Vrije Universiteit Brussel - Belgium

Faculty of Sciences
In Collaboration with Ecole des Mines de Nantes - France

1999

é(/o%\\l eRSITE/ > @’9%{}’ -

S B

5 \Ggd/ ¢ -
Tincere ™ ECOLE DES MINES DE NANTES

MOBILE AGENTS: PATTERNS AND REFLECTION

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange
project funded by the European Community)

By: James Roberto Windmuiiller

Promotor: Prof. Theo D’Hondt (Vrije Universiteit Brussel)
Co-Promotor: Thomas Ledoux (Ecole des Mines de Nantes)

Acknowledgments

Each conquest in our lives has a special meaning and also a lot of hard work behind it.
But the success is not due only by our efforts, if we look around us there are many
factors and people that helped us to reach the success.

I would like to thank my wife Cintia, that has been walking by my side for several years
and also during the last year when | took my course, for supporting me and giving me
the courage to finish my work.

| want to leave a special thanks to my advisor Thomas Ledoux, that was always ready to
help me when | needed, showing me the way that | should take and spending many
hours discussing with me about my subject and related papers, books and other
documents. | always had a feedback from him about my doubts, my questions and my
work even when he was busy with other important things not related to my research.

| want to thank my father Véater and my mother Glacy, for following my studies since
my first day in school. Now | can understand why they always gave a special stimulus
to me.

| aso thank Alberto and Vania, my wife's parents, for helping and advising us during
all those years that we have been married.

Thanks Ricardo José Peres, my friend, for taking care of my business in Brazil during
this time, and the company POLO de Software S.A., where | have been working the last
eight years, for allowing me to stay out in order to do my course.

| specia thanks to Prof. Dr. Edson Scalabrin and Pontificia Universidade Catdlica do
Parana— PUC-PR for giving me the opportunity to participate in this project.

Finally | would like to dedicate my work to all those mentioned above.

Table of Contents

LIST OF FIGURES.ottt sttt ettt st b et et e be s atesaee s ae e sbe e sbeeneeemtesaeesaeesaeenbeenbenntenn 11
LIST OF TABLES ... ettt ettt et ee s ae e s b e sae e saeeeeeaeeeaeesseenbeenbennrenn 11
INTRODUGCT ION. ...ttt ittt ettt st se e s aeeste e et eaeesaeesb e e beeabeenbesseesaeesaeeseeeaeeensesnsesneesseenbennbenn 1
CHAPTER I: MOBILE AGENTS. ...ttt sttt ettt st s sae e saeenee e e e ens 3
1 LI NI =@ i 1 T A = R 4
00 A 1 oo o o PP 4
1.2 What isthe best definition fOr AQENE?.........co i 5
121 The Weak and the SErong NOION ..ot sne s
122 Definitions of Mobile Agents and Their Properties
1.3 The Mobile Agents conceptual MOTE! ..o e
131 THE RPC MOGE ...ttt bbb e b
132 The Code-0n-Demand MOEcovuiiriiiriiiieee e
133 The Mobile AGENt MOE]cc.oiiieieee e
1.4 Advantages of uSiNg Mobil€ AQENES........ccueiieiiiie e e e e nreens
141 Reducing the NEtWOIK TOB0c..ciriiiieec e
142 Overcoming the NEtWOrK [aEENCYccvvveireeriireeeree e
143 Executing asynchronously and autonomouslyccccceererenienerienieneens
144 Integration of SeamIeSS SYSLEMScci e
145 Robust and Fault-Tolerant Distributed SyStem...........oooiiireieiieneeere e
15 Applications that can benefit frommobile agents............coovreirneinne e
151 E-COMIMEICE. ... e e e
152 Personal ASSISTANCEc.ueirriireeierer s
153 Distributed Information Retrievalcooeoveireineineeseeecee
154 WOrkflow and GrOUPWAIE.........curuiuerireeesieirieieseeiesieie et
155 Monitoring and NOtfiCatiONcccveireireee e
156 Information DiSSEMINGLONc.coveeiveirieeriecreees e
157 Parallel ProCESSING.......coiiuerieieieeeesie et
158 Data Source Mediation....
159 Information Filtering.......
1.6 Agent ComMmuUNiCation LANQUAGES........ccerueueriirteiriirteieiesiesteesies st sie et
161 KQML - Knowledge Query and Manipulation Languagec.cverereerierieieereeienenesese e sieneens 14
1.7 SECUNILY @GN0 AGENES ...ttt ettt bbb a et b bbbt b b e e 15
171 USEN AULNENTICEEIION......cvieicrees ettt nn e r e nes 16
172 Malign Agents........cccceeueuene.
1.7.3 Virus Detection
174 PIOXIES. ...ttt b b e bbb R e R b b e bt bRt a et n e b
2 EXPERIMENTATION. ... uutttieieeeeieiititeeeeeeeeeeettrteeeeeessassasseeeeeessassasrasseeaesesassssesesesssassssaeesesesasssnreness 17
2.1 AVAIHADIE TOOIS ...ttt ettt 17
2.2 The EXampPle Crealed.........cooiiiiieiece et este ettt et e e e saeesaeeae e snaesnaenseenrens 18
2.3 Description Of the PartiCipantS..........ccoceiereererene et 19
231 TheAgent
232 Shop...coveeierieiee
233 Computer
234 ECOMMEEICE......cieititie bbb a s e 24
2.4 CONCIUSION ...ttt ettt se et e et r e et r e et e renn e 26
CHAPTER I1: DESIGN PATTERNSFOR MOBILE AGENTS.......coiiiii e 27
3 INTRODUGCTION ...uutiiuiiiteesteeie st sre e sre e s ese s b e b b aesae e sae e sae e sae s n s s e s s re e b e e r e e resanesenesrneneis 28

3.1 DESION PAEINIS. ...ttt sttt ettt b et b e et eb e et eb e s b et eb e sb e b e e b e e eneas 28

3.2 SCOPE Of OUF SOIULTON ...ttt et e bbb e 28
ABSTRACT AGENT PATTERNciitiitiitiitieieie sttt sttt et st she b ee et et eneene e e enbesneas 31
R 1 011 0 | U PP PR PP 31
VRS o] o = X= T o 1Y o 1AV o) o 31
G T Vo] o[o= o 1 Y2 31
4.4 Sructure and PartiCiPantsS..........ccciceeieerieereerieeiesiesee e seeseeesteesseesesssessaessaesseesseesseenseensesnes 31
4.5 CONSEOUENCES.......eeueeureriaresreeseseesessessessesresse st eseess e sesaeabeeseeaeessese e reseeereese e e e s e sn e reseeere e e ennees 32
4.6 IMPIEMENTALTIONovieetiieieet ettt et b e et b e e b et b e se st et e seebeebesrenereas 33
I S C 1= o = UL = S 33
AGENT PROXY PATTERN ...utiitiiteiteetesieeteetesiestestestesaeeseeeenseseestessessesseeneensessensessessessesneensessensessens 34
ST R 1 0= o | TP PURP PRSPPI 34
5.2 SCOPE AN MOLIVALION ..ottt bbb bbb e 34
TG T A o] o [Tor= 1o 11 1 S 34
5.4 Sructure and PartiCiPantS.........c.ocveiieieeiesis e e s et e e e e e sae s s e e e saeenseeneeenaesnaesnaesrens 34
5.5 COlAbOIALIONS........coeiieieetiiteeeee et b et e b e 36
5.6 CONSEQUENCES......cueiitiieiiiee sttt estee e sttt stte e s tee e saee e sbe e e sbee e sbee e bt e e sbee e bee e sbeeabee e sbeeenbee e sbaeenbeeesnneennns 37
I A 1 4070 = 00701 =1) P 37
5.8 REGIEA PAIEINS.o et 38
AGENT COORDINATOR PATTERN ...cuttitteieiiesieeeesteesteesseeseessesssesseesseesseessesssesasesnsesnesssesssesssenns 39
200 R 1 1= o | S PR 39
6.2 SCOPE ANA MOLIVALIONeiviiiiitiieeeeie ettt bbb et sb e 39
6.3 APPIICADIHTTY. ..ottt e 39
6.4 Sructure and PartiCiPantS.........ccoeoeeireieerieie sttt et 39
6.5 COlADOIALIONS........ceueeiiiitiiteee e bbb e b e ae e 40
5.6 CONSEQUENCES......cuueiitit ettt ettt estt e e sttt stte s s bae e sae e e st ee e be e e sbee e be e e sbee e bee e sbeeabee e sbeeebeeesbaeenbeeesnteennns 41
L A 1 40 =007 =1) S 41
6.8 REIGEA PAIEINS.... .ot e b e 41
AGENT INTERACTION PATTERN ...cttittitiiieierte sttt sttt se bbb i ie e se e bbb e sneeseennene e 42
% R 1 01 1= 1 | ST PSPPI 42
7.2 SCOPE AN MOLIVALION ...ttt sttt st sb e 42
7.3 APPIICADIHTTY . c.civeeeeecee bbbt r e 42
7.4 Sructure and PartiCiPantS.........coeeeereeee ettt ettt 42
ST o | =10 o =1 o] =P 44
7.6 CONSBOUENCES.......ceeirireitiereeieesee st sresre sttt se e s sr e r e bt e it e s e e s e r e se e e R e s bt e be e e e s e nese e renreene e e ennes 45
7.7 IMPIEMENTALTION ...ttt ettt et b e et b e e bt bbbt b e b e 46
7.8 REGIEA PAIEINS.o ettt b e e b b nas 46
TRAVEL PATTERNtiittittittettritettete sttt sttt s s e se et saesbe s st ese e e e s e beseeebesaeeseese et e beseeabesneeneennens 47

S 00 R 1 1= 0 | S TP UPP TR 47
SIS oo o1 X110 1Y, ol U RV 1 o] o S S 47
LS TC T A o] o [Tor= 1o 11 11 S 47
8.4 Sructure and PartiCiPantS.........coeerereeeerieie sttt bbb 47
ST @0 | =10 o =1 o] = P 48
8.6 CONSBOUENCES.......c.eiiireiti ettt sttt e e s r et e e b se e r s bt bt e e e nese e r e s b ene e ennes 49
8.7 IMPIEMENTALION ..ottt ettt st b e bbb b e 50
8.8 REAEA PAEINS. ...ttt ettt et ene e eneas 50
CONCLUSIONSttt et eteeetee st este e et s eesaeesaeesaeesae e et eaeeeaeeebe e be e beenbeemeesmeesaeesaeeseemseensesaeenbeanbeantean 51
REFERENCES.......c oottt b et e bbbt b et e s b e s e e b e b e she e bt e bt ehe e et et e saeeb e e e e e es 55
APPENDIX A: JAVA DOCUMENTATION ..ottt sttt s 57

List of Figures

Figure 1: RPC conceptual MOTEL.cceeiiiiiiiieie et 7
Figure 2: Code-on-demand MOE! ..o 8
Figure 3: Mobile Agents conceptual MOdE.ccceiieieeie i 9
Figure 4: The Simple e-commerce eXample........ccoeieeirieierere e 18
Figure 5: Class Diagram of the e-commerce example...........ccccevveveiieveeceseese e 19
Figure 6: Collaboration diagram of the e-commerce example...........ccoceveverenerenieniens 20
Figure 7: The abstract agent pattern StrUCLUrE...........cccecvvieereeiie s 31
Figure 8: The agent proxy pattern SITUCTUNE...........ccuoviiirere e 35
Figure 9: Collaboration diagram of alocal mobile agent............cccccoeveeveeveiceceeciece, 36
Figure 10: Collaboration diagram of aremote mobile agentccccocvvererenenenennns 37
Figure 11: The agent coordinator pattern StrUCLUre...........ccecveceeveeriecie e 39
Figure 12: Collaboration diagram of the Agent Coordinator Pattern..............ccccveneneene 40
Figure 13: The agent interaction pattern StruCtUre............cecveeeeveevecee s 43
Figure 14: Collaboration diagram of the Agent Interaction Pattern.............ccccocevenennene 45
Figure 15: The travel plan pattern StrUCIUre.........ooeevveeie e 48
Figure 16: Collaboration diagram of the Travel Plan Pattern..........c.ccoceceveiciiicncnnne 49

List of Tables

Table 1: Overview of practical application of mobile agents............ccccoeveeveivececenee. 13
Table 2: Agent Communication Language ReqUIrEMENtS..........ccoevererenenereseeeeeenes 14
Table 3: KQML Performative NaIMES........ccveiieiiieeeeece ettt sve e 15
Table 4: Mobile agent tools developed by famous names in software industry 17
Table 5: Mobile agent tools developed by OO specialized companies...........ccccceeneee. 17
Table 6: Proposed agent deSign PatternS.........coeveeeeeeieerierese e 30

Abstract

A great effort has been done over several years in order to propose new software
development technologies that can turn the software development process easier,
improving the productivity and making the costs lower. “Agent Technology” is an
example of such technology that makes it easier to design, implement, and maintain
distributed systems.

“Agent Technology”, especially mobile agents, offers us a lot of advantages, but also
offers many challenges that we have to deal with. One of the challenges is to find and
give asolution to the recurrent problems met during the use of the “ Agent Technology”.
Making agents interact with other agents without knowing their existence, identifying
agents by their capabilities and allowing an agent to try aternative destinations when
some environment is temporally out of order are some examples of those recurrent
problems. Having those problems in our hand, we can after apply aready proven
software engineering techniques such as “ Software Design Patterns’ and “ Reflection”
in order to give to each one a possible solution in an abstract format that will help
programmers develop their own mobile agent applications.

In this document we give a general overview of the main elements and properties of
mobile agents like definitions, advantages and their applicability followed by a small
example of using mobile agents. Then, we present five design patterns that solve
particular problems that we have met during our research and when we applied the
mobile agent technology in our example.

I ntroduction

The computer science area have been done a great effort in order to propose new
software development technologies that can turn the software development process
easier, improving the productivity and lowing the costs. Each of those technologies
when announced changes the way of thinking and acting of the software engineering
community.

The Object Oriented technology is a good example of that. It was one of the responsible
for the changes that occurred in the software development process. Many other
technologies, based on Object Oriented technology, were proposed and adopted as the
main solution for several software applications after. The Distributed Object technology
is one of those approaches that has made a great difference, allowing objectsto residein
different computers and also permitting them to communicate each other in order to
exchange data.

Following that comes a new era were the objects in a distributed environment got a new
structure and gained one basic feature: mobility. This new technology is caled “Agent
Technology”, and it alows software developers to create a new kind of application
where the objects now can move themselves from one host to another carrying their
code and state. The object that possesses those characteristicsis called “Mobile Agent”.

Every new technology demands, before using it, a deep study of all its principles,
fundamental concepts and techniques. That study will provide us the basic knowledge
needed in order to put al the characteristics and features offered by the studied
technology in practice. The practical part after the study of the new technology is aso
very important. It will organize all pieces loosed in our mind, identifying the role that
each one of them plays, showing the level of importance that each one have in the
whole, the dependency existing among them and how they interact each other. When we
reach a reasonable level of knowledge about a new technology, in theory and practice,
we are able to identify the spots of complexity and the main problems that we can face
when using the related technology. This process of analyzing new technologies is
necessary for all new proposed technologies, including the “Agent Technology”.

The “Agent Technology” has its properties, concepts and elements like autonomy,
social ability, reactivity, pro-activity and mobility. Based on that, we can identify the
main required characteristics in a mobile agent based application and a so the problems
that we met when dealing with the implementation of those required characteristics, for
example:

= How can mobile agents interact with other agents ?

= How can we control the access to the mobile agent ?

= How to provide a transparent access to a mobile agent when it is in a remote
environment ?

= How can we identify mobile agents by their capabilities ?

= How can a mobile agent in a local environment find other agents without knowing
their existence ?

» How can amobile agent change the destinations where it should go dynamically ?

= How can a mobile agent try aternative destinations when some host is temporally
shut down ?

Mobile Agents. Patterns and Reflection 1

Those questions provide us good reasons to focus our efforts on the identification of
possible solutions to them. Usually, to help people solve the recurrent problems we can
use different techniques. One of the most used techniques in software engineering and
that is very well known and accepted in the object oriented community is “Software
Design Patterns’ [18], [19]. In our work we show a preliminary study about “Agent
Technology”, mobile agents specialy; followed by a practical example giving an
approach of the main characteristics of mobile agents.

So, the main recurrent problems of mobile agents are identified and, as the main part of
our work, we propose a specific “Design Pattern” for each one of them. The following
design patterns are proposed in order to help programmers to solve the recurrent
problems found when dealing with mobile agent technology:

= Abstract Agent Pattern
Permits a programmer define the main structure for a mobile agent based application

= Agent Proxy Pattern
Defines the main mechanism of a mobile agent.

= Agent Coordinator Pattern
Allows an environment to control all agents that are running.

= Agent Interaction Pattern
Allows the agent localization and interaction based on their capabilities

* Travel Plan Pattern
Controls the destinations where the agent must go and allows dynamic changes to
theitinerary.

Finally we finish our research showing the Java Documentation of a small application
implemented in Java [31] using RMI where we can see the proposed design patterns in
use. We want to remember that using the proposed patterns we don’'t need to use a
specia tool or agent programming language like Aglets[27], Voyager [29], etc.

2 Mobile Agents. Patterns and Reflection

Chapter I: Mobile Agents

Chapter I: Mobile Agents

1 Stateof the Art

1.1 Introduction

The Object Oriented technology is one of the most important software development
technologies that appeared in the computer science area. It really changed the way of
developing software, improving the productivity and making the software costs lower.
Moreover, the software developed based on Object Oriented technology is much more
reusable, reliable and adaptable to the natural changes during its life cycle. Another
important technology in use nowadays is the Distributed Object technology. It allows
objects residing in different computers to communicate each other in order to exchange
data. Those facts created a revolution in the software industry and the prove is that
many applications running today are based on those technol ogies.

After that comes a new era were the objects in a distributed environment got a new
structure and gained one basic feature: mobility. This means that the objects now can
travel to different hosts over the network, carrying their properties and behavior. This
new technology is called “Agent Technology” and it provides new properties and
characteristics in addition to the known object oriented properties.

The benefits of the “Agent Technology” are everywhere. It alows software developers
to create a new kind of application where the local host is not the limit anymore. The
small objects now can move themselves from one host to another carrying their code
and state. They also have the ability to start executing their tasks in somewhere and
resuming the same task anywhere else. Applications developed using that kind of
characteristics are called “ Agent-Based” applications and the objects that are capable of
moving around different environments and hosts are called “Mobile Agents’.

In this section we will present an overview of the “Agent Technology”.

4 Mobile Agents. Patterns and Reflection

Chapter I: Mobile Agents

1.2 What isthe best definition for Agent?

“ An agent is a program that assists people and acts on their behalf. Agents function by
allowing people to delegate work to them” . (Danny B. Lange) [1].

The best way to start talking about mobile agents is giving a definition about what an
agent is and what the term "agent" means for different authors that use or research about
agent-based applications. Regarding to the enormous number of people working and
researching about agent-based systems, we can suppose that it is easy to find a
definition. However, there is not a unique definition or a consensus on it. Many papers
[9], [10], [11] try to give a definition for agents but what we can see is that each author
focus his/her definition in the research or the application where the agent technology
was used.

