
Vrije Universiteit Brussel - Belgium
Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes - France

1999

V
R

IJ
E

UNIVERSITEIT BRUSS
E

L

S
C

IE
N

TIA
VINCERE TENEB

R
A

S

MOBILE AGENTS: PATTERNS AND REFLECTION

A Thesis submitted in partial ful�llment of the requirements
for the degree of Master of Science in Computer Science

(Thesis research conducted in the EMOOSE exchange
project funded by the European Community)

By: James Roberto Windm�uller

Promotor: Prof. Theo D'Hondt (Vrije Universiteit Brussel)

Co-Promotor: Thomas Ledoux (Ecole des Mines de Nantes)

Acknowledgments

Each conquest in our lives has a special meaning and also a lot of hard work behind it.
But the success is not due only by our efforts, if we look around us there are many
factors and people that helped us to reach the success.

I would like to thank my wife Cintia, that has been walking by my side for several years
and also during the last year when I took my course, for supporting me and giving me
the courage to finish my work.

I want to leave a special thanks to my advisor Thomas Ledoux, that was always ready to
help me when I needed, showing me the way that I should take and spending many
hours discussing with me about my subject and related papers, books and other
documents. I always had a feedback from him about my doubts, my questions and my
work even when he was busy with other important things not related to my research.

I want to thank my father Válter and my mother Glacy, for following my studies since
my first day in school. Now I can understand why they always gave a special stimulus
to me.

I also thank Alberto and Vânia, my wife’s parents, for helping and advising us during
all those years that we have been married.

Thanks Ricardo José Peres, my friend, for taking care of my business in Brazil during
this time, and the company POLO de Software S.A., where I have been working the last
eight years, for allowing me to stay out in order to do my course.

I special thanks to Prof. Dr. Edson Scalabrin and Pontifícia Universidade Católica do
Paraná – PUC-PR for giving me the opportunity to participate in this project.

Finally I would like to dedicate my work to all those mentioned above.

i

Table of Contents

LIST OF FIGURES ...III

LIST OF TABLES ...III

INTRODUCTION.. 1

CHAPTER I: MOBILE AGENTS.. 3

1 STATE OF THE ART ... 4

1.1 Introduction .. 4
1.2 What is the best definition for Agent?... 5

1.2.1 The Weak and the Strong notion .. 5
1.2.2 Definitions of Mobile Agents and Their Properties.. 5

1.3 The Mobile Agents conceptual model ... 7
1.3.1 The RPC Model.. 7
1.3.2 The Code-on-Demand Model ... 8
1.3.3 The Mobile Agent Model ... 8

1.4 Advantages of using Mobile Agents .. 10
1.4.1 Reducing the network load ... 10
1.4.2 Overcoming the network latency.. 10
1.4.3 Executing asynchronously and autonomously.. 10
1.4.4 Integration of Seamless Systems .. 10
1.4.5 Robust and Fault-Tolerant Distributed System... 11

1.5 Applications that can benefit from mobile agents... 11
1.5.1 E-Commerce... 11
1.5.2 Personal Assistance .. 11
1.5.3 Distributed Information Retrieval... 11
1.5.4 Workflow and Groupware .. 11
1.5.5 Monitoring and Notification ... 12
1.5.6 Information Dissemination ... 12
1.5.7 Parallel Processing.. 12
1.5.8 Data Source Mediation ... 12
1.5.9 Information Filtering .. 12

1.6 Agent Communication Languages .. 13
1.6.1 KQML - Knowledge Query and Manipulation Language .. 14

1.7 Security and Agents .. 15
1.7.1 User Authentication.. 16
1.7.2 Malign Agents .. 16
1.7.3 Virus Detection... 16
1.7.4 Proxies.. 16

2 EXPERIMENTATION... 17

2.1 Available Tools ... 17
2.2 The Example Created.. 18
2.3 Description of the Participants ... 19

2.3.1 TheAgent .. 20
2.3.2 Shop.. 22
2.3.3 Computer .. 23
2.3.4 Ecommerce... 24

2.4 Conclusion .. 26

CHAPTER II: DESIGN PATTERNS FOR MOBILE AGENTS.. 27

3 INTRODUCTION ... 28

ii

3.1 Design Patterns... 28
3.2 Scope of Our Solution ... 28

4 ABSTRACT AGENT PATTERN .. 31

4.1 Intent ... 31
4.2 Scope and Motivation ... 31
4.3 Applicability.. 31
4.4 Structure and Participants.. 31
4.5 Consequences.. 32
4.6 Implementation ... 33
4.7 Related Patterns.. 33

5 AGENT PROXY PATTERN .. 34

5.1 Intent ... 34
5.2 Scope and Motivation ... 34
5.3 Applicability.. 34
5.4 Structure and Participants.. 34
5.5 Collaborations .. 36
5.6 Consequences.. 37
5.7 Implementation ... 37
5.8 Related Patterns.. 38

6 AGENT COORDINATOR PATTERN... 39

6.1 Intent ... 39
6.2 Scope and Motivation ... 39
6.3 Applicability.. 39
6.4 Structure and Participants.. 39
6.5 Collaborations .. 40
6.6 Consequences.. 41
6.7 Implementation ... 41
6.8 Related Patterns.. 41

7 AGENT INTERACTION PATTERN... 42

7.1 Intent ... 42
7.2 Scope and Motivation ... 42
7.3 Applicability.. 42
7.4 Structure and Participants.. 42
7.5 Collaborations .. 44
7.6 Consequences.. 45
7.7 Implementation ... 46
7.8 Related Patterns.. 46

8 TRAVEL PATTERN... 47

8.1 Intent ... 47
8.2 Scope and Motivation ... 47
8.3 Applicability.. 47
8.4 Structure and Participants.. 47
8.5 Collaborations .. 48
8.6 Consequences.. 49
8.7 Implementation ... 50
8.8 Related Patterns.. 50

9 CONCLUSIONS ... 51

REFERENCES... 55

APPENDIX A: JAVA DOCUMENTATION .. 57

iii

List of Figures

Figure 1: RPC conceptual model. ...7
Figure 2: Code-on-demand Model ..8
Figure 3: Mobile Agents conceptual model. ...9
Figure 4: The simple e-commerce example ..18
Figure 5: Class Diagram of the e-commerce example ..19
Figure 6: Collaboration diagram of the e-commerce example..20
Figure 7: The abstract agent pattern structure...31
Figure 8: The agent proxy pattern structure ..35
Figure 9: Collaboration diagram of a local mobile agent..36
Figure 10: Collaboration diagram of a remote mobile agent ..37
Figure 11: The agent coordinator pattern structure...39
Figure 12: Collaboration diagram of the Agent Coordinator Pattern..............................40
Figure 13: The agent interaction pattern structure ..43
Figure 14: Collaboration diagram of the Agent Interaction Pattern................................45
Figure 15: The travel plan pattern structure ..48
Figure 16: Collaboration diagram of the Travel Plan Pattern ...49

List of Tables

Table 1: Overview of practical application of mobile agents ...13
Table 2: Agent Communication Language Requirements ..14
Table 3: KQML Performative Names...15
Table 4: Mobile agent tools developed by famous names in software industry17
Table 5: Mobile agent tools developed by OO specialized companies...........................17
Table 6: Proposed agent design patterns ...30

iv

v

Abstract

A great effort has been done over several years in order to propose new software
development technologies that can turn the software development process easier,
improving the productivity and making the costs lower. “Agent Technology” is an
example of such technology that makes it easier to design, implement, and maintain
distributed systems.

“Agent Technology”, especially mobile agents, offers us a lot of advantages, but also
offers many challenges that we have to deal with. One of the challenges is to find and
give a solution to the recurrent problems met during the use of the “Agent Technology”.
Making agents interact with other agents without knowing their existence, identifying
agents by their capabilities and allowing an agent to try alternative destinations when
some environment is temporally out of order are some examples of those recurrent
problems. Having those problems in our hand, we can after apply already proven
software engineering techniques such as “Software Design Patterns” and “Reflection”
in order to give to each one a possible solution in an abstract format that will help
programmers develop their own mobile agent applications.

In this document we give a general overview of the main elements and properties of
mobile agents like definitions, advantages and their applicability followed by a small
example of using mobile agents. Then, we present five design patterns that solve
particular problems that we have met during our research and when we applied the
mobile agent technology in our example.

Mobile Agents: Patterns and Reflection 1

Introduction

The computer science area have been done a great effort in order to propose new
software development technologies that can turn the software development process
easier, improving the productivity and lowing the costs. Each of those technologies
when announced changes the way of thinking and acting of the software engineering
community.

The Object Oriented technology is a good example of that. It was one of the responsible
for the changes that occurred in the software development process. Many other
technologies, based on Object Oriented technology, were proposed and adopted as the
main solution for several software applications after. The Distributed Object technology
is one of those approaches that has made a great difference, allowing objects to reside in
different computers and also permitting them to communicate each other in order to
exchange data.

Following that comes a new era were the objects in a distributed environment got a new
structure and gained one basic feature: mobility. This new technology is called “Agent
Technology”, and it allows software developers to create a new kind of application
where the objects now can move themselves from one host to another carrying their
code and state. The object that possesses those characteristics is called “Mobile Agent”.

Every new technology demands, before using it, a deep study of all its principles,
fundamental concepts and techniques. That study will provide us the basic knowledge
needed in order to put all the characteristics and features offered by the studied
technology in practice. The practical part after the study of the new technology is also
very important. It will organize all pieces loosed in our mind, identifying the role that
each one of them plays, showing the level of importance that each one have in the
whole, the dependency existing among them and how they interact each other. When we
reach a reasonable level of knowledge about a new technology, in theory and practice,
we are able to identify the spots of complexity and the main problems that we can face
when using the related technology. This process of analyzing new technologies is
necessary for all new proposed technologies, including the “Agent Technology”.

The “Agent Technology” has its properties, concepts and elements like autonomy,
social ability, reactivity, pro-activity and mobility. Based on that, we can identify the
main required characteristics in a mobile agent based application and also the problems
that we met when dealing with the implementation of those required characteristics, for
example:

� How can mobile agents interact with other agents ?
� How can we control the access to the mobile agent ?
� How to provide a transparent access to a mobile agent when it is in a remote

environment ?
� How can we identify mobile agents by their capabilities ?
� How can a mobile agent in a local environment find other agents without knowing

their existence ?
� How can a mobile agent change the destinations where it should go dynamically ?
� How can a mobile agent try alternative destinations when some host is temporally

shut down ?

2 Mobile Agents: Patterns and Reflection

Those questions provide us good reasons to focus our efforts on the identification of
possible solutions to them. Usually, to help people solve the recurrent problems we can
use different techniques. One of the most used techniques in software engineering and
that is very well known and accepted in the object oriented community is “Software
Design Patterns” [18], [19]. In our work we show a preliminary study about “Agent
Technology”, mobile agents specially; followed by a practical example giving an
approach of the main characteristics of mobile agents.

So, the main recurrent problems of mobile agents are identified and, as the main part of
our work, we propose a specific “Design Pattern” for each one of them. The following
design patterns are proposed in order to help programmers to solve the recurrent
problems found when dealing with mobile agent technology:

� Abstract Agent Pattern
Permits a programmer define the main structure for a mobile agent based application

� Agent Proxy Pattern
Defines the main mechanism of a mobile agent.

� Agent Coordinator Pattern
Allows an environment to control all agents that are running.

� Agent Interaction Pattern
Allows the agent localization and interaction based on their capabilities

� Travel Plan Pattern
Controls the destinations where the agent must go and allows dynamic changes to
the itinerary.

Finally we finish our research showing the Java Documentation of a small application
implemented in Java [31] using RMI where we can see the proposed design patterns in
use. We want to remember that using the proposed patterns we don’t need to use a
special tool or agent programming language like Aglets [27], Voyager [29], etc.

Chapter I: Mobile Agents
__

Chapter I: Mobile Agents

4 Mobile Agents: Patterns and Reflection

1 State of the Art

1.1 Introduction

The Object Oriented technology is one of the most important software development
technologies that appeared in the computer science area. It really changed the way of
developing software, improving the productivity and making the software costs lower.
Moreover, the software developed based on Object Oriented technology is much more
reusable, reliable and adaptable to the natural changes during its life cycle. Another
important technology in use nowadays is the Distributed Object technology. It allows
objects residing in different computers to communicate each other in order to exchange
data. Those facts created a revolution in the software industry and the prove is that
many applications running today are based on those technologies.

After that comes a new era were the objects in a distributed environment got a new
structure and gained one basic feature: mobility. This means that the objects now can
travel to different hosts over the network, carrying their properties and behavior. This
new technology is called “Agent Technology” and it provides new properties and
characteristics in addition to the known object oriented properties.

The benefits of the “Agent Technology” are everywhere. It allows software developers
to create a new kind of application where the local host is not the limit anymore. The
small objects now can move themselves from one host to another carrying their code
and state. They also have the ability to start executing their tasks in somewhere and
resuming the same task anywhere else. Applications developed using that kind of
characteristics are called “Agent-Based” applications and the objects that are capable of
moving around different environments and hosts are called “Mobile Agents”.

In this section we will present an overview of the “Agent Technology”.

Chapter I: Mobile Agents

 Mobile Agents: Patterns and Reflection 5

1.2 What is the best definition for Agent?

“An agent is a program that assists people and acts on their behalf. Agents function by
allowing people to delegate work to them”. (Danny B. Lange) [1].

The best way to start talking about mobile agents is giving a definition about what an
agent is and what the term "agent" means for different authors that use or research about
agent-based applications. Regarding to the enormous number of people working and
researching about agent-based systems, we can suppose that it is easy to find a
definition. However, there is not a unique definition or a consensus on it. Many papers
[9], [10], [11] try to give a definition for agents but what we can see is that each author
focus his/her definition in the research or the application where the agent technology
was used.

1.2.1 The Weak and the Strong notion

One of the classical documents available about agents and very adopted by researchers
is "Intelligent Agents: Theory and Practice" written by Wooldridge and Jennings [11].
In this paper the authors consider two different ways of use for the term "agent":

1) The weak notion of an agent;
2) The strong notion of an agent.

The weak notion of agent is related to the autonomy, social ability, reactivity and pro-
activity properties of a hardware or software-based computer system.

In addition to the weak notion, the strong notion of agent regards also to a set of
properties that resemble the human-like qualities like knowledge, belief, intention and
obligation. The researchers in the AI area call those characteristics as mentalistic
notions.

1.2.2 Definitions of Mobile Agents and Their Properties

� Definition of an Agent

For Smith, Cypher and Spohrer [12], agents are “persistent software entities dedicated
to a specific purpose. ‘Persistent’ distinguishes agents from subroutines; agents have
their own ideas about how to accomplish tasks, their own agendas. ‘Special Purpose’
distinguishes them from entire multifunction applications; agents are typically much
smaller”.

“Autonomous agents are computational systems that inhabit some complex dynamic
environment, sense and act autonomously in this environment, and by doing so realize a
set of goals or tasks for which they are designed”. This is the agent definition for Maes
[13].

Chapter I: Mobile Agents

6 Mobile Agents: Patterns and Reflection

� Definition of a Mobile Agent

“A mobile agent is not bound to the system where it begins execution. It has the unique
ability to transport itself from one system in a network to another. The ability to travel,
allows a mobile agent to move to a system that contains an object with which the agent
wants to interact, and then to take advantage of being in the same host or network as
the object”. This is the definition of mobile agent for Danny B. Lange [1]

We could list here several definitions that in some way can be very similar each other
and in the other hand they can be completely different. All of them will talk about
agents in a particular way, describing agents according where it was applied. Taking in
account various papers [9], [10], [11], [14] we can say that a mobile agent is a software
object that is located in a certain logical environment where it can perform its tasks and
has the following properties:

• Autonomy: Agents act in the environment according to their tasks and have
decisions over their own actions.

• Social Ability: Agents interact with other agents using a common language.

• Reactivity: Agents perceive their environment and respond in time for changes that
occurred.

• Pro-Activity: an agent is able to act not only by a stimulus, but also taking the
initiative by itself.

• Mobility: an agent is able to move among the different environments; stoping the
current processes and keeping its state. After moving to another host it can resumes
its task.

Chapter I: Mobile Agents

 Mobile Agents: Patterns and Reflection 7

1.3 The Mobile Agents conceptual model

Communication features are essential when we talk about distributed systems, remote
computing and of course mobile agents. Without the basic network infrastructure and
communications protocols and other set of hardware devices it would be impossible to
have the large number of application and solutions working in local and wide area
networks as we have today.

1.3.1 The RPC Model

In the beginning, applications usually worked in a stand alone computers without
sharing data, CPU and other devices such as printers, hard disks, etc. The old
mainframes offered the communication between the main CPU and the terminals, but
no computing process were done in the terminals. Thus, the local networks came to
make a revolution in the usually known computing environment, providing the
opportunity to applications to share data, hardware and others devices. Applications
were built following the client/server architecture where client computers perform
remote calls to procedures existing in the server machine. The server, in its role,
answers to those calls sending the results of the procedure invoked. This process is
called RPC – Remote Procedure Call and it is represented in Figure 1.

 Figure 1: RPC conceptual model.

We can observe in this model that the applications in the client side are dependent of the
procedures existing on the server. This centralization has some disadvantages, for
example the overloading of the resources (processor, memory, etc.) on the server side.

Client Server

Application Service

Network

Procedure calls and information exchange

Chapter I: Mobile Agents

8 Mobile Agents: Patterns and Reflection

1.3.2 The Code-on-Demand Model

The improvements done on the RPC model and on the traditional client/server
applications associated with the success of the internet, helped the computer science
community to propose a new kind of computing, known as “Code-on-demand
Paradigm”. In the RPC model the server side held the procedures (know-how), the data
(knowledge) and also was the responsible to execute those procedures in order to
answer to the client requests. The new code-on-demand model differs from that by
sending the procedures (know-how) to the client side once detected that it does not have
the required know-how to deal with the knowledge (see Figure 2). Then, the client side
can execute those procedures by itself using its own resources (processors, memory,
etc.), decreasing the load over the server resources. The most famous example of this
can be viewed when an applet is downloaded to the client web browser and executed
locally accessing servlets the are loaded in the server side.

Figure 2: Code-on-demand Model

1.3.3 The Mobile Agent Model

Over the last years applications are becoming bigger and bigger and the number of
remote calls performed in the server and the amount of data transported are growing
every day bringing up the problem about the network bandwidth, degrading the
performance on it and also in the applications.

Mobile agents appeared as a solution to this problem because mobile agents are based
on the principle of take the processes to the data and not bringing the data to the
processes. In this way we can see that using mobile agents is possible to reduce
common problems faced by RPC such as network degradation. The mobile agent
concept can be viewed in the Figure 3.

Client Server

knowledge

procedures
(know-how)

procedures
(know-how)

download

Information exchange

Network

Chapter I: Mobile Agents

 Mobile Agents: Patterns and Reflection 9

 Figure 3: Mobile Agents conceptual model.

Analyzing the figure above we can see the basic structure of an environment that is able
to deal with mobile agents. There are not many differences between the hosts shown in
Figure 3, both have an Application that interacts with an Agent Execution Environment
that can use the features available today in the programming languages and the physic
structure of a network in order to make the agents move. The environments can offer a
set of services for the agents and depending on the interest of the agent they can profit
from that services.

The Application box can be an agent-based system, an applet or any other application
that is capable to connect to the environment and start an agent that has a specific task;
like for example, to visit several computer stores in order to buy a computer. The agent
receives the characteristics and computer configuration desired from the user and travels
through the known environments in order to find the best option of computer.

The Execution Environment handles all calls that come from the agent. When the agent
wants to move from one host to another host in order to visit another computer store it
calls the environment and the environment will arrange to move the agent. The
Execution Environment will be responsible to stop the agent thread, keep the values of
attributes and other properties of the agent and move the agent object to another host in
order to resume its operation. The Execution Environment is also able to provide to the
agent basic and important information such as the host name where the agent is located,
other agents that are working in the same host, other hosts address available, and a set of
other useful information for the agent control.

Besides communicating with the environment and other applications, Mobile Agents are
also able to communicate with other agents, thus the Execution Environment will act

Host Host

Agent Execution
Environment

Agent Execution
Environment

Application Application

AgentAgent

Mobile Agent movement

Procedure calls and information exchange

Network

AgentAgent

Chapter I: Mobile Agents

10 Mobile Agents: Patterns and Reflection

again dealing with operating system, protocols and networks in order to put agents
talking to each other. Of course communication among agents is not a kind of easy task
to do and we can say here that this part of the Agent Paradigm has been treated as
special topic, providing enough complexity and also encouraging the researchers to
study about communication languages [16], [17].

1.4 Advantages of using Mobile Agents

Mobile agents can be useful when implementing several different types of distributed
applications and for each application agents can provide several advantages [1], [3] that
we could not have by using a common object distributed system.

1.4.1 Reducing the network load

On of the main advantages provided by agents comparing to other technologies is that
using agents you can have any computing process being executed in different host
servers, in parallel or not. This fact allows the agent owner to turn off his/her computer
while the agent is working and check the results obtained later. Once the agent will
work locally in different hosts we can detect a reduction on the network load due the
messages exchange between the agent and server be performed in the same CPU.
Contrasting with the known object distributed applications, where there is a role of a
client and a role of a server changing messages and data over the network, the mobile
agent model move the process to the data.

1.4.2 Overcoming the network latency

Network latencies are not acceptable in networks when we are working with critical
real-time applications like robots in manufacturing processes that need to respond in
real time to changes in their environments. In this case mobile agents can be sent from
the central controller to work locally acting direct on the robot controller and avoid the
network latency.

