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                ABSTRACT 
 
 
 
Component-based development is the popular approach in nowaday IT industry. It 
gives software developer a highly modular way to integrate all the necessary 
components as a whole system of the specialized application. Furthermore, 
component could be reused for a lot of different situation since every component is 
designed as an independent unit with its own function. Thus this reduces much time 
and money on software production, and makes the emphasis about software quality 
more on the system design in the software life cycle. How to get an elegant and 
efficient component model is a core issue in the methodology to build 
component-based software. Meanwhile, today is Internet time. All the application 
must be migrated or developed from local machine to the network. One important fact 
of network is that it need the component to work in distributed, concurrent and 
heterogeneous environments. Obviously synchronous and asynchronous 
communication glues all the components together to obtain some intended function. 
Correspondingly the component model is divided into asynchronous model and 
synchronous model. However asynchronous model get less attention on its analysis 
and implementation than synchronous one in the past. According to the new 
programming language ProActive using asynchronous communication, my master 
thesis is trying to give some rules to translate the asynchronous component model to 
its implementation of ProActive. Moreover I give one common algorithm to check the 
message buffer size in asynchronous model represented by ATAG. At last I’d like to 
discuss some interesting questions about some future work on component and 
asynchronous model. 
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Component, Architecture, Asynchronous, RMI, ProActive, MDA, ATAG, Mailbox 
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Introduction 
 
 
Looking back on the software history, software development was usually faced to the 
certain issue in a given domain. This situation led to the specialized software system 
where each subsystem is designed, coded and tested only for the prescribed function 
of that system. In other words, it is development-specific. However, today since 
computer has swiftly changed our human life through an incredible speed and power, 
people become more and more greedy on what the new software should bring to the 
world. This raising need for software function in turn make the size and complexity of 
software exponentially increase. Additionally software is intended to be versatile as 
much as possible to make lazy life for people. Therefore to build fashionable and 
flexible software seems to need much more money and time than ever. On the other 
hand, large software usually means low productivity and high cost which hinder the 
IT industry going forward. Fortunately people already found some ways to overcome 
this bottle-neck, and the most classic solution is reusability. Reusability simply means 
developing once, using more than once in terms of application or problem domain.  
 
In order to improve software reuse in the development, there must be a change in the 
way we construct the software system with reuse. Obviously integration is the answer 
to the question, and new software should have a mechanism to integrate the developed 
system instead of reproducing it by programmer. Component-based software 
engineering is the corresponding paradigm to describe this kind software process. 
Here component is the unit of reuse. A software system could be considered as a 
composition of existing components. In this case, the design of the whole system 
architecture, or say how to glue all the relative components, is much more important 
than the design of individual concrete component. UML and ADL is being used to 
address the problem of modeling component-based software, but both usually can’t 
give the precise semantic description on the software architecture. Particularly, UML 
and ADL can’t correctly feature inter-component communication that is quite 
dominant and difficult in the software design. In addition, nowadays all the software 
must be associated to the network. Parallel, concurrent, distributed application 
becomes the mainstream on network, where asynchronous communication is natural 
and common. According to these problems, more and more requirements are given 
out to find a good solution for component-base model with robust communication, not 
only on synchronous way but also on asynchronous way. 
 
My thesis firstly is to find the proper implementation to the asynchronous component 
model. The architecture designer not only focuses on the abstract function of each 
component, but also on the integration and communication protocol among the 
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different components. There must be a gap between the abstract asynchronous 
component model and concrete software implementation. Meanwhile, although many 
programming language like Smalltalk and Java, has built-in synchronization support, 
there are few languages like ProActive, which take care of asynchronization of 
message sending. This makes the implementation of asynchronous model more 
difficult on the programming level.  
 
This paper tries to give some general rules to transform asynchronous component 
model to ProActive. It shows how ProActive does the asynchronous call on top of 
java RMI layer. All the transformation rules have UML-like style, in the MDA (Model 
Driven Architecture) way. The general diagram of asynchronous component model 
may be mapped to the ProActive diagram as the specification of the implementation. 
According to the transformation rules the paper also provides a simple example about 
the flight reservation system, and introduce some corresponding source code for 
asynchronous communication featured by ProActive. 
 
The second research of this master thesis proposes an approach to analyze the 
asynchronous component model, mainly about its asynchronous communication and 
related component state. The asynchronous component model is represented by ATAG 
(Asynchronous Abstract Graphical data Type), which use abstract graphics with some 
predefined notions to illustrate the component and behavior. ATAG is based on the 
previous study of GAT (Abstract Graphical data Type) and Korrigan which describes 
the general component model with symbolic transition system (STS) and algebraic 
specification. Because the ATAG model could be easily translated into a set of rules 
with simple data structure, it is clear to make specific algorithm to automatically 
check the quality problems of component model with asynchronous communication. 
 
Although there are a lot of important analysis for the asynchronous component model, 
this thesis restricts the work on the component message buffer, so-called mailbox in 
this paper. In fact mailbox is a classic way to simulate the asynchronous call between 
components to store the message temporarily for the future use. The question whether 
the mailbox is bound or not need to be solved to avoid message overflow. This paper 
gives an algorithm to estimate the mailbox of each component in the ATAG 
component model. The algorithm not only includes the bound question, but also the 
max number of each message that a component would receive, and the message cycle 
that leads to the unbound mailbox. The algorithm is built beyond depth-first search in 
ATAG component model. Meanwhile in order to realize this algorithm and test it in 
java, the corresponding parser of ATAG is also made to receive the correct input from 
ATAG file. The analysis tool and parser is integrated into a java GUI to make the 
analysis of mailbox in a more uniform and structured way. 
 
Since the work of this master thesis only consider few parts of asynchronous 
component model, in the future some other analysis will be done to it to get more 
confidence in software design. 
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Structure of the Dissertation 
 
Section one explains the main characteristics of software component, and also gives 
the short description of other relative aspect. 
 
Section two shows the general information of component model, especially on its 
communication mode: synchronous communication and asynchronous 
communication, and gives the main difference between both. 
 
Section three describes the programming language ProActive for asynchronous 
component model, and then lists the transformation rules to bridge between the 
asynchronous component model and ProActive, and finally uses a simple example to 
give more insight of ProActive from the implementation view. 
 
Section four presents the ATAG to represent the pure asynchronous component model, 
and demonstrates the bound algorithm that is used to analyze the mailbox of 
component in ATAG model. 
 
Section five concludes the thesis work, and describes some related research to 
improve the analysis of asynchronous component model, and also some other 
methods which could be used here. 
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 CHAPTER ONE 

 COMPONENT IN SOFTWARE DEVELOPMENT 

 
 
Although component was born to help developer reuse previous software, the idea of 
software reuse actually has been throughout the long history of the software 
development. Old form of reuse is upgraded with the progress of relative aspect of 
software or hardware development, for example programming language and 
standardized I/O interface. Thus component should be considered as the 
state-of-the-art version of software reuse. Many people get some confusions between 
the previous way of reuse and the component, so I would like to introduce some main 
steps in software reuse, and then explain what component is. 
 
 
 

1.1 Software Reuse Before Component 
 
Subroutine 

The most original thing for reuse is the subroutine in the procedure programming, 
for example the early Fortran in 1950s [24]. The reuse of subroutine is on the 
source code level, so programmer can write some code to call a shared method or 
function in the same source file or another one. All the source code is compiled 
and linked to get the executable software. 

 
Although this kind of software reuse looks very straightforward, it is limited only 
for programming. The scope of subroutine is in a source file. Usually the 
subroutine has its method name as the single interface, sometimes with a few 
parameters. Furthermore, subroutine has the explicit dependency on the 
programming language and operation system, and thus the development of 
subroutine should be designed carefully in a uniform environment. In addition, the 
test and maintenance of subroutine is difficult, because programmer should use 
other program in the same system to debug and examine the function of 
subroutine. The subroutine can’t be changed or overwritten solely, because it is 
embedded in the executable file. The user must replace the corresponding file with 
the upgraded version even if the change only happens in a subroutine. 

 
Function Module 

Since there could be a lot of subroutines in the software system, the better way to 
get reuse is apparently to group all the relative or similar subroutines as structured 
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program. Thus the second mode of software reuse is function module, which is a 
separated unit composed of a set of shared functions; in other words, it could be 
called reusable function library. This idea was adopted in 1960s [26], and the 
classic example is programming in C language born at 1971. 

 
The scope of function module is in a particular application of software system [14]. 
For example, the date/time function module could give the current date/time in 
various formats, or change the system date/time if necessary. Although the 
function module is kept alone from other programs of software, it usually needs to 
be compiled with other program in the software system and linked together. 
Actually each function module must be available locally for the method call from 
the other part the system. Therefore function module has the implicit dependency 
on the specific technology and operation system. Since function module is 
constructed only for a family of functions, the developer could easily create an 
initial software architecture composed of raw function modules. Then he can 
refine the architecture gradually by designing and analyzing each underlying 
function module. According to that software architecture, the developer could 
decide whether to reuse the existing function module or to implement it by hand. 
Because the function module is formed by the traditional subroutines, the testing 
of it is same as subroutines. The programmer has to run other program to examine 
the function module. The maintenance of function module sometimes may be 
simplified to just replace the function module with the new one, with no change to 
the rest of system. 

 
Class 

The powerful object-oriented programming paradigm brings the new software 
reuse to the world. That is class, as we know. A class is “a blueprint, or prototype, 
that defines the variables and the methods common to all objects of a certain 
kind” [29]. Thus the class could be thought as object factory to create new object 
including predefined variables and methods. Meanwhile class represents a concept 
of the real world, and object is just the instance of the concept. Undoubtedly, class 
is implemented by OO language, like Smalltalk [27] since 1970s [26]. 

 
The scope of class is in a particular problem domain [14], and developer can 
produce class hierarchy by inheritance to precisely describe the abstraction of the 
problem and solution. Because class belongs to the object-oriented category, it 
needs the relative aspect to support its implementation and deployment, such as 
language and class loader. Thus class still has the implicit dependency on the 
specific technology and operation system. Moreover, the class could also be 
grouped in class library like function module. Often we can reuse class with the 
same design pattern to solve the commonly occurring problem.  
 
As object-oriented development is different from the function-based development, 
the object-oriented analysis and design is adopted to decide the class reuse. That’s 
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to say, according to the problem statement people tries to get the object model of 
the problem domain. Then the object model of problem is cast to the solution 
domain to find the good architecture of software system. The objects in the 
analysis and design lead to corresponding class, which could reuse the previous 
class of same object. Since class is the encapsulation to the relative information, it 
is logically independent unit in the object-oriented paradigm. The test and 
maintenance of class is also convenient with the OO programming language like 
C++ and Java [29]. The developer could make the testing object to automatically 
examine the object of target class, and maintenance may work in similar way. 

 
Middleware 

As object-oriented paradigm changed a lot on the software development, the 
network and Internet play a more surprising role in the whole computer science. 
Consequently network produces the new progress on software reuse, called 
Middleware [30]. Here Middleware is referred to a set of reusable and expandable 
services above the transport layer of TCP/IP [31], and below the application level 
i.e. API layer. These services generally are used to finish the common functions in 
operating system and network environment, such as message conversion or 
network addressing. The Middleware is built on class, and some middleware 
technologies such as COM have appeared since late 1980s [23]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         Figure 1: Middleware in Software Reuse 
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Since all the Middleware are developed in object-oriented style, the basic unit to 
reuse in Middleware is class. On the other hand, Middleware focuses on the 
common services for the application, so it emphasize on the quality of service by 
some class library more than concrete class and object. Like class, the scope of 
middleware is in the particular domain [14], where each service of middleware 
targets a smaller field. Meanwhile, the middleware is based on the class reuse in 
the object-oriented development, and thus it is still proper to apply the 
object-oriented approach to build the middleware. However, compared to the class 
reuse, the Middleware is not much restricted to the special technology and 
operating system. The Middleware is at the higher abstraction level than class. It 
may contain all kinds of services developed by the different OO tools in the 
heterogeneous situations, as long as the service is compatible to the run-time 
environment (operation system and network) and the front-end application. 

 
 
 

1.2 Component and its Property and Rules 

As the Internet is linking all kinds of application under various environments all over 
the world, the computing pattern is being changed from centralization to distribution. 
One large system often contains a lot of sub-systems, which could be cross-domain or 
cross-platform. Meanwhile, the system developer likes to put more intelligence and 
automata to the software reuse. It means to obtain the software reusability to a deeper 
and wider extent to build modern software system upon legacy code and experience. 
Thus component was born based on previous study of software reuse to realize the 
new requirements as expected. 
 
Although the definition of component has multiple versions depending on the domain, 
purpose and individual, there is some agreement of the essence of component from 
most of the paper about component. Software component is the unit to be 
implemented for the composition to build a functioning system [13, 14, 16, 18, 20]. 
Software component could be considered as the deployment of its own interfaces [14, 
16, 18]. Generally, the software component exposes its interfaces as the contract to the 
other things that want to use component. The component gives the explicit context 
dependency to enable it finish its work in the collaboration style. A component could 
be independently developed, deployed and updated [13, 14, 16, 18, 20], but it need to 
be subject to the composition by the third party [14, 18]. In other words, system 
developers need to make the component coincident to the particular component model 
or with the particular component platform. 
 
Because the component is based on the previous experience about software reuse, it 
inherits the information encapsulation of the object-oriented technology since this 
schema has been proved to have many advantages for development. Therefore from 
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the external view the component is graphically represented as some kind of box with 
clear interface specification. As reader can see in Figure 2, there is a component 
named Person to process the personal information. The component Person doesn’t 
give the insight of its internal implementation and state. The client only knows the 
interface of Person component like IGetName and ISetName, which is the 
available service by Person component. As a matter of fact, this kind of hiding 
information is the same as the class, but software component is bigger and higher than 
what class usually means in the software architecture. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            Figure 2: Person Component 
 
Figure 2 also explains the composition of component interface. There are two kinds of 
services defined by the interface in terms of method caller. One is provided service, 
which means what the client could get if it calls the component. For example, a client 
could get the age of one person as provided service through interface IGetAge of 
component Person. Another is required service, which means what one component 
need when it calls other component. For example, the interface IReadData of 
component Person explains one required service that is called by Person to the other 
component to read the personal information from some database or file. 
 
Although Figure 2 shows the same notion for both kinds of interface, people are 
trying to explicitly distinguish them in the formal representation and development. 
For example, there have already been some component languages to separately define 
the provided service and required service of one component 
 
Using the Person component, the system developer could integrate it to some place 
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in the software system as long as the functions of Person component, or more 
precisely its interfaces, comply with the design requirement. The following figure 
shows a component system with Person component, and the dash arrow link means 
the message sending for the service. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        Figure 3: Simple Bank System with Components 
 
The Figure 3 denotes a bank software system with three components: Account, 
Person and Database. The Account component has the dependency on the Person 
component as the arrow pointing to the interface of Person component. Meanwhile 
Person component need the function of Database component, no matter the 
database of the bank system is SQL server or Oracle, and so on. Therefore, Person 
component could be reused in the similar context of different application or domain, 
for example, the computer sales system. 
 
