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Chapter 1

Introduction

This chapter explains briefly what this work is about without going too

much into details. The intention is to give the reader a quick overview of

the content without explaining the technical details.

1.1 Threads

The programming of computers evolved during the time that it exists a lot.

In the beginning the only issue was efficiency. Later maintainability became

an important issue. The programs became more structured during this

evolution. The first step was structured programming that identified three

structures: sequence, selection, iteration. The use of gotos became almost

forbidden [4]. The use of procedures made programs better understandable

in a top down approach.

The next step was object oriented programming, that tries to combine

data and code to modify that data in objects. These objects can be used

via an interface without knowledge of the inside.

At this moment sequential programs can not always solve the problems

that today appear. If the user presses a stop button of a music player

program, he expects that the program handles this request right now, not

when the song has ended. This can be achieved by using threads.

With the current situation parallel computers are becoming usable out-

side of the very specialized areas that they were used before. To program

them efficiently the task has to be split in several subtasks that can be

executed in parallel.

1
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At this moment the programmers start to need threads. This means

that these threads have to be usable without causing to much trouble.

1.2 Problem

These threads allow that more instructions are executed at the same mo-

ment. This can be done with real parallel processors or with time-slices of

a single processor.

When multiple threads modify at the same moment an object or an

other piece of memory it is possible that some inconsistencies appear in

that memory. These kind of memory accesses that may not be influenced

by other threads are known as critical sections.

To prevent these problems the programmer should make sure that it is

not possible that different threads modify an object at the same moment.

This is not as easy as one could expect. If the programmer misses one of

those cases it will cause only sometimes a problem, which means that this

kind of bugs is hard to reproduce.

1.3 Possible Solution

A way to make threads more safe for the programmer is proposed in [8].

This is a model that is inspired by the Remote Method Invocation (RMI)

of Java. The most important property of this model is that each thread

runs in a separate virtual machine with its own variables and objects. The

threads can move to another virtual machine, with the restriction that they

can not enter a virtual machine that contains an active thread.

This model can be implemented in different ways. The different im-

plementations will all have their own advantages and disadvantages. The

important part was to implement the model so one can find out if it is usable

to write programs and to do experiments that can lead to improvements of

the model.

A prototype of this model was implemented during this thesis by modi-

fying Kaffe, a clean-room open source Java Virtual Machine (JVM).

While implementing this prototype some problems showed up that were

not expected when developing the model. These problems are not solved

but some solutions are proposed at the end of this work. Also it is shown
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that with some programmer effort the problems that the safe-threads try to

avoid, can be created again.



Chapter 2

Concurrent programming

High level programming languages like Java[5] try to hide as much as pos-

sible the underlying machine to the programmer. For instance the garbage

collector can be seen as a tool that gives objects an infinite lifetime. It also

resolves the problems associated with freeing memory to the programmer.

A harder to use feature of Java at this moment are the threads. Some

authors discourage strongly the use of threads if not absolutely needed. Like

in [10]. This is because of the problems that can happen when two threads

are accessing at the same piece of memory and at least one of those threads

is modifying the memory.

2.1 The need for concurrency

At this moment concurrency is needed for graphical user interfaces. For

example in a database application the user starts a very time-consuming

query. If the user thinks that this takes too long, he wants to be able to

stop that query. Then he can try to get the required information in an other

way. If a user wants to stop a query, it has to stop before it has ended by

itself before it is stopped. If he presses a “Stop” button he wants that the

query stops now, even if the computer is busy with handling the query.

Other possible applications are games where some graphical objects on

the screen seem to be independent from others. For example some flying

birds, while a car drives somewhere on the screen, and a waterfall. All this

movements are not related very much. If the car stops the birds do not stop

in the air.

These examples show that concurrency can be useful for a programmer

4
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even when the problem is not the time of computing. If programmers will

write such applications they will consider to use threads. A thread is a single,

sequential flow of execution that shares it memory with other threads. The

word is only used when multiple threads are considered.

Recent languages, like Java, support multiple threads but the use of

threads in those language can lead to a lot of unexpected problems.

2.2 Evolution in hardware

There is also another reason to use threads: the search for more computing

power that until now lead to clock frequencies up to 1 GHz.

Until now the majority of the computers are close to a Single Instruction

Single Data (SISD) design. Some extensions give sometimes Single Instruc-

tion Multiple Data (SIMD) possibilities but this is only useful in specific

applications. The SISD is easy to program but the speed is limited by the

limits of the processor. Multiple Instruction Multiple Data (MIMD) also

called parallel computers are becoming a interesting solution. Even with

the problems that MIMD architectures cause for software developers, these

computers are becoming interesting because of their computing power.

To get more performance by using more processors, the task should

be divided in more sub tasks that can be executed in parallel on different

processors.

A problem with more processors is that there are different possible con-

figurations, that require different approaches to use the computer in an

efficient way.

A few examples:

• shared memory

• latency in communication

• number of processors

A parallel computer and a network of computers are conceptually very

close to each other. A cheap way to build a parallel computer is to connect

computers through a fast network. This will result in a distributed memory

computer. Because of the hardware problems that raise when many proces-

sors need to share the same memory, distributed memory is the best choice

with multiple processors.
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To write a program for each different configuration would be very un-

practical and expensive. This means that it would be very useful to find a

single system to program all of them.

At this moment threads are used to allow concurrency in a single com-

puter. They allow the programmer to write code that can execute different

tasks at the same moment. This concurrency is simulated via time slicing

but it will appear to the user like executed simultaneously.

2.3 Why are threads unsafe?

2.3.1 What is unsafe?

In [8] features are called unsafe if they generate a cost that is too high when

not used properly. This cost can be caused by a long debugging time, or by

a low reliability of the application.

An example of an unsafe feature is the delete in C++ that can be very

hard to use if a block of memory is referenced by many parts of the program.

This has been solved by garbage collection in programming languages like

Java. The cost of this increased safety is lower performance.

2.3.2 The unsafety in threads

The problem with threads is that a programmer can easily forget to protect

critical sections. These critical sections occur when a shared resource is ma-

nipulated by multiple threads. This means that a critical section requires

synchronization between threads to avoid an inconsistent state caused by

concurrent manipulation of that resource. This synchronization can be han-

dled for example via monitors or semaphores. However it is in general very

difficult to detect all the critical sections, especially in bigger programs. So

a programmer can easily forget to protect some of them. An unprotected

critical section is extremely hard to find because it behaves very unpre-

dictablely and can appear only in rare cases. This results in bugs that are

not reproducible.

2.4 Previous work on the safety of threads

In the past some work has been done to hide the distributed memory from

the programmer and make it appear as shared memory. This will make
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threads easier to use, but it does not solve problems like the critical sections

at all. Not many research has been done on improving the safety of threads.

The work of Brinch-Hansen and Hoare (see Section 3.6) is incompatible with

pointers. Java uses only pointers except for primitive types.

Some work can be used for building a more safe implementation of

threads. Netclos [7] and the Remote Method Invocation (RMI) in Java

are some mechanisms used that can lead to a safer thread system.

There exist now three models used for parallel programming. The model

is the programmers view of the system. This defines how a concurrent

program has to be written.

A physical implementation is how the hardware is build. This can be

different from the model. If a model is used that is very different from

the hardware this can also be implemented, although it will not always be

efficient.

2.4.1 Multiple processors, shared memory

In this model the programmer gets the illusion of a single shared memory. All

the processors work in that shared memory. An example of this model are

the POSIX threads in a Unix system. This model can even be implemented

in a multiprocessor with distributed memory, but the implementation will

be very complex and inefficient. This model is easier to program than the

next one. Since the programmer will not see that objects can be distributed

over more computers.

2.4.2 Multiple processors, distributed memory

This model is completely different since it assumes only communication via

messages between different sequential processes. This can be done for exam-

ple through communication via sockets, even between different computers.

This is harder to use since the programmer will need to create some proto-

col for the different processes to communicate. This is more complex than

calling a method as in the next model.

2.4.3 Remote objects

This contains elements from the two previous models. Each computer can

have multiple threads in its own memory. These threads can reference ob-
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jects in the local memory. But it is also possible to have references to objects

in memory of another computer. Those remote objects can only be manipu-

lated via an interface of methods that the programmer has to define. If one

of those methods are invoked, it is executed in the remote machine.

This last model is at this moment used in architectures like CORBA[12]

and the Java specific RMI[9] to build distributed applications over a network.

In these two architectures remote objects are used via an interface. In

RMI a Java interface is used while in Corba a special interface description

language (IDL) is used.

These can also be used in a shared memory multiprocessor instead of a

network. It will even save some time by avoiding the network latencies.

2.5 How to build a model with safety as an objec-

tive?

The three previous models were not made with the safety requirements that

have been defined before. But the ideas can be used to make a safer system

for parallel programming. It is desirable to choose one model and stay with it

for all hardware implementations, since rewriting an application for another

model will be a time consuming process.

This means that the prefered model should be usable in an efficient way

on most physical implementations. The model of remote object can be used

in hardware with shared memory in an efficient way. This makes the remote

object the most interesting model.