1.4.3 Executing asynchronously and autonomously

Another situation where mobile agents can be applied is in applications that are based
on fragile network connections or when continuously open connections become
economically or technically feasible. The process can be implemented using an agent
that will work autonomously after dispatched and will be caught later. Thus, the use of a
network connection is necessary only when dispatching and retrieving the mobile agent
after finishing its work.

1.4.4 Integration of Seamless Systems

Network computing is heterogeneous often from both hardware and software
perspectives. Mobile agents are, most of the times, computer and transport layer
independent, and they depend only on the environment where they will act. These
characteristics provide us really good reasons to use mobile agents to solve problems
such as the integration of seamless system.

Chapter I: Mobile Agents

 Mobile Agents: Patterns and Reflection 11

1.4.5 Robust and Fault-Tolerant Distributed System

We can build, in an easier way, distributed systems that are more robust and fault-
tolerant than non mobile agents based systems because mobile agents have the ability to
react dynamically to unfavorable events and situations that are common in distributed
computing environments. For example, if a host is being shut down, all agents
executing on that host will be warned about this fact and will get some time in order
dispatch to another host where they will resume their tasks.

1.5 Applications that can benefit from mobile agents

There are many areas in computer science where applications can be developed using
mobile agent technology, especially those areas that demand for repetitive tasks and
usually are done by humans. Other kind of applications where agents could be applied
are: applications that need to run in a distributed environment, applications that can not
be interfered by the latency of networks, applications that need to use full-time
connections but technically or economically those connections are not feasible.

1.5.1 E-Commerce

As example of applications we can take the electronic commerce offered over the
internet. Using mobile agents to implement Electronic Commerce applications we can
have real-time access to remote resources like stock information and even agent-to-
agent negotiation in behalf of ourselves. The agents can go over several different hosts
and obtain the best option for what we are looking for.

1.5.2 Personal Assistance

Agents are providing Personal Assistance in applications used as personal agendas. In
this kind of applications the agents can go visit other agents that represent other people,
they interact with their schedules in order to make appointment for a meeting. The agent
has also the ability to negotiate with the other agents in order to rearrange the
appointment in case of any participant of the meeting has something else already
scheduled for that time.

1.5.3 Distributed Information Retrieval

Agents are a good option also for Distributed Information Retrieval. Instead of moving
large amount of data to the process, an agent can be sent to the host where the data is
and work locally, avoiding the high traffic of information over the network.

1.5.4 Workflow and Groupware

In Workflow and Groupware applications agents can facilitate the flow of information
among the coworkers using its mobility property and provide a certain degree of
autonomy to the workflow items.

Chapter I: Mobile Agents

12 Mobile Agents: Patterns and Reflection

1.5.5 Monitoring and Notification

Agents can show their ability to work asynchronously in applications where the main
goal is Monitoring and Notification. In this case an agent can monitor a source of
information without being dependent on the application that originated it, and after
notify the environment or other agents about what it found.

1.5.6 Information Dissemination

The use of agents for Information Dissemination is the facility that gives to agents the
characteristic of “Internet push model”. In this case agents are used to disseminate
information such as news and to make automatic software update. The agents bring the
new components accompanied by the installation process to the client’s computers, and
autonomously, install the new components and manage the software.

1.5.7 Parallel Processing

In Parallel Processing applications or process that require so much processor power,
agents can be used to compose an distributed infrastructure of mobile agent hosts that
can allocate that process and run them in parallel.

1.5.8 Data Source Mediation

Let’s suppose we have to work with several different data sources and those data
sources do not talk to each other. In this case, mobile agents can be used as mediators
among the data sources providing mechanisms that allow the incompatible data sources
exchange information.

1.5.9 Information Filtering

Agents can be used to filter and sort incoming information in order to avoid overloads.
The agent receives enough knowledge about its user’s needs and acts as a gatekeeper
selecting only the really needed information and preventing its users from being
overwhelmed by a flood of information. Filtering agents can also work together with
searching agents in order to keep the searches results in an acceptable level of amount
but in a high level of contents.

The following table can give us a general idea where agents can be used in practice.

Chapter I: Mobile Agents

 Mobile Agents: Patterns and Reflection 13

Application of Agents
Category Domain

Enterprise Applications

� Smart documents (e.g., documents that ‘know’that
they are supposed to be processed).

� Goal-oriented enterprise (e.g., workflow)
� Role and personnel management (e.g., dynamically

attaching roles and capabilities to people)

Inter-Enterprise Applications
� Market making for goods and services
� Brokering goods and services
� Team management

Process Control

� Intelligent buildings (e.g., smart heating/cooling,
smart security)

� Plant management (e.g., refinary)
� Robots

Personal Agents
� Email and news filters
� Personnel schedule management
� Personnel automatic secretary

Table 1: Overview of practical application of mobile agents

As we can see mobile agents can be used for several purposes, all of them trying to
benefit from the main properties of the agents: autonomy, social ability, reactivity, pro-
activity and mobility.

1.6 Agent Communication Languages

Communication and interaction among agents have a fundamental role in the concepts
of the “Agent Paradigm”. In order to allow the interaction among agents, researchers are
studying and proposing what they call of ACL - Agent Communication Languages [16],
[17]. An ACL is composed of a common agent communication language added of
protocols and a format for the content of the communication that are the main elements
to achieve the desired agent interaction.

The agent communication languages can be divided in two different groups:

• Procedural Languages
• Declarative Languages

The procedural approach is based on communication language within procedural
directives (e.g, TCL, AppleEvens, Telescript). It is also easy to be used with other very
known and used programming languages where the communication is based on
executable content like Java [31].

The declarative approach is based on idea that the communication language can be best
modeled by the exchange of the declarative statements (definition, assumptions).
Declarative languages basically rely on actions such as requesting and commanding,
and they have an advantage over the procedural languages because procedural
languages are limited due the difficulty to control, coordinate and merge executable
content. Most of the authors agree with that and to formalize their opinion they suggest

Chapter I: Mobile Agents

14 Mobile Agents: Patterns and Reflection

seven categories of requirements that an ACL should accomplish, see the following
table.

Requirement Description
Form it should be declarative, syntactically simple, and easily readable by

people and programs
Content it should provides a distinction between the language that express

communicative acts, called “perfomatives” and the language that
transports the content of the message.

Semantics it should exhibit those desirable properties expected of the semantics
as any other language does.

Implementation it should be efficient, adaptable to existing software, work
transparently with lower layers, and allow agents to implement sub-
sets of it.

Networking it should be able to adapt to the most important aspects of modern
networking and must be independent of the transport mechanism.

Environment it must be able to handle heterogeneity and dynamism.
Reliability it must support reliable and secure agent communication.

Table 2: Agent Communication Language Requirements

Many different agent communication languages have been developed and used. We can
enumerate some of them:
- KQML
- Arcol and FIPA
- KIF
- XML-based

Among that ACL’s, KQML is the one that has accomplished most of the requirements
shown in the Table 2, and a good description and evaluation of it can be found in some
documents, for example in “Evaluating KQML as an Agent Communication Language”
(J.Mayfield, Y.Labrou and T. Finin.) [16].

1.6.1 KQML - Knowledge Query and Manipulation Language

KQML has been used to transport oriented-oriented data due its capability to
accumulate a wide range of data, and especially in agent-based systems, KQML can be
used to help the agent communication in the sense that agents work autonomously and
asynchronously.

KQML Characteristics:

• Structures the messages with no concern about the content of the messages.
• Specifies the syntax but not the semantics.
• Supports basic protocols.
• Assumes that the message transport is reliable, so does not guarantee the delivery of

the message.

An example of a basic performative in KQML is tell and its structure is denoted by:

Chapter I: Mobile Agents

 Mobile Agents: Patterns and Reflection 15

tell
:content <expression>
:language <word>
:ontology <word>
:in-reply-to <expression>
:force <word>
:sender <word>
:receiver <word>

KQML offers many reserved performatives names that can be categorized as shown in
the following table:

Category Name
Generic informational tell, achieve, cancel, untell, unachieve

Response reply, sorry

Basic Query evaluate, ask-if, ask-about, ask-one, ask-all

Multi-response query stream-about, stream-all , eos

Generator advertise, ready, next, rest, discard,
generator

Networking register, unregister, forward, broadcast,
route

Capability-definition Advertise, subscribe, monitor, import, export

Table 3: KQML Performative Names

To have a better idea of KQML language, let’s take a look at an example of a message
written in KQML.
For instance, let’s say that an agent “Agent-A” wants to demand to an application the
price of a computer. Using KQML we could have the following statements or
declarations:

(ask-one
:content "computerPrice()"
:receiver AnApplication
:language Java
:ontology computers)

As we can see, using KQML we can send and receive messages containing or not
parameters (data objects) in a simple format, composed in a language of our own choice
where everything is wrapped inside of a KQML message. Considering that, KQML
allows us to work in distributed systems and agent-based systems with a level of
abstraction that turns the message exchanging among objects very flexible and robust.

1.7 Security and Agents

Another relevant and very important topic emphasized by the authors [15] and
researchers working with mobile agents is about the security. There are several security
issues in the mobile agent model that must be considered in case of having agents
working in an environment that demands high level of security. Basically we should
think about the following topics when secure agents environments are required:

Chapter I: Mobile Agents

16 Mobile Agents: Patterns and Reflection

a) Authentication of the sender, the owner and the creator of the agent: with this
information we can have information such as the responsible for the agent and the
responsible for the code of the agent.

b) Authentication of the agent: we can check if the agent is allowed to use some
services, access files, etc.

c) Secure communication between agents: the agent should protect its privacy.
d) Auditing the activities: agent activities that demand security must be recorded in

order to be audited by an administrator later.

Like in any other secure environment, the “Agent Paradigm” also talks about this
subject. Here we can see that the security on the authentication and verification of the
agent information and activities are the main focus.

1.7.1 User Authentication

Checking the information about the user that wants to start an agent in any environment.
This user must be authenticated by the server where the agent will be started and by the
agent execution environment where the agent will work. Sometimes environments may
also perform the user’s authentication only by checking the rights of the group that the
user belongs to. No user authentication needs to be done when the environment where
the agent will work has no protected functions or information. With the user
authentication process we can say that the user/agent knows the server/agent execution
environment and vice-versa.

1.7.2 Malign Agents

Besides having an authentication for the user the server where the agent will run can
also analyze the intention of the agent by looking in its functions and the resources it
wants to access in order to assure the security of the system. This kind of procedure will
work on the identification and detection of malign agents. Depending on the language
that the agent was written, this task becomes more difficult because some agent
languages allow self-modification, as does Telescript [26]. Even after being accepted by
the execution environment, an agent is able to change itself from a benign agent to a
malign agent, so in this case the execution environment should observe the agent during
its execution to guarantee the security and avoid the viruses.

1.7.3 Virus Detection

Mobile agents are not the only way by which viruses can be propagated in a network.
However, agents can really facilitate the propagation. Virus detection is one of the most
difficult problems to solve when we are talking about security and agents. The only way
to detect whether the agent intentions are good or not is applying its code in several
tests. However, this is not enough to say that an agent will not try to corrupt the host
system.

1.7.4 Proxies

In order to protect the agent information against inappropriate access we can define the
use of a proxy to work as a shield that will protect all information. All applications,
agents, environment, etc. will see only a proxy of an agent, and never will access the

Chapter I: Mobile Agents

 Mobile Agents: Patterns and Reflection 17

agent information directly. If we want to have a higher level of security on accessing the
information about the agent, security algorithms such as authentication can be
implemented in the proxy in order to filter and select the calls that are made to the agent
methods.

2 Experimentation

Studying mobile agents, their properties, concepts and principles are essential before
starting with a practical experimentation. The experience acquired when we put in
practice the theoretical part, by using tools for developing agent-based applications, is
also important in order to better understand the functionality of the whole mobile agents
mechanism, where the mobility, the interaction and autonomy play the main roles.

2.1 Available Tools

There are available today several tools that can help us develop mobile agent based
applications. Each of them has its particularities, benefits and drawbacks. Depending on
the area where our agent based application will work, we can choose either one or other
tool. An evaluation of each one using all its features in practical tests could help a lot
when a decision must be done.

The main Mobile Agent Developing Applications were developed by the famous names
in software industry, as show in the following table:

Application Producer Language
Aglets [27] IBM Java
Concordia [28] Mitsubishi Java

Table 4: Mobile agent tools developed by famous names in software industry

and these tools are also offered by software companies specialized in Object Oriented
technologies like:

Application Producer Language
Voyager [29] Object Space Java
Odyssey [30] General Magic Inc. Java

Table 5: Mobile agent tools developed by OO specialized companies

As we can see in the Table 4 and Table 5 all of the four examples of Mobile Agent
Applications are based on Java language [31]. This fact did not happen by chance, but
this is a demonstration that Java is powerful enough in order to attend all Mobile Agent
requirements. Java allows programmers to deal with objects, security, object
serialization [21], network and remote computing facilities besides being platform
independent. It has been used to develop applications for different kind of business and
also is really used in the academic field. Java is also responsible for the most part of the
web applications running nowadays in the internet. All those characteristics were

Chapter I: Mobile Agents

18 Mobile Agents: Patterns and Reflection

fundamental to make Java the preferred language for developing Mobile Agent
Applications and Tools.

In the practical part of our study we used Voyager [29] in order to implement a small
example of mobile agent based application. Besides allowing mobile agents, Voyager
has many other features that are not related with our study, so we would like to
emphasize here that only the mobile agent feature of Voyager was used.

2.2 The Example Created

The purpose of this example was to introduce us to the mobile agent programming and
try to understand the functionality of an agent-based application by observing the
mobility, communication and behavior of a mobile agent.

Using Java 1.1.7 [31] as the programming language and Voyager 3.0 [29] as our mobile
agent software application we simulated a really simple e-commerce like application
that has three computer shops running in different hosts and one mobile agent, called
“Shopping Agent”, that will work in this environment. The task of our mobile agent
here in this application is to travel around those three hosts and get the computer price
from each one of the computer shops. Ending the travel the agent returns to the host
were it was started and shows the smallest price found. Figure 4 represents the scenario
of our application, let’s take a look on it in order to understand better our example:

Figure 4: The simple e-commerce example

Host 1

Voyager Environment

Computer
Shop

Agent

Host 2

Voyager Environment

Computer
Shop

Agent

Host 3

Voyager Environment

Computer
Shop

Agent

Network

Application

 START

Mobile Agent movement

Procedure calls and
information exchange

Chapter I: Mobile Agents

 Mobile Agents: Patterns and Reflection 19

Looking at Figure 4 we can see our application starting an agent in a Voyager [29]
environment. The agent has a previous knowledge of the address of the other
environments and the computer shop applications running on them.

At each host the agent will interact with the computer shop accessing it through a pre-
defined interface and will invoke a method in order to get the price of the computer. For
reason of practicing mobile agent programming only, let’s say here that each of the
computer shops sells only one configuration of computer and this configuration is
suitable for us.

2.3 Description of the Participants

Continuing with the description of our example let’s talk a little bit deeper in a detailed
way about the participants we can find and their roles.

The following UML [32] class diagram shows us the main attributes and methods of
each class existing in the example.

Figure 5: Class Diagram of the e-commerce example

TheAgent

shops
besthop
homeaddress
shopIndex

showResult()
goTo()
checkPrices()
goHome()
getShopIndex()

(from ecommerce)

Computer

price : float

getPrice()

(from ecommerce)

Shop

computers
name
contact
telephone

getPrice()
getPriceVal()

(from ecommerce)

sells

Ecommerce

numservers : int
servers
shops

startUpVoyager()
startUpEnvironments()
startUpAgent()

(from ecommerce)

Chapter I: Mobile Agents

20 Mobile Agents: Patterns and Reflection

Figure 6: Collaboration diagram of the e-commerce example

2.3.1 TheAgent

The TheAgent class is our mobile agent in this example. It implements an interface
with the method goTo()that will be called once by the application that creates an
instance of the agent. Mobile agents can work autonomously [1], [14], so the method
goTo()will be invoked by the agent itself when it wants to move to another location.

Method Functionality
goTo() Makes the agent move to another environment
checkPrices() Interact with the Shop class in order to obtain the price

of a computer.
goHome() Makes the agent go back to the environment where it was

started
showResult() Show the result obtained after finishing its travel

Implementation of those methods:

import com.objectspace.voyager.*;
import com.objectspace.voyager.agent.*;
import com.objectspace.lib.util.*;
import java.io.*;

public class TheAgent implements ITheAgent, Serializable {
 private Vector shops;
 private int shopindex;
 private IShop bestshop = null;
 private String homeaddress = "//us10:10000";

 : Ecommerce : TheAgent : Shop

getPrice()

moveTo(AnEnvironment)

startAgent()

showResults()

Chapter I: Mobile Agents

 Mobile Agents: Patterns and Reflection 21

 /*******************************/
 public TheAgent(Vector s) {
 /*******************************/
 shopindex = 0;
 shops = new Vector();
 shops = s;
 }

 /*******************************/
 public void checkPrices(IShop shop) {
 /*******************************/
 Date date = new Date();
 System.out.println("----------------------------"+
 date.toString());
 System.out.println("-> agent arrived");
 System.out.println("-> checking prices");

 if(bestshop == null) {
 bestshop = shop;
 }else if (shop.getPriceVal() < bestshop.getPriceVal()) {
 bestshop = shop;
 }

 try {Thread.sleep(5000);}catch(Exception e){}
 System.out.println("-> price: "+ shop.getPrice());
 shopindex++;

 if (shops.size() > shopindex) {
 goTo(shopindex);

 }else {
 goHome();

 }
 }
 /*******************************/
 public void goTo(int ind) {
 /*******************************/
 Date date = new Date();
 try {
 System.out.println("-> moving to next shop");
 System.out.println("-------------------------"+
 date.toString());
 Agent.of(this).moveTo((IShop)shops.elementAt(ind),
 "checkPrices");
 } catch (Exception e) {

 System.err.println(e);
 }
 }

 /*******************************/
 public void goHome() {
 /*******************************/
 boolean moved = false;
 try {
 System.out.print("-> going home ("+
 Agent.of(this).getHome()+")");
 Agent.of(this).moveTo(Agent.of(this).getHome(),
 "showResult");
 } catch (Exception e) {

 System.err.println(e);
 }
 }

 /*******************************/
 public void showResult() {
 /*******************************/
 Date date = new Date();

Compares
the prices

Goes to the next
shop or get back
home

Invokes the Voyager’s
environment method
in order to move the
agent to another
location

Again, invokes the
Voyager’s environment
method moveTo . Now
to go home.

Defines which method
should be executed
when arriving in a
new host.

Chapter I: Mobile Agents

22 Mobile Agents: Patterns and Reflection

 System.out.println("****************************"+
 date.toString());
 System.out.println("Best price found: " +bestshop.getPrice());
 System.out.println("****************************");
 }

}

2.3.2 Shop

The class Shop will have an instance of the class Computer, where the price will be
stored. This class keeps a list of all computers available in the computer shop. In our
example, we defined that each shop will sell only one kind of computer. To check the
price of the computer we invoke the method getPrice() and getPriceVal().
The first returns a currency formatted string and the second a float value.

Method Functionality
getName() Returns the name of the shop
getContact() Returns the personnel contact in the shop
getTelephone() Returns the shop’s telephone number
getPriceVal() Returns the price of a computer in a value (float) format
getPrice() Returns the price of a computer in a currency formatted

string

Implementation of those methods:

package ecommerce;

import java.io.*;
import java.util.*;
import java.text.*;
import com.objectspace.voyager.space.*;
import com.objectspace.voyager.*;

public class Shop implements IShop,Serializable {

 private String name;
 private String contact;
 private String telephone;
 private Vector computers;
 private Date date;

 /*******************************/
 public Shop(int i) {
 /*******************************/
 date = new Date();
 computers = new Vector();
 computers.addElement(new Computer());
 System.out.println("========================="+date.toString());
 System.out.println("-> object SHOP"+i+" created");
 }

 /*******************************/
 public String getName() {
 /*******************************/

 return name;
 }

Uses the shop’s
interface to get the
price and show it.

Chapter I: Mobile Agents

 Mobile Agents: Patterns and Reflection 23

 /*******************************/
 public String getContact() {
 /*******************************/
 return contact;
 }

 /*******************************/
 public String getTelephone() {
 /*******************************/
 return telephone;
 }

 /*******************************/
 public float getPriceVal() {
 /*******************************/
 return ((Computer) computers.elementAt(0)).getPrice();
 }

 /*******************************/
 public String getPrice() {
 /*******************************/
 float p = ((Computer) computers.elementAt(0)).getPrice();
 String ret = NumberFormat.getCurrencyInstance(
 Locale.FRENCH).format(p);
 return ret;
 }

2.3.3 Computer

The Computer class will contain and provide the information about the computers
sold in a computer shop. It will interact directly with the Shop class when a price of a
computer is demanded. The method getPrice() is the responsible to return that
information. In our example the price and the description of a computer is generated
randomly at the time of creation of an instance.