Moreover, the interface and explicit context dependency of Person could be reused 
by other component, for instance, of flower information process. The component 
Flower could be represented as in Figure 4, and it has completely same interfaces as 
Person. Here the interface IGetAge and ISetAge of Flower component could means 
the life span of the flower since its sprout, and the semantics of other interfaces of 
Flower component is easy to figure out. Thus people only need to change the some 
implementation of Person component to realize the new component Flower. 
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       Figure 4: Flower Component 
 
In addition, the component as the software unit is requested to be dynamic and mobile 
in the distributed, loosely-located and concurrent environment. This means that 
component could adapt itself to the change in its work situation, and it could be 
transferred by itself or the system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Figure 5: Mobile Component in Network 
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Figure 5 shows that the component X travels from computer A to computer B through 
the network media. Therefore, network makes the software reuse in a more 
autonomous way, especially for the large-scale distributed application. 
 
From the description above, component is much more powerful than any previous 
form for reusable software. A component could be adopted in any domain if it follows 
a certain component model and its interfaces satisfy the function requirement [14]. 
The component should be independent from the specific technology and running 
environment as much as possible. The only dependency of component is the explicit 
requirement of relative support in the context since it would call the other software 
(element) to complete the work together. Moreover, the component is the basic reuse 
unit in the component-based system development [14].  
 
Although usually the class currently is the implementation unit for almost all software 
components as the result of main commercial programming language, there is no 
restriction about what could be included to build the component. In other words, the 
component function is more important than the concrete realization. One can develop 
the prior Person component by C++ language, and another man may use this 
component in the web application with other component of Java classes. 
 
The relative analysis and design is involved in the specific engineering process, so 
called Component-Based Software Engineering (CBSE) [13, 17, 18]. CBSE is 
introduced in section 2. The object-oriented analysis and design could be regarded as 
the sub-activity of CBSE. 
 
Since the component is for composition to create some system, a composition of the 
some relative components may become a large component to be delivered to create 
more complex system. Internal components of compound component are invisible 
from outside, which follows the principle of information hiding. Therefore the 
software component also has the problem of granularity that would be the balance 
tradeoff between the flexibility and efficiency.  
 
 

1.2.1 Characteristics in Component Category 

There is not well-acknowledged formal specification of software component. 
According to the research and experience of component-based software development, 
some important characteristics have been extracted from all kinds of the component 
description. The main component characteristics should be the basis of uniform 
framework for component design and implementation. 
 
The following listed characteristics of component is based on the discussion from a 
EMN component research group I have participated [32]: 
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Purpose 
 Give the purpose of the component, whether it is general component like I/O 

process component, or it is for the specific domain such as bank account 
component 

 
Development Theory 
 Give the general way about how to build the software component, and indicate the 

proper infrastructure 
 
Tools 
 Explain the correct tools to design, analyze, write and test the component, and 

maybe give the relative tutorial or website 
 
Entities 
 The entity of component means the features of concrete implementation 
 
 Kinds 
 The classification of the software component, and this could be understood as 

the typed role in component-based system, like standard component, aspect, 
connector and agent. 

 
 Mixture 
 Describe how to implement the software component, whether it is for example 

pure OO programming, or it includes multiple way to get a compound result 
 
 Context 
 Point out the compatible environment or model, where the component should 

work well. 
 
 First-Class 
 Represent granularity and priority in building the software component, and 

show the possible reflection and meta-programming 
 
Interface 
 Generally speaking, the interface is the contract between the client and the 

component. The interface is the key of the component which distinguish one from 
the others, so interface decides the type of software component. It also has some 
important factors to specialize 

 
 Syntax 
 Give the abstract syntax to explicitly express the interface part of the 

software component 
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 Element 
 Describe the different parts in the interface, such as Port, Service, and so on 
 
 Communication 
 Explain the needed communication pattern or protocol with the software 

component 
 
Attribute 
 Give precise semantics of the attributes in the interface, and also the condition 

where the attribute works 
 
Life Cycle 
 Describe the active phase of component interface and how the component become 

active to the client, the inactive phase as well 
 
Dynamic Behavior 
 Describe the different execution state of component interface according to the 

run-time environment, and the corresponding denotation through element 
 
Other Properties 
 Give the other useful property about the software component, for example, the 

quality of response in the average workload, also the static or dynamic network 
port-number of access 

 
Although the above characteristics list still has something to get further refinement, it 
is definitely the comprehensive specification for component development. 
 
 

1.2.2 Component Development Principles 

Since the component is the basic software unit for the system development, the 
development of reusable component is a big but important work. It is very important 
to carefully identify and assign the function to each component while doing 
architecture design. Moreover, the developer has to design the proper interface and 
relative context dependency to make the efficient and flexible interaction among the 
components. A correct design and implementation of component is the key for the 
quick and successful integration of component to build software system. 
 
There is a common way to develop the reusable component for some software system 
[16], shown in Figure 11. The life step “Search relative resource” means that 
according to the problem and solution domain, the developer searches for the relative 
source about how to solve the problem. Here the resource could be in various forms 
like formal publication, design pattern, university lecture. 
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         Figure 6: Life Steps of Component Development 
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looks like the Figure 12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          Figure 7: Interface Reuse by Components 
 
In Figure 12, the interface IShowDate, which is defined in some component Date 
like a virtual class of C++, is reused by component Train and Person. It means that 
Train and Person both implement the interface IShowDate, or say write the code for 
the method of IShowDate. Component Train may use that interface IShowDate to 
show the date of train schedule while Person may use it for the birthdate of 
individual, even in the different format. Likewise, the new component could be 
created for the common behavior but delegate some parts or all of work to the 
different components according to the context. 
 
As seen from the above life steps of the component development, it has an iterative 
process to analyze and solve the problem before getting the ultimate component 
design. The real operation in the component development always depends on the 
concrete application and development environment. Thus the developer would make 
subtle difference during component life cycle. However, there exist some basic 
principles of component development [13]: 
 
· Solution-specific component 
 This principle is easy to be understood, since every component is born to serve the 

certain solution for a problem given by the client. The developer has two choices 
for the component to be used in the solution, one is domain-oriented, and another 
is domain-independent. 

 
 Domain-oriented component is to be developed as the common function unit for 

the software system in a certain domain. Since the domain-oriented component 
only solves the problem in a fixed and limited scope, usually it would get higher 
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productivity in the system. Nevertheless, if the solution is going to be used for 
more than one domain, this kind of component has to be wrapped or composed 
with other components, to realize the reuse. For example, a bank-account 
component is excellent for all the bank system to provide the common function of 
financial operation on bank account, while it has to be wrapped into a new 
component to process the function of medical-insurance account. 

 
 Domain-independent, or say generic component, on the contrary, is developed as 

the general unit for the software system in multiple domains. The different 
domains usually have the different function requirements even to the same 
problem, and sometimes there would be the conflict among these functions. 
Therefore to develop domain-independent component would take more cost and 
time, but it would get more reusability for the various system developments. If the 
solution seems not to be reused cross the domain, the generic component 
development is not necessary and is an over-expensive work. 

 
 Therefore, all the components must be developed to work with the solution as the 

premise. The developer should think about the tradeoff between the 
domain-oriented component and generic component and make the rational 
estimation, according to applicable scope of that solution. 

 
· Separation of concerns 
 This principle means that the developer should divide the function into smaller 

pieces for the diverse concerns in the application. The finer division leads to make 
the corresponding component of the function more simple and flexible, and thus 
more reusable in the component-based software development. As a matter of fact, 
it is a choice of component granularity. The effective degree of separation depends 
not only on the system function, but also on its quality requirement, for example 
the evolvability of the system. 

 
· Abstract Virtual Machine Interface 
 This principle is to emphasize the polymorphic characteristics of components by 

component interface; in other words, the interface should be abstract enough to 
hide all the information of concrete implementation in the component. The 
interface is independent to the specific technology or platform, so different 
components could implement same abstract interface with different operation. 
This principle is similar to the single-interface-multiple-inheritance in OO 
programming language. 

 
· Component hierarchy 
 Generally speaking, the software architecture could be regarded as a kind of 

hierarchy structure. Every component should be developed to classify it to a 
certain level in the component hierarchy, in order to reuse it in a uniform style. In 
[13], it suggests a layered model for component hierarchy as below: 
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     Figure 8: Hierarchically Layered Architecture of Component 
 
· Postponement of context binding 
 In the architecture design process, all the details about the implementation of 

components are ignored. The work focuses on the basic function of component, 
communication and other structural aspects at a high abstraction level. Therefore, 
Binding the component to the property of its executable context like data type, 
poll-interval, database connection, is delayed to the phase of component 
integration in CBSE. 

 
· Design reuse 
 In order to find the right component for the component-based architecture to be 

integrated in the system, an easier and feasible way is to reuse some previous 
design on component. In fact the design reuse is much popular nowadays. It 
addresses the similar problem or requirement occurring in many former system 
developments to reduce the cost and time. Therefore, the component would get 
more reusability with its shared design. 

 
 
 

1.3 Current Status of Component Development 
The promising component is playing predominant role in current software 
development, but it still does not satisfy people who always want to get the max 
benefit from the reuse of existing component. Software component is being given 
more study and support to overcome the emerging problems and detects in 
component-based software development. 
 
The component model is always the basic issue for the component development, since 
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there is no uniform way to build the component model. Therefore there would be 
some problems in the heterogeneous system with different model to reuse the 
software component. 
 
As the result of the problem of component model, the interoperability among the 
component appears in front of the developer. Fortunately the main component 
company is making effort to have the component interface understood by the 
component from different component model. 
 
Any component can’t foresee all the change in the future after it running, which 
means that every component has the doom if it never were upgraded. The problem of 
customizing and dynamically maintaining the component need more attention to make 
software reuse persistent and cheap. 
 
The delivery of component is an interesting choice for the producer and client. It is 
difficult to define the proper granularity of the software component for the 
requirement of different client. 
 
In addition, currently most of programming languages do not support component 
programming well, and there are few component languages like ComponentJ [33], to 
specialize the component in the design level or code level. 
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 CHAPTER TWO 

 COMPONENT MODEL WITH COMMUNICATION 
 
 
Today there are many components produced for the large system, such as applet, 
plug-in/add-in, framework and third-party control/widget. From the introduction of 
component in the Section 1, it is clear that component-based software is built in the 
process called component-based software engineering [13, 17, 18]. Here 
component-based software engineering (CBSE) is referred to the creation and 
deployment of certain system assembled from the proper components. CBSE also 
includes the component development and reuse of the existing components, like using 
Lego brick to get some useful shape in some way.  
 
Thus from the view of accessory assembly, the component-based system would be 
often heterogeneous. For example, the components inside may be produced with 
different programming language, even the same language but of different version. 
Moreover, the whole system as a large compound component could be reused for 
other complex application. 
 
It is more evolvable for a system to replace the single component with the new 
version, as long as the interface of substituted component is compatible with or same 
as before in term of semantics and behavior. 
 
In addition, according to the property of component, the component-based system 
would get good distributed operation by the components that are scattered in the 
network. The software system also could be smartly mobile and adaptive in the 
network due to its components. 
 
However the ultimate power source exists in CBSE. The key in CBSE is the software 
architecture involving component model. Software architecture defines the global 
behavior of the system, and the individual action of each component [15, 18, 20, 21]. 
The relative synchronous or asynchronous communication among the components is 
also decided in the architecture design as well. All of these of CBSE are explained in 
the following of this section. 
 
 
 

2.1 Component-Based Software Engineering 

The software engineering simply means to find the executable solution for the 
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questions in the given domain, graphically like below: 
 
 
 
 
 
 
 
 
         Figure 9: Overview of Software Engineering 
 
Traditional software engineering typically is done by a group or a single organization 
[17]. Traditional software engineering usually matches a phased development process 
to make the milestone version released as the schedule [17]. The main life steps of 
traditional software engineering looks like below [17]: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Figure 10: Life Steps of Traditional Software Engineering 
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There are some limits of reusability in traditional software engineering. Only the user 
interface of the software is shown to the client. The programming interface or design 
interface is known to the software developers or owners. Therefore, there just exists 
very small scope of people who can make reuse of the parts of software. This kind of 
software engineering usually leads to the efficient solution for a special problem in a 
certain domain. On the other hand, it often brings the expensive evolution of software 
if the corresponding problem evolves or that software needs to be changed or 
customized for the new user or requirement. 
 
The component-based development always wants to reuse the existing component to 
maximize the productivity and minimize the cost and time on component 
implementation. Thus there are some unique features in CBSE to stand out 
component reuse. The main life steps of CBSE looks like below [17]: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             Figure 11: Life steps of CBSE 
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According to the life steps of CBSE and traditional software engineering, reader could 
find that in CBSE the work on design, programming and test is decreased a lot due to 
the reusable component. Instead the integration of component becomes the basic 
process in the component-based software development. In the component integration, 
if the developer can’t find the existing proper component to reuse, or to reconfigure it 
to subject to the system, he must implement the new component to complete the 
required function in the system. 
 
Supposing that the reusable component is the previous work by the same developer, it 
is easy to integrate it to the new system since it is just the white-box artifact for that 
developer. On the other hand, if the component is given from other organization, the 
developer must carefully check the document of this component. The checking should 
include the important characteristics of component listed in the section 1. The 
developer should also find the practice information from the a few running system 
where that old component is being used. 
 
Generally, there are two ways to get new component. One is to design and implement 
the component all by hand, and another way is to wrap or merge the similar existing 
component with some additional data and code [17]. The latter method means to make 
a partial-new component conform to the system architecture design. In order to wrap 
old component, the developer often needs to know more information about how the 
existing component does its function inside. Understanding more of existing 
component, the behavior of it could be well controlled and customized to build the 
new structural component. 
 
After making every component work well, the important step is to validate the global 
behavior of the component-based system. Here system validation means to check 
whether the function through collaboration by multiple components is perfect as 
expected. It is difficult to test the black-box components that hide the detail by the 
strict encapsulation. Another problem of validation is that the original context for the 
development of existing component would have subtle difference to the current 
software environment. 
 
Although the reusable components reduce much possible duplicated work in the 
development, it is still difficult to find the proper existing component corresponding 
to the component model as the result of architecture design. There is not a globally 
uniform way for system designer to build the software architecture with component. 
Meanwhile, it is much more expensive and complex to develop the reusable 
component than the simple program even for a single application. Thus, the 
component-based architecture design is being paid more and more attention to make it 
as a basis to well ease the subsequent development process in the CBSE. 
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2.2 Software Architecture and Component 
Thanks to the previous development of reusable component, CBSE could put the less 
work-amount on the concrete implementation of software system, through the 
composition of the components. However this kind of composition must need a 
guideline to get the right component and put it in the correct position. This guideline 
is called software architecture in IT industry. Software architecture could be 
considered as the base-board of Integrate Circuit of all kinds of electronics. 
 
