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Abstract

Nowadays, the prevailing methodology used to specify software designs is UML. This language
consists of various types of diagrams, each one dedicated to a different design aspect. This
variety of views, that overlap with respect to the information depicted in each, can leave the
overall system design specification in an inconsistent state. Necessarily, some form of consistency
checking must be performed between different UML models. This is especially true in the
context of design evolution. Therefore, a means of detecting and solving inconsistencies between
related UML models must be provided.

With respect to UML models, two types of consistency can be noted: consistency between
models belonging to the same design version and consistency between different versions of the
same model. These are known as horizontal and evolution consistency, respectively. Current
UML CASE tools do not take full advantage of the relationships that exist between the different
UML model elements, and, as such, provide poor support for maintaining consistency between
(evolving) UML models.

By specifying consistency relationships in a formal and precise way, reasoning about model
consistency will be possible. The current UML metamodel provides poor support for consistency
preservation and software evolution, e.g. versions are not supported. Relationships between
models cannot be established. This thesis proposes a way in which this support can be integrated
in the UML metamodel, with only some minor additions.

Based on the characteristics of inconsistencies observed between UML models, a classification
of inconsistencies is proposed. To be able to detect and resolve inconsistencies, both a formal
specification of model consistency and a formal reasoning engine relying on this specification
is needed. This is also true for design restructurings, as their detection depends on the same
metamodel relationships as the inconsistencies. This thesis studies the feasibility of using the
formalism of Description Logics (DL) for this purpose.

In order to determine the suitability of DL, small experiments have been carried out. Detec-
tion predicates need to be written for each inconsistency. These have then been applied to the
case study prepared for the occasion. The experimental results for inconsistencies and design
restructurings indicate the feasibility of approach. Finally, these predicates have been incor-
porated into a tool that automates the translation between UML models and logic assertions,
allowing the effortless application of detection and solution predicates.

i



Acknowledgments

There are so many people who I would like to thank for this year. First and foremost, my
parents, especially my mom, whose thirst of knowledge I inherited. They have always stimulated
my curiosity about the world, and their actions are the ones that have had the most influence
in shaping me into the person I am today. To Maxs, my favourite brother ;), to Barbara, who
has tried to put some order into this messy student’s life, to Susan, who has managed to keep
me up to date on family news, and Charlotte, who brings out the child in me. To my niece
Kelly, who always lights a candle in my heart.

Thanks to all my friends at the University of Chile, who have been very supportive during
this whole experience, chatting and sending news by means of instant messengers and e-mail.
It has been hard living so far from home for so long, but they have helped make this burden a
little easier to carry. I would also like to thank my fellow EMOOSEers. The “surprise” birthday
parties made these dates even more special, and even funnier, as some birthday guys and gals
were truly surprised.

I would also like to thank my thesis advisors Ragnhild Van Der Straeten and Tom Mens.
Their dedication as investigators and advisors is incredible. They were always willing to discuss
ideas, problems or just talk. They even had the patience to read and correct this thesis :), for
which I am truly grateful. Thanks to Luis Mateu, who made this trip possible. Thanks also to
the people at the Ecole des Mines de Nantes and the Vrije Universiteit Brussel who helped us
settle in and made us feel at home. Finally, thanks to the people at Google for making such a
good search engine.

For the journeys we’ve made together,
for the times we’ve shared...
May we share many more.

Brussels, Belgium Jocelyn Simmonds
August 15, 2003

ii



Table of Contents

Abstract ii

Acknowledgements iii

Table of Contents iii

List of Figures x

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Description Logics 6

2.1 Basic Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Concepts and Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Knowledge bases and Inference . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Reasoning Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Tool Support Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 CLASSIC v 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Supported DL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Query Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Open/Closed World Assumption . . . . . . . . . . . . . . . . . . . . . . . 10

Additional Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Loom v 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Supported DL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

iii



CONTENTS iv

Query Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Open/Closed World Assumption . . . . . . . . . . . . . . . . . . . . . . . 11

Additional Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 RACER v 1.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Supported DL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Query Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Open/Closed World Assumption . . . . . . . . . . . . . . . . . . . . . . . 13

Additional Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 UML Profile 14

3.1 UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 Statechart Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.3 Sequence Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Model Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Experimental Setup 22