Method Functionality
getDescription() Returns the description of the computer
getPrice() Returns the price of the computer

Implementation of those methods:

package ecommerce;

import java.io.*;
import java.util.*;

public class Computer {

 private String description;
 private float price;
 private Random num;

 /*******************************/
 public Computer() {
 /*******************************/
 num = new Random();
 price = (num.nextFloat())*10000;
 description = "COMPUTER - " + price;
 }

Chapter I: Mobile Agents

24 Mobile Agents: Patterns and Reflection

 /*******************************/
 public String getDescription() {
 /*******************************/
 return description;
 }

 /*******************************/
 public float getPrice() {
 /*******************************/
 return price;
 }

}

2.3.4 Ecommerce

The Ecommerce class has also a certain importance for our example because it plays
to distinct roles. In the first role it is the responsible for starting up our environment,
creating the shops in the different Voyager environments, and creates the mobile agent
that will travel through the servers searching for computer prices. In the second role it
plays the “Mobile agent Based Application”, that will start our agent and get its results
in the end. When developing agent-based applications in the real world we should have
different implementations for each of those roles. Is always good to have a small
application that will manage the environments and its members (agents and other
objects), the final applications that will benefit from the use of mobile agents should
only take care of their own started agents.

Implementation of this class:

package ecommerce;

import com.objectspace.voyager.*;
import com.objectspace.voyager.agent.*;
import com.objectspace.voyager.space.*;
import java.util.*;

public class Ecommerce {

 private int numservers;
 private Vector shops;
 private Vector servers;
 private Date date;

 /*******************************/
 private Ecommerce() {
 /*******************************/
 date = new Date();
 shops = new Vector();
 servers = new Vector();
 servers.addElement("//us10:8000");
 servers.addElement("//us20:8000");
 servers.addElement("//us30:8000");
 numservers = servers.size();
 }

Defines the hosts
where the agent
will travel

Chapter I: Mobile Agents

 Mobile Agents: Patterns and Reflection 25

 /*******************************/
 private void startupVoyager() {
 /*******************************/
 System.out.println("*************************"+date.toString());
 System.out.println("-> starting up Voyager ");
 try {
 Voyager.startup("9000");
 System.out.println(Agent.of(this).getHome());
 } catch (Exception e) {

 System.out.println(e);
 }

 }

 /*******************************/
 private void startupEnvironment(){
 /*******************************/
 System.out.println("-> inicializing environment");

 for(int i=0; i < numservers; i++) {

 try {

 // creates the object SHOPS and bind them to a name and
 // store them in a Vector
 System.out.println("-> creating object SHOP at "+
 (String) servers.elementAt(i));

 Object[] args = new Object[] {new Integer(i)};
 IShop shop = (IShop) Factory.create("ecommerce.Shop",

 args, (String) servers.elementAt(i));
 shops.addElement(shop);

 } catch (Exception e) {
 System.out.println(e);

 }
 }
 }

 /*******************************/
 private void startupAgent() {
 /*******************************/
 Date date = new Date();

 System.out.println("-> creating object AGENT");
TheAgent anAgent = new TheAgent(getShops());

 System.out.println("-> putting AGENT to work");

 anAgent.goTo(anAgent.getShopIndex());
 }

 /*******************************/
 private void shutdown() {
 /*******************************/
 Date date = new Date();
 System.out.println("-> shutting down Voyager");
 System.out.println("*************************"+date.toString());
 Voyager.shutdown();
 }

 /*******************************/
 private Vector getShops() {
 /*******************************/
 return shops;
 }

Starts up a
local
Voyager

Creates the Shops
objects in each one
of the servers and
put them in a
vector

Creates the
Agent

Sends the agent to
the first Voyager
Environment

Chapter I: Mobile Agents

26 Mobile Agents: Patterns and Reflection

 /*******************************/
 public static void main(String[] args) {
 /*******************************/
 Ecommerce ecom = new Ecommerce();
 ecom.startupVoyager();
 ecom.startupEnvironment();
 ecom.startupAgent();
 ecom.shutdown();

 }
}

2.4 Conclusion

After this experimentation with a small example of an agent-based system, using
Voyager 3.0 [29] and Java [31], we could feel how the main mechanisms and concepts
in the “Agent Paradigm” works. From this example we could identify some basic
requirements in agent-based systems, such as the environments, the agents themselves,
the interaction that exists between agents and applications or even between two agents,
their mobility, etc. All of this can prove that researches and studies done by the software
industry, universities research groups and other laboratories are absolutely right when
they say that the “Agent Paradigm” is a new and modern way to design and implement
distributed systems.

From now, we can also say that a top-down study of the whole structure of an agent-
based system beginning from the macro and going to each specific component is
necessary. With such a kind of study, we would be able to identify the points of
complexity where we could use advanced software engineering techniques in order to
propose a solution. That solution would be showed in an abstract format, with a
description of the generic problem in such way that it could help programmers to
identify and solve similar problems of implementation involving the same
characteristics.

A good way to do that is proposing Mobile Agent Patterns that could be applied when
developing mobile agent-based applications in order to facilitate the comprehension,
implementation and maintenance of those systems and also allowing them to be more
reusable and robust.

The method
Main(), where
everything starts

Chapter II: Design Patterns for Mobile Agents
__

Chapter II: Design Patterns for Mobile Agents

28 Mobile Agents: Patterns and Reflection

3 Introduction

“In most areas of research there comes a time when the researchers begin to
understand the principles, facts, fundamental concepts, techniques, architectures, and
other research elements in their fields of study”. (Dwight Deugo) [4].

After studying and practicing the main “Mobile Agent” elements like autonomy, social
ability, reactivity, pro-activity and mobility, we could reach a certain level of
knowledge related to those properties and also identify where were their main recurrent
problems. In the next step of our work, based on what we have learned about mobile
agents, we propose a possible solution for each one of the identified problems and also
we document them using a well known and accepted technique in the object oriented
community: software design patterns [18],[19].

3.1 Design Patterns

The term “Design Pattern” was created by Christopher Alexander [20] a long time ago
when he explained a pattern with the following statement:
“Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in such a way
that you can use this solution a million times over, without ever doing it the same way
twice”. [20]

As an architect, Alexander talked about patterns related to buildings and towns, but
what he said is completely true when we apply that to object oriented design in
computer science. The terms differ from house architecture and software development,
but the main idea of using design patterns remains the same: pattern is a solution to a
problem in a certain context. Instead of talking about doors and walls we focus on
objects and interfaces.

3.2 Scope of Our Solution

The mobile agent technology offers distinct levels of granularity that are not explicit
when we look at it from the outside. Going a little bit deeper, we can identify many
different recurrent problems that need to be solved at different levels, like for example:

� The mobility of the agent that involves sending its state and code to another
environment in order to resume its execution.

� Allowing the interaction between agents its not an easy task for several reasons.
Agents might not now other agents so someone should help agents to find other
agents. After an agent found other agents how can they interact and exchange
information ?

� The coordination of agents in an environment must be done carefully. The
environment must manage the arriving and dispatching of agents, besides providing
good ways of finding an agent once it knows all current agents.

Chapter II: Design Patterns for Mobile Agents

 Mobile Agents: Patterns and Reflection 29

� An agent based application must be secure. Not every agent can access other agent’s
specific methods. An identification of all agents and their intentions when trying to
access other agent could be a good idea.

� Sending an agent object from one host to another requires some steps before. One of
those steps is the serialization of the agent object. There are many different ways to
do that and we can not forget that an agent based application must be heterogeneous
and platform independent.

� When we talk about mobility we have to pay a special attention to the agent thread.
When an agent is dispatched from one environment to another we must resume the
agent operation from the same point where it was in the previous environment.

Some of those problems won’t be covered here because they are really complex and
demand specific and dedicated studies or because other authors have already solved
them. This is the case of threads (concurrent programming) for example that is covered
by the Active Object Pattern [8], [6] where the authors describe how we can manage
different threads of control for agents.

The scope of our work is headed to provide solutions to high level recurrent problems,
leaving the low level problems to be solved by using design patterns already proposed
by other authors. Our solution will help other people to solve the following recurrent
problems:

� How can we have mobile agents interacting with each other ?
� How can we control the access to the mobile agent ?
� How can we have a transparent access to a mobile agent when it is in a remote

environment ?
� How can we identify mobile agents by their capabilities ?
� How can a mobile agent in a local environment find another agents without knowing

their existence ?
� How can a mobile agent change the destinations where it should go dynamically ?

As solution to those commons problems found in mobile agent technology, we propose
the following agent design patterns:

� Abstract Agent Pattern
� Agent Proxy Pattern
� Agent Coordinator Pattern
� Agent Interaction Pattern
� Travel Plan Pattern

In order to organize the patterns and give a general overview of the capabilities of each
one we categorized them as shown in the following table:

Chapter II: Design Patterns for Mobile Agents

30 Mobile Agents: Patterns and Reflection

Category Patterns Deal with
Abstract Agent Environment / Mobility

Agent
Agent Proxy Mobility / Social Ability
Agent Coordinator Social Ability

Collaboration Agent Interaction Social Ability/ Goal Driven/
Reactive

Traveling Travel Plan Mobility

Table 6: Proposed agent design patterns

Each of those patterns will be discussed in the next sections of our work giving a
complete explanation about their structures, participants, applicability, etc.

Chapter II: Design Patterns for Mobile Agents

 Mobile Agents: Patterns and Reflection 31

4 Abstract Agent Pattern

4.1 Intent

The intent of the Abstract Agent Pattern is to define a basic infrastructure in order to
implement a mobile agent based system.

4.2 Scope and Motivation

We want to benefit from the various advantages offered by the mobile agent technology.
The ease to design, implement and maintain an application developed using mobile
agent technology led us to adopt it. In our mobile agent based application, our agents
will be able to be started and after move around different hosts where an environment
will be ready to receive them. In that environment our agent will be able to interact with
other agents and exchange information by sending messages each other.

4.3 Applicability

The Abstract Agent Pattern is applicable when:

� The advantages provided by mobile agent technology [1] are need in a distributed
application.

� Defining a basic and abstract infrastructure of a mobile agent based application.
� Developing a mobile agent based application just using Java [31].

4.4 Structure and Participants

Figure 7 shows the Abstract Agent Pattern represented by a generic UML [32] class
diagram containing its main participants.

Figure 7: The abstract agent pattern structure

SecurityManager

AbstractAgent

dispatch()
getId()
handleMessage()

AgentProxyConcreteAgent agent

AgentEnvironment

receiveAgent()
sendAgent()

environment

AgentTransporter

sendAgent()
receiveAgent()
serialize()
unserialize()

transporterenvironment

Chapter II: Design Patterns for Mobile Agents

32 Mobile Agents: Patterns and Reflection

The participants are:

� AgentEnvironment

The AgentEnvironment class has a very important role in this pattern. It will be the
responsible to provide to the mobile agent basic services that allow an agent to move to
other environments, to find other agents, to interact with other agents, etc. The
environment will also contains a reference to the AgentTransporter class, leaving
the transport implementation separated of our environment behavior makes it easier to
deal with different types of protocols and communication architectures.

� AbstractAgent

The main role of the AbstractAgent class is to define a common interface for the
AgentProxy class and the ConcreteAgent class, so the proxy can be used
anywhere as the real agent object.

� ConcreteAgent

The ConcreteAgent class will contain the implementation of the desired behavior of
our agent and always will be represent by an AgentProxy.

� AgentProxy

The AgentProxy class will implement different behaviors in order to represent the
ConcreteAgent object. Depending on the location of the agent, the AgentProxy
can have two distinct states, the local state and the remote state. The local state will
have a reference to a ConcreteAgent object in the local environment while the
remote state will have a reference to an AgentProxy in a remote environment. This
will allow us to have a transparent access to the agent independently where it is located.
The agent proxy is also responsible to provide an interface that defines the methods that
can be invoked in the concrete agent object. It always represents the
ConcreteAgent.

� AgentTransporter

The AgentTransporter class will be responsible for take care of the mobile agent
object transportation. It will implement methods to serialize and unserialize mobile
agent objects [21] and also to send them over the network to another host.

� SecurityManager

This class will specify the agent access security policies and controls all messages that
will be sent to the ConcreteAgent class through its respective AgentProxy.

4.5 Consequences

The Abstract Agent Pattern shows us the main components necessary in a mobile agent
based application.

Chapter II: Design Patterns for Mobile Agents

 Mobile Agents: Patterns and Reflection 33

� This pattern can be implemented with no special tool or agent programming
language, so this is one reason that will make its implementation platform
independent.

� New features to the environment can be added without changing its main behavior.
For example, the environment can provide a service of security checking that
verifies whether the mobile agent is allowed or not to enter in the environment.

� The fact of having a separated object that is responsible only for the transportation
of objects permits us to extend this class if needed in order to allow our environment
to send and receive mobile agents using different ways of communications like
RMI, CORBA, DCOM, sockets, etc.

4.6 Implementation

To implement the Abstract Agent pattern, carry out the following steps:

1. Identify the basic methods that a mobile agent must have and define those methods
in an abstract class. The abstract class can be used as an interface defining all
methods that should exist in the concrete agent and in the agent proxy.

2. Extend that abstract class and create a concrete agent and an agent proxy.

3. In the concrete agent implement the methods defined in the abstract class and the
other desired methods.

4. In the agent proxy implement the methods only calling the same methods in the
concrete agent. For example:

Public class AgentProxy
Concrete agent agent;

public getId() {
agent.getId();

}
}

Before invoking the methods in the concrete agent an access control can be done. A
security manager is helpful to do that.

5. Create an abstract class for your environment. The environment will be responsible
to implement the methods that will deal with the agents transportation (dispatch and
receive), so we can use also a agent transport that will carry out the serialization of
the agent object and its sending.

4.7 Related Patterns

Agent Pattern [7]

Chapter II: Design Patterns for Mobile Agents

34 Mobile Agents: Patterns and Reflection

5 Agent Proxy Pattern

5.1 Intent

The intent of this pattern is to define a mobile agent capable to run in any environment
allowing other agents to have transparent access to it, through a proxy, even when the
agent is remote.

5.2 Scope and Motivation

Mobile agents can work autonomously and asynchronously in places called
environments. The environments can be located in a same host or they can be spread
over different hosts on the network. When traveling, the agent must allow other agents
or applications to access them without having to announce its location to all its
collaborators. Other agents can not invoke the methods on the mobile agent object
directly, only through its proxy. The agent’s proxy provides an interface with the
methods that can be invoked by others mobile agents or applications.

5.3 Applicability

The Agent Proxy Pattern is applicable when:

� Developing mobile agent applications.
� Access to agents need to be transparent independently where the agent is located

(local or remote).
� The real agent object cannot be accessed directly by its collaborators.
� An agent surrogate is necessary in order to provide an interface to the concrete agent

object.

5.4 Structure and Participants

Figure 8 shows the Mobile Agent Pattern represented by a generic class diagram
containing its main participants.

Chapter II: Design Patterns for Mobile Agents

 Mobile Agents: Patterns and Reflection 35

Figure 8: The agent proxy pattern structure

The participants in this pattern are:

� AbstractAgent

The main role of the AbstractAgent class is to define a common interface for the
AgentProxy class and the ConcreteAgent class, so the proxy can be used
anywhere as the real agent object.

� AgentProxy

The AgentProxy class will maintain a reference to its state class, Local or Remote
depending on the location of the agent. All incoming requests done by any other object
will be forwarded to the respective state class. The agent proxy is also responsible to
provide an interface that defines the methods that can be invoked in the concrete agent
object.

� AgentProxyState

This class defines the common interface that will be used by the Local and Remote
classes so that the AgentProxy will be able to reach the real agent object wherever is the
agent location.

� Local

The Local class will be responsible to keep a reference to the real agent object
represented by the ConcreteAgent class when the agent object is located in the same

AbstractAgent

dispatch()
getId()
handleMessage()
run()

ConcreteAgent

run()

Local

request()

concreteAgent

AgenProxyState

request()

AgentProxy

request()

proxyState

Remote

request()

remoteProxy

concreteAgent.any Method();

proxy State.request();

remoteProxy .request();

Chapter II: Design Patterns for Mobile Agents

36 Mobile Agents: Patterns and Reflection

environment as the proxy. This is the only class that can invoke the ConcreteAgent
methods directly.

� Remote

The Remote class represents the state of the proxy when the real agent object is not in
the same environment of its proxy. It will maintain a reference to another
AgentProxy that is remote. Doing that we can guarantee that other objects will have
transparent access to our agent object.

� ConcreteAgent

The ConcreteAgent is the real agent object. It will contain the implementation of
the desired behavior and always will be represented by an AgentProxy.

5.5 Collaborations

Any collaborator can call agent methods through an AgentProxy by sending a
message to it. The only class that is able to call agent methods directly is the Local
class, it represents the AgentProxy state when the ConcreteAgent object and its
respective AgentProxy object are in the same environment. Otherwise the
AgentProxy state will be represented by the class Remote that will make a reference
to another AgentProxy remotely.

Figure 9 shows the collaboration diagram for a local mobile agent.

Host A

Figure 9: Collaboration diagram of a local mobile agent

ConcretAgent BAgentProxy B
LocalState

AgentProxy BConcreteAgent A

sendMessage("getId")

sendMessage("getId")

handleMessage("getId")

Chapter II: Design Patterns for Mobile Agents

 Mobile Agents: Patterns and Reflection 37

Figure 10 shows the collaboration diagram for a remote mobile agent.

Host A Host B

Figure 10: Collaboration diagram of a remote mobile agent

5.6 Consequences

The Agent Proxy Pattern introduces a simple and robust structure to implement a
mobile agent.

� This pattern can be implemented with no special tool or agent programming
language, so this is one reason that will make its implementation platform
independent.

� It offers a good level of flexibility and can be easily improved if needed because it is
based on the already proven design patterns – State Pattern [18] and Proxy Pattern
[18], [19].

� New features based on the current structure can be added depending on the needs of
who will implement it. For example, just implementing a Security Manager that first
checks the rights of who wants to access the agent can provide us a more rigorous
access control to the agent object.

5.7 Implementation

To implement the Agent Proxy pattern, carry out the following steps:

1. Reuse the already implemented AbstractAgent and ConcreteAgent classes
defined in the Abstract Agent Pattern.

2. Create the AgentProxy class with a variable that will contain an instance of the
AgentProxyState class. When we are working with mobile agents, agents and
applications can interact with other agents that may move to a remote environment.

ConcreteAgent A AgentProxy B AgentProxy B
RemoteState

AgentProxy B

sendMessage("getId")

sendMessage("getId")

sendMessage("getId")

Chapter II: Design Patterns for Mobile Agents

38 Mobile Agents: Patterns and Reflection

When an agent has moved to a remote environment the other agents and
applications must be able to interact with it transparently even when the agent is
located in a remote environment. So, the AgentProxy class must change its states
accordingly to the location of the agent. Implement a method that updates the agent
proxy state every time that the agent moves from environment to another.

3. Create an abstract class called AgentProxyState and define, as abstract, the
same methods existing in the AgentProxy class.

4. Extend the AgentProxyState creating the AgentProxyStateLocal and
AgentProxyStateRemote classes.

5. In the AgentProxyStateLocal class define a variable that references a
concrete agent object and implement all methods defined in its super class by
invoking the same methods in the concrete agent object that this states represents.
For example:

public class AgentProxyStateLocal
ConcreteAgent agent;

public getId() {
agent.getId();

}
}

Before invoking the methods in the concrete agent object an access control can be
done. A security manager is helpful to do that.

6. In the AgentProxyStateRemote class define a variable that references an
agent proxy in a remote environment. Implement all methods defined in the
AgentProxyState class by invoking the same methods in the remote agent
proxy. For example:

public class AgentProxyStateRemote
AgentProxy remoteProxy;

public getId() {
remoteProxy.getId();

}
}

5.8 Related Patterns

Proxy [18], [19]
State [18]

Chapter II: Design Patterns for Mobile Agents

 Mobile Agents: Patterns and Reflection 39

6 Agent Coordinator Pattern

6.1 Intent

The intent of the Agent Coordinator is to allow the agent environment to provide a
service to register incoming and outgoing mobile agents.

6.2 Scope and Motivation

When an agent arrives at an environment it may not know the other agents that are
working in the same environment. At the same time, other agents want to know the all
agents that are current working on that environment and interact with them. This would
be possible if we force our mobile agents to register and unregister with a coordinator at
the moment of their arrival or departure respectively, facilitating the control over all
agents that are located at an environment. Once the agent coordinator knows all agents
running in its environment it can provide different methods of agent lookup.

6.3 Applicability

The Agent Coordinator pattern is applicable when:

� The agent environment must have control over all agents that are running on it.
� The interaction among mobile agents is necessary even when the agents do not

know each other.
� Different agent lookup methods are necessary.

6.4 Structure and Participants

Figure 11 shows the Agent Coordinator Pattern represented by a generic class diagram
containing its main participants.

Figure 11: The agent coordinator pattern structure

public arrivedAgent(anAgent) {
 agentCoordinator.addAgent(anAgent);
}

AgentProxy

AbstractAgentEnvironment

arrivedAgent()
dispatchedAgent()
findAgent()
getAllAgents()

AbstractAgentCoordinator

agentList

addAgent()
removeAgent()
getAllAgents()
findAgent()

**

agentCoordinator

Chapter II: Design Patterns for Mobile Agents

40 Mobile Agents: Patterns and Reflection

The participants are:

� AbstractAgentCoordinator

The AbstractAgentCoordinator class will maintains a list of all current agents
(proxies) running in a certain agent environment. It provides the basic methods of
adding, removing and searching mobile agents. It can be easily extended in order to
provide new methods for agent lookup.

� AbstractAgentEnvironment

The AbstractAgentEnvironment class keeps a reference to the
AgentCoordinator class. After a mobile agent has arrived or departed, the
environment will call the agent coordinator methods in order to update the list of current
running agents. This class is also responsible to provide an interface that allows agents
to perform searches on the agent coordinator.

� AgentProxy

The AgentProxy class is the surrogate of the real agent object (see item 5 – Agent
Proxy Pattern) and will be referenced by the AgentCoordinator list.