The remote object model can be made for example by running multiple

JVMs in a single computer and using RMI for the communication between

those JVMs. But this will cost some performance because of the following

reasons:

• context switches

• interprocess communication

This makes the remote methods a lot more expensive to use than a

local method. This makes the shared memory model more efficient than the

remote objects model. But the shared memory model is difficult to debug

since the programmer has to find all critical sections. The remote objects
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1

2 class UpCounter

3 {

4 stat ic f ina l UPPERLIMIT=5;

5 private int count =0;

6 public void i n c ( ) // NOT synchronized

7 {

8 i f ( count<UPPERLIMIT)

9 count++;

10 }

11 }

Listing 2.1: Critical section example

time thread A thread B result

0 count==4

1 count < 5 true

2 count < 5 true

3 count++ count == 5

4 count ++ count == 6

Table 2.1: Trace of a critical section problem

model has also critical sections but since global variables are not shared,

there will be less. This does not make them less important.

2.5.1 Critical Sections

The problem with concurrency are the critical sections. These are pieces of

code that manipulate an object that is shared between different threads. If

more threads make an object change at the same moment, it can make the

object inconsistent. This can be seen in the example in Listing 12 which

is intended as a sequential program but used in parallel. The trace of the

problem is shown in Table 2.1 with two threads.

The problem that Table 2.1 shows can be explained as follows. The

counter has the value 4, in a situation with two threads called A and B.

A executes the method inc() and executes the test. Then B executes the
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same test before A executes the increment of the count variable. This means

that both threads can increment the counter and make the counter have the

value 6 which is not supposed to be possible. This kind of bugs is very hard

to find in a big program.

This kind of problems will appear in a random way, since the situation

described above is not very easy to reach. Therefore finding these problems

is very time consuming and not always successful. In almost any case a

programmer will use libraries, which results in more chances to create such

problems. It is very optimistic to expect that all libraries have their critical

sections protected, since many libraries have been developed for sequen-

tial programs, so they use global1 variables that can cause critical sections

problems since different threads will be allowed to access the same objects.

2.6 Possible solution

A possible way to make threads more safe for programmers is proposed in

the next chapter. This is based on the original paper[8] about safe-threads.

But with some examples the model will be more clear for a programmer

that wants to use the safe-threads.

1static variable in Java



Chapter 3

The Safe-threads Model

This chapter will explain the safe-threads model. The semantics of this

model will be explained by some examples that were used to test the im-

plementation during the development. A more detailed explanation of some

classes and methods is given in the next chapters.

3.1 Static Variables

Object Oriented Languages like Java[5] have variables that belong to a class

instead of an object. They are defined with the modifier static. These

variables are also referred as class variables.

If multiple threads are used in Java, the static variables are shared be-

tween the threads because the classes are also shared. This can lead to many

critical sections in the most unexpected places.

3.2 Logical Java Virtual Machine

An LJVM is a conceptual JVM that can have only one active thread and

has its own static variables. Different LJVMs can share a single JVM but

each LJVM has its own separate static variables.

The LJVMs can be seen as a distributed system where different JVMs are

combined via Remote Method Invocation (RMI). With the extra restriction

that each LJVM can only execute one thread at a time.

To give a demonstration of these separation of static variables the fol-

lowing program is used. This program was used during the development of

11
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the safe-threads implementation, and is modified to work in the most recent

version.

1 /∗ FILE : MyLjvm . java ∗/

2 public interface MyLjvmInterface extends Sharable {

3 public void r e s e tVa l ( ) ;

4 public int incVal ( ) ;

5 }

6

7 /∗ FILE : MyLjvm . java ∗/

8 public c lass MyLjvm extends LJVMBase

9 implements MyLjvmInterface {

10 private stat ic int a=0; // STATIC !

11

12 public void r e s e tVa l ( ) {

13 a=0;

14 }

15 public int incVal ( ) {

16 a++;

17 return a ;

18 }

19 }

20

21 /∗ FILE : StaticDemo . java ∗/

22 class StaticDemo {

23 public void run ( St r ing arg [ ] ) {

24 MyLjvmInterface theLjvm1 ;

25 MyLjvmInterface theLjvm2 ;

26 int l1 , l 2 ;

27 theLjvm1=new MyLjvm ( ) ;

28 theLjvm2=new MyLjvm ( ) ;

29 theLjvm1 . r e s e tVa l ( ) ;

30 theLjvm2 . r e s e tVa l ( ) ;

31

32 theLjvm1 . incVal ( ) ;

33 l 1=theLjvm1 . incVal ( ) ;

34 l 2=theLjvm2 . incVal ( ) ;
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35 System . out . p r i n t l n (

36 ” the s t a t i c va r i ab l e in each LJVM” ) ;

37 System . out . p r i n t l n ( ” theLjvm1 . a == ”+l1 ) ;

38 System . out . p r i n t l n ( ” theLjvm2 . a == ”+l2 ) ;

39 }

40 }

Listing 3.1: Static Variables Demo

1 %java Safe StaticDemo

2 va lue s o f the stat ic va r i ab l e in each LJVM

3 theLjvm1 . a == 2

4 theLjvm2 . a == 1

Listing 3.2: Output of StaticDemo

The output in Listing 5 of the previous program (Listing 41) would be

two times a 3 with a normal Java semantics. But in a system with the

safe-threads the result will different be for each LJVM, resulting in {2, 1}

because the static variable of the MyLJVM class (defined in line 10) is not

shared between different LJVMs.

In this example it works like the variable MyLjvm.a would not be static

but an instance variable. A static variable will be shared by all objects that

belong to the same LJVM. The example shows that the use of an LJVM is

very similar to other objects. If a method in MyLJVM would create objects

those objects would be part of the LJVM that created them and share

static variables in that LJVM. In that situation the keyword static has

more significant result than in the small example.

The output listing shows also the different way to start a program with

safe-threads compared to a program with Java semantics. The Safe will

make all the needed work to activate the safe-threads. After the word “Safe”

a class name and arguments follow like for a normal Java program. In

StaticDemo.java a method run (line 23) is defined instead of main, this makes

another difference with the normal system where always a static method is

defined.

In an LJVM it is possible to have references to objects in another LJVM.

These objects are called foreign objects The variables that reference to a

foreign object can only have an interface that extends java.lang.Sharable

or java.lang.Object as a type.
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An interface does not have instance variable. This will make it impossible

to concurrently access the data of a sharable object. The only way to access

instance variables of a foreign object is through a method call that is mutual

exclusive since only one thread can be active in an LJVM.

The variables theLjvm1 and theLjvm2 in the run method of class

StaticDemo in Listing 41 are an interface type because the objects they

refer to are in their own LJVM.

3.3 Sharable Objects

Instances from a class that implements the new java.lang.Sharable inter-

face (sometimes called Sharable). The instances of such a class are the only

objects that can be referenced in another LJVM than the one they belong

to. An object referenced in another LJVM is called a foreign object.

Sharable classes need to implement the interface Sharable or an interface

that extends from it. Because a foreign object can only be referenced by

such an interface. These methods of an interface that extends from the

Sharable interface are called sharable methods. The instance variables of

an object in another LJVM are not accessible, because the only correct way

to have a reference to foreign objects is via an interface that extends from

the java.lang.Sharable or a variable of the type java.lang.Object.

3.4 Calling a foreign method

Since a variable can reference a foreign object it is also possible to send

methods to that foreign object. This is done in a way similar to RMI. The

method is executed in the LJVM that contains the object. The invariant

stating that in an LJVM only one thread can be active makes that the

method call has to wait until the LJVM is free. This can lead to an infinite

lock, if the other thread, that is waited for, does not leave the LJVM of the

called object. Finally, this can cause a deadlock where all safe-threads are

waiting on each other.

This problem is easier to find that an unprotected critical section. So it

is an improvement of the current thread model.

It is only possible to call methods of a foreign object if those methods

belong to an interface that extends java.lang.Sharable. To call a method
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in a foreign object, that method has to be part of the sharable interface

that is used to reference the object. An interface that does not extend the

java.lang.Sharable can not reference a foreign object.

The arguments of a foreign method call are handled similarly to what

happens during a remote call in RMI. The primitive types are not handled

in a special way. The sharable objects are not copied. The objects that are

not sharable are deep copied in a way that is explained in Subsection 3.4.1.

The result of this copied arguments can be seen in the example of Listing

26. In this example, an argument of type java.awt.Point is passed to

a method of an object in another LJVM. The argument is not sharable

meaning that it has to be copied to have a local copy in the other LJVM.

All modifications in the LJVM that executes the method will not affect the

actual parameter in the LJVM that called the method. The result of this

can be seen in Listing 6. This is the same behavior as when invoking a

method in a remote object with RMI.

3.4.1 Copying arguments

This copying of arguments works with a depth first copy of all the objects

in actual parameters that have to be copied. Each object that is copied is

stored in a hash-table with the original reference as the key and the copy as

the associated value. A hash table is used because this type of dictionary

gives a high performance, while the memory it uses is only used for a short

time. Before copying an object it is checked if the copy does not already

exists in that hash-table to prevent multiple copies of the same object, since

this would result in a different structure than the original. This problem is

shown in Figure 3.1 where the objects A′ and B′ appear after a copy of an

array without use of this hash-table.