Software architecture generally is the structural high-level abstraction to describe the 
main structure or say skeleton of the software system [15, 18, 20, 21]. It includes the 
relative rules and standards, static data and dynamic behavior in the system [15, 18, 
20, 21]. Moreover, because the software architecture decides all the parts of the 
system and their relationship, it defines the main functions and qualities of the system. 
On the other hand, the property of the software system could be reasoned out 
according to its own architecture. However, the software architecture always focuses 
on the global performance, and ignores the detail of each part which is the center of 
detailed design process in traditional software engineering. 
 
The core of architecture for component-based software could be simply represented as 
the components with their communication, also called component model. The 
component model is the blueprint for component integration, development, 
deployment and so on [14, 15]. 
 
One formal way to describe graphically the component model is to use UML language 
[34], as shown in Figure 3. It is called component diagram [6] in UML. Obviously, 
the component diagram at least shows each component which is assigned the abstract 
functionality. It also explicitly gives the interface and context of component to interact 
with each other in the system environment. Here the interaction between components 
should include the (remote) procedure call, event broadcast, channel etc. Moreover, 
some important architecture constraints to the components and their interaction are 
also expressed in the component model. For example, it could explain how the 
constraints of communication mode (asynchronous or synchronous), are designed 
with components. 
 
An elegant component-based architecture could not only give the correct design to 
easily find the reusable existing one to be integrated in the system, but also be reused 
for the other system development at the architecture design level. This means that the 
different applications could share some common software architecture so that the 
relative components of that architecture get the max reusability for the development. 
Therefore the common component-based architecture improves the interoperability 
between multiple software systems.  
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2.2.1 General Requirement on Architecture 

There are some important requirements for the component-based software 
architecture to be promising for the component-based development. The requirements 
also explain the direction of CBSE in the future, listed below [15]. 
 
· Multiple component granularities 
 This asks the architect to design the component architecture with different size of 

component. There may be atomic component and structural components in the 
architecture. Atomic component is the smallest function unit unable to split, while 
structural component is composed of several smaller components in a logical way. 
The member of structural component could be atomic component, or also 
structural component. It is obvious that the smaller component in structural 
component could be extracted out and reused for other things. There are already a 
lot of reusable components with different granularity now, for example, file reader 
as small component, word processor as large component. 

 
 The choice of component granularity depends on the system requirement and 

component characteristics. Usually the small component is more flexible and 
cheaper, whereas the large one is more versatile and expensive. In addition, the 
architecture should be able to deal with the compound component that is 
constructed by many small components. 

 
· Substitutability of component 
 Component architecture should be able to allow the replacement to one or several 

components with the component, which has compatible interface and same 
function to continue the system running.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
         Figure 12: Substitute component by updating 
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The component-based system could perceive the needs of component replacement, 
and intelligently find the proper new component to replace the old one while 
system running. Therefore the maintenance becomes more convenient and this is 
particularly important for the real-time software system.  The usual way to 
substitute the component is to replace the old version with new version to get 
better performance with fewer bugs, like Figure 9. 

 
· Parameterizable component 
 The component in the certain software architecture has the confirmed interface 

and function. In order to reuse generic component which could be tailored by 
parameter, the architecture should be able to set the parameter to that kind of 
parameterizable component. The parameterizable component usually is the 
synthesis of a set of similar functions in a problem domain. For example, the 
picture-browsing component could be designed to show the different pictures 
according to the parameter of picture type. Therefore, the architecture enlarges the 
scope of reusability with parameterizable components. 

 
· Customizable component 
 This requirement is close to the parameterizable component, but the customizable 

component is to be used by the end-user instead of developer. User can adjust the 
component to different environment or work, without replacement by the other 
component. In this condition, the architecture should make the additional support 
to the customizable component, for instance, having an easy-to-use GUI 
component to reflect or setup the customizable component. 

 
· Multiple programming language 
 Since the component should be language-independent to be reusable, the 

corresponding architecture of component should also contain the component 
implemented by the different programming language varying from Fortran to C# 
[35]. However, although the component is allowed to be developed by the 
different language, the interface of component must be designed carefully to be 
understood by the other component. Additionally, the incompatibility between 
languages must be considered to avoid possible problems. 

 
· Component-specific help 
 A lot of existing components are blackboxes with only interfaces exposed to the 

designer or user, but it is often necessary to get more information of the 
components. The component architecture should possess the ability to give the 
help of certain component to the architect or software client. This kind of ability 
also depends on the way the component show its help, such as the email address 
of the component author. 

 
· Component-specific changeable or integrated interface 
 Besides the component being parameterizable for its specific function, there may 
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be the needs to make the interface of component able to be tailored for the 
different application. Moreover, there could be an integrated interface from 
multiple components; in other words an interface is composed of several interface 
of multiple components to form a work group for the specific task or the typical 
user. Thus the architecture should support this kind of changeable or synthetic 
construction of interface in a structural way to provide the flexible reuse. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Figure 13: Wrapped and Integrated Component Interface 
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· Easy distribution of component 
 One of the basic benefits of component is that it can be separately delivered to the 

designer or end-user. In addition, the component could move in the network by 
itself if necessary. Therefore the software architecture should make the 
independent component in the independent format, for example a unique Dll 
(Dynamic linked library) file. This development style would ease the deployment 
and maintenance of the component. 

 
· Support for sales 
 This requirement is a non-technique request to the software architecture, but it is 

important for the commercial component-based software system. Since the 
company would have the different price policy for the different sales mode, the 
software architecture should be able to easily match with the various charge way. 
The usual method is to use a parameterizable component, which could be set up in 
the installation or deployment process to fix the sales mode for the certain version 
like time-limited usage. Therefore the software architecture would get more 
reusability in the CBSE for commercial software.  

 
 
 

2.3 Communication between Components 

Although the component is the basic unit in the software, it is the communication that 
glues all the components to form a complete system. Every “living” component needs 
communication as oxygen to exchange the information with other relative parts in the 
cyber-space. The communication between components could be simply described as 
that one component sends the proper message to another component according to the 
interface of both. Since every component conforms to the information-hiding 
principle, the communication only happens at the component interface level. In other 
words, one component can’t directly call the internal sub-functions or 
sub-components of another component. 
 
Emerging network and Internet bring more requirements on the communication of 
components. The space and time scope of component communication has been 
extended and enforced to execute the network-based application. The communication 
must be adaptive to different technology of the network, also the heterogeneous 
operation environment, to cope with the platform-independent and automatable 
component. In addition, because the network is becoming huger but more distributed 
in terms of scale and function, the software is difficult to strictly control its 
component communication in the network-based workflow. In this case, there could 
be more errors possibly occurring in the communication than on the single machine. 
Therefore, now the communication between components is the hotspot of the 
researchers for the component-based development. 
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There are a lot of study and analysis on the communication schema among the 
components. From the view on time phase of action steps in the communication 
between two components, it is divided into synchronous communication and 
asynchronous communication. Here the synchronization and asynchronization of 
communication is not referred to the low-level concrete transmittal of binary data, but 
to the high-level message transportation. The choice between synchronous 
communication and asynchronous communication directly affects the system 
performance and quality. Thus it is very important to carefully use both 
communication modes in the architecture design of CBSE. 
 
 

2.3.1 Synchronous Communication 

If a component A is blocked (waiting after it sending a request message to another 
component for some function) until the message receiver return the feedback message 
to the sender A to indicate the result of function corresponding to the request message 
(at least the acknowledgement to the sender A), this kind of communication is called 
as synchronous communication. The MSC (Message Sequence Chart) of synchronous 
communication between the components is looks like below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Figure 14: Synchronous Communication between Components 
 
As seen from Figure 14, the Client component sends a message Foo to the Server 

Foo 

Work on Foo 

Client Server 

Foo 

Work 

Wait 

Idle or other work 

Feedback message 



Chapter Two: Component Model With Communication 

Analysis and Implementation of Asynchronous Component Model 31 

component with corresponding interface for that message. Then the Client component 
suspends its work until the feedback message is sent from the Server component after 
its work due to receiving Foo message. After getting the feedback from Server, the 
Client component continues its execution until it sends the message again to another 
component in a synchronous way. Therefore, the function with synchronous 
communication could be seen as a set of sequential steps by the ordered collaboration 
by multiple components. 
 
Briefly speaking, the synchronous communication couples the phase of message 
sending and relative execution as a tight pair. Thus it virtually produces a persistent 
link between the message sender and receiver, until all the steps in the communication 
are finished. 
 
Currently, the most popular example of synchronous communication is online 
discussion through the Internet, such as chatting room. When one guy sends the 
message to another, the chatting component is blocked until the other side returns the 
information about receiving the message. The chatting component would display the 
current status or session record with that new message if successful, otherwise it will 
report some kind of error. 
 
 

2.3.2 Asynchronous Communication 

Obviously there are a lot of waiting state in the synchronous communication between 
components, but people wants to have a way to make use of that waiting time to do 
other thing to increase the productivity. Thus Asynchronous communication has been 
used to reduce the waiting cost, shown in Figure 15. 
 
The Figure 15 explains the general way of asynchronous communication, where the 
Client component proceeds to do its work after it sending a message Foo to Server 
component. Actually in asynchronous communication, the Client component and 
Server component works in a parallel way without waiting for the finish of that 
interaction by Foo. If the Server component gets the result by the work due to 
receiving the message Foo, it would send that result to the Client component even if 
the Client were still running. 
 
Note that although a component could continue to work after it asynchronously sends 
a message to other component, it is possible for that component to enter the waiting 
status. This is due to the fact that the work of sender may use the result of the 
previously sent message. Thus the sender has to wait if the result is not ready by the 
execution of the message receiver. Asynchronous communication could not 
completely avoid the waiting state in synchronous communication.  
 
In essence, asynchronous communication decouples the message sending and relative 
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execution to make both message sender and receiver in the communication 
independent to each other as much as possible, while synchronous communication 
links sender and receiver in a tight style. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Figure 15: Asynchronous Communication between Components 
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finishes the execution on the received message, it would use that callback function 
which gets the result of original message. Then the callback function do some 
proper work like notification to the message sender, so this way would have the 
less message transferring, but it is more complex in the development. 

 
Currently, the most popular example of asynchronous communication is information 
transmitting through multiple peers in Internet, such as email system. When one guy 
sends an email to another, the client-end continues to work no matter the transferring 
result of the email. The email-server would return the result if it fails to send to the 
email receiver after its action on that received email. At the end, the client-end would 
be notified for the failure of email while it is working on other stuffs for example 
writing new email. 
 
 

2.3.3 Synchronous .vs. Asynchronous 

Although synchronous and asynchronous communication obviously has some unique 
features based on the different messaging style, the distinction between them has been 
researched for a long time. People found that neither of them could be absolutely 
better than another one. However, The interesting thing of both kinds of 
communication is that they can simulate each other in the software development.  
 
The classic way changing synchronous communication to be asynchronous is to insert 
the message buffer (message queue) and relative management in the middle of 
message transferring. The example of this kind of trick is channel, Publish/Subscribe 
pattern [4] and Mailbox in chapter 4. 
 
As to make asynchronous communication be synchronous, one simple transformation 
is to give the acknowledgement to message sender as soon as the sender transmit the 
message to the receiver. Afterwards the system should use other mechanism to notify 
the true result of execution by message receiver. 
 
The usage of synchronous and asynchronous communication depends on the real 
application and the execution context. Therefore there are a lot of software systems 
mixing both communication modes to make full use of their advantages and reduce 
the drawbacks. As for the architecture design in CBSE, the synchronous and 
asynchronous communication should be equally important for designer to carefully 
adopt for different components. 
 
The quality of service in synchronous communication obviously is better than 
asynchronous one, since synchronous communication requests the response from the 
message receiver as soon as possible. That’s to say, the message receiver in 
synchronous communication should immediately do the operation according to the 
received message. Nevertheless, on the side of asynchronous communication, the 
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message receiver is not much enthusiastic to give the action on the received message 
since it has its own operation schedule. The sender of asynchronous messaging would 
continue with other tasks if the result doesn’t affect the afterward work. Actually the 
receiver in asynchronous communication may ignore the message for some time, 
putting it somewhere until the receiver think it possible to execute the function for 
that message. The difference on the quality service decides that synchronous 
communication is more proper to be used in sequential transaction system to keep the 
application with high efficiency and safety as expected by requirement. Meanwhile, it 
is difficult for asynchronous communication to estimate the time when the result is 
done. Therefore asynchronous communication would lead to the chaos of failure or 
success, and the choice of resending or ignoring. 
 
Excellent service usually means expensive cost; in other words, the synchronous 
communication would take more overhead than asynchronous one. In synchronous 
communication, after the message sender transmit its message out, it has nothing to 
do but wait for the result. The waiting of component often makes some part of a 
software system idle for the CPU-time, especially when the message brings a 
time-consuming job to the receiver.  
 
The worst thing in synchronous communication is that it could go to deadlock, since 
the message sender can’t release the owned resource until it gets the result to continue 
its work. Furthermore, the recovery from the deadlock is a big loss to the whole 
working system. In addition, the synchronous communication asks all the involved 
parties to be active at the same time, which produces the long time and big load for 
the system to prepare for one large synchronous communication. Thus it is not 
realistic in distributed and concurrent systems. 
 
On the other hand, the asynchronous communication gets more concurrency during 
the messaging. The message sender doesn’t have to wait unless it need the result in its 
operation, and it could release the resource temporarily after it sends the message. 
Moreover, the message receiver could be inactive or busy with other stuff during the 
asynchronous communication, and to operate the message later. This kind of 
manipulation is more and more useful to the bandwidth in the Internet age to avoid 
network-congestion. Therefore, asynchronous communication obtains more attention 
from loosely-collaborating and distributed software system development for the 
long-time execution pace like database merging. The overhead of synchronous 
communication becomes an important factor to make designer consider the tradeoff 
with its required quality of service. 
 
In the history of computer science, synchronous communication has been researched 
for a long time because it is easier to be understood simply as an ordered sequence of 
operations among the components in a single collaboration. Synchronous 
communication follows the general logical thinking of people. Today synchronization 
is a common part in the software system. There are many specific technologies used 
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to help design, implement and optimize the synchronous communication, for example, 
process management by operation system. As for the component-based software 
development, the main component models and infrastructures (EJB [36], .NET (COM 
& DCOM) [37], CORBA [38]) all have the basic support to the synchronous 
communication between the components. 
 
In contrast with synchronization, the asynchronous communication is difficult for 
people to obtain in the software production, because it has much higher parallelism 
not only on software but also on hardware, complex to concrete development. 
Asynchronous communication is more difficult to obtain the result in a rational time 
than synchronization which is based on presumptively successful communication. It is 
also harder to control and verify asynchronous communication according to its 
corresponding software architecture. In addition, there is less support to asynchronous 
communication from programming tools. Recently, some languages like ProActive 
[39] and Sharpie [41] claims to have default asynchronous communication, and EJB, 
CORBA also provides some way to get asynchronous communication. 
 
