

Vrije Universiteit Brussel – Belgium
Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes – France

2003

ANALYSIS AND IMPLEMENTATION OF
 ASYNCHRONOUS COMPONENT MODEL

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange)

By: Kaiye Xu

Promoter: Prof. Theo D’Hondt (Vrije Universiteit Brussel)
Co-Promoters: Jean-Claude Royer (Ecole des Mines de Nantes)

 i

 ACKONWLEDGEMENTS

Thanks first to all the people for their all kinds of help to make me finish my master
thesis successfully. Thank you very much.

I want to say thanks to my advisor Jean-Claude Royer who gave me a lot of useful
instructions and good suggestions on my thesis development during all my work in 6
months. The regular meeting which I had with Jean-Claude Royer once a week, and
also more usual communication by email is the guarantee and indicator to bring my
thesis to the goal.

I am also grateful to all the staffs of the Information Department of EMN, who
provided good support and help to let me concentrate myself on the master thesis to
get the best product. Especially thanks to Object Group, which gave me chance to
listen to the different voices related to my work.

Dr.Hong Zheng is the lady I am willing to appreciate since she introduced me to
EMOOSE to have a great time of my master study.

I would like to thank all my classmates and friends I met in EMN and in France, care
and help given by them, especially the great party which made my abroad life so
colorful and wonderful.

The final but special thanksgiving is devoted to my dear parents and my brother, for
their strong encouragement and assistance to accompany me when it is my first time
leaving them so far.

 ii

 iii

 TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

TABLE OF CONTENTS iii

 LIST OF FIGURES v

 LIST OF TABLES vii

ABSTRACT ix

INTRODUCTION 1

CHAPTER ONE

COMPONENT IN SOFTWARE DEVELOPMENT 5

 1.1 Software Reuse Before Component 5

 1.2 Component and its Property and Rules 8

 1.2.1 Characteristics in Component Category 12

 1.2.2 Component Development Principles 14

 1.3 Current Status of Component Development 18

CHAPTER TWO

COMPONENT MODEL WITH COMMUNICATION 21

 2.1 Component-Based Software Engineering 21

 2.2 Software Architecture and Component 25

 2.2.1 General Requirement on Architecture 26

 2.3 Communication between Components 29

 2.3.1 Synchronous Communication 30

 2.3.2 Asynchronous Communication 31

 2.3.3 Synchronous .vs. Asynchronous 33

 iv

CHAPTER THREE

IMPLEMENTATION OF ASYNCHRONOUS COMPONENT MODEL 37

 3.1 ProActive 37

 3.1.1 Component Characteristics of ProActive 41

 3.2 Translation from Asynchronous Model to ProActive 45

 3.2.1 MDA Introduction 46

 3.2.2 Translation Rules for ProActive 47

 3.3 Example: Flight Reservation System 58

CHAPTER FOUR

ANALYSIS OF ASYCHRONOUS COMPONENT MODEL 65

 4.1 ATAG 66

 4.2 Bound Algorithm 72

 4.2.1 Statement of Bound Algorithm 74

 4.2.2 Implementation of Bound Algorithm 79

CHAPTER FIVE

CONCLUSION AND FUTURE WORK 85

 5.1 Conclusion 85

 5.2 Future Work 86

APPENDIX A 89

APPENDIX B 99

REFERENCES 105

 v

LIST OF FIGURES

Figure 1: Middleware in Software Reuse 7
Figure 2: Person Component 9
Figure 3: Simple Bank System with Components 10
Figure 4: Flower Component 11
Figure 5: Mobile Component in Network 11
Figure 6: Life Steps of Component Development 15
Figure 7: Interface Reuse by Components 16
Figure 8: Hierarchically Layered Architecture of Component 18
Figure 9: Overview of Software Engineering 22
Figure 10: Life Steps of Traditional Software Engineering 22
Figure 11: Life steps of CBSE 23
Figure 12: Substitute component by updating 26
Figure 13: Wrapped and Integrated Component Interface 28
Figure 14: Synchronous Communication between Components 30
Figure 15: Asynchronous Communication between Components 32
Figure 16: ProActive Object Model 38
Figure 17: Active Object Composition 39
Figure 18: Asynchronous Call in ProActive 41
Figure 19: General Component and ProActive Component 42
Figure 20: Translation from Component to Active Object 48
Figure 21: Message Management Translation to ProActive 49
Figure 22: Compound Component Translation to ProActive 50
Figure 23: Creating Object Translation to ProActive 51
Figure 24: Generic Method Call Translation to ProActive 52
Figure 25: Method Call Translation to ProActive Code 53
Figure 26: General Asynchronous Call to Component 54
Figure 27: Asynchronous Call Translation to ProActive 54
Figure 28: Asynchronous Component Translation to ProActive 55
Figure 29: ProActive Translation of Component with Synchronous Call 56
Figure 30: Deployment Translation to ProActive 57
Figure 31: Component of Flight Reservation System 58
Figure 32: Bank Component of Flight Reservation System 59
Figure 33: ProActive Window of Bank Component 62
Figure 34: Client Request in Flight Reservation 62
Figure 35: Component Interface of Factory 66
Figure 36: Dynamic Behavior of Factory 67
Figure 37: Factory Component in ATAG 68
Figure 38: Communication Scheme in ATAG 69
Figure 39: Dynamic Behavior and Interface of Client 70
Figure 40: Architecture of Product-Ordering System 71

 vi

Figure 41: Dynamic Behavior with Communication in ATAG 71
Figure 42: Dynamic Behavior and Messaging of Ordering System 72
Figure 43: The UML Data Structure of Input 74
Figure 44: Condition of Setting W 75
Figure 45: Main Window of Bound Algorithm 79
Figure 46: Input of Ordering System 80
Figure 47: Analysis Window of Ordering System 81
Figure 48: Architecture of Simple Bank System 81
Figure 49: Dynamic Behavior and Messaging of Bank System 82
Figure 50: Analysis Window of Simple Bank System 83
Figure 51: Future Object Composition 94
Figure 52: ProActive IC2D Window 95
Figure 53: MDA-Based Application 100
Figure 54: MDA Model Hierarchy 102
Figure 55: Automating Bridge in MDA 103

 vii

LIST OF TABLES

Table 1: ProActive Program for Bank Component 61
Table 2: Bound Algorithm 77
Table 3: Propagation Algorithm 78
Table 4: Creation of Active Object in ProActive 91
Table 5: Implement Activity Interface in ProActive 93
Table 6: Pass Old Active Object to Create New One 93

 viii

 ix

 ABSTRACT

Component-based development is the popular approach in nowaday IT industry. It
gives software developer a highly modular way to integrate all the necessary
components as a whole system of the specialized application. Furthermore,
component could be reused for a lot of different situation since every component is
designed as an independent unit with its own function. Thus this reduces much time
and money on software production, and makes the emphasis about software quality
more on the system design in the software life cycle. How to get an elegant and
efficient component model is a core issue in the methodology to build
component-based software. Meanwhile, today is Internet time. All the application
must be migrated or developed from local machine to the network. One important fact
of network is that it need the component to work in distributed, concurrent and
heterogeneous environments. Obviously synchronous and asynchronous
communication glues all the components together to obtain some intended function.
Correspondingly the component model is divided into asynchronous model and
synchronous model. However asynchronous model get less attention on its analysis
and implementation than synchronous one in the past. According to the new
programming language ProActive using asynchronous communication, my master
thesis is trying to give some rules to translate the asynchronous component model to
its implementation of ProActive. Moreover I give one common algorithm to check the
message buffer size in asynchronous model represented by ATAG. At last I’d like to
discuss some interesting questions about some future work on component and
asynchronous model.

KEY WORDS
Component, Architecture, Asynchronous, RMI, ProActive, MDA, ATAG, Mailbox

 x

Introduction

Analysis and Implementation of Asynchronous Component Model 1

Introduction

Looking back on the software history, software development was usually faced to the
certain issue in a given domain. This situation led to the specialized software system
where each subsystem is designed, coded and tested only for the prescribed function
of that system. In other words, it is development-specific. However, today since
computer has swiftly changed our human life through an incredible speed and power,
people become more and more greedy on what the new software should bring to the
world. This raising need for software function in turn make the size and complexity of
software exponentially increase. Additionally software is intended to be versatile as
much as possible to make lazy life for people. Therefore to build fashionable and
flexible software seems to need much more money and time than ever. On the other
hand, large software usually means low productivity and high cost which hinder the
IT industry going forward. Fortunately people already found some ways to overcome
this bottle-neck, and the most classic solution is reusability. Reusability simply means
developing once, using more than once in terms of application or problem domain.

In order to improve software reuse in the development, there must be a change in the
way we construct the software system with reuse. Obviously integration is the answer
to the question, and new software should have a mechanism to integrate the developed
system instead of reproducing it by programmer. Component-based software
engineering is the corresponding paradigm to describe this kind software process.
Here component is the unit of reuse. A software system could be considered as a
composition of existing components. In this case, the design of the whole system
architecture, or say how to glue all the relative components, is much more important
than the design of individual concrete component. UML and ADL is being used to
address the problem of modeling component-based software, but both usually can’t
give the precise semantic description on the software architecture. Particularly, UML
and ADL can’t correctly feature inter-component communication that is quite
dominant and difficult in the software design. In addition, nowadays all the software
must be associated to the network. Parallel, concurrent, distributed application
becomes the mainstream on network, where asynchronous communication is natural
and common. According to these problems, more and more requirements are given
out to find a good solution for component-base model with robust communication, not
only on synchronous way but also on asynchronous way.

My thesis firstly is to find the proper implementation to the asynchronous component
model. The architecture designer not only focuses on the abstract function of each
component, but also on the integration and communication protocol among the

Introduction

Analysis and Implementation of Asynchronous Component Model 2

different components. There must be a gap between the abstract asynchronous
component model and concrete software implementation. Meanwhile, although many
programming language like Smalltalk and Java, has built-in synchronization support,
there are few languages like ProActive, which take care of asynchronization of
message sending. This makes the implementation of asynchronous model more
difficult on the programming level.

This paper tries to give some general rules to transform asynchronous component
model to ProActive. It shows how ProActive does the asynchronous call on top of
java RMI layer. All the transformation rules have UML-like style, in the MDA (Model
Driven Architecture) way. The general diagram of asynchronous component model
may be mapped to the ProActive diagram as the specification of the implementation.
According to the transformation rules the paper also provides a simple example about
the flight reservation system, and introduce some corresponding source code for
asynchronous communication featured by ProActive.

The second research of this master thesis proposes an approach to analyze the
asynchronous component model, mainly about its asynchronous communication and
related component state. The asynchronous component model is represented by ATAG
(Asynchronous Abstract Graphical data Type), which use abstract graphics with some
predefined notions to illustrate the component and behavior. ATAG is based on the
previous study of GAT (Abstract Graphical data Type) and Korrigan which describes
the general component model with symbolic transition system (STS) and algebraic
specification. Because the ATAG model could be easily translated into a set of rules
with simple data structure, it is clear to make specific algorithm to automatically
check the quality problems of component model with asynchronous communication.

Although there are a lot of important analysis for the asynchronous component model,
this thesis restricts the work on the component message buffer, so-called mailbox in
this paper. In fact mailbox is a classic way to simulate the asynchronous call between
components to store the message temporarily for the future use. The question whether
the mailbox is bound or not need to be solved to avoid message overflow. This paper
gives an algorithm to estimate the mailbox of each component in the ATAG
component model. The algorithm not only includes the bound question, but also the
max number of each message that a component would receive, and the message cycle
that leads to the unbound mailbox. The algorithm is built beyond depth-first search in
ATAG component model. Meanwhile in order to realize this algorithm and test it in
java, the corresponding parser of ATAG is also made to receive the correct input from
ATAG file. The analysis tool and parser is integrated into a java GUI to make the
analysis of mailbox in a more uniform and structured way.

Since the work of this master thesis only consider few parts of asynchronous
component model, in the future some other analysis will be done to it to get more
confidence in software design.

Introduction

Analysis and Implementation of Asynchronous Component Model 3

Structure of the Dissertation

Section one explains the main characteristics of software component, and also gives
the short description of other relative aspect.

Section two shows the general information of component model, especially on its
communication mode: synchronous communication and asynchronous
communication, and gives the main difference between both.

Section three describes the programming language ProActive for asynchronous
component model, and then lists the transformation rules to bridge between the
asynchronous component model and ProActive, and finally uses a simple example to
give more insight of ProActive from the implementation view.

Section four presents the ATAG to represent the pure asynchronous component model,
and demonstrates the bound algorithm that is used to analyze the mailbox of
component in ATAG model.

Section five concludes the thesis work, and describes some related research to
improve the analysis of asynchronous component model, and also some other
methods which could be used here.

Introduction

Analysis and Implementation of Asynchronous Component Model 4

Chapter One: Component in Software Development

Analysis and Implementation of Asynchronous Component Model 5

 CHAPTER ONE

 COMPONENT IN SOFTWARE DEVELOPMENT

Although component was born to help developer reuse previous software, the idea of
software reuse actually has been throughout the long history of the software
development. Old form of reuse is upgraded with the progress of relative aspect of
software or hardware development, for example programming language and
standardized I/O interface. Thus component should be considered as the
state-of-the-art version of software reuse. Many people get some confusions between
the previous way of reuse and the component, so I would like to introduce some main
steps in software reuse, and then explain what component is.

1.1 Software Reuse Before Component

Subroutine

The most original thing for reuse is the subroutine in the procedure programming,
for example the early Fortran in 1950s [24]. The reuse of subroutine is on the
source code level, so programmer can write some code to call a shared method or
function in the same source file or another one. All the source code is compiled
and linked to get the executable software.

Although this kind of software reuse looks very straightforward, it is limited only
for programming. The scope of subroutine is in a source file. Usually the
subroutine has its method name as the single interface, sometimes with a few
parameters. Furthermore, subroutine has the explicit dependency on the
programming language and operation system, and thus the development of
subroutine should be designed carefully in a uniform environment. In addition, the
test and maintenance of subroutine is difficult, because programmer should use
other program in the same system to debug and examine the function of
subroutine. The subroutine can’t be changed or overwritten solely, because it is
embedded in the executable file. The user must replace the corresponding file with
the upgraded version even if the change only happens in a subroutine.

Function Module

Since there could be a lot of subroutines in the software system, the better way to
get reuse is apparently to group all the relative or similar subroutines as structured

Chapter One: Component in Software Development

Analysis and Implementation of Asynchronous Component Model 6

program. Thus the second mode of software reuse is function module, which is a
separated unit composed of a set of shared functions; in other words, it could be
called reusable function library. This idea was adopted in 1960s [26], and the
classic example is programming in C language born at 1971.

The scope of function module is in a particular application of software system [14].
For example, the date/time function module could give the current date/time in
various formats, or change the system date/time if necessary. Although the
function module is kept alone from other programs of software, it usually needs to
be compiled with other program in the software system and linked together.
Actually each function module must be available locally for the method call from
the other part the system. Therefore function module has the implicit dependency
on the specific technology and operation system. Since function module is
constructed only for a family of functions, the developer could easily create an
initial software architecture composed of raw function modules. Then he can
refine the architecture gradually by designing and analyzing each underlying
function module. According to that software architecture, the developer could
decide whether to reuse the existing function module or to implement it by hand.
Because the function module is formed by the traditional subroutines, the testing
of it is same as subroutines. The programmer has to run other program to examine
the function module. The maintenance of function module sometimes may be
simplified to just replace the function module with the new one, with no change to
the rest of system.

Class

The powerful object-oriented programming paradigm brings the new software
reuse to the world. That is class, as we know. A class is “a blueprint, or prototype,
that defines the variables and the methods common to all objects of a certain
kind” [29]. Thus the class could be thought as object factory to create new object
including predefined variables and methods. Meanwhile class represents a concept
of the real world, and object is just the instance of the concept. Undoubtedly, class
is implemented by OO language, like Smalltalk [27] since 1970s [26].

The scope of class is in a particular problem domain [14], and developer can
produce class hierarchy by inheritance to precisely describe the abstraction of the
problem and solution. Because class belongs to the object-oriented category, it
needs the relative aspect to support its implementation and deployment, such as
language and class loader. Thus class still has the implicit dependency on the
specific technology and operation system. Moreover, the class could also be
grouped in class library like function module. Often we can reuse class with the
same design pattern to solve the commonly occurring problem.

As object-oriented development is different from the function-based development,
the object-oriented analysis and design is adopted to decide the class reuse. That’s

Chapter One: Component in Software Development

Analysis and Implementation of Asynchronous Component Model 7

to say, according to the problem statement people tries to get the object model of
the problem domain. Then the object model of problem is cast to the solution
domain to find the good architecture of software system. The objects in the
analysis and design lead to corresponding class, which could reuse the previous
class of same object. Since class is the encapsulation to the relative information, it
is logically independent unit in the object-oriented paradigm. The test and
maintenance of class is also convenient with the OO programming language like
C++ and Java [29]. The developer could make the testing object to automatically
examine the object of target class, and maintenance may work in similar way.

Middleware

As object-oriented paradigm changed a lot on the software development, the
network and Internet play a more surprising role in the whole computer science.
Consequently network produces the new progress on software reuse, called
Middleware [30]. Here Middleware is referred to a set of reusable and expandable
services above the transport layer of TCP/IP [31], and below the application level
i.e. API layer. These services generally are used to finish the common functions in
operating system and network environment, such as message conversion or
network addressing. The Middleware is built on class, and some middleware
technologies such as COM have appeared since late 1980s [23].

 Figure 1: Middleware in Software Reuse

Computer A

Application

Transport

Middleware

Service1

Service2

Computer B

Application

Transport

Middleware

Service1

Service2

Network Link Media

TCP/IP

Chapter One: Component in Software Development

Analysis and Implementation of Asynchronous Component Model 8

Since all the Middleware are developed in object-oriented style, the basic unit to
reuse in Middleware is class. On the other hand, Middleware focuses on the
common services for the application, so it emphasize on the quality of service by
some class library more than concrete class and object. Like class, the scope of
middleware is in the particular domain [14], where each service of middleware
targets a smaller field. Meanwhile, the middleware is based on the class reuse in
the object-oriented development, and thus it is still proper to apply the
object-oriented approach to build the middleware. However, compared to the class
reuse, the Middleware is not much restricted to the special technology and
operating system. The Middleware is at the higher abstraction level than class. It
may contain all kinds of services developed by the different OO tools in the
heterogeneous situations, as long as the service is compatible to the run-time
environment (operation system and network) and the front-end application.