This hash-table is made before the first argument is handled and de-

stroyed after copying the last one. This allows to copy complex structures

like for example a circular list, or actual parameters that refer direct or

indirectly to the same object. This can take some time but it is faster

than a normal serialization and deserialization because there is no network

transport in between like it would be the case with RMI.
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1 /∗ FILE : MyLjvmCopyInterface . java ∗/

2 public interface MyLjvmCopyInterface extends Sharable {

3 public void fore ignMethod ( java . awt . Point a ) ;

4 }

5

6 /∗ FILE : MyLjvmCopy ∗/

7 class MyLjvmCopy extends LJVMBase

8 implements MyLjvmCopyInterface {

9 public void fore ignMethod ( java . awt . Point a ) {

10 a . move ( 5 , 5 ) ;

11 System . out . p r i n t l n ( ” In ’ f o r e i g n ’ LJVM : ”+a ) ;

12 }

13 }

14

15 /∗ FILE : CopyDemo . java ∗/

16 class CopyDemo {

17 public void run ( St r ing arg [ ] ) {

18 MyLjvmCopyInterface theLjvm ;

19 java . awt . Point p=new java . awt . Point ( 1 0 , 1 0 ) ;

20 theLjvm=new MyLjvmCopy ( ) ;

21 System . out . p r i n t l n ( ” Before Fore ign Cal l P=”+p ) ;

22 theLjvm . fore ignMethod (p ) ;

23 System . out . p r i n t l n ( ” After Fore ign Cal l P=”+p ) ;

24 }

25 }

Listing 3.3: Copying Argument Demo

1 %java Safe CopyDemo

2 Before Fore ign Cal l P=java . awt . Point [ 1 0 , 1 0 ]

3 In ’ f o r e i g n ’ LJVM : java . awt . Point [ 5 , 5 ]

4 After Fore ign Cal l P=java . awt . Point [ 1 0 , 1 0 ]

Listing 3.4: Output of CopyDemo
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Figure 3.1: Copying complex structures

3.4.2 Type of the formal parameters

If a formal parameter receives a shared object it should be an interface type

that is extended from the java.lang.Sharable and the interface should

also be implemented by the class of the actual parameter, or the formal

parameter can be a java.lang.Object as well.

This is because foreign references should be interfaces to prevent access

to the instance variables. The class java.lang.Object is the most generic

class therefore it is also allowed.

If the formal parameter is a class instead of an interface it would give

access to the instance variables of foreign object. To prevent this, two dif-

ferent solutions are possible: The most strict one would be to forbid this

with an exception at runtime or an error at compile time if a compiler can

detect this. A less strict way would be to copy the object in that case to

the LJVM that will execute the method. This can lead to some unexpected

results.

Which of those solutions is the best is at this moment not decided. The

prototype can be some guide to see the implications of both options. Both

solutions are possible by a small modification in the source code of the

modified Kaffe (see Section 6.6).
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3.5 LJVMs spreaded over multiple JVMs

It is possible to distribute LJVMs over multiple JVMs in a similar way

as RMI. This means not that an LJVM would be split in different parts,

only that the LJVMs are no longer in the same JVM. This can be done for

efficiency reasons where the power of more processors can be combined. The

safe-threads model is very close to RMI and therefore both can be combined

without big problems. It was not an objective for the prototype, but to

make RMI work will not be very hard as described in section A.5. Of course

it is important to make sure that only one thread can be active inside an

LJVM at the same moment.

3.6 Monitors in general

The idea of a monitor was originally used for operating systems to allow

multiple programs to use shared resources, for example storage devices.

In [1] Brinch-Hansen introduces the concept of a critical region1 that

modifies a certain shared variable. A critical region can only be executed

by one process (or thread) at the same moment. In [6] Hoare introduces a

similar concept that he calls a monitor. This monitor is like an object that

has private variables and can contain only a single active thread.

In the concept of monitors it is possible that a thread becomes inactive,

to allow an other thread to become active. Both authors use a different

approach. Hoare uses a lower level approach which only signals events via

conditional variables. While Brinch-Hansen proposes a more high level ap-

proach that checks a boolean expression. This results in less efficiency, be-

cause all these expressions have to be evaluated each time a thread gives the

lock away. While the approach of Hoare can be more specific by specifying

which threads are awakened.

In [2] Brinch-Hansen compares the language Java with these ideas that

are more than 20 years old. Java uses a signals like in the Hoare approach

but with a single condition variable, this means that all waiting threads are

awakened on an event. In Java exists, besides the notifyAll, a notify

method that works in a first in first out (FIFO) way.

This results in a combination of the disadvantages of both propositions

since the programmer has to make the checks for the boolean condition

1This is similar to the critical section, but it is explicitly defined by the programmer
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explicitly like in the Hoare approach and it has the inefficiency of wakening

all waiting threads as in the Brinch-Hansen approach.

3.7 An LJVM as a Monitor

The LJVM acts like a monitor, this means that only one safe-thread can be

active in an LJVM, as written before in this chapter. A safe-thread can give

up the monitor to another safe-thread by using a waitCond call similar to

the wait of Java.

3.8 A more practical example

With the safe-threads each LJVM has its own System.in and System.out

that are initially forwarded via a stub/skeleton mechanism to a common

input and output as described in Section 7.5. This can be changed to another

configuration. This example is based on the one in [8].

It is possible to connect the System.in to the System.out of another

LJVM to create a very similar situation as made via pipes in Unix.

The Unix program grep filters a stream so that only lines that contain

a pattern can pass the program. This stream can be a given file.

The Unix program wc prints the number of bytes, words and lines from

a stream. The name is an abbreviation of “word count”.

A powerful methodology in Unix consists in solving complex problems

by connecting simple commands through pipes, as in the next example:

grep hello notes | wc

This line will result in reading the file “notes” sending only the lines

that contain “hello” to the wc program that will print the number of bytes,

words and lines that could pass the grep filter.

The program grep shares no variables with the program wc the only

relation they have is that the output of grep is used as input for wc.

This situation can be made with the safe-threads in an easy way since an

LJVM does not share anything with another LJVM unless the programmer

makes an explicit connection between them through shared objects that can

also be exchanged via a registry (see subsection 7.4.1) or via method-call of

an LJVM interface.
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1 interface GrepLjvmInterface extends Sharable {

2 public void s e t I n f i l e ( S t r ing i n f i l e ) ;

3 public void setOutPipe ( Pr in tS t r eamInte r f a c e out ) ;

4 public void s t a r t ( ) ;

5 }

6

7 interface WcLjvmInterface extends Sharable {

8 public void s e t InP ipe ( InputStreamInter fac e in ) ;

9 public void s t a r t ( ) ;

10 }

11

12 interface IOPipe In t e r f a c e extends Sharable {

13 }

14

15 class IOPipe

16 implements IOPipeInter face ,

17 InputStreamInter face ,

18 Pr in tSt r eamInte r f a c e {

19 // not implemented here

20 }

21

22 class GrepLjvm

23 extends LJVMBase

24 implements GrepLjvmInterface {

25 java . i o . InputStream i nF i l e ;

26 public void s e t I n f i l e ( S t r ing i n f i l e ) {

27 i nF i l e=new java . i o . Fi leInputStream ( i n f i l e ) ;

28 }

29 public void setOutPipe ( Pr in tS t r eamInte r f a c e out ) {

30 System . setOut ( out ) ;

31 }

32 public s t a r t ( ) {

33 Grep grep=new Grep ( i nF i l e , System . out ) ;

34 new GrepSafeThread( grep ) . s t a r t ( ) ;

35 }

36 }
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37

38 class WcLjvm

39 extends LJVMBase

40 implements WcLjvmInterface {

41 public void s e t InP ipe ( InputStreamInter fac e in ) {

42 System . s e t I n ( in ) ;

43 }

44 public s t a r t ( ) {

45 Wc wc=new Wc( inF i l e , System . out ) ;

46 new WcSafeThread (wc ) . s t a r t ( ) ;

47 }

48 }

49

50 public c lass PipeDemo {

51 public void run ( St r ing arg [ ] ) {

52 GrepLjvmInterface grep =new GrepLjvm ( ) ;

53 WcLjvmInterface wc=new WcLjvm( ) ;

54 IOPipe In t e r f a c e pipe=new IOPipe ( ) ;

55 grep . s e t I nF i l e ( ” notes ” ) ;

56 grep . setOutPipe ( pipe ) ;

57 wc . s e t InP ipe ( pipe ) ;

58 grep . s t a r t ( ) ;

59 wc . s t a r t ( ) ;

60 }

61 }

Listing 3.5: Piping Example

In Listing 62 is shown that it is possible to combine the sequential classes

Grep and Wc by using different LJVMs. The example uses a separate LJVM

for the grep and the wc this means that even if they use a shared variable

they will not have any influence on each other.

It is supposed that some extra classes exist in the example but their

implementation is not needed to see how pipes can be easily implemented in

the safe-threads model. The needed extra classes are a sequential Wc and

Grep and the classes used to start the safe-threads in the two LJVMs.
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3.9 Registry

In this model LJVMs can share their Sharable objects by using a central

registry in a way that is similar to RMI. The registry is accessed via an

object of the class SafeRegistry. This ‘safe’ refers to the name of the

model, it does not suggests that this registry is safer than the one of the

RMI system.