However, now there are many new ideas that require more asynchronous 
communication than synchronous one. For example, distributed computing which is 
based on the network to assign the parts of one task to different machines, the 
advantages of asynchronous communication is very clear in that environment. Thus 
the developers need asynchronous communication to solve the big trouble in 
synchronous communication. Moreover, many kinds of component are rather 
asynchronously communicating entity in the system. The typical asynchronous 
component is intelligent agent, which always performs the tasks from the client while 
it sends message to delegate some sub-tasks to other components without suspending 
for the result. 
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 CHAPTER THREE 

 IMPLEMENTATION OF  

 ASYNCHRONOUS COMPONENT MODEL  

 
 
Since component and communication become the basic keys to the modern software 
system, the communication modes: synchronization and asynchronization has to be 
chosen to compose the component to software system. However, there is less 
technique support to develop asynchronous communication between components than 
to make synchronous communication. Thus most of the software system only holds 
synchronous communication, although asynchronous communication is more useful 
at some time. 
 
One of the basic things to support the usage of component-based software with 
asynchronous communication is the programming language. As a matter of fact 
recently some new experimental programming languages claim to have built-in 
mechanism for programming of asynchronous communication, like ProActive [39], 
Piccola [40], Sharpie [41]. If more precisely, these languages are just the extension of 
their host programming language from the view of implementation. Since ProActive 
is going beyond Java which is as industry-standard language, it would be more 
practicable for the software development. In this paper, I would explain how to 
implement the component model with asynchronous communication by ProActive. 
 
 
 

3.1 ProActive 

As known from the experience of programming in Java, it provides synchronous 
communication as default mode for the method call or messaging between the objects. 
In order to fix Java with another powerful wing to be adaptive in the environment of 
asynchronous communication, ProActive [39] was born to ease the programming in 
that situation, and in component-oriented development as well. 
 
ProActive [39] is actually a set of java class libraries that add many interfaces and 
relative functions for parallel, distributed, concurrent programming with fine security 
and mobility. It uses underlying Java RMI layer [42] to realize all its ideas including 
asynchronous communication, and thus it is adequate to be used for the 
network-specific application. 
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Because java is a kind of pure object-oriented programming language, ProActive [39] 
program is based on the objects and messages. ProActive adds a new kind of object to 
the java software, which is called active object. Active object is the first-class object 
in ProActive, encapsulating the common object (called passive object in ProActive). 
Only active object is shared by all the other objects in the system. In other words, the 
interface of one active object is open to other active objects or passive objects. On the 
other hand, one passive object in ProActive could expose its interface to some relative 
passive objects and only one active object. 
 
The general object model in ProActive [39] could be graphically represented as below, 
and the arrow link means the message sending between the objects: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Figure 16: ProActive Object Model 
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The actual implementation of active object in ProActive [39] is to wrap the common 
object created from standard java with RMI mechanism. The wrapping makes the 
active object become the remote object which has some additional parts like stub and 
skeleton to form a kind of client/server structure.  
 
An active object A of some class, from the view of RPC, will have 4 parts in fact: 
1. stub_A (client side) 
2. bodyproxy_A (client side) 
3. body_A (server side) 
4. instance_A (server side) 
 
The parts of client side means that stub_A and bodyproxy_A should be used in the 
same JVM [43] as the client which calls the function of active object. The parts of 
server side means that body_A and instance_A could be put in an independent JVM 
from client object. The body_A and instance_A provides the real service for the 
request from client side, and their location depends on the creation and deployment of 
active object. The Figure 17 shows these 4 parts and their roles in the call to active 
object, and arrow link represents the message sending. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          Figure 17: Active Object Composition 
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There are three ProActive [39] interface for user to specify the management of 
received request to active object: InitActive, RunActive, EndActive. The standard 
behavior is to serve all incoming requests one by one in a FIFO order. User can adopt 
other order like LIFO by implementing RunActive interface, or passing a LIFO 
active object as the parameter to the creation of new active object. 
 
In ProActive [39] every active object must be associated with a node, which could be 
thought as general and basic remote object with valid entry (RMI URL [42]) in RMI 
registry [42]. The default node is created automatically by ProActive on the local 
JVM when a first active object is created without a given node. Moreover, if no RMI 
Registry exists on the local machine, ProActive will automatically create one. If RMI 
registry exists, ProActive will automatically use it. 
 
ProActive [39] uses future object and active object to get the asynchronous 
communication. The future object is the type of a refiable object that can not throw 
checked exception, and it includes three parts: stub_future, proxy_future, 
object_future. These parts are similar to the stub, bodyproxy and instance in active 
object in terms of function. 
 
Suppose that object or component A calls the method of Active Object B with return 
the object of type V, the basic procedure is executed in 4 steps. The procedure could 
be graphically represented as below (solid arrow line means the message sending, and 
dashed arrow link indicates the object creator and its creation): 
 
Step 1: Since stub_B is the subclass of class B, it inherits all the methods from class 

B, as well as the properties. However, active object's properties must be 
accessed through a public method, i.e. define public get and set method to do 
with property. Furthermore, when we create active object it returns the 
reference on its stub. Thus the stub_B receives the method call from A, and 
builds the methodcall object and passes it to bodyproxy_B by redefining all 
public methods to reify them through a generic proxy. 

 
Note that stub_B cannot redefine final or non-public methods inherited from 
class B. Therefore, the calls to these methods are not reified but are executed 
on the stub, which may lead to unexplainable behavior. Meanwhile, getting or 
setting instance variables directly (not through a getter or a setter) must be 
avoided in the case of active objects because it results in getting or setting the 
value on the stub object and not on the instance of the class B. 

 
Step 2: bodyproxy_B checks the type of return result, and then creates the future 

object of corresponding type. bodyproxy_B adds the reference of future 
object V (actually the reference of futureproxy_V in future object V) to the 
methodcall object and send methodcall object to body_B 
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           Figure 18: Asynchronous Call in ProActive 
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Step 4: instance_B executes method and create the object_V as a return result, and 

give the reference of object_V to body_B. Then the body_B provides the 
true reference of object_V to the futureproxy_V of future object V. 

 
As illustrated in Figure 19, when object or component A wants to use the function of 
V, it sends the message to stub_V. Then stub_V wrap the message and send it to 
futureproxy_V, which invokes the real implementation in object_V. If the object_V 
is not available, A must wait for the result to be finished by Active Object B. 
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structured in the multiple independent subsystems. Obviously, we can consider that 
every subsystem is a basic component, which is in charge of one basic function and 
communicate with each other.  
 
As a matter of fact, due to the separation of active object and passive object, 
ProActive [39] is an implicit component-oriented programming language although it 
does not focus on the component programming. Every passive object is known only 
by an active object and this kind of passive object could be treated as the sub-object of 
that active object. Therefore one ProActive component could be constructed by one 
active object with any number of relative passive objects known by it. 
 
Because ProActive [39] is used to write the program for the software, ProActive 
component is at the level of implementation and it has something different from 
general component. The most apparent point is that the interface of ProActive 
component is not as very structural and concentrative as general component. 
ProActive component is actually a set of objects, without uniform interface part. The 
interface of provided service by component is decided in the interface of active object, 
while the interface of required service is composed of the interface of active object 
and passive object. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Figure 19: General Component and ProActive Component 
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The following section is to discuss the general but important characteristics of 
component mapped to ProActive specification. 
 
 
 

Generality 
1. Purpose 
Following the application model introduced by concurrent Eiffel, it provides an 
active-object based framework to implement distributed, parallel, concurrent 
component programming. 
 
2. Development theory 
Decide the only one active object for each component in the application, and the 
active object could be called from inside or outside of component. The other object in 
each component is regarded as passive object, which can’t provide the service to the 
objects outside the component. 
 
3. Tools 
A graphical-interface monitor called IC2D, which can show the status of active object 
and migrate it. For example user can drag and drop an active object in IC2D from a 
machine in Brazil to another machine in France. 
 
4. Entities 
 
 Kinds 

Each ProActive component is made of two kinds of object: active object (only 
one) and passive object (none or more). Active object could communicate with 
the passive object in its own component and other active objects outside the 
component. Passive object could only communicate with objects in the same 
component, or call the active objects outside the component. 

 Mixture 
Implementation in pure java, and component is on top of java RMI layer. 

 Context 
In fact all the components know each other though java RMI registry 

 First-Class 
Active object and passive object are first-class citizens, and user-defined 
MetaObject protocol is supported for the reification of method invocation 
and constructor call. 

 

Interface 
1. Syntax 



Chapter Three: Implementation of Asynchronous Component Model 

Analysis and Implementation of Asynchronous Component Model 44

ProActive [39] has not keywords or abstract syntaxes to explicitly mark the interface 
of ProActive component in the program file. Although it uses java RMI layer to 
realize the concrete communication by active object in the components, all the RMI 
manipulation is encapsulated in its library. User only needs to write the class file in 
the common way and create or call active object using ProActive methods. In other 
words, ProActive simply provides the specific service with its own library interface 
for the programmer, not specifying the formal component interface. 
 
2. Element 
All the elements for the component interface are done in the class file like the 
standard Java programming. As a matter of fact user can’t see the clear list of possible 
interface elements like procedure, channel, and so on. In addition, ProActive [39] 
regards all the public methods in the class definition as the usable elements to redefine 
for the active object. 
 
3. Communication 
ProActive [39] concentrates on the asynchronous communication model, and it makes 
the active object as a kind of message server. When a component calls a method in 
another component by sending a message to some active object, it will continue its 
execution until it needs the result of that method. This kind of interaction is called 
wait-by-necessity.  
 
Each ProActive component could only have the reference of stub of the active object 
in other components, and the stub of active object is responsible to send the method 
call through a generic proxy in active object. Therefore the ProActive component 
interface is represented by the stub of active object, if from the view outside 
ProActive component. 
 

Attribute 
All the attributes of ProActive [39] component are done in the class file, and user has 
to implement public get and set method (as the element for interface) to operate the 
attribute of the active object. In order to initialize the attribute in the constructor of 
active object, the attribute argument is asked to implement the interface 
Java.io.Serializable. 
 

Life Cycle 
The life cycle of ProActive [39] component depends on the RMI registry. When 
ProActive creates an active object of a component, it will create a RMI registry or use 
an existing one, and register the component with a default or specialized node. Then 
other component could send the message to this ProActive component by the RMI 
URL. If it is unregistered from java RMI registry, or RMI registry is unloaded for 
some reason, the ProActive component is out of the interaction with other ProActive 
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components in the application. 
 

Dynamic Behavior 
There are a lot of different explanations on the dynamic behavior of component, but 
here it means the context-specific change of component behavior in the run-time. In 
this way, ProActive [39] may support the dynamic behavior of the component. 
 
ProActive gives the programmer some interfaces and classes to deal with all the 
method call to active object before active object accepts to execute the corresponding 
implementation. Thus the special communication protocol and behavior control could 
be easily done on the ProActive component without changing the source code of 
concrete function. In fact, the dynamic behavior of ProActive is to separate the 
control decision from behavior implementation. 
 

Properties 
The property of ProActive [39] component is mainly expressed by active object. 
Active object could give the dynamic and service-specific property to its interface 
through its RMI encapsulation and message-queue management. The interface part of 
active object could be local or remote. Active object could automatically migrate itself 
among the different JVM, and set the relative deployment by XML descriptor. User 
could specify and change the service policy on the message queue of active object 
according to the application context in the run-time. 
 
 
More information about ProActive [39] could be read in the appendix A. 
 
 
 

3.2 Translation from Asynchronous Model to ProActive 

Since ProActive [39] is a programming language implicit to support component-based 
software development, it is possible to use the component model gotten from the 
architecture design phase to implement it in ProActive. The component model here 
used includes the basic or structural component with abstract interfaces and functions, 
and the main asynchronous communications between the components. In addition, the 
component model should also have the relative deployment for the system running. 
 
Although the implementation for the component model by ProActive [39] is visually a 
development process from system specification to program code, even the most 
formal specification of a single function could has various writing of code in terms of 
individual programmer and relative tools. A more effective method to explain how to 
realize the component model by ProActive in a general way is to use Model-Driven 
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Architecture (MDA) [44] approach. MDA is to translate the component model to 
ProActive implementation at a higher abstraction level. This kind of translation only 
concentrates on the translation of most common and important aspects in the 
component model not the details in fact. 
 
 

3.2.1 MDA Introduction 

Because every development of software system has to depend on the concrete 
technology to make the real value for the client, there is a huge market of software 
tools and development theory like C++ and Java [29]. People often spend much time 
to choose the proper techniques to implement their respective work. The relationship 
between the system functions and corresponding realization is many-to-many. That’s 
to say, one single function could have different solution through different techniques, 
and vice versa. 
 
In order to solve the contradiction between the abstract design and concrete 
technology, MDA [44] is used by OMG (Object Management Group) to connect the 
different implementation with the similar software architectures, and these 
architectures are based on a highly abstract business model [8, 9, 10, 11]. Thus MDA 
is model-centric development methodology to automatically translate the base model 
to various specific models (architecture) on the concrete platform or technology, with 
some transformation rules. Then the specific model is used to generate the formal 
program code by some kind of parser, and finally the formal program is completed 
and validated by the relative developer as usual. The base model is called 
Platform-Independent Model (PIM), and the specific model is called 
Platform-Specific Model (PSM) [44, 8, 9, 10, 11]. 
 
The separation between PIM and PSM done by MDA [44] is to reduce the gap 
between the architecture designs affected by different technology for the same 
behavior or function. Therefore MDA leads to more design reuse in the development. 
Meanwhile, MDA tries to get the automatic translation from abstract business model 
to all kinds of specific development technology and even code generation in terms of 
language [8, 9, 10, 11]. The automation from model to implementation also decreases 
the cost and time in the detailed design and implementation phase of the software life 
cycle. MDA help people to pay more attention to generic and abstract system 
modeling without technique support, and also to technology-dependent rules for 
automatic mapping. 
 
Since MDA [44] works beyond the level of component and other middleware 
platform, it could easily create the abstract model mapping to component-based 
architecture. In fact, a MDA application should include one base generic model as 
PIM, and several specific models as PSM like .NET [37], EJB [36], and their concrete 
realization. In this case, the interoperability between the several specific technologies 
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involved in a MDA development is obviously high and clear. The MDA tools can use 
base model specification and relative transformation rules to construct the 
corresponding relationship between the implementation of one PSM to another [10, 
11]. In other words, the link of service or component in PIM is mapped to the 
interoperation among the systems of PSM due to different implementation. 
 
The core standards used to represent PIM is Unified Modeling Language (UML) [34], 
Meta Object Facility (MOF) [45] and the Common Warehouse Metamodel (CWM) 
[45]. In this paper, I adopt the UML-like diagram to illustrate the some translation 
rules from general component model (PIM) to ProActive [39] Model (PSM), since 
UML language is very common in the system-modeling domain. 
 
More detail about MDA could be read in the appendix B, and it is being developed 
and formalized to be another standard approach especially for component-based 
software development. 
 