1.2 Component and its Property and Rules

As the Internet is linking all kinds of application under various environments all over
the world, the computing pattern is being changed from centralization to distribution.
One large system often contains a lot of sub-systems, which could be cross-domain or
cross-platform. Meanwhile, the system developer likes to put more intelligence and
automata to the software reuse. It means to obtain the software reusability to a deeper
and wider extent to build modern software system upon legacy code and experience.
Thus component was born based on previous study of software reuse to realize the
new requirements as expected.

Although the definition of component has multiple versions depending on the domain,
purpose and individual, there is some agreement of the essence of component from
most of the paper about component. Software component is the unit to be
implemented for the composition to build a functioning system [13, 14, 16, 18, 20].
Software component could be considered as the deployment of its own interfaces [14,
16, 18]. Generally, the software component exposes its interfaces as the contract to the
other things that want to use component. The component gives the explicit context
dependency to enable it finish its work in the collaboration style. A component could
be independently developed, deployed and updated [13, 14, 16, 18, 20], but it need to
be subject to the composition by the third party [14, 18]. In other words, system
developers need to make the component coincident to the particular component model
or with the particular component platform.

Because the component is based on the previous experience about software reuse, it
inherits the information encapsulation of the object-oriented technology since this
schema has been proved to have many advantages for development. Therefore from

Chapter One: Component in Software Development

Analysis and Implementation of Asynchronous Component Model 9

the external view the component is graphically represented as some kind of box with
clear interface specification. As reader can see in Figure 2, there is a component
named Person to process the personal information. The component Person doesn’t
give the insight of its internal implementation and state. The client only knows the
interface of Person component like IGetName and ISetName, which is the
available service by Person component. As a matter of fact, this kind of hiding
information is the same as the class, but software component is bigger and higher than
what class usually means in the software architecture.

 Figure 2: Person Component

Figure 2 also explains the composition of component interface. There are two kinds of
services defined by the interface in terms of method caller. One is provided service,
which means what the client could get if it calls the component. For example, a client
could get the age of one person as provided service through interface IGetAge of
component Person. Another is required service, which means what one component
need when it calls other component. For example, the interface IReadData of
component Person explains one required service that is called by Person to the other
component to read the personal information from some database or file.

Although Figure 2 shows the same notion for both kinds of interface, people are
trying to explicitly distinguish them in the formal representation and development.
For example, there have already been some component languages to separately define
the provided service and required service of one component

Using the Person component, the system developer could integrate it to some place

IGetEvaluation

IGetCountry,
ISetCountry

IGetAge ISetAge

IGetName, ISetName

Person

IReadData

IWriteData

Provided

Required

Chapter One: Component in Software Development

Analysis and Implementation of Asynchronous Component Model 10

in the software system as long as the functions of Person component, or more
precisely its interfaces, comply with the design requirement. The following figure
shows a component system with Person component, and the dash arrow link means
the message sending for the service.

 Figure 3: Simple Bank System with Components

The Figure 3 denotes a bank software system with three components: Account,
Person and Database. The Account component has the dependency on the Person
component as the arrow pointing to the interface of Person component. Meanwhile
Person component need the function of Database component, no matter the
database of the bank system is SQL server or Oracle, and so on. Therefore, Person
component could be reused in the similar context of different application or domain,
for example, the computer sales system.

Moreover, the interface and explicit context dependency of Person could be reused
by other component, for instance, of flower information process. The component
Flower could be represented as in Figure 4, and it has completely same interfaces as
Person. Here the interface IGetAge and ISetAge of Flower component could means
the life span of the flower since its sprout, and the semantics of other interfaces of
Flower component is easy to figure out. Thus people only need to change the some
implementation of Person component to realize the new component Flower.

Simple Bank System

Account

Person

Database

Chapter One: Component in Software Development

Analysis and Implementation of Asynchronous Component Model 11

 Figure 4: Flower Component

In addition, the component as the software unit is requested to be dynamic and mobile
in the distributed, loosely-located and concurrent environment. This means that
component could adapt itself to the change in its work situation, and it could be
transferred by itself or the system.

 Figure 5: Mobile Component in Network

Computer A
(Ms Windows)

Software System

Component X

Computer B
(Linux)

Network Link Media

Software System

Component X transferring

IGetEvaluation

IGetCountry,
ISetCountry

IGetAge ISetAge

IGetName, ISetName

Flower

IReadData

IWriteData

Chapter One: Component in Software Development

Analysis and Implementation of Asynchronous Component Model 12

Figure 5 shows that the component X travels from computer A to computer B through
the network media. Therefore, network makes the software reuse in a more
autonomous way, especially for the large-scale distributed application.

From the description above, component is much more powerful than any previous
form for reusable software. A component could be adopted in any domain if it follows
a certain component model and its interfaces satisfy the function requirement [14].
The component should be independent from the specific technology and running
environment as much as possible. The only dependency of component is the explicit
requirement of relative support in the context since it would call the other software
(element) to complete the work together. Moreover, the component is the basic reuse
unit in the component-based system development [14].

Although usually the class currently is the implementation unit for almost all software
components as the result of main commercial programming language, there is no
restriction about what could be included to build the component. In other words, the
component function is more important than the concrete realization. One can develop
the prior Person component by C++ language, and another man may use this
component in the web application with other component of Java classes.

The relative analysis and design is involved in the specific engineering process, so
called Component-Based Software Engineering (CBSE) [13, 17, 18]. CBSE is
introduced in section 2. The object-oriented analysis and design could be regarded as
the sub-activity of CBSE.

Since the component is for composition to create some system, a composition of the
some relative components may become a large component to be delivered to create
more complex system. Internal components of compound component are invisible
from outside, which follows the principle of information hiding. Therefore the
software component also has the problem of granularity that would be the balance
tradeoff between the flexibility and efficiency.

1.2.1 Characteristics in Component Category

There is not well-acknowledged formal specification of software component.
According to the research and experience of component-based software development,
some important characteristics have been extracted from all kinds of the component
description. The main component characteristics should be the basis of uniform
framework for component design and implementation.

The following listed characteristics of component is based on the discussion from a
EMN component research group I have participated [32]:

Chapter One: Component in Software Development

Analysis and Implementation of Asynchronous Component Model 13

Purpose
 Give the purpose of the component, whether it is general component like I/O

process component, or it is for the specific domain such as bank account
component

Development Theory
 Give the general way about how to build the software component, and indicate the

proper infrastructure

Tools
 Explain the correct tools to design, analyze, write and test the component, and

maybe give the relative tutorial or website

Entities
 The entity of component means the features of concrete implementation

 Kinds
 The classification of the software component, and this could be understood as

the typed role in component-based system, like standard component, aspect,
connector and agent.

 Mixture
 Describe how to implement the software component, whether it is for example

pure OO programming, or it includes multiple way to get a compound result

 Context
 Point out the compatible environment or model, where the component should

work well.

 First-Class
 Represent granularity and priority in building the software component, and

show the possible reflection and meta-programming

Interface
 Generally speaking, the interface is the contract between the client and the

component. The interface is the key of the component which distinguish one from
the others, so interface decides the type of software component. It also has some
important factors to specialize

 Syntax
 Give the abstract syntax to explicitly express the interface part of the

software component

Chapter One: Component in Software Development

Analysis and Implementation of Asynchronous Component Model 14

 Element
 Describe the different parts in the interface, such as Port, Service, and so on

 Communication
 Explain the needed communication pattern or protocol with the software

component

Attribute
 Give precise semantics of the attributes in the interface, and also the condition

where the attribute works

Life Cycle
 Describe the active phase of component interface and how the component become

active to the client, the inactive phase as well

Dynamic Behavior
 Describe the different execution state of component interface according to the

run-time environment, and the corresponding denotation through element

Other Properties
 Give the other useful property about the software component, for example, the

quality of response in the average workload, also the static or dynamic network
port-number of access

Although the above characteristics list still has something to get further refinement, it
is definitely the comprehensive specification for component development.

1.2.2 Component Development Principles

Since the component is the basic software unit for the system development, the
development of reusable component is a big but important work. It is very important
to carefully identify and assign the function to each component while doing
architecture design. Moreover, the developer has to design the proper interface and
relative context dependency to make the efficient and flexible interaction among the
components. A correct design and implementation of component is the key for the
quick and successful integration of component to build software system.

There is a common way to develop the reusable component for some software system
[16], shown in Figure 11. The life step “Search relative resource” means that
according to the problem and solution domain, the developer searches for the relative
source about how to solve the problem. Here the resource could be in various forms
like formal publication, design pattern, university lecture.

Chapter One: Component in Software Development

Analysis and Implementation of Asynchronous Component Model 15

 Figure 6: Life Steps of Component Development

The common behavior in Figure 11 is referred to the action happening in more than
one component. Thus it should be separated and encapsulated into a new unique
component. The common behavior could not only be used to design a
common-functional component reused by other components, but also be treated as a
common interface to be re-implemented by other components. The common interface

Ok

Not ok

Problem Identification
and Classification

Solution Domain
Identification

Search relative resource

Extract common
behavior

Design solution and
included functions

Design component for function
and common behavior

Test design with
requirement

Component Implementation
(Reuse the existing component)

Integrate Component to
system

Component
Validation

Component
Deployment

Chapter One: Component in Software Development

Analysis and Implementation of Asynchronous Component Model 16

looks like the Figure 12.

 Figure 7: Interface Reuse by Components

In Figure 12, the interface IShowDate, which is defined in some component Date
like a virtual class of C++, is reused by component Train and Person. It means that
Train and Person both implement the interface IShowDate, or say write the code for
the method of IShowDate. Component Train may use that interface IShowDate to
show the date of train schedule while Person may use it for the birthdate of
individual, even in the different format. Likewise, the new component could be
created for the common behavior but delegate some parts or all of work to the
different components according to the context.

As seen from the above life steps of the component development, it has an iterative
process to analyze and solve the problem before getting the ultimate component
design. The real operation in the component development always depends on the
concrete application and development environment. Thus the developer would make
subtle difference during component life cycle. However, there exist some basic
principles of component development [13]:

· Solution-specific component
 This principle is easy to be understood, since every component is born to serve the

certain solution for a problem given by the client. The developer has two choices
for the component to be used in the solution, one is domain-oriented, and another
is domain-independent.

 Domain-oriented component is to be developed as the common function unit for

the software system in a certain domain. Since the domain-oriented component
only solves the problem in a fixed and limited scope, usually it would get higher

IShowDate

Train Person

Date

Chapter One: Component in Software Development

Analysis and Implementation of Asynchronous Component Model 17

productivity in the system. Nevertheless, if the solution is going to be used for
more than one domain, this kind of component has to be wrapped or composed
with other components, to realize the reuse. For example, a bank-account
component is excellent for all the bank system to provide the common function of
financial operation on bank account, while it has to be wrapped into a new
component to process the function of medical-insurance account.

 Domain-independent, or say generic component, on the contrary, is developed as

the general unit for the software system in multiple domains. The different
domains usually have the different function requirements even to the same
problem, and sometimes there would be the conflict among these functions.
Therefore to develop domain-independent component would take more cost and
time, but it would get more reusability for the various system developments. If the
solution seems not to be reused cross the domain, the generic component
development is not necessary and is an over-expensive work.

 Therefore, all the components must be developed to work with the solution as the

premise. The developer should think about the tradeoff between the
domain-oriented component and generic component and make the rational
estimation, according to applicable scope of that solution.

· Separation of concerns
 This principle means that the developer should divide the function into smaller

pieces for the diverse concerns in the application. The finer division leads to make
the corresponding component of the function more simple and flexible, and thus
more reusable in the component-based software development. As a matter of fact,
it is a choice of component granularity. The effective degree of separation depends
not only on the system function, but also on its quality requirement, for example
the evolvability of the system.

· Abstract Virtual Machine Interface
 This principle is to emphasize the polymorphic characteristics of components by

component interface; in other words, the interface should be abstract enough to
hide all the information of concrete implementation in the component. The
interface is independent to the specific technology or platform, so different
components could implement same abstract interface with different operation.
This principle is similar to the single-interface-multiple-inheritance in OO
programming language.

· Component hierarchy
 Generally speaking, the software architecture could be regarded as a kind of

hierarchy structure. Every component should be developed to classify it to a
certain level in the component hierarchy, in order to reuse it in a uniform style. In
[13], it suggests a layered model for component hierarchy as below:

Chapter One: Component in Software Development

Analysis and Implementation of Asynchronous Component Model 18

 Figure 8: Hierarchically Layered Architecture of Component

· Postponement of context binding
 In the architecture design process, all the details about the implementation of

components are ignored. The work focuses on the basic function of component,
communication and other structural aspects at a high abstraction level. Therefore,
Binding the component to the property of its executable context like data type,
poll-interval, database connection, is delayed to the phase of component
integration in CBSE.

· Design reuse
 In order to find the right component for the component-based architecture to be

integrated in the system, an easier and feasible way is to reuse some previous
design on component. In fact the design reuse is much popular nowadays. It
addresses the similar problem or requirement occurring in many former system
developments to reduce the cost and time. Therefore, the component would get
more reusability with its shared design.

1.3 Current Status of Component Development
The promising component is playing predominant role in current software
development, but it still does not satisfy people who always want to get the max
benefit from the reuse of existing component. Software component is being given
more study and support to overcome the emerging problems and detects in
component-based software development.

The component model is always the basic issue for the component development, since

Task Component

Functional Component

Domain Technology Component

Environmental Component
(User Interface)

Data Sharing /
Communication

Integration Mechanism
(Unix Pipe, CORBA)

Domain-Oriented

Application-Oriented

Generic Component

Chapter One: Component in Software Development

Analysis and Implementation of Asynchronous Component Model 19

there is no uniform way to build the component model. Therefore there would be
some problems in the heterogeneous system with different model to reuse the
software component.

As the result of the problem of component model, the interoperability among the
component appears in front of the developer. Fortunately the main component
company is making effort to have the component interface understood by the
component from different component model.

Any component can’t foresee all the change in the future after it running, which
means that every component has the doom if it never were upgraded. The problem of
customizing and dynamically maintaining the component need more attention to make
software reuse persistent and cheap.

The delivery of component is an interesting choice for the producer and client. It is
difficult to define the proper granularity of the software component for the
requirement of different client.

In addition, currently most of programming languages do not support component
programming well, and there are few component languages like ComponentJ [33], to
specialize the component in the design level or code level.

Chapter One: Component in Software Development

Analysis and Implementation of Asynchronous Component Model 20

Chapter Two: Component Model With Communication

Analysis and Implementation of Asynchronous Component Model 21

 CHAPTER TWO

 COMPONENT MODEL WITH COMMUNICATION

Today there are many components produced for the large system, such as applet,
plug-in/add-in, framework and third-party control/widget. From the introduction of
component in the Section 1, it is clear that component-based software is built in the
process called component-based software engineering [13, 17, 18]. Here
component-based software engineering (CBSE) is referred to the creation and
deployment of certain system assembled from the proper components. CBSE also
includes the component development and reuse of the existing components, like using
Lego brick to get some useful shape in some way.

Thus from the view of accessory assembly, the component-based system would be
often heterogeneous. For example, the components inside may be produced with
different programming language, even the same language but of different version.
Moreover, the whole system as a large compound component could be reused for
other complex application.

It is more evolvable for a system to replace the single component with the new
version, as long as the interface of substituted component is compatible with or same
as before in term of semantics and behavior.

In addition, according to the property of component, the component-based system
would get good distributed operation by the components that are scattered in the
network. The software system also could be smartly mobile and adaptive in the
network due to its components.

However the ultimate power source exists in CBSE. The key in CBSE is the software
architecture involving component model. Software architecture defines the global
behavior of the system, and the individual action of each component [15, 18, 20, 21].
The relative synchronous or asynchronous communication among the components is
also decided in the architecture design as well. All of these of CBSE are explained in
the following of this section.

2.1 Component-Based Software Engineering

The software engineering simply means to find the executable solution for the

Chapter Two: Component Model With Communication

Analysis and Implementation of Asynchronous Component Model 22

questions in the given domain, graphically like below:

 Figure 9: Overview of Software Engineering

Traditional software engineering typically is done by a group or a single organization
[17]. Traditional software engineering usually matches a phased development process
to make the milestone version released as the schedule [17]. The main life steps of
traditional software engineering looks like below [17]:

 Figure 10: Life Steps of Traditional Software Engineering

Client’s wishes

Problem
(requirement)
understanding

Problem
(requirement)

solving

Programming

Requirement Definition

Requirement Analysis

Architecture design

Detailed design

Implementation

Unit test

Integration test

System Validation

Deployment

Chapter Two: Component Model With Communication

Analysis and Implementation of Asynchronous Component Model 23

There are some limits of reusability in traditional software engineering. Only the user
interface of the software is shown to the client. The programming interface or design
interface is known to the software developers or owners. Therefore, there just exists
very small scope of people who can make reuse of the parts of software. This kind of
software engineering usually leads to the efficient solution for a special problem in a
certain domain. On the other hand, it often brings the expensive evolution of software
if the corresponding problem evolves or that software needs to be changed or
customized for the new user or requirement.

The component-based development always wants to reuse the existing component to
maximize the productivity and minimize the cost and time on component
implementation. Thus there are some unique features in CBSE to stand out
component reuse. The main life steps of CBSE looks like below [17]:

 Figure 11: Life steps of CBSE

Requirement Definition

Requirement Analysis

Architecture design

System Validation

Deployment

Component Integration

Component Implementation
Old Component

Reuse/Reconfigure

Former Design
Reuse

Chapter Two: Component Model With Communication

Analysis and Implementation of Asynchronous Component Model 24

According to the life steps of CBSE and traditional software engineering, reader could
find that in CBSE the work on design, programming and test is decreased a lot due to
the reusable component. Instead the integration of component becomes the basic
process in the component-based software development. In the component integration,
if the developer can’t find the existing proper component to reuse, or to reconfigure it
to subject to the system, he must implement the new component to complete the
required function in the system.

Supposing that the reusable component is the previous work by the same developer, it
is easy to integrate it to the new system since it is just the white-box artifact for that
developer. On the other hand, if the component is given from other organization, the
developer must carefully check the document of this component. The checking should
include the important characteristics of component listed in the section 1. The
developer should also find the practice information from the a few running system
where that old component is being used.

Generally, there are two ways to get new component. One is to design and implement
the component all by hand, and another way is to wrap or merge the similar existing
component with some additional data and code [17]. The latter method means to make
a partial-new component conform to the system architecture design. In order to wrap
old component, the developer often needs to know more information about how the
existing component does its function inside. Understanding more of existing
component, the behavior of it could be well controlled and customized to build the
new structural component.

After making every component work well, the important step is to validate the global
behavior of the component-based system. Here system validation means to check
whether the function through collaboration by multiple components is perfect as
expected. It is difficult to test the black-box components that hide the detail by the
strict encapsulation. Another problem of validation is that the original context for the
development of existing component would have subtle difference to the current
software environment.

Although the reusable components reduce much possible duplicated work in the
development, it is still difficult to find the proper existing component corresponding
to the component model as the result of architecture design. There is not a globally
uniform way for system designer to build the software architecture with component.
Meanwhile, it is much more expensive and complex to develop the reusable
component than the simple program even for a single application. Thus, the
component-based architecture design is being paid more and more attention to make it
as a basis to well ease the subsequent development process in the CBSE.

Chapter Two: Component Model With Communication

Analysis and Implementation of Asynchronous Component Model 25

2.2 Software Architecture and Component
Thanks to the previous development of reusable component, CBSE could put the less
work-amount on the concrete implementation of software system, through the
composition of the components. However this kind of composition must need a
guideline to get the right component and put it in the correct position. This guideline
is called software architecture in IT industry. Software architecture could be
considered as the base-board of Integrate Circuit of all kinds of electronics.

Software architecture generally is the structural high-level abstraction to describe the
main structure or say skeleton of the software system [15, 18, 20, 21]. It includes the
relative rules and standards, static data and dynamic behavior in the system [15, 18,
20, 21]. Moreover, because the software architecture decides all the parts of the
system and their relationship, it defines the main functions and qualities of the system.
On the other hand, the property of the software system could be reasoned out
according to its own architecture. However, the software architecture always focuses
on the global performance, and ignores the detail of each part which is the center of
detailed design process in traditional software engineering.

The core of architecture for component-based software could be simply represented as
the components with their communication, also called component model. The
component model is the blueprint for component integration, development,
deployment and so on [14, 15].

One formal way to describe graphically the component model is to use UML language
[34], as shown in Figure 3. It is called component diagram [6] in UML. Obviously,
the component diagram at least shows each component which is assigned the abstract
functionality. It also explicitly gives the interface and context of component to interact
with each other in the system environment. Here the interaction between components
should include the (remote) procedure call, event broadcast, channel etc. Moreover,
some important architecture constraints to the components and their interaction are
also expressed in the component model. For example, it could explain how the
constraints of communication mode (asynchronous or synchronous), are designed
with components.

An elegant component-based architecture could not only give the correct design to
easily find the reusable existing one to be integrated in the system, but also be reused
for the other system development at the architecture design level. This means that the
different applications could share some common software architecture so that the
relative components of that architecture get the max reusability for the development.
Therefore the common component-based architecture improves the interoperability
between multiple software systems.

Chapter Two: Component Model With Communication

Analysis and Implementation of Asynchronous Component Model 26

2.2.1 General Requirement on Architecture

There are some important requirements for the component-based software
architecture to be promising for the component-based development. The requirements
also explain the direction of CBSE in the future, listed below [15].

· Multiple component granularities
 This asks the architect to design the component architecture with different size of

component. There may be atomic component and structural components in the
architecture. Atomic component is the smallest function unit unable to split, while
structural component is composed of several smaller components in a logical way.
The member of structural component could be atomic component, or also
structural component. It is obvious that the smaller component in structural
component could be extracted out and reused for other things. There are already a
lot of reusable components with different granularity now, for example, file reader
as small component, word processor as large component.

 The choice of component granularity depends on the system requirement and

component characteristics. Usually the small component is more flexible and
cheaper, whereas the large one is more versatile and expensive. In addition, the
architecture should be able to deal with the compound component that is
constructed by many small components.

· Substitutability of component
 Component architecture should be able to allow the replacement to one or several

components with the component, which has compatible interface and same
function to continue the system running.

 Figure 12: Substitute component by updating

Moreover, this kind of substitutability could be dynamic and made in the run-time.

System A

Component
B1.0

Interface B1

Interface B2

System A

Component
B1.5

Interface B1

Interface B2

Chapter Two: Component Model With Communication

Analysis and Implementation of Asynchronous Component Model 27

The component-based system could perceive the needs of component replacement,
and intelligently find the proper new component to replace the old one while
system running. Therefore the maintenance becomes more convenient and this is
particularly important for the real-time software system. The usual way to
substitute the component is to replace the old version with new version to get
better performance with fewer bugs, like Figure 9.

· Parameterizable component
 The component in the certain software architecture has the confirmed interface

and function. In order to reuse generic component which could be tailored by
parameter, the architecture should be able to set the parameter to that kind of
parameterizable component. The parameterizable component usually is the
synthesis of a set of similar functions in a problem domain. For example, the
picture-browsing component could be designed to show the different pictures
according to the parameter of picture type. Therefore, the architecture enlarges the
scope of reusability with parameterizable components.

· Customizable component
 This requirement is close to the parameterizable component, but the customizable

component is to be used by the end-user instead of developer. User can adjust the
component to different environment or work, without replacement by the other
component. In this condition, the architecture should make the additional support
to the customizable component, for instance, having an easy-to-use GUI
component to reflect or setup the customizable component.

· Multiple programming language
 Since the component should be language-independent to be reusable, the

corresponding architecture of component should also contain the component
implemented by the different programming language varying from Fortran to C#
[35]. However, although the component is allowed to be developed by the
different language, the interface of component must be designed carefully to be
understood by the other component. Additionally, the incompatibility between
languages must be considered to avoid possible problems.

· Component-specific help
 A lot of existing components are blackboxes with only interfaces exposed to the

designer or user, but it is often necessary to get more information of the
components. The component architecture should possess the ability to give the
help of certain component to the architect or software client. This kind of ability
also depends on the way the component show its help, such as the email address
of the component author.

· Component-specific changeable or integrated interface
 Besides the component being parameterizable for its specific function, there may

Chapter Two: Component Model With Communication

Analysis and Implementation of Asynchronous Component Model 28

be the needs to make the interface of component able to be tailored for the
different application. Moreover, there could be an integrated interface from
multiple components; in other words an interface is composed of several interface
of multiple components to form a work group for the specific task or the typical
user. Thus the architecture should support this kind of changeable or synthetic
construction of interface in a structural way to provide the flexible reuse.

 Figure 13: Wrapped and Integrated Component Interface

 The usual trick to get the tailored interface is to wrap the relative components.

Integrated interface could be done by creating a new component as the function
proxy to the components that are responsible for the implementation. Both are
shown in Figure 10.

System A

Component B

Interface B1

Interface B2

Component Wrapper_B

Interface B1

System A
Component B

Interface B1

Component C

Interface C1

Component BC

Interface B1&C1

Wrapped
Interface

Integrated
Interface

Chapter Two: Component Model With Communication

Analysis and Implementation of Asynchronous Component Model 29

· Easy distribution of component
 One of the basic benefits of component is that it can be separately delivered to the

designer or end-user. In addition, the component could move in the network by
itself if necessary. Therefore the software architecture should make the
independent component in the independent format, for example a unique Dll
(Dynamic linked library) file. This development style would ease the deployment
and maintenance of the component.

· Support for sales
 This requirement is a non-technique request to the software architecture, but it is

important for the commercial component-based software system. Since the
company would have the different price policy for the different sales mode, the
software architecture should be able to easily match with the various charge way.
The usual method is to use a parameterizable component, which could be set up in
the installation or deployment process to fix the sales mode for the certain version
like time-limited usage. Therefore the software architecture would get more
reusability in the CBSE for commercial software.

2.3 Communication between Components

Although the component is the basic unit in the software, it is the communication that
glues all the components to form a complete system. Every “living” component needs
communication as oxygen to exchange the information with other relative parts in the
cyber-space. The communication between components could be simply described as
that one component sends the proper message to another component according to the
interface of both. Since every component conforms to the information-hiding
principle, the communication only happens at the component interface level. In other
words, one component can’t directly call the internal sub-functions or
sub-components of another component.

Emerging network and Internet bring more requirements on the communication of
components. The space and time scope of component communication has been
extended and enforced to execute the network-based application. The communication
must be adaptive to different technology of the network, also the heterogeneous
operation environment, to cope with the platform-independent and automatable
component. In addition, because the network is becoming huger but more distributed
in terms of scale and function, the software is difficult to strictly control its
component communication in the network-based workflow. In this case, there could
be more errors possibly occurring in the communication than on the single machine.
Therefore, now the communication between components is the hotspot of the
researchers for the component-based development.

Chapter Two: Component Model With Communication

Analysis and Implementation of Asynchronous Component Model 30

There are a lot of study and analysis on the communication schema among the
components. From the view on time phase of action steps in the communication
between two components, it is divided into synchronous communication and
asynchronous communication. Here the synchronization and asynchronization of
communication is not referred to the low-level concrete transmittal of binary data, but
to the high-level message transportation. The choice between synchronous
communication and asynchronous communication directly affects the system
performance and quality. Thus it is very important to carefully use both
communication modes in the architecture design of CBSE.

2.3.1 Synchronous Communication

If a component A is blocked (waiting after it sending a request message to another
component for some function) until the message receiver return the feedback message
to the sender A to indicate the result of function corresponding to the request message
(at least the acknowledgement to the sender A), this kind of communication is called
as synchronous communication. The MSC (Message Sequence Chart) of synchronous
communication between the components is looks like below:

 Figure 14: Synchronous Communication between Components

As seen from Figure 14, the Client component sends a message Foo to the Server

Foo

Work on Foo

Client Server

Foo

Work

Wait

Idle or other work

Feedback message

Chapter Two: Component Model With Communication

Analysis and Implementation of Asynchronous Component Model 31

component with corresponding interface for that message. Then the Client component
suspends its work until the feedback message is sent from the Server component after
its work due to receiving Foo message. After getting the feedback from Server, the
Client component continues its execution until it sends the message again to another
component in a synchronous way. Therefore, the function with synchronous
communication could be seen as a set of sequential steps by the ordered collaboration
by multiple components.

Briefly speaking, the synchronous communication couples the phase of message
sending and relative execution as a tight pair. Thus it virtually produces a persistent
link between the message sender and receiver, until all the steps in the communication
are finished.

Currently, the most popular example of synchronous communication is online
discussion through the Internet, such as chatting room. When one guy sends the
message to another, the chatting component is blocked until the other side returns the
information about receiving the message. The chatting component would display the
current status or session record with that new message if successful, otherwise it will
report some kind of error.

2.3.2 Asynchronous Communication

Obviously there are a lot of waiting state in the synchronous communication between
components, but people wants to have a way to make use of that waiting time to do
other thing to increase the productivity. Thus Asynchronous communication has been
used to reduce the waiting cost, shown in Figure 15.

The Figure 15 explains the general way of asynchronous communication, where the
Client component proceeds to do its work after it sending a message Foo to Server
component. Actually in asynchronous communication, the Client component and
Server component works in a parallel way without waiting for the finish of that
interaction by Foo. If the Server component gets the result by the work due to
receiving the message Foo, it would send that result to the Client component even if
the Client were still running.

Note that although a component could continue to work after it asynchronously sends
a message to other component, it is possible for that component to enter the waiting
status. This is due to the fact that the work of sender may use the result of the
previously sent message. Thus the sender has to wait if the result is not ready by the
execution of the message receiver. Asynchronous communication could not
completely avoid the waiting state in synchronous communication.

In essence, asynchronous communication decouples the message sending and relative

Chapter Two: Component Model With Communication

Analysis and Implementation of Asynchronous Component Model 32

execution to make both message sender and receiver in the communication
independent to each other as much as possible, while synchronous communication
links sender and receiver in a tight style.

 Figure 15: Asynchronous Communication between Components

There are two main methods by the message sender to handle with the result returned
in asynchronous communication while the sender is doing other work:
1. The message sender is to use a thread to poll for the result of its message sending.

That’s to say, the message sender timely sends the poll message to the receiver to
ask whether the action on previous message is finished or not. If it were finished
the message sender would get the result from that message receiver. Therefore,
this method would increase the communication cost in the interaction, but it is
simple to implement.

2. The message sender is to adopt a callback function to the message receiver. In this
way, the message sender gives an interface of a function (callback function) to the
message receiver, when the sender sends the message. After the message receiver

Mixture of work
on Foo, and other

things

Client Server

Foo

Foo
Work

Other work

Optional return, if
having result of Foo

Idle or other work

Chapter Two: Component Model With Communication

Analysis and Implementation of Asynchronous Component Model 33

finishes the execution on the received message, it would use that callback function
which gets the result of original message. Then the callback function do some
proper work like notification to the message sender, so this way would have the
less message transferring, but it is more complex in the development.

Currently, the most popular example of asynchronous communication is information
transmitting through multiple peers in Internet, such as email system. When one guy
sends an email to another, the client-end continues to work no matter the transferring
result of the email. The email-server would return the result if it fails to send to the
email receiver after its action on that received email. At the end, the client-end would
be notified for the failure of email while it is working on other stuffs for example
writing new email.

2.3.3 Synchronous .vs. Asynchronous

Although synchronous and asynchronous communication obviously has some unique
features based on the different messaging style, the distinction between them has been
researched for a long time. People found that neither of them could be absolutely
better than another one. However, The interesting thing of both kinds of
communication is that they can simulate each other in the software development.

The classic way changing synchronous communication to be asynchronous is to insert
the message buffer (message queue) and relative management in the middle of
message transferring. The example of this kind of trick is channel, Publish/Subscribe
pattern [4] and Mailbox in chapter 4.

As to make asynchronous communication be synchronous, one simple transformation
is to give the acknowledgement to message sender as soon as the sender transmit the
message to the receiver. Afterwards the system should use other mechanism to notify
the true result of execution by message receiver.

The usage of synchronous and asynchronous communication depends on the real
application and the execution context. Therefore there are a lot of software systems
mixing both communication modes to make full use of their advantages and reduce
the drawbacks. As for the architecture design in CBSE, the synchronous and
asynchronous communication should be equally important for designer to carefully
adopt for different components.

The quality of service in synchronous communication obviously is better than
asynchronous one, since synchronous communication requests the response from the
message receiver as soon as possible. That’s to say, the message receiver in
synchronous communication should immediately do the operation according to the
received message. Nevertheless, on the side of asynchronous communication, the

Chapter Two: Component Model With Communication

Analysis and Implementation of Asynchronous Component Model 34

message receiver is not much enthusiastic to give the action on the received message
since it has its own operation schedule. The sender of asynchronous messaging would
continue with other tasks if the result doesn’t affect the afterward work. Actually the
receiver in asynchronous communication may ignore the message for some time,
putting it somewhere until the receiver think it possible to execute the function for
that message. The difference on the quality service decides that synchronous
communication is more proper to be used in sequential transaction system to keep the
application with high efficiency and safety as expected by requirement. Meanwhile, it
is difficult for asynchronous communication to estimate the time when the result is
done. Therefore asynchronous communication would lead to the chaos of failure or
success, and the choice of resending or ignoring.

Excellent service usually means expensive cost; in other words, the synchronous
communication would take more overhead than asynchronous one. In synchronous
communication, after the message sender transmit its message out, it has nothing to
do but wait for the result. The waiting of component often makes some part of a
software system idle for the CPU-time, especially when the message brings a
time-consuming job to the receiver.

The worst thing in synchronous communication is that it could go to deadlock, since
the message sender can’t release the owned resource until it gets the result to continue
its work. Furthermore, the recovery from the deadlock is a big loss to the whole
working system. In addition, the synchronous communication asks all the involved
parties to be active at the same time, which produces the long time and big load for
the system to prepare for one large synchronous communication. Thus it is not
realistic in distributed and concurrent systems.

On the other hand, the asynchronous communication gets more concurrency during
the messaging. The message sender doesn’t have to wait unless it need the result in its
operation, and it could release the resource temporarily after it sends the message.
Moreover, the message receiver could be inactive or busy with other stuff during the
asynchronous communication, and to operate the message later. This kind of
manipulation is more and more useful to the bandwidth in the Internet age to avoid
network-congestion. Therefore, asynchronous communication obtains more attention
from loosely-collaborating and distributed software system development for the
long-time execution pace like database merging. The overhead of synchronous
communication becomes an important factor to make designer consider the tradeoff
with its required quality of service.

In the history of computer science, synchronous communication has been researched
for a long time because it is easier to be understood simply as an ordered sequence of
operations among the components in a single collaboration. Synchronous
communication follows the general logical thinking of people. Today synchronization
is a common part in the software system. There are many specific technologies used

Chapter Two: Component Model With Communication

Analysis and Implementation of Asynchronous Component Model 35

to help design, implement and optimize the synchronous communication, for example,
process management by operation system. As for the component-based software
development, the main component models and infrastructures (EJB [36], .NET (COM
& DCOM) [37], CORBA [38]) all have the basic support to the synchronous
communication between the components.

In contrast with synchronization, the asynchronous communication is difficult for
people to obtain in the software production, because it has much higher parallelism
not only on software but also on hardware, complex to concrete development.
Asynchronous communication is more difficult to obtain the result in a rational time
than synchronization which is based on presumptively successful communication. It is
also harder to control and verify asynchronous communication according to its
corresponding software architecture. In addition, there is less support to asynchronous
communication from programming tools. Recently, some languages like ProActive
[39] and Sharpie [41] claims to have default asynchronous communication, and EJB,
CORBA also provides some way to get asynchronous communication.

However, now there are many new ideas that require more asynchronous
communication than synchronous one. For example, distributed computing which is
based on the network to assign the parts of one task to different machines, the
advantages of asynchronous communication is very clear in that environment. Thus
the developers need asynchronous communication to solve the big trouble in
synchronous communication. Moreover, many kinds of component are rather
asynchronously communicating entity in the system. The typical asynchronous
component is intelligent agent, which always performs the tasks from the client while
it sends message to delegate some sub-tasks to other components without suspending
for the result.

Chapter Two: Component Model With Communication

Analysis and Implementation of Asynchronous Component Model 36

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 37

 CHAPTER THREE

 IMPLEMENTATION OF

 ASYNCHRONOUS COMPONENT MODEL

Since component and communication become the basic keys to the modern software
system, the communication modes: synchronization and asynchronization has to be
chosen to compose the component to software system. However, there is less
technique support to develop asynchronous communication between components than
to make synchronous communication. Thus most of the software system only holds
synchronous communication, although asynchronous communication is more useful
at some time.

One of the basic things to support the usage of component-based software with
asynchronous communication is the programming language. As a matter of fact
recently some new experimental programming languages claim to have built-in
mechanism for programming of asynchronous communication, like ProActive [39],
Piccola [40], Sharpie [41]. If more precisely, these languages are just the extension of
their host programming language from the view of implementation. Since ProActive
is going beyond Java which is as industry-standard language, it would be more
practicable for the software development. In this paper, I would explain how to
implement the component model with asynchronous communication by ProActive.

3.1 ProActive

As known from the experience of programming in Java, it provides synchronous
communication as default mode for the method call or messaging between the objects.
In order to fix Java with another powerful wing to be adaptive in the environment of
asynchronous communication, ProActive [39] was born to ease the programming in
that situation, and in component-oriented development as well.

ProActive [39] is actually a set of java class libraries that add many interfaces and
relative functions for parallel, distributed, concurrent programming with fine security
and mobility. It uses underlying Java RMI layer [42] to realize all its ideas including
asynchronous communication, and thus it is adequate to be used for the
network-specific application.

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 38

Because java is a kind of pure object-oriented programming language, ProActive [39]
program is based on the objects and messages. ProActive adds a new kind of object to
the java software, which is called active object. Active object is the first-class object
in ProActive, encapsulating the common object (called passive object in ProActive).
Only active object is shared by all the other objects in the system. In other words, the
interface of one active object is open to other active objects or passive objects. On the
other hand, one passive object in ProActive could expose its interface to some relative
passive objects and only one active object.

The general object model in ProActive [39] could be graphically represented as below,
and the arrow link means the message sending between the objects:

 Figure 16: ProActive Object Model

Subsystem A

Passive Object1

Passive Object2

Active Object1

Subsystem B

Passive Object3

Passive Object4

Active Object2

Subsystem C

Passive Object5

Passive Object6

Active Object3

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 39

The actual implementation of active object in ProActive [39] is to wrap the common
object created from standard java with RMI mechanism. The wrapping makes the
active object become the remote object which has some additional parts like stub and
skeleton to form a kind of client/server structure.

An active object A of some class, from the view of RPC, will have 4 parts in fact:
1. stub_A (client side)
2. bodyproxy_A (client side)
3. body_A (server side)
4. instance_A (server side)

The parts of client side means that stub_A and bodyproxy_A should be used in the
same JVM [43] as the client which calls the function of active object. The parts of
server side means that body_A and instance_A could be put in an independent JVM
from client object. The body_A and instance_A provides the real service for the
request from client side, and their location depends on the creation and deployment of
active object. The Figure 17 shows these 4 parts and their roles in the call to active
object, and arrow link represents the message sending.

 Figure 17: Active Object Composition

Active Object A

stub_A

(having script to
deal with message

as request)

Message

bodyproxy_A

(having script to
send request)

body_A

(receiving and
managing request)

instance_A

(having
implementation for

request)

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 40

There are three ProActive [39] interface for user to specify the management of
received request to active object: InitActive, RunActive, EndActive. The standard
behavior is to serve all incoming requests one by one in a FIFO order. User can adopt
other order like LIFO by implementing RunActive interface, or passing a LIFO
active object as the parameter to the creation of new active object.

In ProActive [39] every active object must be associated with a node, which could be
thought as general and basic remote object with valid entry (RMI URL [42]) in RMI
registry [42]. The default node is created automatically by ProActive on the local
JVM when a first active object is created without a given node. Moreover, if no RMI
Registry exists on the local machine, ProActive will automatically create one. If RMI
registry exists, ProActive will automatically use it.

ProActive [39] uses future object and active object to get the asynchronous
communication. The future object is the type of a refiable object that can not throw
checked exception, and it includes three parts: stub_future, proxy_future,
object_future. These parts are similar to the stub, bodyproxy and instance in active
object in terms of function.

Suppose that object or component A calls the method of Active Object B with return
the object of type V, the basic procedure is executed in 4 steps. The procedure could
be graphically represented as below (solid arrow line means the message sending, and
dashed arrow link indicates the object creator and its creation):

Step 1: Since stub_B is the subclass of class B, it inherits all the methods from class

B, as well as the properties. However, active object's properties must be
accessed through a public method, i.e. define public get and set method to do
with property. Furthermore, when we create active object it returns the
reference on its stub. Thus the stub_B receives the method call from A, and
builds the methodcall object and passes it to bodyproxy_B by redefining all
public methods to reify them through a generic proxy.

Note that stub_B cannot redefine final or non-public methods inherited from
class B. Therefore, the calls to these methods are not reified but are executed
on the stub, which may lead to unexplainable behavior. Meanwhile, getting or
setting instance variables directly (not through a getter or a setter) must be
avoided in the case of active objects because it results in getting or setting the
value on the stub object and not on the instance of the class B.

Step 2: bodyproxy_B checks the type of return result, and then creates the future

object of corresponding type. bodyproxy_B adds the reference of future
object V (actually the reference of futureproxy_V in future object V) to the
methodcall object and send methodcall object to body_B

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 41

 Figure 18: Asynchronous Call in ProActive

Step 3: body_B put the methodcall object to the queue, and return the reference of

stub_V immediately to the object or component A. body_B would call the
proper method in instance_B at last according to the default or user-specified
service policy.

Step 4: instance_B executes method and create the object_V as a return result, and

give the reference of object_V to body_B. Then the body_B provides the
true reference of object_V to the futureproxy_V of future object V.

As illustrated in Figure 19, when object or component A wants to use the function of
V, it sends the message to stub_V. Then stub_V wrap the message and send it to
futureproxy_V, which invokes the real implementation in object_V. If the object_V
is not available, A must wait for the result to be finished by Active Object B.

3.1.1 Component Characteristics of ProActive
As said before, ProActive [39] resulted from the application of the model that is

Create object_V

Return object_V reference
Call method

Send methodcall object

Send methodcall object

Send message

Set reference of object_V Create future object

A

stub_B

bodyproxy_B
body_B

instance_B

stub_V

futureproxy_V
object_V

Active Object B

Future Object V

Send the reference of stub_V

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 42

structured in the multiple independent subsystems. Obviously, we can consider that
every subsystem is a basic component, which is in charge of one basic function and
communicate with each other.

As a matter of fact, due to the separation of active object and passive object,
ProActive [39] is an implicit component-oriented programming language although it
does not focus on the component programming. Every passive object is known only
by an active object and this kind of passive object could be treated as the sub-object of
that active object. Therefore one ProActive component could be constructed by one
active object with any number of relative passive objects known by it.

Because ProActive [39] is used to write the program for the software, ProActive
component is at the level of implementation and it has something different from
general component. The most apparent point is that the interface of ProActive
component is not as very structural and concentrative as general component.
ProActive component is actually a set of objects, without uniform interface part. The
interface of provided service by component is decided in the interface of active object,
while the interface of required service is composed of the interface of active object
and passive object.

 Figure 19: General Component and ProActive Component

In Figure 18, it is clear that ProActive component is a gray box, compared to the black
box as general component. If one wants to know the interface of ProActive
component, he has to firstly find the inside active object and passive objects of that
ProActive component. Thus ProActive component is a kind of more primitive
software unit according to the strictly encapsulated component with identified and
uniform interface. In addition, since Java is the basic programming language to build
ProActive component, this makes some restriction to ProActive component to be
implemented in various environments.

Provided

Component A

A1

A2

A3
Required

Component A

Active Object

A1
A2

Passive Object

A3

General Component
ProActive Component

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 43

The following section is to discuss the general but important characteristics of
component mapped to ProActive specification.

Generality
1. Purpose
Following the application model introduced by concurrent Eiffel, it provides an
active-object based framework to implement distributed, parallel, concurrent
component programming.

2. Development theory
Decide the only one active object for each component in the application, and the
active object could be called from inside or outside of component. The other object in
each component is regarded as passive object, which can’t provide the service to the
objects outside the component.

3. Tools
A graphical-interface monitor called IC2D, which can show the status of active object
and migrate it. For example user can drag and drop an active object in IC2D from a
machine in Brazil to another machine in France.

4. Entities

 Kinds

Each ProActive component is made of two kinds of object: active object (only
one) and passive object (none or more). Active object could communicate with
the passive object in its own component and other active objects outside the
component. Passive object could only communicate with objects in the same
component, or call the active objects outside the component.

 Mixture
Implementation in pure java, and component is on top of java RMI layer.

 Context
In fact all the components know each other though java RMI registry

 First-Class
Active object and passive object are first-class citizens, and user-defined
MetaObject protocol is supported for the reification of method invocation
and constructor call.

Interface
1. Syntax

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 44

ProActive [39] has not keywords or abstract syntaxes to explicitly mark the interface
of ProActive component in the program file. Although it uses java RMI layer to
realize the concrete communication by active object in the components, all the RMI
manipulation is encapsulated in its library. User only needs to write the class file in
the common way and create or call active object using ProActive methods. In other
words, ProActive simply provides the specific service with its own library interface
for the programmer, not specifying the formal component interface.

2. Element
All the elements for the component interface are done in the class file like the
standard Java programming. As a matter of fact user can’t see the clear list of possible
interface elements like procedure, channel, and so on. In addition, ProActive [39]
regards all the public methods in the class definition as the usable elements to redefine
for the active object.

3. Communication
ProActive [39] concentrates on the asynchronous communication model, and it makes
the active object as a kind of message server. When a component calls a method in
another component by sending a message to some active object, it will continue its
execution until it needs the result of that method. This kind of interaction is called
wait-by-necessity.

Each ProActive component could only have the reference of stub of the active object
in other components, and the stub of active object is responsible to send the method
call through a generic proxy in active object. Therefore the ProActive component
interface is represented by the stub of active object, if from the view outside
ProActive component.

Attribute
All the attributes of ProActive [39] component are done in the class file, and user has
to implement public get and set method (as the element for interface) to operate the
attribute of the active object. In order to initialize the attribute in the constructor of
active object, the attribute argument is asked to implement the interface
Java.io.Serializable.

Life Cycle
The life cycle of ProActive [39] component depends on the RMI registry. When
ProActive creates an active object of a component, it will create a RMI registry or use
an existing one, and register the component with a default or specialized node. Then
other component could send the message to this ProActive component by the RMI
URL. If it is unregistered from java RMI registry, or RMI registry is unloaded for
some reason, the ProActive component is out of the interaction with other ProActive

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 45

components in the application.

Dynamic Behavior
There are a lot of different explanations on the dynamic behavior of component, but
here it means the context-specific change of component behavior in the run-time. In
this way, ProActive [39] may support the dynamic behavior of the component.

ProActive gives the programmer some interfaces and classes to deal with all the
method call to active object before active object accepts to execute the corresponding
implementation. Thus the special communication protocol and behavior control could
be easily done on the ProActive component without changing the source code of
concrete function. In fact, the dynamic behavior of ProActive is to separate the
control decision from behavior implementation.

Properties
The property of ProActive [39] component is mainly expressed by active object.
Active object could give the dynamic and service-specific property to its interface
through its RMI encapsulation and message-queue management. The interface part of
active object could be local or remote. Active object could automatically migrate itself
among the different JVM, and set the relative deployment by XML descriptor. User
could specify and change the service policy on the message queue of active object
according to the application context in the run-time.

More information about ProActive [39] could be read in the appendix A.

3.2 Translation from Asynchronous Model to ProActive

Since ProActive [39] is a programming language implicit to support component-based
software development, it is possible to use the component model gotten from the
architecture design phase to implement it in ProActive. The component model here
used includes the basic or structural component with abstract interfaces and functions,
and the main asynchronous communications between the components. In addition, the
component model should also have the relative deployment for the system running.

Although the implementation for the component model by ProActive [39] is visually a
development process from system specification to program code, even the most
formal specification of a single function could has various writing of code in terms of
individual programmer and relative tools. A more effective method to explain how to
realize the component model by ProActive in a general way is to use Model-Driven

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 46

Architecture (MDA) [44] approach. MDA is to translate the component model to
ProActive implementation at a higher abstraction level. This kind of translation only
concentrates on the translation of most common and important aspects in the
component model not the details in fact.

3.2.1 MDA Introduction

Because every development of software system has to depend on the concrete
technology to make the real value for the client, there is a huge market of software
tools and development theory like C++ and Java [29]. People often spend much time
to choose the proper techniques to implement their respective work. The relationship
between the system functions and corresponding realization is many-to-many. That’s
to say, one single function could have different solution through different techniques,
and vice versa.

In order to solve the contradiction between the abstract design and concrete
technology, MDA [44] is used by OMG (Object Management Group) to connect the
different implementation with the similar software architectures, and these
architectures are based on a highly abstract business model [8, 9, 10, 11]. Thus MDA
is model-centric development methodology to automatically translate the base model
to various specific models (architecture) on the concrete platform or technology, with
some transformation rules. Then the specific model is used to generate the formal
program code by some kind of parser, and finally the formal program is completed
and validated by the relative developer as usual. The base model is called
Platform-Independent Model (PIM), and the specific model is called
Platform-Specific Model (PSM) [44, 8, 9, 10, 11].

The separation between PIM and PSM done by MDA [44] is to reduce the gap
between the architecture designs affected by different technology for the same
behavior or function. Therefore MDA leads to more design reuse in the development.
Meanwhile, MDA tries to get the automatic translation from abstract business model
to all kinds of specific development technology and even code generation in terms of
language [8, 9, 10, 11]. The automation from model to implementation also decreases
the cost and time in the detailed design and implementation phase of the software life
cycle. MDA help people to pay more attention to generic and abstract system
modeling without technique support, and also to technology-dependent rules for
automatic mapping.

Since MDA [44] works beyond the level of component and other middleware
platform, it could easily create the abstract model mapping to component-based
architecture. In fact, a MDA application should include one base generic model as
PIM, and several specific models as PSM like .NET [37], EJB [36], and their concrete
realization. In this case, the interoperability between the several specific technologies

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 47

involved in a MDA development is obviously high and clear. The MDA tools can use
base model specification and relative transformation rules to construct the
corresponding relationship between the implementation of one PSM to another [10,
11]. In other words, the link of service or component in PIM is mapped to the
interoperation among the systems of PSM due to different implementation.

The core standards used to represent PIM is Unified Modeling Language (UML) [34],
Meta Object Facility (MOF) [45] and the Common Warehouse Metamodel (CWM)
[45]. In this paper, I adopt the UML-like diagram to illustrate the some translation
rules from general component model (PIM) to ProActive [39] Model (PSM), since
UML language is very common in the system-modeling domain.

More detail about MDA could be read in the appendix B, and it is being developed
and formalized to be another standard approach especially for component-based
software development.

3.2.2 Translation Rules for ProActive

ProActive [39] is a Java-based programming language with featured asynchronous
communication and implicitly supports component-based system development. The
translation from asynchronous component model to ProActive implementation is
really direct. In fact there are some ongoing projects that are using ProActive to
produce component software

Using MDA [44] approach, this paper proposes some basic rules to give the insight
how the asynchronous component model could be realized in ProActive [39]. The
rules are represented as PIM-to-PSM in UML-like style, because UML [34] is the
most popular modeling language for the system development. UML is also the
modeling standard adopted by MDA of OMG.

1. Transformation on class
Besides the standard object in ProActive [39] as other OO languages, there is active
object introduced in ProActive for the local or remote communication with other
object. One basic independent component, which has message exchange with other
components, could be mapped to a class of active object in ProActive. We can use
some kind of class diagram [6] to show it as in Figure 20.

Although there seems no change in the transformation between the component and the
class of active object, some special requirements are asked by ProActive [39] to ease
the encapsulation and RMI [42] operation behind the active object. User has to put a
non-argument constructor (ComponentA in Figure 20) in the class of active object.
The non-argument constructor would be called by the stub created in ProActive,
otherwise the stub calls the constructor with argument and use the argument for the

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 48

stub not for the real object. The argument of constructor normally should be
serializable, which means that the argument belongs to a class implementing
Java.io.Serializable interface. The class of active object must be declared as a public
and non-final class in ProActive, so the active object can be rebuilt by ProActive.

 Figure 20: Translation from Component to Active Object

If the component has the special service policy other than FIFO to work with the
received message, user have to implement ProActive [39] interfaces or create active
object with argument which is another active object with same policy. Using three
ProActive interfaces (InitActive, RunActive, EndActive) is more common to get
user-defined management, and it is easier to be done in our translation, shown in
Figure 21.

In Figure 21, as declared in class of active object, the InitActivity is the function
defined in interface ProActive.InitActive. InitActivity is used to initialize the
management of received message, like the constructor of java thread class. The
runActivity is the function defined in interface ProActive.RunActive. runActivity is
used to manage received message by active object, like the run() method of java
thread class. Then The endActivity is the function defined in interface
ProActive.EndActive. endActivity is used to do something when finishing the
management of received message, like the stop() method of Java thread class.

In addition, there may be some compound component that is composed of several
sub-components, with some reference relationship between each other. In this case,
only the sub-component that accepts the message from outside need to be transformed

Translate

Component Active Object

componentA

p1: int
p2: String

componentA(x:int)
Operation1
Operation2: boolean

Active componentA

p1: int
p2: String

componentA
componentA(x:Integer)
Operation1
Operation2: boolean

Integer is the
serializable class
wrapping int type It must be Public

non-final class

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 49

to the class of active object, and others are treated as the class of passive object (Java
object) in ProActive [39]. Thus the transformation from compound component to
ProActive component only depends on the interface of sub-component in the
compound component, no matter the relationship between sub-components.

 Figure 21: Message Management Translation to ProActive

The Figure 22 graphically shows the translation on compound component. The
general component componentA has three sub-components: SubComponentA1,
SubComponentA2, SubComponentA3. SubComponentA1 has the aggregation
of SubComponentA2, SubComponentA3. Since only SubComponentA1 can

Translate

message

componentA

p1: int
p2: String

componentA(x:int)
Operation1
Operation2: boolean

Active componentA

p1: int
p2: String

componentA
componentA(x:Integer)
Operation1
Operation2: boolean
initActivity(body:Body)
runActivity(body:Body)
endActivity(body:Body)

message

Precondition process

Management process
Postcondition process

Message handler

Special pre-operation
on message before
sending to component

message

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 50

receive the message and give service to other component, it is translated to active
object (Active SubComponentA1) in ProActive component. SubComponentA2
and SubComponentA3 becomes the passive object (Passive SubComponentA2,
Passive SubComponentA3) in ProActive component.

 Figure 22: Compound Component Translation to ProActive

As for any structural component, it could be decomposed to a set of relative
sub-components. As long as we extract the sub-components exposing the interface of
provided service to other components, each sub-components of this type should be
translated to active object. Then according to the relation in structural component, the
sub-components not exposing their interface of provided services, are translated into
passive objects to be linked with active objects. Thus one structural component be
translated to one or more ProActive components, and each ProActive component has
only one active object and any number of passive object.

Translate

componentA

SubComponentA1

SubComponentA2

SubComponentA3

message

Active componentA

Active
SubComponentA1

Passive
SubComponentA2

Passive
SubComponentA3

message

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 51

Different from general object-oriented programming language, ProActive [39] uses its
own primitive method to create the active object; in other words, we must use
newActive or turnActive method in the org.objectweb.proactive.ProActive class.
The newActive method creates an active object by the special instantiation from a
class. turnActive method makes an active object through reconstructing the existing
object that is created by the classic OO keyword new coping with the class, like
following:

 Figure 23: Creating Object Translation to ProActive

The choice between both newActive and turnActive has no difference for the
function of active object, and it only affects the detail of programming. For example,
newActive has the limitation on the arguments of class constructor that the argument
has to be serializable, as shown in Figure 20. On the other hand, turnActive is flexible
to encapsulate any Java object to be an active object, and thus it could be more useful
in special context of programming. As for the rule of PIM-to-PSM, I think that
newActive should be put as the default method for the creation of active object, since
it is more close to the standard object creation in terms of semantics, and more simple
for automatic translation. Nevertheless, turnActive is the alternative way to revise the
PSM model for some reason.

2. Transformation on object call
Since ProActive [39] distinguishes the active object from the standard java object (i.e.
passive object), the method call to the active object is based on the RMI mechanism.
This means that the message sent to active object is always operated as a remote
procedure call in Java [29] programming. Therefore, the method call to active object
and passive object is different in ProActive. It is transformed like following,

Translate

Translate
componentA Active componentA

org.objectweb.proactive.ProActive.newActive

componentA ComponentA object

org.objectweb.proactive.ProActive.turnActive

new

Active componentA

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 52

supposing that SubComponent1 is translated to an active object, while
SubComponent2 is translated to a passive object in Active Component2.

 Figure 24: Generic Method Call Translation to ProActive

In order to implement special method invocation to active object through
programming, ProActive [39] provides some primitive operations for the method call
to hide the detail of underlying RMI [42] manipulation. As a matter of fact, if a
component or an object wants to call an active object, it must know the RMI address

Java RMI Layer

Operation3

Component2

Operation1

Operation1

Operation4

Component1 SubComponent1

Operation4

Active
Component1

Active
SubComponent1

SubComponent2

Operation2

Operation3

Passive
SubComponent2

Operation2

Translate

Active Component2

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 53

of that active object. Every active object is registered into RMI registry when it is
created using newActive and turnActive method. Therefore, the actual
transformation of method call to active object on the source code level (or text
representation) is like following, supposing that Component2 is translated to an
active object.

 Figure 25: Method Call Translation to ProActive Code

In Figure 25, there are two arguments in lookupActive method. The first one is the
class name of active object, and the second one is the address of node related to active
object. The node has an entry in RMI registry.

Asynchronous call is the basic feature of ProActive [39], which means that when a

Translate

Operation1

Component1 Component2

General description:
Component1 send ‘Operation1’ message to
Conponent2 to call the method

Operation1

(Active)Component1 ActiveComponent2

ProActive code:
ActiveConponent2 ac =
org.objectweb.proactive.ProActive.lookupActive(

“ActiveConponent2”, nodeurl);
ac.Operation1();

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 54

method is called on an active object, the fake result (future object) is returned
immediately to the caller. Only if the result needs to be used, the ProActive program
would wait until the real result is available. This kind of asynchronous strategy is
so-called wait-by-necessity. Thus suppose that the work flow in an asynchronous
component model is generally like following:

 Figure 26: General Asynchronous Call of Component

The Component2 is translated into active object to handle asynchronous
communication. If the result of Operation1 is returned after Component1 reaches
the statement where the result is needed, the ProActive workflow looks as below:

 Figure 27: Asynchronous Call Translation to ProActive

If the result of method call is returned before the caller reaches the statement where
the result is needed, or there is no result of method call, the asynchronous call in
general component model is same as in ProActive [39]. However, Due to 100%
compliance to the standard java language, there are some restrictions on the

Operation1

Component1 Component2

Return result

Operation1

(Active)Component1 ActiveComponent2

Return result

Idle while waiting

Need result of Operation1

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 55

asynchronous call in ProActive:
1) Final classes cannot be the return type of asynchronous call
2) Same thing for primitive type like boolean, char
3) Same thing for classes without non-argument constructor
4) Same thing for classes throwing checked exception.

Meanwhile, if an object in proactive is the argument of a method, the class of this
object must be serializable unless this object is active object. Thus the transformation
on class of active object with asynchronous call is like following:

 Figure 28: Asynchronous Component Translation to ProActive

On the other hand, if user wants to keep the synchronization way of method call to an
active object in ProActive [39], user can modify the return type of the method
according to the previously listed restriction for asynchronous method call. We can
also use ObjectForSynchronousCall class, given by ProActive, as the return type

Translate

Java.io.Serializable interface

componentA

p1: int
p2: String

componentA(x:int)
Operation1
Operation2(a:Test): boolean

Active componentA

p1: int
p2: String

componentA
componentA(x:Integer)
Operation1
Operation2(a:Test): boolwrapper

Public non-final class

Test

Test

boolwrapper

result: boolean

non-final and non exception-throwable class

Active Object

boolwrapper

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 56

for the method with no return result in the synchronous call. The transformation is
like following, supposing that Operation1 and Operation2 in component
componentA need to be called synchronously:

 Figure 29: ProActive Translation of Component with Synchronous Call

ProActive [39] uses node to deploy the active object in the runtime environment, and
here node is an object which offers the minimum but essential services to interact with
a given JVM [43]. Every active object is attached to a node which indicates the JVM
where active object lives. Since the node URL identifying node object is stored in

Translate

Java.io.Serializable interface

componentA

p1: int
p2: String

componentA(x:int)
Operation1
Operation2(a:Test): synobj

Active componentA

p1: int
p2: String

componentA
componentA(x:Integer)
Operation1: ObjectForSynchronousCall
Operation2(a:Test): synobj

Public non-final class

Test

Test

synobj

result: boolean

synobj

final or exception-throwable class

synobj

result: boolean

synobj

Active Object

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 57

Java RMI registry, node URL follows the format of RMI protocol. Therefore, the
transformation on deployment of component is like below, and the dashed arrow link
means message sending in the system:

 Figure 30: Deployment Translation to ProActive

In Figure 30, the general deployment model of component is translated into concrete
deployment model in ProActive [39]. The ProActive active object named Michael
with type Student has the corresponding node identified by node URL
rmi://ELEVE/Michael. Another active object Jean has its node URL
rmi://PCINFO/Jean, and thus the developer could set those node URL in ProActive
deployment file for the active object related to component.

Active Object

Student

Machine_Name: Machine_Type

Machine_Name: Machine_Type

Teacher

ELEVE: PC

Michael: Student
rmi://ELEVE/Michael

PCINFO: SUN

Jean: Teacher
rmi://PCINFO/Jean

Translate

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 58

3.3 Example: Flight reservation system

As an experiment of ProActive [39] implementation, I used ProActive to realize a
simple flight reservation system [7]. The component model for this flight reservation
is very easy to be shown as below:

 Figure 31: Component of Flight Reservation System

As seen in Figure 31, there are four components in flight reservation system. Client
component asks the Counter component for the flight ticket. Before Counter
component returns the ticket to Client, it has to ask the Company component if there
is available seat in plane. According to the result from Company, if there is still seat,
Counter component would ask the Company to book the seat and send request to the
Bank account to pay the flight ticket from client’s account. Then the Counter
component gives the ticket to the Client. If there were not seat, the Counter
component would return failure to the Client.

This simple flight reservation system obviously contains some asynchronous
communications between the independent components. For example, when the Client
component sends the message for the ticket, it could continue its work without

Client

Counter

Bank Company

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 59

waiting for the result of its call. Booking seat by the Company component and
payment by the Bank component could be done concurrently if there is seat in flight.
In other words, the Counter component should sends booking message and payment
message one by one in an asynchronous way. It is not necessary to waiting for the end
of booking seat and then do payment of flight price to the Bank component.

Therefore flight reservation system is naturally a distributed, parallel, concurrent,
asynchronous software system, ideal for the ProActive implementation. The
transformation rules are already applied to the component in flight reservation system,
for example the general class representation of Bank Component is like below:

 Figure 32: Bank Component of Flight Reservation System

The actual implementation of Bank component is to program it as the class of active
object in ProActive [39], coding like Table 1.

/*
 * author Kaiye Xu,
 * Bank.java
 */

package org.objectweb.proactive.xky.flightbooking;
import java.util.Hashtable;

/**
 * xky bank to manage the bank account in flight booking system
 */

public class Bank implements org.objectweb.proactive.RunActive {

Bank

name
accounts
counterurl

Bank(name)
Bank(name, counterurl)
getName()
getAccounts()
setAccounts(accounts)
getCounterUrl()
setCounterUrl(counterurl)
order(account_number, price)

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 60

 private String name;
 private Hashtable accounts;

 private String counterurl = "//localhost/counterxky"; //Counter component address

 public Bank(){} //necessary to ProActive active object

 public Bank(String name) {
 this.name = name;
 initAccounts();
 }

 public Bank(String name, String counterurl) {
 this.name = name;
 this.counterurl = counterurl;
 initAccounts();
 }

 //--Create some new account with account number and amount
 private void initAccounts() {
 accounts = new Hashtable();
 accounts.put("c1", new Float(100));
 accounts.put("c2", new Float(200));
 accounts.put("c3", new Float(300));
 }

 public String getName() {
 return this.name;
 }

 public Hashtable getAccounts() {
 return this.accounts;
 }

 public void setAccounts(Hashtable accounts) {
 accounts.clear();
 this.accounts = accounts;
 }

 // Return the RMI address of Counter component as an active object
 public String getCounterUrl() {
 return this.counterurl;
 }

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 61

 public void setCounterUrl(String counterurl) {
 this.counterurl = counterurl;
 }

 /**-- substrate amount of price from account identified by account_number
 *
 * The return type boolobj is a serializable class which has the instance
 * variable with boolean type
 */
 public boolobj order(String account_number, Float price) {
 System.out.println("message is order from counter");

 Float amount = (Float)accounts.get(account_number);
 if(amount != null) {
 if(amount.floatValue() > price.floatValue()) {
 accounts.put(account_number,
 new Float(amount.floatValue() - price.floatValue()));

 System.out.println(account_number + " has withdrawn " + price);
 return new boolobj(true);
 }
 }
 return new boolobj(flase);
 }

 //--this function is the implementation of rg.objectweb.proactive.RunActive
 //-- it makes Bank active object serving in FIFO order
 public void runActivity(org.objectweb.proactive.Body body) {
 org.objectweb.proactive.Service service =
 new org.objectweb.proactive.Service(body);

 service.fifoServing(); //FIFO order to serve the request
 }
}
 Table 1: ProActive Program for Bank Component

The other program files including Client.java, Counter.java and Company.java
also follow the transformation rules described above to implement the functions of
Client component, Counter component and Company component. Meanwhile, in
order to make the user interface more comfortable, every component is attached to a
java window to show the state of component. For example, the bank window is like
below:

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 62

 Figure 33: ProActive Window of Bank Component

The Normal result of client request for flight reservation is like below:

All the flight reservation system has been implemented and tested with ProActive

Figure 34: Client Request in Flight Reservation

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 63

ver1.0.1 [39] and with JDK 1.4.1 [29].

Though the work of this master thesis only implemented the flight reservation system
with single client, it is easy to extend the system to handle N clients at the same time.
When N clients concurrently send the message to ProActive component Counter
(active object actually), the Body of Counter would automatically stores all the
message objects to the message queue. Then the Java thread of Body would always
monitor the condition of message queue, and pick out one message at some time
according to the service policy of Body. The method call to ProActive component
Company and Bank is included in one process of Counter to reserve the flight seat.
During the time the Counter deals with each message from client, the result by
Counter is never returned until the action by Company and Bank is done; In other
words, Counter has to wait for the feedback from Company and Bank before it
begins to operate the next message from a client. Thus the requests from N clients are
served ultimately in a sequence order. Meanwhile, N clients could continue their work
in an asynchronous way after they send the message to book the seat.

From the above explanation of transformation rules and example from general PIM to
ProActive-specific component model (PSM), we can see that the change is direct and
easy. However, those are just the basic work to connect MDA [44] fashion with the
ProActive [39] implementation. As ProActive is being developed to be a standard java
infrastructure, it would be a more powerful tool for the development of network-based
component software with asynchronous communication.

Chapter Three: Implementation of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 64

Chapter Four: Analysis of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 65

 CHAPTER FOUR

 ANALYSIS OF ASYNCHRONOUS COMPONENT MODEL

The CBSE [13, 17, 18] brings some big changes to the traditional software
engineering during the recent years. One of the most important things is that CBSE
separates the abstract architecture design from concrete implementation at a higher
degree. The system developers could obtain more time to design an applicable
architecture based on reusable component, while they just often need to find the
existing component proper to be integrated into the system.

However, although people can reduce the time and effort to produce the new program
or component and test it, there appears another boring problem to people. It is about
whether the existing component is good enough to the system, in terms of functions
and environments, to be integrated into the new system.

As a matter of fact, the system requirements and the reusable component market both
mainly affect the decision in the architecture design stage. Due to the variation of both
requirements and market along with the time, the related design decision and the
architecture of component would be modified again and again in the software life
cycle. Therefore this leads to leave many instable even conflicting elements in the
component model, and then the elements would proliferate through the whole
software development. From CBSE perspective, even if there are all the
well-adoptable existing components by hand, only the composition not the inside
components decides the software quality of the component-based system. A
component is just reusable function unit under the demand of software architecture.

Undoubtedly, there should be some theory and tool to analyze and protect the
component architecture from the dangerous change for some reasons. As the common
methodology by people for other problems in the science or society, the first step to
analyze the component model is to represent it in some way like text or slides.
According to the description of the model there would be some specific solution to
give or validate the properties of component model. The solution of analysis could
also be used at the design reuse level.

There have been already some Architecture Description Languages (ADL) used to
formally represent the architecture of software, like C2, Rapide, Wright [1]. ADL
generally gives the explicit specification of component, connector (a kind of
component which is only in charge of communication, as message medium), and
architecture configuration [1]. The interface of component and its semantics is also

Chapter Four: Analysis of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 66

the important part expressed clearly by ADL. Meanwhile, some component-specific
ADL like SOFA [49], gives uniform control and management on how to deploy and
update the component dynamically. SOFA also eases the task to create a reasonable
hierarchy for component model. However, the current ADLs seem to focus on
respective domain for the software architecture of domain-specific application. There
is no general support by ADL to analyze the asynchronous communication in the
component model. Thus the asynchronous model is still an open issue for researcher
to get more insights about it.

In this paper, I use ATAG (Asynchronous Graphic Abstract data Type) [7] to represent
the component model. Then according to ATAG model, I propose an algorithm to
analyze the message amount in the buffer of component. The buffer is called mailbox
in my algorithm, and it is actually the classic way that asynchronous component
model is simulated through synchronous model, as said in section 2. The
implementation and test is presented at last.

4.1 ATAG

Different from other kinds of ADL, ATAG concentrates on the model with messaging
between the components and accordingly change of the component state. It results
from the previous study on Korrigan and GAT (Graphic Abstract data Type) [2, 3, 5,
19, 22], both of which is used to give a complete specification of a component-based
mixture system. GAT approach is linked to the synchronous component model.
Because ATAG only pays attention to the dynamic behavior of component model with
asynchronous communication, it just inherits the Symbolic Transition System (STS)
[2, 3, 5, 19, 22] in Korrigan and GAT. STS uses some abstract symbol and figure to
feature the event, message, activity and relative component states; in other words,
STS is simply a finite state chart with additional description.

The basic unit in ATAG [7] is the component, and it is graphically expressed as the
view from outside, like below:

 Figure 35: Component Interface of Factory

Price

Fail

>Order(?id: Product_id,
?a: Amount)

Factory

Chapter Four: Analysis of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 67

In Figure 35, the component is a box with name label, and there is one input pin on
the left of box, and three output pins on the right.

The input pin could be considered as the port for receiving messages to have
component provide corresponding service to it. For example, here the input pin of
component Factory represents that Factory can receive the message Order with two
arguments: the product ID (?id: Product_id) and amount of product (?a: Amount).

On the other hand, the output pin of component depends on its position and label in
the graph. If the output pin doesn’t have the label but has a relevant input pin, it
means the operation on the received message, such as the uppermost output pin of the
component Factory. If the output pin has a label, it means the port for sending labeled
messages which is either the result of some actions or to require some services of
other components, such as bottom two output pins of the component Factory.

The external view of component only gives its interface for integration with other
components. In order to correctly analyze the component behavior, the internal view
need to be known also. In fact ATAG [7] use something close to UML state-diagram
[6] to describe the activity inside component. The component Factory in Figure 35
could have the following graph of its concrete work:

 Figure 36: Dynamic Behavior of Factory

As seen in Figure 36, there are two states of component Factory. Each state is a box

>Order(?id: Product_id, ?a: Amount)

Order>

>Order(?id: Product_id, ?a: Amount)

Factory

1

2

Price [ok]

Fail [not ok]

Chapter Four: Analysis of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 68

with the label of state number. The arrow with black solid round means that state 1 is
the initial state of Factory. The arrow with label Order> indicates that the operation
on message Order makes the component Factory change from state 1 to state 2. The
two arrow links from state 2 to state 1 means that sending message Price or Fail by
component Factory would also result in state change. The final interesting thing in
Figure 36 is the arrow link from state 1 or 2 to itself, which explains that receiving
message Order is nothing with the component behavior. Thus component Factory
separates the message receipt >Order from its execution Order>.

Since the dynamic behavior and the interface of one component are just two aspects
of a software unit, both could be represented together in a composition graph, shown
like following:

 Figure 37: Factory Component in ATAG

According to Figure 35, Figure 36 and Figure 37, there are totally three kinds of link
label in ATAG [7] graph to explain the arrow link.
1) Autonomous operation: this is generally written as op, which is the message

sending automatically by the component. It is triggered by some methods inside
the component to return the result or to ask for some additional service of other
components in the system. The example is Fail and Price on the right of the
component Factory.

2) Message receipt: this is generally written as >op, which shows the action of

receiving the message by the component. The real operation may include putting
the message in the buffer, as the solution of asynchronous communication. There
could be some guard (condition checker, like Boolean variable or method at
programming level) in this process. For example [not fullMailbox], tells whether
the message buffer of component is full or not. The example is Order on the left

Order>

1

2

Price [ok]

Fail [not ok]

>Order(?id: Product_id, ?a: Amount)

Price

Fail

>Order(?id: Product_id, ?a: Amount)
Factory

>Order(?id: Product_id, ?a: Amount)

Chapter Four: Analysis of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 69

of the component Factory.

3) Action: this is generally written as op>, which simply means that the component

executes the corresponding method or service for the received message. The
action always changes the state of component in ATAG. Therefore, in contrast to
synchronous communication, ATAG use >op and op> to denote the two
independent steps in asynchronous communication. The example is Order> of the
arrow link from state 1 to state 2 in component Factory.

The communication between the components is not only one-to-one, but also
broadcasting, multiple inputs and conditional communication. ATAG [7] uses the link
line from the output pin to input pin, to show the message path and participants in the
all kinds of communication scheme. The graph example is like following:

 Figure 38: Communication Scheme in ATAG

The [Message Guard] in Figure 38 is to control the access of the component to the
received message. It is just like a message filter with some fixed or dynamic service
policy to plug on or embedded in the component.

Component
A

Component
B

Component
C

Broadcasting

Component
A

Component
C

Conditional Communication

[Message Guard]

Component
B

Chapter Four: Analysis of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 70

With all above abstract graph, it is easy for ATAG [7] to build a component-based
architecture in the process of system modeling. For example, there is a very simple
system of ordering product, composed of two components. One is component
Factory illustrated in Figure 37, and another is component Client. The Client could
give the message Order to the Factory with the product ID and amount. The
component Factory should decide if the product is available to the Order message,
depending on its stock. If the message Order could be satisfied, Factory returns the
message Price to Client for the Order, and if Factory can’t provide as what message
Order asks, it returns the message Fail to Client.

The Client component is represented in ATAG like following:

 Figure 39: Dynamic Behavior and Interface of Client

Using the link line to connect the input pin and output pin of component Factory and
Client, the system architecture looks as Figure 40.

The graph of system architecture gives the message-based communication following
the interface of the components in the system, but it doesn’t tell the relationship
between the message flow and the system dynamic behavior. Especially it has not
clear view on the synchronous or asynchronous style in the behavior description.
Therefore, ATAG [7] uses some kind of STS to graphically express the message
transferring and relative state change on multiple concurrent components.

As a matter of fact, ATAG [7] inherits the synchronization product of STS from
Korrigan and GAT [2, 3, 5, 19, 22] to represent the global dynamic behavior with
message transition between the components. Since in asynchronous component model,
the message buffer is hidden in the component and buffer operation is also invisible
from outside, it is feasible to use synchronous diagram to express the synchronous or
asynchronous communication. ATAG adds an extra label ‘-‘ to show the special nil

Order

>Fail

Order

Client

1

2

Price>

Fail>

>Price

Chapter Four: Analysis of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 71

transition for the state of component; It means that nothing happens to the component.
Generally, the concurrent communication by message between the components is
represented as Figure 41.

 Figure 40: Architecture of Product-Ordering System

 Figure 41: Dynamic Behavior with Communication in ATAG

(-, request, >request, -)

Order

>Fail

Order

Client

1

2

Price>
Fail>

>Price

Order>

>Order(?id: Product_id, ?a: Amount)
Factory

1

2

Price [ok]

Fail [not ok]

>Order(?id: Product_id, ?a: Amount)

Price

Fail

1 1 1 1
State Vector

1 2 1 1

Synchronous
Vector

>Order(?id: Product_id, ?a: Amount)

Chapter Four: Analysis of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 72

Here synchronous vector is a tuple involving all the message-transmitting labels
corresponding to the components in one-to-one way. Thus in Figure 41 there are four
components in the system, and only the second component has the state change from
state 1 to state 2 because it sends the message request as an autonomous operation.
The sending and receiving of message request is treated in synchronous way,
represented in synchronous vector shown in Figure 41. This means that there is a
message link from the output pin of the second component to the input pin of the third
component. This kind of abstract graph ignores the time factor of the message
transferring between two components in the concrete implementation. Meanwhile, the
order and size of synchronous vector and state vector is the same, so each component
has its own corresponding item in the synchronous vector to express relative message
transition. The state change of component is only triggered by autonomous operation
and action for received message.

As for the previous ordering system composed of two components: Factory and
Client, the global dynamic behavior with messaging could be represented as
following:

 Figure 42: Dynamic Behavior and Messaging of Ordering System

4.2 Bound algorithm

It is clear that the asynchronous component model divides the method call into
message sending by emitter and message processing by receiver in the different
temporal point. As previously said, the classic way to simulate this asynchronous
communication is to add a message buffer for a component, which stores all received
messages to be operated by component in the future.

(Price>, -) (Fail>, -)

(>Price, Price)
(>Fail, Fail)

(-, Order>)

(Order, >Order)

1 1

2 1

2 2

Chapter Four: Analysis of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 73

Thus this kind of solution obviously raises the question whether the buffer size is
exactly enough to contain all possible messages given to the component in the
asynchronous communication. If the buffer size were super than needed, this would
cause idle resource and waste on maintenance. To the worse, if the buffer size were
smaller than needed, it would lead to failure on message sending. In the latter case,
the concrete implementation could be much expensive to handle the asynchronous
method call to distinguish a slow response with a message losing, especially in
complex environment. People need to obtain the specific and automatic tool to solve
the question of buffer size. In addition, the tool should help the model designer to
consider the potential danger of message buffer and adjust the whole component
model with more security and reliability in mind.

Here I introduced my depth-first search algorithm based on ATAG [7] model to find
out if each message buffer of its corresponding component in the asynchronous
communication is bound or not. The algorithm also indicates the existing message
cycle between the components. The message buffer is called mailbox in my algorithm,
since mail-posting is a common asynchronous communication in the world.

In order to precisely describe the change of mailbox in the global dynamic behavior of
asynchronous component model, the mailbox is assigned to each component state in a
synchronous vector which is shown in Figure 41. Therefore, the message transition at
each time would explain how the mailbox of every component is dynamically
changed due to message receiving or operation.

In addition, the autonomous operation in ATAG [7] model is ignored in my algorithm,
since it does nothing with message buffer. Moreover, it is supposed that the
component sends the message immediately in the execution. My algorithm also
assumes that the connection between any two components is always good enough to
support messaging; that’s to say, the algorithm only focuses on the problem of
mailbox, no matter the other problems possibly affecting the communication.

Basically the algorithm is a kind of architecture behavior checker. The input data of
my algorithm should be the ATAG without mailbox data, while the output data is the
analysis result of component mailbox for each state in the synchronous vector. The
output may include some message cycles. The UML data structure of my input is like
Figure 43.

Though the data structure in Figure 43 seems considerably simple, my algorithm is
general enough to deduce to more complex one to analyze all the mailboxes about the
asynchronous component model. In addition, my algorithm follows that the two
StructuredStates equal to each other, only if each ComponentState in the ordered
aggregation of one StructuredState is the same as the corresponding one in another
StructuredState. The number of component in the ATAG [7] model is fixed during

Chapter Four: Analysis of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 74

the asynchronous communication.

Mailbox
buffer : Hashtable

ComponentState
identifier : String
cycletable : Hashtable

0..*0..*

Transition
label : String[]

StructuredState

1..*1..*

StructuredTransition

22

11

StructuredSystem

**
**

ATAG

 Figure 43: The UML Data Structure of Input

4.2.1 Statement of Bound Algorithm

My depth-first algorithm is some kind of graph traversal, and it puts W to the message
number to indicate that the message is infinite to be received by the component.
Infinite message brings to the unbound mailbox in fact.

In the ATAG [7] graph of dynamic behavior, there could be self-link to the state to
make the component receive the message. Sometimes the number of a message in
currently computed mailbox of component is bigger than the number of same message
previously computed in the in the same mailbox. In both situations, W is set to the
message. Graphically the condition to set W looks like Figure 44.

Chapter Four: Analysis of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 75

Meanwhile, whenever there is a message marked with W, this W should be
propagated to other mailboxes for other states of the component in the ATAG [7]
model. This is because each mailbox for one component is computed, based on the
previous mailbox of that corresponding component as the beginner of the link of
message transition.

 Figure 44: Condition of Setting W

The bound algorithm looks like following, and all the bold words means variables:

//** input ATAG data variable **//
list_state_trans //this list stores the structured transition of ATAG model
initialstate //this structured state is the first state accessed from the start

//** Temporary variable **//

list_state_search_path //this list stores all the structured states on the current path of
traversal, like a data stack

list_state_visited //this list stores all the structured states visited in the traversal,
notes that here the structured state is with mailbox after applying
transition

hashtable_statetrans_neighbors //this hashtable stores the list of structured transition
of one structured state which is the source of
transition

public check_ATAG_Mailbox()
{
 initialize list_state_search_path
 initialize list_state_visited

initialize hashtable_statetrans_neighbors

add initialstate to list_state_visited
check_Structured_State_Mailbox(initialstate)

(>a) (>a)
1

(>a)

1

2

a:1

Mailbox

a:0

Chapter Four: Analysis of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 76

clear list_state_search_path
clear list_state_visited
clear hashtable_statetrans_neighbors

}

private check_Structured_State_Mailbox(current_state)
{
 add current_state to list_state_search_path

 if (hashtable_statetrans_neighbors has the value for current_state) then
 using current_state as key, copy the structured transition list in

hashtable_statetrans_neighbors to list_neighbours
 else
 {
 in list_state_trans search all the structured transitions of current_state which

is the source state of transition, and put them in list_neighbours

 store list_neighbours to hashtable_state_neighbors with current_state as

key
 }

 while list_neighbors is not empty
 {
 put the first structured transition of list_neighbors to statetrans_neighbour,

and remove that first one from the list_neighbors

 get dest_state from statetrans_neighbour
 search list_state_visited with dest_state, and put the search result in

old_dest_state

 get src_state from statetrans_neighbour
 search list_state_visited with src_state, and put the search result in

latest_src_state

 get transition from statetrans_neighbour
 apply transition to latest_src_state to get new_dest_state

 if(old_dest_state is null)
 {
 add new_dest_state to list_state_visited

 check_Structured_State_Mailbox(dest_state)
 }

Chapter Four: Analysis of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 77

 else
 {
 merge old_dest_state and new_dest_state by comparing their relative

mailboxes to final_dest_state. In the process of comparing if one message
has more in new_dest_state than in old_dest_state, then propagate that
message with W sign if old_dest_state is in list_state_search_path, or
propagate the number change if old_dest_state is not

 replace old_dest_state in list_state_visited with final_dest_state
 }
 }

 remove current_state from list_state_search_path
}

 Table 2: Bound Algorithm

The relative propagation algorithm looks like below, and here –1 means W:

//** relative variable used in depth-first algorithm **//
list_state_trans //this list stores the structured transition of ATAG model
initialstate //this Structured state is the first state accessed from the start
list_state_search_path //this list stores all the structured states on the current path of traversal,

like a data stack

list_state_visited //this list stores all the structured states visited in the traversal,
notes that here the structured state is with mailbox after applying
transition

hashtable_statetrans_neighbors //this hashtable stores the list of structured transition
of one structured state which is the source of
transition

//** Temporary variable **//
list_state_propagated //this list stores all the structured states propagated

//** Parameters **//
//startstate is the structured state to start propagation of message
//componentindex is the index of component state in structured state
//message is the string of propagated message name
//number is the value to set or increase to message number, -1 means W

public propagate_Message(startstate, componentindex, message, number)
{

initialize list_state_propagated

Chapter Four: Analysis of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 78

propagate_State_Message(startstate, componentindex, message, number)

clear list_state_propagated

}

private propagate_State_Message(current_state, componentindex, message,
number)
{
 if (hashtable_statetrans_neighbors has the value for current_state) then
 copy the structured transition list in hashtable_statetrans_neighbors to

list_neighbours
 else
 return

 while list_neighbors is not empty
 {
 put the first structured transition of list_neighbors to statetrans_neighbour,

and remove that first one from the list_neighbors

 get dest_state from statetrans_neighbour
 if(dest_state has corresponding structured state in list_state_visited)
 {
 if(dest_state is not in list_state_propagated)
 {
 search list_state_visited with dest_state, and put the search result in

latest_dest_state

 apply the change to latest_dest_state with componentindex,

message, number, and put the result to final_dest_state

 replace latest_dest_state in list_state_visited with final_dest_state
 add dest_state to list_state_propagated
 propagate_State_Message(dest_state, componentindex, message,

number)
 }
 }
 }
}

 Table 3: Propagation Algorithm

The execution time and required source of my bound algorithm depends on the
amount of message links and message cycles in the ATAG model. The message links
decide the complexity of depth-first search in bound algorithm, and the message

Chapter Four: Analysis of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 79

cycles claim the possible traversal in propagation algorithm.

4.2.2 Implementation of Bound Algorithm

The above algorithm has been implemented and tested in JDK 1.4.1 [29]. However,
this algorithm is language independent. It is easy to be realized by a lot of popular
programming languages to analyze the mailbox of asynchronous model. The main
Java window of bound algorithm is shown in Figure 45.

 Figure 45: Main Window of Bound Algorithm

If we take the ordering system introduce in section 4.2.1, the input data is based on
that ATAG [7] model of its dynamic behavior and message transition shown in Figure
42. The actual description of that abstract graph should be transformed in a list where
each item is a message transition with the synchronous vector as sender and receiver,
with message label as well. It looks like in Figure 46.

As seen in Figure 46, the synchronous vector of all the states for the components is
represented like [state1 state2 …]. The message vector of the concurrent messaging

Message Transition List

Information Console

Chapter Four: Analysis of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 80

for all components is represented like (message1 message2 …). The --> in the
line expresses the direction of state change during the message transition.
Synchronous vector [1 1] explains the initial component states for the dynamic
behavior in the ordering system.

 Figure 46: Input of Ordering System

After inputting all the data of ordering system, the user should click the “save”
button to construct the data structure for the bound analysis of that asynchronous
component model. In addition, the user can use “import” and “export” button to save
the input data to some text file, and the relative parser also was done in this java
implementation to give the comfortable support. Using “analyze” button, the program
gives the analysis result in Figure 47.

The bound algorithm could be applicable in more domain-specific development with
component model. Supposing the classic operation of bank system, here we assume
that there are two clients and one bank counter in the system. The client can deposit or
withdraw the money from bank counter by the account number. Each time the bank
counter can handle only one client; in other words, two clients can’t send the message
to bank counter at the same time. This case would be extended to N clients with M
bank counters, while the bound algorithm need no change in fact.

Chapter Four: Analysis of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 81

 Figure 47: Analysis Window of Ordering System

The ATAG architecture of simple bank system is like following:

 Figure 48: Architecture of Simple Bank System

BankCounter

>Withdraw

Withdraw

Deposit

Withdraw

Deposit

ClientA

PickMoney

PickMoeny PickMoeny

Deposit

ClientB

Withdraw

1

Deposit

2

Withdraw

PickMoney

1

Deposit

2

Withdraw

1

3

>Deposit

>Withdraw

>Deposit

>Withdraw >Deposit

Deposit>
2

End PickMoney

Withdraw>

Chapter Four: Analysis of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 82

According to the communication in Figure 47, the dynamic behavior of this simple
bank system could be represented as below:

 Figure 49: Dynamic Behavior and Messaging of Bank System

(-, Withdraw, >Withdraw)

(Withdraw, -, >Withdraw)
(-, Withdraw, >Withdraw)

(-, -, Withdraw>)

(-, -, Deposit>)

(-, PickMoney>, -)

(-, >PickMoney, PickMoney)

(>PickMoney, -, PickMoney)

(Withdraw, -, >Withdraw)

(-, Withdraw, >Withdraw)

(Withdraw, -, >Withdraw)

(-, -, Deposit>)

(-, -, Withdraw>)

(-, -, End)

(-, PickMoney>, -)

(PickMoney>, -, -)

(-, Withdraw, >Withdraw)

(-, -, End)

(-, -, Deposit>)

(Withdraw, -, >Withdraw)

(Deposit, -, >Deposit)

(Deposit, -, >Deposit)

(>PickMoney, -, PickMoney)

(-, Deposit, >Deposit)

(-, -, Withdraw>)

(Withdraw, -, >Withdraw)

(-, Deposit, >Deposit)

(-, -, End)

(-, -, End)

(Deposit, -, >Deposit)

CA1 CB1 BC1

CA1 CB1 BC2

(-, Deposit, >Deposit)

(Deposit, -, >Deposit)

(-, Deposit, >Deposit)

CA2 CB1 BC1

CA2 CB1 BC3

CA2 CB1 BC2

(-, Deposit, >Deposit)

(-, Withdraw, >Withdraw)

(Deposit, -, >Deposit)

CA1 CB2 BC1

CA1 CB2 BC3

CA1 CB2 BC2

(-, >PickMoney, PickMoney)

CA2 CB2 BC3

CA2 CB2 BC2

(-, -, Deposit>)

CA2 CB2 BC1

(PickMoney>, -, -)

Chapter Four: Analysis of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 83

In Figure 49, CA means ClientA, and CA1 is the state name of ClientA. Thus
component ClientA has two states shown in Figure 49. Likewise, CB means ClientB,
and BC means BankCounter. The state name of ClientB and BankCounter follows
the same rules as of ClientA. Due to the complex nature of asynchronous component
model, the simple bank system has 11 state vectors with 39 transitions between the
states, and 9 kinds of message vectors.

After inputting the data in ATAG model of simple bank system, we can get the
analysis result of bound algorithm, shown in Figure 50.

 Figure 50: Analysis Window of Simple Bank System

Obviously, the mailbox in ATAG model of bank is unbound because the infinitive
messages like Deposit or Withdraw are stored inside. The message cycle in the
dynamic behavior of bank system is also clear, and always produces the increasing
number of message in the context of asynchronous communication. Thus this bank
system has to be added more restrictions to avoid the unbound mailbox and other
potential danger for the work.

Chapter Four: Analysis of Asynchronous Component Model

Analysis and Implementation of Asynchronous Component Model 84

Chapter Five: Conclusion and Future Work

Analysis and Implementation of Asynchronous Component Model 85

 CHAPTER FIVE

 CONCLUSION AND FUTURE WORK

Component-based development has been proved as an effective software technology
to reduce the time and effort in software life cycle. The heart of component-based
software engineering is the reusability of implementation even design. To properly
reuse the existing component depends on the architecture design only which could
decides what kind of component could be integrated into the system. Moreover, a
good architecture could not only help the developer to easily find the off-the-shelf
component in the market or legacy system, but also to develop some domain-specific
or generic component to be reused in the future.

Generally, component is logically an independent function unit which is usually too
simple to be solely used for even single application. On the other hand, nowadays due
to the great advance in the network and telecommunication field, the communication
in the software system is developed with all kinds of local-area network or wide-area
network. Therefore, to design the correct communication in the component
architecture becomes more important in architecture design phase. However, there is
much less study on the asynchronous communication than on synchronous
communication, though both of them is equally important to adopt in fact.

The work of this master thesis is to build a translation from general asynchronous
component model to some concrete implementation, and help to get some sense
different from implementation of synchronous communication. Furthermore, the work
proposes some kind of representation to the asynchronous component model, and
related algorithm to automatically analyze the characteristic of that model.

5.1 Conclusion

This paper describes some principles and rules in the component design and
component-based architecture design of the CBSE. Some of the principles are not
publicly accepted, but they are useful to indicate the important aspects and push the
relative research forward.

ProActive, as a new java extension which default communication is asynchronous, is
introduced to make a general implementation platform for asynchronous component
model. The general PIM with asynchronous communication could be translated to

Chapter Five: Conclusion and Future Work

Analysis and Implementation of Asynchronous Component Model 86

ProActive PSM with a set of simple rules in UML-like style. The corresponding
programming in ProActive is also direct, and the synchronous and asynchronous
communication is both easy to realize in ProActive.

The asynchronous component model is represented by ATAG in this paper. ATAG
actually focuses on the messaging between components, as well as dynamic behavior
of component. There is a bound algorithm presented in this paper, to estimate whether
the mailbox (message buffer) is bound or not, according to the ATAG model. The
implementation of bound algorithm is done in java, also with a user-interface to
manipulate the ATAG data.

5.2 Future work

Component and CBSE is still being researched to make the advance to the
next-generation methodology of software development. The principles about how to
design and develop a satisfying component, and how to design a qualified architecture
based on the component, are the centric topics to be discussed by the people with
different background. For example, there is some question about whether
customizable component is usually useful to the end-user who should change that
software component by himself.

We should continue to collect all the stuffs of component study. Using the research
result and experience on component-based system, we could get a more precise
statement and understanding of the essence of component. The new rules about
component and CBSE would be extracted from previous knowledge and current work
not only in component field but in other IT domains; Simply saying, we need to
evolve the principles in component-based software technology.

MDA are the new approach to produce the software system. Although this paper
proposes some rules to translate the PIM to ProActive PSM, it is not enough and
formal to cover all the aspects of PIM. Meanwhile, ProActive is just an experimental
programming language based on java, so it still has a lot of things to realize for its
goal. Thus, the translation rules have to be refined and complemented with the
revising MDA standard by OMG, and with the new version of ProActive. The
MDA-aware tools supporting the implementation from PIM to ProActive is also
needed to ease the usage of asynchronous component model.

The ATAG model and bound algorithm presented in this paper assumes the
asynchronous component model at a very high-abstract and high-reliable level. One
feasible addition is to associate the maximum size to the mailbox in the component. In
this case, the dynamic behavior would lead to more different state of mailbox, and
corresponding component state as well. Some component would be blocked if the size

Chapter Five: Conclusion and Future Work

Analysis and Implementation of Asynchronous Component Model 87

of the mailbox of a component reaches its maximum, because at that time the mailbox
refuses all other messages to the component. A straightforward solution to get analysis
result of mailbox with maximum size is to split the work in two steps: the first is to
reuse bound algorithm, and the second is to use maximum size to cut and revise the
result of first step.

Since asynchronous component model is composed of dynamic behavior and static
data type. We should use the experience of research on algebraic specification to static
aspect of component, and then translate the static data part in asynchronous
component model to ATAG model and even the implementation.

There are also some similar bound or analysis algorithms existing in other domain,
such as rewriting logic for object model [51, 52], deadlock checking for components
[53, 54], Petri Net with cover algorithm [12, 25]. Thus one possible way to analyze
the asynchronous component model is to transform here ATAG model to other
structural model, with a clear and exact mapping rules. The relative transformation
interface and tool is also needed in fact.

Chapter Five: Conclusion and Future Work

Analysis and Implementation of Asynchronous Component Model 88

Appendix A: Summary of ProActive

Analysis and Implementation of Asynchronous Component Model 89

Appendix A: Summary of ProActive

ProActive [39] is a kind of java extension library to ease the parallel, distributed,
concurrent programming with good security, mobility and properties; It is the research
project developed by INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET
EN AUTOMATIQUE, as the part of work of ObjectWeb consortium [46] for
OpenSource middleware.

The basic idea behind the ProActive [39] is the encapsulation of the object to generate
the uniform remote object in the application. In other words, ProActive uses java RMI
[42] mechanism to implicitly wrap all necessary objects to independently run in
distributed environments (operation system, machine).

RMI [42] means Remote Method Invocation in Java technology. It is used for the
system environment where there is two or more homogeneous Java Virtual Machine
(JVM) [43] concurrently existing and communicating with each other. RMI exploits
remote object to be invoked by the other objects in different JVM. In fact, the method
of remote object able to be called from other JVM is separately defined in remote
interface of remote object. Meanwhile, People have to implement the remote interface
in some other class to finish the functions of remote object.

Moreover, the remote object should register itself to the RMI [43] Registry as a
naming server, and every computer could have only one RMI Registry. The identifier
of registered remote object is usually called RMI URL, like mail address. The general
format of RMI URL is “rmi://hostname: portnumber/name”. Here hostname means
the machine address in the network, such as test.emn.fr. The portnumber is referred
to the number of message port of RMI protocol, and the default is 1099. The name in
RMI URL is decided by the programmer while he registers the remote object to RMI
Registry. Using RMI URL, any object could locate the relative remote object and then
ask the service of it.

However, RMI [43] operation and the manipulation on remote object is not that easy
as doing with common Java object. Thus ProActive [39] provides some way to update
the remote objects. The new entities (active object) in ProActive could communicate
like remote object but they are more like local and standard java object from the point
of ProActive programming. ProActive is trying to shorten the gap between remote
call and local call as in Java programming.

In addition, ProActive [39] focuses on the asynchronous call, Automatic future-based
synchronizations, migrating and mobile agents, remote creation of remote objects,
group communications with dynamic group management, sophisticated

Appendix A: Summary of ProActive

Analysis and Implementation of Asynchronous Component Model 90

synchronizations and collaborative applications.

ProActive [39] doesn’t make any change to standard java library, java compiler or
JVM. Thus ProActive keeps 100% compliance to Sun. The following are some
interesting but important additions to make ProActive support its own characteristics.

1. Active Object
Active object is the basic concept in the ProActive [39] programming, and it
resulted from the application of a model introduced by the concurrent Eiffel (OO
language) [50]. The model requires that:
a. The application is structured in subsystems. There is one active object (and

therefore one Java thread) for each subsystem and one subsystem for each
active object (or say thread). Each subsystem is thus composed of one active
object and any number of passive objects (possibly zero). The thread of one
subsystem only executes methods in the objects of this subsystem.

b. There are no shared passive objects between subsystems; in other words, the
passive objects are only visible and usable to the other objects within the same
subsystem.

This model implies that one subsystem shows its service through its single active
object, and only that active object is known to all the objects outside the
subsystem. Therefore if an object o1 has a reference onto a passive object o2, then
o1 and o2 belongs to the same subsystem. The general object model in ProActive
is shown in Figure 15.

Meanwhile, when passive object is passed as parameters of calls to active object,
it is always passed by deep-copy. On the other hand, active object is always
passed by reference.

ProActive [39] follows active object pattern to create active object, and active
object pattern is the uniform way to encapsulate:
1. A remotely accessible object, as the servant that provides the real object’s

implementation of function.

2. A thread as an asynchronous activity, which dequeues the method request and
send it to servant from the pending request queue according to the service
policy.

3. An actor with its own script to decide the corresponding behavior for the
received message, like a stub.

4. A server of incoming requests, which enqueues the method request to the
pending request queue.

Appendix A: Summary of ProActive

Analysis and Implementation of Asynchronous Component Model 91

5. A mobile and potentially secure entity, which is responsible for the migration
and security.

Therefore as a result, when you create an active object A of some class, from the
view of RPC you will have 4 parts in fact, shown in Figure 17:
1. stub_A (client side, including the actor)
2. bodyproxy_A (client side, request sender)
3. body_A (server side, the request-receiving server including the thread)
4. instance_A (server side, the real object implementation)

Here the body_A of the active object is the only object able to access directly the
instance_A. This means that only body_A could directly call the method of
instance_A. Additionally, body_A is a non-changeable object that delegates most
of its tasks to helper objects called MetaObjects, which could be customized by
implementing the MetaObjectFactory interface.

The parts of client side: stub_A and bodyproxy_A should exist in the
environment of client object which sends the message to active object A. On the
other hand, the parts of server side: body_A and instance_A run in the place
possibly different from that of stub_A and bodyproxy_A

To create an active object, you should invoke one of the static methods
newActive or turnActive of the ProActive class. ProActive.newActive creates
an active object based on the instantiation of a new object; ProActive.turnActive
creates an active object based on an existing Java object. When using
ProActive.newActive you must make sure that the arguments of the constructor
are Serializable. If ProActive.turnActive method is done on a remote node, the
class used to create the active object in this way has to be Serializable. The simple
example code is as following:

 //---- in newActive case
 A activeA = (A) ProActive.newActive(“A”);
 Or
 //---- in turnActive case
 A a = new A();
 A activeA = (A) ProActive.turnActive(a);

 Table 4: Creation of Active Object in ProActive

Table 4 shows how to create the non-argument active object activeA by the
newActive or turnActive method. In fact activeA is a direct reference onto an
instance of the generated ProActive stub_A for the class A because stub_A is a
subclass of class A. Therefore ProActive allowes instances of class stub_A to be
assigned to variables of type A, as the basic polymorphic rule in OO paradigm. In

Appendix A: Summary of ProActive

Analysis and Implementation of Asynchronous Component Model 92

addition, activeA is associated with a default node created by ProActive. The
node is a kind of remote object with entry in RMI registry, and user can also
create node and then explicitly link the active object to the node.

There are some restrictions to create active object:
1) Final classes cannot give birth to active object
2) Same thing for non-public classes
3) Classes without a no-argument constructor cannot be reified.
4) Final methods cannot be used at all. Calling a final method on an active object

leads to inconsistent behavior.

5) A direct call to a method of the originating object without using its active
object will break the model.

The 3) limit is from the reason that when ProActive [39] constructs the stub of
active object, it will call the non-argument constructor of standard java class as its
parent constructor. If the class only has the constructor with argument, the
argument would be used on stub not on the instance of that class, so this leads to
some unexpected behavior at last.

Since active object not only owns the method implementation from the true
standard java class, but has also its own activity to manage the method request
from the call of other object. One can completely specify what will be this activity
through three ProActive interfaces: InitActive, RunActive, EndActive. The
default activity is to serve all incoming requests one by one in a FIFO order. There
are two ways to define the activity of your active object:
1) Implementing one or more of the three interfaces of active object directly in

the class used to create the active object, like following code:

 import org.objectweb.proactive.*;

 public class A implements InitActive, RunActive, EndActive {
 private String a;

 public A() {

 }

 // -- implements InitActive interface
 public void initActivity(Body body) {
 ……………
 }

Appendix A: Summary of ProActive

Analysis and Implementation of Asynchronous Component Model 93

 // -- implements RunActive interface
 public void runActivity(Body body) {
 …………….
 }

 // -- implements RunActive interface
 public void runActivity(Body body) {
 …………….

}

 }

 Table 5: Implement Activity Interface in ProActive

2) Passing an existing object implementing one or more of three ProActive
interfaces to the method newActive or turnActive. Using the active object in
Table 5, the code is like in Table 6.

In this case, there is one restriction that you cannot access the internal state of
the reified object.

B activeB = (B) ProActive.newActive(“B”, null, null, new A(), null);

 Table 6: Pass Old Active Object to Create New One

2. Asynchronous Call
Since one of the essential nature of network application is asynchrony, ProActive
[39] try to solve this difficult problem on the language level. When a method is
called on an active object in ProActive, it returns immediately (as the thread
cannot execute methods in the other subsystem) a future object, which is like a
placeholder for the result of the methods invocation. The future object would be
populated with the true result later by the method of active object.

The future object is the type of a refiable object which can not throw checked
exception, and it includes three parts: stub_future, proxy_future, object_future.
The stub_future is to receive the message for future object, and it reifies the
message and sends it to proxy_ future. proxy_future calles the object_future for
the proper operation. Here the object-future is not evaluated until the true result is
returned by called active object. It is graphically similar to active object like below,

Appendix A: Summary of ProActive

Analysis and Implementation of Asynchronous Component Model 94

and the arrow link means message sending between the parts of future object.

 Figure 51: Future Object Composition

All the future objects created by the active object are kept in the futurepool of
active object. However, two basic Java methods don't follow this asynchronous
call scheme: equals and hashCode. When the other method calls equals and
hashCode on future object, the function of both methods is not correct as usual.
Sometimes both methods easily lead to deadlock when the future object is not
available yet. Likewise, toString() method of future object should also be taken
care of since it possibly blocks the program to deadlock.

The procedure to implement asynchronous communication by ProActive [39] is
based on the interaction among caller, active object and future object. The stub of
active object wraps the received message to methodcall object, and sends it to
bodyproxy of active object. The bodyproxy creates the future object and send
methodcall object to the body of active object. The body returns the stub_future
to the caller, and calls the function of instance of active object at some time. The
instance provides the true result as object_future, and the body of active object
tells the reference of object_future to proxy_future of future object. Figure 19
illustrates the general method call with asynchronous communication in
ProActive.

During asynchronous communication in ProActive [39], the caller would proceed
to execute until it need to use the result (future object) of method call. Then the
caller actually sends the message to the stub_future of future object instead of
true result (object_future). The stub_future wraps the received message and
gives to proxy_future of future object. According to the reference of
object_future of future object, proxy_future calls the true function in
object_future. If object_future were not available, it would wait until the future

stub_future

proxy_future

Future object without true result

stub_future

proxy_future

Future object with true result

object_future

Appendix A: Summary of ProActive

Analysis and Implementation of Asynchronous Component Model 95

object is given the result by the active object. This solution of asynchronous
communication is called wait-by-necessity.

3. IC2D
ProActive [39] gives a graphical user-interface to monitor and control the status of
various active objects in the heterogeneous environments, and its name is IC2D.
For example, user can drag and drop one active object from one machine in USA
to the machine in France, and observe the message interaction between all kinds
of active object.

The Figure 49 shows the window of IC2D. It is monitoring a system based on Slip
Protocol. Because the system is running on a machine with Windows 2000, IC2D
represents this with a big box and some label of the computer information. There
are three active objects running in the system, so IC2D shows three active objects
by three small boxes involved in machine box plus relative class name and
number. Corresponding to the active objects, IC2D presents three
event-monitoring windows for the message executed in the related active objects.
IC2D uses the different icon to explain the type of message. In fact, IC2D has
many options and menu items to adjust its function and graphical interface.

IC2D is being developed to interface with Jini and Globus, both of which supports
global-scope distributed application, metacomputing, computing, and at the higher
level than RMI.

 Figure 52: ProActive IC2D Window

Event Window

Active object

Appendix A: Summary of ProActive

Analysis and Implementation of Asynchronous Component Model 96

4. Migration
ProActive [39] provides two sets of static methods on the migration operation
1. The first set is aimed at the migration triggered from the active object that

wants to migrate.

2. The second set is aimed at the migration triggered from another agent than the
target active object.

Since we rely on the serialization to send the object on the network, the active
object that wants to migrate must implements the Java serializable interface. The
migratable active object must have a method which contains a call to the
migration primitive, and this call statement must be the last one in the method.

In case of non-serializable type, in front of the declaration of that kind of variable,
user should put the keyword transient. This indicates that the value of this
variable should not be serialized. Therefore after the first migration, the value will
be set to null since it has not been saved in the migration. Then we have to rebuild
that variable with its old value by overriding the standard method in Active object:
readObject(ObjectInputStream).

5. Deployment Descriptor
Parameters about the deployment of an application should be totally described in a
XML deployment descriptor saved in an XML file. ProActive [39] nodes can be
obtained from VirtualNodes (VN) declared and defined in a ProActiveDescriptor,
being used to create active object. After activation of program, VirtualNode is
mapped to Node or a set of Nodes, and the Node name is VirtualNode_Name +
RandomNumber. VirtualNode must be associated with the certain JVM [43] to
create the useful node for active object. The mapping between the Virtual Node
and JVM could be: 1 to 1, 1 to n, n to 1, and you can use RMI [42] or Jini [47]
protocol to explain that mapping.

6. Group Operation
ProActive [39] gives the group operation on a typed group of active objects which
are located on a set of nodes. Programmer can use type of class or group interface
to manipulate the group creation and operation. The result of method invocation
on a group is also a group, and each element of the result could be a future object
to do asynchronous calls. ProActive allows user to scatter the parameter of
method call to the members of one group.

7. MetaObject Protocol

Appendix A: Summary of ProActive

Analysis and Implementation of Asynchronous Component Model 97

ProActive [39] is built on top of a metaobject protocol (MOP) that permits
reification of method invocation and constructor call, so it need java reflection
API which is in JDK1.1 or higher.

If the programmer wants to implement a new metabehavior using ProActive
metaobject protocol (basically RMI [42] protocol), he or she has to write both a
concrete (as opposed to abstract) class and an interface. The concrete class
provides an implementation for the metabehavior he or she wants to achieve,
while the interface contains its declarative part.

There are two methods to create the instance based on this meta-object protocol:
1) MOP.newInstance according to the class of the interface
2) MOP.newWrapper according to the existing object of the class of the interface

Through what I explained above, we can see that ProActive [39] is a new approach to
realize the high efficient development on the network-specific application, thanks to
the previous RPC study and internet language Java. If SUN company could deal with
ProActive to make it as perfect plugin for the standard java, it must be much better
with less restriction but more freedom to use ProActive.

Appendix A: Summary of ProActive

Analysis and Implementation of Asynchronous Component Model 98

Appendix B: Model-Driven Architecture

Analysis and Implementation of Asynchronous Component Model 99

Appendix B: Model-Driven Architecture

Nowadays human life is full of “living” software, and thousands of software
companies are developing the new system to make world run in a faster and more
autonomous way for all kinds of dimensions. According to the investigation of the
cost during the life cycle of software development, the maintenance phase usually
occupy a big part in total and it could be very difficult. People is never able to exactly
estimate the possible change in a long time; That’s to say, the developers or teams
must spend a lot of time and effort to update the original version of software for
various emerging requirements.

The software must be designed and implemented in the binary code by the support of
concrete software technology, which is usually the choice decided in the early stages
of software life cycle. In this case, the problem to be solved by updating the software,
in terms of technology, mainly exists in the connection (integration) with other
(legacy) system and the adjustment to the new software techniques or platform.

The increasing amount of usable development technology makes software updating
more common, as each technology has its own advantages and disadvantages to meet
the specific requirement from the certain application. Meanwhile not all the
technology has the downward compatibility in its evolution. For example, a bank
system developed by Visual Basic 5, has to be modified for the condition whether it
need to interact with a client-management system developed by Visual FoxPro, or it
should be installed in a computer with Windows XP.

Obviously the more complex and bigger the system is, the more expensive the
maintenance is. In fact, because the software development technology changes too
fast, many big software systems have to be re-developed almost as a new one
compared to its last version. To the worst, the extreme expenditure of maintenance
would force the company to bankruptcy. Thus people need to find some solution to
keep the soul of software more self-adaptive.

One new way to address above questions is suggested by OMG (Object Management
Group), called Model-Driven Architecture (MDA) [44]. This approach is not a brand
new idea but a formalized solution to the suffering update of software. The key of
MDA is the separation between business model and technology support, which means
to minimize the implementation-based effect to the system model or architecture.
Therefore, MDA is model-centric software development. MDA is not referred only to
the architecture design process but to the whole life cycle of implementation,
integration, deployment and so on. MDA allows the developer to build the software
system in his favorite way, but makes that system able to communicate or adapt to

References

Analysis and Implementation of Asynchronous Component Model 100

other software or platform. Moreover, MDA supports the evolving standards in the
software development. The system following MDA looks like below [44]:

 Figure 53: MDA-Based Application

In Figure 50, it shows that the system could be reused for the diverse domains like
space or e-commerce, as long as the core architecture is applicable for those domains.
The core modeling in MDA depends on OMG’s three open standards for model
design: Unified Modeling Language (UML) [34]; Meta-Object Facility (MOF) [45];
Common Warehouse Meta-model (CWM) [45].

1. UML

UML is a graphical language to describe the model or architecture of software
system. UML is used mainly for the object model or component model. By
writing the abstract functions into concrete and visual graph, it is more convenient
for people to understand the design decision or control flow. UML also help
developer to follow the model in the implementation and validation process of
development.

Since now UML language becomes the industry-standard for the software
modeling, there have already been some tools to translate the UML to other
formal system specification. The specification could be technology-independent
like XML, or technology-dependent such as EJB [8].

2. MOF

MOF [45] is a standardized framework with well-defined abstract language to
express the metamodel composed of a set of metadata. MOF includes a set of

Appendix B: Model-Driven Architecture

Analysis and Implementation of Asynchronous Component Model 101

necessary syntax, type, rules of metamodel used to build the object or component
model for the software system. Moreover, MOF defines a hierarchy of reflective
interfaces to make the metamodel interoperatable with other MOF-compliant
metamodel which has different domain-specific or generic interfaces.

MOF also contains the common service for the metadata repository which is made
to support the construction, traversal and update of a model as the instance of a
particular metamodel [8]. Therefore, people can use MOF to visually create,
publish and integrate multiple metamodels from the metadata repository according
to some semantics and environments. In addition, the developer can use
MOF-compliant tools to get the default implementation of instance of metamodel,
and then fulfill it with other essential codes or data.

3. CWM

CWM [45] gives another metamodel, which is usually beyond MOF, to represent
both business and technical metadata interchange among the data warehousing,
business or knowledge process domain [8]. CWM could be expressed by UML
notation, but extends some of core metamodel of UML with its unique features [8].
As a matter of fact, CWM is composed of a hierarchy of metamodels for the
different purpose. For example, data resource metamodels are used to deal with
the various types of data resource like SQL Server, while foundation metamodels
are used to describe the general data or service for data resource metamodel or
other high-level metamodel [8].

CWM-aware system could exchange the metadata of component for data
warehousing or business behavior as long as the metadata follows the data
specification defined in CWM. There are some tools that could directly generate
the domain-specific instance of model in CWM, and then the developer should
revise the instance to meet system requirement.

Although CWM provides highly generic and interoperatable metadata to build the
MDA application, it is still possible for CWM-compliant system to handle with
other different metadata from some system [8]. In this case, the developer has to
make the extension to CWM through CWM service or metamodel, or use other
relative metadata-supporting tools [8].

After using tools of UML, MOF or CWM for the MDA system modeling, people can
get triple-layer model structure according to the external view of architecture design.
In terms of order of simple-to-complex, the top layer is Computation-independent
business model, and the middle floor is Platform-Independent Model (PIM), and the
bottom is Platform-Specific Model (PSM).

Computation-independent business model is the most abstract representation of
software system which only gives the brief solution model for the domain-specific

References

Analysis and Implementation of Asynchronous Component Model 102

problem with no concrete or clear computation or function. Thus the second layer of
PIM is designed to fill up its super model with more detail of function or behavior
assigned to object or component in the software system. However, PIM ignores the
detail related to the implementation technology or platform, which is complemented
in the PSM, such as communication constraint in EJB or .NET. In addition, the
relationship between two neighboring layer of model is not unidirectional but
both-way to refine and optimize the model and relative architecture control.

The MDA model structure is graphically shown like this [8, 9, 10, 11]:

 Figure 54: MDA Model Hierarchy

<<Express with>>

Computation-independent
Business Model

Platform-Independent
Model

Platform-Specific Model

Mapping rules from
computation-indepen
dent business Model
to PIM

Refactoring rules
from PIM to
computation-indepen
dent business Model

PIM-to-PIM mapping
techniques

PSM-to-PSM
mapping techniques

Mapping rules
from PIM to
PSM

Refactoring rules
from PSM to PIM

OMG Modeling Standards

UML MOF CWM

Appendix B: Model-Driven Architecture

Analysis and Implementation of Asynchronous Component Model 103

In MDA [44] design, the important model is PIM which could be mapped to many
PSMs if there exists the mapping rules to support this kind of transformation. For
example, the PIM model for course schedule may be mapped to multiple PSMs like
CORBA model, Java model, and so on.

There have already been some software tools to make the mapping from PIM to a
certain PSM automatic like a translation machine. The tools even support the
automatic code generation such as UML-to-C++ [9]. Furthermore, mapping
techniques could also be modeled in MDA [44] way, so MDA application could be
considered as a pure model-based approach. Following the generated PSM and default
program code, the rest work is to build the real functional object and component in the
software implementation phase, and then validate it with related PIM or PSM

Besides, as seen in Figure 51, there are mapping techniques to translate one PIM to
another PIM, and PSM-to-PSM as well. Therefore, this enhances the
interoperatability of heterogeneous system based on different PIM or PSM. The
mapping techniques also enforce the quick development of new system, especially in
the system modeling if there are some existing PIM or PSM with same business logic
of new system. In fact, the developer could use MDA [44] tools to realize this kind of
inter-connection (automating bridge called in MDA) between the respective MDA
model and corresponding implementation, like below:

 Figure 55: Automating Bridge in MDA

Platform-Independent
Model

CORBA Model
(PSM)

.NET Model
(PSM)

CORBA System .NET System

Automating Bridge

References

Analysis and Implementation of Asynchronous Component Model 104

Since MDA [44] targets enterprise computing and network-oriented application, it is
defining some general services called Pervasive Service. These services should be
supported no matter the specific technology or platform. Now there are four general
services in MDA environment:
1. Directory service
2. Transaction service
3. Security service
4. Distributed events and notification service

MDA [44] also has the tools for the legacy system or program, which could be
reverse-engineered to discover its PSM or PIM. Then the legacy PIM or PSM could
be integrated to the new MDA model. Even the legacy code would be wrapped or
redeployed automatically or partial-automatically to be a part of implementation.

From the above introduction of MDA [44], it is clear that MDA is a new method for
system development, to avoid the big overhead in the system design and maintenance
due to the effect from all kinds of technology and platform. MDA increases the
automation and reuse of design and meet the unpredicted change in the future. Thus it
reduces the technique investment cost in a long term. However, MDA is still be
developed by OMG with other evolving standards, and it need more support and
attention to obtain its goal and benefits for IT industry.

References

Analysis and Implementation of Asynchronous Component Model 105

References

 1. Nenad Medvidovic and Richard N. Taylor. A Classification and Comparison

Framework for Software Architecture Description Languages. IEEE
Transactions on Software Engineering, VOL. 26, NO. 1, January 2000.

 2. Christine Choppy, Pascal Poizat and Jean-Claude Royer. Formal Specification of

Mixed Components with Korrigan. In proceedings of the 2001 International
Conference on Asian-Pacific Software Engineering Conference (APSEC'2001),
IEEE Computer Society Press, December 2001, Macau, China.

 3. Liang Peng, Annya Romanczuk and Jean-Claude Royer. A Translation of UML

Components Into Formal Specification. In proceedings of TOOLS East Europe
2001, July 2001.

 4. P.Th. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The Many Faces of

Publish/Subscribe. Technical report, Swiss Federal Institute of Technology in
Lausanne (EPFL), 2001.

 5. Pascal Poizat, Christine Choppy and Jean-Claude Royer. From Informal

Requirements to COOP: a Concurrent Automata Approach. In proceedings of
the Formal Methods, World Congress on Formal Methods in the Development of
Computing Systems (FM'99), LNCS 1709:939-962, Springer-Verlag, Toulouse,
France, 1999.

 6. Martin Gogolla. UML for the Impatient. Research Report 3/98, University

Bremen, 1998.

 7. Jean-Claude Royer. Comportement dynamique des composants asynchrones.

Research Report, Ecole des Mines de Nantes, March 11, 2003.

 8. John D.Poole. Model-Driven Architecture: Vision, Standards, And Emerging

Technologies. Position paper submitted to ECOOP 2001, Workshop on
Metamodeling and Adaptive Object Model, April 2001.

 9. Tony Mallia. MDA Reality/Implementation. MDA seminar series, April 2002.

10. Richard Mark Soley. Model Driven Architecture: An Introduction. OMG White

Paper, document 00-11-05, 2000.

References

Analysis and Implementation of Asynchronous Component Model 106

11. Philippe Merle. Component-Based Engineering in MDA. In summer school

“MDA for Embedded System Development”, Brest, Brittany in France, September
17th, 2002

12. TADAO MURATA. Petri Nets: Properties, Analysis, and Applications. In

Proceedings of the IEEE, VOL. 77, NO. 4, April, 1989.

13. Kyo C. Kang. Issues in Component-Based Software Engineering. In the

proceedings of International Workshop on Component-based Software
Engineering, 1999.

14. Ye Wu. Introduction to Component-based Software Development (CBSD).

http://www.isse.gmu.edu/~wuye/classes/ 699/lecture/699-Intro-2.pdf, August 28,
2002.

15. E. James Whitehead Jr., Jason E. Robbins, Nenad Medvidovic and Richard N.

Taylor. Software Architecture: Foundation of a Software Component
Marketplace. In Proceedings of the ICSE17 Workshop on Architectures for
Software Systems, Seattle WA, April 24-25, 1995.

16. Kirby McInnis. Component-based Design and Reuse. http://www.cbd-hq.com/

articles/1999/990715_cbdandreuse.asp, 1999

17. David S. Rosenblum and Richard N. Taylor. Component-Based Software. ICS

221, fall 2002.

18. Paul Krause. Component-Based Software Engineering. http://

www.computing.surrey.ac.uk/courses/csm15/CSM-15_Lecture_2.ppt.

19. Pascal Poizat, Christine Choppy and Jean-Claude Royer. Specification of Mixed

Systems in Korrigan with the Support of a UML-inspired Graphical Notation. In
H. Hussmann (Ed.), FASE'2001 - Fundamental Approaches to Software
Engineering, Genova, Italy. Lecture Notes in Computer Science (LNCS)
2029:124-139, Springer-Verlag. (c) Springer-Verlag. 2001

20. Craig Thompson and Frank Manola. Component Software Glossary. http://

www.objs.com/survey/ComponentwareGlossary.htm, 1997

21. David Garlan and Mary Shaw. An Introduction to Software Architecture.

Carnegie Mellon University Technical Report, CMU-CS-94-166, January 1994.

22. Pascal Poizat, and Jean-Claude Royer. Korrigan: A Formal ADL with Full Data

Types and Temporal Glue. Research Report, University d’Evry Val d’Essonne,

http://www.isse.gmu.edu/~wuye/classes/
http://www.cbd-hq.com/
http://www.computing.surrey.ac.uk/courses/csm15/CSM-15_Lecture_2.ppt
http://www.objs.com/survey/ComponentwareGlossary.htm

References

Analysis and Implementation of Asynchronous Component Model 107

Ecole des Mines de Nantes, June 27, 2003.

23. David E. Bakken. MIDDLEWARE. in Encyclopedia of Distributed Computing,

Kluwer Academic Press, 2001.

24. Allen Parrish, David Hale, Brandon Dixon and Joanne Hale. A Case Study

Approach to Teaching Component Based Software Engineering. Submitted to
the CSEE&T 2000 Conference on Software Engineering Education and Training,
September 1999.

25. Olaf Kummer. Introduction to Petri Nets and Reference Nets. Sozionik aktuell,

No.1, 2001. ISSN 1617-2477.

26. Peter J. Denning. Reuse Practices. Invited paper for Communications of ACM,

February 1997.

27. Smalltalk. http:// www.smalltalk.org.

28. Mary Campione. The Java Tutorial.
 http://java.sun.com/docs/books/tutorial/index.html, 2000.

29. Java. http://java.sun.com/.

30. Middleware. http://www.omg.com/middleware/.

31. TCP/IP.http://www.protocols.com/pbook/tcpip1.htm.

32. EMN Component Research. http://pcguehen.info.emn.fr/ocm-wiki/Composants.

33. ComponentJ. http://www-ctp.di.fct.unl.pt/~jcs/ComponentJ/.

34. UML. http://www.omg.org/uml/.

35. C#. http://msdn.microsoft.com/vcsharp/.

36. EJB. http://java.sun.com/products/ejb/.

37. .NET. http://www.microsoft.com/net/.

38. CORBA. http://www.corba.org/.

39. ProActive. http://www-sop.inria.fr/oasis/ProActive/.

40. Franz Achermann and Oscar Nierstrasz. Applications = Components + Script s- A

http://www.smalltalk.org
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/
http://www.omg.com/middleware/
http://www.protocols.com/pbook/tcpip1.htm
http://pcguehen.info.emn.fr/ocm-wiki/Composants
http://www-ctp.di.fct.unl.pt/~jcs/ComponentJ/
http://www.omg.org/uml/
http://msdn.microsoft.com/vcsharp/
http://java.sun.com/products/ejb/
http://www.microsoft.com/net/
http://www.corba.org/
http://www-sop.inria.fr/oasis/ProActive/

References

Analysis and Implementation of Asynchronous Component Model 108

Tour of Piccola. In Mehmet Aksit, editor, Software Architectures and Component
Technology, Kluwer, 2001.

41. Sharpie. James R. Larus and Sriram K. Rajamani and Jakob Rehof. Behavioral

Types for Structured Asynchronous Programming . Technical report, Microsoft
Research Technical Report, 2003.
http://www.research.microsoft.com/behave/sharpie-report-abs.html.

42. RMI. http://java.sun.com/products/jdk/rmi/.

43. JVM (Java Virtual Machine). http://java.sun.com/docs/books/vmspec/.

44. MDA. http://www.omg.org/mda/.

45. CWM and MOF. http://www.omg.org/technology/cwm/.

46. ObjectWeb Consortium. http://consortium.objectweb.org/.

47. Jini. http://www.jini.org/.

48. Globus. http://www.globus.org/.

49. SOFA. http://nenya.ms.mff.cuni.cz/projects.phtml?p=sofa&q=0.

50. Denis Caromel. Toward a method of Object-Oriented Concurrent Programming.

Communications of the ACM, vol. 36, no. 9, September 1993.

51. G. Denker, J. Meseguer, and C. Talcott. Protocol Specification and Analysis in

Maude. In N. Heintze and J. Wing, editors, Proc. of Workshop on Formal
Methods and Security Protocols, Indianapolis, Indiana, 25 June 1998.

52. G. Denker, J. Meseguer and C. Talcott. Rewriting Semantics of Meta-Objects and

Composable Distributed Services. Technical Report, Computer Science
Department, Stanford University, 1999.

53. Paola Inverardi, Alexander L. Wolf and Daniel Yankelevich. Static Checking of

System Behaviors Using Derived Component Assumptions. ACM Transactions
on Software Engineering and Methodology, Vol 9, No 3, July 2000.

54. N. Kaveh and W. Emmerich. Deadlock Detection in Distributed Object Systems.

In V. Gruhn (ed). Proc. of the Joint 8th European Software Engineering
Conference (ESEC) and 9th ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE-9), Vienna, Austria, ACM Press. 2001

http://www.research.microsoft.com/behave/sharpie-report-abs.html
http://java.sun.com/products/jdk/rmi/
http://java.sun.com/docs/books/vmspec/
http://www.omg.org/mda/
http://www.omg.org/technology/cwm/
http://consortium.objectweb.org/
http://www.jini.org/
http://www.globus.org/
http://nenya.ms.mff.cuni.cz/projects.phtml?p=sofa&q=0