1.2.1 TheWeak and the Strong notion

One of the classical documents available about agents and very adopted by researchers
is "Intelligent Agents: Theory and Practice”" written by Wooldridge and Jennings [11].
In this paper the authors consider two different ways of use for the term "agent":

1) Theweak notion of an agent;
2) The strong notion of an agent.

The weak notion of agent is related to the autonomy, social ability, reactivity and pro-
activity properties of a hardware or software-based computer system.

In addition to the weak notion, the strong notion of agent regards also to a set of
properties that resemble the human-like qualities like knowledge, belief, intention and
obligation. The researchers in the Al area cal those characteristics as mentalistic
notions.

1.2.2 Definitions of Mobile Agentsand Their Properties
= Definition of an Agent

For Smith, Cypher and Spohrer [12], agents are “ persistent software entities dedicated
to a specific purpose. ‘Persistent’ distinguishes agents from subroutines; agents have
their own ideas about how to accomplish tasks, their own agendas. ‘ Special Purpose
distinguishes them from entire multifunction applications, agents are typically much
smaller” .

“ Autonomous agents are computational systems that inhabit some complex dynamic
environment, sense and act autonomously in this environment, and by doing so realize a
set of goals or tasks for which they are designed” . This is the agent definition for Maes
[13].

Mobile Agents. Patterns and Reflection 5

Chapter I: Mobile Agents

= Definition of aMobile Agent

“ A mobile agent is not bound to the system where it begins execution. It has the unique
ability to transport itself from one system in a network to another. The ability to travel,
allows a mobile agent to move to a system that contains an object with which the agent
wants to interact, and then to take advantage of being in the same host or network as
the object” . Thisisthe definition of mobile agent for Danny B. Lange [1]

We could list here severa definitions that in some way can be very similar each other
and in the other hand they can be completely different. All of them will talk about
agents in a particular way, describing agents according where it was applied. Taking in
account various papers [9], [10], [11], [14] we can say that a mobile agent is a software
object that islocated in a certain logical environment where it can perform its tasks and
has the following properties:

e Autonomy: Agents act in the environment according to their tasks and have
decisions over their own actions.

e Social Ability: Agentsinteract with other agents using a common language.

e Reactivity: Agents perceive their environment and respond in time for changes that
occurred.

e Pro-Activity: an agent is able to act not only by a stimulus, but aso taking the
initiative by itself.

e Mobility: an agent is able to move among the different environments; stoping the
current processes and keeping its state. After moving to another host it can resumes
its task.

6 Mobile Agents. Patterns and Reflection

Chapter I: Mobile Agents

1.3 TheMobile Agents conceptual model

Communication features are essential when we talk about distributed systems, remote
computing and of course mobile agents. Without the basic network infrastructure and
communications protocols and other set of hardware devices it would be impossible to
have the large number of application and solutions working in local and wide area
networks as we have today.

1.3.1 The RPC Modél

In the beginning, applications usualy worked in a stand alone computers without
sharing data, CPU and other devices such as printers, hard disks, etc. The old
mainframes offered the communication between the main CPU and the terminals, but
no computing process were done in the terminals. Thus, the local networks came to
make a revolution in the usually known computing environment, providing the
opportunity to applications to share data, hardware and others devices. Applications
were built following the client/server architecture where client computers perform
remote calls to procedures existing in the server machine. The server, in its role,
answers to those calls sending the results of the procedure invoked. This process is
called RPC — Remote Procedure Call and it is represented in Figure 1.

Client Server

Application Service
l Network l

4—>» Procedure calls and information exchange

Figure 1. RPC conceptual model.

We can observe in this model that the applications in the client side are dependent of the
procedures existing on the server. This centralization has some disadvantages, for
example the overloading of the resources (processor, memory, etc.) on the server side.

Mobile Agents. Patterns and Reflection 7

Chapter I: Mobile Agents

1.3.2 The Code-on-Demand M odel

The improvements done on the RPC model and on the traditional client/server
applications associated with the success of the internet, helped the computer science
community to propose a new kind of computing, known as “Code-on-demand
Paradigm”. In the RPC model the server side held the procedures (know-how), the data
(knowledge) and also was the responsible to execute those procedures in order to
answer to the client requests. The new code-on-demand model differs from that by
sending the procedures (know-how) to the client side once detected that it does not have
the required know-how to deal with the knowledge (see Figure 2). Then, the client side
can execute those procedures by itself using its own resources (processors, memory,
etc.), decreasing the load over the server resources. The most famous example of this
can be viewed when an applet is downloaded to the client web browser and executed
locally accessing servlets the are loaded in the server side.

Client Server

procedures
download _.4--~~ (know-how

-

procedures Iﬁ » knowledge
(know-how) L/
l Network l

4—>» Information exchange

Figure 2: Code-on-demand M odel

1.3.3 TheMobile Agent Model

Over the last years applications are becoming bigger and bigger and the number of
remote calls performed in the server and the amount of data transported are growing
every day bringing up the problem about the network bandwidth, degrading the
performance on it and aso in the applications.

Mobile agents appeared as a solution to this problem because mobile agents are based
on the principle of take the processes to the data and not bringing the data to the
processes. In this way we can see that using mobile agents is possible to reduce
common problems faced by RPC such as network degradation. The mobile agent
concept can be viewed in the Figure 3.

8 Mobile Agents. Patterns and Reflection

Chapter I: Mobile Agents

Host Host
(- - (- - \
Application } Application
_ _ J
(Agent Execution (Agent\ | | ’/Agent Agent Execuiti OD
Environment Environment
_ _ /

l Network l

<4 - -» Mobile Agent movement
4—» Procedure calls and information exchange

Figure 3: Mobile Agents conceptual model.

Analyzing the figure above we can see the basic structure of an environment that is able
to deal with mobile agents. There are not many differences between the hosts shown in
Figure 3, both have an Application that interacts with an Agent Execution Environment
that can use the features available today in the programming languages and the physic
structure of a network in order to make the agents move. The environments can offer a
set of services for the agents and depending on the interest of the agent they can profit
from that services.

The Application box can be an agent-based system, an applet or any other application
that is capable to connect to the environment and start an agent that has a specific task;
like for example, to visit several computer stores in order to buy a computer. The agent
receives the characteristics and computer configuration desired from the user and travels
through the known environments in order to find the best option of computer.

The Execution Environment handles all calls that come from the agent. When the agent
wants to move from one host to another host in order to visit another computer store it
cals the environment and the environment will arrange to move the agent. The
Execution Environment will be responsible to stop the agent thread, keep the values of
attributes and other properties of the agent and move the agent object to another host in
order to resume its operation. The Execution Environment is also able to provide to the
agent basic and important information such as the host name where the agent is located,
other agents that are working in the same host, other hosts address available, and a set of
other useful information for the agent control.

Besides communicating with the environment and other applications, Mobile Agents are
also able to communicate with other agents, thus the Execution Environment will act

Mobile Agents. Patterns and Reflection 9

Chapter I: Mobile Agents

again dealing with operating system, protocols and networks in order to put agents
talking to each other. Of course communication among agents is not a kind of easy task
to do and we can say here that this part of the Agent Paradigm has been treated as
specia topic, providing enough complexity and also encouraging the researchers to
study about communication languages [16], [17].

1.4 Advantagesof using Mobile Agents

Mobile agents can be useful when implementing several different types of distributed
applications and for each application agents can provide several advantages [1], [3] that
we could not have by using a common object distributed system.

1.4.1 Reducing the network load

On of the main advantages provided by agents comparing to other technologies is that
using agents you can have any computing process being executed in different host
servers, in parale or not. This fact allows the agent owner to turn off his’her computer
while the agent is working and check the results obtained later. Once the agent will
work locally in different hosts we can detect a reduction on the network load due the
messages exchange between the agent and server be performed in the same CPU.
Contrasting with the known object distributed applications, where there is a role of a
client and arole of a server changing messages and data over the network, the mobile
agent model move the process to the data.

1.4.2 Overcoming the network latency

Network latencies are not acceptable in networks when we are working with critical
real-time applications like robots in manufacturing processes that need to respond in
real time to changes in their environments. In this case mobile agents can be sent from
the central controller to work locally acting direct on the robot controller and avoid the
network latency.

1.4.3 Executing asynchronously and autonomously

Another situation where mobile agents can be applied is in applications that are based
on fragile network connections or when continuously open connections become
economically or technically feasible. The process can be implemented using an agent
that will work autonomously after dispatched and will be caught later. Thus, the use of a
network connection is necessary only when dispatching and retrieving the mobile agent
after finishing its work.

1.4.4 Integration of Seamless Systems

Network computing is heterogeneous often from both hardware and software
perspectives. Mobile agents are, most of the times, computer and transport layer
independent, and they depend only on the environment where they will act. These
characteristics provide us really good reasons to use mobile agents to solve problems
such as the integration of seamless system.

10 Mobile Agents. Patterns and Reflection

Chapter I: Mobile Agents

1.4.5 Robust and Fault-Tolerant Distributed System

We can build, in an easier way, distributed systems that are more robust and fault-
tolerant than non mobile agents based systems because mobile agents have the ability to
react dynamically to unfavorable events and situations that are common in distributed
computing environments. For example, if a host is being shut down, all agents
executing on that host will be warned about this fact and will get some time in order
dispatch to another host where they will resume their tasks.

1.5 Applicationsthat can benefit from mobile agents

There are many areas in computer science where applications can be developed using
mobile agent technology, especially those areas that demand for repetitive tasks and
usually are done by humans. Other kind of applications where agents could be applied
are: applications that need to run in a distributed environment, applications that can not
be interfered by the latency of networks, applications that need to use full-time
connections but technically or economically those connections are not feasible.

1.5.1 E-Commerce

As example of applications we can take the electronic commerce offered over the
internet. Using mobile agents to implement Electronic Commerce applications we can
have real-time access to remote resources like stock information and even agent-to-
agent negotiation in behalf of ourselves. The agents can go over several different hosts
and obtain the best option for what we are looking for.

1.5.2 Personal Assistance

Agents are providing Personal Assistance in applications used as personal agendas. In
this kind of applications the agents can go visit other agents that represent other people,
they interact with their schedules in order to make appointment for a meeting. The agent
has also the ability to negotiate with the other agents in order to rearrange the
appointment in case of any participant of the meeting has something else aready
scheduled for that time.

1.5.3 Distributed Information Retrieval

Agents are a good option also for Distributed Information Retrieval. Instead of moving
large amount of data to the process, an agent can be sent to the host where the data is
and work locally, avoiding the high traffic of information over the network.

1.5.4 Workflow and Groupware

In Workflow and Groupware applications agents can facilitate the flow of information

among the coworkers using its mobility property and provide a certain degree of
autonomy to the workflow items.

Mobile Agents. Patterns and Reflection 11

Chapter I: Mobile Agents

1.5.5 Monitoring and Notification

Agents can show their ability to work asynchronously in applications where the main
goa is Monitoring and Notification. In this case an agent can monitor a source of
information without being dependent on the application that originated it, and after
notify the environment or other agents about what it found.

1.5.6 Information Dissemination

The use of agents for Information Dissemination is the facility that gives to agents the
characteristic of “Internet push model”. In this case agents are used to disseminate
information such as news and to make automatic software update. The agents bring the
new components accompanied by the installation process to the client’s computers, and
autonomoudly, install the new components and manage the software.

1.5.7 Parallél Processing

In Parallel Processing applications or process that require so much processor power,
agents can be used to compose an distributed infrastructure of mobile agent hosts that
can allocate that process and run them in parallel.

1.5.8 Data Source Mediation

Let's suppose we have to work with several different data sources and those data
sources do not talk to each other. In this case, mobile agents can be used as mediators
among the data sources providing mechanisms that allow the incompatible data sources
exchange information.

1.5.9 Information Filtering

Agents can be used to filter and sort incoming information in order to avoid overloads.
The agent receives enough knowledge about its user’s needs and acts as a gatekeeper
selecting only the realy needed information and preventing its users from being
overwhelmed by a flood of information. Filtering agents can also work together with
searching agents in order to keep the searches results in an acceptable level of amount
but in ahigh level of contents.

The following table can give us a general idea where agents can be used in practice.

12 Mobile Agents. Patterns and Reflection

Chapter I: Mobile Agents

Application of Agents

Category Domain
= Smart documents (e.g., documents that ‘know’that
they are supposed to be processed).
Enterprise Applications = Goa-oriented enterprise (e.g., workflow)

*» Role and personnel management (e.g., dynamically
attaching roles and capabilities to people)

Market making for goods and services
Brokering goods and services
Team management

Inter-Enterprise Applications

Intelligent buildings (e.g., smart heating/cooling,
Smart security)

Process Control » Plant management (e.g., refinary)
= Robots
*» Email and newsfilters

Persona Agents » Personnel schedule management

Personnel automatic secretary

Table 1: Overview of practical application of mobile agents

As we can see mobile agents can be used for several purposes, all of them trying to
benefit from the main properties of the agents: autonomy, social ability, reactivity, pro-
activity and mobility.

1.6 Agent Communication Languages

Communication and interaction among agents have a fundamental role in the concepts
of the“ Agent Paradigm”. In order to allow the interaction among agents, researchers are
studying and proposing what they call of ACL - Agent Communication Languages [16],
[17]. An ACL is composed of a common agent communication language added of
protocols and a format for the content of the communication that are the main elements
to achieve the desired agent interaction.

The agent communication languages can be divided in two different groups:

e Procedural Languages
e Declarative Languages

The procedural approach is based on communication language within procedural
directives (e.g, TCL, AppleEvens, Telescript). It is also easy to be used with other very
known and used programming languages where the communication is based on
executable content like Java[31].

The declarative approach is based on idea that the communication language can be best
modeled by the exchange of the declarative statements (definition, assumptions).
Declarative languages basically rely on actions such as requesting and commanding,
and they have an advantage over the procedural languages because procedural
languages are limited due the difficulty to control, coordinate and merge executable
content. Most of the authors agree with that and to formalize their opinion they suggest

Mobile Agents. Patterns and Reflection 13

Chapter I: Mobile Agents

seven categories of requirements that an ACL should accomplish, see the following
table.

Requirement Description
Form it should be declarative, syntactically smple, and easily readable by
people and programs
Content it should provides a distinction between the language that express

communicative acts, called “ perfomatives’ and the language that
transports the content of the message.

Semantics it should exhibit those desirable properties expected of the semantics
as any other language does.

Implementation |it should be efficient, adaptable to existing software, work
transparently with lower layers, and allow agents to implement sub-
sets of it.

Networking it should be able to adapt to the most important aspects of modern
networking and must be independent of the transport mechanism.

Environment it must be able to handle heterogeneity and dynamism.

Reliability it must support reliable and secure agent communication.

Table 2: Agent Communication L anguage Requirements

Many different agent communication languages have been developed and used. We can
enumerate some of them:

- KOML

- Arcol and FIPA

- KIF

- XML-based

Among that ACL’s, KQML is the one that has accomplished most of the requirements
shown in the Table 2, and a good description and evaluation of it can be found in some
documents, for example in “Evaluating KQML as an Agent Communication Language”
(J.Mayfield, Y.Labrouand T. Finin.) [16].

1.6.1 KQML - Knowledge Query and Manipulation Language

KQML has been used to transport oriented-oriented data due its capability to
accumulate a wide range of data, and especialy in agent-based systems, KQML can be
used to help the agent communication in the sense that agents work autonomously and
asynchronously.

KQML Characterigtics:

Structures the messages with no concern about the content of the messages.
Specifies the syntax but not the semantics.

Supports basic protocols.

Assumes that the message transport is reliable, so does not guarantee the delivery of
the message.

An example of abasic performativein KQML istell and its structure is denoted by:

14 Mobile Agents. Patterns and Reflection

Chapter I: Mobile Agents

tell

:content <expressions>
:language <words>
:ontology <words>
:in-reply-to <expressions
:force <words>

:sender <word>

:receiver <words>

KQML offers many reserved performatives names that can be categorized as shown in
the following table:

Category Name

Generic informationa tell, achieve, cancel, untell, unachieve

R&ponse reply, sorry

BasicQuery evaluate, ask-if, ask-about, ask-one, ask-all

Multi-responsequery stream-about, stream-all , eos

Generator advertise, ready, next, rest, discard,
generator

Networking register, unregister, forward, broadcast,
route

Capability-definition Advertise, subscribe, monitor, import, export

Table 3: KQML Performative Names

To have a better idea of KQML language, let’s take alook at an example of a message
writtenin KQML.

For instance, let’s say that an agent “Agent-A” wants to demand to an application the
price of a computer. Using KQML we could have the following statements or
declarations:

(ask-one
:content "computerPrice ()"
:receiver AnApplication
:language Java
:ontology computers)

As we can see, using KQML we can send and receive messages containing or not
parameters (data objects) in a simple format, composed in alanguage of our own choice
where everything is wrapped inside of a KQML message. Considering that, KQML
allows us to work in distributed systems and agent-based systems with a level of
abstraction that turns the message exchanging among objects very flexible and robust.

1.7 Security and Agents

Another relevant and very important topic emphasized by the authors [15] and
researchers working with mobile agents is about the security. There are several security
issues in the mobile agent model that must be considered in case of having agents
working in an environment that demands high level of security. Basically we should
think about the following topics when secure agents environments are required:

Mobile Agents. Patterns and Reflection 15

Chapter I: Mobile Agents

a) Authentication of the sender, the owner and the creator of the agent: with this
information we can have information such as the responsible for the agent and the
responsible for the code of the agent.

b) Authentication of the agent: we can check if the agent is allowed to use some
services, access files, etc.

c) Secure communication between agents: the agent should protect its privacy.

d) Auditing the activities. agent activities that demand security must be recorded in
order to be audited by an administrator later.

Like in any other secure environment, the “Agent Paradigm” also talks about this
subject. Here we can see that the security on the authentication and verification of the
agent information and activities are the main focus.

1.7.1 User Authentication

Checking the information about the user that wants to start an agent in any environment.
This user must be authenticated by the server where the agent will be started and by the
agent execution environment where the agent will work. Sometimes environments may
also perform the user’s authentication only by checking the rights of the group that the
user belongs to. No user authentication needs to be done when the environment where
the agent will work has no protected functions or information. With the user
authentication process we can say that the user/agent knows the server/agent execution
environment and vice-versa.

1.7.2 Malign Agents

Besides having an authentication for the user the server where the agent will run can
also analyze the intention of the agent by looking in its functions and the resources it
wants to access in order to assure the security of the system. This kind of procedure will
work on the identification and detection of malign agents. Depending on the language
that the agent was written, this task becomes more difficult because some agent
languages allow self-modification, as does Telescript [26]. Even after being accepted by
the execution environment, an agent is able to change itself from a benign agent to a
malign agent, so in this case the execution environment should observe the agent during
its execution to guarantee the security and avoid the viruses.

1.7.3 Virus Detection

Mobile agents are not the only way by which viruses can be propagated in a network.
However, agents can really facilitate the propagation. Virus detection is one of the most
difficult problems to solve when we are talking about security and agents. The only way
to detect whether the agent intentions are good or not is applying its code in several
tests. However, this is not enough to say that an agent will not try to corrupt the host
system.