4.1 DL Tool - Loom 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Lisp Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.2 Concept and Relation Definition . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.3 Individual Creation and Description Macros . . . . . . . . . . . . . . . . . 25

4.1.4 Query Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.5 Tbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Network Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Relation definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Concept definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.6 Abox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Model Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Model Management Example . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 UML CASE Tool - Poseidon For UML CE 1.6 . . . . . . . . . . . . . . . . . . . 36

4.3 Additional tools - Saxon 6.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



CONTENTS v

5 Case Study - The Banking Simulation 38

5.1 Static Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Dynamic Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Classification of Inconsistencies 46

6.1 Proposed Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1.1 Behavioural Inconsistencies . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Model-Model Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Model-Instance Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Instance-Instance Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1.2 Structural Inconsistencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Model-Model Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Model-Instance Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Instance-Instance Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2.1 Incompatible Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Abstract Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2.2 Invocable Behaviour Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . 55

Invocable Behaviour - State vs. State . . . . . . . . . . . . . . . . . . . . 55

Invocable Behaviour - Sequence vs. Sequence . . . . . . . . . . . . . . . . 58

Invocable Behaviour - State vs. Sequence . . . . . . . . . . . . . . . . . . 60

6.2.3 Observable Behaviour Conflicts . . . . . . . . . . . . . . . . . . . . . . . . 62

Observable Behaviour - State vs. State . . . . . . . . . . . . . . . . . . . 62

Observable Behaviour - Sequence vs. Sequence . . . . . . . . . . . . . . . 65

Observable Behaviour - State vs. Sequence . . . . . . . . . . . . . . . . . 65

6.2.4 Incompatible Behaviour Conflicts . . . . . . . . . . . . . . . . . . . . . . . 67

Incompatible Behaviour - State vs. Sequence . . . . . . . . . . . . . . . . 67

6.2.5 Inherited Association Conflicts . . . . . . . . . . . . . . . . . . . . . . . . 68

Infinite Containment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2.6 Dangling (Type) Reference . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.7 Instance Definition Missing . . . . . . . . . . . . . . . . . . . . . . . . . . 71



CONTENTS vi

Classless Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Classless Statechart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Dangling (Inherited) Feature Reference . . . . . . . . . . . . . . . . . . . 74

Dangling (Inherited) Association Reference . . . . . . . . . . . . . . . . . 79

6.2.8 Disconnected Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Disconnected Model - State . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Disconnected Model - Sequence . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 Design Restructurings 87

7.1 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2.1 Detecting a Pull Up Method Refactoring . . . . . . . . . . . . . . . . . . . 88

Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2.2 Detecting a Push Down Method Refactoring . . . . . . . . . . . . . . . . . 92

Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8 Tool Support 97

8.1 Asserting Model Element Information . . . . . . . . . . . . . . . . . . . . . . . . 98

8.2 Asserting Model Evolution Information . . . . . . . . . . . . . . . . . . . . . . . 98

8.3 Asserting Detection and Solution Predicates . . . . . . . . . . . . . . . . . . . . . 98

9 Conclusion 101

9.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography 110

A Code Translations 111

A.1 UML Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.2 User-defined Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.2.1 Class Diagram Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.2.2 Sequence Diagram Example . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.2.3 State Diagram Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



CONTENTS vii

B Case Study - Static Structure 133



List of Figures

1.1 First motivational example: contradicting behaviour . . . . . . . . . . . . . . . . 3

1.2 First motivational example: contradicting behaviour . . . . . . . . . . . . . . . . 3

1.3 Second motivational example: disconnected model . . . . . . . . . . . . . . . . . 4

3.1 Subset of the UML Core Package . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Subset of the UML State Machines Package . . . . . . . . . . . . . . . . . . . . . 17

3.3 Subset of the UML Common Behavior and Collaborations Packages . . . . . . . 18

3.4 Horizontal, Vertical and Evolution Consistency . . . . . . . . . . . . . . . . . . . 20

3.5 Subset of the UML Model Management Package . . . . . . . . . . . . . . . . . . 21

4.1 Proposed interaction between the tools used in the experimentation process . . . 22

4.2 Subset of the UML Core Package . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Class diagram example for UML to Loom translation . . . . . . . . . . . . . . . . 33