Chapter 4

Implementation of the model

in Java

In this chapter it is explained how a language can be modified to support

the safe-threads model. This does not mean that safe-threads would be only

implementable in that language. This is just a way to use the safe-threads.

It will be possible to implement the safe-threads model in other languages as

well. The syntax of such a modified language will be the same as the original

version of the language but the semantics are different, therefore the new

dialect will not be compatible1 with the original version of the language.

4.1 An Implementation of safe-threads model

Since Java is at this moment a popular language that is easy to use, it will

be used as the start for implementing the model. This will save a lot of time

that otherwise would be needed to build a complete language.

The safe-threads model can be implemented in different ways.

• preprocessing the source code

• modifying the byte code

• modifying the JVM

Each approach has its own advantages and disadvantages. These will be

very briefly discussed.

1In the prototype is a compatible semantics available in the null-LJVM

23
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4.1.1 Preprocessor

The big advantage of this approach is that it is compatible with any Java

Virtual Machine (JVM). Since most platforms have fast Just-In-Time com-

pilers the generated code will be executed very efficiently. A lot of effort has

been made to make this JIT compilers efficient.

This also respects the idea of a single type of JVM that will run all Java

programs. This respects also the idea of running a Java-program everywhere,

instead of needing a special virtual machine. The disadvantage is that this

approach has some difficult parts. The preprocessor needs to make the same

type analysis as the compiler that creates byte code from Java sources. The

preprocessor is at this moment also being implemented, see [11].

4.1.2 Byte code modification

The byte code is an intermediate format that can be compared with ma-

chine code, but it is intended to work with a JVM instead of an ’normal’

microprocessor. By changing this byte code a program can be changed, to

use the safe-threads semantics.

This approach relies on tools like the Javassist[3] toolkit. However the

approach has some difficulties. The next solution will be the one used to

build the prototype.

4.1.3 Modifying the JVM

This approach might seem the most difficult but some things are easier

when the byte code interpreter is changed compared to the two previous ap-

proaches. Because of Kaffe[13], that is an open source project, it is possible

to modify its behavior instead of writing a new JVM from scratch. Kaffe

can be compiled in three different ways.

• interpreter

• JIT compiler

• JIT3 compiler

The interpreter code is not very difficult to understand. Since it is writ-

ten in C, it is portable, compared to more efficient assembler implementa-

tions. The Just in Time (JIT) compilers of Kaffe are more machine depen-

dent than the interpreter and needs more specific knowledge to be modified
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in an efficient way. This makes that modifying only the interpreter is the

easiest solution to build a prototype. The JIT is not modified and will not

work at all after the modifications.

Since Kaffe has a more open license than the Java implementation of

Sun, this modified virtual machine can also be distributed! This means

that people can download this modified machine and experiment with the

safe-threads themselves.

It has to be considered to be a prototype instead of a production tool,

since interpreters are slow, and especially the Kaffe interpreter is not written

to be very efficient. For example methods and fields are looked up via a se-

quential search algorithm. For a production tool it would be useful to modify

a JIT compiler since this would result in a much faster implementation.

4.1.4 Combination

It is possible to combine two or more of the previous possibilities. This might

give an easier implementation since some modifications can be handled easier

in a preprocessor, others in byte code modifications. However it will be a

less elegant solution because of the different steps that are used.

4.2 Modified Kaffe

4.2.1 Compatibility

The safe-threads are implemented by modifying Kaffe in a way that this

system can also be used together with the already existing system of threads.

The advantage of this approach is that existing programs can be used in this

modified Kaffe. An important example is the compiler program that creates

byte code from the source. Since this will allow to use the modified Kaffe

with the compiler that was made for the normal Java semantics.

In the rest of this text the expression “modified Kaffe” will be used when

comparing to the “original Kaffe” that is compatible with Java.

4.2.2 Changes

The Kaffe virtual machine was changed in the way that the safe-threads

must work, since only modifying the class library would not be enough. The

programmer who uses the modified Kaffe will only see the extended class
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library. However some of the semantics of the language is changed in all

LJVMs except in a null-LJVM that has kept the original semantics and

threading for compatibility reasons. This null-LJVM is implicitly created at

the moment that the modified Kaffe is started.

The original semantics is not a problem since the null-LJVM can be

hidden from the programmer by using a wrapper that creates an LJVM

with the semantics of the safe-threads. The LJVM that is created by the

wrapper is called Initial-LJVM because that will be the initial LJVM from

the point of view of the programmer, the null-LJVM has different semantics

so it will be hidden for the programmer to avoid the complication of different

semantics between the null-LJVM and the other LJVMs.

The programs that require original Java semantics will not use the wrap-

per and use only the null-LJVM.



Chapter 5

Programmers View

In this chapter it is explained what is changed in this model from the pro-

grammers view is changed, compared to the unmodified Kaffe. It will not

explain the implementation since two other chapter will handle this. One

chapter will explain the modification to the Kaffe Java Virtual Machine

(Kaffe JVM) and another chapter will explain the changes to the class li-

brary.

5.1 Changes to the Kaffe JVM

5.1.1 LJVMs in the Kaffe JVM

The Kaffe JVM has been changed in a way that each object will belong to

an LJVM. This means that each time an object is created it will belong to

the LJVM that created the object with the exception of new LJVMs that

will belong to themselves.

This introduces to difference between local and foreign objects. Objects

that belong to another LJVM are considered as foreign objects.

5.1.2 LJVM specific static variables

Each LJVM will have its own static variables for each class. This means that

a static variable is only global in an LJVM and no longer will be shared by

all LJVMs that exist in a single JVM.

27
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5.1.3 Typecasting checks LJVM-rules

If an object is only typecasted inside its own LJVM the rules are not changed.

If an object that belongs to another LJVM is typecasted some extra restric-

tions are checked.

This typecast is only possible to a variable that can reference a foreign

object. This is only possible possible by a variable of one of the following

types.

• sharable interface that is implemented by the class of the object

• java.lang.Object

1 LJVM ljvm1=foreignLJVM ; // co r r e c t

2 Object ljvm2=foreignLJVM ; // co r r e c t

3 LJVMBase ljvm3=foreignLJVM ; // Not co r r e c t ! !

Listing 5.1: Examples of this extra check

The sharable interfaces are interfaces that extend from java.lang.Sharable.

5.1.4 Foreign calls

When a foreign method is called, the arguments that reference to objects

that are not sharable will be copied. This will avoid that another LJVM

gets a reference to a foreign object that can not be shared.

The formal parameters that receive a sharable object should be able to

contain a foreign references. This restriction is the same as the one for the

type cast. If this rule is not respected two possible solutions are possible,

these are explained in section 6.6.

5.2 Library changes

The class library is extended with some extra classes and interfaces. The

following are the most important to the programmer. (The package

java.lang.safeutil contains some extra classes that will be explained in

a separate chapter.)

• Safe
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• java.lang.Sharable

• java.lang.LJVM

• java.lang.LJVMBase

• java.lang.SafeThread

• java.lang.safeutil.SafeRegistry

5.2.1 Safe

This class is used to start the safe-threads version of Kaffe. It will handle

the needed initializations to allow standard I/O to the programmer. It has

already been used in section 3.2 for activating the safe-threads system for

the user.

The programmer has to provide a class that has the method

void run(String args[]) as the entry-point to start the program.

5.2.2 Sharable

This is one of the most important interfaces. This is used to mark objects

that can be shared between different LJVMs. Objects that are sharable can

be referenced even if they are in another LJVM. This can be compared with

the java.rmi.Remote interface in the RMI-system.

This interface can be extended to interfaces that contain methods. These

methods can be used to allow method calls to objects in another LJVM. The

methods of such an interface are called Sharable methods.

5.2.3 LJVM

This interface can be used to reference to a programmer defined LJVM. It

will be extended by the programmer to an interface that will be implemented

by a subclass of LJVMBase. This allows access to the methods of a foreign

LJVM.

5.2.4 LJVMBase

This class can be extended to allow the creation of a specialized LJVM by

the programmer. It contains also some static methods that are useful for

the programmer.
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1. static SafeThread currentSafeThread()

2. static LJVMBase currentLJVM()

3. static void waitCond()

The first two give the current SafeThread or LJVM as their name sug-

gests. The last one can be used to release the monitor.

5.2.5 SafeThread

This is the class used to create a thread. The normal Thread class should

not be used by the programmer.

5.2.6 SafeRegistry

To share objects that are sharable between different LJVMs a global registry

is used. The SafeRegistry has the following methods that have the same

functionality as in RMI-registry:

• String[] list()

• Sharable lookup(String name)

• void bind(String name, Sharable obj)

• void rebind(String name, Sharable obj)

• void unbind(String name)

The registry is used by creating an object of this class. No extra initial-

ization by the programmer is needed. This object can be used in a similar

way as the registry that RMI provides.

The following exceptions can be thrown by the methods of this registry.

They are equivalent as the one thrown by the RMI registry.

• AlreadyBoundException

• NotBoundException

The name SafeRegistry does not mean that the registry is more safe than

the RMI registry, but it refers to the model of safe-threads.
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5.2.7 Illegal Accesses

In this implementation it is possible to reference a foreign LJVM by a vari-

able of a class type. If this variable is used to access that LJVM one of the

following exceptions will be thrown.

• IllegalForeignFieldAccessException

• IllegalForeignMethodCallException

Other implementations of the safe-threads model should be able to pre-

vent assignment of the following form MyLJVM m=new MyLJVM() and will not

need these exceptions at all.



Chapter 6

Modifications of the Kaffe

interpreter

The model is implemented in an interpreter by changing the way that op-

codes are executed. In this chapter it will be explained which instructions

were modified and why the modifications are needed. The Kaffe Java Virtual

Machine is modified to support the concept of safe-threads in all LJVMs

except the null-LJVM. This decision has been made for compatibility with

current normal programs running in the same environment. Also, objects

from the null-LJVM are not protected against access from other LJVMs to

avoid problems with the internal classes of Kaffe like String.

The implementation needs to make sure that the following invariants are

respected:

• A foreign object can be known only through its sharable interface. This

is similar to RMI where a remote object can only be known through its

remote interface. This is implemented by introducing runtime checks

in the instructions that can violate this invariant.

• There can be only one active thread running in a single LJVM, this

has no equivalent in RMI. It is implemented by making each LJVM a

Hoare monitor.

• Each LJVM must have its own set of static variables for each class

which is used in that LJVM. This is implemented by associating a

dictionary to each LJVM that refers to that static variable for each

class.

32
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The efficiency of the implementation is also an issue. The use of an

interpreter is not efficient but this can been seen as a first step to build a

JIT compiler after this prototype.

• All LJVMs run on the same machine address space.

• The code implementing a class which is used by several LJVMs must

be shared, while their static variables should be separated.

• Pointers to foreign objects must be represented directly by its address.

RMI uses stubs for this.

• Foreign calls must be executed by the same Java thread that makes

the call. RMI needs an other thread because threads can not move to

another address-space.

6.1 LJVM id

Each object gets a number that identifies to which LJVM it belongs. This

is not visible for the programmer directly, but it is a fundamental change.

This number will be mapped to a reference to a Java object that represents

the LJVM for the programmer. This number also is the index in an array

that contains for each LJVM a dictionary to find the static fields for the

classes used in that LJVM.

6.1.1 Null-LJVM

The null-LJVM is the LJVM that is entered at the moment that Kaffe starts.

The internal id is 0, so it is called null-LJVM. It is not represented by an

object in Kaffe but by a null if the current LJVM is requested in that LJVM.

6.1.2 Initial LJVM

The null-LJVM is different from what is called in this text the initial LJVM.

The initial LJVM is an LJVM created by the Safe class to run applications

designed to be safe, and to hide the null-LJVM from the programmer be-

cause the threads running in the null-LJVM are not safe-threads.
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6.2 Type-casting an object

The byte code instruction CHECKCAST has been extended with some extra

checks in the case that an object from another LJVM is checked and that

object does not belong to the null-LJVM.

The following checks are all performed first before the normal casting

rules are checked.

• object is Sharable

• target class is one of these:

– interface that extends java.lang.Sharable

– java.lang.Object

This means that in the examples in Listing 4 the two first will throw an

exception. Even if the foreignPoint should not be even possible to get, it

will be forbidden.

1 Point p=(Point ) f o r e i gnPo in t ;

2 LJVMBase b=(LJVMBase ) foreignLJVM ;

3 LJVM b=(LJVM) foreignLJVM ;

Listing 6.1: type cast examples

The first will fail because Point is not Sharable. The second fails because

LJVMBase is a class, not an interface nor java.langObject. The third is

the only correct one since java.lang.LJVM is an interface that extends from

java.lang.Sharable.

If the object belong to the null-LJVM only the normal rules from Kaffe

are checked.

6.3 Object Creation

Objects and arrays are created by the byte code instructions NEW, NEWARRAY,

ANEWARRAY and MULTIANEWARRAY. These instructions have been modified.

This affects code like: Object o=new java.awt.Point();

When an object is created it belongs to the LJVM where it was created.

There is an exception:
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When a class that extends the java.lang.LJVMBase class is instantiated

a new LJVM id will be given to that object. This results that an LJVM

belongs to itself.

6.4 Static fields

At byte code level the static fields are accessed by the instructions GETSTATIC

and PUTSTATIC. The implementation of these instructions has been altered.

Each LJVM uses different static variables for a class. This implies that

the class constructor must be executed multiple times, one time for each

LJVM.

The class constructor will be executed before the first time one of the

following instructions are executed:

• accessing a static variable

• invoking a static method

• instantiating a class

• executing the class constructor of a subclass

These rules are always respected in the original Kaffe since the class-

loader is normally executed when the class is loaded.

If these rules are not respected the code in Listing 11 will not have

the same result as in the unmodified Kaffe. For example, the value of c is

supposed to be 1 (y=0; a=B.y++; c=B.y++) but can become 0 (a=B.y++;

y=0; c=B.y++) if the two first rules are both ignored.

This execution of the class constructor generates some problems that are

solved by considering the null-LJVM always as the current LJVM when a

class is loaded.

6.5 LJVM specific static fields

Each LJVM has its own static variables for a class. This is implemented by

a two step lookup in dictionaries (see Figure 6.1).

The internal LJVMid is an index into via an array (L in the figure) to

get an LJVM specific dictionary (CS1,CS2 in the figure). The key in that

dictionary is a pointer of to class (class C in the figure). While the value
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1 class A {

2 stat ic int a=B. y++;

3 int c =B. y++;

4 }

5

6 class B {

7 stat ic int y=0;

8 }

9

10 // what i s the va lue o f c ?

Listing 6.2: When invoke the class constructors?

points to a static area (SA1 and SA2 in the figure) that contains all static

fields for a class in an LJVM.

When a static field is accessed, the memory of the static data of that

class will be looked up as explained here after. First by binding the right

dictionary for an LJVM. This can be done by looking up the value for key

’3’ in the array L if ’3’ is the internal LJVMid of the LJVM that accesses

a static field of the class C. This results in a reference to a dictionary. In

that dictionary the class C is used to look up the static area of the class

in the dictionary CS1. After this, the offset of the field gives access to the

memory of the variable.

This is more complex than the normal way (see Figure 6.2) without

LJVMs. The field already contains the address to access its data instead of

an offset. The mapping H in the figure is only executed at the moment a

class is loaded.

Since static fields are specific to an LJVM in the safe-threads model,

these extra steps are needed, each time a static field is accessed if classes

are shared between LJVMs.

6.6 Method calls

The only way for a thread to reach another LJVM is via a method call of an

interface. The method calls are the most important part of the safe-threads

model. If a method is called in a foreign object some extra work is done.
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Field n
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Figure 6.1: Modified static field lookup, separate static variables for each

LJVM

CLASS

void *static_data

Field 0

Field 1

Field n

H(CLASS)

Figure 6.2: Unmodified static field lookup, static variables belong to a class
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The parameters are handled with respect to their type:

• primitive types

• objects from a class that does not implement the java.lang.Sharable

• objects from a class that implements the java.lang.Sharable

As long as all the parameters have primitive types there is no problem,

since their values can not be changed. But if some arguments refer to an

object, things can become more complicated.

Objects that are not sharable1 are deep-copied to the remote LJVM. If

they are sharable they can be passed by reference if the formal parameter

that receives them is an interface or a variable of the type java.lang.Object.

If the receiving formal parameter has a class type, two different approaches

are possible: it can be copied like an object that is not-sharable, or an ex-

ception can be thrown. Throwing an exception is a very strict policy that

can prevent unexpected effects, since modifications in a possible copy can

be lost.

Both options are supported in the prototype, it can be chosen by defining

or not defining STRICT LJVM in the file kaffe-1.0.5/kaffe/kaffevm/ljvm.h

before compiling the modified Kaffe.

It is important that a reference to an object can not just be passed as a

real object, since this would give a foreign LJVM access to the instance vari-

ables and therefore allow concurrent access to these variables. The modified

Kaffe will not allow access to the instance variables, but by using only a

sharable interface for foreign objects, the illegal access to instance variables

can be detected during the compilation.

An interface does not have instance variables and has therefore not this

problem. Even the class java.lang.Object, can later not be casted to

another class. The modified CHECKCAST byte code instruction that will check

at runtime if a type-cast is allowed. It will prevent to assign foreign objects

to a variable of a class type different from java.lang.Object.

6.6.1 Restriction of foreign accesses

The model allows only references to foreign objects through variables having

the type java.lang.Object or an interface type extending

1their class does not implement java.lang.Sharable
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java.lang.Sharable. Unfortunately it is not possible to enforce these re-

strictions in all cases with only modifying the JVM. The problem that ap-

pears is when a subclass java.lang.LJVMBase is instantiated.

Because the class is known at compile time, there will be no CHECKCAST

byte code instruction to check if that object can be referred by the variable

that will refer to that LJVM. (see the example in Listing 14)

A solution in this implementation is that other byte code instructions

are modified to prevent an illegal access to those objects:

1. GETFIELD

2. PUTFIELD

3. INVOKEVIRTUAL

4. INVOKEINTERFACE

The first three instructions will throw always an exception when they

try to access a foreign object whose type extends from LJVMBase. The last

one will check if the interface is extended from java.lang.Sharable if the

object is in a foreign LJVM.

The result of these restrictions is that if a variable that is not allowed

to contain a foreign reference contains such a reference, that variable can

not be used to access the instance variables of the object or to invoke any

methods at all. This results in a reference that can only be assigned to

another variable that can be of the correct type.

In the example of Listing 14 the assignment to m in aMethod will be

possible (it should not, but this can not be prevented), the method call

and the assignment to the instance variable will both throw an exception.

Because the variable m should not contain such a reference. That variable

should be of an interface type that extends from java.lang.Sharable.

Another possible solution to this problem would be to forbid that LJVM

objects are created with new and provide a factory for constructing LJVMs.

This has two negative effects.

• less intuitive to the programmer

• reflection needed to allow easy construction
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1 class MyLJVM extends LJVMBase {

2 public int a ;

3 public void method ( ) {

4 // a method body

5 }

6 }

7

8 void aMethod ( ) {

9 MyLJVM m = new MyLJVM( ) ;

10 m. method ( ) ; // I l l e ga lFore i gnMethodCa l lExc ep t i on

11 m. a = 5 ; // I l l e g a lFo r e i gnF i e l dAcce s sExc ep t i on

12 }

Listing 6.3: Restricted access to foreign objects

6.7 Java Native Interface

The Java Native Interface (JNI) is modified to have the minimal support

to make the prototype work with the native methods that are added to the

class library. However it is not seen as an objective of this work to make

JNI working in the modified Kaffe, since the JNI is not aware of different

LJVMs (see also Section A.8).



Chapter 7

Modifications in the Kaffe

Libraries

The class libraries had to be enriched and adapted to support the safe-thread

model. Most of them are in a package java.lang.safeutil. Some of the

elements are already discussed in the programmers view in chapter 5 and

do not need extra explanation here.

7.1 List of modifications

This is a complete list of extentions and modifications.

7.1.1 Classes and Interfaces

The classes and interface marked with an asterisk are classes existing in

standard Java but are modified in this prototype. The unmarked classes

and interfaces are completely new.

• Safe

• java.lang.System *

• java.io.PrintStreamInterface

• java.io.PrintStream *

• java.io.InputStreamInterface

• java.io.InputStream *
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• java.lang.Sharable

• java.lang.LJVM

• java.lang.LJVMBase

• java.lang.SafeThread

• java.lang.safeutil.InitialLJVM

• java.lang.safeutil.InitialLJVMInterface

• java.lang.safeutil.InputStreamForward

• java.lang.safeutil.InputStreamSkeleton

• java.lang.safeutil.InputStreamStub

• java.lang.safeutil.PrintStreamForward

• java.lang.safeutil.PrintStreamSkeleton

• java.lang.safeutil.PrintStreamStub

• java.lang.safeutil.SafeRegistry

• java.lang.safeutil.SafeRegistryInterface

• java.lang.safeutil.SafeRegistryServer

7.1.2 Exceptions

The following exceptions have been added to the class library.

• java.lang.safeutil.ForeignException

• java.lang.safeutil.AlreadyBoundException

• java.lang.safeutil.NotBoundException

• java.lang.safeutil.IllegalForeignFieldAccessException

• java.lang.safeutil.IllegalForeignMethodCallException
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7.2 Sharable

This is an interface use to mark objects that can be accessed by foreign

LJVMS. See also subsection 5.2.2.

7.3 LJVM and LJVMBase

These are already explained in Subsections 5.2.3 and 5.2.4.

In this implementation the LJVMBase has the following extra methods,

that are not intended for the normal programmer.

• native static Sharable getGlobal(int key)

• native static void setGlobal(int key, Sharable obj)

• int getLJVMid()

The first two allow access to a low level registry this is explained in

subsection A.9 The method getLJVMid might be useful for debugging the

modified Kaffe, see section A.1 for a description.

7.4 Global registry

The communication between different LJVMs is made with two layers. The

low level implementation is written in native code. This is specific to this

implementation. This low level registry works with numerical keys that are

called gates, for a more detailed description see section A.9.

Based on this low level implementation is a high level registry built that

is more user friendly.

7.4.1 SafeRegistry

The SafeRegistry mimics the functionality of the RMI registry. This is

not a coincidence since the safe-threads model and the RMI are from the

programmers point of view very similar. The name SafeRegistry does not

mean that the registry is more safe than the RMI registry, but it refers to

the model of safe-threads. It is also safer than the gate system, that is used

to implement the SafeRegistry in this implementation.

The difference in the SafeRegistry with the RMI registry is that the

names can be strings instead of URLs. This registry will be even safer to



CHAPTER 7. MODIFICATIONS IN THE KAFFE LIBRARIES 44

use if the keys are chosen in a structured way like URLs in RMI. The use of

structured keys is strongly advised but not mandatory as in RMI.

7.4.2 Implementation of SafeRegistry

Each time an object of this class is instantiated, it tries to find an object

of the type java.lang.safeutil.SafeRegistryServer at gate 110713021 .

If that server-object is not found it is created and published at that gate.

This means that only one instance of that server is shared by all instances

of the SafeRegistry class. The gate is specified in the interface

java.lang.safeutil.SafeRegistryInterface as a static final. The pro-

grammer should not use that gate for other purposes.

The SafeRegistryServer contains the real registry while the

SafeRegistry objects forward their calls to that global server. Because the

server exists only in one LJVM, the objects that are stored in the registry

have to be sharable to prevent that unsharable objects are copied.

The SafeRegistry will be a little slower than the low level gate system,

but it is easier to work with strings than with numbers as keys. The lower

performance will not be a problem since it is not heavily used and has no

network delay as in the RMI-registry.

7.5 I/O system via a stub/skeleton construction

A problem with the LJVM system is that only one LJVM has the standard

I/O via the static variables in,out and err in java.lang.System since a

class has separated static variables for each LJVM. A dirty way to solve

this problem would be that the System class would share its static variables

among all LJVMs and be therefore an exception to the rule. However this

would not be desirable because this would not allow a kind of piping between

the LJVMs as proposed in Listing 62 and [8].

In the chosen approach each LJVM has its own in, out and err static

variables, that use the same input or output, but the programmer can then

change this I/O to other objects.

The best way to achieve this, is by sharing the I/O from the initial

LJVM via a stub/skeleton mechanism that forwards the I/O function from

any LJVM to the null-LJVM. The java.lang.System class is modified in a

1This number forms the date of a war
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way that the following static variables are from a different type: System.in

is changed from InputStream to InputStreamInterface and System.out and

System.err are changed to a PrintStreamInterface. This allows to pro-

grammers to change the I/O for each LJVM separately (see Figure 7.1).

The programmer uses a stub that appears as a PrintStream object.

That stub forwards all actions to a skeleton that forwards the calls to a real

PrintStream object. The result is that the programmer can forget about

the stub and the skeleton, and use the stub as if he was using the real input

or output.

7.5.1 Design

Two classes are derived from PrintStreamForward: PrintStreamStub and

PrintStreamSkeleton. The only difference is their constructor. The skele-

ton publishes itself on a specified gate and forwards to a specified PrintStream-

Interface. The stub forwards to a published PrintStreamInterface, this can

be the skeleton. The stub can be omitted but this would make things less

symmetric, since at the side of the stub would only the foreign skeleton be

used. Figure 7.1 shows that only the communication between the stub and

the skeleton crosses the LJVMs (big grey arrow). This results in a situation

where the programmer will only know about the stub.

It is possible to implement this in an easier way by making PrintStream

an interface and let System.out point to the System.out of the null-LJVM

but this would be less transparent for the programmer. It is not possible to

make new PrintStream objects if it is changed to an interface. To reference to

foreign objects it has to be a sharable interface. Because of this complication

the stub/skeleton system has been chosen. It allows compatibility with the

‘unmodified Kaffe’ this will be easier for the programmer and allows to reuse

some existing part of legacy code.

7.5.2 PrintStream

The class java.io.PrintStream implements now the PrintStreamInterface.

But the java.lang.safeutil.PrintStreamForward also implements this

interface.

The skeleton should be created in the first LJVM and only once for each

service. This can be automated. For both System.out and System.err a

skeleton is needed. The skeleton for System.out is published on gate 1 and
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Figure 7.1: stub and skeleton

the skeleton for System.err is published on gate 2 this is just a convention

but the stub need to check on the correct gate.

7.5.3 InputStream

The Inputstream is similar to the PrintStream. The InputStreamSkeleton

is published on gate 0 where each InputStreamStub can find it.

7.6 System

The java.lang.System is modified to create stubs for the static variables

System.in, System.out and System.err if used in any LJVM except the

null-LJVM. This allows an easy way for I/O in any LJVM. The skeletons

for those streams has to be created in the null-LJVM, this is hidden from

the programmer as well by the Safe class, see Section 7.7.
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7.7 Safe

This class is used to start the safe-threads model as shown in section 3.2

and subsection 5.2.1. To start a safe-threads program the following syntax

is used:

java Safe MyClass arg1 arg2 .. argn

This will start the method run in the class MyClass. This method “void

run(String args[])” is not a static method like the main in the unmodified

Kaffe.

The program is started in new created LJVM that is created by a class

java.lang.safeutil.InitialLJVM. This will hide the null-ljvm from the

programmer.

The string arguments from the main method of Safe are passed to the

contructor of the InitialLJVM class. Then all the arguments are stored in

that LJVM-object.

The next method that the Safe wrapper calls is the startup method

that creates via reflection an object of the type specified in the first of the

command line. Finally the method run of that class is called and the strings

that were passed via the constructor are now passed to the run method.

This system makes the ‘static’ unnecessary.

Another important task of the Safe class is to create the Skeletons for the

in, out and err streams of java.lang.System class in the null-LJVM. This

allows the programmer to use these streams in each LJVM in the expected

way. It is possible in each LJVM to redirect a stream, this will not affect

the other LJVMs.

7.8 Exceptions

The safe-threads prototype has some extra exceptions that are in the package

java.lang.safeutil. All these exceptions have the baseclass

java.lang.safeutil.ForeignException. These exceptions can be divided

with respect to their purpose.

1. SafeRegistry

2. Illegal Foreing Access
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7.8.1 SafeRegistry

The SafeRegistry methods can throw 2 different exceptions that are equiv-

alent to those that the RMI registry throws. These exceptions are part of

the package java.lang.safeutil

• AlreadyBoundException

• NotBoundException

7.8.2 Illegal Foreign Access

These exceptions are specific to this implementation.

• IllegalForeignFieldAccessException

• IllegalForeignMethodCallException

It is an invariant of the model that foreign objects can only be referenced

by variables that have as type an interface that extends java.lang.Sharable

or the class java.lang.Object. It is not always possible in this implemen-

tation to prevent, at compile time, the programmer to reference foreign

objects via a variable of a class type and therefore, this invariant is checked

also at runtime. The exceptions mentioned above will be thrown when the

programmer tries to access intstance variables or to invoke methods of an

LJVMBase object of a different LJVM. This problem was also explained in

subsection 6.6.1. Other implementations of the safe-threads model (eg. a

preprocessor) should prevent these problems before runtime.



Chapter 8

Open problems

In this chapter, it will be explained that some problems that still exist in the

safe-threads model. It does not mean that safe-threads are not usable at all.

It is just an indication that the perfect model, if this exists, for concurrency

is not found yet. Another possibility is that safe-threads need to be used in

combination with some patterns that still need to be developed.

8.1 Finalization

Finalization is the execution of a method called finalize when the garbage

collector has detected that an object is unreachable. This is executed in a

separate thread. Even if that method makes the object reachable again, the

finalize method will only be executed at most one time during the lifetime

of an object.

8.1.1 Why is this a problem?

In the safe-threads model the finalizer should not be executed concurrently

with any other thread in the LJVM that owns the finalizing object. There-

fore the finalizer thread should ask the LJVM monitor before executing the

finalizer.

The problem is that there are LJVMs that are client only and they

will never release the monitor. An example of such an LJVM is the initial

LJVM. The finalizer thread will dead-lock the first time it finalizes an object

belonging to a client only LJVM.

A similar problem can also appear in the unmodified Kaffe if a finalizer

49
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Figure 8.1: Thread migration during nested method invocations

contains an infinite loop. The problem is not the safe-threads model but

more the finalization itself.

This makes the problem of finalization becoming important. At this

moment different solutions are possible but none of them is really satifactory.

1. a finalization thread that is not aware of LJVMs

2. execute the finalization when objects are allocated

3. execute the finalization when an LJVM is left

4. do not execute finalizers at all

8.1.2 The finalization thread is not aware of LJVMs

In this solution the finalizers are executed concurrently with the active

thread in an LJVM. This will sacrifice the safety of the model, since the

finalize method can alter the state of the LJVM in an unexpected way. It

might be the easiest solution to implement but it is a possible danger, since

the finalizer might affect other objects in the LJVM.

This because an object ready to be finalized can reference objects that

are reachable by the LJVM. This means that two threads can access them

concurrently.

8.1.3 Finalization when objects are allocated

This means at the moment memory is allocated the finalization can be exe-

cuted. This is the solution that can be used in a single thread system.
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This might look better but it is not very different from the first solu-

tion. In the meaning that the finalizer can change an LJVM without the

programmer being aware of it. It is also not always obvious that an object

is allocated, for example when concatenating two java.lang.Strings. It

even adds the problem that in an LJVM are a lot of objects that waiting

to be finalized but at that moment the thread can be in another LJVM via

a foreign method so the memory can not be freed. It is however compliant

with the approach in a sequential language. If only one thread is active, the

right moment for garbage collection would be when memory is needed. The

thread that allocates an object is stopped during the finalization, therefore

only one thread is active. This would respect the model, but the finalization

thread can still create unexpected effects.

8.1.4 When an LJVM is left

This solution would execute the finalization when an LJVM does no longer

contain an active thread .

Some LJVMs might never be left because the only way to leave an LJVM

is via returning the foreign call that let the thread enter the LJVM. For

example when the InitialLJVM is left the program stops, this means that in

the initial LJVM garbage collection is impossible if enough objects need a

finalization that will not be executed, and the memory can not be released.

8.1.5 Importance of this problem

A garbage collector resolves the problem of freeing memory at the right

moment. This can be considered as important for memory management,

as safe-threads are for multithreaded programming. So it would not be a

good idea to sacrifice garbage collection for safe-threads. The finalization

can be sacrified because it can be seen as an optimization. It is not even

guarranteed that a finalizer is executed in Java.

This same problem will also show up in other possible implementations

that where suggested in section 4.1. This means that this needs to be covered

by the safe-threads model in a consistent way. The problems appeared in

this implementation since it is the first that is implemented this far, to reveal

this important conflict with finalization.
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8.2 Reflection

Our implementation does not implement a safe way to use reflection because

it was not an objective of this work. Therefore in this implementation it

might be possible to concurrently access data in objects via reflection.

8.3 Not always safe

If a programmer wants to create an unsafe program it is still possible. It

needs a little creativity but it is possible to reconstruct the unsafety that

safe-threads try to avoid. The example in Listing 20 shows such an unsafe

program.

1 public interface Var Int e r f a c e extends Sharable {

2 public int get ( ) ;

3 public void s e t ( int nval ) ;

4 }

5

6 public c lass Var implements Var Int e r f a c e {

7 int va lue ;

8 public int get ( ) {

9 return va lue ;

10 }

11 public void s e t ( int nval ) {

12 va lue=nval ;

13 }

14 }

15

16 void evi lMethod ( Var In t e r f a c e a ) {

17 i f ( a . get () <5) // compare wi th : i f ( x<5)

18 a . s e t ( a . get ( )+1 ) ; // x=x+1;

19 }

Listing 8.1: Unsafe Example

A critical section problem can appear when the evilMethod is executed

by thread A and thread B at the same moment with the same argument

and the two threads A and B are sheduled as shown in the Table 8.1.
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Time thread A thread B result

0 a.value==4

1 if (a.get()<5) true

2 if (a.get()<5) true

3 a.set(a.get()+1); a.value==5

4 a.set(a.get()+1); a.value==6

Table 8.1: Trace of a created critical sectionproblem

The value of a.value will be 6 when started with a value of 4. This

is because the action is splitted in too small parts. If a method increase

would be part of the class Var the test could be executed in such a way that

no other thread could interfere in the wrong moment.

Notice that the program is very similar to Listing 12, which is an example

to show how sequential code can give problems in a concurrent execution.

The class Var is a conceptual variable, by sharing an instance of that class

the original problem is reconstructed.

This example shows that the use of safe-threads will not solve all prob-

lems and protect a programmer from all problems that can be caused by

threads. Since it is possible to reconstruct the problems that safe-threads

want to prevent.

8.3.1 Other similar examples

The previous example is comparable to a programmer creating goto con-

structions in languages like Java. See Listing 18 this construction. This

shows even if a language does not support the goto, a programmer can

generate “spaghetti-code”.

1 int go to =1; // goto i s a keyword

2 for ( ; ; ) {

3 switch ( go to ) {

4 case 1 :

5 // some code

6 go to =3;

7 break ;

8 case 2 :

9 // some code
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10 go to =1;

11 break ;

12 case 3 :

13 // some code

14 go to =2;

15 break ;

16 }

17 }

Listing 8.2: Java Goto

It is even possible to have dangling references in a language that sup-

ports garbage collection like Java, by using array indexes as pointers. That

trick has been used to teach data structures like trees in languages without

pointers or references. The example in Listing 25 shows a possible imple-

mentation.

1 stat ic f ina l int MAGIC=9876543;

2 Point [ ] heap=new Point [ 1 0 0 0 ] ;

3 for ( int i =0; i <1000; i++)

4 heap [ i ]=new Point (MAGIC,MAGIC) ;

5 // to ge t a r e f e r enc e

6 int p1=0; while ( heap [ p1 ] . x!=MAGIC) p1++;

7

8

9 int p2=p1 ; // make an a l i a s

10 heap [ p2 ] . x=10;

11 heap [ p2 ] . y=3;

12

13 // f r e e p1

14 heap [ p1 ] . x=MAGIC;

15 // p2 i s a now dang l ing r e f e r enc e

16

17 . . .

18

19 System . out . p r i n t l n (

20 ’ [ ’ + heap [ p2 ] . x +

21 ’ , ’ + heap [ p2 ] . y
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22 ) ;

23 // p2 has been changed ???

Listing 8.3: Dangling References

These two examples show that a programmer can create problems, even

if a language is intended to prevent that specific problem.



Chapter 9

Conclusions and future work

9.1 Conclusions

From the conceptual point of view, the applications are conceived in the

model of safe-threads as a set of sequential processes (the LJVMs) with in-

dependent object spaces, but interacting through remote method calls. The

main advantage of this model is that it insures the mutual exclusion of the

safe-threads while accessing objects, increasing the reliability of concurrent

applications and diminishing debugging time.

This thesis has served to prove that it is possible to implement the model

of safe-threads in a single Unix process, which is multiplexed to allocate and

execute all the LJVMs with their own insulated object spaces. To prove it,

we have modified Kaffe, an interpreter for Java, to support the safe-threads

model. The main characteristics of this implementation are:

• all the safe-threads share the same address space

• pointers to shared objects are represented directly by their address,

without the need of adding stubs or skeletons as in RMI or CORBA

• method calls of objects belonging to another LJVM are executed by the

same safe-thread that executes the call, not needing a special thread

to execute remote calls like in RMI or CORBA

And therefore from the implementation point of view the applications

conceived in the model of safe-threads are closer to traditional (unsafe)

multi-threaded applications than to applications distributed on several heavy

processes communicating through the expensive RMI.

56
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These results promise that in a production quality implementation of

the model of safe-threads the application will be close in performance to

traditional multi-threaded applications but more reliable than the latter.

Our implementation shows up also the main overhead of safe-threads

over the traditional threads:

• in foreign calls, arguments being local objects must be deep-copied to

avoid sharing them. Standard threads do not need this, because they

can share the same objects concurrently.

• to access a static variable it is necessary to look it up in a hash-table,

while in standard threads it can be accessed very efficiently by its

address.

We have not quantified this overhead because any experiment would be

meaningless due to the inefficient implementation of the Kaffe interpreter.

This will be possible when a truly compiled implementation of the model

will be available.

This thesis has served also to prove that it is possible to change the

semantics of Java to support the model of safe-threads without any change

to the syntax of the language, or even to the compiler. It is enough to change

the way that the byte code is interpreted.

During this work we have discovered where is has been difficult to ensure

that LJVMs access only local objects and sequentially:

1. while accessing instance variables belonging to LJVMBase objects (see

section 6.6.1)

2. in finalizers (see Section 8.1)

3. when inspecting objects through reflection

The first point can be solved efficiently by adding a simple analyzer of

the byte code before the execution. The two other points are not exclusive

problems of the concurrent programming, they are even present in strictly

sequential languages.

The modification of the interpreter of Kaffe was, even though it was a lot

of work, a straight-forward work. This experience is a necessary first step

to a more complex project: The modification of a JIT compiler in Kaffe.
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The successful implementation of the interpreter makes the JIT compiler a

promising future work.

Finally, our implementation will be used to to discover the design pat-

terns that should be used with safe-threads to build robust programs.

9.2 Future work

To allow a programmer to write robust programs, he will need to use some

design patterns with the safe-threads model. These patterns have to insure

that a problem as described in section 8.3 will not occur. An important

work will be to discover such design patterns and when to apply them.

To allow the use of real world applications it is important to build an

implementation that is based on a compiler. For example by modifying a

compiler of Kaffe or by building a preprocessor that translates a safe-threads

program to a standard Java program.

An important work for the research on the safe-threads model is to write

applications that use this model. This will allow to evaluate the model by

comparing the development time with the time it would require to build it

with traditional threads.
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Appendix A

Internal hard core

information

This chapter contains information specific to this implementation, so none

of this is guaranteed to work with other implementations, or future versions.

However this information can be useful for maintaining the modified Kaffe

or porting the changes to a later release of Kaffe. This implementation is

based on Kaffe 1.0.5, while recently a new version Kaffe was released.

A.1 Internal LJVM id

In the class java.lang.LJVMBase is a native method getLJVMid() that

returns the internal ID of that LJVM. This internal ID is probably only

useful for debugging. Since it is not an essential part of the safe-threads

model, it is not a good idea to use that id to compare LJVMs. It is better

to compare the representing LJVMBase instead. The id will be even recycled

if possible since it is used to access internal tables that should be kept as

small as reasonably possible.

A table contains all information for each LJVM if this table is full it

will be extended. When a new LJVM is created a free slot in that table is

searched. If no free slot exists the table will be extended.

The use of a separate table to contain LJVM information instead of stor-

ing the information in the LJVMBase object allows some extra modularity.

It is also useful for the null-LJVM that does not have an LJVM object.
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A.2 Creating LJVMs without LJVMBase

The modified Kaffe will create a new LJVM if a class that inherits directly

or indirectly from java.lang.LJVMBase. This can be modified by changing

the macro LJVMBASE PATH in the file kaffe/kaffevm/ljvm.h. This would

be useful if the model would be changed to allow LJVMs to objects from a

class that does not inherit from LJVMBase.

A.3 null-LJVM

The null-LJVM that is active when Kaffe starts, does not have an object

that represents it. This LJVM has the internal identifier 0 and is different

compared to others. All LJVMs can access objects from the null-LJVM as

if the objects are in the current LJVM. The methods from objects of that

LJVM can also be invoked even if the object is not Sharable this done to

solve problems of compatibility.

A.4 Finalizing an LJVM

In the unmodified Kaffe it is allowed to make an object reachable again

during finalization. This is not completely true for the modified Kaffe. Since

the tables for an LJVM are freed immediately after executing the finalize

of an LJVM object. This will not imply much problems since finalizers

are not used very much, a finalizer that makes an object reachable again

is even more rare. And this finalizer should defined for an LJVM object.

The finalization causes some other problems as well, these are explained in

Section 8.1

A.5 RMI

To make a working RMI the invariants of the model should be enforced.

This means that only one thread can be active in an LJVM. The internals

of the RMI system will probably not need much changes.
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kaffe-1.0.5/kaffe/kaffevm/gcFuncs.c

kaffe-1.0.5/kaffe/kaffevm/ljvm.c

kaffe-1.0.5/kaffe/kaffevm/static ljvm.c

kaffe-1.0.5/kaffe/kaffevm/intrp/argcopy.c

kaffe-1.0.5/kaffe/kaffevm/intrp/machine.c

Table A.1: Files that support JVH DEBUG

A.6 Debugging

In the files listed in Table A.1 it is possible to define the macro JVH DEBUG

before compiling the Kaffe program. This will result that some extra debug

info is printed to stderr.

A.7 Locks on an LJVM

When a thread needs to enter into an LJVM it must get the lock first. This

can be seen as if each method that is accessible from another LJVM has the

structure shown in Listing 7.

1 void methodHeader ( arg1 . . argn ) {

2 LJVM thisLjvm=LJVMBase . currentLJVM ( ) ;

3 synchronized ( thisLjvm ) {

4 // the r e a l methodbody

5 }

6 }

Listing A.1: Locks on an LJVM

This wrapping is done by the modified virtual machine so the program-

mer does not see all of this. It is also a little more efficient than adding

this wrapper to the java program, since the call to the native method cur-

rentLJVM is not done via the Java Native Interface (JNI) but by call a to

a C function directly.

A.8 Java Native Interface

This allows the mixing C code with Kaffe. The interface is made to work

in a way that it supports what is needed for the prototype. If a C program
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calls a java method then the method will be executed in the null-LJVM.

This might not be the perfect solution but JNI does not support the LJVMs

so it was needed to find a workable solution.

It would be useless to try to support safe-threads in C, because C pro-

gram will always be able to access all data. Because of this consideration

the JNI was just modified to support what is needed to make the prototype

work.

A.9 Low level registry

To allow an easy implementation a lowlevel registry is build with numerical

keys. This is easy to implement in native code. Only one gate would be

sufficient to build a high level registry. However it is easy to provide a

numerical key, which can be useful. The two methods, LJVMBase.getGlobal

and LJVMBase.setGlobal, provide the basic functionality to share objects

between different LJVMs. These two methods work with an internal hash-

table in the virtual machine that stores the objects with a numerical key.

A new setGlobal overwrites the previous value and storing a null removes

the association from the table. As long as an object is in the table it will

not be removed by the garbage-collector.

It is only possible to store objects that are sharable, therefore the pro-

grammer can not get a reference to a foreign object that is not sharable in

another LJVM. This is not allowed since it would break the model.

These numerical keys can be seen as a gate to a shared piece of memory.

Since the key is an integer will be huge amount gates1.

These two methods will be used to build a more high level string based

registry that is similar to the registry of the RMI system. This is imple-

mented in the java.lang.safeutil.SafeRegistry as described in 7.4.1.

A small overview of the used gates at this moment can be seen in Table

A.2. It is important that a gate is not used for different purposes at the

same moment since the setGlobal will overwrite the previous stored object.

A normal programmer should not use this low level registry. This because

it can have unexpected effects if a gate is used for different purposes. An even

more important reason to not use the gates is that they are implementation

specific.

1232
> 4 ∗ 109
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0 System.in stub/skeleton

1 System.out stub/skeleton

2 System.err stub/skeleton

11071302 the SafeRegistry system

Table A.2: Global table usage
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