6.5 Collaborations

Figure 12 shows the collaboration diagram of the Agent Coordinator Pattern.

Figure 12: Collaboration diagram of the Agent Coordinator Pattern

Agent A Agent B Env ironment Agent
Coordinator

arriv edAgent(Agent A)

addAgent(Agent A)

getAllAgents()

getAllAgents()

sendMessage("getId")

dispatchedAgent(Agent B)

remov eAgent(Agent B)

Chapter II: Design Patterns for Mobile Agents

 Mobile Agents: Patterns and Reflection 41

6.6 Consequences

The Agent Coordinator Pattern is a good solution when mobile agents have limited
knowledge of other agents or when they really do not know other agents. All agents are
forced to register when arriving and leaving of an environment allowing the
environment to have a whole control of the current running agents.

� The agents do not need to have previous knowledge of other agents in order to
interact with them.

� We decrease the complexity of the mobile agent and avoid high maintenance when
the agent coordinator implements the lookup methods.

� Not only mobile agents can benefit from the agent coordinator lookup methods;
stationary agents, other applications like web applications, viewers and environment
managing tools are able to use them.

6.7 Implementation

To implement the Agent Coordinator Pattern carry out the following steps:

1. Reuse the already defined AbstractAgentEnvironment class in the Abstract
Agent Pattern. Add new methods to this class that will allow controlling all agents
that arrive and depart from the environment. Add also a variable that will contain an
instance of the agent coordinator.

2. Create an abstract class AbstractAgentCoordinator with a variable that can
keep a list of the current agents in the environment.

3. Implement basic methods to manipulate that list. For example: addAgent(),
removeAgent(), findAgent().

4. Every time an agent arrives or departs from the environment invoke the
correspondent methods in order to keep the list always updated.

6.8 Related Patterns

AgentProxy (see item 5 – Agent Proxy Pattern)
Mediator [18]
Iterator [18]

Chapter II: Design Patterns for Mobile Agents

42 Mobile Agents: Patterns and Reflection

7 Agent Interaction Pattern

7.1 Intent

The Agent Interaction Pattern intents to facilitate the interaction between agents based
on their capabilities.

7.2 Scope and Motivation

A mobile agent can interact with other different agents even when those agents are
completely different on their behaviors. For example, an agent can interact with an
agent that represents a bookstore and after it interacts with another agent that represents
a shipping company. Our mobile agent will by a book from the bookstore agent and
asks to the shipping company agent to delivery it to a certain address. Our agent knows
neither the bookstore agent nor the shipping company agent. If we associate capabilities
to each one of those agents it would be much simpler to find them. Moreover, if we
define in the capabilities what our agent is looking for, the environment can notify our
mobile agent when an agent that matches our needs arrives.

7.3 Applicability

The Agent Interaction Pattern can be applied when:

� A mobile agent must interact with other agents that it doesn’t know, but it knows the
capability that the other agents must have.

� The environment should notify all agents about the capabilities of a mobile agent
that arrived.

� When an agent wants to be announced to other agents about its capabilities when
arriving in any environment.

7.4 Structure and Participants

Figure 13 shows the Agent Interaction Pattern represented by a generic class diagram
containing its main participants.

Chapter II: Design Patterns for Mobile Agents

 Mobile Agents: Patterns and Reflection 43

Figure 13: The agent interaction pattern structure

The participants are:

� AbstractAgentCoordinator

The AbstractAgentCoordinator class implements the basic functionality of the
agent coordinator, managing a list of all agents running in the current environment (see
item 6 – Agent Coordinator Pattern for).

� AbstractAgentEnvironment

The AbstractAgentEnvironment class keeps a reference to the
AgentCoordinator class. After a mobile agent has arrived or departed, the
environment will call the agent coordinator methods in order to update the list of current
running agents. This class is also responsible to provide an interface that allows agents
to perform searches on the agent coordinator.

� AgentCoordinator

This class extends the AbstractAgentCoordinator class. It implements new
lookup methods that can find mobile agents based on their capabilities. It takes in
account the provider and consumer capabilities of each mobile agent during the
searches. It also can notify agents about the arriving of other agents. The notification is
based on the provider capabilities of the arrived agent and the consumer capabilities of
the current agents in the environment.

� AgentEnvironment

The AgentEnvironment class extends the AbstractAgentEnvironment and
implements new methods for agent lookup. For example, the method

AbstractAgentCoordinator

agentList

addAgent()
removeAgent()
findAgent()
getAllAgents()

AbstractAgentEnvironment

agentCoordinator

arrivedAgent()
dispatchedAgent()
findAgent()
getAllAgents()

Prov ider

description

Consumer

description

Capability

** **

ConcreteAgent

getProv iderCapabilities()
getConsumerCapabilities()
meet()

AgentProxy

AgentEnv ironment

getProv iderAgents()
getConsumerAgents()

AgentCoordinator

getProv iderAgents()
getConsumerAgents()
notif y Consumers()

**

agentCoordinator

Chapter II: Design Patterns for Mobile Agents

44 Mobile Agents: Patterns and Reflection

getProviderAgents() returns only the mobile agents that has capabilities of
providers. A parameter could be defined in this method in order to specify the provider
capability we are searching, for example getProviderAgents(“shipping
company”)could return only the agents that represent companies which provide
services for shipping merchandises.

� AgentProxy

The AgentProxy class is the surrogate of the real agent object (see item 5 – Agent
Proxy Pattern) and will be referenced by the AgentCoordinator list.

� ConcreteAgent

The ConcreteAgent is the real agent object. It will contain the implementation of
the desired behavior and always will be represented by an AgentProxy. The
ConcreteAgent in this pattern implements two methods that return its capabilities as
provider and as consumer respectively.

� Capability

The Capability class is where we define the agent’s capabilities. It is composed of
instances of classes Provider and Consumer. A mobile agent can have several
capabilities as provider or as consumer. The mobile agent might also have only provider
capabilities or even only consumer capabilities depending on how it was implemented.
Depending on the agent policy it might also define no capability at all, then our agent
won’t be notified by the environment nor be found by other agents. This could be useful
when implementing a security agent that should work anonymously to investigate and
monitor other agents.

� Provider

This class has a description of one provider capability of a mobile agent. The
Provider class can describes the capability in different ways, depending on the needs
of who will use it. For example it can only have a string variable containing: “books” in
order to identify an agent that sells books. In our implementation of this pattern (see
Appendix A – Java Documentation) we used the string “computer” to identify a
computer shop that sells computers.

� Consumer

This class has a description of one consumer capability of a mobile agent. The
Consumer class can also describes the capability in different ways. In our example we
defined a standard that a consumer agent contains in its capability the description of the
provider it is looking for. So, if we define “books” as the capability of a consumer, it
means that the agent is a consumer of “books” and will look for other agents that have a
provider capability “books”.

7.5 Collaborations

Figure 14 shows the collaboration diagram of the Agent Interaction Pattern.

Chapter II: Design Patterns for Mobile Agents

 Mobile Agents: Patterns and Reflection 45

Figure 14: Collaboration diagram of the Agent Interaction Pattern

7.6 Consequences

The Agent Interaction Pattern is helpful when mobile agents have limited knowledge of
other agents or when they really do not know other agents and they must find other
agents based on the their capabilities.

� The agents do not need to have previous knowledge of other agents in order to
interact with them.

� The Agent Interaction Pattern benefit from the Agent Coordinator Pattern (see item
6 – Agent Coordinator Pattern) in order to have the basic registration facility in the
environment. In this case, it is only necessary to implement the specific lookup
methods, which use the agent’s capabilities as the parameters, in the
AgentCoordinator class.

� Agents can be notified when other agents of interest have arrived.

Agent
Coordinator

Env ironment

addAgent

Agent A

arriv edAgent

getProv iderCapabilities

getConsumerCapabilities

dispatchedAgent

remov eAgent

dispatch

notif y Consumers

Agent B Agent C

meet(Agent C)

meet(Agent A)

sendMessage("getId")

Chapter II: Design Patterns for Mobile Agents

46 Mobile Agents: Patterns and Reflection

� Agents that do not want to advertise their capabilities can work anonymously
without being reached by other agents. However, they still able to find other agents
in accordance with their needs.

7.7 Implementation

To implement the Agent Interaction Pattern carry out the following steps:

1. Reuse the AbstractAgentCoordinator, AbstractAgentEnvironment
and ConcreteAgent classes defined in the other patterns.

2. Create a class Capability where the agent’s capabilities will be described.
Implement basic methods for adding, removing and obtaining the agent’s
capabilities.

3. Create a class Provider and a class Consumer that describes the provider and
consumer capabilities respectively. Implement basic methods for obtaining the
description of the capabilities.

4. Create a variable in the ConcreteAgent class that will make a reference to an
object capability.

5. Extend the class AbstractAgentCoordinator creating a class
AgentCoordinator and implementing specific methods to deal with the agent’s
capabilities.

6. Do the same of step 5 to the AbstractAngentEnvironment.

7. In the AgentCoordinator class implement wanted and personalized methods.
For example: notifyConsumers(), that notifies all agents that has a specific
consumer capability that an agent having a specific provider capability has arrived.

7.8 Related Patterns

Agent Coordinator (see item 6 – Agent Coordinator Pattern)
Agent Proxy (see item 5 – Agent Proxy Pattern)
Observer [18]
Meeting [2]

Chapter II: Design Patterns for Mobile Agents

 Mobile Agents: Patterns and Reflection 47

8 Travel Pattern

8.1 Intent

This pattern intents to provide to mobile agents the route for traveling among the
different environments.

8.2 Scope and Motivation

Mobile agents are objects capable of moving autonomously through different hosts in
order to perform their tasks in the existing environments. To do so, an agent should
know the addresses of environments where it can go. Besides knowing the address
where they are supposed to go, the agents would also take some actions related to each
one of those address. For example, trying alternative hosts in case of some of the hosts
were shut down, control the already visited hosts, etc. An agent can also add some new
destinations in its travel plan during its travel by interacting with the visited
environments. All those characteristics do not belong to the main goal of our agent, so
they can be separated of its main behavior.

8.3 Applicability

The Travel Plan Pattern can be applied when:

� You want to define a travel plan for your mobile agent.
� The traveling procedures are going to be implemented separately of the main agent

behavior, facilitating the maintenance and future improvements.
� The travel plan could be updated or changed during traveling by interacting with the

visited environments.
� When controls over already visited destinations, alternative destinations, time out

connections and maximum number of visits are necessary.

8.4 Structure and Participants

Figure 15 shows the Travel Pattern represented by a generic class diagram containing its
main participants.

Chapter II: Design Patterns for Mobile Agents

48 Mobile Agents: Patterns and Reflection

Figure 15: The travel plan pattern structure

The participants are:

� TravelPlan

The TravelPlan class will keep a list containing instances of the class
Destination. Besides providing the necessary methods to manage the list of
destination, the TravelPlan class will interact with the environment where its agent
located. This interaction objectives to find out new destinations whose the agent does
not knows and set those destinations as alternatives to the agents travel plan.

� Destination

This class represents the each one of the destinations that the mobile agent will visit. It
contains the IP address of the hosts, and information whether it was already visited and
whether the destination is an alternative one.

� AgentEnvironment

The AgentEnvironment class provides the basic functionality like transportation,
searching, etc., in order to mobile agents work. (see items 4 – Abstract Agent Pattern, 6
– Agent Coordinator Pattern and 7 – Agent Interaction Pattern)

� ConcreteAgent

The ConcreteAgent is the real agent object. In this pattern it has a reference to the
TravelPlan and contains the implementation of the desired behavior and always will
be represented by an AgentProxy. (see item 5 – Agent Proxy Pattern).

8.5 Collaborations

 Figure 16 shows the collaboration diagram of the Travel Plan Pattern.

ConcreteAgent

run()

AgentEnv ironement

getKnownEnv ironments()

Trav elPlan

destinations
currentEnv ironment

addDestination()
nextDestination()
setTimeOut()
setMaxVisits()
initializeTrav el()

travelPlan

Destination

v isited
address
isAlternativ e

setVisited()
getAddress()

**

Chapter II: Design Patterns for Mobile Agents

 Mobile Agents: Patterns and Reflection 49

Figure 16: Collaboration diagram of the Travel Plan Pattern

8.6 Consequences

With the Travel Plan Pattern we allow our mobile agent to travel through several
different destinations, even to destinations that our agent does not know.

� The mobile agents don’t need to know many destinations, they will know new ones
during their travel.

� The travel plan can be easily set up, defining time out value for communication and
determining the maximum number of destinations to visit.

� When some destination fails to answer to our mobile agent, an alternative
destination can be addressed to the agent automatically.

� All functionality about the travel itself is separated of the main behavior of the
agent, facilitating in the maintenance and improvement.

� We can define a travel plan once and use it in several mobile agents.

Trav elPlan Destination Env ironmentAgent A
(in host B)

Agent A
(in host A)

getAddress()

getAddress()

getKnownEnv ironments()

addEnv ironment("HostC")

initializeTrav el("HostB")

nextDestination()

dispatch("HostB")

run()

nextDestination()

dispatch("HostC")

run()

Chapter II: Design Patterns for Mobile Agents

50 Mobile Agents: Patterns and Reflection

8.7 Implementation

To implement the Travel Plan Pattern carry out the following steps:

1. Reuse the already defined ConcreteAgent class and create on it a new variable
that will reference the travel plan object.

2. Create a Destination class containing basic variables to control the status of the
destination object. For example: visited, isAlternative, etc. Implement also methods
to deal with that variables (sets and gets).

3. Create a TravelPlan class having a list with destination objects that represents
the places where the agent should go. Implement basic methods to manage that list
and to deal with other destination variables. For example:

addDestination(): to add new destinations to the travel plan.

removeDestination(): to remove a destination from the travel plan.

nextDestination(): to obtain the next destination where de agent must go.

getAddress(): to get the address o a destination.

setTimeOut(): to set how many seconds should wait before try another
destination in case of not connecting.

setMaxVisits(): to set the maximum number of visits during a travel. Once the
travel plan can be changed dynamically the agent can have
a travel that never ends, so its is important to define a
number to limit the agent visits.

4. Implement in the AgentEnvironment class a new method that returns other
environments addresses, so the agent can add new destinations to its travel plan
during its travel. Also the environment can ask other environment address known by
the agent.

8.8 Related Patterns

Itinerary [2]
Iterator [18]

 Mobile Agents: Patterns and Reflection 51

9 Conclusions

“Agent Technology” offers a much easier way of designing, implementing and
maintaining distributed systems. In our research we concluded that even providing that
advantages, agent technology demands for an initial study and a practical
experimentation of all its internal and not explicit features like autonomy, social ability,
reactivity, pro-activity and mobility. That study can follow a top-down hierarchy
beginning from the macro and going to each specific component in order to identify
possible recurrent problems.

Using software engineering techniques such as “Software Design Patterns” [18], [19]
we can design a solution to that problems, facilitating the comprehension,
implementation and helping in future maintenance of the systems that will use such a
solution. Complementary to that, other people can benefit from the same design patterns
to solve their own similar problems about mobile agents without having to reinvent the
wheel. The main consequence of all this is that our applications become more reusable
and robust.

� Contributions

With “Agent Technology”, especially mobile agents, being the focus of our work, we
showed one specific chapter where the main definitions, advantages, applicability,
properties and elements of mobile agents are explained in order to give to the readers a
general overview about it. The first experimentation with mobile agents, described by
the example of an electronic commerce in the same chapter, allowed us to better
understand the agents mechanisms and architecture.

Based on that we introduced different solutions for the recurrent problems that we
believe anyone will face when implementing a mobile agent based application. The five
design patterns proposed: Abstract Agent Pattern, Agent Proxy Pattern, Agent
Coordinator Pattern, Agent Interaction Pattern and Travel Plan Pattern, allow the
mobile agent programmer to implement basic concepts of agent technology by just
using a common programming language like Java [31]. Common properties like
mobility, autonomy, social ability, etc. are covered by our patterns, that present a
abstract view of each related problem in order to make them as much reusable as
possible.

After proposing the five design patterns we used them to implement the same example
described in section 2 were we experimented to create a small application using Java
[31] and Voyager [29]. The documentation of the implementation can be found in the
Appendix A – Java Documentation. Besides having a running example constructed with
our own proposed design patterns using only Java RMI and proving that they really
work, another interesting result was the productivity when using our design patterns. In
our first experimentation we spent almost four times more the time we spent
implementing the same application using our design patterns. Even considering that in
the first experimentation with agents we did not have the same experience that we have
now, we believe that our design patterns really reached their goals.

52 Mobile Agents: Patterns and Reflection

� Future Work

Of course there are a lot of work to do yet. For future researches we can see that new
patterns can be created involving the high complexity mechanisms in mobile agents,
like threads for example. Other patterns describing the Life Cicle of the mobile agent,
Organized Groups of mobile agents where they can share different tasks in order to
accomplish with a final goal are also possible recurrent problems to be solved using
design patterns.

Other research can be investigated by joining reflection and agent technology.
Reflection is the process of reasoning about and acting upon itself [22], [23]. According
to J. Des Rivieres, “a reflective language is a language allowing you to deal with
explicit representations of implicit aspects of the language itself” [24].

A reflective language may have a representation of its own behavior dealing with
message sending, encapsulation, execution and so on. Then, reflection allows deriving
new behaviors from initial ones by introducing some variations of the computational
model, for example:

� asynchronous message vs. synchronous message
� remote invocation vs. local invocation
� multiple inheritance vs. simple inheritance
� etc.

Moreover, reflection allows us to separate what an object does (the base level) from
how it does it (its meta level) [25]. A reflective language encourages a clean separation
between the basic functionality of the application from its representations and controls.
Reusability, modularity, readability and quality of code are some of the main
advantages that someone can expect from reflection.

By studying concurrent and distributed architectures, we can say that they deal with
well-known mechanisms and policies, which are independent from the system’s basic
functionality (i.e. business objects) and could be implemented at the meta-level. Then,
we are strongly convinced that mobile agent technology can benefit from the features of
reflection when developing agent-based system.

At a low-level design, reflective techniques applied in mobile agents technology can
help us to deal with:

� several policies of communication (e.g. synchronous, no reply, future, multicast)
� thread management (e.g. single-threaded, thread-per-message, thread-pool)
� data transport (e.g. sockets, pipes, shared memory)

At a high-level design, we can use introspection to develop tools dealing with the
explicit representation of the agent patterns in the language itself (cf. meta-model in
case tools).

Other interesting subject raised by authors [1], is the possible standardization of the
“Agent Technology”. Many people are working, or at least they say they are working,
with mobile agents. However, each one of them proposes different solutions and

 Mobile Agents: Patterns and Reflection 53

different standards, differing widely in their architectures and implementations. Now we
are in a certain phase that a standardization of all we have learned so far is really
necessary. In order to have mobile agents interoperating in a standardized way a group
of companies (Crystaliz, General Magic, Inc., GMD Fokus, IBM Corporation and the
Open Group) were created. They proposed what they call of MASIF – Mobile Agent
System Interoperability Facility and brought it to the attention of the OMG – Object
Management Group.

With this work we hope we could introduce a new approach of how to solve particular
problems in the “Agent Technology” and not to give to the reader another mobile agent
framework. We hope also this work can encourage other people to work on mobile
agent technology and propose new design patterns for it.

54 Mobile Agents: Patterns and Reflection

 Mobile Agents: Patterns and Reflection 55

References

[1] D. Lange. “Mobile Objects and Mobile Agents: The Future of Distributed
computing? ”. ECOOP’98 – Brussels, Belgium, July1998.

[2] D. Lange. “Agent Design Patterns: Elements of Agent Application Design”.
Autonomous Agents’98, Minneapolis, May 1998.

[3] D. Lange and M. Oshima. “Dispatch your agents; shut off your machine”. In
Communications of the ACM, 42, 3, 88-89, 1999.

[4] D. Deugo, M. Weiss. “A Case for Mobile Agent Patterns”. School of Computer
Science – Carleton University, 1999.

[5] D. Deugo, F. Oppacher, B. Ashfield, M. Weiss. “Communication as a Means to
Differentiate Objects, Components and Agents”. Submitted to TOOLS USA 99,
1999.

[6] E. Kendall, M. Malkoun, C.Jiang . “The Layered Agent Patterns”. The Pattern
Languages of Programs, PLOP’96, Illinois, USA, September 1996.

[7] A. Silva, J. Delgado. “Agent Pattern for Mobile Agent Systems”. In European
Conference on Pattern Languages of Programming and Computing,
EuroPLoP’98, 1998.

[8] R. Lavender, D. Schmidt, “Active Object: An Object Behavioral Patter for
Concurrent Programming”. In J. Vlissides, J. Coplien and N. Kerth, “Pattern
Languages of Program Design 2”, Addisson-Wesley, 1996.

[9] N. Jennings, K. Sycara and M. Wooldridge. “A Roadmap of Agent Research and
Development”. In Autonomus Agents and Multi-Agent Systems, 1, 7-38, 1998.

[10] S. Franklin and A. Graesser. “Is it an agent, or just a program ?”. In Proceedings
of the Third International Workshop on Agent Theories, Architectures, and
Languages, Springer-Verlag, 1996.

[11] M. Wooldridge and N. Jennings. “Intelligent Agents: Theory and Practice”.
Knowledge Engineering Review, 1994.

[12] Smith, A. Cypher and J. Sphorer. KidSim: “Programming Agents without a
Programming Language”. Communications of the ACM, 37, 7, 55-67.

[13] P. Maes. Artificial Life Meets Entertainment: “Life like Autonomous Agents”.
In Communications of the ACM, 38, 11, 108-114, 1995.

[14] OMG – Object Management Group. “Agent Green Paper”. OMG Document
ec/99-03-11, March 1999.

56 Mobile Agents: Patterns and Reflection

[15] C. Harrison, D. Chess and A. Kershenbaum. Mobile Agents: “Are they a good
idea ?”. IBM Research Division, 1995.

[16] J.Mayfield, Y.Labrou and T. Finin. “Evaluating KQML as an Agent
Communication Language”. In M. Wooldridge, J. P. Müller, and M. Tambe,
editors, Intelligent Agents Volume II. Springer-Verlag, 1996.

[17] T. Finin, R. Fritzson, D. McKay, R. McEntire. “KQML as an Agent
Communication Language”. In Proceedings of the Third International
Conference on Information and Knowledge Management (CIKM’94), ACM
Press, November 1994.

[18] E. Gamma, R. Helm, R. Johnson, J. Vilissides. “Design Patterns: Elements of
Reusable Object Oriented Software”. Addison-Wesley, 1998.

[19] F. Buchmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. “Pattern
Oriented Software Arquitecture: A System of Patterns”.Wiley and Sons, 1996.

[20] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King and S.
Angel. “A Pattern Language”. Oxford University Press, New York, 1977.

[21] J. Nelson. “Programming Mobile Objects with Java”. Wiley, 1999.

[22] B. Smith. “Reflection and Semantics in a Procedural Programming Language”.
MIT, January 1982.

[23] P. Maes. “Concepts and Experiments in Computational Reflection”. Vrije
Universiteit Brussel, 1987.

[24] G. Kiczales, J. des Rivieres, D. Bobrow. “The Art of the Metaobject Protocol”.
Cambridge, MIT Press, 1991.

[25] J. McAffer. “Meta-level Programming with CodA”. In Proceedings of
ECOOP'95 - Object-Oriented Programming - 9th European Conference. p 190-
214.

[26] General Magic Inc. Telescript. http://www.genmagic.com

[27] IBM Japan. Aglets http:/www.trl.ibm.co.jp/aglets

[28] Mitsubishi Electric. Concordia. http://www.meitca.com/HSL/Projects/Concordia

[29] Object Space. Voyager. http://www.objectspace.com/voyager

[30] General Magic Inc. Odyssey. http://www.genmagic.com/

[31] Sun Systems. Java Language. http://www.javasoft.com - http://www.sun.com

[32] Rational Software Corp. UML – Unified Modeling Language.
http://www.rational.com

A
ppendix A

: Java D
ocum

entation

58
M

obile A
gents: P

atterns and R
eflection

T
he follow

ing Java D
ocum

entation represents an im
plem

entation of the five patterns
that w

e have show
ed in this docum

ent.

A
P
I

U
s
e
r
'
s

G
u
i
d
e

C
l
a
s
s

H
i
e
r
a
r
c
h
y

I
n
d
e
x

O
ther P

ackages
•

package agent
•

package capability
•

package coordinator
•

package environm
ent

•
package exam

ples
•

package exceptions
•

package interaction
•

package m
essage

•
package transporter

•
package travel

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
59

A
ppendix A

: Java D
ocum

entation

60
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

I
n
d
e
x

package agent

•
A

bstractA
gent

•
A

gent
•

A
gentID

•
A

gentP
roxy

•
A

gentP
roxyS

tate
•

A
gentP

roxyS
tateL

ocal
•

A
gentP

roxyS
tateR

em
ote

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
61

A
ppendix A

: Java D
ocum

entation

62
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

C
lass agent.A

bstractA
gent

j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

|

+
-
-
-
-
j
a
v
a
.
l
a
n
g
.
T
h
r
e
a
d

|

+
-
-
-
-
a
g
e
n
t
.
A
b
s
t
r
a
c
t
A
g
e
n
t

public abstract class A
bstractA

gent
extends T

hread
im

plem
ents Serializable

T
he A

bstractA
gent class defines the m

ain m
ethods for the A

gent.

agentId
currentA

ddress
currentE

nvironm
ent

hom
eA

ddress

A
bstractA

gent()
C

onstructs an abstract agent.
A

bstractA
gent(String)

C
onstructs an abstract agent defining the hom

e address of the A
gent.

dispatch
(String)
D

ispatch an agent to another E
nvironem

ent.
getH

om
eA

ddress()
R

eturns the A
gent hom

e address.
getId

()
R

eturns the Id of the A
gent.

handleM
essage(M

essage)
H

andles all incom
ing m

essages for the A
gent.

setC
urrentA

ddress(String)
S

ets the A
gent current address.

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
63

agentId

p
r
o
t
e
c
t
e
d

S
t
r
i
n
g

a
g
e
n
t
I
d

hom
eA

ddress

p
r
o
t
e
c
t
e
d

S
t
r
i
n
g

h
o
m
e
A
d
d
r
e
s
s

currentA
ddress

p
r
o
t
e
c
t
e
d

S
t
r
i
n
g

c
u
r
r
e
n
t
A
d
d
r
e
s
s

currentE
nvironm

ent

p
r
o
t
e
c
t
e
d

I
A
g
e
n
t
E
n
v
i
r
o
n
m
e
n
t

c
u
r
r
e
n
t
E
n
v
i
r
o
n
m
e
n
t

A
bstractA

gent

p
u
b
l
i
c

A
b
s
t
r
a
c
t
A
g
e
n
t
(
)

C
onstructs an abstract agent.

A
bstractA

gent

p
u
b
l
i
c

A
b
s
t
r
a
c
t
A
g
e
n
t
(
S
t
r
i
n
g

h
o
m
e
A
d
d
r
e
s
s
)

C
onstructs an abstract agent defining the hom

e address of the A
gent.

P
aram

eters:
hom

eA
ddress - java.lang.String

dispatch

p
r
o
t
e
c
t
e
d

f
i
n
a
l

v
o
i
d

d
i
s
p
a
t
c
h
(
S
t
r
i
n
g

a
d
d
r
e
s
s
)

D
ispatch an agent to another E

nvironem
ent.

P
aram

eters:
address - java.lang.String

getH
om

eA
ddress

p
r
o
t
e
c
t
e
d

S
t
r
i
n
g

g
e
t
H
o
m
e
A
d
d
r
e
s
s
(
)

R
eturns the A

gent hom
e address.

A
ppendix A

: Java D
ocum

entation

64
M

obile A
gents: P

atterns and R
eflection

R
eturns:java.lang.String

getId

p
r
o
t
e
c
t
e
d

f
i
n
a
l

S
t
r
i
n
g

g
e
t
I
d
(
)

R
eturns the Id of the A

gent.

R
eturns:java.lang.String

handleM
essage

p
u
b
l
i
c

a
b
s
t
r
a
c
t

O
b
j
e
c
t

h
a
n
d
l
e
M
e
s
s
a
g
e
(
M
e
s
s
a
g
e

m
s
g
)

t
h
r
o
w
s

M
e
s
s
a
g
e
N
o
t
U
n
d
e
r
s
t
o
o
d

H
andles all incom

ing m
essages for the A

gent. T
his m

ethod m
ust be

im
plem

ented by all classes that extends A
bstractA

gent class.

P
aram

eters:
m

sg - m
essage.M

essage
R

eturns:java.lang.O
bject

T
hrow

s: M
essageN

otU
nderstood

if the M
essage w

as not handled by the A
gent.

setC
urrentA

ddress

p
r
o
t
e
c
t
e
d

v
o
i
d

s
e
t
C
u
r
r
e
n
t
A
d
d
r
e
s
s
(
S
t
r
i
n
g

c
u
r
r
e
n
t
A
d
d
r
e
s
s
)

S
ets the A

gent current address.

P
aram

eters:
currentA

ddress - java.lang.String

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
65

A
ppendix A

: Java D
ocum

entation

66
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

C
lass agent.A

gent
j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

|

+
-
-
-
-
j
a
v
a
.
l
a
n
g
.
T
h
r
e
a
d

|

+
-
-
-
-
a
g
e
n
t
.
A
b
s
t
r
a
c
t
A
g
e
n
t

|

+
-
-
-
-
a
g
e
n
t
.
A
g
e
n
t

public class A
gent

extends A
bstractA

gent

T
he A

gent class is the abstract base class to create your ow
n personalized A

gents.

capability
travelP

lan

A
gent()

C
onstructs an agent.

A
gent(String)

C
ontructs an agent defining its hom

e address.

getC
onsum

erC
apabilities()

R
eturns the agent's consum

er capabilities.
getP

roviderC
apabilities()

R
eturns the agent's provider capabilities.

handleM
essage(M

essage)
H

andles the incom
ing m

essages to the agent.
m

eet(A
gentProxy)
G

ives to an agent a proxy of another agent in order to allow
 them

 to interact.

capability

p
r
o
t
e
c
t
e
d

A
g
e
n
t
C
a
p
a
b
i
l
i
t
y

c
a
p
a
b
i
l
i
t
y

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
67

travelP
lan

p
r
o
t
e
c
t
e
d

T
r
a
v
e
l
P
l
a
n

t
r
a
v
e
l
P
l
a
n

A
gent

p
u
b
l
i
c

A
g
e
n
t
(
)

C
onstructs an agent.

A
gent

p
u
b
l
i
c

A
g
e
n
t
(
S
t
r
i
n
g

h
o
m
e
A
d
d
r
e
s
s
)

C
ontructs an agent defining its hom

e address.

P
aram

eters:
hom

eA
ddress - java.lang.String

getC
onsum

erC
apabilities

p
u
b
l
i
c

V
e
c
t
o
r

g
e
t
C
o
n
s
u
m
e
r
C
a
p
a
b
i
l
i
t
i
e
s
(
)

R
eturns the agent's consum

er capabilities.

R
eturns:java.util.V

ector

getP
roviderC

apabilities

p
u
b
l
i
c

V
e
c
t
o
r

g
e
t
P
r
o
v
i
d
e
r
C
a
p
a
b
i
l
i
t
i
e
s
(
)

R
eturns the agent's provider capabilities.

R
eturns:java.util.V

ector

handleM
essage

p
u
b
l
i
c

O
b
j
e
c
t

h
a
n
d
l
e
M
e
s
s
a
g
e
(
M
e
s
s
a
g
e

m
s
g
)

t
h
r
o
w
s

M
e
s
s
a
g
e
N
o
t
U
n
d
e
r
s
t
o
o
d

H
andles the incom

ing m
essages to the agent. T

his m
ethod m

ust be overrided
in the user agent class in order to handle the desired m

essages.

P
aram

eters:
m

sg - m
essage.M

essage

A
ppendix A

: Java D
ocum

entation

68
M

obile A
gents: P

atterns and R
eflection

R
eturns:java.lang.O

bject
T

hrow
s: M

essageN
otU

nderstood
If the M

essage has not handled by the agent.
O

verrides:handleM
essage in class A

bstractA
gent

m
eet

p
u
b
l
i
c

v
o
i
d

m
e
e
t
(
A
g
e
n
t
P
r
o
x
y

a
g
e
n
t
)

G
ives to an agent a proxy of another agent in order to allow

 them
 to interact.

P
aram

eters:
agent - agent.A

gentP
roxy

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
69

A
ppendix A

: Java D
ocum

entation

70
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

C
lass agent.A

gentID
j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

|

+
-
-
-
-
a
g
e
n
t
.
A
g
e
n
t
I
D

public class A
gentID

extends O
bject

T
he A

gentID
 class generates Id num

bers for the agents. It uses the Singleton D
esign

Pattern.

agentId
idA

gentID
()C

onstructs an A
gentID

.

instance()R
eturns alw

ays the sam
e instance.

new
A

gentId
()

G
enerates a new

 sequential num
ber to be used as Id.

agentId

p
r
i
v
a
t
e

s
t
a
t
i
c

A
g
e
n
t
I
D

a
g
e
n
t
I
d

id

p
r
i
v
a
t
e

i
n
t

i
d

A
gentID

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
71

p
u
b
l
i
c

A
g
e
n
t
I
D
(
)

C
onstructs an A

gentID
.

instance

p
u
b
l
i
c

s
t
a
t
i
c

A
g
e
n
t
I
D

i
n
s
t
a
n
c
e
(
)

R
eturns alw

ays the sam
e instance.

R
eturns:agent.A

gentID

new
A

gentId

p
u
b
l
i
c

i
n
t

n
e
w
A
g
e
n
t
I
d
(
)

G
enerates a new

 sequential num
ber to be used as Id.

R
eturns:int

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

A
ppendix A

: Java D
ocum

entation

72
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

C
lass agent.A

gentP
roxy

j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

|

+
-
-
-
-
a
g
e
n
t
.
A
g
e
n
t
P
r
o
x
y

public class A
gentP

roxy
extends O

bject
im

plem
ents Serializable

T
he A

gentProxy class is a placeholder for A
gent objects. T

he purpose of it is to provide
a transparent access to the real A

gent object.

proxyState

A
gentP

roxy(A
gent)

C
onstructs a new

 A
gentP

roxy class defining the real A
gent object that it w

ill
represent.

A
gentP

roxy(String)
C

onstructs a new
 A

gentP
roxy class defining the address w

here the agent w
ill

be created.

dispatch
(String)
D

ispatchs the agent to the especified address.
getA

gent()R
eturns the real A

gent object that the proxy represent.
getC

onsum
erC

apabilities()
R

eturns the agent's consum
er capabilities.

getH
om

eA
ddress()

R
eturns the A

gent hom
e address.

getId
()

R
eturns the A

gent identification.
getP

roviderC
apabilities()

R
eturns the agent's provider capabilities.

sendM
essage(M

essage)
Sends a synchronous m

essage to an agent.
setC

urrentA
ddress(String)

S
ets the agent's current address.

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
73

updateA
gentP

roxyState(A
gent)

U
pdates the state of the agent proxy changing to L

ocal state.
updateA

gentP
roxyState(A

gentProxy)
U

pdates the state of the agent proxy changing to R
em

ote state.

proxyState

p
r
i
v
a
t
e

A
g
e
n
t
P
r
o
x
y
S
t
a
t
e

p
r
o
x
y
S
t
a
t
e

A
gentP

roxy

p
u
b
l
i
c

A
g
e
n
t
P
r
o
x
y
(
A
g
e
n
t

a
g
e
n
t
)

C
onstructs a new

 A
gentP

roxy class defining the real A
gent object that it w

ill
represent.

P
aram

eters:
agent - A

gent

A
gentP

roxy

p
u
b
l
i
c

A
g
e
n
t
P
r
o
x
y
(
S
t
r
i
n
g

h
o
m
e
A
d
d
r
e
s
s
)

C
onstructs a new

 A
gentP

roxy class defining the address w
here the agent w

ill
be created.

P
aram

eters:
hom

eA
ddress - java.lang.String

dispatch

p
u
b
l
i
c

v
o
i
d

d
i
s
p
a
t
c
h
(
S
t
r
i
n
g

a
d
d
r
e
s
s
)

D
ispatchs the agent to the especified address.

P
aram

eters:
address - java.lang.String

getA
gent

p
u
b
l
i
c

A
g
e
n
t

g
e
t
A
g
e
n
t
(
)

R
eturns the real A

gent object that the proxy represent.

A
ppendix A

: Java D
ocum

entation

74
M

obile A
gents: P

atterns and R
eflection

R
eturns:agent.A

gent

getC
onsum

erC
apabilities

p
u
b
l
i
c

V
e
c
t
o
r

g
e
t
C
o
n
s
u
m
e
r
C
a
p
a
b
i
l
i
t
i
e
s
(
)

R
eturns the agent's consum

er capabilities.

R
eturns:java.util.V

ector

getH
om

eA
ddress

p
u
b
l
i
c

S
t
r
i
n
g

g
e
t
H
o
m
e
A
d
d
r
e
s
s
(
)

R
eturns the A

gent hom
e address.

R
eturns:java.lang.String

getId

p
u
b
l
i
c

S
t
r
i
n
g

g
e
t
I
d
(
)

R
eturns the A

gent identification.

R
eturns:java.lang.String

getP
roviderC

apabilities

p
u
b
l
i
c

V
e
c
t
o
r

g
e
t
P
r
o
v
i
d
e
r
C
a
p
a
b
i
l
i
t
i
e
s
(
)

R
eturns the agent's provider capabilities.

R
eturns:java.util.V

ector

sendM
essage

p
u
b
l
i
c

O
b
j
e
c
t

s
e
n
d
M
e
s
s
a
g
e
(
M
e
s
s
a
g
e

m
s
g
)

t
h
r
o
w
s

M
e
s
s
a
g
e
N
o
t
U
n
d
e
r
s
t
o
o
d

Sends a synchronous m
essage to an agent.

P
aram

eters:
m

sg - m
essage.M

essage
R

eturns:java.lang.O
bject

T
hrow

s: A
gentE

xception
If the M

essage w
as not handled by the agent.

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
75

setC
urrentA

ddress

p
u
b
l
i
c

v
o
i
d

s
e
t
C
u
r
r
e
n
t
A
d
d
r
e
s
s
(
S
t
r
i
n
g

c
u
r
r
e
n
t
A
d
d
r
e
s
s
)

S
ets the agent's current address.

P
aram

eters:
currentA

ddress - java.lang.String

updateA
gentP

roxyState

p
r
i
v
a
t
e

v
o
i
d

u
p
d
a
t
e
A
g
e
n
t
P
r
o
x
y
S
t
a
t
e
(
A
g
e
n
t

a
g
e
n
t
)

U
pdates the state of the agent proxy changing to L

ocal state.

P
aram

eters:
agent - agent.A

gent

updateA
gentP

roxyState

p
r
i
v
a
t
e

v
o
i
d

u
p
d
a
t
e
A
g
e
n
t
P
r
o
x
y
S
t
a
t
e
(
A
g
e
n
t
P
r
o
x
y

r
e
m
o
t
e
P
r
o
x
y
)

U
pdates the state of the agent proxy changing to R

em
ote state.

P
aram

eters:
rem

oteProxy - agent.A
gentProxy

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

A
ppendix A

: Java D
ocum

entation

76
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

C
lass agent.A

gentP
roxyState

j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

|

+
-
-
-
-
a
g
e
n
t
.
A
g
e
n
t
P
r
o
x
y
S
t
a
t
e

public abstract class A
gentP

roxyState
extends O

bject
im

plem
ents Serializable

T
his class represent the state of the agent's proxy.

A
gentP

roxyState()
A

gentP
roxyS

tate constructor.

getA
gent()R

eturns the real agent object that the proxy represents.
getC

onsum
erC

apabilities()
R

eturns the agent's consum
er capabilities.

getH
om

eA
ddress()

R
eturns the host address w

ere the agent w
as created.

getId
()

R
eturns the agent identification.

getP
roviderC

apabilities()
R

eturns the agent's provider capabilities.
handleM

essage(M
essage)

H
andles the incom

ing m
essages to the agent.

setC
urrentA

ddress(String)
S

ets the agent current address.

A
gentP

roxyState

p
u
b
l
i
c

A
g
e
n
t
P
r
o
x
y
S
t
a
t
e
(
)

A
gentP

roxyS
tate constructor.

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
77

getA
gent

p
u
b
l
i
c

a
b
s
t
r
a
c
t

A
g
e
n
t

g
e
t
A
g
e
n
t
(
)

R
eturns the real agent object that the proxy represents. T

his m
ethod m

ust be
im

plem
ented by classes that extends A

gentP
roxyS

tate class.

R
eturns:agent.A

gent

getC
onsum

erC
apabilities

p
u
b
l
i
c

a
b
s
t
r
a
c
t

V
e
c
t
o
r

g
e
t
C
o
n
s
u
m
e
r
C
a
p
a
b
i
l
i
t
i
e
s
(
)

R
eturns the agent's consum

er capabilities. T
his m

ethod m
ust be im

plem
ented

by classes that extends A
gentP

roxyS
tate class.

R
eturns:java.util.V

ector

getH
om

eA
ddress

p
u
b
l
i
c

a
b
s
t
r
a
c
t

S
t
r
i
n
g

g
e
t
H
o
m
e
A
d
d
r
e
s
s
(
)

R
eturns the host address w

ere the agent w
as created. T

his m
ethod m

ust be
im

plem
ented by classes that extends A

gentP
roxyS

tate class.

R
eturns:java.lang.String

getId

p
u
b
l
i
c

a
b
s
t
r
a
c
t

S
t
r
i
n
g

g
e
t
I
d
(
)

R
eturns the agent identification. T

his m
ethod m

ust be im
plem

ented by classes
that extends A

gentP
roxyS

tate class.

R
eturns:java.lang.String

getP
roviderC

apabilities

p
u
b
l
i
c

a
b
s
t
r
a
c
t

V
e
c
t
o
r

g
e
t
P
r
o
v
i
d
e
r
C
a
p
a
b
i
l
i
t
i
e
s
(
)

R
eturns the agent's provider capabilities. T

his m
ethod m

ust be im
plem

ented
by classes that extends A

gentP
roxyS

tate class.

R
eturns:java.util.V

ector

handleM
essage

A
ppendix A

: Java D
ocum

entation

78
M

obile A
gents: P

atterns and R
eflection

p
u
b
l
i
c

a
b
s
t
r
a
c
t

O
b
j
e
c
t

h
a
n
d
l
e
M
e
s
s
a
g
e
(
M
e
s
s
a
g
e

m
s
g
)

t
h
r
o
w
s

M
e
s
s
a
g
e
N
o
t
U
n
d
e
r
s
t
o
o
d

H
andles the incom

ing m
essages to the agent. T

his m
ethod m

ust be
im

plem
ented by classes that extends A

gentP
roxyS

tate class.

P
aram

eters:
m

sg - m
essage.M

essage
R

eturns:java.lang.O
bject

T
hrow

s: M
essageN

otU
nderstood

If the M
essage has not handled by the agent.

setC
urrentA

ddress

p
u
b
l
i
c

a
b
s
t
r
a
c
t

v
o
i
d

s
e
t
C
u
r
r
e
n
t
A
d
d
r
e
s
s
(
S
t
r
i
n
g

c
u
r
r
e
n
t
A
d
d
r
e
s
s
)

Sets the agent current address. T
his m

ethod m
ust be im

plem
ented by classes

that extends A
gentP

roxyS
tate class.

P
aram

eters:
currentA

ddress - java.lang.String

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
79

A
ppendix A

: Java D
ocum

entation

80
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

C
lass agent.A

gentP
roxyStateL

ocal
j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

|

+
-
-
-
-
a
g
e
n
t
.
A
g
e
n
t
P
r
o
x
y
S
t
a
t
e

|

+
-
-
-
-
a
g
e
n
t
.
A
g
e
n
t
P
r
o
x
y
S
t
a
t
e
L
o
c
a
l

public class A
gentP

roxyStateL
ocal

extends A
gentP

roxyS
tate

T
his class defines the agent proxy state w

hen the agent object is in the sam
e

environem
ent as its proxy.

agent

A
gentP

roxyStateL
ocal()

C
reates a new

 proxy for a local agent.
A

gentP
roxyStateL

ocal(A
gent)

C
reates a new

 proxy for a local agent defining the agent object.
A

gentP
roxyStateL

ocal(String)
C

reates a new
 state proxy for a local agent defining the address w

here the
agent w

ill be created.

getA
gent()R

eturns the real agent object.
getC

onsum
erC

apabilities()
R

eturns the agent's consum
er capabilities.

getH
om

eA
ddress()

R
eturns the host address w

ere the agent w
as created.

getId
()

R
eturns the Id of the A

gent.
getP

roviderC
apabilities()

R
eturns the agent's provider capabilities.

handleM
essage(M

essage)
H

andles all incom
ing m

essages for the local agent.
setC

urrentA
ddress(String)

S
ets the A

gent current address.

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
81

agent

A
g
e
n
t

a
g
e
n
t

A
gentP

roxyStateL
ocal

p
u
b
l
i
c

A
g
e
n
t
P
r
o
x
y
S
t
a
t
e
L
o
c
a
l
(
)

C
reates a new

 proxy for a local agent.

A
gentP

roxyStateL
ocal

p
u
b
l
i
c

A
g
e
n
t
P
r
o
x
y
S
t
a
t
e
L
o
c
a
l
(
A
g
e
n
t

a
g
e
n
t
)

C
reates a new

 proxy for a local agent defining the agent object.

P
aram

eters:
agent - agent.A

gent

A
gentP

roxyStateL
ocal

p
u
b
l
i
c

A
g
e
n
t
P
r
o
x
y
S
t
a
t
e
L
o
c
a
l
(
S
t
r
i
n
g

h
o
m
e
A
d
d
r
e
s
s
)

C
reates a new

 state proxy for a local agent defining the address w
here the

agent w
ill be created.

P
aram

eters:
hom

eA
ddress - java.lang.String

getA
gent

p
u
b
l
i
c

A
g
e
n
t

g
e
t
A
g
e
n
t
(
)

R
eturns the real agent object.

R
eturns:agent.A

gent
O

verrides:getA
gent in class A

gentP
roxyS

tate

getC
onsum

erC
apabilities

A
ppendix A

: Java D
ocum

entation

82
M

obile A
gents: P

atterns and R
eflection

p
u
b
l
i
c

V
e
c
t
o
r

g
e
t
C
o
n
s
u
m
e
r
C
a
p
a
b
i
l
i
t
i
e
s
(
)

R
eturns the agent's consum

er capabilities.

R
eturns:java.util.V

ector
O

verrides:getC
onsum

erC
apabilities in class A

gentP
roxyS

tate

getH
om

eA
ddress

p
u
b
l
i
c

S
t
r
i
n
g

g
e
t
H
o
m
e
A
d
d
r
e
s
s
(
)

R
eturns the host address w

ere the agent w
as created.

R
eturns:java.lang.String

O
verrides:getH

om
eA

ddress in class A
gentP

roxyS
tate

getId

p
u
b
l
i
c

S
t
r
i
n
g

g
e
t
I
d
(
)

R
eturns the Id of the A

gent.

R
eturns:java.lang.String

O
verrides:getId in class A

gentP
roxyS

tate

getP
roviderC

apabilities

p
u
b
l
i
c

V
e
c
t
o
r

g
e
t
P
r
o
v
i
d
e
r
C
a
p
a
b
i
l
i
t
i
e
s
(
)

R
eturns the agent's provider capabilities.

R
eturns:java.util.V

ector
O

verrides:getProviderC
apabilities in class A

gentP
roxyS

tate

handleM
essage

p
u
b
l
i
c

O
b
j
e
c
t

h
a
n
d
l
e
M
e
s
s
a
g
e
(
M
e
s
s
a
g
e

m
s
g
)

t
h
r
o
w
s

M
e
s
s
a
g
e
N
o
t
U
n
d
e
r
s
t
o
o
d

H
andles all incom

ing m
essages for the local agent.

P
aram

eters:
m

sg - m
essage.M

essage
R

eturns:java.lang.O
bject

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
83

T
hrow

s: M
essageN

otU
nderstood

if the M
essage w

as not handled by the A
gent.

O
verrides:handleM

essage in class A
gentP

roxyS
tate

setC
urrentA

ddress

p
u
b
l
i
c

v
o
i
d

s
e
t
C
u
r
r
e
n
t
A
d
d
r
e
s
s
(
S
t
r
i
n
g

c
u
r
r
e
n
t
A
d
d
r
e
s
s
)

S
ets the A

gent current address.

P
aram

eters:
currentA

ddress - java.lang.String
O

verrides:setC
urrentA

ddress in class A
gentP

roxyS
tate

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

A
ppendix A

: Java D
ocum

entation

84
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

C
lass agent.A

gentP
roxyStateR

em
ote

j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

|

+
-
-
-
-
a
g
e
n
t
.
A
g
e
n
t
P
r
o
x
y
S
t
a
t
e

|

+
-
-
-
-
a
g
e
n
t
.
A
g
e
n
t
P
r
o
x
y
S
t
a
t
e
R
e
m
o
t
e

public class A
gentP

roxyStateR
em

ote
extends A

gentP
roxyS

tate

T
his class defines the agent proxy state w

hen the agent object is not in the sam
e

environem
ent. It is rem

ote.

rem
oteP

roxy

A
gentP

roxyStateR
em

ote()
C

reates a new
 proxy for a rem

ote agent.
A

gentP
roxyStateR

em
ote(A

gentProxy)
C

reates a new
 proxy for a rem

ote agent defining the rem
ote proxy that

represent an agent.

getA
gent()R

eturns the real agent object of a rem
ote proxy.

getC
onsum

erC
apabilities()

G
ets the rem

ote agent's consum
er capabilities.

getH
om

eA
ddress()

R
eturns the host address w

ere the rem
ote agent w

as created.
getId

()
R

eturns the Id of the rem
ote agent.

getP
roviderC

apabilities()
G

ets the rem
ote agent's provider capabilities.

handleM
essage(M

essage)
H

andles all incom
ing m

essages for the agent and forw
ard them

 to the rem
ote

agent.
setC

urrentA
ddress(String)

Sets the rem
ote agent current address.

setR
em

oteP
roxy(A

gentProxy)

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
85

Sets the rem
ote proxy.

rem
oteP

roxy

p
r
i
v
a
t
e

A
g
e
n
t
P
r
o
x
y

r
e
m
o
t
e
P
r
o
x
y

A
gentP

roxyStateR
em

ote

p
u
b
l
i
c

A
g
e
n
t
P
r
o
x
y
S
t
a
t
e
R
e
m
o
t
e
(
)

C
reates a new

 proxy for a rem
ote agent.

A
gentP

roxyStateR
em

ote

p
u
b
l
i
c

A
g
e
n
t
P
r
o
x
y
S
t
a
t
e
R
e
m
o
t
e
(
A
g
e
n
t
P
r
o
x
y

r
e
m
o
t
e
P
r
o
x
y
)

C
reates a new

 proxy for a rem
ote agent defining the rem

ote proxy that
represent an agent.

P
aram

eters:
agentC

urrentA
ddress - java.lang.S

tring

getA
gent

p
u
b
l
i
c

A
g
e
n
t

g
e
t
A
g
e
n
t
(
)

R
eturns the real agent object of a rem

ote proxy.

R
eturns:agent.A

gent
O

verrides:getA
gent in class A

gentP
roxyS

tate

getC
onsum

erC
apabilities

p
u
b
l
i
c

V
e
c
t
o
r

g
e
t
C
o
n
s
u
m
e
r
C
a
p
a
b
i
l
i
t
i
e
s
(
)

G
ets the rem

ote agent's consum
er capabilities.

R
eturns:java.util.V

ector
O

verrides:getC
onsum

erC
apabilities in class A

gentP
roxyS

tate

A
ppendix A

: Java D
ocum

entation

86
M

obile A
gents: P

atterns and R
eflection

getH
om

eA
ddress

p
u
b
l
i
c

S
t
r
i
n
g

g
e
t
H
o
m
e
A
d
d
r
e
s
s
(
)

R
eturns the host address w

ere the rem
ote agent w

as created.

R
eturns:java.lang.String

O
verrides:getH

om
eA

ddress in class A
gentP

roxyS
tate

getId

p
u
b
l
i
c

S
t
r
i
n
g

g
e
t
I
d
(
)

R
eturns the Id of the rem

ote agent.

R
eturns:java.lang.String

O
verrides:getId in class A

gentP
roxyS

tate

getP
roviderC

apabilities

p
u
b
l
i
c

V
e
c
t
o
r

g
e
t
P
r
o
v
i
d
e
r
C
a
p
a
b
i
l
i
t
i
e
s
(
)

G
ets the rem

ote agent's provider capabilities.

R
eturns:java.util.V

ector
O

verrides:getProviderC
apabilities in class A

gentP
roxyS

tate

handleM
essage

p
u
b
l
i
c

O
b
j
e
c
t

h
a
n
d
l
e
M
e
s
s
a
g
e
(
M
e
s
s
a
g
e

m
s
g
)

t
h
r
o
w
s

M
e
s
s
a
g
e
N
o
t
U
n
d
e
r
s
t
o
o
d

H
andles all incom

ing m
essages for the agent and forw

ard them
 to the rem

ote
agent.

P
aram

eters:
m

sg - m
essage.M

essage
R

eturns:java.lang.O
bject

T
hrow

s: M
essageN

otU
nderstood

if the M
essage w

as not handled by the rem
ote A

gent.
O

verrides:handleM
essage in class A

gentP
roxyS

tate

setC
urrentA

ddress

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
87

p
u
b
l
i
c

v
o
i
d

s
e
t
C
u
r
r
e
n
t
A
d
d
r
e
s
s
(
S
t
r
i
n
g

c
u
r
r
e
n
t
A
d
d
r
e
s
s
)

Sets the rem
ote agent current address.

P
aram

eters:
currentA

ddress - java.lang.String
O

verrides:setC
urrentA

ddress in class A
gentP

roxyS
tate

setR
em

oteP
roxy

p
u
b
l
i
c

v
o
i
d

s
e
t
R
e
m
o
t
e
P
r
o
x
y
(
A
g
e
n
t
P
r
o
x
y

r
e
m
o
t
e
P
r
o
x
y
)

Sets the rem
ote proxy.

P
aram

eters:
rem

oteProxy - agent.A
gentProxy

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

A
ppendix A

: Java D
ocum

entation

88
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

I
n
d
e
x

package capability

•
A

gentC
apability

•
C

onsum
er

•
Provider

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
89

A
ppendix A

: Java D
ocum

entation

90
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

C
lass capability.A

gentC
apability

j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

|

+
-
-
-
-
c
a
p
a
b
i
l
i
t
y
.
A
g
e
n
t
C
a
p
a
b
i
l
i
t
y

public class A
gentC

apability
extends O

bject
im

plem
ents Serializable

T
his class represent the consum

er and provider capabilities of an agent.

consum
erC

apabilities
providerC

apabilities

A
gentC

apability()
C

reates a new
 agent capability.

addC
onsum

erC
apability(String)

A
dds a new

 consum
ber capability.

addP
roviderC

apability(String)
A

dds a new
 provider capability.

getC
onsum

erC
apabilities()

R
eturns the current consum

er capabilities of an agent.
getP

roviderC
apabilities()

R
eturns the current provider capabilities of an agent.

providerC
apabilities

p
r
i
v
a
t
e

V
e
c
t
o
r

p
r
o
v
i
d
e
r
C
a
p
a
b
i
l
i
t
i
e
s

consum
erC

apabilities

p
r
i
v
a
t
e

V
e
c
t
o
r

c
o
n
s
u
m
e
r
C
a
p
a
b
i
l
i
t
i
e
s

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
91

A
gentC

apability

p
u
b
l
i
c

A
g
e
n
t
C
a
p
a
b
i
l
i
t
y
(
)

C
reates a new

 agent capability.

addC
onsum

erC
apability

p
u
b
l
i
c

v
o
i
d

a
d
d
C
o
n
s
u
m
e
r
C
a
p
a
b
i
l
i
t
y
(
S
t
r
i
n
g

d
e
s
c
r
i
p
t
i
o
n
)

A
dds a new

 consum
ber capability.

P
aram

eters:
description - java.lang.String

addP
roviderC

apability

p
u
b
l
i
c

v
o
i
d

a
d
d
P
r
o
v
i
d
e
r
C
a
p
a
b
i
l
i
t
y
(
S
t
r
i
n
g

d
e
s
c
r
i
p
t
i
o
n
)

A
dds a new

 provider capability.

P
aram

eters:
description - java.lang.String

getC
onsum

erC
apabilities

p
u
b
l
i
c

V
e
c
t
o
r

g
e
t
C
o
n
s
u
m
e
r
C
a
p
a
b
i
l
i
t
i
e
s
(
)

R
eturns the current consum

er capabilities of an agent.

R
eturns:java.util.V

ector

getP
roviderC

apabilities

p
u
b
l
i
c

V
e
c
t
o
r

g
e
t
P
r
o
v
i
d
e
r
C
a
p
a
b
i
l
i
t
i
e
s
(
)

R
eturns the current provider capabilities of an agent.

R
eturns:java.util.V

ector

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

A
ppendix A

: Java D
ocum

entation

92
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

C
lass capability.C

onsum
er

j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

|

+
-
-
-
-
c
a
p
a
b
i
l
i
t
y
.
C
o
n
s
u
m
e
r

public class C
onsum

er
extends O

bject
im

plem
ents Serializable

T
his class describes a consum

er cabability.

description

C
onsum

er()
C

reates a new
 consum

er capability.
C

onsum
er(String)
C

reates a new
 consum

er capability defining its description.

getD
escription

()
R

eturns the description of a consum
er capability.

description

p
r
i
v
a
t
e

S
t
r
i
n
g

d
e
s
c
r
i
p
t
i
o
n

C
onsum

er

p
u
b
l
i
c

C
o
n
s
u
m
e
r
(
)

C
reates a new

 consum
er capability.

C
onsum

er

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
93

p
u
b
l
i
c

C
o
n
s
u
m
e
r
(
S
t
r
i
n
g

d
e
s
c
r
i
p
t
i
o
n
)

C
reates a new

 consum
er capability defining its description.

P
aram

eters:
description - java.lang.String

getD
escription

p
u
b
l
i
c

S
t
r
i
n
g

g
e
t
D
e
s
c
r
i
p
t
i
o
n
(
)

R
eturns the description of a consum

er capability.

R
eturns:java.lang.String

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

A
ppendix A

: Java D
ocum

entation

94
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

C
lass capability.P

rovider
j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

|

+
-
-
-
-
c
a
p
a
b
i
l
i
t
y
.
P
r
o
v
i
d
e
r

public class P
rovider

extends O
bject

im
plem

ents Serializable

T
his type w

as created in V
isualA

ge.

description

P
rovider()C

reates a new
 provider capability.

P
rovider(String)

C
reates a new

 provider capability defining its description.

getD
escription

()
R

eturns the description of a provider capability.

description

p
r
i
v
a
t
e

S
t
r
i
n
g

d
e
s
c
r
i
p
t
i
o
n

P
rovider

p
u
b
l
i
c

P
r
o
v
i
d
e
r
(
)

C
reates a new

 provider capability.

P
rovider

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
95

p
u
b
l
i
c

P
r
o
v
i
d
e
r
(
S
t
r
i
n
g

d
e
s
c
r
i
p
t
i
o
n
)

C
reates a new

 provider capability defining its description.

P
aram

eters:
description - java.lang.String

getD
escription

p
u
b
l
i
c

S
t
r
i
n
g

g
e
t
D
e
s
c
r
i
p
t
i
o
n
(
)

R
eturns the description of a provider capability.

R
eturns:java.lang.String

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

A
ppendix A

: Java D
ocum

entation

96
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

I
n
d
e
x

package coordinator

•
A

bstractA
gentC

oordinator

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
97

A
ppendix A

: Java D
ocum

entation

98
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

C
lass

coordinator.A
bstractA

gentC
oordinator

j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

|

+
-
-
-
-
c
o
o
r
d
i
n
a
t
o
r
.
A
b
s
t
r
a
c
t
A
g
e
n
t
C
o
o
r
d
i
n
a
t
o
r

public abstract class A
bstractA

gentC
oordinator

extends O
bject

T
his class is the environm

ent's agent coordinator. It holds all agents that are in the
environm

ent.

agentL
ist

A
bstractA

gentC
oordinator()

C
reates a new

 agent coordinator.

addA
gent(A

gentProxy)
A

dds a new
 agent in the agent coordinator.

findA
gent(String)

L
ooks for an agent in the agent coordinator.

getA
llA

gents()
R

eturns all agents in the agent coordinator.
rem

oveA
gent(A

gentProxy)
R

em
oves an agent from

 the agent coordinator.
startA

gent(String)
S

tarts an agent thread.

agentL
ist

p
r
o
t
e
c
t
e
d

V
e
c
t
o
r

a
g
e
n
t
L
i
s
t

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
99

A
bstractA

gentC
oordinator

p
u
b
l
i
c

A
b
s
t
r
a
c
t
A
g
e
n
t
C
o
o
r
d
i
n
a
t
o
r
(
)

C
reates a new

 agent coordinator.

addA
gent

p
u
b
l
i
c

A
g
e
n
t
P
r
o
x
y

a
d
d
A
g
e
n
t
(
A
g
e
n
t
P
r
o
x
y

a
g
e
n
t
P
r
o
x
y
)

A
dds a new

 agent in the agent coordinator.

P
aram

eters:
agent - agent.A

gentP
roxy

R
eturns:agent.A

gentP
roxy

findA
gent

p
u
b
l
i
c

A
g
e
n
t
P
r
o
x
y

f
i
n
d
A
g
e
n
t
(
S
t
r
i
n
g

i
d
)

t
h
r
o
w
s

A
g
e
n
t
N
o
t
F
o
u
n
d

L
ooks for an agent in the agent coordinator. T

he search key is the agent
identification. T

his m
ethod can be overrided in order to create different

searchs w
ith different search keys.

P
aram

eters:
id - java.lang.String

R
eturns:agent.A

gentP
roxy

getA
llA

gents

p
u
b
l
i
c

f
i
n
a
l

V
e
c
t
o
r

g
e
t
A
l
l
A
g
e
n
t
s
(
)

R
eturns all agents in the agent coordinator.

R
eturns:java.util.V

ector

rem
oveA

gent

p
u
b
l
i
c

v
o
i
d

r
e
m
o
v
e
A
g
e
n
t
(
A
g
e
n
t
P
r
o
x
y

a
g
e
n
t
P
r
o
x
y
)

R
em

oves an agent from
 the agent coordinator.

P
aram

eters:

A
ppendix A

: Java D
ocum

entation

100
M

obile A
gents: P

atterns and R
eflection

agentP
roxy - agent.A

gentP
roxy

startA
gent

p
u
b
l
i
c

v
o
i
d

s
t
a
r
t
A
g
e
n
t
(
S
t
r
i
n
g

a
g
e
n
t
I
d
)

S
tarts an agent thread.

P
aram

eters:
agentId - java.lang.S

tring

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
101

A
ppendix A

: Java D
ocum

entation

102
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

I
n
d
e
x

package environm
ent

•
IA

bstractA
gentE

nvironm
ent

•
IA

gentE
nvironm

ent
• •

A
bstractA

gentE
nvironm

ent
•

A
gentE

nvironm
ent

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
103

A
ppendix A

: Java D
ocum

entation

104
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

C
lass

environm
ent.A

bstractA
gentE

nvironm
ent

j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

|

+
-
-
-
-
j
a
v
a
.
r
m
i
.
s
e
r
v
e
r
.
R
e
m
o
t
e
O
b
j
e
c
t

|

+
-
-
-
-
j
a
v
a
.
r
m
i
.
s
e
r
v
e
r
.
R
e
m
o
t
e
S
e
r
v
e
r

|

+
-
-
-
-
j
a
v
a
.
r
m
i
.
s
e
r
v
e
r
.
U
n
i
c
a
s
t
R
e
m
o
t
e
O
b
j
e
c
t

|

+
-
-
-
-
e
n
v
i
r
o
n
m
e
n
t
.
A
b
s
t
r
a
c
t
A
g
e
n
t
E
n
v
i
r
o
n
m
e
n
t

public abstract class A
bstractA

gentE
nvironm

ent
extends U

nicastR
em

oteO
bject

im
plem

ents IA
bstractA

gentE
nvironm

ent, Serializable

T
his class defines the basic structure of an agent environm

ent.

address
coordinator
otherE

nvironm
ents

transporter

A
bstractA

gentE
nvironm

ent()
Inicialize the agent environm

ent.
A

bstractA
gentE

nvironm
ent(int)

Inicialize the agent environm
ent in a specified port.

addO
therE

nvironm
ent(String)

A
dds other environm

ent address.
arrivedA

gent(A
gentProxy)

A
dds a new

 agent to the environm
ent w

hen the agent arrives.
createA

gent(String)
C

reates a new
 agent in the environm

ent and returns the respective agent
proxy.

dispatch
(String, String)
D

ispatch an agent to a specific address.

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
105

dispatchedA
gent(A

gentProxy, String)
Is perfom

ed w
hen the agent has been dispatched to another environm

ent.
findA

gent(String)
L

ooks for an agent in the agent coordinator.
getA

ddress()
R

eturns the environm
ent address.

getA
llA

gents()
R

eturns all agents in the agent coordinator.
getK

now
nE

nvironm
ents()

R
eturns a list of other environm

ent addresses.
handleR

em
oteM

essage(M
essage)

H
andles the incom

ing m
essages from

 other environm
ents.

receiveA
gent(byte[])
R

eceive an agent that has been dispatched to this environm
ent.

sendR
em

oteM
essage(M

essage)
Sends a m

essage to an other environm
ent.

startA
gent(String)

S
tarts an agent thread.

address

p
r
o
t
e
c
t
e
d

S
t
r
i
n
g

a
d
d
r
e
s
s

transporter

p
r
o
t
e
c
t
e
d

R
M
I
T
r
a
n
s
p
o
r
t
e
r

t
r
a
n
s
p
o
r
t
e
r

coordinator

p
r
o
t
e
c
t
e
d

A
g
e
n
t
C
o
o
r
d
i
n
a
t
o
r

c
o
o
r
d
i
n
a
t
o
r

otherE
nvironm

ents

p
r
o
t
e
c
t
e
d

V
e
c
t
o
r

o
t
h
e
r
E
n
v
i
r
o
n
m
e
n
t
s

A
bstractA

gentE
nvironm

ent

p
u
b
l
i
c

A
b
s
t
r
a
c
t
A
g
e
n
t
E
n
v
i
r
o
n
m
e
n
t
(
)

t
h
r
o
w
s

R
e
m
o
t
e
E
x
c
e
p
t
i
o
n

Inicialize the agent environm
ent.

A
bstractA

gentE
nvironm

ent

p
u
b
l
i
c

A
b
s
t
r
a
c
t
A
g
e
n
t
E
n
v
i
r
o
n
m
e
n
t
(
i
n
t

p
o
r
t
)

t
h
r
o
w
s

R
e
m
o
t
e
E
x
c
e
p
t
i
o
n

Inicialize the agent environm
ent in a specified port.

A
ppendix A

: Java D
ocum

entation

106
M

obile A
gents: P

atterns and R
eflection

P
aram

eters:
port - int

addO
therE

nvironm
ent

p
u
b
l
i
c

v
o
i
d

a
d
d
O
t
h
e
r
E
n
v
i
r
o
n
m
e
n
t
(
S
t
r
i
n
g

a
d
d
r
e
s
s
)

A
dds other environm

ent address. T
he agents can ask to the local environm

ent
other environm

ent addresses w
here they can go.

P
aram

eters:
address - java.lang.String

arrivedA
gent

p
r
o
t
e
c
t
e
d

v
o
i
d

a
r
r
i
v
e
d
A
g
e
n
t
(
A
g
e
n
t
P
r
o
x
y

a
g
e
n
t
P
r
o
x
y
)

A
dds a new

 agent to the environm
ent w

hen the agent arrives.

P
aram

eters:
agentP

roxy - agent.A
gentP

roxy

createA
gent

p
u
b
l
i
c

A
g
e
n
t
P
r
o
x
y

c
r
e
a
t
e
A
g
e
n
t
(
S
t
r
i
n
g

c
l
a
s
s
N
a
m
e
)

C
reates a new

 agent in the environm
ent and returns the respective agent

proxy.

P
aram

eters:
classN

am
e - java.lang.S

tring
R

eturns:agent.A
gentP

roxy

dispatch

p
u
b
l
i
c

v
o
i
d

d
i
s
p
a
t
c
h
(
S
t
r
i
n
g

a
g
e
n
t
I
d
,

S
t
r
i
n
g

a
d
d
r
e
s
s
)

D
ispatch an agent to a specific address.

P
aram

eters:
agentId - java.lang.S

tring
address - java.lang.String

dispatchedA
gent

p
r
o
t
e
c
t
e
d

f
i
n
a
l

v
o
i
d

d
i
s
p
a
t
c
h
e
d
A
g
e
n
t
(
A
g
e
n
t
P
r
o
x
y

a
g
e
n
t
P
r
o
x
y
,

S
t
r
i
n
g

h
o
m
e
A
d
d
r
e
s
s
)

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
107

Is perfom
ed w

hen the agent has been dispatched to another environm
ent.

P
aram

eters:
agentP

roxy - agent.A
gentP

roxy
hom

eA
ddress - String

findA
gent

p
u
b
l
i
c

A
g
e
n
t
P
r
o
x
y

f
i
n
d
A
g
e
n
t
(
S
t
r
i
n
g

i
d
)

t
h
r
o
w
s

R
e
m
o
t
e
E
x
c
e
p
t
i
o
n
,

A
g
e
n
t
N
o
t
F
o
u
n
d

L
ooks for an agent in the agent coordinator.

P
aram

eters:
id - S

tring

getA
ddress

p
u
b
l
i
c

f
i
n
a
l

S
t
r
i
n
g

g
e
t
A
d
d
r
e
s
s
(
)

R
eturns the environm

ent address.

R
eturns:java.lang.String

getA
llA

gents

p
u
b
l
i
c

f
i
n
a
l

V
e
c
t
o
r

g
e
t
A
l
l
A
g
e
n
t
s
(
)

R
eturns all agents in the agent coordinator.

R
eturns:java.util.V

ector

getK
now

nE
nvironm

ents

p
u
b
l
i
c

V
e
c
t
o
r

g
e
t
K
n
o
w
n
E
n
v
i
r
o
n
m
e
n
t
s
(
)

R
eturns a list of other environm

ent addresses.

R
eturns:java.util.V

ector

handleR
em

oteM
essage

p
u
b
l
i
c

O
b
j
e
c
t

h
a
n
d
l
e
R
e
m
o
t
e
M
e
s
s
a
g
e
(
M
e
s
s
a
g
e

m
s
g
)

t
h
r
o
w
s

R
e
m
o
t
e
E
x
c
e
p
t
i
o
n
,

R
e
m
o
t
e
M
e
s
s
a
g
e
N
o
t
U
n
d
e
r
s
t
o
o
d

H
andles the incom

ing m
essages from

 other environm
ents.

P
aram

eters:
m

sg - m
essage.M

essage

A
ppendix A

: Java D
ocum

entation

108
M

obile A
gents: P

atterns and R
eflection

R
eturns:java.lang.O

bject
T

hrow
s: R

em
oteM

essageN
otU

nderstood
If the m

essage w
as not handled by the agent.

receiveA
gent

p
u
b
l
i
c

v
o
i
d

r
e
c
e
i
v
e
A
g
e
n
t
(
b
y
t
e

b
y
t
e
A
r
r
a
y
[
]
)

R
eceive an agent that has been dispatched to this environm

ent.

P
aram

eters:
byteA

rray - byte[]

sendR
em

oteM
essage

p
u
b
l
i
c

O
b
j
e
c
t

s
e
n
d
R
e
m
o
t
e
M
e
s
s
a
g
e
(
M
e
s
s
a
g
e

m
s
g
)

t
h
r
o
w
s

R
e
m
o
t
e
M
e
s
s
a
g
e
N
o
t
U
n
d
e
r
s
t
o
o
d

Sends a m
essage to an other environm

ent.

P
aram

eters:
m

sg - m
essage.M

essage
R

eturns:java.lang.O
bject

T
hrow

s: R
em

oteM
essageN

otU
nderstood

If the m
essage w

as not handled by the agent.

startA
gent

p
u
b
l
i
c

v
o
i
d

s
t
a
r
t
A
g
e
n
t
(
S
t
r
i
n
g

a
g
e
n
t
I
d
)

S
tarts an agent thread.

P
aram

eters:
agentId - java.lang.S

tring

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
109

A
ppendix A

: Java D
ocum

entation

110
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

C
lass environm

ent.A
gentE

nvironm
ent

j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

|

+
-
-
-
-
j
a
v
a
.
r
m
i
.
s
e
r
v
e
r
.
R
e
m
o
t
e
O
b
j
e
c
t

|

+
-
-
-
-
j
a
v
a
.
r
m
i
.
s
e
r
v
e
r
.
R
e
m
o
t
e
S
e
r
v
e
r

|

+
-
-
-
-
j
a
v
a
.
r
m
i
.
s
e
r
v
e
r
.
U
n
i
c
a
s
t
R
e
m
o
t
e
O
b
j
e
c
t

|

+
-
-
-
-
e
n
v
i
r
o
n
m
e
n
t
.
A
b
s
t
r
a
c
t
A
g
e
n
t
E
n
v
i
r
o
n
m
e
n
t

|

+
-
-
-
-
e
n
v
i
r
o
n
m
e
n
t
.
A
g
e
n
t
E
n
v
i
r
o
n
m
e
n
t

public class A
gentE

nvironm
ent

extends A
bstractA

gentE
nvironm

ent
im

plem
ents IA

gentE
nvironm

ent

T
his class extends the A

bstractA
gentE

nvironm
ent and defines other specific attributes.

envU
I

A
gentE

nvironm
ent(int)

C
reates an environm

ent that w
ill listen in a specific port.

arrivedA
gent(A

gentProxy)
R

eceives an agent that has arrived to this environm
ent.

createA
gent(String)
C

reates a new
 agent of the specified class and returns the respective agent

proxy.
dispatch

(String, String)
D

ispatch an agent to a specific address.
getC

onsum
erA

gents(String)
R

eturns only the agents that has a specific consum
er capability.

getP
roviderA

gents(String)
R

eturns only the agents that has a specific provider capability.
print(String)

S
ends a string to the user interface.

setU
I(E

nvironm
entG

U
I)

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
111

S
ets an user interface to the environm

ent.
startA

gent(String)
S

tarts an agent thread.

envU
I

p
r
o
t
e
c
t
e
d

E
n
v
i
r
o
n
m
e
n
t
G
U
I

e
n
v
U
I

A
gentE

nvironm
ent

p
u
b
l
i
c

A
g
e
n
t
E
n
v
i
r
o
n
m
e
n
t
(
i
n
t

p
o
r
t
)

t
h
r
o
w
s

R
e
m
o
t
e
E
x
c
e
p
t
i
o
n

C
reates an environm

ent that w
ill listen in a specific port.

P
aram

eters:
port - int

arrivedA
gent

p
u
b
l
i
c

v
o
i
d

a
r
r
i
v
e
d
A
g
e
n
t
(
A
g
e
n
t
P
r
o
x
y

a
g
e
n
t
P
r
o
x
y
)

R
eceives an agent that has arrived to this environm

ent.

P
aram

eters:
agentP

roxy - agent.A
gentP

roxy
O

verrides:arrivedA
gent in class A

bstractA
gentE

nvironm
ent

createA
gent

p
u
b
l
i
c

A
g
e
n
t
P
r
o
x
y

c
r
e
a
t
e
A
g
e
n
t
(
S
t
r
i
n
g

c
l
a
s
s
N
a
m
e
)

C
reates a new

 agent of the specified class and returns the respective agent
proxy.

P
aram

eters:
classN

am
e - java.lang.S

tring
R

eturns:agent.A
gentP

roxy
O

verrides:createA
gent in class A

bstractA
gentE

nvironm
ent

A
ppendix A

: Java D
ocum

entation

112
M

obile A
gents: P

atterns and R
eflection

dispatch

p
u
b
l
i
c

v
o
i
d

d
i
s
p
a
t
c
h
(
S
t
r
i
n
g

a
g
e
n
t
I
d
,

S
t
r
i
n
g

a
d
d
r
e
s
s
)

D
ispatch an agent to a specific address.

P
aram

eters:
agentId - java.lang.S

tring
address - java.lang.String

O
verrides:dispatch in class A

bstractA
gentE

nvironm
ent

getC
onsum

erA
gents

p
u
b
l
i
c

V
e
c
t
o
r

g
e
t
C
o
n
s
u
m
e
r
A
g
e
n
t
s
(
S
t
r
i
n
g

d
e
s
c
r
i
p
t
i
o
n
)

R
eturns only the agents that has a specific consum

er capability.

R
eturn:

java.util.V
ector

P
aram

eters:
java.lang.String description

getP
roviderA

gents

p
u
b
l
i
c

V
e
c
t
o
r

g
e
t
P
r
o
v
i
d
e
r
A
g
e
n
t
s
(
S
t
r
i
n
g

d
e
s
c
r
i
p
t
i
o
n
)

R
eturns only the agents that has a specific provider capability.

R
eturn:

java.util.V
ector

P
aram

eters:
java.lang.String description

print

p
u
b
l
i
c

v
o
i
d

p
r
i
n
t
(
S
t
r
i
n
g

l
i
n
e
)

S
ends a string to the user interface.

P
aram

eters:
line - java.lang.String

setU
I

p
u
b
l
i
c

v
o
i
d

s
e
t
U
I
(
E
n
v
i
r
o
n
m
e
n
t
G
U
I

e
n
v
U
I
)

S
ets an user interface to the environm

ent.

P
aram

eters:
envU

I - userinterface.E
nvironm

entG
U

I

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
113

startA
gent

p
u
b
l
i
c

v
o
i
d

s
t
a
r
t
A
g
e
n
t
(
S
t
r
i
n
g

a
g
e
n
t
I
d
)

S
tarts an agent thread.

P
aram

eters:
agentId - java.lang.S

tring
O

verrides:startA
gent in class A

bstractA
gentE

nvironm
ent

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

A
ppendix A

: Java D
ocum

entation

114
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

I
n
d
e
x

package exam
ples

•
C

om
puter

•
C

om
puterB

uyer
•

C
om

puterShop

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
115

A
ppendix A

: Java D
ocum

entation

116
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

C
lass exam

ples.C
om

puter
j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

|

+
-
-
-
-
e
x
a
m
p
l
e
s
.
C
o
m
p
u
t
e
r

public class C
om

puter
extends O

bject
im

plem
ents Serializable

 T
his class defines the com

puter structure.

description
num
price

C
om

puter()
C

reates a new
 com

puter instance.

getD
escription

()
G

ets the com
puter description.

getP
rice()G

ets the com
puter price.

price

p
r
i
v
a
t
e

f
l
o
a
t

p
r
i
c
e

num

p
r
i
v
a
t
e

R
a
n
d
o
m

n
u
m

description

p
r
i
v
a
t
e

S
t
r
i
n
g

d
e
s
c
r
i
p
t
i
o
n

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
117

C
om

puter

p
u
b
l
i
c

C
o
m
p
u
t
e
r
(
)

C
reates a new

 com
puter instance.

getD
escription

p
u
b
l
i
c

S
t
r
i
n
g

g
e
t
D
e
s
c
r
i
p
t
i
o
n
(
)

G
ets the com

puter description.

R
eturns:java.lang.String

getP
rice

p
u
b
l
i
c

F
l
o
a
t

g
e
t
P
r
i
c
e
(
)

G
ets the com

puter price.

R
eturns:float

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

A
ppendix A

: Java D
ocum

entation

118
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

C
lass exam

ples.C
om

puterB
uyer

j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

|

+
-
-
-
-
j
a
v
a
.
l
a
n
g
.
T
h
r
e
a
d

|

+
-
-
-
-
a
g
e
n
t
.
A
b
s
t
r
a
c
t
A
g
e
n
t

|

+
-
-
-
-
a
g
e
n
t
.
A
g
e
n
t

|

+
-
-
-
-
e
x
a
m
p
l
e
s
.
C
o
m
p
u
t
e
r
B
u
y
e
r

public class C
om

puterB
uyer

extends A
gent

T
he C

om
puterB

uyer class specifies an agent that buys com
puters.

bestP
rice

bestP
riceId

C
om

puterB
uyer()

C
reates a new

 C
om

puterB
uyer instance.

C
om

puterB
uyer(String)

C
reates a new

 C
om

puterB
uyer instance defining its hom

e address.

handleM
essage(M

essage)
H

andles all incom
ing m

essages to the agent.
run

()
D

efines the agent behavior that w
ill be perform

ed in each one of the
environm

ents w
here the agent w

ill go.

bestP
rice

f
l
o
a
t

b
e
s
t
P
r
i
c
e

bestP
riceId

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
119

S
t
r
i
n
g

b
e
s
t
P
r
i
c
e
I
d

C
om

puterB
uyer

p
u
b
l
i
c

C
o
m
p
u
t
e
r
B
u
y
e
r
(
)

C
reates a new

 C
om

puterB
uyer instance.

C
om

puterB
uyer

p
u
b
l
i
c

C
o
m
p
u
t
e
r
B
u
y
e
r
(
S
t
r
i
n
g

h
o
m
e
A
d
d
r
e
s
s
)

C
reates a new

 C
om

puterB
uyer instance defining its hom

e address.

P
aram

eters:
hom

eA
ddress - java.lang.String

handleM
essage

p
u
b
l
i
c

O
b
j
e
c
t

h
a
n
d
l
e
M
e
s
s
a
g
e
(
M
e
s
s
a
g
e

m
s
g
)

t
h
r
o
w
s

M
e
s
s
a
g
e
N
o
t
U
n
d
e
r
s
t
o
o
d

H
andles all incom

ing m
essages to the agent.

P
aram

eters:
m

sg - m
essage.M

essage
R

eturns:java.lang.O
bject

O
verrides:handleM

essage in class A
gent

run

p
u
b
l
i
c

v
o
i
d

r
u
n
(
)

D
efines the agent behavior that w

ill be perform
ed in each one of the

environm
ents w

here the agent w
ill pass.

O
verrides:run in class T

hread

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

A
ppendix A

: Java D
ocum

entation

120
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

C
lass exam

ples.C
om

puterShop
j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

|

+
-
-
-
-
j
a
v
a
.
l
a
n
g
.
T
h
r
e
a
d

|

+
-
-
-
-
a
g
e
n
t
.
A
b
s
t
r
a
c
t
A
g
e
n
t

|

+
-
-
-
-
a
g
e
n
t
.
A
g
e
n
t

|

+
-
-
-
-
e
x
a
m
p
l
e
s
.
C
o
m
p
u
t
e
r
S
h
o
p

public class C
om

puterShop
extends A

gent

T
his class defines the structure of the com

puter shop. T
he com

puter shop is a stationary
agent.

com
puter

C
om

puterShop
()

C
reates a new

 C
om

puterShop instance.
C

om
puterShop

(String)
C

reates a new
 C

om
puterShop instance defining its hom

e address.

handleM
essage(M

essage)
H

andle the m
essages from

 the C
om

puterB
uyer agent w

hen it asks for the
com

puter price.
run

()
D

efines the m
ain behavior of our com

puter shop.

com
puter

p
r
i
v
a
t
e

C
o
m
p
u
t
e
r

c
o
m
p
u
t
e
r

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
121

C
om

puterShop

p
u
b
l
i
c

C
o
m
p
u
t
e
r
S
h
o
p
(
)

C
reates a new

 C
om

puterShop instance.

C
om

puterShop

p
u
b
l
i
c

C
o
m
p
u
t
e
r
S
h
o
p
(
S
t
r
i
n
g

h
o
m
e
A
d
d
r
e
s
s
)

C
reates a new

 C
om

puterShop instance defining its hom
e address.

P
aram

eters:
hom

eA
ddress - java.lang.String

handleM
essage

p
u
b
l
i
c

O
b
j
e
c
t

h
a
n
d
l
e
M
e
s
s
a
g
e
(
M
e
s
s
a
g
e

m
s
g
)

t
h
r
o
w
s

M
e
s
s
a
g
e
N
o
t
U
n
d
e
r
s
t
o
o
d

H
andle the m

essages from
 the C

om
puterB

uyer agent w
hen it asks for the

com
puter price.

P
aram

eters:
m

sg - m
essage.M

essage
R

eturns:java.lang.O
bject

O
verrides:handleM

essage in class A
gent

run

p
u
b
l
i
c

v
o
i
d

r
u
n
(
)

D
efines the m

ain behavior of our com
puter shop.

O
verrides:run in class T

hread

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

A
ppendix A

: Java D
ocum

entation

122
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

I
n
d
e
x

package interaction

•
A

gentC
oordinator

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
123

A
ppendix A

: Java D
ocum

entation

124
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

C
lass interaction.A

gentC
oordinator

j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

|

+
-
-
-
-
c
o
o
r
d
i
n
a
t
o
r
.
A
b
s
t
r
a
c
t
A
g
e
n
t
C
o
o
r
d
i
n
a
t
o
r

|

+
-
-
-
-
i
n
t
e
r
a
c
t
i
o
n
.
A
g
e
n
t
C
o
o
r
d
i
n
a
t
o
r

public class A
gentC

oordinator
extends A

bstractA
gentC

oordinator

T
his class extends the A

bstractA
gentC

oordinator class and enables agent to interact.

A
gentC

oordinator()
C

reates a new
 A

gentC
oordinator instance.

getC
onsum

erA
gents()

R
eturns all agents that has at leat one consum

er capability.
getC

onsum
erA

gents(String)
R

eturns all agents that has one specific consum
er capability.

getP
roviderA

gents()
R

eturns all agents that has at leat one provider capability.
getP

roviderA
gents(String)

R
eturns all agents that has one specific provider capability.

notifyC
onsum

ers(A
gentProxy)

N
otifies all consum

er agents about a provider agent.

A
gentC

oordinator

p
u
b
l
i
c

A
g
e
n
t
C
o
o
r
d
i
n
a
t
o
r
(
)

C
reates a new

 A
gentC

oordinator instance.

getC
onsum

erA
gents

p
u
b
l
i
c

V
e
c
t
o
r

g
e
t
C
o
n
s
u
m
e
r
A
g
e
n
t
s
(
)

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
125

R
eturns all agents that has at leat one consum

er capability.

R
eturns:java.util.V

ector

getC
onsum

erA
gents

p
u
b
l
i
c

V
e
c
t
o
r

g
e
t
C
o
n
s
u
m
e
r
A
g
e
n
t
s
(
S
t
r
i
n
g

d
e
s
c
r
i
p
t
i
o
n
)

R
eturns all agents that has one specific consum

er capability.

P
aram

eters:
java.lang.String - description

R
eturns:java.util.V

ector

getP
roviderA

gents

p
u
b
l
i
c

V
e
c
t
o
r

g
e
t
P
r
o
v
i
d
e
r
A
g
e
n
t
s
(
)

R
eturns all agents that has at leat one provider capability.

R
eturns:java.util.V

ector

getP
roviderA

gents

p
u
b
l
i
c

V
e
c
t
o
r

g
e
t
P
r
o
v
i
d
e
r
A
g
e
n
t
s
(
S
t
r
i
n
g

d
e
s
c
r
i
p
t
i
o
n
)

R
eturns all agents that has one specific provider capability.

P
aram

eters:
java.lang.String - description

R
eturns:java.util.V

ector

notifyC
onsum

ers

p
u
b
l
i
c

v
o
i
d

n
o
t
i
f
y
C
o
n
s
u
m
e
r
s
(
A
g
e
n
t
P
r
o
x
y

a
g
e
n
t
)

N
otifies all consum

er agents about a provider agent. param
 agent.A

gentProxy
agent

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

A
ppendix A

: Java D
ocum

entation

126
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

I
n
d
e
x

package m
essage

•
M

essage

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
127

A
ppendix A

: Java D
ocum

entation

128
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

C
lass m

essage.M
essage

j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

|

+
-
-
-
-
m
e
s
s
a
g
e
.
M
e
s
s
a
g
e

public class M
essage

extends O
bject

im
plem

ents Serializable

T
his class defines the structure of the m

essages that w
ill be sent to agents and to

environm
ents.

content
param
receiverId
rem

oteA
ddress

M
essage()C

reates a new
 M

essage instance.
M

essage(String)
C

reates a new
 m

essage instance defining its content.
M

essage(S
tring, O

bject[])
C

reates a new
 m

essage instance defining its content and param
eters.

getC
ontent()

R
eturns the content of a m

essage.
getP

aram
eters()

R
eturns the param

eters of a m
essage.

getR
eceiver()

R
eturns the receiver of a m

essage.
getR

em
oteA

ddress()
R

eturns the rem
ote address of the environm

ent w
here the m

essage w
ill be

sent.
setC

ontent(String)
Sets the content of a m

essage.
setP

aram
eters(O

bject[])
Sets the param

eters of a m
essage.

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
129

setR
eceiver(String)

S
ets the receiver of a m

essage.
setR

em
oteA

ddress(String)
Sets the rem

ote address of the environm
ent w

here the m
essage w

ill be sent.
toString()R

eturns a string of this class.

content

p
r
i
v
a
t
e

S
t
r
i
n
g

c
o
n
t
e
n
t

param

p
r
i
v
a
t
e

O
b
j
e
c
t

p
a
r
a
m
[
]

receiverId

p
r
i
v
a
t
e

S
t
r
i
n
g

r
e
c
e
i
v
e
r
I
d

rem
oteA

ddress

p
r
i
v
a
t
e

S
t
r
i
n
g

r
e
m
o
t
e
A
d
d
r
e
s
s

M
essage

p
u
b
l
i
c

M
e
s
s
a
g
e
(
)

C
reates a new

 M
essage instance.

M
essage

p
u
b
l
i
c

M
e
s
s
a
g
e
(
S
t
r
i
n
g

c
o
n
t
e
n
t
)

C
reates a new

 m
essage instance defining its content.

P
aram

eters:
content - java.lang.String

M
essage

p
u
b
l
i
c

M
e
s
s
a
g
e
(
S
t
r
i
n
g

c
o
n
t
e
n
t
,

O
b
j
e
c
t

p
a
r
a
m
[
]
)

C
reates a new

 m
essage instance defining its content and param

eters.

P
aram

eters:
content - java.lang.String
param

 - java.lang.O
bject[]

A
ppendix A

: Java D
ocum

entation

130
M

obile A
gents: P

atterns and R
eflection

getC
ontent

p
u
b
l
i
c

S
t
r
i
n
g

g
e
t
C
o
n
t
e
n
t
(
)

R
eturns the content of a m

essage.

R
eturns:java.lang.String

getP
aram

eters

p
u
b
l
i
c

O
b
j
e
c
t
[
]

g
e
t
P
a
r
a
m
e
t
e
r
s
(
)

R
eturns the param

eters of a m
essage.

R
eturns:java.lang.O

bject[]

getR
eceiver

p
u
b
l
i
c

S
t
r
i
n
g

g
e
t
R
e
c
e
i
v
e
r
(
)

R
eturns the receiver of a m

essage.

R
eturns:java.lang.String

getR
em

oteA
ddress

p
u
b
l
i
c

S
t
r
i
n
g

g
e
t
R
e
m
o
t
e
A
d
d
r
e
s
s
(
)

R
eturns the rem

ote address of the environm
ent w

here the m
essage w

ill be
sent.

R
eturns:java.lang.String

setC
ontent

p
u
b
l
i
c

v
o
i
d

s
e
t
C
o
n
t
e
n
t
(
S
t
r
i
n
g

c
o
n
t
e
n
t
)

Sets the content of a m
essage.

P
aram

eters:
content - java.lang.String

setP
aram

eters

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
131

p
u
b
l
i
c

v
o
i
d

s
e
t
P
a
r
a
m
e
t
e
r
s
(
O
b
j
e
c
t

p
a
r
a
m
[
]
)

Sets the param
eters of a m

essage.

P
aram

eters:
param

 - java.lang.O
bject[]

setR
eceiver

p
u
b
l
i
c

v
o
i
d

s
e
t
R
e
c
e
i
v
e
r
(
S
t
r
i
n
g

r
e
c
e
i
v
e
r
I
d
)

S
ets the receiver of a m

essage.

P
aram

eters:
receiver - java.lang.S

tring

setR
em

oteA
ddress

p
u
b
l
i
c

v
o
i
d

s
e
t
R
e
m
o
t
e
A
d
d
r
e
s
s
(
S
t
r
i
n
g

r
e
m
o
t
e
A
d
d
r
e
s
s
)

Sets the rem
ote address of the environm

ent w
here the m

essage w
ill be sent.

P
aram

eters:
rem

oteA
ddress - java.lang.String

toString

p
u
b
l
i
c

S
t
r
i
n
g

t
o
S
t
r
i
n
g
(
)

R
eturns a string of this class.

R
eturns:java.lang.String

O
verrides:toString in class O

bject

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

A
ppendix A

: Java D
ocum

entation

132
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

I
n
d
e
x

package transporter

•
A

bstractT
ransporter

•
R

M
IT

ransporter

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
133

A
ppendix A

: Java D
ocum

entation

134
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

C
lass transporter.A

bstractT
ransporter

j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

|

+
-
-
-
-
t
r
a
n
s
p
o
r
t
e
r
.
A
b
s
t
r
a
c
t
T
r
a
n
s
p
o
r
t
e
r

public abstract class A
bstractT

ransporter
extends O

bject

D
efines a basic structure of the object transporter.

environm
ent

A
bstractT

ransporter()
C

reates a new
 instance of A

bstractT
ransporter class.

receiveA
gent(byte[])
R

eceives a serialized agent and returns a agent object.
sendA

gent(A
gent, String)

serializes and send an agent object to a specific address.

environm
ent

p
r
o
t
e
c
t
e
d

A
g
e
n
t
E
n
v
i
r
o
n
m
e
n
t

e
n
v
i
r
o
n
m
e
n
t

A
bstractT

ransporter

p
u
b
l
i
c

A
b
s
t
r
a
c
t
T
r
a
n
s
p
o
r
t
e
r
(
)

C
reats a new

 instance of A
bstractT

ransporter class.

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
135

receiveA
gent

p
u
b
l
i
c

a
b
s
t
r
a
c
t

A
g
e
n
t

r
e
c
e
i
v
e
A
g
e
n
t
(
b
y
t
e

b
y
t
e
A
r
r
a
y
[
]
)

R
eceives a serialized agent and returns a agent object.

P
aram

eters:
byteA

rray - byte[]
R

eturns:agent.A
gent

sendA
gent

p
u
b
l
i
c

a
b
s
t
r
a
c
t

v
o
i
d

s
e
n
d
A
g
e
n
t
(
A
g
e
n
t

a
g
e
n
t
,

S
t
r
i
n
g

a
d
d
r
e
s
s
)

Serializes and send an agent object to a specific address.

P
aram

eters:
agent - agent.A

gent
address - java.lang.String

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

A
ppendix A

: Java D
ocum

entation

136
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

C
lass transporter.R

M
IT

ransporter
j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

|

+
-
-
-
-
t
r
a
n
s
p
o
r
t
e
r
.
A
b
s
t
r
a
c
t
T
r
a
n
s
p
o
r
t
e
r

|

+
-
-
-
-
t
r
a
n
s
p
o
r
t
e
r
.
R
M
I
T
r
a
n
s
p
o
r
t
e
r

public class R
M

IT
ransporter

extends A
bstractT

ransporter
im

plem
ents R

em
ote

T
his class defines a object transport using Java R

M
I.

R
M

IT
ransporter()

C
reates a new

 R
M

IT
ransporter instance.

R
M

IT
ransporter(A

gentE
nvironm

ent)
C

reates a new
 R

M
IT

ransporter defining the environm
ent that it w

ill w
ork for.

receiveA
gent(byte[])
R

eceive a serialized agent object and returns the agent object.
sendA

gent(A
gent, String)

S
erializes an agent object and sends it to a specific address.

R
M

IT
ransporter

p
u
b
l
i
c

R
M
I
T
r
a
n
s
p
o
r
t
e
r
(
)

C
reates a new

 R
M

IT
ransporter instance.

R
M

IT
ransporter

p
u
b
l
i
c

R
M
I
T
r
a
n
s
p
o
r
t
e
r
(
A
g
e
n
t
E
n
v
i
r
o
n
m
e
n
t

e
n
v
i
r
o
n
m
e
n
t
)

C
reates a new

 R
M

IT
ransporter defining the environm

ent that it w
ill w

ork for.

P
aram

eters:
environm

ent - environm
ent.A

gentE
nvironm

ent

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
137

receiveA
gent

p
u
b
l
i
c

A
g
e
n
t

r
e
c
e
i
v
e
A
g
e
n
t
(
b
y
t
e

b
y
t
e
A
r
r
a
y
[
]
)

R
eceive a serialized agent object and returns the agent object.

P
aram

eters:
byteA

rray - byte[]
R

eturns:agent.A
gent

O
verrides:receiveA

gent in class A
bstractT

ransporter

sendA
gent

p
u
b
l
i
c

v
o
i
d

s
e
n
d
A
g
e
n
t
(
A
g
e
n
t

a
g
e
n
t
,

S
t
r
i
n
g

a
d
d
r
e
s
s
)

S
erializes an agent object and sends it to a specific address.

P
aram

eters:
agent - agent.A

gent
address - java.lang.String

O
verrides:sendA

gent in class A
bstractT

ransporter

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

A
ppendix A

: Java D
ocum

entation

138
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

I
n
d
e
x

package travel

•
D

estination
•

T
ravelP

lan

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
139

A
ppendix A

: Java D
ocum

entation

140
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

C
lass travel.D

estination
j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

|

+
-
-
-
-
t
r
a
v
e
l
.
D
e
s
t
i
n
a
t
i
o
n

public class D
estination

extends O
bject

im
plem

ents Serializable

T
his class defines a destination w

here an agent can go.

address
isA

lternative
visited

D
estination

()
C

reates a new
 D

estination instance.
D

estination
(String)

C
reates a new

 D
estination instance defining its address.

getA
ddress()

R
eturns the address of a destination.

isA
lternative()

C
heck w

hether the destination is alternative or not
setA

lternative(boolean)
Sets a destination as alternative or not.

setV
isited

(boolean)
Sets a destination as visited or not.

w
asV

isited
()

C
heck w

hether the destination w
as visited already or not.

visited

p
r
i
v
a
t
e

b
o
o
l
e
a
n

v
i
s
i
t
e
d

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
141

address

p
r
i
v
a
t
e

S
t
r
i
n
g

a
d
d
r
e
s
s

isA
lternative

p
r
i
v
a
t
e

b
o
o
l
e
a
n

i
s
A
l
t
e
r
n
a
t
i
v
e

D
estination

p
u
b
l
i
c

D
e
s
t
i
n
a
t
i
o
n
(
)

C
reates a new

 D
estination instance.

D
estination

p
u
b
l
i
c

D
e
s
t
i
n
a
t
i
o
n
(
S
t
r
i
n
g

a
d
d
r
e
s
s
)

C
reates a new

 D
estination instance defining its address.

P
aram

eters:
address - java.lang.String

getA
ddress

p
u
b
l
i
c

S
t
r
i
n
g

g
e
t
A
d
d
r
e
s
s
(
)

R
eturns the address of a destination.

R
eturns:java.lang.String

isA
lternative

p
u
b
l
i
c

b
o
o
l
e
a
n

i
s
A
l
t
e
r
n
a
t
i
v
e
(
)

C
heck w

hether the destination is alternative or not

R
eturns:boolean

setA
lternative

p
u
b
l
i
c

v
o
i
d

s
e
t
A
l
t
e
r
n
a
t
i
v
e
(
b
o
o
l
e
a
n

i
s
A
l
t
e
r
n
a
t
i
v
e
)

Sets a destination as alternative or not.

A
ppendix A

: Java D
ocum

entation

142
M

obile A
gents: P

atterns and R
eflection

P
aram

eters:
isA

lternative - boolean

setV
isited

p
u
b
l
i
c

v
o
i
d

s
e
t
V
i
s
i
t
e
d
(
b
o
o
l
e
a
n

v
i
s
i
t
e
d
)

Sets a destination as visited or not.

P
aram

eters:
visited - boolean

w
asV

isited

p
u
b
l
i
c

v
o
i
d

w
a
s
V
i
s
i
t
e
d
(
)

C
heck w

hether the destination w
as already visited or not.

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
143

A
ppendix A

: Java D
ocum

entation

144
M

obile A
gents: P

atterns and R
eflection

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

C
lass travel.T

ravelP
lan

j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

|

+
-
-
-
-
t
r
a
v
e
l
.
T
r
a
v
e
l
P
l
a
n

public class T
ravelP

lan
extends O

bject
im

plem
ents Serializable

T
his class defines the travel plan on an agent.

agentH
om

eA
ddress

destinations
goA

lternative
index
m

axV
isits

tim
eO

ut

T
ravelP

lan
()

C
reates a new

 T
ravelP

lan instance.

addD
estination

(String)
A

dds a destination in the travel plan.
addO

therD
estinations(V

ector)
A

dds other destinations in the travel plan that w
ere obtained from

 the visited
environm

ent.
hasF

inished
()

C
hecks w

hether the travel has finished or not.
initializeT

ravel(V
ector)

Initialize a travel w
ith a list of address.

nextD
estination

()
G

ets the next destination w
here the agent should go.

rem
oveD

estination
(String)

R
em

oves a destination from
 the travel plan.

resetIndex()
Sets the travel plan index to zero.

resetV
isited

()

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
145

Sets all destinations as not visited yet.
setA

gentH
om

eA
ddress(String)

S
ets in the travel plan the current agent address.

setG
oA

lternatives(boolean)
Sets the goA

lternative param
eter w

hether the agent should visit or not the
alternative addresses.

setM
axV

isits(int)
Sets the m

axim
um

 num
ber of visits per travel.

setT
im

eO
ut(int)

Sets the tim
e out for a connection.

index

p
r
i
v
a
t
e

i
n
t

i
n
d
e
x

destinations

p
r
i
v
a
t
e

V
e
c
t
o
r

d
e
s
t
i
n
a
t
i
o
n
s

tim
eO

ut

p
r
i
v
a
t
e

i
n
t

t
i
m
e
O
u
t

m
axV

isits

p
r
i
v
a
t
e

i
n
t

m
a
x
V
i
s
i
t
s

goA
lternative

p
r
i
v
a
t
e

b
o
o
l
e
a
n

g
o
A
l
t
e
r
n
a
t
i
v
e

agentH
om

eA
ddress

p
r
i
v
a
t
e

S
t
r
i
n
g

a
g
e
n
t
H
o
m
e
A
d
d
r
e
s
s

T
ravelP

lan

p
u
b
l
i
c

T
r
a
v
e
l
P
l
a
n
(
)

C
reates a new

 T
ravelP

lan instance.

addD
estination

p
u
b
l
i
c

v
o
i
d

a
d
d
D
e
s
t
i
n
a
t
i
o
n
(
S
t
r
i
n
g

a
d
d
r
e
s
s
)

A
ppendix A

: Java D
ocum

entation

146
M

obile A
gents: P

atterns and R
eflection

A
dds a destination in the travel plan.

P
aram

eters:
address - java.lang.String

addO
therD

estinations

p
u
b
l
i
c

v
o
i
d

a
d
d
O
t
h
e
r
D
e
s
t
i
n
a
t
i
o
n
s
(
V
e
c
t
o
r

o
t
h
e
r
D
e
s
t
i
n
a
t
i
o
n
s
)

A
dds other destinations in the travel plan that w

ere obtained from
 the visited

environm
ent.

P
aram

eters:
otherD

estinations - java.util.V
ector

hasF
inished

p
u
b
l
i
c

b
o
o
l
e
a
n

h
a
s
F
i
n
i
s
h
e
d
(
)

C
hecks w

hether the travel has finished or not.

R
eturns:boolean

initializeT
ravel

p
u
b
l
i
c

v
o
i
d

i
n
i
t
i
a
l
i
z
e
T
r
a
v
e
l
(
V
e
c
t
o
r

d
e
s
t
)

Initialize a travel w
ith a list of address.

P
aram

eters:
dest - java.util.V

ector

nextD
estination

p
u
b
l
i
c

S
t
r
i
n
g

n
e
x
t
D
e
s
t
i
n
a
t
i
o
n
(
)

G
ets the next destination w

here the agent should go.

R
eturns:java.lang.String

rem
oveD

estination

p
u
b
l
i
c

v
o
i
d

r
e
m
o
v
e
D
e
s
t
i
n
a
t
i
o
n
(
S
t
r
i
n
g

a
d
d
r
e
s
s
)

R
em

oves a destination from
 the travel plan.

P
aram

eters:
address - java.lang.String

resetIndex

A
ppendix A

: Java D
ocum

entation

 M
obile A

gents: P
atterns and R

eflection
147

p
u
b
l
i
c

v
o
i
d

r
e
s
e
t
I
n
d
e
x
(
)

Sets the travel plan index to zero.

resetV
isited

p
u
b
l
i
c

v
o
i
d

r
e
s
e
t
V
i
s
i
t
e
d
(
)

Sets all destinations as not visited yet.

setA
gentH

om
eA

ddress

p
u
b
l
i
c

v
o
i
d

s
e
t
A
g
e
n
t
H
o
m
e
A
d
d
r
e
s
s
(
S
t
r
i
n
g

A
g
e
n
t
H
o
m
e
A
d
d
r
e
s
s
)

S
ets in the travel plan the current agent address.

P
aram

eters:
A

gentH
om

eA
ddress - java.lang.String

setG
oA

lternatives

p
u
b
l
i
c

v
o
i
d

s
e
t
G
o
A
l
t
e
r
n
a
t
i
v
e
s
(
b
o
o
l
e
a
n

g
o
A
l
t
e
r
n
a
t
i
v
e
)

Sets the goA
lternative param

eter w
hether the agent should visit or not the

alternative addresses.

P
aram

eters:
goA

lternative - boolean

setM
axV

isits

p
u
b
l
i
c

v
o
i
d

s
e
t
M
a
x
V
i
s
i
t
s
(
i
n
t

m
a
x
V
i
s
i
t
s
)

Sets the m
axim

um
 num

ber of visits per travel.

P
aram

eters:
m

axV
isits - int

setT
im

eO
ut

p
u
b
l
i
c

v
o
i
d

s
e
t
T
i
m
e
O
u
t
(
i
n
t

t
i
m
e
O
u
t
)

Sets the tim
e out for a connection.

P
aram

eters:
tim

eO
ut - int

A
l
l

P
a
c
k
a
g
e
s

C
l
a
s
s

H
i
e
r
a
r
c
h
y

T
h
i
s

P
a
c
k
a
g
e

P
r
e
v
i
o
u
s

N
e
x
t

I
n
d
e
x