4.4 Model Evolution Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Class Diagram - Part I, version 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Class Diagram - Part II, version 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Class Diagram - Part III, version 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 ATM State Diagram, version 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 ATM State Diagram, version 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.6 PrintingATM State Diagram, version 1 . . . . . . . . . . . . . . . . . . . . . . . . 41

5.7 Sequence Diagram: checking card and PIN number, version 1 . . . . . . . . . . . 42

5.8 Sequence Diagram for withdraw transactions, version 1 . . . . . . . . . . . . . . . 43

5.9 Sequence Diagram for deposit transactions, version 1 . . . . . . . . . . . . . . . . 44

5.10 Sequence Diagram for inquiry transactions, version 1 . . . . . . . . . . . . . . . . 44

5.11 Sequence Diagram for transfer transactions, version 1 . . . . . . . . . . . . . . . 45

6.1 Class Diagram - Part I, version 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Sequence Diagram: multiplicity conflict . . . . . . . . . . . . . . . . . . . . . . . 51

viii



LIST OF FIGURES ix

6.3 Sequence Diagram: navigability conflict . . . . . . . . . . . . . . . . . . . . . . . 52

6.4 Class Diagram - Part II, version 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.5 Sequence Diagram: abstract object inconsistency . . . . . . . . . . . . . . . . . . 54

6.6 ATM State Diagram, version 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.7 PrintingATM State Diagram, version 1 . . . . . . . . . . . . . . . . . . . . . . . . 56

6.8 Sequence diagram extracts, showing the behaviour of ATM and PrintingATM
objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.9 Sequence Diagram: invocation consistency . . . . . . . . . . . . . . . . . . . . . . 60

6.10 PrintingATM State Diagram, version 2 . . . . . . . . . . . . . . . . . . . . . . . . 61

6.11 Sequence Diagram: observation consistency . . . . . . . . . . . . . . . . . . . . . 66

6.12 Sequence Diagram: incompatible behaviour . . . . . . . . . . . . . . . . . . . . . 68

6.13 Infinite containment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.14 Class Diagram - Part II, version 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.15 Class Diagram - Part I, version 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.16 Sequence Diagram: classless instance . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.17 Card Reader State Diagram, version 1 . . . . . . . . . . . . . . . . . . . . . . . . 73

6.18 Class Diagram - Part I, version 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.19 Sequence Diagram: dangling (inherited) feature references . . . . . . . . . . . . . 75

6.20 Card Reader State Diagram, version 2 . . . . . . . . . . . . . . . . . . . . . . . . 76

6.21 Class Diagram - Part I, version 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.22 Sequence Diagram for withdraw transactions, version 2 . . . . . . . . . . . . . . . 80

6.23 ATM State Diagram, version 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.24 Sequence Diagram for deposit transactions, version 2 . . . . . . . . . . . . . . . . 84

6.25 Sequence Diagram for deposit transactions, version 3 - deleted link . . . . . . . . 84

6.26 Sequence Diagram for deposit transactions, version 4 - deleted object . . . . . . . 85

7.1 Bank class, versions 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2 Sequence Diagram for transfer transactions, version 2 . . . . . . . . . . . . . . . 89

7.3 Sequence Diagram for inquiry transactions, version 2 . . . . . . . . . . . . . . . . 89

7.4 Transaction hierarchy, version 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.5 Transaction hierarchy, version 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.6 ATM hierarchy, version 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.7 Sequence Diagram for deposit transactions, version 1 . . . . . . . . . . . . . . . . 94

7.8 Sequence Diagram for deposit transactions, version 2 . . . . . . . . . . . . . . . . 94

7.9 ATM hierarchy, version 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.1 Conan - Consistency Analyser for UML . . . . . . . . . . . . . . . . . . . . . . . 97



List of Figures x

8.2 Screenshot - adding primitive models to a composite model . . . . . . . . . . . . 99

8.3 Screenshot - detecting incompatible behaviour . . . . . . . . . . . . . . . . . . . . 100

A.1 Class diagram example for UML to Loom translation . . . . . . . . . . . . . . . . 123

A.2 Sequence diagram example for UML to Loom translation . . . . . . . . . . . . . 128

A.3 State diagram example for UML to Loom translation . . . . . . . . . . . . . . . . 130

B.1 Class Diagram - Part I, version 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.2 Class Diagram - Part II, version 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B.3 Class Diagram - Part III, version 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 134



Chapter 1

Introduction

1.1 Context

As software development stepped up from a one-man effort to a multiple disciplined team effort,
the methodologies used to specify and document the process also evolved. As systems grew
in complexity and size, it became necessary to rethink the development process. The need for
a pre-coding design process was acknowledged. Various methodologies emerged, most of these
using diagrams as a way to represent system designs. Over the years, the various methodologies
were merged, and a heterogeneous mix of diagrams that can be used to specify the critical parts
of a system was obtained. An industry standard was formed - the Unified Modelling Language
(UML).

UML, as a visual modelling language, provides a family of diagrams with which aspects
like the structure and behaviour of a system can be defined. In an ideal situation, a system
design will be defined by a model composed of diagrams that accurately represent its critical
components. Although each diagram, by definition, shows a different view of the system, as a
whole, the model should be consistent. Secondly, the system model should be a “snapshot” of
the actual code that implements the system. Sadly, this is far from the truth.

Systems development is now often a group effort. Various people will brainstorm over the
design, until an initial model is developed. General points of the design are agreed upon, and
smaller groups develop the details of sub-components of the system design. For this approach
to work, it is imperative that the sub-designs be consistent. A problem that arises is that each
person on the team has a different level of expertise in UML. Furthermore, different tools make
different versions of the UML standard. The notation is not always clear, and some things can
be written in various ways. This is further complicated by the fact that the development team
is not necessarily localised in one work area. With the appearance of the Internet, distributed
workplaces have become commonplace.

It is common that the system requirements change, so this initial design is usually the first of
many versions. Current UML CASE tools do not provide adequate versioning capabilities [9, 4].
Each model version has to be saved to a different file, each one having its independent system
definition. Ideally, these system definitions should be linked in some form through the CASE
tool, so that it is possible to perform some form of consistency check every time a new model
version is produced. In practice, however, version consistency has to be checked manually,
which calls into play the “human error” factor.

1
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In addition, CASE tools maintain only basic relationships between the different types of UML
diagrams. The set of class diagrams in a model defines the static representation of the system
structure, as a collection of classes and relationships. The system definition for the model is
generated from this set of class diagrams. Once this system definition is established, the rest of
the diagrams are related to it as their elements are created. Modifying a class diagram modifies
the system definition, but this definition alteration usually has little or no effect on the rest of
the diagrams in the model. This type of consistency is referred to as horizontal consistency[17].
For example, removing a class from the model will not cause the removal of instances of this
class from interaction diagrams. So, horizontal consistency has to be checked manually.

There is also the problem of maintaining the relationship between the requirements, design
and the source code. The UML models can only be useful in the system maintenance phase
if they are an accurate representation of the system implementation. This means that every
change made at a design level has to be reflected in the code, and vice-versa. This is known as
vertical consistency or co-evolution[16]. This artefact synchronisation is usually relegated to a
second plane, as the primary objective of the development team is to comply with the product
deadlines. The rich information present in the design models, that is quite valuable when
deciding what evolution steps to take, is no longer available, since with each implementation
iteration, the gap between the models and the implementation becomes larger.

For the reasons stated above, the automatic detection of inconsistencies, also known as con-
sistency conflicts, would greatly benefit the software development community that uses UML
as a form of design specification. UML is defined through its abstract syntax, presented as class
diagrams, well-formedness rules in OCL and semantics, specified in natural language. Due to
this, current approaches that deal with inconsistency detection have been limited to the study
of very specific problems (see Section 9.1). Moreover, as these studies are independent of each
other, each one uses a different formalism. What is needed is a general framework that would
allow the uniform detection of the largest amount of consistency problems possible.

1.2 Motivation

The relationships established in the UML metamodel, represented as associations between the
classes that represent the different model elements, could be used for consistency checking.
In order to use these relationships, the consistency between models will have to be specified
in a precise way. The semantic links between the UML models have to established using
some formalism that provides reasoning mechanisms. The partial automation of this process
will provide the development team with a consistent view on the system, through the system
documentation. This will be a direct benefit, as the system will become more maintainable.

Once the links between the different diagrams are established, the limits of this approach
should be tested. What kinds of inconsistencies can be detected? e.g., syntactic inconsisten-
cies, semantic inconsistencies, breaches of guidelines and conventions, etc. As there is no official
consensus as to which are the consistency problems between different UML models and dia-
grams, this set will have to be determined by means of experimentation. After determining
what inconsistencies can be produced during an evolution step, it would be interesting to know
what information is needed in order to detect each inconsistency. Given the existing infor-
mation, is it possible to offer an automatic resolution of the inconsistency? As a result, this
approach should allow the study of more complex relations in UML, going further than the
“traditional” notion of inconsistency.
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The UML model represented by the diagrams presented in figures 1.1 and 1.2 shows a moti-
vational example. In this case, the sequence of interactions shown in the sequence diagram, that
are received by an instance of the ATM class, does not exist as a trace of the state diagram that
represents the behaviour for this class. This is not detected by CASE tools. Another example
of an inconsistency is that seen in the state diagram shown in figure 1.3. Various states are not
reachable from the initial state because the connecting transition, between the PINEntry and
VerifyAccountBalance states, has been deleted.

aCashDispenser:
CashDispenser

aCardReader:
CardReader

anATM:ATM aSession:
Session

1: checkIfCashAvailable()

2: currentCash()

3: ejectCard()

4: ejectCard()

5: dispenseCash()

6: dispenseCash()

Figure 1.1: First motivational example: contradicting behaviour

PINEntry

Returning
Card GiveCash VerifyATM

Balance

VerifyAccount
BalanceAmountEntry[valid PIN]

[not valid PIN] checkIfCashAvailable()

verifyAccount()

dispenseCash()ejectCard()

Figure 1.2: First motivational example: contradicting behaviour

Another question that motivates this experimental study is how evolution through refactor-
ings could be detected and applied using the information explicit in the diagrams and models.
A refactoring is a software transformation that preserves the external behaviour of the software
and improves its internal structure[50, 54, 22]. The idea would be to use the same semantic
links as in consistency checking, so as to provide a general framework that could deal with
evolution-induced problems as a whole. Being able to apply refactorings at this level would be
an advantage, as the designer can be more adventurous when deciding which refactorings to
apply, because he will be able to see what effects each refactoring has on the system as a whole.
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PINEntry

Returning
Card GiveCash VerifyATM

Balance

VerifyAccount
Balance

[not valid PIN] checkIfCashAvailable()

dispenseCash()ejectCard()

Figure 1.3: Second motivational example: disconnected model

1.3 Objectives

The main objective of this dissertation is to experiment with Description Logics (DL), as a
formal means of detecting inconsistencies caused by evolution. Of special interest are the
inconsistencies that arise between models and between model versions, after introducing evo-
lutionary changes. Since UML lacks formal semantics, a formalism has to be chosen in order
to allow manipulation of models, based on this meaning and not their visual representation
as a diagram. This formalism should have an implemented reasoning engine, as one of the
requirements is to benefit from the semi-automatization of the consistency checking step of
the development process. Description Logics seems like the obvious candidate because of its
basic reasoning tasks: subsumption, instance checking, relation checking, concept consistency
and knowledge base consistency, if consistency checking is based on the UML metamodel. The
subsumption task consists in determining which concepts subsume each concept defined for the
knowledge base, thus organising the concepts into hierarchies. The instance checking task de-
termines if an individual is the instance of a concept, while relation checking determines if two
individuals in the knowledge base stand in a given relation. Finally concept consistency checks
that the concept definitions are consistent, while knowledge base consistency verifies that the
information about individuals is consistent.

As UML has nine diagram types, each one representing a different view of either the static
system structure or its dynamic behaviour, the universe of study of this dissertation has been
reduced for practical purposes. Three diagram types will be considered: Class, Statechart and
Sequence diagrams. The information present in these diagrams permits the study of the basic
structure of the system, how each element behaves in its own life-span, and how various elements
interact as parts of the system, respectively. This will allow the detection of inconsistencies
between structure and behaviour. Moreover, these diagrams are the ones most frequently used
by system designers.

1.4 Overview

The dissertation proceeds as follows. Chapter 2 details the characteristics present in Description
Logics that makes it a suitable candidate as a formalism for detecting and resolving inconsis-
tency, also known as consistency conflicts. Additionally, it contains the result of the evaluation
of three implementations of DL reasoning engines. In chapter 3, the UML profile of the meta-
model used is described. This includes the definition of new stereotypes so as to be able to
support model evolution. The environment necessary to carry out the experiments that will
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validate the ideas of this dissertation, is described in chapter 4. Chapter 5 introduces the
Banking Simulation, the case study used to produce test scenarios for these experiments. In
chapter 6, the set of inconsistencies discovered in the study is presented. Chapter 7 is focused
on design improvements tested during experimentation. In order to show the practicality of the
ideas presented in this dissertation, a tool that combines the DL engine and the UML models
was implemented. The details with respect to this tool are given in chapter 8. Finally, chapter
9 presents the conclusions of this dissertation and related and future work.



Chapter 2

Description Logics

The ideas expressed in this dissertation deal with the consistency problems that arise in UML
models and diagrams. As UML lacks formal semantics, a formalism had to be chosen in order
to allow manipulation of models and diagrams, based on the meaning of the diagrams and not
their representation. Knowledge representation systems (KRS) are focused on providing high-
level descriptions of problem domains, in order to allow the discovery of implicit consequences
of the explicitly represented knowledge.

These are the so called “terminological representation systems” that permit the definition of
a terminology describing the domain being modelled, using a representation language. Once
the domain representation has been established, as concepts and relations between them, it is
possible to reason about the individuals of the modelled world. Of special interest are KRSs
using Description Logics[6] (DL) as a representation language, as DL is a decidable fragment
of first-order logic. Various systems based on description logics have been implemented, each
with its own expressive power. The decidability and complexity of these formalisms has been
investigated in detail.

2.1 Basic Issues

The main motivation for resorting to description logic is because it is a decidable fragment of
first-order logic that possesses sound and complete reasoning mechanisms. In his PhD, Kim
Mens [42] tried to maintain consistency between a software architecture and its correspond-
ing source code using a logic programming language. Unfortunately, the algorithm to check
consistency turned out to be very inefficient. Moreover, due to the fact that a full-fledged pro-
gramming language was used, there was no guarantee whatsoever concerning the decidability or
completeness of the consistency algorithm. Description logic solves the latter problem because
it is a decidable and complete fragment of first-order predicate logic. It is also hoped that the
efficiency will be better.

2.1.1 Concepts and Roles

A KRS based on DL has a concept specification language which is a combination of the basic
DL operators, and, most importantly, automatic reasoning procedures. Each member of the
DL family is characterised by the set of concept and roles constructors allowed. Different

6
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Constructor Syntax Semantics
concept name C CI

top > ∆I

negation (C) ¬C ∆I \ CI

conjunction C1 u C2 CI
1 ∩ CI

2

disjunction (U) C1 t C2 CI
1 ∪ CI

2

universal quant. ∀R.C {d1 | ∀d2 ∈ ∆I .(RI(d1, d2) → d2 ∈ CI)}
existential quant. (E) ∃R.C {d1 | ∃d2 ∈ ∆I .(RI(d1, d2) ∧ d2 ∈ CI)}
unqualified number restr. (N ) (≥ n R) {d1 | |{d2 | RI(d1, d2)}| ≥ n}

(≤ n R) {d1 | |{d2 | RI(d1, d2)}| ≤ n}
qualified number restr. (Q) (≥ n R.C) {d1 | |{d2 | RI(d1, d2) ∧ d2 ∈ CI}| ≥ n}

(≤ n R.C) {d1 | |{d2 | RI(d1, d2) ∧ d2 ∈ CI}| ≤ n}
functional number restr. (F) (≥ 2 R) {d1 | |{d2 | RI(d1, d2)}| ≥ 2}

(≤ 1 R) {d1 | |{d2 | RI(d1, d2)}| ≤ 1}
one-of (O) {a1, . . . , an} {d | d = aIi for some ai}
role filler (B) ∃R.{a} {d | RI(d, aI)}
role name R RI

role conjunction (R) R1 uR2 RI
1 ∩RI

2

role hierarchy (H) R1 v R2 RI
1 ⊆ RI

2

inverse roles (I) R−1 {(d1, d2) | RI(d2, d1)}

Table 2.1: Common DL operators

combinations of operators generate languages with different expressiveness. Table 2.1[3] shows
a summary of the most common DL constructors, including their semantics. Using these concept
and roles constructors, complex concept and role expressions can be formed.

Historically, a number of description logics have received a special name. The language
FL− [12] is defined as the description logic allowing universal quantification, conjunction and
unqualified existential quantifications of the form ∃R.>. FL− was proposed as a formalisation
of the core notions of Minsky’s frames. Concept conjunction is implicit in the structure of
a frame, which requires a set of conditions to be satisfied. Role quantifications allow one to
characterise slots: the unqualified existentials state the existence of a value for a slot, while the
universal quantifier requires that the values of a slot satisfy a certain condition.

The logic AL[55] extends FL− with negation of atomic concepts. It is customary to define
systems by postfixing the names of these original systems with the names of the added operators
from table 2.1. For example, the logic ALC is AL extended with full negation.

2.1.2 Knowledge bases and Inference

The concept specification language allows the definition of terminology to be used in the creation
of knowledge bases, where inferences can later be performed. The knowledge base terminology
is specified by a finite set of expressions composed from the concept operators allowed by
the DL. These concept definition expressions are called terminological axioms. The set of
concept definitions is called the Terminological-Box (Tbox ). The part of the knowledge base
that contains the individuals that instantiate the concepts defined in the Tbox, is called the
Assertional-Box (Abox ). The Abox contains extensional knowledge about the domain of interest,
as a finite set of expressions relating concepts and relationships to individuals, called assertions.
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In earlier DL systems, terminological axioms were thought of as definitions, and restrictions
were placed on their form. The first is that axioms must be simple, i.e, any atomic concept
appears at most once in the left hand side of a terminological axiom in the Tbox . The second
restriction is the prohibition of cycles in concept definitions. These restrictions were imposed
due to the fact that it was thought that lifting these restrictions would require some sort of
special semantics, due to the underlying graph-like nature of the DL systems. Currently, general
terminological axioms have been introduced, without the need for special semantics. As a result,
these two restrictions have been lifted in current systems[31].

A system is complete if it is guaranteed to find all the valid inferences. Some systems
have preferred to restrict expressiveness in order to guarantee tractability and completeness.
Having a less expressive concept definition language limits the power of the system, and the
situations in which these systems are applicable is reduced. Other systems have decided to
include constructs that are known to be intractable or even undecidable. These are more
expressive, but the classifiers are incomplete. In this case, the users have to be aware that there
could be missing inferences.

2.1.3 Reasoning Tasks

The reasoning tasks reason about the consistency of knowledge bases. Tbox reasoning is used to
refer to the ability to perform inferences from a Tbox, and similarly, Abox reasoning is inference
for an Abox. The standard reasoning tasks offered by knowledge representation systems are:
subsumption, instance checking, relation checking, concept consistency and knowledge base
consistency. These tasks can be performed under either the closed or open world assumption.
If the classifier assumes closed-world semantics, it considers that the current fillers for all roles
are the only fillers for these roles, in other words, the current knowledge is complete. The
open-world assumption implies that the current knowledge is not complete.

Subsumption is one of the classical reasoning tasks performed in most knowledge representa-
tion systems. It is used to organise concept definitions into “is-a” hierarchies, finding for each
concept the other concepts that subsume it, also identifying the most specific subsumers for a
concept. Classification algorithms rely directly on the subsumption check. The subsumption
relation implicitly defines a taxonomy of concepts, which can actually be used to solve some of
the other reasoning tasks; for example, a concept is unsatisfiable if it is subsumed by the empty
concept ⊥.

Instance checking is used to verify whether an individual belonging to an Abox is an instance
of a concept belonging to a Tbox. An individual is inconsistent with respect to a Tbox if it is
classified as an instance of the empty concept ⊥. Relation checking determines if two individuals
of an Abox stand in a given relation of a Tbox. These two operations can be considered the
central reasoning tasks for retrieving information about individuals from a knowledge base.
Finally, concept and knowledge base consistency is used for verifying whether the information
contained in a knowledge base is coherent.

Research on description logics has focused mainly on understanding the relations between
the reasoning tasks mentioned above, and on establishing their computational complexity. The
study of the computational behaviour of DLs has provided a good understanding of the prop-
erties of the language constructs and their interaction.
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2.2 Tool Support Evaluation

KL-ONE was the first DL system implemented, by Brachman[11]. This system served as a
foundation block for various other systems, such as BACK[53], CLASSIC[10], LOOM [39] and
K-REP [41], that are known as the “KL-ONE” family because of this relation. These systems
were designed and implemented taking different positions on the requirements of expressive
power, completeness of reasoning, and tractability of reasoning. These first generation sys-
tems were used for medical systems, data-mining, knowledge-enhanced search, configurators,
government research and application programs.

These early systems however typically sacrificed expressive power or completeness in order
to maintain efficiency or even understandability. This was done by choosing determined com-
binations of the basic DL operators. The more recent set of implemented description logics
are expressive with respect to concept reasoning and also maintain complete reasoners with
computationally efficient implementations. A few examples of implemented description logics
in this class today are DLP[51], FACT[33], and RACE [29]. The aspects that will be discussed
in this evaluation are the following: supported DL, classifier, query mechanism and open/closed
world assumption. Some additional features per tool are also discussed.

2.2.1 CLASSIC v 2.3

CLASSIC[10, 2, 52] was developed in the AI Principals Research Department at AT&T Bell
Laboratories. It has been designed for applications where only limited expressive power is
necessary, but rapid responses to questions are essential.

Supported DL

CLASSIC’s concept definition language belongs to the AL family of languages. As such, it
supports the definition of concepts and relations, has “top” and “bottom” concepts, concept
conjunction, and universal and existential quantifiers. According to the constructs presented
in Table 2.1, the extensions to this DL classify it as ALQUIFO. Its terminological language
is of limited expressiveness - so that Tbox reasoning can be performed in polynomial time.
The designers of the system decided that it was essential that the system be able to respond
rapidly to questions. Also, by restricting expressiveness, tractability and completeness can be
guaranteed when classifying the concepts of the Tbox.

Classifier

Elements are defined using compound expressions from a simple grammar. A concept definition
is coherent if it can be instantiated. If a definition is not found in the knowledge base (KB) of
the model and it is coherent with the rest of the definitions, it is added. Concept definitions
cannot be cyclic or recursive, due to the limited expressiveness of the language supported by
the system. The system does not support transitive roles, either.

The classifier should find all the inferences, but there are some areas in which it is known
that the inference capability offered by the classifier is incomplete. With respect to concept and
individual processing, some inferences relative to role hierarchies are not performed to comple-
tion. Also, the properties of the individuals that are implied by their presence in descriptions
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are ignored when classifying them. The reason given for this is that this last type of inference is
computationally difficult. It is also possible for concept subsumption incompleteness to appear,
when determining whether or not an individual satisfies a concept definition. This is caused
also because of the ignored individual properties. These cases of incompleteness are known and
documented.

Query Mechanism

CLASSIC is classifier-centric and does not provide a general-purpose query language with which
Abox individuals could be examined. Instead, the user has to use system-defined queries in
the form of functions and a procedural interface provided by the underlying implementation
language of the system.

Open/Closed World Assumption

CLASSIC assumes that all knowledge bases are “open worlds”, that is, if something cannot be
proven as false, it is considered true. The user can manually close roles using a system function.
The reason why a function is provided, and not an operator, is that having an operator would
make concept descriptions autoepistemic, and thus, non-monotonic. So, if a role has not been
closed by the user, or deduced to be closed, it is assumed to be open.

Additional Features

Continual refinements and changes can be made to the KB individuals, but the concept defini-
tions cannot be changed. The invariant is that the knowledge base is always consistent. This
is achieved by rolling back to the last consistent state of the KB, whenever an inconsistent
state is detected. Copies of the individuals that lead to the inconsistent state are saved. The
explanation facility offered by the system can be used to find the cause of these inconsisten-
cies, as CLASSIC can explain its deductions with respect to subsumption, rule firing and error
occurrence.

2.2.2 Loom v 4.0

Loom[39, 13, 40, 35] was developed at University of Southern California’s Information Sciences
Institute. As a KRS, