loaded or unloaded the
respective cached code is generated or invalidated.

4.3 Language and features implemented by the pro-
totype

This section describes the language of the prototype which is a sublanguage of the
one proposed in the previous chapter. The selected set of features is large enough
to address all the main features proposed in Dhamaca.

The proposed set of extensions to implement in the prototype are shown in
figure 4.2. Thecall constructor extends the already supported JAsCo version by
giving it a distributed wide scope. Thost construct that can receive a constant
string h indicating that joinpoints occurred in the host represented byh will be
matched by this pointcut construct. Next line presents thecflow construct, that
can receives a pointcut as parameter. Theseqconstruct introduces basically the
possibility to express sequences of pointcuts that will be match in aspects. The
pointcuton is also supported such construct receives a constant string, as a pa-
rameter, indicating that that joinpoints will be matched and advised by the aspect
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only if the aspect is deployed in the host represented byh. And finally we support
to compose pointcuts using ||(or) , &&(and) and !(not).

p ::= call(s)
| host(h)
| c f low(p)
| seq(p, p, ...)
| on(h)
| p‖p|p&& p|!p

Figure 4.2: Restricted pointcut language

4.4 Architecture of DJAsCo

The basic concept behind DJAsCo is to express communication at the language
level meaning that the infrastructure to achieve distribution is provided by the
AOP language. The features supported are:

• Explicit support for remote pointcuts as defined in the language section.
JAsCo instances exchange messages to address communication between
them.

• Reliable communication between nodes that participate in the distributed
application.

• The programmer does not have to be worried about communication stuff
like fragmentation or encryption. Most communications problems are not
seen by the programmer.

• Detection of joining members, leaving members and crashed members. The
runtime architecture detects automatically what nodes had been activated (A
dJAsCo process has been started) or what nodes have left the deployment
architecture.

• Extensible communication mechanism. The communication schema de-
fined is extensible enough to support future features of the language, and
provides mechanisms to address synchronous communication (through code
mobility) and neighborhood support.

• Not centralized coordination. The architecture do not depends of one spe-
cific node in the deployment topology.
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Figure 4.3: DJAsCo run-time architecture

• Running JAsCo in a local mode or running DJAsCo (in distribution mode)
should be configurable.

• Support for distribution deployment of aspects, to achieve distributed wide
dynamic AOP features. The dynamic features of JAsCo are also extended
to DJAsCo.

To manage communication support between the runtime instances of JAsCo I am
going to use Jgroups[Ban05], Jgroups api is designed to support reliable multicast
communication. Jgroups provides an abstraction for groups of nodes. The API
is very simple but powerful, first you have to create a channel, then you join a
group and then you start receiving and sending messages. Such features makes
Jgroups a perfect match for DJAsCo implementation. This features facilitate the
implementation of the communication mechanism between the different JAsCo
instances.

The provided implementation separates communication in two dimensions, in
one dimension DJAsCo will handle the distribution of remote pointcuts and in the
other dimension the runtime environment will handle the the protocol for loading
and unloading of connectors to achieve distributed dynamic behavior, meaning
that activations or deactivation of aspects can have a distributed effect(we will
cover this subject later).

The main modifications made on JAsCo were basically two: first, inserting
code for intercepting the events of joinpoint detection and loading and unloading
of connectors; second making the related objects suitable for transmission (that
in Java terms is making them serializable) and creating extended versions to store
distribution specific information like the original host. In figure 4.3 is shown
the runtime architecture of JAsCo, basically the ConnectorRegistry behavior is
augmented by adding two elements that are listening to events encountered in
the connector registry, the first element intercepts the detection of traps in the
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connector to create objects representing remote pointcuts that are shared with all
the other members of the group. Note that when a DJAsCo instance is started it
joins a default group where it start exchanging messages. The other component
creates another communicating group where the connectors events like loading
and unloading are shared to achieve distributed wide dynamic AOP.

Figure 4.4 shows the class diagram with the core extensions made to JAsCo
in order to add distributed support. As shown in the picture the connector reg-
istry has a default trap executor, that executor was extended to create a distributed
version calledDistributedTrapExecutor. This class is used whenever JAsCo is
started in DJAsCo mode. The class is responsible for delegating the distribution
of DistributedJascoMethodto theDistributedPointcutHandlerinstance. This last
class is a extend creates a singleton object that implements theRequestHandler
interface from Jgroups, hence it is the responsible of creating the joinpoint default
neighborhood.

The connector framework is made by implementing aConnectorRegistryLis-
tener interface, that listener is calledDistributedConnectorListener, and its main
function is to delegate distribution of connectors to theDistributedConnectorHan-
dler. This last class creates a singleton object that implements theRequestHandler
interface from Jgroups, hence it is responsible of connector distribution.

The source code of theDistributedPointcutHandlerandDistributedConnec-
torHandler is given in appendix A and B.

4.5 Implementing remote pointcut support

As mentioned before a default group of servers is created for exchanging of mes-
sages with the information of the event on a joinpoint. Each time the runtime of
DJAsCo is started it joins to a group where it is allowed to exchange messages
with a distributed joinpoint information, such messages are send to every node
in the group except the one were the joinpoint originated from. Once this join
point arrives it will be treated as a local joinpoint, it will processed by JAsCo’s
connector registry. Look that with this basic extension all the pointcuts constructs
achieve a distributed wide scope, this is because, even tough the host information
is present in the joinpoint, the distributed information is used only by specialized
pointcut constructs that will be introduced later. Lets explain this with a simple
trace example presented in listing 4.4, this code is the same as shown in the in-
troduction to JAsCo language but in this case the pointcuts constructs are remote
pointcuts, meaning that they will check also for joinpoints executed in other nodes
different from the one where they are deployed.

If we consider that the connector deploying this aspect is the one presented
in listing 4.5, then all the joinpoints executed in any machine involved in the dis-
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Figure 4.4: DJAsCo class diagram
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1

2 class PrintTrace {
3

4 hook PrintTrace {
5

6 PrintTrace(method(..args)) {
7

8 execution(method);
9

10 }
11

12 before () {
13

14 System.out.println("Aspect’s before advice: " +
15

16 "jp: " +thisJoinPointObject);
17

18 }
19

20 }
21

22 }

Listing 4.4: Distributed aspect bean example

1

2 static connector PrintConnector {
3

4 test.PrintTrace.PrintTrace hook0 =
5

6 new test.PrintTrace.PrintTrace(* *(*));
7

8 hook0.before ();
9

10 }

Listing 4.5: Distributed connector
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1

2 class PrintTrace {
3

4 hook PrintTrace {
5

6 PrintTrace(method(..args)) {
7

8 execution(method) && joinpointhost("192.168.17.248:10895");
9

10 }
11

12 before () {
13

14 System.out.println("Aspect’s before advice: " +
15

16 "jp: " +thisJoinPointObject);
17

18 }
19

20 }
21

22 }

Listing 4.6: joinpointhost ussage

tributed application will be logged by this aspect (Note that this aspect will be
deployed and instrumented in all other machines so this aspect will start logging
in all the active nodes, I will cover this feature later in the section regarding dis-
tributed deployment of aspects).

Until now we have incorporated the remote joinpoint support to the frame-
work but we have not introduced yet any remote pointcut construct to deal with
these distributed joinpoints. So now I will show how thehost construct of the
language can be used. Such construct will match only joinpoints that are issued
in an specific node of the topology. Listing 4.6shows the trace aspect version with
the new pointcut constructjoinpointhostin line 8. The introduction of this new
element restrict our logger aspect and now only the joinpoints that are executed in
the specified node are detected and advised.

As another example, consider an application of the negation construct intro-
duced in section 4.3 on page 45, any pointcut can be operated with! operator,
so the an expression as!joinpointhost(“192.168.17.248:2345”)is feasible. This
kind of pointcut will be matched only if the joinpoint’s node is different from that
specified in the parameter of the constructor.
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1

2 class PrintTrace {
3

4 hook PrintTrace {
5

6 PrintTrace(method(..args)) {
7

8 execution(method) &&
9

10 executionhost("192.168.17.248:10895");
11

12 }
13

14 before () {
15

16 System.out.println("Aspect’s before advice: " +
17

18 "jp: " +thisJoinPointObject);
19

20 }
21

22 }
23

24 }

Listing 4.7: executionhost ussage

4.6 Distributed advice support

One of the main contributions of our language is the support of distributed advice,
to achieve this a new construct, calledexecutionhost,was introduced this construct
will match an joinpoint if the aspect is deployed in the node specified by the pa-
rameter of the construct. Listing 4.7shows the trace aspect version with construct
executionhostin line 10, this line change the behavior of the example, now the
aspect deployed in the specified node will be the only one to log the trace of the
distributed application. It is important to note that the domain of events is again
all the joinpoints in the distributed application and here the restriction applies to
the node where the advice is executed.

The executionhostconstruct can be negated using!, so an expression of the
form !executionhost(“192.168.17.248:2345”)is feasible, and will produce that
all aspects, deployed in nodes different from the one specified in the construct, to
be executed.

Now that we have more that one construct that is distributed aware in the point-
cut language of DJAsCo we can operate the using && and ||. Listing 4.8shows the
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1

2 class PrintTrace {
3

4 hook PrintTrace {
5

6 PrintTrace(method(..args)) {
7

8 execution(method) && joinpointhost("192.168.17.248:10895") &&
9

10 executionhost("192.168.17.248:10895");
11

12 }
13

14 before () {
15

16 System.out.println("Aspect’s before advice: " +
17

18 "jp: " +thisJoinPointObject);
19

20 }
21

22 }
23

24 }

Listing 4.8: operation between pointcuts
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operation betweenexecutionhostpointcut andjoinpointhostpointcut in line 10,
this aspect will match all the joinpoints originated in"192.168.17.248:10895" and
will execute the advice only if the aspect is deployed in "192.168.17.248:10895”. I
this case it will only match local joinpoints in the node "192.168.17.248:10895".

4.7 Distributed deployment of aspects

Dynamic loading and unloading of connectors is achieved by intercepting the orig-
inal loading events from JAsCo’s connector registry, once a connector is loaded in
a node (i.e., it is copied in the class path of the application) the connector’s class
file bytecode is read and packed in a message, then that message is distributed to
other machines. When a distributed connector message arrives, the node creates
the class from the byte code and the connector is loaded. As mentioned at the
beginning of this chapter, one requirement of DJAsCo was preservation of the dy-
namic features provided by JAsCo augmenting them with a distributed behavior,
and this is how it has been done. In that way during the architecture design I de-
cide to create a separate connector’s default group to share connector information
between the different runtime instances with out interfering with the distributed
joinpoint communication. The element in charge of manging the distribution of
aspects is theDistributedConnectorHandlerfound in figure 4.3, this element will
be listening when its local connector registry loads or unload a connector, it will
also receive connectors loaded in other runtime instances.

As mentioned above the first intended behavior for theDistributedConnec-
torHandler is to send messages with information about the occurrence of con-
nector’s loading events, once such events happen this element is responsible of
assembling the corresponding message and sending it to the group of nodes. It is
also responsible of receiving the distributed messages and taking the correspond-
ing actions. Note that the communication with the localConnector Registryis
done using the file system, in this way the events of loading and unloading the
connector are mapped to writing and un-writing explicitly the connector file using
Javassist[Chi04].

It is important to mention that DJAsCo uses the optimization enhancements
introduced by JAsCo Hotswap and Jutta as discussed at the beginning of this chap-
ter. In such a case note that even tough all the connectors are distributed it does
not mean that all the methods in the base program are instrumented, the Hotswap
facilities instrument only the methods that will be of interest for any aspect de-
ployed in the distributed system. Likewise Jutta will be applied whenever such
optimization is feasible.
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4.8 Distributed cflow, a custom socket approach

The main goal of a distributed cflow implementation is to have allow the program-
mer to write aspects of the form

cflow(call(* *.A(..)) &&
host(“192.168.17.5:2345”)) &&

host(“192.168.17.9:4444”)

which means that all the joinpoints, found in node“192.168.17.9:4444”that are
in the control flow of a remote call originated in the control flow of an invocation
of methodA in the host“192.168.17.5:2345”, will be matched. Such behavior
presents an inconvenience in the implementation, the inconvenience is that the
middleware mechanism for the remote call must transmit the stack information of
the caller process. This is not supported in common middleware implementations
like Java’s RMI. This inconvenience feature can be solved restricting the scope of
the distributed cflow support as showed below.

To have a distributed version of cflow we will restrict the scope of this fea-
ture, it will be a middleware dependent implementation, in this case it will be an
RMI dependent implementation. The basic idea is that the system will provide a
custom socket implementation [SM], such implementation has to be used by the
distributed application in order to enable DJAsCo to detect cflow distributed con-
structs. The custom socket implementation will encapsulated in the transmitted
stream the stack information that will be stored in aThreadLocalvariable in the
remotely invoked service. DJAsCo provides the classes that implement the custom
sockets factories that can be used to achieve the behavior described above:

• JAsCo.util.distribution.JAsCoClientSocketFactory

• JAsCo.util.distribution.JAsCoServerSocketFactory

Using this classes the server component in an RMI application should be modified
in the way that is showed in listing 4.9. Note that only the server part, or in
more general way, the code that publish RMI services should be modified. The
client will use the correct custom client socket factory that will be downloaded
to establish the communication with the published service, that is why only the
“server” component need to be modified.

Custom socket implementation is an RMI provided feature. Chiba et al. [MN04]
proposed to use that feature to implement distributed cflow, their proposal is the
one described here.
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1

2 try {
3

4 if (System.getSecurityManager() == null ) {
5

6 System.setSecurityManager(new RMISecurityManager());
7

8 }
9

10 String name = "Server";
11

12 System.out.println("Starting Server sercice in:" + name);
13

14 RMIClientSocketFactory csf = new JascoClientSocketFactory();
15

16 RMIServerSocketFactory ssf = new JascoServerSocketFactory();
17

18 ServerInterface stub = (ServerInterface) new ServerWrapperImpl(0,
19

20 csf, ssf);
21

22 LocateRegistry.createRegistry(1099);
23

24 Registry registry = LocateRegistry.getRegistry(1099);
25

26 registry.rebind(name, stub);
27

28 System.out.println("Service started");
29

30 } catch (Exception e) {
31

32 e.printStackTrace();
33

34 }

Listing 4.9: Modified RMI server to suport custom jasco socket implementation
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Towards an optimized cflow implementation. The proposed cflow implemen-
tation has three major drawbacks: first, it is dependent of the middleware mecha-
nism (RMI); second, that the stack information is sent in each remote invocation
even if there is no aspect using the cflow construct; and third, it is necessary to
modify the server part of the distributed application. A solution to address all
this issues does not exist at the moment but here I present two proposal that were
discussed during the development of this thesis.

The first proposal is to introduce a distributed stack as in [AFT99], this solu-
tion presents an advantage in the sense that the stack information is not transmitted
so the messages send are shorter and network resources are saved. However the
computation of cflow checks have to use network communications and still the
middleware has to be modified in order to distribute the original thread id.

The second proposal is to change all the application method signatures to in-
clude the stack information. In this way is possible to have a middleware indepen-
dent application, however this will imply an overhead during the instrumentation
of all the methods of the base application. This idea is a distributed extension
of cflow-passing style proposed by Pengcheng Wu [Wu05]. Note that extending
the method invocation information with thread id information can generate even a
more efficient mechanism for the distributed cflow.

4.9 Distributed sequence support

JAsCo provides a construct that support stateful aspects, with the new support
for remote pointcuts introduced in DJAsCo now is possible to have a sequence
distributed construct that uses the default behavior gave by JAsCo’s stateful as-
pects. It is important to note that in this implementation the joinpoints are the
base events, thus changing of state in the defined finite state machine is triggered
by pointcut matching. Listing 4.10present a distributed enable stateful aspect,
such an aspect defines three methodsstartmethod, executionmethodand thestop-
methodwith this method arguments the code shows a simple logging aspect that
logs all the occurrences of theexecutionmethodin any host between a call of the
startmethodin the host "192.168.17.248:9876" and a call to thestopmethodin any
host. This kind of syntax provides a sequence construct and provides an example
of how advising of an specific event in the sequence can be used. This example is
the distributed version of the example proposed in section 4.1.

Dhamaca has defined difference sequence semantics, in DJAsCo we decide
to support only JAsCo-style ones. But this not constitute a serious restriction to
show how distributed sequence pointcuts can be implemented.

56



1

2 class statefulBean {
3

4 hook StatefulHook {
5

6 StatefulHook(startmethod(..args1),
7

8 runningmethod(..args2),stopmethod(..args3)) {
9

10 start >p1;
11

12 p1: execution(startmethod) &&
13

14 joinpointhost("192.168.17.248:9876")> p3||p2;
15

16 p3: execution(stopmethod) > p1;
17

18 p2: execution(runningmethod) > p3||p2;
19

20 }
21

22 before p2 (){
23

24 //do the logging:
25

26 System.out.println("executing: P2 ");
27

28 }
29

30 }
31

32 }

Listing 4.10: Distributed stateful aspects
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4.10 JAsCo cache metrics compared to JBossCache
metrics

As a conclusion for this section I propose LOC count as a comparison metric be-
tween the DJAsCo distributed version of the replicated cache and the JBossCache
implementation.

DJAsCo LOC metrics are: core distribution package 410 LOC; custom sockets
303 LOC; JAsCo pointcut extensions 133 LOC. The replicated cache example
metrics are: cache class 60; aspect 26. Total LOC count, considering DJAsCo
extensions, is 932.

As mentioned in section 2.1.2 JBossCache main class LOC count was 1741,
note that the full implementation in DJAsCo is half the size of one of the classes
of the solution implemented with standard Java.
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Chapter 5

Conclusions

The development of distributed applications with current programming languages
is a difficult task. The resulting programs have tangled code of functional concerns
and distribution concerns. In particular because, distribution concerns are often
crosscutting concerns w.r.t functional concerns. Aspect oriented programming
(AOP) promises to provide means for encapsulation of the so-called crosscutting
concerns. However few approaches with language support for distribution have
been developed.

This thesis has introduced Dhamaca, an AOP language with explicit support
for distribution. The Dhamaca language was designed as an extension of the Java
language. It provides constructs for remote pointcuts (in particularcflowandseq),
distributed advice, aspects and neighborhoods.

Dhamaca was designed to have simple concepts to support distribution. Dhamaca’s
join point model consist of method calls only. The semantics of method calls are
modified by the introduction of the concept of groups of nodes. A node is any
runtime instance of Dhamaca processes (programs written in Dhamaca). More
than one node can be running in a machine. A group of such nodes may form a
neighborhood. A node can also belong to many neighborhoods. These groups are
created by runtime instances of Dhamaca processes (nodes), such instances can
join and leave the groups at any time.

Support for different sequence variants that have been introduced in the AOP
field are supported by Dhamaca.

Several examples were presented to show how Dhamaca can be used to write
distributed applications. In particular it has been shown how a replicated cache
implementation is easily realizable compared to implementations using standard
Java platforms, such as JBossCache.

Finally, a prototype of Dhamaca was developed by extending JAsCo. The
runtime architecture of JAsCo was augmented with a communication layer im-
plemented in Jgroups. Working at the bytecode level to encapsulate connectors
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in messages, it has been also possible to achieve aspect distribution by means of
connector distribution.

This thesis paves the way for several leads of future work, in particular at
the language level, the implementation level, and the application level. At the
language level, of particular interest are: formalizing the semantics of the lan-
guage using a calculus for distribution with support for neighborhoods. Adding
support to have fine grained control over parameter passing in remote advice in-
vocation. Addressing other relevant crosscutting concerns, i.e., concurrency and
partial failure[Lop97, SLB02, KG02].

At the implementation level: Exploring techniques for optimization of the
cflow and sequence implementations. It is particularly interesting to think how a
distributed version of a cflow that do not depend on the middleware infrastructure
can be implemented. One approach could be to augment the information passed
in the method invocations, so that stack information can be passed.

At the application level: Extend the base of examples in the replicated cache
domain by adding to the cache Dhamaca’s version support for transactions and
object graph mapping [BW05].Using Dhamaca for examples in other domains. A
promising application is support for p2p networks with semantic caching realized
by introducing the concept of locality [DFJ+96, RD00].
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Appendix A. Pointcut distribution
handler source code

/**
*
*/
package jasco.runtime.distribution;

//JGroups imports
import jasco.runtime.ConnectorRegistry;
import jasco.runtime.JascoMethod;
import jasco.util.logging.Logger;

import org.jgroups.*;
import org.jgroups.blocks.*;
import org.jgroups.stack.IpAddress;
import org.jgroups.util.*;

/**
* This singleton class manages the comunication of the Jasco
* joinpoint(methodsInvocations) events with the group of
* instances that belongs
* to the same group.
*
* @author lbenavid
*/
public class DistributePointcutHandler implements RequestHandler {
private static DistributePointcutHandler _managerInstance;

Channel channel;
MessageDispatcher disp;
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RspList rsp_list;
String props =
DistributedOptions.getInstance().getStack("AspectsGroup");

/**
* This class is a singleton class
*/
private DistributePointcutHandler() {
try {
start();
} catch (Exception e) {
Logger.getInstance().showDebug(e);
}
}

public Channel getChannel() {

return channel;
}

public void start() throws Exception {
channel=new JChannel(props);
channel.setOpt(Channel.LOCAL, false);//Not self delivery
disp=new MessageDispatcher(channel, null, null, this);
channel.connect("MessageDispatcherTestGroup");
Logger.getInstance().showDebug(channel.getView().toString());

}

public static DistributePointcutHandler getInstance(){
return _managerInstance;
}

public void sendNotification(DistributedJascoMethod jm){
if(!jm.isRemoteJP()){

if(jm.getHost() == null)
jm.setHost(new Host((IpAddress)channel.getLocalAddress()));
jm.setRemoteJP(true);
Object tmpObject = jm.getCalledObject();
jm.setCalledObject(null);

rsp_list=disp.castMessage(null,

62



new Message(null, null, jm),
GroupRequest.GET_NONE, 0);

jm.setCalledObject(tmpObject);
jm.setRemoteJP(false);

}
}

/**
* This methods execute the trap to the remote pointcut.
* If the trap sends an error a false is answered, if the
* traps executes ok a true is answered. This can be changed
* to send objects, but for now there is no need for that.
* */
public Object receiveNotification(JascoMethod jm){
Object result;
try {
ConnectorRegistry.executeTrap(jm.getName(), jm.getCalledObject(), jm);
result = true;
} catch (Exception e) {
Logger.getInstance().showDebug(e);
result = false;
}
return result;
}

public Object handle(Message msg) {
Logger.getInstance().showDebug(msg.toString());

return receiveNotification((JascoMethod) msg.getObject());
}

/**
* initializes this manager instance
*
*/
public static void init() {
if(!initialized())
_managerInstance=new DistributePointcutHandler();
else throw new IllegalArgumentException(
"Cannot initialize distribution manager more than once");
}

public static boolean initialized() {
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return _managerInstance!=null;
}

}
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Appendix B. Connector distribution
handler source code

This appendix shows the source code of the communication handler in charge of
connector distribution in dJAsCo runtime instance.

/**
*
*/
package jasco.runtime.distribution;

// JGroups imports
import java.io.ByteArrayInputStream;
import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.util.HashSet;

import javassist.bytecode.ClassFile;

import jasco.runtime.ConnectorRegistry;
import jasco.runtime.connector.Connector;
import jasco.util.logging.Logger;

import org.jgroups.*;
import org.jgroups.blocks.*;
import org.jgroups.util.*;

/**
* This singleton class manages the comunication of the Jasco
* connector events with the group of instances that belongs
* to the same group.
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*
* @author lbenavid
*/
public class DistributedConnectorHandler implements RequestHandler {
private static DistributedConnectorHandler _handlerInstance =
new DistributedConnectorHandler();

private Channel channel;

private MessageDispatcher disp;

private RspList rsp_list;

private String
props = DistributedOptions.getInstance().getStack("ConnectorsGroup");

private HashSet connSet = new HashSet();

/**
* This class is a singleton class
*/
private DistributedConnectorHandler() {
try {
start();
ConnectorRegistry.addConnectorRegistryListener(
new DistributedConnectorListener());
} catch (Exception e) {
Logger.getInstance().showDebug(e);
}
}

public Channel getChannel() {

return channel;
}

public void start() throws Exception {
channel = new JChannel(props);
channel.setOpt(Channel.LOCAL, false);// Not self delivery
disp = new MessageDispatcher(channel, null, null, this);
channel.connect(DistributedOptions.getInstance().getGroupName(
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"ConnectorsGroup"));
Logger.getInstance().showDebug(channel.getView().toString());
}

public static DistributedConnectorHandler getInstance() {
return _handlerInstance;
}

public void sendNotification(DistributedJascoMessage dm) {
rsp_list = disp.castMessage(null, new Message(null, null, dm),
GroupRequest.GET_NONE, 0);
}

/**
* This methods is executed when a connector notification is received
*/
public Object receiveNotification(DistributedJascoMessage aMessage) {
Object result;
try {
if (aMessage.getType() == DistributedConnectorMessage.ADD_CONNECTOR) {
ByteArrayInputStream in =
new ByteArrayInputStream((byte[]) aMessage.getMsg());
ClassFile cf = new ClassFile(new DataInputStream(in));
(new File("Connector")).mkdir();
File f = new File("Connector/" +
cf.getSourceFile().replaceFirst(".java",".class"));
FileOutputStream out = new FileOutputStream(f);
cf.write(new DataOutputStream(out));
f.deleteOnExit();
out.close();
connSet.add(cf.getName());
}
if (aMessage.getType() == DistributedConnectorMessage.REMOVE_CONNECTOR) {
String fileName = aMessage.getMsg().toString().replace(’.’, ’/’) + ".class";
System.out.println(fileName);
File f = new File(fileName);
f.delete();
}
result = true;
} catch (Exception e) {
Logger.getInstance().showDebug(e);
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result = false;
}
return result;
}

public Object handle(Message msg) {
Logger.getInstance().showDebug(msg.toString());
return receiveNotification((DistributedJascoMessage) msg.getObject());
}

/**
* @return Returns the connSet.
*/
public HashSet getConnSet() {
return connSet;
}

/**
* @param connSet
* The connSet to set.
*/
public void setConnSet(HashSet connSet) {
this.connSet = connSet;
}

/**
* Return true if the connector is loaded in the local jasco runtime
*/
public boolean isLocal(Connector c) {
return !connSet.contains(c.getClass().getName());
}
}
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