 

3.2.2 Translation Rules for ProActive 

ProActive [39] is a Java-based programming language with featured asynchronous 
communication and implicitly supports component-based system development. The 
translation from asynchronous component model to ProActive implementation is 
really direct. In fact there are some ongoing projects that are using ProActive to 
produce component software 
 
Using MDA [44] approach, this paper proposes some basic rules to give the insight 
how the asynchronous component model could be realized in ProActive [39]. The 
rules are represented as PIM-to-PSM in UML-like style, because UML [34] is the 
most popular modeling language for the system development. UML is also the 
modeling standard adopted by MDA of OMG. 
 
1. Transformation on class 
Besides the standard object in ProActive [39] as other OO languages, there is active 
object introduced in ProActive for the local or remote communication with other 
object. One basic independent component, which has message exchange with other 
components, could be mapped to a class of active object in ProActive. We can use 
some kind of class diagram [6] to show it as in Figure 20. 
 
Although there seems no change in the transformation between the component and the 
class of active object, some special requirements are asked by ProActive [39] to ease 
the encapsulation and RMI [42] operation behind the active object. User has to put a 
non-argument constructor (ComponentA in Figure 20) in the class of active object. 
The non-argument constructor would be called by the stub created in ProActive, 
otherwise the stub calls the constructor with argument and use the argument for the 
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stub not for the real object. The argument of constructor normally should be 
serializable, which means that the argument belongs to a class implementing 
Java.io.Serializable interface. The class of active object must be declared as a public 
and non-final class in ProActive, so the active object can be rebuilt by ProActive. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Figure 20: Translation from Component to Active Object 
 
If the component has the special service policy other than FIFO to work with the 
received message, user have to implement ProActive [39] interfaces or create active 
object with argument which is another active object with same policy. Using three 
ProActive interfaces (InitActive, RunActive, EndActive) is more common to get 
user-defined management, and it is easier to be done in our translation, shown in 
Figure 21. 
 
In Figure 21, as declared in class of active object, the InitActivity is the function 
defined in interface ProActive.InitActive. InitActivity is used to initialize the 
management of received message, like the constructor of java thread class. The 
runActivity is the function defined in interface ProActive.RunActive. runActivity is 
used to manage received message by active object, like the run() method of java 
thread class. Then The endActivity is the function defined in interface 
ProActive.EndActive. endActivity is used to do something when finishing the 
management of received message, like the stop() method of Java thread class. 
 
In addition, there may be some compound component that is composed of several 
sub-components, with some reference relationship between each other. In this case, 
only the sub-component that accepts the message from outside need to be transformed 
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to the class of active object, and others are treated as the class of passive object (Java 
object) in ProActive [39]. Thus the transformation from compound component to 
ProActive component only depends on the interface of sub-component in the 
compound component, no matter the relationship between sub-components. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Figure 21: Message Management Translation to ProActive 
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receive the message and give service to other component, it is translated to active 
object (Active SubComponentA1) in ProActive component. SubComponentA2 
and SubComponentA3 becomes the passive object (Passive SubComponentA2, 
Passive SubComponentA3) in ProActive component. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Figure 22: Compound Component Translation to ProActive 
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Different from general object-oriented programming language, ProActive [39] uses its 
own primitive method to create the active object; in other words, we must use 
newActive or turnActive method in the org.objectweb.proactive.ProActive class. 
The newActive method creates an active object by the special instantiation from a 
class. turnActive method makes an active object through reconstructing the existing 
object that is created by the classic OO keyword new coping with the class, like 
following: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Figure 23: Creating Object Translation to ProActive 
 
The choice between both newActive and turnActive has no difference for the 
function of active object, and it only affects the detail of programming. For example, 
newActive has the limitation on the arguments of class constructor that the argument 
has to be serializable, as shown in Figure 20. On the other hand, turnActive is flexible 
to encapsulate any Java object to be an active object, and thus it could be more useful 
in special context of programming. As for the rule of PIM-to-PSM, I think that 
newActive should be put as the default method for the creation of active object, since 
it is more close to the standard object creation in terms of semantics, and more simple 
for automatic translation. Nevertheless, turnActive is the alternative way to revise the 
PSM model for some reason. 
 
2. Transformation on object call 
Since ProActive [39] distinguishes the active object from the standard java object (i.e. 
passive object), the method call to the active object is based on the RMI mechanism. 
This means that the message sent to active object is always operated as a remote 
procedure call in Java [29] programming. Therefore, the method call to active object 
and passive object is different in ProActive. It is transformed like following, 
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supposing that SubComponent1 is translated to an active object, while 
SubComponent2 is translated to a passive object in Active Component2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Figure 24: Generic Method Call Translation to ProActive 
 
In order to implement special method invocation to active object through 
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to hide the detail of underlying RMI [42] manipulation. As a matter of fact, if a 
component or an object wants to call an active object, it must know the RMI address 
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of that active object. Every active object is registered into RMI registry when it is 
created using newActive and turnActive method. Therefore, the actual 
transformation of method call to active object on the source code level (or text 
representation) is like following, supposing that Component2 is translated to an 
active object. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        Figure 25: Method Call Translation to ProActive Code 
 
In Figure 25, there are two arguments in lookupActive method. The first one is the 
class name of active object, and the second one is the address of node related to active 
object. The node has an entry in RMI registry. 
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method is called on an active object, the fake result (future object) is returned 
immediately to the caller. Only if the result needs to be used, the ProActive program 
would wait until the real result is available. This kind of asynchronous strategy is 
so-called wait-by-necessity. Thus suppose that the work flow in an asynchronous 
component model is generally like following: 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Figure 26: General Asynchronous Call of Component 
 
The Component2 is translated into active object to handle asynchronous 
communication. If the result of Operation1 is returned after Component1 reaches 
the statement where the result is needed, the ProActive workflow looks as below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Figure 27: Asynchronous Call Translation to ProActive 
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asynchronous call in ProActive: 
1) Final classes cannot be the return type of asynchronous call 
2) Same thing for primitive type like boolean, char 
3) Same thing for classes without non-argument constructor 
4) Same thing for classes throwing checked exception. 

Meanwhile, if an object in proactive is the argument of a method, the class of this 
object must be serializable unless this object is active object. Thus the transformation 
on class of active object with asynchronous call is like following: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Figure 28: Asynchronous Component Translation to ProActive 
 
On the other hand, if user wants to keep the synchronization way of method call to an 
active object in ProActive [39], user can modify the return type of the method 
according to the previously listed restriction for asynchronous method call. We can 
also use ObjectForSynchronousCall class, given by ProActive, as the return type 
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for the method with no return result in the synchronous call. The transformation is 
like following, supposing that Operation1 and Operation2 in component 
componentA need to be called synchronously: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Figure 29: ProActive Translation of Component with Synchronous Call 
 
ProActive [39] uses node to deploy the active object in the runtime environment, and 
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Java RMI registry, node URL follows the format of RMI protocol. Therefore, the 
transformation on deployment of component is like below, and the dashed arrow link 
means message sending in the system: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Figure 30: Deployment Translation to ProActive 
 
In Figure 30, the general deployment model of component is translated into concrete 
deployment model in ProActive [39]. The ProActive active object named Michael 
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deployment file for the active object related to component. 
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3.3 Example: Flight reservation system 

As an experiment of ProActive [39] implementation, I used ProActive to realize a 
simple flight reservation system [7]. The component model for this flight reservation 
is very easy to be shown as below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        Figure 31: Component of Flight Reservation System 
 
As seen in Figure 31, there are four components in flight reservation system. Client 
component asks the Counter component for the flight ticket. Before Counter 
component returns the ticket to Client, it has to ask the Company component if there 
is available seat in plane. According to the result from Company, if there is still seat, 
Counter component would ask the Company to book the seat and send request to the 
Bank account to pay the flight ticket from client’s account. Then the Counter 
component gives the ticket to the Client. If there were not seat, the Counter 
component would return failure to the Client. 
 
This simple flight reservation system obviously contains some asynchronous 
communications between the independent components. For example, when the Client 
component sends the message for the ticket, it could continue its work without 
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waiting for the result of its call. Booking seat by the Company component and 
payment by the Bank component could be done concurrently if there is seat in flight. 
In other words, the Counter component should sends booking message and payment 
message one by one in an asynchronous way. It is not necessary to waiting for the end 
of booking seat and then do payment of flight price to the Bank component. 
 
Therefore flight reservation system is naturally a distributed, parallel, concurrent, 
asynchronous software system, ideal for the ProActive implementation. The 
transformation rules are already applied to the component in flight reservation system, 
for example the general class representation of Bank Component is like below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Figure 32: Bank Component of Flight Reservation System 
 
The actual implementation of Bank component is to program it as the class of active 
object in ProActive [39], coding like Table 1. 
 
/* 
 * author Kaiye Xu,  
 * Bank.java 
 */ 
 
package org.objectweb.proactive.xky.flightbooking; 
import java.util.Hashtable; 
 
/** 
 * xky bank to manage the bank account in flight booking system 
 */ 
 
public class Bank implements org.objectweb.proactive.RunActive { 
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 private String name; 
 private Hashtable accounts; 
 
 private String counterurl = "//localhost/counterxky"; //Counter component address 
 
 public Bank(){} //necessary to ProActive active object 
  
 public Bank(String name) { 
  this.name = name; 
  initAccounts(); 
 } 
 
 public Bank(String name, String counterurl) { 
  this.name = name; 
  this.counterurl = counterurl; 
  initAccounts(); 
 } 
 
 //--Create some new account with account number and amount 
 private void initAccounts() { 
  accounts = new Hashtable(); 
  accounts.put("c1", new Float(100)); 
  accounts.put("c2", new Float(200)); 
  accounts.put("c3", new Float(300)); 
 } 
 
 public String getName() { 
  return this.name; 
 } 
 
 public Hashtable getAccounts() { 
  return this.accounts; 
 } 
 
 public void setAccounts(Hashtable accounts) { 
  accounts.clear(); 
  this.accounts = accounts; 
 } 
 
 // Return the RMI address of Counter component as an active object 
 public String getCounterUrl() { 
  return this.counterurl; 
 } 
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 public void setCounterUrl(String counterurl) { 
  this.counterurl = counterurl; 
 } 
 
 /**-- substrate amount of price from account identified by account_number 
  * 
  *  The return type boolobj is a serializable class which has the instance  
  * variable with boolean type 
 */ 
 public boolobj order(String account_number, Float price) { 
  System.out.println("message is order from counter"); 
 
  Float amount = (Float)accounts.get(account_number); 
  if(amount != null) { 
   if(amount.floatValue() > price.floatValue()) { 
    accounts.put(account_number,  
      new Float(amount.floatValue() - price.floatValue())); 
       
    System.out.println(account_number + " has withdrawn " + price); 
    return new boolobj(true); 
   } 
  } 
  return new boolobj(flase); 
 } 
 
 //--this function is the implementation of rg.objectweb.proactive.RunActive 
 //-- it makes Bank active object serving in FIFO order 
 public void runActivity(org.objectweb.proactive.Body body) { 
  org.objectweb.proactive.Service service =  
        new org.objectweb.proactive.Service(body); 
   
  service.fifoServing(); //FIFO order to serve the request 
 } 
} 
      Table 1: ProActive Program for Bank Component 
 
The other program files including Client.java, Counter.java and Company.java 
also follow the transformation rules described above to implement the functions of 
Client component, Counter component and Company component. Meanwhile, in 
order to make the user interface more comfortable, every component is attached to a 
java window to show the state of component. For example, the bank window is like 
below: 
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       Figure 33: ProActive Window of Bank Component 
 
The Normal result of client request for flight reservation is like below: 

      
 
 
All the flight reservation system has been implemented and tested with ProActive 

Figure 34: Client Request in Flight Reservation 
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ver1.0.1 [39] and with JDK 1.4.1 [29]. 
 
Though the work of this master thesis only implemented the flight reservation system 
with single client, it is easy to extend the system to handle N clients at the same time. 
When N clients concurrently send the message to ProActive component Counter 
(active object actually), the Body of Counter would automatically stores all the 
message objects to the message queue. Then the Java thread of Body would always 
monitor the condition of message queue, and pick out one message at some time 
according to the service policy of Body. The method call to ProActive component 
Company and Bank is included in one process of Counter to reserve the flight seat. 
During the time the Counter deals with each message from client, the result by 
Counter is never returned until the action by Company and Bank is done; In other 
words, Counter has to wait for the feedback from Company and Bank before it 
begins to operate the next message from a client. Thus the requests from N clients are 
served ultimately in a sequence order. Meanwhile, N clients could continue their work 
in an asynchronous way after they send the message to book the seat. 
 
From the above explanation of transformation rules and example from general PIM to 
ProActive-specific component model (PSM), we can see that the change is direct and 
easy. However, those are just the basic work to connect MDA [44] fashion with the 
ProActive [39] implementation. As ProActive is being developed to be a standard java 
infrastructure, it would be a more powerful tool for the development of network-based 
component software with asynchronous communication. 
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 CHAPTER FOUR 

 ANALYSIS OF ASYNCHRONOUS COMPONENT MODEL 

 
 
The CBSE [13, 17, 18] brings some big changes to the traditional software 
engineering during the recent years. One of the most important things is that CBSE 
separates the abstract architecture design from concrete implementation at a higher 
degree. The system developers could obtain more time to design an applicable 
architecture based on reusable component, while they just often need to find the 
existing component proper to be integrated into the system. 
 
However, although people can reduce the time and effort to produce the new program 
or component and test it, there appears another boring problem to people. It is about 
whether the existing component is good enough to the system, in terms of functions 
and environments, to be integrated into the new system. 
 
As a matter of fact, the system requirements and the reusable component market both 
mainly affect the decision in the architecture design stage. Due to the variation of both 
requirements and market along with the time, the related design decision and the 
architecture of component would be modified again and again in the software life 
cycle. Therefore this leads to leave many instable even conflicting elements in the 
component model, and then the elements would proliferate through the whole 
software development. From CBSE perspective, even if there are all the 
well-adoptable existing components by hand, only the composition not the inside 
components decides the software quality of the component-based system. A 
component is just reusable function unit under the demand of software architecture. 
 
Undoubtedly, there should be some theory and tool to analyze and protect the 
component architecture from the dangerous change for some reasons. As the common 
methodology by people for other problems in the science or society, the first step to 
analyze the component model is to represent it in some way like text or slides. 
According to the description of the model there would be some specific solution to 
give or validate the properties of component model. The solution of analysis could 
also be used at the design reuse level. 
 
There have been already some Architecture Description Languages (ADL) used to 
formally represent the architecture of software, like C2, Rapide, Wright [1]. ADL 
generally gives the explicit specification of component, connector (a kind of 
component which is only in charge of communication, as message medium), and 
architecture configuration [1]. The interface of component and its semantics is also 



Chapter Four: Analysis of Asynchronous Component Model 

Analysis and Implementation of Asynchronous Component Model 66

the important part expressed clearly by ADL. Meanwhile, some component-specific 
ADL like SOFA [49], gives uniform control and management on how to deploy and 
update the component dynamically. SOFA also eases the task to create a reasonable 
hierarchy for component model. However, the current ADLs seem to focus on 
respective domain for the software architecture of domain-specific application. There 
is no general support by ADL to analyze the asynchronous communication in the 
component model. Thus the asynchronous model is still an open issue for researcher 
to get more insights about it. 
 
In this paper, I use ATAG (Asynchronous Graphic Abstract data Type) [7] to represent 
the component model. Then according to ATAG model, I propose an algorithm to 
analyze the message amount in the buffer of component. The buffer is called mailbox 
in my algorithm, and it is actually the classic way that asynchronous component 
model is simulated through synchronous model, as said in section 2. The 
implementation and test is presented at last. 
 
 
 

4.1 ATAG 

Different from other kinds of ADL, ATAG concentrates on the model with messaging 
between the components and accordingly change of the component state. It results 
from the previous study on Korrigan and GAT (Graphic Abstract data Type) [2, 3, 5, 
19, 22], both of which is used to give a complete specification of a component-based 
mixture system. GAT approach is linked to the synchronous component model. 
Because ATAG only pays attention to the dynamic behavior of component model with 
asynchronous communication, it just inherits the Symbolic Transition System (STS) 
[2, 3, 5, 19, 22] in Korrigan and GAT. STS uses some abstract symbol and figure to 
feature the event, message, activity and relative component states; in other words, 
STS is simply a finite state chart with additional description. 
 
The basic unit in ATAG [7] is the component, and it is graphically expressed as the 
view from outside, like below: 
 
 
 
 
 
 
 
 
 
 
         Figure 35: Component Interface of Factory 
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In Figure 35, the component is a box with name label, and there is one input pin on 
the left of box, and three output pins on the right. 
 
The input pin could be considered as the port for receiving messages to have 
component provide corresponding service to it. For example, here the input pin of 
component Factory represents that Factory can receive the message Order with two 
arguments: the product ID (?id: Product_id) and amount of product (?a: Amount). 
 
On the other hand, the output pin of component depends on its position and label in 
the graph. If the output pin doesn’t have the label but has a relevant input pin, it 
means the operation on the received message, such as the uppermost output pin of the 
component Factory. If the output pin has a label, it means the port for sending labeled 
messages which is either the result of some actions or to require some services of 
other components, such as bottom two output pins of the component Factory. 
 
The external view of component only gives its interface for integration with other 
components. In order to correctly analyze the component behavior, the internal view 
need to be known also. In fact ATAG [7] use something close to UML state-diagram 
[6] to describe the activity inside component. The component Factory in Figure 35 
could have the following graph of its concrete work: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         Figure 36: Dynamic Behavior of Factory 
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with the label of state number. The arrow with black solid round means that state 1 is 
the initial state of Factory. The arrow with label Order> indicates that the operation 
on message Order makes the component Factory change from state 1 to state 2. The 
two arrow links from state 2 to state 1 means that sending message Price or Fail by 
component Factory would also result in state change. The final interesting thing in 
Figure 36 is the arrow link from state 1 or 2 to itself, which explains that receiving 
message Order is nothing with the component behavior. Thus component Factory 
separates the message receipt >Order from its execution Order>. 
 
Since the dynamic behavior and the interface of one component are just two aspects 
of a software unit, both could be represented together in a composition graph, shown 
like following: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         Figure 37: Factory Component in ATAG 
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component Factory. 
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of the component Factory. 
 
3) Action: this is generally written as op>, which simply means that the component 

executes the corresponding method or service for the received message. The 
action always changes the state of component in ATAG. Therefore, in contrast to 
synchronous communication, ATAG use >op and op> to denote the two 
independent steps in asynchronous communication. The example is Order> of the 
arrow link from state 1 to state 2 in component Factory. 

 
 
The communication between the components is not only one-to-one, but also 
broadcasting, multiple inputs and conditional communication. ATAG [7] uses the link 
line from the output pin to input pin, to show the message path and participants in the 
all kinds of communication scheme. The graph example is like following: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          Figure 38: Communication Scheme in ATAG 
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With all above abstract graph, it is easy for ATAG [7] to build a component-based 
architecture in the process of system modeling. For example, there is a very simple 
system of ordering product, composed of two components. One is component 
Factory illustrated in Figure 37, and another is component Client. The Client could 
give the message Order to the Factory with the product ID and amount. The 
component Factory should decide if the product is available to the Order message, 
depending on its stock. If the message Order could be satisfied, Factory returns the 
message Price to Client for the Order, and if Factory can’t provide as what message 
Order asks, it returns the message Fail to Client. 
 
The Client component is represented in ATAG like following: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Figure 39: Dynamic Behavior and Interface of Client 
 
Using the link line to connect the input pin and output pin of component Factory and 
Client, the system architecture looks as Figure 40. 
 
The graph of system architecture gives the message-based communication following 
the interface of the components in the system, but it doesn’t tell the relationship 
between the message flow and the system dynamic behavior. Especially it has not 
clear view on the synchronous or asynchronous style in the behavior description. 
Therefore, ATAG [7] uses some kind of STS to graphically express the message 
transferring and relative state change on multiple concurrent components.  
 
As a matter of fact, ATAG [7] inherits the synchronization product of STS from 
Korrigan and GAT [2, 3, 5, 19, 22] to represent the global dynamic behavior with 
message transition between the components. Since in asynchronous component model, 
the message buffer is hidden in the component and buffer operation is also invisible 
from outside, it is feasible to use synchronous diagram to express the synchronous or 
asynchronous communication. ATAG adds an extra label ‘-‘ to show the special nil 
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transition for the state of component; It means that nothing happens to the component. 
Generally, the concurrent communication by message between the components is 
represented as Figure 41. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Figure 40: Architecture of Product-Ordering System 
 
 
 
 
 
 
 
 
 
 
 
 
      Figure 41: Dynamic Behavior with Communication in ATAG 
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Here synchronous vector is a tuple involving all the message-transmitting labels 
corresponding to the components in one-to-one way. Thus in Figure 41 there are four 
components in the system, and only the second component has the state change from 
state 1 to state 2 because it sends the message request as an autonomous operation. 
The sending and receiving of message request is treated in synchronous way, 
represented in synchronous vector shown in Figure 41. This means that there is a 
message link from the output pin of the second component to the input pin of the third 
component. This kind of abstract graph ignores the time factor of the message 
transferring between two components in the concrete implementation. Meanwhile, the 
order and size of synchronous vector and state vector is the same, so each component 
has its own corresponding item in the synchronous vector to express relative message 
transition. The state change of component is only triggered by autonomous operation 
and action for received message. 
 
As for the previous ordering system composed of two components: Factory and 
Client, the global dynamic behavior with messaging could be represented as 
following: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Figure 42: Dynamic Behavior and Messaging of Ordering System 
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Thus this kind of solution obviously raises the question whether the buffer size is 
exactly enough to contain all possible messages given to the component in the 
asynchronous communication. If the buffer size were super than needed, this would 
cause idle resource and waste on maintenance. To the worse, if the buffer size were 
smaller than needed, it would lead to failure on message sending. In the latter case, 
the concrete implementation could be much expensive to handle the asynchronous 
method call to distinguish a slow response with a message losing, especially in 
complex environment. People need to obtain the specific and automatic tool to solve 
the question of buffer size. In addition, the tool should help the model designer to 
consider the potential danger of message buffer and adjust the whole component 
model with more security and reliability in mind. 
 
Here I introduced my depth-first search algorithm based on ATAG [7] model to find 
out if each message buffer of its corresponding component in the asynchronous 
communication is bound or not. The algorithm also indicates the existing message 
cycle between the components. The message buffer is called mailbox in my algorithm, 
since mail-posting is a common asynchronous communication in the world. 
 
In order to precisely describe the change of mailbox in the global dynamic behavior of 
asynchronous component model, the mailbox is assigned to each component state in a 
synchronous vector which is shown in Figure 41. Therefore, the message transition at 
each time would explain how the mailbox of every component is dynamically 
changed due to message receiving or operation. 
 
In addition, the autonomous operation in ATAG [7] model is ignored in my algorithm, 
since it does nothing with message buffer. Moreover, it is supposed that the 
component sends the message immediately in the execution. My algorithm also 
assumes that the connection between any two components is always good enough to 
support messaging; that’s to say, the algorithm only focuses on the problem of 
mailbox, no matter the other problems possibly affecting the communication. 
 
Basically the algorithm is a kind of architecture behavior checker. The input data of 
my algorithm should be the ATAG without mailbox data, while the output data is the 
analysis result of component mailbox for each state in the synchronous vector. The 
output may include some message cycles. The UML data structure of my input is like 
Figure 43. 
 
Though the data structure in Figure 43 seems considerably simple, my algorithm is 
general enough to deduce to more complex one to analyze all the mailboxes about the 
asynchronous component model. In addition, my algorithm follows that the two 
StructuredStates equal to each other, only if each ComponentState in the ordered 
aggregation of one StructuredState is the same as the corresponding one in another 
StructuredState. The number of component in the ATAG [7] model is fixed during 
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the asynchronous communication. 
 

Mailbox
buffer : Hashtable

ComponentState
identifier : String
cycletable : Hashtable

0..*0..*

Transition
label : String[]

StructuredState

1..*1..*

StructuredTransition

22

11

StructuredSystem

**
**

ATAG

 
         Figure 43: The UML Data Structure of Input 
 
 
 

4.2.1 Statement of Bound Algorithm 

My depth-first algorithm is some kind of graph traversal, and it puts W to the message 
number to indicate that the message is infinite to be received by the component. 
Infinite message brings to the unbound mailbox in fact.  
 
In the ATAG [7] graph of dynamic behavior, there could be self-link to the state to 
make the component receive the message. Sometimes the number of a message in 
currently computed mailbox of component is bigger than the number of same message 
previously computed in the in the same mailbox. In both situations, W is set to the 
message. Graphically the condition to set W looks like Figure 44. 
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Meanwhile, whenever there is a message marked with W, this W should be 
propagated to other mailboxes for other states of the component in the ATAG [7] 
model. This is because each mailbox for one component is computed, based on the 
previous mailbox of that corresponding component as the beginner of the link of 
message transition. 
 
 
 
 
 
 
 
 
 
 
 
 
          Figure 44: Condition of Setting W 
 
 
The bound algorithm looks like following, and all the bold words means variables: 
 
//** input ATAG data variable   **// 
list_state_trans  //this list stores the structured transition of ATAG model 
initialstate  //this structured state is the first state accessed from the start 
 
//**  Temporary variable  **// 

list_state_search_path //this list stores all the structured states on the current path of 
traversal, like a data stack 

list_state_visited //this list stores all the structured states visited in the traversal, 
notes that here the structured state is with mailbox after applying 
transition 

hashtable_statetrans_neighbors //this hashtable stores the list of structured transition 
of one structured state which is the source of 
transition 

 
public check_ATAG_Mailbox() 
{ 
 initialize list_state_search_path 
 initialize list_state_visited 

initialize hashtable_statetrans_neighbors 
 
add initialstate to list_state_visited 
check_Structured_State_Mailbox( initialstate ) 

(>a) (>a) 
1 

(>a) 

1 

2 

a:1 

Mailbox 

a:0 
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clear list_state_search_path 
clear list_state_visited 
clear hashtable_statetrans_neighbors 

} 
 
private check_Structured_State_Mailbox( current_state ) 
{ 
 add current_state to list_state_search_path 
 
 if (hashtable_statetrans_neighbors has the value for current_state ) then 
  using current_state as key, copy the structured transition list in 

hashtable_statetrans_neighbors to list_neighbours 
 else 
 { 
 in list_state_trans search all the structured transitions of current_state which 

is the source state of transition, and put them in list_neighbours 
 
 store list_neighbours to hashtable_state_neighbors with current_state as 

key 
 } 
 
 while list_neighbors is not empty 
 { 
 put the first structured transition of list_neighbors to statetrans_neighbour, 

and remove that first one from the list_neighbors 
 
  get dest_state from statetrans_neighbour 
 search list_state_visited with dest_state, and put the search result in 

old_dest_state 
 
  get src_state from statetrans_neighbour 
 search list_state_visited with src_state, and put the search result in 

latest_src_state 
 
  get transition from statetrans_neighbour 
  apply transition to latest_src_state to get new_dest_state 
 
  if( old_dest_state is null ) 
  { 
   add new_dest_state to list_state_visited 
 
   check_Structured_State_Mailbox( dest_state ) 
  } 
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  else 
  { 
 merge old_dest_state and new_dest_state by comparing their relative 

mailboxes to final_dest_state. In the process of comparing if one message 
has more in new_dest_state than in old_dest_state, then propagate that 
message with W sign if old_dest_state is in list_state_search_path, or 
propagate the number change if old_dest_state is not 

 
   replace old_dest_state in list_state_visited with final_dest_state 
  } 
 } 
 
 remove current_state from list_state_search_path 
} 
 
            Table 2: Bound Algorithm 
 
The relative propagation algorithm looks like below, and here –1 means W: 
 
//** relative variable used in depth-first algorithm  **// 
list_state_trans  //this list stores the structured transition of ATAG model 
initialstate  //this Structured state is the first state accessed from the start 
list_state_search_path //this list stores all the structured states on the current path of traversal, 

like a data stack 

list_state_visited //this list stores all the structured states visited in the traversal, 
notes that here the structured state is with mailbox after applying 
transition 

hashtable_statetrans_neighbors //this hashtable stores the list of structured transition 
of one structured state which is the source of 
transition 

 
//**  Temporary variable  **// 
list_state_propagated  //this list stores all the structured states propagated 
 
//**  Parameters **// 
//startstate is the structured state to start propagation of message 
//componentindex is the index of component state in structured state 
//message is the string of propagated message name 
//number is the value to set or increase to message number, -1 means W 
 
public propagate_Message( startstate, componentindex, message, number ) 
{ 

initialize list_state_propagated 
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propagate_State_Message( startstate, componentindex, message, number ) 
 
clear list_state_propagated 

} 
 
private propagate_State_Message( current_state, componentindex, message, 
number ) 
{ 
 if (hashtable_statetrans_neighbors has the value for current_state ) then 
  copy the structured transition list in hashtable_statetrans_neighbors to 

list_neighbours 
 else 
  return 
 
 while list_neighbors is not empty 
 { 
 put the first structured transition of list_neighbors to statetrans_neighbour, 

and remove that first one from the list_neighbors 
 
  get dest_state from statetrans_neighbour 
  if( dest_state has corresponding structured state in list_state_visited ) 
  { 
   if( dest_state is not in list_state_propagated ) 
   { 
 search list_state_visited with dest_state, and put the search result in 

latest_dest_state 
 
 apply the change to latest_dest_state with componentindex, 

message, number, and put the result to final_dest_state 
 
    replace latest_dest_state in list_state_visited with final_dest_state 
    add dest_state to list_state_propagated 
  propagate_State_Message( dest_state, componentindex, message, 

number ) 
   } 
  } 
 } 
} 
 
           Table 3: Propagation Algorithm 
 
The execution time and required source of my bound algorithm depends on the 
amount of message links and message cycles in the ATAG model. The message links 
decide the complexity of depth-first search in bound algorithm, and the message 



Chapter Four: Analysis of Asynchronous Component Model 

Analysis and Implementation of Asynchronous Component Model 79 

cycles claim the possible traversal in propagation algorithm. 
 
 

4.2.2 Implementation of Bound Algorithm 

The above algorithm has been implemented and tested in JDK 1.4.1 [29]. However, 
this algorithm is language independent. It is easy to be realized by a lot of popular 
programming languages to analyze the mailbox of asynchronous model. The main 
Java window of bound algorithm is shown in Figure 45. 
 

 
        Figure 45: Main Window of Bound Algorithm 
 
If we take the ordering system introduce in section 4.2.1, the input data is based on 
that ATAG [7] model of its dynamic behavior and message transition shown in Figure 
42. The actual description of that abstract graph should be transformed in a list where 
each item is a message transition with the synchronous vector as sender and receiver, 
with message label as well. It looks like in Figure 46. 
 
As seen in Figure 46, the synchronous vector of all the states for the components is 
represented like [state1 state2 …]. The message vector of the concurrent messaging 

Message Transition List 

Information Console 
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for all components is represented like (message1 message2 …). The --> in the 
line expresses the direction of state change during the message transition. 
Synchronous vector [1 1] explains the initial component states for the dynamic 
behavior in the ordering system. 

 
           Figure 46: Input of Ordering System 
 
After inputting all the data of ordering system, the user should click the “save” 
button to construct the data structure for the bound analysis of that asynchronous 
component model. In addition, the user can use “import” and “export” button to save 
the input data to some text file, and the relative parser also was done in this java 
implementation to give the comfortable support. Using “analyze” button, the program 
gives the analysis result in Figure 47. 
 
The bound algorithm could be applicable in more domain-specific development with 
component model. Supposing the classic operation of bank system, here we assume 
that there are two clients and one bank counter in the system. The client can deposit or 
withdraw the money from bank counter by the account number. Each time the bank 
counter can handle only one client; in other words, two clients can’t send the message 
to bank counter at the same time. This case would be extended to N clients with M 
bank counters, while the bound algorithm need no change in fact. 
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        Figure 47: Analysis Window of Ordering System 
 
The ATAG architecture of simple bank system is like following: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        Figure 48: Architecture of Simple Bank System 
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According to the communication in Figure 47, the dynamic behavior of this simple 
bank system could be represented as below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Figure 49: Dynamic Behavior and Messaging of Bank System 
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In Figure 49, CA means ClientA, and CA1 is the state name of ClientA. Thus 
component ClientA has two states shown in Figure 49. Likewise, CB means ClientB, 
and BC means BankCounter. The state name of ClientB and BankCounter follows 
the same rules as of ClientA. Due to the complex nature of asynchronous component 
model, the simple bank system has 11 state vectors with 39 transitions between the 
states, and 9 kinds of message vectors. 
 
After inputting the data in ATAG model of simple bank system, we can get the 
analysis result of bound algorithm, shown in Figure 50. 
 

       
 
        Figure 50: Analysis Window of Simple Bank System 
 
Obviously, the mailbox in ATAG model of bank is unbound because the infinitive 
messages like Deposit or Withdraw are stored inside. The message cycle in the 
dynamic behavior of bank system is also clear, and always produces the increasing 
number of message in the context of asynchronous communication. Thus this bank 
system has to be added more restrictions to avoid the unbound mailbox and other 
potential danger for the work. 
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 CHAPTER FIVE 

 CONCLUSION AND FUTURE WORK 
 
 
Component-based development has been proved as an effective software technology 
to reduce the time and effort in software life cycle. The heart of component-based 
software engineering is the reusability of implementation even design. To properly 
reuse the existing component depends on the architecture design only which could 
decides what kind of component could be integrated into the system. Moreover, a 
good architecture could not only help the developer to easily find the off-the-shelf 
component in the market or legacy system, but also to develop some domain-specific 
or generic component to be reused in the future. 
 
Generally, component is logically an independent function unit which is usually too 
simple to be solely used for even single application. On the other hand, nowadays due 
to the great advance in the network and telecommunication field, the communication 
in the software system is developed with all kinds of local-area network or wide-area 
network. Therefore, to design the correct communication in the component 
architecture becomes more important in architecture design phase. However, there is 
much less study on the asynchronous communication than on synchronous 
communication, though both of them is equally important to adopt in fact. 
 
The work of this master thesis is to build a translation from general asynchronous 
component model to some concrete implementation, and help to get some sense 
different from implementation of synchronous communication. Furthermore, the work 
proposes some kind of representation to the asynchronous component model, and 
related algorithm to automatically analyze the characteristic of that model. 
 
 
 

5.1 Conclusion 

This paper describes some principles and rules in the component design and 
component-based architecture design of the CBSE. Some of the principles are not 
publicly accepted, but they are useful to indicate the important aspects and push the 
relative research forward. 
 
ProActive, as a new java extension which default communication is asynchronous, is 
introduced to make a general implementation platform for asynchronous component 
model. The general PIM with asynchronous communication could be translated to 
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ProActive PSM with a set of simple rules in UML-like style. The corresponding 
programming in ProActive is also direct, and the synchronous and asynchronous 
communication is both easy to realize in ProActive. 
 
The asynchronous component model is represented by ATAG in this paper. ATAG 
actually focuses on the messaging between components, as well as dynamic behavior 
of component. There is a bound algorithm presented in this paper, to estimate whether 
the mailbox (message buffer) is bound or not, according to the ATAG model. The 
implementation of bound algorithm is done in java, also with a user-interface to 
manipulate the ATAG data. 
 
 
 

5.2 Future work 

Component and CBSE is still being researched to make the advance to the 
next-generation methodology of software development. The principles about how to 
design and develop a satisfying component, and how to design a qualified architecture 
based on the component, are the centric topics to be discussed by the people with 
different background. For example, there is some question about whether 
customizable component is usually useful to the end-user who should change that 
software component by himself. 
 
We should continue to collect all the stuffs of component study. Using the research 
result and experience on component-based system, we could get a more precise 
statement and understanding of the essence of component. The new rules about 
component and CBSE would be extracted from previous knowledge and current work 
not only in component field but in other IT domains; Simply saying, we need to 
evolve the principles in component-based software technology. 
 
MDA are the new approach to produce the software system. Although this paper 
proposes some rules to translate the PIM to ProActive PSM, it is not enough and 
formal to cover all the aspects of PIM. Meanwhile, ProActive is just an experimental 
programming language based on java, so it still has a lot of things to realize for its 
goal. Thus, the translation rules have to be refined and complemented with the 
revising MDA standard by OMG, and with the new version of ProActive. The 
MDA-aware tools supporting the implementation from PIM to ProActive is also 
needed to ease the usage of asynchronous component model. 
 
The ATAG model and bound algorithm presented in this paper assumes the 
asynchronous component model at a very high-abstract and high-reliable level. One 
feasible addition is to associate the maximum size to the mailbox in the component. In 
this case, the dynamic behavior would lead to more different state of mailbox, and 
corresponding component state as well. Some component would be blocked if the size 
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of the mailbox of a component reaches its maximum, because at that time the mailbox 
refuses all other messages to the component. A straightforward solution to get analysis 
result of mailbox with maximum size is to split the work in two steps: the first is to 
reuse bound algorithm, and the second is to use maximum size to cut and revise the 
result of first step.  
 
Since asynchronous component model is composed of dynamic behavior and static 
data type. We should use the experience of research on algebraic specification to static 
aspect of component, and then translate the static data part in asynchronous 
component model to ATAG model and even the implementation. 
 
There are also some similar bound or analysis algorithms existing in other domain, 
such as rewriting logic for object model [51, 52], deadlock checking for components 
[53, 54], Petri Net with cover algorithm [12, 25]. Thus one possible way to analyze 
the asynchronous component model is to transform here ATAG model to other 
structural model, with a clear and exact mapping rules. The relative transformation 
interface and tool is also needed in fact. 
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Appendix A: Summary of ProActive 
 
ProActive [39] is a kind of java extension library to ease the parallel, distributed, 
concurrent programming with good security, mobility and properties; It is the research 
project developed by INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET 
EN AUTOMATIQUE, as the part of work of ObjectWeb consortium [46] for 
OpenSource middleware. 
 
The basic idea behind the ProActive [39] is the encapsulation of the object to generate 
the uniform remote object in the application. In other words, ProActive uses java RMI 
[42] mechanism to implicitly wrap all necessary objects to independently run in 
distributed environments (operation system, machine).  
 
RMI [42] means Remote Method Invocation in Java technology. It is used for the 
system environment where there is two or more homogeneous Java Virtual Machine 
(JVM) [43] concurrently existing and communicating with each other. RMI exploits 
remote object to be invoked by the other objects in different JVM. In fact, the method 
of remote object able to be called from other JVM is separately defined in remote 
interface of remote object. Meanwhile, People have to implement the remote interface 
in some other class to finish the functions of remote object. 
 
Moreover, the remote object should register itself to the RMI [43] Registry as a 
naming server, and every computer could have only one RMI Registry. The identifier 
of registered remote object is usually called RMI URL, like mail address. The general 
format of RMI URL is “rmi://hostname: portnumber/name”. Here hostname means 
the machine address in the network, such as test.emn.fr. The portnumber is referred 
to the number of message port of RMI protocol, and the default is 1099. The name in 
RMI URL is decided by the programmer while he registers the remote object to RMI 
Registry. Using RMI URL, any object could locate the relative remote object and then 
ask the service of it. 
 
However, RMI [43] operation and the manipulation on remote object is not that easy 
as doing with common Java object. Thus ProActive [39] provides some way to update 
the remote objects. The new entities (active object) in ProActive could communicate 
like remote object but they are more like local and standard java object from the point 
of ProActive programming. ProActive is trying to shorten the gap between remote 
call and local call as in Java programming. 
 
In addition, ProActive [39] focuses on the asynchronous call, Automatic future-based 
synchronizations, migrating and mobile agents, remote creation of remote objects, 
group communications with dynamic group management, sophisticated 
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synchronizations and collaborative applications. 
 
ProActive [39] doesn’t make any change to standard java library, java compiler or 
JVM.  Thus ProActive keeps 100% compliance to Sun. The following are some 
interesting but important additions to make ProActive support its own characteristics. 
 
 
 

1. Active Object 
Active object is the basic concept in the ProActive [39] programming, and it 
resulted from the application of a model introduced by the concurrent Eiffel (OO 
language) [50]. The model requires that: 
a. The application is structured in subsystems. There is one active object (and 

therefore one Java thread) for each subsystem and one subsystem for each 
active object (or say thread). Each subsystem is thus composed of one active 
object and any number of passive objects (possibly zero). The thread of one 
subsystem only executes methods in the objects of this subsystem. 

b. There are no shared passive objects between subsystems; in other words, the 
passive objects are only visible and usable to the other objects within the same 
subsystem. 

 
This model implies that one subsystem shows its service through its single active 
object, and only that active object is known to all the objects outside the 
subsystem. Therefore if an object o1 has a reference onto a passive object o2, then 
o1 and o2 belongs to the same subsystem. The general object model in ProActive 
is shown in Figure 15. 
 
Meanwhile, when passive object is passed as parameters of calls to active object, 
it is always passed by deep-copy. On the other hand, active object is always 
passed by reference. 
 
ProActive [39] follows active object pattern to create active object, and active 
object pattern is the uniform way to encapsulate: 
1. A remotely accessible object, as the servant that provides the real object’s 

implementation of function. 

2. A thread as an asynchronous activity, which dequeues the method request and 
send it to servant from the pending request queue according to the service 
policy. 

3. An actor with its own script to decide the corresponding behavior for the 
received message, like a stub. 

4. A server of incoming requests, which enqueues the method request to the 
pending request queue. 
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5. A mobile and potentially secure entity, which is responsible for the migration 
and security. 

 
Therefore as a result, when you create an active object A of some class, from the 
view of RPC you will have 4 parts in fact, shown in Figure 17: 
1. stub_A (client side, including the actor) 
2. bodyproxy_A (client side, request sender) 
3. body_A (server side, the request-receiving server including the thread) 
4. instance_A (server side, the real object implementation) 
 
Here the body_A of the active object is the only object able to access directly the 
instance_A. This means that only body_A could directly call the method of 
instance_A. Additionally, body_A is a non-changeable object that delegates most 
of its tasks to helper objects called MetaObjects, which could be customized by 
implementing the MetaObjectFactory interface.  
 
The parts of client side: stub_A and bodyproxy_A should exist in the 
environment of client object which sends the message to active object A. On the 
other hand, the parts of server side: body_A and instance_A run in the place 
possibly different from that of stub_A and bodyproxy_A 
 
To create an active object, you should invoke one of the static methods 
newActive or turnActive of the ProActive class. ProActive.newActive creates 
an active object based on the instantiation of a new object; ProActive.turnActive 
creates an active object based on an existing Java object. When using 
ProActive.newActive you must make sure that the arguments of the constructor 
are Serializable. If ProActive.turnActive method is done on a remote node, the 
class used to create the active object in this way has to be Serializable. The simple 
example code is as following: 
 
  //---- in newActive case 
  A activeA = (A) ProActive.newActive(“A”); 
  Or 
  //---- in turnActive case 
    A a = new A(); 
  A activeA = (A) ProActive.turnActive(a); 
 
       Table 4: Creation of Active Object in ProActive 
 
Table 4 shows how to create the non-argument active object activeA by the 
newActive or turnActive method. In fact activeA is a direct reference onto an 
instance of the generated ProActive stub_A for the class A because stub_A is a 
subclass of class A. Therefore ProActive allowes instances of class stub_A to be 
assigned to variables of type A, as the basic polymorphic rule in OO paradigm. In 
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addition, activeA is associated with a default node created by ProActive. The 
node is a kind of remote object with entry in RMI registry, and user can also 
create node and then explicitly link the active object to the node. 
 
There are some restrictions to create active object: 
1) Final classes cannot give birth to active object  
2)  Same thing for non-public classes  
3)  Classes without a no-argument constructor cannot be reified. 
4) Final methods cannot be used at all. Calling a final method on an active object 

leads to inconsistent behavior. 

5) A direct call to a method of the originating object without using its active 
object will break the model. 

 

The 3) limit is from the reason that when ProActive [39] constructs the stub of 
active object, it will call the non-argument constructor of standard java class as its 
parent constructor. If the class only has the constructor with argument, the 
argument would be used on stub not on the instance of that class, so this leads to 
some unexpected behavior at last. 
 
Since active object not only owns the method implementation from the true 
standard java class, but has also its own activity to manage the method request 
from the call of other object. One can completely specify what will be this activity 
through three ProActive interfaces: InitActive, RunActive, EndActive. The 
default activity is to serve all incoming requests one by one in a FIFO order. There 
are two ways to define the activity of your active object: 
1)   Implementing one or more of the three interfaces of active object directly in 

the class used to create the active object, like following code: 

 

  import org.objectweb.proactive.*; 
 
  public class A implements InitActive, RunActive, EndActive { 
    private String a; 
 
    public A() { 
     
    } 
 
    // -- implements InitActive interface 
    public void initActivity(Body body) { 
      …………… 
    } 
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    // -- implements RunActive interface 
    public void runActivity(Body body) { 
      ……………. 
    } 
 

    // -- implements RunActive interface 
    public void runActivity(Body body) { 
      ……………. 

} 

  } 

 

     Table 5: Implement Activity Interface in ProActive 

 

2) Passing an existing object implementing one or more of three ProActive 
interfaces to the method newActive or turnActive. Using the active object in 
Table 5, the code is like in Table 6. 

 

In this case, there is one restriction that you cannot access the internal state of 
the reified object.  

 

B activeB = (B) ProActive.newActive(“B”, null, null, new A(), null); 

 

     Table 6: Pass Old Active Object to Create New One 

 

2. Asynchronous Call 
Since one of the essential nature of network application is asynchrony, ProActive 
[39] try to solve this difficult problem on the language level. When a method is 
called on an active object in ProActive, it returns immediately (as the thread 
cannot execute methods in the other subsystem) a future object, which is like a 
placeholder for the result of the methods invocation. The future object would be 
populated with the true result later by the method of active object. 
 
The future object is the type of a refiable object which can not throw checked 
exception, and it includes three parts: stub_future, proxy_future, object_future. 
The stub_future is to receive the message for future object, and it reifies the 
message and sends it to proxy_ future. proxy_future calles the object_future for 
the proper operation. Here the object-future is not evaluated until the true result is 
returned by called active object. It is graphically similar to active object like below, 
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and the arrow link means message sending between the parts of future object. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         Figure 51: Future Object Composition 
 
All the future objects created by the active object are kept in the futurepool of 
active object. However, two basic Java methods don't follow this asynchronous 
call scheme: equals and hashCode. When the other method calls equals and 
hashCode on future object, the function of both methods is not correct as usual. 
Sometimes both methods easily lead to deadlock when the future object is not 
available yet. Likewise, toString() method of future object should also be taken 
care of since it possibly blocks the program to deadlock. 
 
The procedure to implement asynchronous communication by ProActive [39] is 
based on the interaction among caller, active object and future object. The stub of 
active object wraps the received message to methodcall object, and sends it to 
bodyproxy of active object. The bodyproxy creates the future object and send 
methodcall object to the body of active object. The body returns the stub_future 
to the caller, and calls the function of instance of active object at some time. The 
instance provides the true result as object_future, and the body of active object 
tells the reference of object_future to proxy_future of future object. Figure 19 
illustrates the general method call with asynchronous communication in 
ProActive. 
 
During asynchronous communication in ProActive [39], the caller would proceed 
to execute until it need to use the result (future object) of method call. Then the 
caller actually sends the message to the stub_future of future object instead of 
true result (object_future). The stub_future wraps the received message and 
gives to proxy_future of future object. According to the reference of 
object_future of future object, proxy_future calls the true function in 
object_future. If object_future were not available, it would wait until the future 

stub_future 

proxy_future 

Future object without true result 

stub_future 

proxy_future 

Future object with true result 

object_future 
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object is given the result by the active object. This solution of asynchronous 
communication is called wait-by-necessity. 

 

3. IC2D 
ProActive [39] gives a graphical user-interface to monitor and control the status of 
various active objects in the heterogeneous environments, and its name is IC2D. 
For example, user can drag and drop one active object from one machine in USA 
to the machine in France, and observe the message interaction between all kinds 
of active object. 
 
The Figure 49 shows the window of IC2D. It is monitoring a system based on Slip 
Protocol. Because the system is running on a machine with Windows 2000, IC2D 
represents this with a big box and some label of the computer information. There 
are three active objects running in the system, so IC2D shows three active objects 
by three small boxes involved in machine box plus relative class name and 
number. Corresponding to the active objects, IC2D presents three 
event-monitoring windows for the message executed in the related active objects. 
IC2D uses the different icon to explain the type of message. In fact, IC2D has 
many options and menu items to adjust its function and graphical interface. 
 
IC2D is being developed to interface with Jini and Globus, both of which supports 
global-scope distributed application, metacomputing, computing, and at the higher 
level than RMI. 

 

 
 

       Figure 52: ProActive IC2D Window 

Event Window 

Active object 
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4. Migration 
ProActive [39] provides two sets of static methods on the migration operation 
1. The first set is aimed at the migration triggered from the active object that 

wants to migrate. 

2. The second set is aimed at the migration triggered from another agent than the 
target active object. 

 
Since we rely on the serialization to send the object on the network, the active 
object that wants to migrate must implements the Java serializable interface. The 
migratable active object must have a method which contains a call to the 
migration primitive, and this call statement must be the last one in the method. 
 
In case of non-serializable type, in front of the declaration of that kind of variable, 
user should put the keyword transient. This indicates that the value of this 
variable should not be serialized. Therefore after the first migration, the value will 
be set to null since it has not been saved in the migration. Then we have to rebuild 
that variable with its old value by overriding the standard method in Active object: 
readObject(ObjectInputStream). 

 

5. Deployment Descriptor 
Parameters about the deployment of an application should be totally described in a 
XML deployment descriptor saved in an XML file. ProActive [39] nodes can be 
obtained from VirtualNodes (VN) declared and defined in a ProActiveDescriptor, 
being used to create active object. After activation of program, VirtualNode is 
mapped to Node or a set of Nodes, and the Node name is VirtualNode_Name + 
RandomNumber. VirtualNode must be associated with the certain JVM [43] to 
create the useful node for active object. The mapping between the Virtual Node 
and JVM could be: 1 to 1, 1 to n, n to 1, and you can use RMI [42] or Jini [47] 
protocol to explain that mapping. 

 

6. Group Operation 
ProActive [39] gives the group operation on a typed group of active objects which 
are located on a set of nodes. Programmer can use type of class or group interface 
to manipulate the group creation and operation. The result of method invocation 
on a group is also a group, and each element of the result could be a future object 
to do asynchronous calls. ProActive allows user to scatter the parameter of 
method call to the members of one group. 

 

7. MetaObject Protocol 
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ProActive [39] is built on top of a metaobject protocol (MOP) that permits 
reification of method invocation and constructor call, so it need java reflection 
API which is in JDK1.1 or higher. 
 
If the programmer wants to implement a new metabehavior using ProActive 
metaobject protocol (basically RMI [42] protocol), he or she has to write both a 
concrete (as opposed to abstract) class and an interface. The concrete class 
provides an implementation for the metabehavior he or she wants to achieve, 
while the interface contains its declarative part. 
 
There are two methods to create the instance based on this meta-object protocol: 
1) MOP.newInstance according to the class of the interface 
2) MOP.newWrapper according to the existing object of the class of the interface 

 
 
Through what I explained above, we can see that ProActive [39] is a new approach to 
realize the high efficient development on the network-specific application, thanks to 
the previous RPC study and internet language Java. If SUN company could deal with 
ProActive to make it as perfect plugin for the standard java, it must be much better 
with less restriction but more freedom to use ProActive. 
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Appendix B: Model-Driven Architecture 
 
Nowadays human life is full of “living” software, and thousands of software 
companies are developing the new system to make world run in a faster and more 
autonomous way for all kinds of dimensions. According to the investigation of the 
cost during the life cycle of software development, the maintenance phase usually 
occupy a big part in total and it could be very difficult. People is never able to exactly 
estimate the possible change in a long time; That’s to say, the developers or teams 
must spend a lot of time and effort to update the original version of software for 
various emerging requirements. 
 
The software must be designed and implemented in the binary code by the support of 
concrete software technology, which is usually the choice decided in the early stages 
of software life cycle. In this case, the problem to be solved by updating the software, 
in terms of technology, mainly exists in the connection (integration) with other 
(legacy) system and the adjustment to the new software techniques or platform.  
 
The increasing amount of usable development technology makes software updating 
more common, as each technology has its own advantages and disadvantages to meet 
the specific requirement from the certain application. Meanwhile not all the 
technology has the downward compatibility in its evolution. For example, a bank 
system developed by Visual Basic 5, has to be modified for the condition whether it 
need to interact with a client-management system developed by Visual FoxPro, or it 
should be installed in a computer with Windows XP. 
 
Obviously the more complex and bigger the system is, the more expensive the 
maintenance is. In fact, because the software development technology changes too 
fast, many big software systems have to be re-developed almost as a new one 
compared to its last version. To the worst, the extreme expenditure of maintenance 
would force the company to bankruptcy. Thus people need to find some solution to 
keep the soul of software more self-adaptive. 
 
One new way to address above questions is suggested by OMG (Object Management 
Group), called Model-Driven Architecture (MDA) [44]. This approach is not a brand 
new idea but a formalized solution to the suffering update of software. The key of 
MDA is the separation between business model and technology support, which means 
to minimize the implementation-based effect to the system model or architecture. 
Therefore, MDA is model-centric software development. MDA is not referred only to 
the architecture design process but to the whole life cycle of implementation, 
integration, deployment and so on. MDA allows the developer to build the software 
system in his favorite way, but makes that system able to communicate or adapt to 
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other software or platform. Moreover, MDA supports the evolving standards in the 
software development. The system following MDA looks like below [44]: 
 

               
 
           Figure 53: MDA-Based Application 
 
In Figure 50, it shows that the system could be reused for the diverse domains like 
space or e-commerce, as long as the core architecture is applicable for those domains. 
The core modeling in MDA depends on OMG’s three open standards for model 
design: Unified Modeling Language (UML) [34]; Meta-Object Facility (MOF) [45]; 
Common Warehouse Meta-model (CWM) [45]. 
 
1. UML 

UML is a graphical language to describe the model or architecture of software 
system. UML is used mainly for the object model or component model. By 
writing the abstract functions into concrete and visual graph, it is more convenient 
for people to understand the design decision or control flow. UML also help 
developer to follow the model in the implementation and validation process of 
development. 
 
Since now UML language becomes the industry-standard for the software 
modeling, there have already been some tools to translate the UML to other 
formal system specification. The specification could be technology-independent 
like XML, or technology-dependent such as EJB [8]. 

 
2. MOF 

MOF [45] is a standardized framework with well-defined abstract language to 
express the metamodel composed of a set of metadata. MOF includes a set of 
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necessary syntax, type, rules of metamodel used to build the object or component 
model for the software system. Moreover, MOF defines a hierarchy of reflective 
interfaces to make the metamodel interoperatable with other MOF-compliant 
metamodel which has different domain-specific or generic interfaces. 
 
MOF also contains the common service for the metadata repository which is made 
to support the construction, traversal and update of a model as the instance of a 
particular metamodel [8]. Therefore, people can use MOF to visually create, 
publish and integrate multiple metamodels from the metadata repository according 
to some semantics and environments. In addition, the developer can use 
MOF-compliant tools to get the default implementation of instance of metamodel, 
and then fulfill it with other essential codes or data. 

 
3. CWM 

CWM [45] gives another metamodel, which is usually beyond MOF, to represent 
both business and technical metadata interchange among the data warehousing, 
business or knowledge process domain [8]. CWM could be expressed by UML 
notation, but extends some of core metamodel of UML with its unique features [8]. 
As a matter of fact, CWM is composed of a hierarchy of metamodels for the 
different purpose. For example, data resource metamodels are used to deal with 
the various types of data resource like SQL Server, while foundation metamodels 
are used to describe the general data or service for data resource metamodel or 
other high-level metamodel [8]. 
 
CWM-aware system could exchange the metadata of component for data 
warehousing or business behavior as long as the metadata follows the data 
specification defined in CWM. There are some tools that could directly generate 
the domain-specific instance of model in CWM, and then the developer should 
revise the instance to meet system requirement. 
 
Although CWM provides highly generic and interoperatable metadata to build the 
MDA application, it is still possible for CWM-compliant system to handle with 
other different metadata from some system [8]. In this case, the developer has to 
make the extension to CWM through CWM service or metamodel, or use other 
relative metadata-supporting tools [8]. 

 
After using tools of UML, MOF or CWM for the MDA system modeling, people can 
get triple-layer model structure according to the external view of architecture design. 
In terms of order of simple-to-complex, the top layer is Computation-independent 
business model, and the middle floor is Platform-Independent Model (PIM), and the 
bottom is Platform-Specific Model (PSM). 
 
Computation-independent business model is the most abstract representation of 
software system which only gives the brief solution model for the domain-specific 
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problem with no concrete or clear computation or function. Thus the second layer of 
PIM is designed to fill up its super model with more detail of function or behavior 
assigned to object or component in the software system. However, PIM ignores the 
detail related to the implementation technology or platform, which is complemented 
in the PSM, such as communication constraint in EJB or .NET. In addition, the 
relationship between two neighboring layer of model is not unidirectional but 
both-way to refine and optimize the model and relative architecture control. 
 
The MDA model structure is graphically shown like this [8, 9, 10, 11]: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Figure 54: MDA Model Hierarchy 
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In MDA [44] design, the important model is PIM which could be mapped to many 
PSMs if there exists the mapping rules to support this kind of transformation. For 
example, the PIM model for course schedule may be mapped to multiple PSMs like 
CORBA model, Java model, and so on.  
 
There have already been some software tools to make the mapping from PIM to a 
certain PSM automatic like a translation machine. The tools even support the 
automatic code generation such as UML-to-C++ [9]. Furthermore, mapping 
techniques could also be modeled in MDA [44] way, so MDA application could be 
considered as a pure model-based approach. Following the generated PSM and default 
program code, the rest work is to build the real functional object and component in the 
software implementation phase, and then validate it with related PIM or PSM 
 
Besides, as seen in Figure 51, there are mapping techniques to translate one PIM to 
another PIM, and PSM-to-PSM as well. Therefore, this enhances the 
interoperatability of heterogeneous system based on different PIM or PSM. The 
mapping techniques also enforce the quick development of new system, especially in 
the system modeling if there are some existing PIM or PSM with same business logic 
of new system. In fact, the developer could use MDA [44] tools to realize this kind of 
inter-connection (automating bridge called in MDA) between the respective MDA 
model and corresponding implementation, like below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          Figure 55: Automating Bridge in MDA 
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Since MDA [44] targets enterprise computing and network-oriented application, it is 
defining some general services called Pervasive Service. These services should be 
supported no matter the specific technology or platform. Now there are four general 
services in MDA environment: 
1. Directory service 
2. Transaction service 
3. Security service 
4. Distributed events and notification service 
 
MDA [44] also has the tools for the legacy system or program, which could be 
reverse-engineered to discover its PSM or PIM. Then the legacy PIM or PSM could 
be integrated to the new MDA model. Even the legacy code would be wrapped or 
redeployed automatically or partial-automatically to be a part of implementation. 
 
From the above introduction of MDA [44], it is clear that MDA is a new method for 
system development, to avoid the big overhead in the system design and maintenance 
due to the effect from all kinds of technology and platform. MDA increases the 
automation and reuse of design and meet the unpredicted change in the future. Thus it 
reduces the technique investment cost in a long term. However, MDA is still be 
developed by OMG with other evolving standards, and it need more support and 
attention to obtain its goal and benefits for IT industry. 
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