1.7.4 Proxies
In order to protect the agent information against inappropriate access we can define the

use of a proxy to work as a shield that will protect al information. All applications,
agents, environment, etc. will see only a proxy of an agent, and never will access the

16 Mobile Agents. Patterns and Reflection

Chapter I: Mobile Agents

agent information directly. If we want to have a higher level of security on accessing the
information about the agent, security agorithms such as authentication can be
implemented in the proxy in order to filter and select the calls that are made to the agent
methods.

2 Experimentation

Studying mobile agents, their properties, concepts and principles are essential before
starting with a practical experimentation. The experience acquired when we put in
practice the theoretical part, by using tools for developing agent-based applications, is
also important in order to better understand the functionality of the whole mobile agents
mechanism, where the mobility, the interaction and autonomy play the main roles.

2.1 AvailableTools

There are available today severa tools that can help us develop mobile agent based
applications. Each of them has its particularities, benefits and drawbacks. Depending on
the area where our agent based application will work, we can choose either one or other
tool. An evaluation of each one using all its features in practical tests could help a lot
when a decision must be done.

The main Mobile Agent Developing Applications were developed by the famous names
in software industry, as show in the following table:

Application Producer L anguage
Adlets[27] IBM Java
Concordia[28] Mitsubishi | Java

Table 4: Mobile agent tools developed by famous names in softwar e industry

and these tools are aso offered by software companies specialized in Object Oriented
technologieslike:

Application Producer L anguage
Voyager [29] Object Space Java
Odyssey [30] Genera Magic Inc. | Java

Table 5: Mobile agent tools developed by OO specialized companies

As we can see in the Table 4 and Table 5 all of the four examples of Mobile Agent
Applications are based on Java language [31]. This fact did not happen by chance, but
thisis a demonstration that Javais powerful enough in order to attend al Mobile Agent
requirements. Java alows programmers to deal with objects, security, object
serialization [21], network and remote computing facilities besides being platform
independent. It has been used to develop applications for different kind of business and
alsoisreally used in the academic field. Javais aso responsible for the most part of the
web applications running nowadays in the internet. All those characteristics were

Mobile Agents. Patterns and Reflection 17

Chapter I: Mobile Agents

fundamental to make Java the preferred language for developing Mobile Agent
Applications and Tools.

In the practical part of our study we used Voyager [29] in order to implement a small
example of mobile agent based application. Besides allowing mobile agents, Voyager
has many other features that are not related with our study, so we would like to
emphasize here that only the mobile agent feature of Voyager was used.

2.2 TheExampleCreated

The purpose of this example was to introduce us to the mobile agent programming and
try to understand the functionality of an agent-based application by observing the
mobility, communication and behavior of a mobile agent.

Using Java 1.1.7 [31] as the programming language and Voyager 3.0 [29] as our mobile
agent software application we simulated a realy simple e-commerce like application
that has three computer shops running in different hosts and one mobile agent, called
“Shopping Agent”, that will work in this environment. The task of our mobile agent
here in this application is to travel around those three hosts and get the computer price
from each one of the computer shops. Ending the travel the agent returns to the host
were it was started and shows the smallest price found. Figure 4 represents the scenario
of our application, let’s take alook on it in order to understand better our example:

Host 1 Host 2
prpIication\ Voyager Environmeth { Voyager Environment '\

Computer
Shop
\\\ I//’
\ Network /
\ T /

\ Host 3 ¥

\
) /

(Q\ oyager Envi ronment/ﬁ
/

\, Computer)
\ Shop /

/

4 - -p Mobile Agent movement

4—)p Procedure callsand
information exchange

Figure 4: The simple e-commer ce example

18 Mobile Agents. Patterns and Reflection

Chapter I: Mobile Agents

Looking at Figure 4 we can see our application starting an agent in a Voyager [29]
environment. The agent has a previous knowledge of the address of the other
environments and the computer shop applications running on them.

At each host the agent will interact with the computer shop accessing it through a pre-
defined interface and will invoke a method in order to get the price of the computer. For
reason of practicing mobile agent programming only, let's say here that each of the
computer shops sells only one configuration of computer and this configuration is
suitable for us.

2.3 Description of the Participants

Continuing with the description of our example let’ s talk alittle bit deeper in a detailed
way about the participants we can find and their roles.

The following UML [32] class diagram shows us the main attributes and methods of
each class existing in the example.

TheAgent Shop
(from ecommerce) Ecommerce (from ecommerce)
(from ecommerce)
&pshops — spcomputers
&pbesthop spnumseners : int &name
sphomeaddress Sseners mpcontact
ashopindex R¥shops aptelephone
*showResult() :startUpVoyager() *getPrice()
*goTo() startUpEnvironments() %getPriceVal()
*checkPrices() $startUpAgent() ‘
*goHome() sells
*getShoplindex()
Computer
(from ecommerce)
&pprice : float
*getPrice()

Figure5: Class Diagram of the e-commer ce example

Mobile Agents. Patterns and Reflection 19

Chapter I: Mobile Agents

: Ecommerce : TheAgent : Shop

U startAgent() >|j |
|

[moveTo(AnEnvironment) |

< |

| getPrice()

{

showResults()

| .

|
.
|
|
|
|
|
|
|

Figure 6: Collaboration diagram of the e-commer ce example

2.3.1 TheAgent

The TheAgent class is our mobile agent in this example. It implements an interface
with the method goTo () that will be called once by the application that creates an
instance of the agent. Mobile agents can work autonomously [1], [14], so the method
goTo () will be invoked by the agent itself when it wants to move to another location.

Method Functionality
goTo () M akes the agent move to another environment
checkPrices () Interact with the Shop class in order to obtain the price
of acomputer.
goHome () Makes the agent go back to the environment where it was
started
showResult () Show the result obtained after finishing itstravel

Implementation of those methods:

import com.objectspace.voyager.*;
import com.objectspace.voyager.agent.*;
import com.objectspace.lib.util.*;
import java.io.*;

public class TheAgent implements ITheAgent, Serializable {
private Vector shops;
private int shopindex;
private IShop bestshop = null;
private String homeaddress = "//us10:10000";

20 Mobile Agents. Patterns and Reflection

Chapter I: Mobile Agents

/*******************************/

public TheAgent (Vector s) ({
/*******************************/
shopindex = 0;
shops = new Vector() ;
shops = s;

/*******************************/

public void checkPrices (IShop shop)
/*******************************/
Date date = new Date();
System.out.println("-----------------
date.toString()) ;
System.out.println("-> agent arrived") ;
System.out.println("-> checking prices

Compares
the prices

if (bestshop == null) {
bestshop = shop;

}else if (shop.getPriceval() <

| bestshop = shop;

try {Thread.sleep(5000) ; }catch(Exception e) {}
System.out.println("-> price: "+ shop.getPrice());
shopindex++;

bestshop.getPriceval ()) {

Goes to the next

if (shops.size() > shopindex shop or get back
goTo (shopindex) ; home
}else {

goHome () ;

/*******************************/

public void goTo(int ind) ({
/*******************************/

Date date = new Date() ;
try {
System.out.println("-> moving to next shop");
System.out.println("--------------—----------- "t
date.toString()) ;
Agent.of (this) .moveTo ((IShop) shops.elementAt (ind),
"checkPrices") ;

Defines which method
should be executed
when arriving in a
new host.

Invokes the Voyager’s
environment method
in order to move the
to another

/************** ***********/

public void goHome () {
/*******************************/

boolean moved = false;
try {
System.out.print ("-> going home ("+
Agent .of (this) .getHome () +") ") ;
Agent .of (this) .moveTo (Agent.of (this) .getHome (),
"sho n) ;
} catch (Exception e) ({
System.err.println(e) ;

Again, invokes the
Voyager's environment
method moveTo . Now
to go home.

/*******************************/

public void showResult () ({
/*******************************/

Date date = new Date();

Mobile Agents. Patterns and Reflection 21

Chapter I: Mobile Agents

System.out .println ("x*kxHkkkkhkhkkhkhrkhkkhkhxkh®ly
date.toString()) ;

System.out.println ("Best price found: " +bestshop.getPrice());

System.out . print I (" h %k k% k& k %k ks k &k k% kxkkkk k%N

Uses the shop’'s
interface to get the
price and show it.

2.3.2 Shop

The class shop will have an instance of the class Computer, where the price will be
stored. This class keeps a list of al computers available in the computer shop. In our
example, we defined that each shop will sell only one kind of computer. To check the
price of the computer we invoke the method getPrice () and getPriceval ().

Thefirst returns a currency formatted string and the second a float value.

Method Functionality
getName () Returns the name of the shop
getContact () Returns the personnel contact in the shop
getTelephone () Returns the shop’ s telephone number
getPriceVal () Returns the price of a computer in avalue (float) format
getPrice () Returns the price of a computer in a currency formatted
string

Implementation of those methods:

package ecommerce;

import java.io.*;

import java.util.*;

import java.text.*;

import com.objectspace.voyager.space.*;
import com.objectspace.voyager.*;

public class Shop implements IShop,Serializable ({

private String name;
private String contact;
private String telephone;
private Vector computers;
private Date date;

/*******************************/
public Shop(int i) {
/*******************************/
date = new Date() ;
computers = new Vector () ;
computers.addElement (new Computer()) ;

System.out.println("========================="+date.toString()) ;

System.out.println("-> object SHOP"+i+" created");

}

/*******************************/

public String getName ()
/*******************************/

return name;

}

22 Mobile Agents. Patterns and Reflection

Chapter I: Mobile Agents

/*******************************/
public String getContact () ({

/*******************************/
return contact;

/*******************************/
public String getTelephone () {

/*******************************/
return telephone;

/*******************************/
public float getPriceval() ({

/*******************************/
return ((Computer) computers.elementAt(0)) .getPrice() ;

/*******************************/
public String getPrice() ({

/*******************************/

float p = ((Computer) computers.elementAt (0)) .getPricel() ;
String ret = NumberFormat.getCurrencyInstance (

Locale.FRENCH) . format (p) ;
return ret;

2.3.3 Computer

The Computer class will contain and provide the information about the computers
sold in a computer shop. It will interact directly with the Shop class when a price of a
computer is demanded. The method getPrice () is the responsible to return that
information. In our example the price and the description of a computer is generated
randomly at the time of creation of an instance.

Method Functionality
getDescription () Returns the description of the computer
getPrice () Returns the price of the computer

Implementation of those methods:

package ecommerce;

import java.io.*;
import java.util.*;

public class Computer ({

private String description;
private float price;
private Random num;

/*******************************/

public Computer () {
/*******************************/
num = new Random() ;
price = (num.nextFloat())*10000;
description = "COMPUTER - " + price;

}

Mobile Agents. Patterns and Reflection 23

Chapter I: Mobile Agents

/*******************************/

public String getDescription() {
/*******************************/

return description;

/*******************************/
public float getPrice() {

/*******************************/
return price;

2.3.4 Ecommerce

The Ecommerce class has aso a certain importance for our example because it plays
to distinct roles. In the first role it is the responsible for starting up our environment,
creating the shops in the different Voyager environments, and creates the mobile agent
that will travel through the servers searching for computer prices. In the second role it
plays the “Mobile agent Based Application”, that will start our agent and get its results
in the end. When developing agent-based applications in the real world we should have
different implementations for each of those roles. Is aways good to have a small
application that will manage the environments and its members (agents and other
objects), the final applications that will benefit from the use of mobile agents should
only take care of their own started agents.

Implementation of this class:

package ecommerce;

import com.objectspace.voyager.*;
import com.objectspace.voyager.agent.*;
import com.objectspace.voyager.space.*;
import java.util.*;

public class Ecommerce {

private int numservers;
private Vector shops;
private Vector servers;
private Date date;

/*******************************/

private Ecommerce () {
/*******************************/
date = new Date() ;
shops = new Vector() ;
servers = new Vector() ;
servers.addElement ("//usl10:8000") ;
servers.addElement ("//us20:8000") ;
servers.addElement ("//us30:8000") ;
numservers = servers.size();

Defines the hosts
where the agent
will travel

24 Mobile Agents. Patterns and Reflection

Chapter I: Mobile Agents

/*******************************/

private void startupVoyager () {
/*******************************/
System.out.println ("****xxxxxkkx*
System.out.println("-> starting
try
Voyager.startup ("9000") ;
System.out.println (Agent.of (this) .getHome ()) ;
} catch (Exception e)
System.out.println (e) ;

***"idate.toString()) ;
4« Voyager ");

/*******************************/

private void startupEnvironment ()
/*******************************/

System.out.println("-> inicializing environmery’Creates the Shops
objects in each one
of the servers and
put them in a

vector

for (int i=0; i < numservers; i++) ({

try {

// creates the object SHOPS and bind the

// store them in a Vector
System.out.println("-> creating ob/

(String) sgiers.elementAt (1)) ;
Object[] args = new Object[] {new/integer(i)};
IShop shop = (IShop) Factory.create ("ecommerce.Shop",
args, (String) servers.elementAt (i));
shops.addElement (shop) ;

g a name and

SHOP at "+

} catch (Exception e) ({
System.out.println(e) ;

/*******************************

private void startupAgent () {
/****************************

Date date = new Date() ;

Sends the agent to
the first Voyager
Environment

System.out.println("-> creating object AGENT!"
TheAgent anAgent = new TheAgent (getShops ()
System.out.println("-> putting AGENT to

anAgent .goTo (anAgent .getShopIndex ()) ;

/*******************************/

private void shutdown() {
/*******************************/

Date date = new Date() ;

System.out.println("-> shutting down Voyager") ;
System.out.println ("****kkxkkkkkkkkkxkxkkkxx**"ydate.toString()) ;
Voyager.shutdown () ;

/*******************************/

private Vector getShops() {
/*******************************/

return shops;

Mobile Agents. Patterns and Reflection 25

Chapter I: Mobile Agents

/*******************************/

public static void main(String[] args) {
/*******************************/

The method
Main (), where

Ecommerce ecom = new Ecommerce () ; everything starts

ecom.startupVoyager () ;
ecom. startupEnvironment () ;
ecom. startupAgent () ;

ecom. shutdown () ;

2.4 Conclusion

After this experimentation with a small example of an agent-based system, using
Voyager 3.0 [29] and Java [31], we could feel how the main mechanisms and concepts
in the “Agent Paradigm” works. From this example we could identify some basic
requirements in agent-based systems, such as the environments, the agents themselves,
the interaction that exists between agents and applications or even between two agents,
their mobility, etc. All of this can prove that researches and studies done by the software
industry, universities research groups and other laboratories are absolutely right when
they say that the “Agent Paradigm” is a new and modern way to design and implement
distributed systems.

From now, we can aso say that a top-down study of the whole structure of an agent-
based system beginning from the macro and going to each specific component is
necessary. With such a kind of study, we would be able to identify the points of
complexity where we could use advanced software engineering techniques in order to
propose a solution. That solution would be showed in an abstract format, with a
description of the generic problem in such way that it could help programmers to
identify and solve similar problems of implementation involving the same
characteristics.

A good way to do that is proposing Mobile Agent Patterns that could be applied when
developing mobile agent-based applications in order to facilitate the comprehension,
implementation and maintenance of those systems and also alowing them to be more
reusable and robust.

26 Mobile Agents. Patterns and Reflection

Chapter I1: Design Patternsfor Mobile Agents

Chapter I1: Design Patterns for Mobile Agents

3 Introduction

“In most areas of research there comes a time when the researchers begin to
understand the principles, facts, fundamental concepts, techniques, architectures, and
other research elementsin their fields of study” . (Dwight Deugo) [4].

After studying and practicing the main “Mobile Agent” elements like autonomy, social
ability, reactivity, pro-activity and mobility, we could reach a certain level of
knowledge related to those properties and also identify where were their main recurrent
problems. In the next step of our work, based on what we have learned about mobile
agents, we propose a possible solution for each one of the identified problems and also
we document them using a well known and accepted technique in the object oriented
community: software design patterns [18],[19].

3.1 Design Patterns

The term “Design Pattern” was created by Christopher Alexander [20] a long time ago
when he explained a pattern with the following statement:

“Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in such a way
that you can use this solution a million times over, without ever doing it the same way
twice” . [20]

As an architect, Alexander talked about patterns related to buildings and towns, but
what he said is completely true when we apply that to object oriented design in
computer science. The terms differ from house architecture and software development,
but the main idea of using design patterns remains the same: pattern is a solution to a
problem in a certain context. Instead of talking about doors and walls we focus on
objects and interfaces.

3.2 Scopeof Our Solution

The mobile agent technology offers distinct levels of granularity that are not explicit
when we look at it from the outside. Going a little bit deeper, we can identify many
different recurrent problems that need to be solved at different levels, like for example:

= The mobility of the agent that involves sending its state and code to another
environment in order to resume its execution.

= Allowing the interaction between agents its not an easy task for several reasons.
Agents might not now other agents so someone should help agents to find other
agents. After an agent found other agents how can they interact and exchange
information ?

» The coordination of agents in an environment must be done carefully. The
environment must manage the arriving and dispatching of agents, besides providing
good ways of finding an agent once it knows all current agents.

28 Mobile Agents. Patterns and Reflection

Chapter I1: Design Patterns for Mobile Agents

= An agent based application must be secure. Not every agent can access other agent’s
specific methods. An identification of all agents and their intentions when trying to
access other agent could be a good idea.

= Sending an agent object from one host to another requires some steps before. One of
those steps is the serialization of the agent object. There are many different ways to
do that and we can not forget that an agent based application must be heterogeneous
and platform independent.

= When we talk about mobility we have to pay a specia attention to the agent thread.
When an agent is dispatched from one environment to another we must resume the
agent operation from the same point where it was in the previous environment.

Some of those problems won't be covered here because they are really complex and
demand specific and dedicated studies or because other authors have already solved
them. This is the case of threads (concurrent programming) for example that is covered
by the Active Object Pattern [8], [6] where the authors describe how we can manage
different threads of control for agents.

The scope of our work is headed to provide solutions to high level recurrent problems,
leaving the low level problems to be solved by using design patterns already proposed
by other authors. Our solution will help other people to solve the following recurrent
problems:

»= How can we have mobile agents interacting with each other ?

= How can we control the access to the mobile agent ?

= How can we have a transparent access to a mobile agent when it is in a remote
environment ?

* How can we identify mobile agents by their capabilities ?

= How can amobile agent in alocal environment find another agents without knowing
their existence ?

= How can amobile agent change the destinations where it should go dynamically ?

As solution to those commons problems found in mobile agent technology, we propose
the following agent design patterns:

Abstract Agent Pattern
Aqgent Proxy Pattern
Agent Coordinator Pattern
Agent Interaction Pattern
Travel Plan Pattern

In order to organize the patterns and give a general overview of the capabilities of each
one we categorized them as shown in the following table:

Mobile Agents. Patterns and Reflection 29

Chapter I1: Design Patterns for Mobile Agents

Category Patterns Deal with
Agent Abstract Agent Environment / Mobility
Agent Proxy Mobility / Social Ability
Agent Coordinator Social Ability
Collaboration Agent Interaction Socia Ability/ Goa Driven/
Reactive
Traveling Travel Plan Mobility

Table 6: Proposed agent design patterns

Each of those patterns will be discussed in the next sections of our work giving a
complete explanation about their structures, participants, applicability, etc.

30 Mobile Agents. Patterns and Reflection

Chapter I1: Design Patterns for Mobile Agents

4 Abstract Agent Pattern

41 Intent

The intent of the Abstract Agent Pattern is to define a basic infrastructure in order to
implement a mobile agent based system.

4.2 Scopeand Motivation

We want to benefit from the various advantages offered by the mobile agent technology.
The ease to design, implement and maintain an application developed using mobile
agent technology led us to adopt it. In our mobile agent based application, our agents
will be able to be started and after move around different hosts where an environment
will be ready to receive them. In that environment our agent will be able to interact with
other agents and exchange information by sending messages each other.

4.3 Applicability

The Abstract Agent Pattern is applicable when:

» The advantages provided by mobile agent technology [1] are need in a distributed
application.

= Defining abasic and abstract infrastructure of a mobile agent based application.

= Developing a mobile agent based application just using Java[31].

4.4 Structureand Participants

Figure 7 shows the Abstract Agent Pattern represented by a generic UML [32] class
diagram containing its main participants.

SecurityManager

AbstractAgent
AgentEnvironment .
environment
dispatch()
receiveAgent() getld()
sendAgent() handleMessage()
environment transporter 4
AgentTransporter ‘
ConcreteAgent agent | AgentProxy

sendAgent()
receiveAgent()
serialize()
unserialize()

Figure 7: The abstract agent pattern structure

Mobile Agents. Patterns and Reflection 31

Chapter I1: Design Patterns for Mobile Agents

The participants are:
= AgentEnvironment

The AgentEnvironment class has avery important role in this pattern. It will be the
responsible to provide to the mobile agent basic services that allow an agent to move to
other environments, to find other agents, to interact with other agents, etc. The
environment will also contains a reference to the Agent Transporter class, leaving
the transport implementation separated of our environment behavior makes it easier to
deal with different types of protocols and communication architectures.

= AbstractAgent

The main role of the AbstractAgent classis to define a common interface for the
AgentProxy class and the ConcreteAgent class, so the proxy can be used
anywhere as the real agent object.

= ConcreteAgent

The ConcreteaAgent classwill contain the implementation of the desired behavior of
our agent and always will be represent by an Agent Proxy.

= AgentProxy

The AgentProxy class will implement different behaviors in order to represent the
ConcretelAgent object. Depending on the location of the agent, the Agent Proxy
can have two distinct states, the local state and the remote state. The local state will
have a reference to a ConcreteAgent object in the local environment while the
remote state will have a reference to an AgentProxy in a remote environment. This
will alow us to have a transparent access to the agent independently where it is located.
The agent proxy is aso responsible to provide an interface that defines the methods that
can be invoked in the concrete agent object. It aways represents the
ConcreteAgent.

= AgentTransporter

The AgentTransporter class will be responsible for take care of the mobile agent
object transportation. It will implement methods to serialize and unserialize mobile
agent objects [21] and also to send them over the network to another host.

= SecurityManager

This class will specify the agent access security policies and controls all messages that
will be sent to the ConcreteaAgent classthrough its respective Agent Proxy.

4.5 Conseguences

The Abstract Agent Pattern shows us the main components necessary in a mobile agent
based application.

32 Mobile Agents. Patterns and Reflection

Chapter I1: Design Patterns for Mobile Agents

This pattern can be implemented with no special tool or agent programming
language, so this is one reason that will make its implementation platform
independent.

New features to the environment can be added without changing its main behavior.
For example, the environment can provide a service of security checking that
verifies whether the mobile agent is allowed or not to enter in the environment.

The fact of having a separated object that is responsible only for the transportation
of objects permits us to extend this class if needed in order to alow our environment
to send and receive mobile agents using different ways of communications like
RMI, CORBA, DCOM, sockets, etc.

4.6 Implementation

To implement the Abstract Agent pattern, carry out the following steps:

1.

Identify the basic methods that a mobile agent must have and define those methods
in an abstract class. The abstract class can be used as an interface defining all
methods that should exist in the concrete agent and in the agent proxy.

Extend that abstract class and create a concrete agent and an agent proxy.

In the concrete agent implement the methods defined in the abstract class and the
other desired methods.

In the agent proxy implement the methods only calling the same methods in the
concrete agent. For example:

Public class AgentProxy
Concrete agent agent;

public getId() {
agent .getId() ;

}

Before invoking the methods in the concrete agent an access control can be done. A
security manager is helpful to do that.

Create an abstract class for your environment. The environment will be responsible
to implement the methods that will deal with the agents transportation (dispatch and
receive), so we can use also a agent transport that will carry out the serialization of
the agent object and its sending.

4.7 Related Patterns

Agent Pattern [7]

Mobile Agents. Patterns and Reflection 33

Chapter I1: Design Patterns for Mobile Agents

5 Agent Proxy Pattern

5.1 Intent

The intent of this pattern is to define a mobile agent capable to run in any environment
allowing other agents to have transparent access to it, through a proxy, even when the
agent is remote.

5.2 Scopeand Motivation

Mobile agents can work autonomously and asynchronously in places called
environments. The environments can be located in a same host or they can be spread
over different hosts on the network. When traveling, the agent must allow other agents
or applications to access them without having to announce its location to al its
collaborators. Other agents can not invoke the methods on the mobile agent object
directly, only through its proxy. The agent’s proxy provides an interface with the
methods that can be invoked by others mobile agents or applications.

5.3 Applicability
The Agent Proxy Pattern is applicable when:

= Developing mobile agent applications.

= Access to agents need to be transparent independently where the agent is located
(local or remote).

» Thereal agent object cannot be accessed directly by its collaborators.

= An agent surrogate is necessary in order to provide an interface to the concrete agent
object.

54 Structureand Participants

Figure 8 shows the Mobile Agent Pattern represented by a generic class diagram
containing its main participants.

34 Mobile Agents. Patterns and Reflection

Chapter I1: Design Patterns for Mobile Agents

AbstractAgent

dispatch()
getld()
handleMessage()

run()
Z> proxy State.request(); ﬁ

ConcreteAgent AgentProxy |- — —
run() request()
remoteProxy
concreteAgent proxyState

AgenProxy State

request()

-

Local Remote | —

— — — —request() request() |—

concreteAgent.any Method(); ﬁ remoteProxy .request(); ﬁ

Figure 8: The agent proxy pattern structure

The participantsin this pattern are:
= AbstractAgent

The main role of the AbstractAgent classis to define a common interface for the
AgentProxy class and the ConcreteAgent class, so the proxy can be used
anywhere as the real agent object.

= AgentProxy

The Agent Proxy class will maintain areference to its state class, Local or Remote
depending on the location of the agent. All incoming requests done by any other object
will be forwarded to the respective state class. The agent proxy is also responsible to
provide an interface that defines the methods that can be invoked in the concrete agent
object.

= AgentProxyState

This class defines the common interface that will be used by the Local and Remote
classes so that the AgentProxy will be able to reach the real agent object wherever isthe
agent location.

= | oca

The Local class will be responsible to keep a reference to the real agent object
represented by the ConcreteAgent class when the agent object islocated in the same

Mobile Agents. Patterns and Reflection 35

Chapter I1: Design Patterns for Mobile Agents

environment as the proxy. Thisis the only class that can invoke the ConcreteAgent
methods directly.

= Remote

The Remote class represents the state of the proxy when the real agent object is not in
the same environment of its proxy. It will maintan a reference to another
AgentProxy that is remote. Doing that we can guarantee that other objects will have
transparent access to our agent object.

= ConcreteAgent

The ConcreteAgent is the real agent object. It will contain the implementation of
the desired behavior and always will be represented by an Agent Proxy.

55 Collaborations

Any collaborator can call agent methods through an AgentProxy by sending a
message to it. The only class that is able to call agent methods directly is the Local
class, it represents the Agent Proxy state when the ConcreteAgent object and its
respective AgentProxy oObject are in the same environment. Otherwise the
AgentProxy state will be represented by the class Remote that will make a reference
to another Agent Proxy remotely.

Figure 9 shows the collaboration diagram for alocal mobile agent.

ConcreteAgent A AgentProxy B AgentProxy B ConcretAgent B
LocalState
sendMessage("getld") ‘

| | |

gl | |

‘ sendMessage("getld") ‘ ‘

| |
|
|
|
|

m handleMessage("getld")
| D
| |
| |

Host A

Figure 9: Collaboration diagram of alocal mobile agent

36 Mobile Agents. Patterns and Reflection

Chapter I1: Design Patterns for Mobile Agents

Figure 10 shows the collaboration diagram for a remote mobile agent.

ConcreteAgent A AgentProxy B AgentProxy B AgentProxy B
RemoteState

‘ sendMessage("getld") ‘ ‘
e ——

I |

‘sendMessage("getld')‘
|
\
|
\
|
I

|

sendMessage("getld")

-

Figure 10: Collaboration diagram of a remote mobile agent

5.6 Consequences

The Agent Proxy Pattern introduces a simple and robust structure to implement a
mobile agent.

= This pattern can be implemented with no specia tool or agent programming
language, so this is one reason that will make its implementation platform
independent.

= |t offersagood level of flexibility and can be easily improved if needed becauseit is
based on the already proven design patterns — State Pattern [18] and Proxy Pattern
[18], [19].

= New features based on the current structure can be added depending on the needs of
who will implement it. For example, just implementing a Security Manager that first
checks the rights of who wants to access the agent can provide us a more rigorous
access control to the agent object.

5.7 Implementation
To implement the Agent Proxy pattern, carry out the following steps:

1. Reuse the dready implemented AbstractAgent and ConcreteAgent classes
defined in the Abstract Agent Pattern.

2. Create the AgentProxy class with a variable that will contain an instance of the
AgentProxyState class. When we are working with mobile agents, agents and
applications can interact with other agents that may move to a remote environment.

Mobile Agents. Patterns and Reflection 37

Chapter I1: Design Patterns for Mobile Agents

}

When an agent has moved to a remote environment the other agents and
applications must be able to interact with it transparently even when the agent is
located in aremote environment. So, the Agent Proxy class must change its states
accordingly to the location of the agent. Implement a method that updates the agent
proxy state every time that the agent moves from environment to another.

Create an abstract class cadled AgentProxyState and define, as abstract, the
same methods existing in the Agent Proxy class.

Extend the AgentProxyState credating the AgentProxyStateLocal and
AgentProxyStateRemote classes.

In the AgentProxyStateLocal class define a variable that references a
concrete agent object and implement all methods defined in its super class by
invoking the same methods in the concrete agent object that this states represents.
For example:

public class AgentProxyStateLocal
ConcreteAgent agent;

public getId() {
agent .getId() ;

}

Before invoking the methods in the concrete agent object an access control can be
done. A security manager is helpful to do that.

In the AgentProxyStateRemote class define a variable that references an
agent proxy in a remote environment. Implement all methods defined in the
AgentProxyState class by invoking the same methods in the remote agent
proxy. For example:

public class AgentProxyStateRemote
AgentProxy remoteProxy;

public getId() {
remoteProxy.getId() ;
}

5.8 Related Patterns

Proxy [18], [19]
State [18]

38

Mobile Agents. Patterns and Reflection

Chapter I1: Design Patterns for Mobile Agents

6 Agent Coordinator Pattern

6.1 Intent

The intent of the Agent Coordinator is to allow the agent environment to provide a
service to register incoming and outgoing mobile agents.

6.2 Scopeand Motivation

When an agent arrives at an environment it may not know the other agents that are
working in the same environment. At the same time, other agents want to know the all
agents that are current working on that environment and interact with them. This would
be possible if we force our mobile agents to register and unregister with a coordinator at
the moment of their arrival or departure respectively, facilitating the control over all
agents that are located at an environment. Once the agent coordinator knows all agents
running in its environment it can provide different methods of agent lookup.

6.3 Applicability

The Agent Coordinator pattern is applicable when:

= The agent environment must have control over all agents that are running on it.

= The interaction among mobile agents is necessary even when the agents do not

know each other.
= Different agent lookup methods are necessary.

6.4 Structureand Participants

Figure 11 shows the Agent Coordinator Pattern represented by a generic class diagram
containing its main participants.

AbstractAgentCoordinator AbsiaciAgentEmvironnent
agentList
agentCoordinator)
addAgent() arrivedAgent() j
removeAgent() dispatchedAgent() ‘
. findAgent()
getAllAgents()
findAgent() getAllAgents() ‘
\
* public arrivedAgent(anAgent) {
AgentProxy agentCoordinator.addAgent(anAgent);
I }

Figure 11: The agent coordinator pattern structure

Mobile Agents. Patterns and Reflection 39

Chapter I1: Design Patterns for Mobile Agents

The participants are:

= AbstractAgentCoordinator

The AbstractAgentCoordinator class will maintains alist of all current agents
(proxies) running in a certain agent environment. It provides the basic methods of
adding, removing and searching mobile agents. It can be easily extended in order to
provide new methods for agent lookup.

= AbstractAgentEnvironment

The AbstractAgentEnvironment class keeps a reference to the
AgentCoordinator class. After a mobile agent has arrived or departed, the
environment will call the agent coordinator methods in order to update the list of current
running agents. This class is also responsible to provide an interface that allows agents
to perform searches on the agent coordinator.

= AgentProxy

The AgentProxy class is the surrogate of the real agent object (see item 5 — Agent
Proxy Pattern) and will be referenced by the Agent Coordinator list.

6.5 Collaborations

Figure 12 shows the collaboration diagram of the Agent Coordinator Pattern.

Agent A Agent B Environment Agent
Coordinator

addAgent(Agent A)

I
arrivedAgent(Agent A)

;

\
|
ﬁ getAllAgents()
\
|

getAllAgents()
sendMessage("getld")

m dispatchedAgent(Agent B)
|
\
|

-/ — —r—F —F+—r—1+ J—

\
|
\
|
remov eAgent(Agent B)

|
|

]

Figure 12: Collaboration diagram of the Agent Coordinator Pattern

40 Mobile Agents. Patterns and Reflection

Chapter I1: Design Patterns for Mobile Agents

6.6 Consequences

The Agent Coordinator Pattern is a good solution when mobile agents have limited
knowledge of other agents or when they really do not know other agents. All agents are
forced to register when arriving and leaving of an environment alowing the
environment to have a whole control of the current running agents.

6.7

The agents do not need to have previous knowledge of other agents in order to
interact with them.

We decrease the complexity of the mobile agent and avoid high maintenance when
the agent coordinator implements the lookup methods.

Not only mobile agents can benefit from the agent coordinator lookup methods;
stationary agents, other applications like web applications, viewers and environment
managing tools are able to use them.

I mplementation

To implement the Agent Coordinator Pattern carry out the following steps:

1.

Reuse the already defined AbstractAgentEnvironment class in the Abstract
Agent Pattern. Add new methods to this class that will allow controlling al agents
that arrive and depart from the environment. Add also a variable that will contain an
instance of the agent coordinator.

Create an abstract class AbstractAgentCoordinator with avariable that can
keep alist of the current agents in the environment.

Implement basic methods to manipulate that list. For example. addagent (),
removeAgent (), findAgent ().

Every time an agent arrives or departs from the environment invoke the
correspondent methods in order to keep the list always updated.

6.8 Related Patterns

AgentProxy (seeitem 5— Agent Proxy Pattern)
Mediator [18]
Iterator [18]

Mobile Agents. Patterns and Reflection 41

Chapter I1: Design Patterns for Mobile Agents

7 Agent Interaction Pattern

7.1 Intent

The Agent Interaction Pattern intents to facilitate the interaction between agents based
on their capabilities.

7.2 Scopeand Motivation

A mobile agent can interact with other different agents even when those agents are
completely different on their behaviors. For example, an agent can interact with an
agent that represents a bookstore and after it interacts with another agent that represents
a shipping company. Our mobile agent will by a book from the bookstore agent and
asks to the shipping company agent to delivery it to a certain address. Our agent knows
neither the bookstore agent nor the shipping company agent. If we associate capabilities
to each one of those agents it would be much simpler to find them. Moreover, if we
define in the capabilities what our agent is looking for, the environment can notify our
mobile agent when an agent that matches our needs arrives.

7.3 Applicability
The Agent Interaction Pattern can be applied when:

= A mobile agent must interact with other agents that it doesn’t know, but it knows the
capability that the other agents must have.

= The environment should notify all agents about the capabilities of a mobile agent
that arrived.

= When an agent wants to be announced to other agents about its capabilities when
arriving in any environment.

7.4 Structureand Participants

Figure 13 shows the Agent Interaction Pattern represented by a generic class diagram
containing its main participants.

42 Mobile Agents. Patterns and Reflection

Chapter I1: Design Patterns for Mobile Agents

AbstractAgentCoordinator

agentList

addAgent()
removeAgent()
findAgent()
getAllAgents()

7

AbstractAgentEnvironment

agentCoordinator

arrivedAgent()
dispatchedAgent()
findAgent()
getAllAgents()

1

AgentCoordinator i
g agentCoordinator AgentEnvironment
getProviderAgents() getProviderAgents()
getConsumerAgents() getConsumerAgents()
notify Consumers()
* ConcreteAgent Capability
AgentProxy
getProviderCapabilities()
getConsumerCapabilities() .
*
meet()
Provider Consumer
description | |description

Figure 13: The agent interaction pattern structure

The participants are:
= AbstractAgentCoordinator

The AbstractAgentCoordinator class implements the basic functionality of the
agent coordinator, managing a list of all agents running in the current environment (see
item 6 — Agent Coordinator Pattern for).

= AbstractAgentEnvironment

The AbstractAgentEnvironment class keeps a reference to the
AgentCoordinator class. After a mobile agent has arrived or departed, the
environment will call the agent coordinator methods in order to update the list of current
running agents. This class is also responsible to provide an interface that allows agents
to perform searches on the agent coordinator.

= AgentCoordinator

This class extends the AbstractAgentCoordinator class. It implements new
lookup methods that can find mobile agents based on their capabilities. It takes in
account the provider and consumer capabilities of each mobile agent during the
searches. It aso can notify agents about the arriving of other agents. The notification is
based on the provider capabilities of the arrived agent and the consumer capabilities of
the current agents in the environment.

= AgentEnvironment

The AgentEnvironment class extends the AbstractAgentEnvironment and
implements new methods for agent lookup. For example, the method

Mobile Agents. Patterns and Reflection 43

Chapter I1: Design Patterns for Mobile Agents

getProviderAgents () returns only the mobile agents that has capabilities of
providers. A parameter could be defined in this method in order to specify the provider
capability we are searching, for example getProviderAgents (“shipping
company”) could return only the agents that represent companies which provide
services for shipping merchandises.

= AgentProxy

The AgentProxy class is the surrogate of the real agent object (see item 5 — Agent
Proxy Pattern) and will be referenced by the Agent Coordinator list.

= ConcreteAgent

The ConcreteAgent is the real agent object. It will contain the implementation of
the desired behavior and aways will be represented by an AgentProxy. The
ConcretelAgent in this pattern implements two methods that return its capabilities as
provider and as consumer respectively.

= Capability

The capability classis where we define the agent’s capabilities. It is composed of
instances of classes Provider and Consumer. A mobile agent can have severa
capabilities as provider or as consumer. The mobile agent might also have only provider
capabilities or even only consumer capabilities depending on how it was implemented.
Depending on the agent policy it might also define no capability at all, then our agent
won't be notified by the environment nor be found by other agents. This could be useful
when implementing a security agent that should work anonymously to investigate and
monitor other agents.

= Provider

This class has a description of one provider capability of a mobile agent. The
Provider class can describes the capability in different ways, depending on the needs
of who will useit. For example it can only have a string variable containing: “books” in
order to identify an agent that sells books. In our implementation of this pattern (see
Appendix A — Java Documentation) we used the string “computer” to identify a
computer shop that sells computers.

= Consumer

This class has a description of one consumer capability of a mobile agent. The
Consumer class can also describes the capability in different ways. In our example we
defined a standard that a consumer agent contains in its capability the description of the
provider it is looking for. So, if we define “books’ as the capability of a consumer, it
means that the agent is a consumer of “books’ and will look for other agents that have a
provider capability “books’.

7.5 Collaborations

Figure 14 shows the collaboration diagram of the Agent Interaction Pattern.

44 Mobile Agents. Patterns and Reflection

Chapter I1: Design Patterns for Mobile Agents

Agent A Environment Agent Agent B Agent C
Coordinator

arrivedAgent ‘ ‘ ‘

addAgent | | |

| I | |

‘ getProv iderCapabilities i ‘ ‘

[~ \ | |

| | a o | |

‘ ‘ L nonfyConsumers‘ ‘

| | i | |

‘ ‘ i meet(Agent A) ﬁ ‘
— >

| | |

‘ getConsume‘rCapabilities T ‘ ‘

= | | |

‘ meet(/—\‘gent C) T ‘ ‘

i | |

| | |
n sendMessage('getld") |
I

. \ | ﬁ

dispatch ‘ ‘ ‘

L \ | |

dispatchedAgent

| SEPREREEROE | | |

| | |

| |

| |

| |

| |

\
|
|
1
|
|
|
*‘ remov eAgent
‘ H
| |
| \

Figure 14: Collaboration diagram of the Agent Interaction Pattern

7.6 Consequences

The Agent Interaction Pattern is helpful when mobile agents have limited knowledge of
other agents or when they realy do not know other agents and they must find other
agents based on the their capabilities.

= The agents do not need to have previous knowledge of other agents in order to
interact with them.

= The Agent Interaction Pattern benefit from the Agent Coordinator Pattern (see item
6 — Agent Coordinator Pattern) in order to have the basic registration facility in the
environment. In this case, it is only necessary to implement the specific lookup
methods, which use the agent's capabilities as the parameters, in the
AgentCoordinator class.

= Agents can be notified when other agents of interest have arrived.

Mobile Agents. Patterns and Reflection 45

Chapter I1: Design Patterns for Mobile Agents

1.7

Agents that do not want to advertise their capabilities can work anonymously
without being reached by other agents. However, they still able to find other agents
in accordance with their needs.

I mplementation

To implement the Agent Interaction Pattern carry out the following steps:

1.

Reuse the AbstractAgentCoordinator, AbstractAgentEnvironment
and ConcreteAgent classes defined in the other patterns.

Create a class Capability where the agent’s capabilities will be described.
Implement basic methods for adding, removing and obtaining the agent's
capabilities.

Create a class Provider and a class Consumer that describes the provider and
consumer capabilities respectively. Implement basic methods for obtaining the
description of the capabilities.

Create a variable in the ConcreteAgent class that will make a reference to an
object capability.

Extend the class AbstractAgentCoordinator cregting a class
AgentCoordinator and implementing specific methods to deal with the agent’s
capabilities.

Do the same of step 5to the AbstractAngentEnvironment.
In the AgentCoordinator class implement wanted and personalized methods.

For example: notifyConsumers (), that notifies al agents that has a specific
consumer capability that an agent having a specific provider capability has arrived.

7.8 Related Patterns

Agent Coordinator (seeitem 6 — Agent Coordinator Pattern)
Agent Proxy (seeitem 5 — Agent Proxy Pattern)

Observer [18]

Meeting [2]

46

Mobile Agents. Patterns and Reflection

Chapter I1: Design Patterns for Mobile Agents

8 Trave Pattern

8.1 Intent

This pattern intents to provide to mobile agents the route for traveling among the
different environments.

8.2 Scopeand Motivation

Mobile agents are objects capable of moving autonomously through different hosts in
order to perform their tasks in the existing environments. To do so, an agent should
know the addresses of environments where it can go. Besides knowing the address
where they are supposed to go, the agents would also take some actions related to each
one of those address. For example, trying aternative hosts in case of some of the hosts
were shut down, control the already visited hosts, etc. An agent can also add some new
destinations in its travel plan during its travel by interacting with the visited
environments. All those characteristics do not belong to the main goal of our agent, so
they can be separated of its main behavior.

8.3 Applicability
The Travel Plan Pattern can be applied when:

= Youwant to define atravel plan for your mobile agent.

= The traveling procedures are going to be implemented separately of the main agent
behavior, facilitating the maintenance and future improvements.

= Thetravel plan could be updated or changed during traveling by interacting with the
visited environments.

= When controls over aready visited destinations, aternative destinations, time out
connections and maximum number of visits are necessary.

8.4 Structureand Participants

Figure 15 shows the Travel Pattern represented by a generic class diagram containing its
main participants.

Mobile Agents. Patterns and Reflection 47

Chapter I1: Design Patterns for Mobile Agents

ConcreteAgent

run()

travelPlan

Destination

visited
TravelPlan address

destinations <>———isAlternative
currentEnvironment *

setVisited()
addDestination() getAddress()
nextDestination()
setTimeOut()
setMax Visits()
initializeTrav el()

AgentEnvironement

getKnownEnvironments()

Figure 15: Thetravel plan pattern structure

The participants are:

» TravePlan

The TravelPlan class will keep a list containing instances of the class
Destination. Besides providing the necessary methods to manage the list of
destination, the TravelPlan class will interact with the environment where its agent
located. This interaction objectives to find out new destinations whose the agent does
not knows and set those destinations as alternatives to the agents travel plan.

= Destination

This class represents the each one of the destinations that the mobile agent will visit. It
contains the IP address of the hosts, and information whether it was already visited and
whether the destination is an aternative one.

= AgentEnvironment

The AgentEnvironment class provides the basic functionality like transportation,
searching, etc., in order to mobile agents work. (see items 4 — Abstract Agent Pattern, 6
— Agent Coordinator Pattern and 7 — Agent Interaction Pattern)

= ConcreteAgent

The Concretengent isthe rea agent object. In this pattern it has a reference to the

TravelPlan and contains the implementation of the desired behavior and always will
be represented by an Agent Proxy. (seeitem 5 — Agent Proxy Pattern).

8.5 Collaborations

Figure 16 shows the collaboration diagram of the Travel Plan Pattern.

48 Mobile Agents. Patterns and Reflection

Chapter I1: Design Patterns for Mobile Agents

Agent A Agent A TravelPlan Destination Environment
(in host A) (in host B)

initialize Trav el("HostB")

]

\ \ \

1] | |

\ \ \

[.1n | | | |

! | | |

I nextDes‘tination() ‘ ‘ ‘

\ 1 \ \

T ‘ ‘ getAddress() ‘ ‘

\ \ gl \

\

} dispatch('HostB") T ‘ ‘

] ! \ \
|

‘ ‘ - getKnownEnvironments() ‘

\ \ \ i

| | h addEnvironment("HostC") |

\ \ [] H
‘ ‘ run() ‘ ‘

| E: | | |

‘ nextDestination() ‘ ‘ ‘

\ [ﬁ \ \

‘ ‘ getAddress() ‘ ‘

\ \ 1 \

‘ 1 dispatch("HostC')—‘r ‘ ‘

| i | |

| | L | |

\ \ \ \

| | | |

Figure 16: Collaboration diagram of the Travel Plan Pattern

8.6 Consequences

With the Travel Plan Pattern we alow our mobile agent to travel through severa
different destinations, even to destinations that our agent does not know.

= The mobile agents don’'t need to know many destinations, they will know new ones
during their travel.

» Thetravel plan can be easily set up, defining time out value for communication and
determining the maximum number of destinations to visit.

= When some destination fails to answer to our mobile agent, an aternative
destination can be addressed to the agent automatically.

= All functionality about the travel itself is separated of the main behavior of the
agent, facilitating in the maintenance and improvement.

= We can define atravel plan once and useit in several mobile agents.

Mobile Agents. Patterns and Reflection 49

Chapter I1: Design Patterns for Mobile Agents

8.7

I mplementation

To implement the Travel Plan Pattern carry out the following steps:

1.

8.8

Reuse the already defined ConcreteAgent class and create on it a new variable
that will reference the travel plan object.

Create aDestination class containing basic variables to control the status of the
destination object. For example: visited, isAlternative, etc. Implement also methods
to deal with that variables (sets and gets).

Create a TravelPlan class having a list with destination objects that represents
the places where the agent should go. Implement basic methods to manage that list
and to deal with other destination variables. For example:

addDestination () : to add new destinationsto the travel plan.
removeDestination () : to remove adestination from the travel plan.
nextDestination () : to obtain the next destination where de agent must go.

getAddress () : to get the address o0 a destination.

setTimeOut () : to set how many seconds should wait before try another
destination in case of not connecting.

setMaxVisits (): to set the maximum number of visits during atravel. Once the
travel plan can be changed dynamically the agent can have
a travel that never ends, so its is important to define a
number to limit the agent visits.

Implement in the AgentEnvironment class a new method that returns other
environments addresses, so the agent can add new destinations to its travel plan
during its travel. Also the environment can ask other environment address known by
the agent.

Related Patter ns

[tinerary [2]
Iterator [18]

50

Mobile Agents. Patterns and Reflection

9 Conclusions

“Agent Technology” offers a much easier way of designing, implementing and
maintaining distributed systems. In our research we concluded that even providing that
advantages, agent technology demands for an initial study and a practica
experimentation of all itsinternal and not explicit features like autonomy, socia ability,
reactivity, pro-activity and mobility. That study can follow a top-down hierarchy
beginning from the macro and going to each specific component in order to identify
possible recurrent problems.

Using software engineering techniques such as “ Software Design Patterns’ [18], [19]
we can design a solution to that problems, facilitating the comprehension,
implementation and helping in future maintenance of the systems that will use such a
solution. Complementary to that, other people can benefit from the same design patterns
to solve their own similar problems about mobile agents without having to reinvent the
wheel. The main consequence of al this is that our applications become more reusable
and robust.

= Contributions

With “Agent Technology”, especially mobile agents, being the focus of our work, we
showed one specific chapter where the main definitions, advantages, applicability,
properties and elements of mobile agents are explained in order to give to the readers a
general overview about it. The first experimentation with mobile agents, described by
the example of an electronic commerce in the same chapter, allowed us to better
understand the agents mechanisms and architecture.

Based on that we introduced different solutions for the recurrent problems that we
believe anyone will face when implementing a mobile agent based application. The five
design patterns proposed: Abstract Agent Pattern, Agent Proxy Pattern, Agent
Coordinator Pattern, Agent Interaction Pattern and Travel Plan Pattern, allow the
mobile agent programmer to implement basic concepts of agent technology by just
using a common programming language like Java [31]. Common properties like
mobility, autonomy, social ability, etc. are covered by our patterns, that present a
abstract view of each related problem in order to make them as much reusable as
possible.

After proposing the five design patterns we used them to implement the same example
described in section 2 were we experimented to create a small application using Java
[31] and Voyager [29]. The documentation of the implementation can be found in the
Appendix A — Java Documentation. Besides having a running example constructed with
our own proposed design patterns using only Java RMI and proving that they really
work, another interesting result was the productivity when using our design patterns. In
our first experimentation we spent almost four times more the time we spent
implementing the same application using our design patterns. Even considering that in
the first experimentation with agents we did not have the same experience that we have
now, we believe that our design patterns really reached their goals.

Mobile Agents. Patterns and Reflection 51

= FutureWork

Of course there are a lot of work to do yet. For future researches we can see that new
patterns can be created involving the high complexity mechanisms in mobile agents,
like threads for example. Other patterns describing the Life Cicle of the mobile agent,
Organized Groups of mobile agents where they can share different tasks in order to
accomplish with a final goal are also possible recurrent problems to be solved using
design patterns.

Other research can be investigated by joining reflection and agent technology.
Reflection is the process of reasoning about and acting upon itself [22], [23]. According
to J. Des Rivieres, “a reflective language is a language allowing you to deal with
explicit representations of implicit aspects of the language itself” [24].

A reflective language may have a representation of its own behavior dealing with
message sending, encapsulation, execution and so on. Then, reflection allows deriving
new behaviors from initial ones by introducing some variations of the computational
model, for example:

» asynchronous message vs. synchronous message

= remote invocation vs. local invocation

= multiple inheritance vs. simple inheritance

= etc.

Moreover, reflection alows us to separate what an object does (the base level) from
how it does it (its metalevel) [25]. A reflective language encourages a clean separation
between the basic functionality of the application from its representations and controls.
Reusability, modularity, readability and quality of code are some of the main
advantages that someone can expect from reflection.

By studying concurrent and distributed architectures, we can say that they deal with
well-known mechanisms and policies, which are independent from the system’s basic
functionality (i.e. business objects) and could be implemented at the meta-level. Then,
we are strongly convinced that mobile agent technology can benefit from the features of
reflection when devel oping agent-based system.

At a low-level design, reflective techniques applied in mobile agents technology can
help usto deal with:

= several policies of communication (e.g. synchronous, no reply, future, multicast)
= thread management (e.g. single-threaded, thread-per-message, thread-pool)
= datatransport (e.g. sockets, pipes, shared memory)

At a high-level design, we can use introspection to develop tools dealing with the
explicit representation of the agent patterns in the language itself (cf. meta-model in
case tools).

Other interesting subject raised by authors [1], is the possible standardization of the
“Agent Technology”. Many people are working, or at least they say they are working,
with mobile agents. However, each one of them proposes different solutions and

52 Mobile Agents. Patterns and Reflection

different standards, differing widely in their architectures and implementations. Now we
are in a certain phase that a standardization of all we have learned so far is realy
necessary. In order to have mobile agents interoperating in a standardized way a group
of companies (Crystaliz, General Magic, Inc., GMD Fokus, IBM Corporation and the
Open Group) were created. They proposed what they call of MASIF — Mobile Agent
System Interoperability Facility and brought it to the attention of the OMG — Object
Management Group.

With this work we hope we could introduce a new approach of how to solve particular
problems in the “Agent Technology” and not to give to the reader another mobile agent
framework. We hope also this work can encourage other people to work on mobile
agent technology and propose new design patternsfor it.

Mobile Agents. Patterns and Reflection 53

Mobile Agents. Patterns and Reflection

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

D. Lange. “Mobile Objects and Mobile Agents: The Future of Distributed
computing?”. ECOOP 98 — Brussels, Belgium, July1998.

D. Lange. “Agent Design Patterns. Elements of Agent Application Design”.
Autonomous Agents 98, Minneapolis, May 1998.

D. Lange and M. Oshima. “Dispatch your agents; shut off your machine”. In
Communications of the ACM, 42, 3, 88-89, 1999.

D. Deugo, M. Weiss. “A Case for Mobile Agent Patterns’. School of Computer
Science — Carleton University, 1999.

D. Deugo, F. Oppacher, B. Ashfield, M. Weiss. “Communication as a Means to
Differentiate Objects, Components and Agents’. Submitted to TOOLS USA 99,
1999.

E. Kendall, M. Malkoun, C.Jiang . “The Layered Agent Patterns’. The Pattern
Languages of Programs, PLOP 96, Illinois, USA, September 1996.

A. Silva, J. Delgado. “Agent Pattern for Mobile Agent Systems’. In European
Conference on Pattern Languages of Programming and Computing,
EuroPLoP’ 98, 1998.

R. Lavender, D. Schmidt, “Active Object: An Object Behavioral Patter for
Concurrent Programming”. In J. Vlissides, J. Coplien and N. Kerth, “ Pattern
Languages of Program Design 2", Addisson-Wesley, 1996.

N. Jennings, K. Sycaraand M. Wooldridge. “A Roadmap of Agent Research and
Development”. In Autonomus Agents and Multi-Agent Systems, 1, 7-38, 1998.

S. Franklin and A. Graesser. “Is it an agent, or just a program ?’. In Proceedings
of the Third Internationa Workshop on Agent Theories, Architectures, and
Languages, Springer-Verlag, 1996.

M. Wooldridge and N. Jennings. “Intelligent Agents. Theory and Practice’.
Knowledge Engineering Review, 1994.

Smith, A. Cypher and J. Sphorer. KidSim: “Programming Agents without a
Programming Language’. Communications of the ACM, 37, 7, 55-67.

P. Maes. Artificial Life Meets Entertainment: “Life like Autonomous Agents’.
In Communications of the ACM, 38, 11, 108-114, 1995.

OMG — Object Management Group. “Agent Green Paper”. OMG Document
ec/99-03-11, March 1999.

Mobile Agents. Patterns and Reflection 55

[15]

C. Harrison, D. Chess and A. Kershenbaum. Mobile Agents. “Are they a good
idea?’. IBM Research Division, 1995.

[16] JMayfield, Y.Labrou and T. Finin. “Evaluating KQML as an Agent
Communication Language”. In M. Wooldridge, J. P. Mller, and M. Tambe,
editors, Intelligent Agents Volume I1. Springer-Verlag, 1996.

[17] T. Finin, R. Fritzson, D. McKay, R. McEntire. “KQML as an Agent
Communication Language”. In Proceedings of the Third International
Conference on Information and Knowledge Management (CIKM’'94), ACM
Press, November 1994,

[18] E. Gamma, R. Helm, R. Johnson, J. Vilissides. “Design Patterns. Elements of
Reusable Object Oriented Software”. Addison-Wesley, 1998.

[19] F. Buchmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. “Pattern
Oriented Software Arquitecture: A System of Patterns’.Wiley and Sons, 1996.

[20] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, |. Fiksdahl-King and S.
Angel. “A Pattern Language”. Oxford University Press, New Y ork, 1977.

[21] J. Neson. “Programming Mobile Objects with Java’. Wiley, 1999.

[22] B. Smith. “Reflection and Semantics in a Procedural Programming Language”.
MIT, January 1982.

[23] P. Maes. “Concepts and Experiments in Computational Reflection”. Vrije
Universiteit Brussel, 1987.

[24] G. Kiczales, J. des Rivieres, D. Bobrow. “The Art of the Metaobject Protocol”.
Cambridge, MIT Press, 1991.

[25] J. McAffer. “Metalevel Programming with CodA”. In Proceedings of
ECOOP'95 - Object-Oriented Programming - 9" European Conference. p 190-
214,

[26] General Magic Inc. Telescript. http://www.genmagic.com

[27] 1BM Japan. Aglets http:/www.trl.ibm.co.jp/aglets

[28] Mitsubishi Electric. Concordia. http://www.meitca.com/HSL/Projects/Concordia

[29] Object Space. Voyager. http://www.objectspace.com/voyager

[30] General Magic Inc. Odyssey. http://www.genmagic.com/

[31]] Sun Systems. Java Language. http://www.javasoft.com - http://www.sun.com

[32] Rationa Software Corp. UML — Unified Modeling Language.
http://www.rational .com

56 Mobile Agents. Patterns and Reflection

Appendix A: Java Documentation

The following Java Documentation represents an implementation of the five patterns
that we have showed in this document.

API User's Guide Class Hierarchy Index

Appendix A: Java Documentation

Py

Packdgeé [rdex

]

Other Packages

package agent
package capability
package coordinator
package environment
package examples
package exceptions
package interaction
package message
package transporter
package travel

58 Mobile Agents. Patterns and Reflection

Mobile Agents. Patterns and Reflection

59

Appendix A: Java Documentation

All Packages Class Hierarchy Index

Appendix A: Java Documentation

package agent

7~
<«

I ryY-F-. \.h\\\;ﬂ—s
fE” 1 X4

FTHEEX

AbstractAgent

Agent

AgentID

AgentProxy
AgentProxyState
AgentProxyStatel ocal

AqgentProxyStateRemote

60

Mobile Agents. Patterns and Reflection

Mobile Agents. Patterns and Reflection

61

Appendix A: Java Documentation

All Packages Class Hierarchy This Package Previous Next Index

Appendix A: Java Documentation

Class agent.AbstractAgent

java.lang.Object

+----java.lang.Thread

+----agent .AbstractAgent

public abstract class AbstractAgent
extends Thread
implements Seriaizable

The AbstractAgent class defines the main methods for the Agent.

=agentld
scurrentAddress

scurrentEnvironment
shomeAddress

JAbstractAgent()
Constructs an abstract agent.

JAbstractAgent(String)
Constructs an abstract agent defining the home address of the Agent.

PR I S P Sy
RADT. MFIT §F TS D
FIF = BT N LFLE F FFELEF X
Tat-1. = SEED A

«dispatch(String)
Dispatch an agent to another Environement.

«getHomeAddress()
Returns the Agent home address.

«getl d()
Returns the Id of the Agent.

shandleM essage(M essage)
Handles all incoming messages for the Agent.

=setCurrentAddress(String)
Sets the Agent current address.

62 Mobile Agents. Patterns and Reflection

@agentld

protected String agentId
2homeAddress

protected String homeAddress
@currentAddress

protected String currentAddress

@currentEnvironment

protected IAgentEnvironment currentEnvironment

e

CONSFErickors

T £ Fe

@AbstractAgent

public AbstractAgent ()

Constructs an abstract agent.
<AbstractAgent
public AbstractAgent (String homeAddress)

Constructs an abstract agent defining the home address of the Agent.

Parameters:
homeAddress - javalang.String

2dispatch

protected final void dispatch(String address)

Dispatch an agent to another Environement.

Parameters:
address - java.lang.String

@getHomeAddress

protected String getHomeAddress ()

Returns the Agent home address.

Mobile Agents. Patterns and Reflection 63

Appendix A: Java Documentation

Returns:
javalang.String

agetld
protected final String getId()
Returns the 1d of the Agent.

Returns:
javalang.String

@handleM essage

public abstract Object handleMessage (Message msg) throws
MessageNotUnderstood

Handles all incoming messages for the Agent. This method must be
implemented by all classes that extends AbstractAgent class.

Parameters:
msg - message.Message
Returns:
java.lang.Object
Throws: MessageNotUnderstood
if the Message was not handled by the Agent.

@satCurrentAddress

protected void setCurrentAddress (String currentAddress)
Sets the Agent current address.

Parameters:
currentAddress - java.lang.String

Appendix A: Java Documentation

All Packages Class Hierarchy This Package Previous Next Index

64 Mobile Agents. Patterns and Reflection

Mobile Agents. Patterns and Reflection

65

Appendix A: Java Documentation

All Packages Class Hierarchy This Package Previous Next Index

Appendix A: Java Documentation

Class agent.Agent

java.lang.Object

+----java.lang.Thread

+----agent .AbstractAgent

+----agent.Agent

public class Agent
extends AbstractAgent

The Agent classisthe abstract base class to create your own personalized Agents.

«capability

JAgent()
Constructs an agent.
<Agent(String)
Contructs an agent defining its home address.

sgetConsumer Capabilities()
Returns the agent's consumer capabilities.
=getProvider Capabilities()
Returns the agent's provider capabilities.
shandleM essage(M essage)
Handles the incoming messages to the agent.
=meet (AgentProxy)
Givesto an agent a proxy of another agent in order to allow them to interact.

Scapability

protected AgentCapability capability

66 Mobile Agents. Patterns and Reflection

@travelPlan

protected TravelPlan travelPlan
Pl r] *.I I n
r 1Y e S N
{pitesrr = rr
SAgent
public Agent ()
Constructs an agent.
“2Agent

public Agent (String homeAddress)
Contructs an agent defining its home address.

Parameters:
homeAddress - javalang.String

<
o r N .-
Frivu s

e
- 19

a,
b
T

@getConsumer Capabilities
public Vector getConsumerCapabilities()
Returns the agent's consumer capabilities.

Returns:
java.util.Vector

@getProvider Capabilities
public Vector getProviderCapabilities()
Returns the agent's provider capabilities.

Returns:
java.util.Vector

@handleM essage

public Object handleMessage (Message msg) throws MessageNotUnderstood

Handles the incoming messages to the agent. This method must be overrided
in the user agent class in order to handle the desired messages.

Parameters:
msg - message.M essage

Mobile Agents. Patterns and Reflection 67

Appendix A: Java Documentation

Appendix A: Java Documentation

Returns:

javalang.Object
Throws: MessageNotUnderstood

If the Message has not handled by the agent.
Overrides:

handleMessage in class AbstractAgent

@meet

public void meet (AgentProxy agent)

Givesto an agent a proxy of another agent in order to allow them to interact.

Parameters:
agent - agent.AgentProxy

All Packages Class Hierarchy This Package Previous Next Index

68 Mobile Agents. Patterns and Reflection

Mobile Agents. Patterns and Reflection

69

Appendix A: Java Documentation

Appendix A: Java Documentation

All Packages Class Hierarchy This Package Previous Next Index

Class agent.AgentID

java.lang.Object

+----agent.AgentID

public class AgentI D
extends Object

The AgentlID class generates |d numbers for the agents. It uses the Singleton Design
Pattern.

Crefd THd2w

F
«agentid
=id

A rUAEOr [Hdoy
ﬁ\n\ﬁﬂ.ﬂv\qt FIFr i FrrdG
+AgentI D()
Constructs an AgentID.

A4 _dedem d Foad
JNERIGA [Hdex
sinstance()

Returns always the same instance.

newAgentld()
Generates a new sequential number to be used as Id.

@agentld

P e S
S AT L FIRT)
r . Irrr&s F F¥ Le F LFF 3%
e FLra
2AgentID

70 Mobile Agents. Patterns and Reflection

public AgentID()

Constructs an AgentID.

@instance
public static AgentID instance ()

Returns aways the same instance.

Returns:
agent.AgentID

2newAgentld
public int newAgentId()

Generates a new sequential number to be used as Id.

Returns:
int

All Packages Class Hierarchy This Package Previous Next Index

Mobile Agents. Patterns and Reflection 71

Appendix A: Java Documentation

All Packages Class Hierarchy This Package Previous Next Index

Appendix A: Java Documentation

Class agent.AgentProxy

java.lang.Object

+----agent .AgentProxy

public class AgentProxy
extends Object
implements Serializable

The AgentProxy classis a placeholder for Agent objects. The purpose of it isto provide
atransparent access to the real Agent object.

%ﬂﬂ%mmmﬂiﬂ\ uwhﬁ-\u;m-
F ITCiih FrFceG X
=proxystate

+AgentProxy(Agent)
Constructs a new AgentProxy class defining the real Agent object that it will
represent.

=AgentProxy(String)
Constructs a new AgentProxy class defining the address where the agent will
be created.

=dispatch(String)

Dispatchs the agent to the especified address.

Returnsthe real Agent object that the proxy represent.
=getConsumer Capabilities()

Returns the agent's consumer capabilities.
=getHomeAddr ess()

Returns the Agent home address.
sgetld()

Returns the Agent identification.
=getProvider Capabilities()

Returns the agent's provider capabilities.
=sendM essage(M essage)

Sends a synchronous message to an agent.
ssetCurrentAddress(String)

Sets the agent's current address.

72 Mobile Agents. Patterns and Reflection

=updateAgentProxyState(Agent)

Updates the state of the agent proxy changing to Local state.
=updateAgentProxyState(AgentProxy)

Updates the state of the agent proxy changing to Remote state.

I F J rd
mmn. - -y
& N LD

@proxyState

private AgentProxyState proxyState

CoHSFricktors

@ AgentProxy

public AgentProxy (Agent agent)

Constructs a new AgentProxy class defining the real Agent object that it will

represent.
Parameters:
agent - Agent
2AgentProxy

public AgentProxy (String homeAddress)

Constructs a new AgentProxy class defining the address where the agent will
be created.

Parameters:
homeAddress - javalang.String

Vi

A

QY

L‘_
T

o

iy
I

Ly
»

f
2dispatch
public void dispatch(String address)
Dispatchs the agent to the especified address.

Parameters:
address - java.lang.String

SgetAgent

public Agent getAgent ()

Returns the real Agent object that the proxy represent.

Mobile Agents. Patterns and Reflection 73

Appendix A: Java Documentation

Returns:
agent.Agent

@getConsumer Capabilities
public Vector getConsumerCapabilities()

Returns the agent's consumer capabilities.

Returns:
java.util.Vector

@getHomeAddress

public String getHomeAddress ()
Returns the Agent home address.

Returns:
javalang.String

2getid
public String getId()
Returns the Agent identification.

Returns:
javalang.String

@getProvider Capabilities
public Vector getProviderCapabilities()
Returns the agent's provider capabilities.

Returns:
java.util.Vector

@sendM essage

public Object sendMessage (Message msg) throws MessageNotUnderstood

Sends a synchronous message to an agent.

Parameters:
msg - message.Message
Returns:
javalang.Object
Throws: AgentException
If the Message was not handled by the agent.

Appendix A: Java Documentation

74 Mobile Agents. Patterns and Reflection

@setCurrentAddress

public void setCurrentAddress (String currentAddress)
Sets the agent's current address.

Parameters:
currentAddress - javalang.String

@ypdateAgentProxyState

private void updateAgentProxyState (Agent agent)

Updates the state of the agent proxy changing to Local state.

Parameters:
agent - agent.Agent

@updateAgentProxyState
private void updateAgentProxyState (AgentProxy remoteProxy)
Updates the state of the agent proxy changing to Remote state.

Parameters:
remoteProxy - agent.AgentProxy

All Packages Class Hierarchy This Package Previous Next

Index

Mobile Agents. Patterns and Reflection

75

Appendix A: Java Documentation

All Packages Class Hierarchy This Package Previous Next Index

Appendix A: Java Documentation

Class agent.AgentProxyState

java.lang.Object

+----agent .AgentProxyState

public abstract class AgentProxyState
extends Object
implements Serializable

This class represent the state of the agent's proxy.

<AgentProxyState()
AgentProxyState constructor.

IDQ?P mgﬁ O
Returns the real agent object that the proxy represents.

«getConsumer Capabilities()
Returns the agent's consumer capabilities.

=getHomeAddress()
Returns the host address were the agent was created.

«getld()

Returns the agent identification.
«getProvider Capabilities()

Returns the agent's provider capabilities.
shandleM essage(M essage)

Handles the incoming messages to the agent.
eSetCurrentAddr ess(String)

Sets the agent current address.
o *I.‘tbl*klllw =
LONS i RL FOrs
=AgentProxyState

public AgentProxyState ()

AgentProxyState constructor.

76 Mobile Agents. Patterns and Reflection

@getAgent

public abstract Agent getAgent ()

Returns the real agent object that the proxy represents. This method must be
implemented by classes that extends AgentProxyState class.

Returns:
agent.Agent

@getConsumer Capabilities
public abstract Vector getConsumerCapabilities(

Returns the agent's consumer capabilities. This method must be implemented
by classes that extends AgentProxyState class.

Returns:
java.util.Vector

@getHomeAddress
public abstract String getHomeAddress ()

Returns the host address were the agent was created. This method must be
implemented by classes that extends AgentProxyState class.

Returns:
javalang.String

2qetld
public abstract String getId()

Returns the agent identification. This method must be implemented by classes
that extends AgentProxyState class.

Returns:
javalang.String

@getProvider Capabilities

public abstract Vector getProviderCapabilities()

Returns the agent's provider capabilities. This method must be implemented
by classes that extends AgentProxyState class.

Returns:
java.util.Vector

@handleM essage

Mobile Agents. Patterns and Reflection 7

Appendix A: Java Documentation

public abstract Object handleMessage (Message msg) throws
MessageNotUnderstood

Handles the incoming messages to the agent. This method must be
implemented by classes that extends AgentProxyState class.

Parameters:
msg - message.Message
Returns:
java.lang.Object
Throws: MessageNotUnderstood
If the Message has not handled by the agent.

@satCurrentAddress

public abstract void setCurrentAddress(String currentAddress)

Sets the agent current address. This method must be implemented by classes
that extends AgentProxyState class.

Parameters:
currentAddress - java.lang.String

Appendix A: Java Documentation

All Packages Class Hierarchy This Package Previous Next Index

78 Mobile Agents. Patterns and Reflection

Mobile Agents. Patterns and Reflection

79

Appendix A: Java Documentation

Appendix A: Java Documentation

All Packages Class Hierarchy This Package Previous Next Index

Class agent.AgentProxyStatel ocal

java.lang.Object

+----agent.AgentProxyState

+----agent.AgentProxyStateLocal

public class AgentProxyStatel ocal
extends AgentProxyState

This class defines the agent proxy state when the agent object isin the same
environement as its proxy.

=TT FPR/F8G
ﬂ.h. KF o Fal F Frurgr o
ommmq:

- PN SN N |
AR I FEALAF WAy
& FIFSa=a W F FYL.F 7Y X FERIEF X
e Frmere FIrEEER
<AgentProxyStatel ocal()

Creates anew proxy for aloca agent.
JAgentProxyStatel ocal (Agent)
Creates anew proxy for alocal agent defining the agent object.
JAgentProxyStatel ocal (String)
Creates anew state proxy for alocal agent defining the address where the
agent will be created.

PR I S PO S P
AADT_BPNT T35 ons
FAF = B K LFLE F FFESFS X
FFET TTEE A
«getAgent()

Returns the real agent object.
«getConsumer Capabilities()
Returns the agent's consumer capabilities.

«getHomeAddress()
Returns the host address were the agent was created.

-getl d()
Returns the Id of the Agent.
=getProvider Capabilities()
Returns the agent's provider capabilities.
shandleM essage(M essage)
Handles all incoming messages for the local agent.
ssetCurrentAddress(String)
Sets the Agent current address.

80 Mobile Agents. Patterns and Reflection

@3agent

@AgentProxyStatel ocal

public AgentProxyStateLocal ()
Creates anew proxy for alocal agent.

@AgentProxyStatel ocal

public AgentProxyStateLocal (Agent agent)

Creates anew proxy for alocal agent defining the agent object.

Parameters:
agent - agent.Agent

2AgentProxyStatel ocal

public AgentProxyStateLocal (String homeAddress)

Creates anew state proxy for alocal agent defining the address where the
agent will be created.

Parameters:
homeAddress - javalang.String
i

7/

P o 4
&y

hl"‘lr

I 0d s

SgetAgent

public Agent getAgent ()

Returns the real agent object.

Returns:
agent.Agent
Overrides:
getAgent in class AgentProxyState

@getConsumer Capabilities

Mobile Agents. Patterns and Reflection 81

Appendix A: Java Documentation

public Vector getConsumerCapabilities()
Returns the agent's consumer capabilities.

Returns:
java.util.Vector
Overrides:
getConsumerCapabilities in class AgentProxyState

@getHomeAddress

public String getHomeAddress ()
Returns the host address were the agent was created.

Returns:
javalang.String
Overrides:
getHomeAddress in class AgentProxyState

2getld
public String getId()

Returnsthe Id of the Agent.

Returns:
javalang.String
Overrides:
getld in class AgentProxyState

@getProvider Capabilities
public Vector getProviderCapabilities()

Returns the agent's provider capabilities.

Returns:
java.util.Vector
Overrides:
getProviderCapabilities in class AgentProxyState

@handleM essage

public Object handleMessage (Message msg) throws MessageNotUnderstood

Handles all incoming messages for the local agent.

Parameters:

msg - message.Message
Returns:

javalang.Object

Appendix A: Java Documentation

82 Mobile Agents. Patterns and Reflection

Throws: MessageNotUnderstood

if the Message was not handled by the Agent.
Overrides:

handleM essage in class AgentProxyState

@setCurrentAddress

public void setCurrentAddress (String currentAddress)
Sets the Agent current address.

Parameters:

currentAddress - java.lang.String
Overrides:

setCurrentAddress in class AgentProxyState

All Packages Class Hierarchy This Package Previous Next Index

Mobile Agents. Patterns and Reflection 83

Appendix A: Java Documentation

Appendix A: Java Documentation
Next Index

Previous

Class Hierarchy This Package

All Packages

Class agent.AgentProxyStateRemote

java.lang.Object

+----agent.AgentProxyState

+----agent .AgentProxyStateRemote

public class AgentProxyStateRemote

extends AgentProxyState

This class defines the agent proxy state when the agent object is not in the same

environement. It isremote.

of emotePr oxy
= I A ~SR S
SnINCR T F AL ITF W Anw
& FEFFa=a W F FFLix ¥ LFr * FRIRF X
e Frmere FIrEEER
<AgentProxyStateRemote()

Creates a new proxy for a remote agent.

<AgentPr oxyStateRemote(AgentProxy)
Creates a new proxy for a remote agent defining the remote proxy that

represent an agent.

.2
riid i

L

iAo
vie

l\l-
b

N

g
Fis¥
Wi

|
Miny,

\\

IDQ?PDQ\;O
Returns the real agent object of aremote proxy.

«getConsumer Capabilities()
Gets the remote agent's consumer capabilities.

«getHomeAddress()
Returns the host address were the remote agent was created.

+getlid()
Returns the Id of the remote agent.

=getProvider Capabilities()
Gets the remote agent's provider capabilities.

shandleM essage(M essage)
Handles all incoming messages for the agent and forward them to the remote

agent.

«SetCurrentAddress(String)
Sets the remote agent current address.

=setRemotePr oxy(AgentProxy)

Mobile Agents. Patterns and Reflection

Sets the remote proxy.

@remoteProxy

private AgentProxy remoteProxy

roNBErEctors

F ALFIF s F ~
L

“#AgentProxyStateRemote
public AgentProxyStateRemote (

Creates anew proxy for a remote agent.

@AgentProxyStateRemote
public AgentProxyStateRemote (AgentProxy remoteProxy)
Creates a new proxy for aremote agent defining the remote proxy that
represent an agent.

Parameters:
agentCurrentAddress - java.lang.String

@getAgent

public Agent getAgent ()
Returns the real agent object of aremote proxy.
Returns:
agent.Agent

Overrides:
getAgent in class AgentProxyState

2getConsumer Capabilities

public Vector getConsumerCapabilities ()

Gets the remote agent's consumer capabilities.

Returns:
java.util.Vector

Overrides:
getConsumerCapabilities in class AgentProxyState

85

Mobile Agents. Patterns and Reflection

Appendix A: Java Documentation

@getHomeAddress

public String getHomeAddress ()
Returns the host address were the remote agent was created.

Returns:
javalang.String
Overrides:
getHomeAddress in class AgentProxyState

agetld
public String getId()

Returns the 1d of the remote agent.

Returns:
javalang.String
Overrides:
getld in class AgentProxyState

@getProvider Capabilities
public Vector getProviderCapabilities ()
Gets the remote agent's provider capabilities.
Returns:
java.util.Vector

Overrides:
getProviderCapabilities in class AgentProxyState

@handleM essage

public Object handleMessage (Message msg) throws MessageNotUnderstood

Handles all incoming messages for the agent and forward them to the remote

agent.
Parameters:

msg - message.Message
Returns:

java.lang.Object
Throws: MessageNotUnderstood

if the Message was not handled by the remote Agent.
Overrides:

handleMessage in class AgentProxyState

@setCurrentAddress

Appendix A: Java Documentation

86 Mobile Agents. Patterns and Reflection

public void setCurrentAddress (String currentAddress)
Sets the remote agent current address.

Parameters.

currentAddress - java.lang.String
Overrides:

setCurrentAddress in class AgentProxyState

@setRemoteProxy

public void setRemoteProxy (AgentProxy remoteProxy)
Sets the remote proxy.

Parameters:
remoteProxy - agent.AgentProxy

All Packages Class Hierarchy This Package Previous Next Index

Mobile Agents. Patterns and Reflection 87

Appendix A: Java Documentation

All Packages Class Hierarchy Index

package capability

Class [Hdex

e AgentCapability
e Consumer
e Provider

88

Mobile Agents. Patterns and Reflection

Appendix A: Java Documentation

Mobile Agents. Patterns and Reflection

89

Appendix A: Java Documentation

Appendix A: Java Documentation

All Packages Class Hierarchy This Package Previous Next Index

Class capability.AgentCapability

java.lang.Object

+----capability.AgentCapability

public class AgentCapability
extends Object
implements Serializable

This class represent the consumer and provider capabilities of an agent.

sconsumer Capabilities
«provider Capabilities

ﬁ\n\ﬁﬂ.ﬂv e I FrridG
~AgentCapability()
Creates a new agent capability.
A4 _dedem d Foad
JNEROd (iidex

=addConsumer Capability(String)
Adds a new consumber capability.
=addProvider Capability(String)
Adds a new provider capability.
=getConsumer Capabilities()
Returns the current consumer capabilities of an agent.
=getProvider Capabilities()
Returns the current provider capabilities of an agent.

@provider Capabilities
private Vector providerCapabilities
2consumer Capabilities

private Vector consumerCapabilities

90 Mobile Agents. Patterns and Reflection

A

. e F iy
PN Y P F I LrrIr
Cn‘hhﬁ" . rx Wy NEF

A

@AgentCapability

public AgentCapability ()

Creates anew agent capability.

;., eLHnde

AwF 5 ow o =F

@addConsumer Capability

public void addConsumerCapability (String description)
Adds a new consumber capability.

Parameters:
description - javalang.String

@addProvider Capability
public void addProviderCapability (String description)
Adds a new provider capability.

Parameters:
description - javalang.String

@getConsumer Capabilities
public Vector getConsumerCapabilities()

Returns the current consumer capabilities of an agent.

Returns:
java.util.Vector

@getProvider Capabilities
public Vector getProviderCapabilities()

Returns the current provider capabilities of an agent.

Returns:
java.util.Vector

All Packages Class Hierarchy This Package Previous Next Index

Mobile Agents. Patterns and Reflection 91

Appendix A: Java Documentation

Class Hierarchy This Package Previous Next Index

All Packages

Appendix A: Java Documentation

Class capability.Consumer

java.lang.Object

+----capability.Consumer

public class Consumer
extends Object
implements Serializable

This class describes a consumer cabability.

Erefd FHdes

§ &I S ISINESN,
«description

- \hklﬁﬂh‘hh\hm\klblwhl \Nu‘ Mh
w\m.m\wﬂ rrucy Fi ‘.\ﬂhmw
<-Consumer ()

Creates anew consumer capability.

-Consumer (String)
Creates a new consumer capability defining its description.

=getDescription()

@description

private String description

3
3

A i I ik
L F o i Y

@Consumer

public Consumer ()

Creates anew consumer capability.

“@Consumer

92 Mobile Agents. Patterns and Reflection

public Consumer (String description)

Creates a new consumer capability defining its description.

Parameters:
description - javalang.String

¥

2

.
“.‘HI!_-

¥
=4
bl —

A
Fd 4
@getDescription

public String getDescription ()

Returns the description of a consumer capability.

Returns:
javalang.String

All Packages Class Hierarchy This Package Previous Next Index

Mobile Agents. Patterns and Reflection 93

Appendix A: Java Documentation

All Packages Class Hierarchy This Package Previous Next Index

Appendix A: Java Documentation

Class capability.Provider

java.lang.Object

+----capability.Provider

public class Provider
extends Object
implements Serializable

This type was created in Visua Age.

Eiefd THdev

§ &I S ISINESN,
«description

el \hklﬁﬂh‘hh\hm\klblwhl \Nu‘ Mh‘
H\M'\Q“ h. _‘ \ TEETA
<Provider()

Creates anew provider capability.
<Provider (String)
Creates anew provider capability defining its description.

=getDescription()

@description

private String description

3
3

ol T o 2
F FI1IT G L F o
pufesr <

@Provider

public Provider ()
Creates anew provider capability.

@Provider

94 Mobile Agents. Patterns and Reflection

public Provider (String description)
Creates anew provider capability defining its description.

Parameters:
description - javalang.String

¥

2

.
“.‘HI!_-

¥
=4
bl —

a
A
rd 4

@getDescription
public String getDescription ()

Returns the description of a provider capability.

Returns:
javalang.String

All Packages Class Hierarchy This Package Previous Next Index

Mobile Agents. Patterns and Reflection 95

Appendix A: Java Documentation

All Packages Class Hierarchy Index

Appendix A: Java Documentation

package coor dinator

[a88 [#dex

L el 4

e AbstractAgentCoordinator

96

Mobile Agents. Patterns and Reflection

Mobile Agents. Patterns and Reflection

97

Appendix A: Java Documentation

Appendix A: Java Documentation

All Packages Class Hierarchy This Package Previous Next Index

Class
coordinator.AbstractAgentCoor dinator

java.lang.Object

+----coordinator.AbstractAgentCoordinator

public abstract class AbstractAgentCoordinator
extends Object

This classis the environment's agent coordinator. It holds all agentsthat arein the
environment.

e » F Fr__ 5
F~r 2l 78w
F L2l ll.ll.l_‘h“d
sagentL ist
ra 2 F]
Pl W St o Ty oy STV

=AbstractAgentCoordinator ()
Creates a new agent coordinator.

«addAgent(AgentProxy)
Adds a new agent in the agent coordinator.

ofindAgent(String)
Looks for an agent in the agent coordinator.

«getAllAgents()
Returns all agents in the agent coordinator.

of emoveAgent(AgentProxy)
Removes an agent from the agent coordinator.

ostar tAgent(String)
Starts an agent thread.

Frelds

@agentList

protected Vector agentList

98 Mobile Agents. Patterns and Reflection

A

. e Fyra
PN Y P F I LrrIr
Cn‘hhﬁ" . rx Wy NEF

A

@AbstractAgentCoor dinator

public AbstractAgentCoordinator ()

Creates a new agent coordinator.

;., eLHnde

AwF 5 ow o =F
@addAgent
public AgentProxy addAgent (AgentProxy agentProxy)

Adds a new agent in the agent coordinator.

Parameters:
agent - agent.AgentProxy
Returns:
agent.AgentProxy
afindAgent

public AgentProxy findAgent (String id) throws AgentNotFound

Looks for an agent in the agent coordinator. The search key is the agent
identification. This method can be overrided in order to create different
searchs with different search keys.

Parameters:
id - javalang.String
Returns:
agent.AgentProxy
2getAllAgents

public final Vector getAllAgents()
Returns all agents in the agent coordinator.

Returns:
java.util.Vector

@removeAgent

public void removeAgent (AgentProxy agentProxy)
Removes an agent from the agent coordinator.

Parameters:

Mobile Agents. Patterns and Reflection 99

Appendix A: Java Documentation

agentProxy - agent.AgentProxy
@startAgent
public void startAgent (String agentId)

Starts an agent thread.

Parameters:
agentld - java.lang.String

Appendix A: Java Documentation

All Packages Class Hierarchy This Package Previous Next

Index

100 Mobile Agents. Patterns and Reflection

Mobile Agents. Patterns and Reflection

101

102

Appendix A: Java Documentation

All Packages Class Hierarchy Index

package environment

JpEeriace {ndex
e |AbstractAgentEnvironment
| AgentEnvironment

clasg [ndey

e AbstractAgentEnvironment
e AgentEnvironment

Mobile Agents. Patterns and Reflection

Appendix A: Java Documentation

Mobile Agents. Patterns and Reflection

103

Appendix A: Java Documentation

Appendix A: Java Documentation

All Packages Class Hierarchy This Package Previous Next Index

Class
environment.AbstractAgentEnvironment

java.lang.Object

+----java.rmi.server.RemoteObject

+----java.rmi.server.RemoteServer

+----java.rmi.server.UnicastRemoteObject

+----environment.AbstractAgentEnvironment

public abstract class AbstractAgentEnvironment
extends UnicastRemoteObj ect
implements | AbstractA gentEnvironment, Serializable

This class defines the basic structure of an agent environment.

saddress
scoordinator
sother Environments

stransporter

x »
7 =

cEor

h -
<

:"‘"u-

5
5
Q

¥ ow i

[
/

<JAbstractAgentEnvironment()

Inicialize the agent environment.
<JAbstractAgentEnvironment(int)

Inicialize the agent environment in a specified port.

i dade. F F_o. . F

RADI. MF1LT T TSI

IFAY ¥ N AT Y g F FriapEs w
wp STEE Siiwwary

«addOther Environment(String)
Adds other environment address.

«arrivedAgent(AgentProxy)
Adds a new agent to the environment when the agent arrives.

oCr eateAgent(String)
Creates a new agent in the environment and returns the respective agent
proxy.

=dispatch(String, String)
Dispatch an agent to a specific address.

«dispatchedAgent(AgentProxy, String)

Is perfomed when the agent has been dispatched to another environment.
«findAgent(String)

Looks for an agent in the agent coordinator.
=getAddress()

Returns the environment address.
sgetAllAgents()

Returns all agentsin the agent coordinator.
=getK nownEnvir onments()

Returns alist of other environment addresses.
shandleRemoteM essage(M essage)

Handles the incoming messages from other environments.
«f eceiveAgent(byte]])

Receive an agent that has been dispatched to this environment.
=sendRemoteM essage(M essage)

Sends a message to an other environment.

=startAgent(String)

Starts an agent thread.
Erof 4o
& F o7 id=y
2address

protected String address

2transporter

protected RMITransporter transporter

@coordinator

protected AgentCoordinator coordinator

@other Environments

protected Vector otherEnvironments

@AbstractAgentEnvironment

public AbstractAgentEnvironment () throws RemoteException
Inicialize the agent environment.

@AbstractAgentEnvironment

public AbstractAgentEnvironment (int port) throws RemoteException

Inicialize the agent environment in a specified port.

104 Mobile Agents. Patterns and Reflection

Mobile Agents. Patterns and Reflection 105

Appendix A: Java Documentation

Parameters:
port - int

A 4 r. o »
Metkhods
@addOther Environment

public void addOtherEnvironment (String address)

Adds other environment address. The agents can ask to the local environment
other environment addresses where they can go.

Parameters:
address - java.lang.String

@arrivedAgent
protected void arrivedAgent (AgentProxy agentProxy)

Adds a new agent to the environment when the agent arrives.

Parameters:
agentProxy - agent.AgentProxy

ScreateAgent

public AgentProxy createAgent (String className)

Creates a new agent in the environment and returns the respective agent

proxy.
Parameters:
className - java.lang.String
Returns:
agent.AgentProxy
@dispatch

public void dispatch(String agentId, String address)
Dispatch an agent to a specific address.

Parameters:
agentld - javalang.String
address - java.lang.String

@dispatchedAgent

protected final void dispatchedAgent (AgentProxy agentProxy,
String homeAddress)

Appendix A: Java Documentation

106 Mobile Agents. Patterns and Reflection

|s perfomed when the agent has been dispatched to another environment.
Parameters:
agentProxy - agent.AgentProxy
homeAddress - String
@findAgent

public AgentProxy findAgent (String id) throws RemoteException,
AgentNotFound

Looks for an agent in the agent coordinator.

Parameters:
id - String

2getAddress
public final String getAddress()
Returns the environment address.

Returns:
javalang.String

2getAllAgents
public final Vector getAllAgents()
Returns all agentsin the agent coordinator.

Returns:
java.util.Vector

@getK nownEnvironments

public Vector getKnownEnvironments ()
Returns alist of other environment addresses.

Returns:
java.util.Vector

@handleRemoteM essage

public Object handleRemoteMessage (Message msg) throws
RemoteException, RemoteMessageNotUnderstood

Handles the incoming messages from other environments.

Parameters:
msg - message.Message

Mobile Agents. Patterns and Reflection 107

Appendix A: Java Documentation

Returns:
javalang.Object
Throws: RemoteM essageNotUnderstood
If the message was not handled by the agent.

@receiveAgent

public void receiveAgent (byte byteArrayl[])
Receive an agent that has been dispatched to this environment.

Parameters:
byteArray - byte[]

@sendRemoteM essage

public Object sendRemoteMessage (Message msg) throws
RemoteMessageNotUnderstood

Sends a message to an other environment.

Parameters:
msg - message.Message
Returns:
javalang.Object
Throws: RemoteM essageNotUnderstood
If the message was not handled by the agent.

2gartAgent

public void startAgent (String agentId)
Starts an agent thread.

Parameters:
agentld - javalang.String

Appendix A: Java Documentation

All Packages Class Hierarchy This Package Previous Next Index

108 Mobile Agents. Patterns and Reflection

Mobile Agents. Patterns and Reflection

109

Appendix A: Java Documentation

Appendix A: Java Documentation

All Packages Class Hierarchy This Package Previous Next Index

Class environment.AgentEnvironment

java.lang.Object

+----java.rmi.server.RemoteObject

+----java.rmi.server.RemoteServer

+----java.rmi.server.UnicastRemoteObject

+----environment .AbstractAgentEnvironment

+----environment .AgentEnvironment

public class AgentEnvironment
extends AbstractAgentEnvironment

implements 1AgentEnvironment

This class extends the AbstractAgentEnvironment and defines other specific attributes.

~AgentEnvironment(int)
Creates an environment that will listen in a specific port.

L;l*lb) \t\\lln
MITEF TS 7L x
FWi=r o =TEMA

«arrivedAgent(AgentProxy)
Receives an agent that has arrived to this environment.

oCr eateAgent(String)
Creates a new agent of the specified class and returns the respective agent
proxy.
«dispatch(String, String)
Dispatch an agent to a specific address.
«getConsumer Agents(String)
Returns only the agents that has a specific consumer capability.
=getProvider Agents(String)
Returns only the agents that has a specific provider capability.
=print(String)
Sends a string to the user interface.
=setUl (EnvironmentGUI)

110 Mobile Agents. Patterns and Reflection

Sets an user interface to the environment.

«star tAgent(String)
Starts an agent thread.

@envuUl

protected EnvironmentGUI envUI

rangtrintore

P aLFTE s F =~ F& Wy Wi 8

@AgentEnvironment

public AgentEnvironment (int port) throws RemoteException
Creates an environment that will listen in a specific port.

Parameters:
port - int

h\l\n-
m-b.\l\-
A
Ay
:‘E;.I‘
S
a
R

i,
b 4
[
n

@arrivedAgent

public void arrivedAgent (AgentProxy agentProxy)
Receives an agent that has arrived to this environment.

Parameters:
agentProxy - agent.AgentProxy
Overrides:
arrivedAgent in class AbstractA gentEnvironment

2createAgent

public AgentProxy createAgent (String className)

Creates a new agent of the specified class and returns the respective agent
proxy.

Parameters:
className - java.lang.String
Returns:
agent.AgentProxy
Overrides:
createAgent in class AbstractA gentEnvironment

Mobile Agents. Patterns and Reflection 111

Appendix A: Java Documentation

Appendix A: Java Documentation

@dispatch

public void dispatch(String agentId, String address)
Dispatch an agent to a specific address.

Parameters.
agentld - java.lang.String
address - java.lang.String
Overrides:
dispatch in class AbstractAgentEnvironment

@getConsumer Agents

public Vector getConsumerAgents (String description)
Returns only the agents that has a specific consumer capability.

Return:

java.util.Vector
Parameters:

java.lang.String description

@getProvider Agents
public Vector getProviderAgents (String description)
Returns only the agents that has a specific provider capability.

Return:
java.util.Vector
Parameters:
javalang.String description
@print
public void print (String line)

Sends a string to the user interface.

Parameters:
line - javalang.String

@setUl
public void setUI (EnvironmentGUI envUI)

Sets an user interface to the environment.

Parameters:
envUI - userinterface.EnvironmentGUI

@startAgent

public void startAgent (String agentId)
Starts an agent thread.

Parameters.
agentld - java.lang.String
Overrides:
startAgent in class AbstractAgentEnvironment

All Packages Class Hierarchy This Package Previous Next Index

112 Mobile Agents. Patterns and Reflection

Mobile Agents. Patterns and Reflection 113

Appendix A: Java Documentation

All Packages Class Hierarchy Index

Appendix A: Java Documentation

package examples

rlaga I nde
L7 v e e == R

e Computer
e ComputerBuyer
o ComputerShop

b4
~

114

Mobile Agents. Patterns and Reflection

Mobile Agents. Patterns and Reflection

115

Appendix A: Java Documentation

All Packages Class Hierarchy This Package Previous Next

Index

Appendix A: Java Documentation

Class examples.Computer

java.lang.Object

+----examples.Computer

public class Computer
extends Object
implements Serializable

This class defines the computer structure.

-Computer()
Creates a new computer instance.

=getDescription()

Gets the computer description.
«getPrice()

Gets the computer price.

Py

P

y

)

-
L]

HH
L™

IWE

@price

private float price
2num

private Random num
@description

private String description

116 Mobile Agents. Patterns and Reflection

\uly\l"uhl_‘n\\h_‘ltll —
F NITI P F Wi r e
Cn‘hhﬁ".‘ R Wy Wr o
@Computer

public Computer ()

Creates a new computer instance.

@getDescription
public String getDescription ()
Gets the computer description.

Returns:
javalang.String

2qgetPrice
public Float getPrice ()
Gets the computer price.

Returns:
float

All Packages Class Hierarchy This Package Previous

Next Index

Mobile Agents. Patterns and Reflection

117

Appendix A: Java Documentation

String bestPriceIld

Next Index

Appendix A: Java Documentation
Previous

Class Hierarchy This Package

All Packages

Class examples.Computer Buyer

java.lang.Object
+----java.lang.Thread

7

+----agent .AbstractAgent

+----agent.Agent
+----examples.ComputerBuyer

public class Computer Buyer

extends Agent
The ComputerBuyer class specifies an agent that buys computers.

sbestPrice
sbestPriceld

~ComputerBuyer()
Creates a new ComputerBuyer instance.

~Computer Buyer (String)
Creates a new ComputerBuyer instance defining its home address.

«handleM essage(M essage)
Handles all incoming messages to the agent.
Defines the agent behavior that will be performed in each one of the

CONEFTHCEOrS

<+ Computer Buyer

public ComputerBuyer ()
Creates a new ComputerBuyer instance.

@Computer Buyer
public ComputerBuyer (String homeAddress)

Creates a new ComputerBuyer instance defining its home address.

Parameters:
homeAddress - javalang.String

2handleM essage

public Object handleMessage (Message msg)
Handles all incoming messages to the agent.

Parameters:
msg - message.Message

Returns:
java.lang.Object
Overrides:
handleMessage in class Agent

@run
public void run()

environments where the agent will pass.

Overrides:
runin class Thread

Previous

throws MessageNotUnderstood

Defines the agent behavior that will be performed in each one of the

Next Index

Class Hierarchy This Package

orun()
environments where the agent will go.
.MHWLMﬂhu h‘.lm\ﬂli
£ F o Fof2s
2pbestPrice All Packages
float bestPrice
@bestPriceld
118 Mobile Agents. Patterns and Reflection Mobile Agents. Patterns and Reflection 119

Appendix A: Java Documentation Appendix A: Java Documentation
All Packages Class Hierarchy This Package Previous Next Index . s B s o W e
F AMI T W~ r er
Cn‘hhﬁ".‘ R Wy Wr o
Class examples.Computer Shop “ComputerShop
um<ﬂ.wm5m.06umnn public ComputerShop ()
+----java.lang.Thread .
J | d Creates a new ComputerShop instance.
+----agent .AbstractAgent
_ 2Computer Shop
+----agent.Agent
| public ComputerShop (String homeAddress)
+----examples.ComputerShop
Creates a new ComputerShop instance defining its home address.
Parameters:
homeAddress - javalang.String
F B R O PR
ANEgLnge
Pl 2 il —
throws MessageNotUnderstood

public class Computer Shop
extends Agent
This class defines the structure of the computer shop. The computer shop is a stationary

£ F o F
=Computer

o lrusrlor Iudsu
FILFEFary Fravw ¥ Wi TiiidGNn

~Computer Shop()
Creates a new ComputerShop instance.

~Computer Shop(String)
Creates a new ComputerShop instance defining its home address.

«handleM essage(M essage)
Handl e the messages from the ComputerBuyer agent when it asks for the
computer price.

el C:O
Defines the main behavior of our computer shop

A

=
§ FEiesss

Scomputer
private Computer computer

2handleM essage
public Object handleMessage (Message msg)
Handle the messages from the ComputerBuyer agent when it asks for the

computer price.
Parameters:
msg - message.Message

Returns:
java.lang.Object
Overrides:
handleMessage in class Agent

erun

public void run()
Defines the main behavior of our computer shop.

Overrides:
runin class Thread
Next Index

Previous

Class Hierarchy This Package

All Packages

121

Mobile Agents. Patterns and Reflection

Mobile Agents. Patterns and Reflection

120

Appendix A: Java Documentation

All Packages Class Hierarchy Index

Appendix A: Java Documentation

package interaction

rlaga I nde
L7 v e e == R

e AgentCoordinator

b4
~

122

Mobile Agents. Patterns and Reflection

Mobile Agents. Patterns and Reflection

123

Previous Next Index

Appendix A: Java Documentation

Returns all agents that has at leat one consumer capability.

Returns:
java.util.Vector

Appendix A: Java Documentation

Class Hierarchy This Package

Classinteraction.AgentCoor dinator

java.lang.Object
+----coordinator.AbstractAgentCoordinator
+----interaction.AgentCoordinator

public class AgentCoor dinator
extends AbstractA gentCoordinator
This class extends the AbstractAgentCoordinator class and enables agent to interact.

~AgentCoordinator ()
Creates a new AgentCoordinator instance.

EFE
Returns all agents that has at |eat one consumer capability.

+getConsumer Agents()
+getConsumer Agents(String)
Returns all agents that has one specific consumer capability.
Returns all agents that has at |eat one provider capability.

«getProvider Agents()
«getProvider Agents(String)
Returns all agents that has one specific provider capability.
«notifyConsumer s(AgentProxy)
Notifies all consumer agents about a provider agent.

At xd -kl- —
L oY
T A T

'\ii
)
Y
(

b

‘_h.)-

r
£,
=
@AgentCoordinator

public AgentCoordinator ()

Creates a new AgentCoordinator instance.

a
i

"!\r\‘.
R
]

A
o,

4
aA
I

P

"
A
-

@getConsumer Agents
public Vector getConsumerAgents (String description)
Returns all agents that has one specific consumer capability.

Parameters:

java.lang.String - description
Returns:

java.util.Vector

2getProvider Agents
public Vector getProviderAgents ()

Returns all agents that has at |eat one provider capability.
Returns:

java.util.Vector

@getProvider Agents
public Vector getProviderAgents (String description)
Returns all agents that has one specific provider capability.
Parameters:
java.lang.String - description

Returns:
java.util.Vector

Index

@notifyConsumers
public void notifyConsumers (AgentProxy agent)
Notifies all consumer agents about a provider agent. param agent.AgentProxy
Next

Previous

agent

Class Hierarchy This Package

All Packages

125

Mobile Agents. Patterns and Reflection

@getConsumer Agents

public Vector getConsumerAgents ()

Mobile Agents. Patterns and Reflection

124

Appendix A: Java Documentation

All Packages Class Hierarchy Index

Appendix A: Java Documentation

package message

Class [Hdex

L S

* Message

126

Mobile Agents. Patterns and Reflection

Mobile Agents. Patterns and Reflection

127

Appendix A: Java Documentation

Appendix A: Java Documentation

All Packages Class Hierarchy This Package Previous Next Index

Class message.M essage

java.lang.Object

+----message.Message

public class M essage
extends Object
implements Serializable

This class defines the structure of the messages that will be sent to agents and to
environments.

.y

nmm.%iﬂ\ - =
X g~ fi7d-7.

FFFEX

H.,‘
L

"'!\n.

.hil‘l

scontent

«param
«feceiverld
sremoteAddress

Creates a new Message instance.
=M essage(String)
Creates a new message instance defining its content.
=M essage(String, Object([])
Creates a new message instance defining its content and parameters.

4 a R Fl rl I}
AR OO [hd2y
fFFE LT i Y
«getContent()
Returns the content of a message.
«getPar ameter ()
Returns the parameters of a message.
«getReceiver ()
Returns the receiver of amessage.
«getRemoteAddr ess()
Returns the remote address of the environment where the message will be
sent.

=setContent(String)

Sets the content of a message.
ssetPar ameter s(Object[])

Sets the parameters of a message.

«SetReceiver (String)

Sets the receiver of a message.
«SetRemoteAddr ess(String)

Sets the remote address of the environment where the message will be sent.
=toString()

Returns a string of this class.

- F F
2F -
Clas

m.‘r"

@content
private String content
@param
private Object param[]

@receiverld

private String receiverId

@remoteAddress

private String remoteAddress

\dkbh\ﬁlm&.ll»l\h.‘lh\lwh%\tmn\lh
F T3S br F ML fFrF oF
[plrisSr 7 SRS VI oo
+M essage

public Message ()
Creates a new Message instance.
@M essage
public Message (String content)
Creates a new message instance defining its content.

Parameters:
content - java.lang.String

@M essage

public Message (String content, Object param[])
Creates a new message instance defining its content and parameters.
Parameters:

content - java.lang.String
param - java.lang.Object[]

128 Mobile Agents. Patterns and Reflection

Mobile Agents. Patterns and Reflection 129

Appendix A: Java Documentation

Mot ttnsde
VIV F f i =

@getContent

public String getContent ()
Returns the content of a message.

Returns:
javalang.String

@getParameters
public Object[] getParameters ()
Returns the parameters of a message.

Returns:
java.lang.Object[]

@getReceiver
public String getReceiver ()
Returns the receiver of amessage.

Returns:
javalang.String

@getRemoteAddress

public String getRemoteAddress ()

Returns the remote address of the environment where the message will be
sent.

Returns:
javalang.String

@setContent

public void setContent (String content)
Sets the content of a message.

Parameters:
content - java.lang.String

SsctParameters

Appendix A: Java Documentation

130 Mobile Agents. Patterns and Reflection

public void setParameters (Object param[])
Sets the parameters of a message.

Parameters:
param - java.lang.Object[]

@setReceiver
public void setReceiver (String receiverId)
Sets the receiver of a message.

Parameters:
receiver - java.lang.String

SsetRemoteAddress
public void setRemoteAddress (String remoteAddress)
Sets the remote address of the environment where the message will be sent.

Parameters:
remoteAddress - java.lang.String

2toString

public String toString()
Returns a string of this class.

Returns:

javalang.String
Overrides:

toString in class Object

All Packages Class Hierarchy This Package Previous Next Index

Mobile Agents. Patterns and Reflection 131

Appendix A: Java Documentation

All Packages Class Hierarchy Index

Appendix A: Java Documentation

package transporter

[a88 [#dex

L el 4

e AbstractTransporter
e RMITransporter

132

Mobile Agents. Patterns and Reflection

Mobile Agents. Patterns and Reflection

133

Appendix A: Java Documentation

Appendix A: Java Documentation

All Packages Class Hierarchy This Package Previous Next Index

Classtransporter.AbstractTransporter

java.lang.Object

+----transporter.AbstractTransporter

public abstract class AbstractTransporter
extends Object

Defines a basic structure of the object transporter.

i &, » -
N\“ﬁ%\mw\m‘mw‘m H\N‘ h\.\kﬂ\.‘“{
F\:\-ﬁl!\ i = |<.-ll.-1u.w-._’
sAbstractTransporter ()

Creates a new instance of AbstractTransporter class.

I eceiveAgent(byte]])
Receives a serialized agent and returns a agent object.

«sendAgent(Agent, String)
serializes and send an agent object to a specific address.

@environment

protected AgentEnvironment environment

@AbstractTransporter

public AbstractTransporter ()

Creats a new instance of AbstractTransporter class.

a ¥]
A AT & o
SL S B ke w R R Fa
FLESLFF FF LFiE
FF - F il ——

@receiveAgent

public abstract Agent receiveAgent (byte byteArray[])

Receives a serialized agent and returns a agent object.

Parameters:

byteArray - byte{]
Returns:

agent.Agent

@sendAgent

public abstract void sendAgent (Agent agent, String address)

Serializes and send an agent object to a specific address.

Parameters:
agent - agent.Agent
address - java.lang.String

All Packages Class Hierarchy This Package Previous Next Index

134 Mobile Agents. Patterns and Reflection

Mobile Agents. Patterns and Reflection 135

All Packages

Appendix A: Java Documentation
Previous Next Index dd ot don 4 -
kﬂ\ﬂ\wb\\ﬂ rrr7y
VIV r STV Eo
@receiveAgent
public Agent receiveAgent (byte byteArrayl[]
Receive a serialized agent object and returns the agent object

Appendix A: Java Documentation

Class Hierarchy This Package

Classtransporter.RMITransporter

java.lang.Object
+----transporter.AbstractTransporter
+----transporter.RMITransporter

f
public class RM | Transporter
extends AbstractTransporter

implements Remote
This class defines a object transport using Java RM|

-RMITransporter()
Creates anew RMITransporter instance.
Creates anew RMITransporter defining the environment that it will work for

-RMITransporter (AgentEnvironment)

. P 3 - =
P | i K o F_ -
- T iV By 7 r
P - F gy N sV
PV AN ¥ N Rv 7> 3 Frrrr 5 4
S awrE SrTE 2 Sl
&F 2 G

«f eceiveAgent(byte]])
Receive a serialized agent object and returns the agent object
Serializes an agent object and sends it to a specific address.

«SendAgent(Agent, String)

“RMITransporter

public RMITransporter (
Creates anew RMITransporter instance.

@RMITransporter
public RMITransporter (AgentEnvironment environment)
Creates anew RMITransporter defining the environment that it will work for

Parameters:
environment - environment.AgentEnvironment

Parameters.
byteArray - byte[]

Returns:
agent.Agent
receiveAgent in class AbstractTransporter

Overrides:

String address)

@sendAgent
public void sendAgent (Agent agent
Serializes an agent object and sends it to a specific address

Parameters.
agent - agent.Agent
address - javalang.String
Overrides:
sendAgent in class AbstractTransporter
Next Index

Previous

Class Hierarchy This Package

All Packages

137

Mobile Agents. Patterns and Reflection

Mobile Agents. Patterns and Reflection

136

Appendix A: Java Documentation

All Packages Class Hierarchy Index

Appendix A: Java Documentation

package travel

Class [Hdex

L

e Desdtination
e TravelPlan

138

Mobile Agents. Patterns and Reflection

Mobile Agents. Patterns and Reflection

139

Appendix A: Java Documentation

All Packages Class Hierarchy This Package Previous Next Index

Appendix A: Java Documentation

Classtravel.Destination

java.lang.Object

+----travel.Destination

public class Destination
extends Object
implements Serializable

This class defines a destination where an agent can go.

- 2 fT TP T2
-_ &, W = E oy
saddress
sisAlternative
svisited
_ b F r
o if B AL F L Aay

=Dedtination()

Creates a new Destination instance.
<Destination(String)

Creates a new Destination instance defining its address.

«getAddress()
Returns the address of a destination.

sisAlternative()

Check whether the destination is alternative or not
«setAlter native(boolean)

Sets a destination as alternative or not.
ssetVisited(boolean)

Sets a destination as visited or not.
swasVisited()

Check whether the destination was visited aready or not.

Fields
@visited

private boolean visited

140 Mobile Agents. Patterns and Reflection

@address

private String address

@isAlternative

private boolean isAlternative

[Y

COHNSFIACFOrS

@Destination
public Destination()
Creates a new Destination instance.
@Destination
public Destination(String address)

Creates a new Destination instance defining its address.

Parameters:
address - java.lang.String

public String getAddress()
Returns the address of a destination.

Returns:
javalang.String

SisAlternative

public boolean isAlternative ()
Check whether the destination is aternative or not

Returns:
boolean

2setAlternative

public void setAlternative (boolean isAlternative)

Sets a destination as alternative or not.

Mobile Agents. Patterns and Reflection 141

Appendix A: Java Documentation

Parameters.
isAlternative - boolean

@setVisited
public void setVisited(boolean visited)
Sets a destination as visited or not.

Parameters.
visited - boolean

@wasVisited

public void wasVisited()

Check whether the destination was aready visited or not.

Appendix A: Java Documentation

All Packages Class Hierarchy This Package Previous Next

Index

142 Mobile Agents. Patterns and Reflection

Mobile Agents. Patterns and Reflection

143

Appendix A: Java Documentation

Appendix A: Java Documentation

All Packages Class Hierarchy This Package Previous Next Index

Classtravel.TravelPlan

java.lang.Object

+----travel.TravelPlan

public class TravelPlan
extends Object
implements Serializable

This class defines the travel plan on an agent.

fy,
Iy
4
g

Fow
~

«agentHomeAddress
sdestinations

=goAlternative
sindex
smaxVisits
stimeOut

«TravelPlan()
Creates anew Travel Plan instance.

=addDestination(String)
Adds adestination in the travel plan.
=addOther Destinations(Vector)
Adds other destinations in the travel plan that were obtained from the visited
environment.
shasFinished()
Checks whether the travel has finished or not.
sinitializeTr avel (Vector)
Initialize atravel with alist of address.
«nextDestination()
Gets the next destination where the agent should go.
of emoveDestination(String)
Removes a destination from the travel plan.
of esetlndex()
Setsthe travel plan index to zero.
of esetVisited()

Sets all destinations as not visited yet.
«SetAgentHomeAddr ess(String)
Setsin the travel plan the current agent address.
#SetGoAlter natives(boolean)
Sets the goAlternative parameter whether the agent should visit or not the
alternative addresses.
«SetM axVisits(int)
Sets the maximum number of visits per travel.
+SetTimeOut(int)
Sets the time out for a connection.

EMHWh“kW.Mﬂtﬂ\PM“
& F o7
@index

private int index
@destinations

private Vector destinations
2timeOut

private int timeOut
@maxVisits

private int maxVisits
2goAlternative

private boolean goAlternative

@agentHomeAddress

private String agentHomeAddress

S g PR AT A
Vil 2 VP A T~
FallFffmr F = Fe w F Wi o3

=TravelPlan

public TravelPlan()

Creates anew Travel Plan instance.

Methods

2addDestination

public void addDestination(String address)

144 Mobile Agents. Patterns and Reflection

Mobile Agents. Patterns and Reflection 145

Appendix A: Java Documentation

Adds a destination in the travel plan.

Parameters:
address - javalang.String

@addOther Destinations

public void addOtherDestinations (Vector otherDestinations)

Adds other destinationsin the travel plan that were obtained from the visited
environment.

Parameters:
otherDestinations - java.util.Vector

2hasFinished

public boolean hasFinished ()
Checks whether the travel has finished or not.

Returns:
boolean

@initializeTravel

public void initializeTravel (Vector dest)
Initialize atravel with alist of address.

Parameters:
dest - java.util.Vector

@nextDestination

public String nextDestination()
Gets the next destination where the agent should go.

Returns:
javalang.String

@removeDestination
public void removeDestination(String address)

Removes a destination from the travel plan.

Parameters:
address - java.lang.String

@resetindex

Appendix A: Java Documentation

146 Mobile Agents. Patterns and Reflection

public void resetIndex()
Setsthe travel plan index to zero.
@resetVisited
public void resetVisited()
Sets all destinations as not visited yet.
@setAgentHomeAddress
public void setAgentHomeAddress (String AgentHomeAddress)
Setsin the travel plan the current agent address.

Parameters:
AgentHomeAddress - java.lang.String

@setGoAlternatives

public void setGoAlternatives (boolean goAlternative)

Sets the goAlternative parameter whether the agent should visit or not the
alternative addresses.

Parameters:
goAlternative - boolean

@setMaxVisits
public void setMaxVisits(int maxVisits)
Sets the maximum number of visits per travel.

Parameters.
maxVisits - int

SsetTimeOut
public void setTimeOut (int timeOut)

Sets the time out for a connection.

Parameters:
timeOut - int

All Packages Class Hierarchy This Package Previous Next Index

Mobile Agents. Patterns and Reflection 147

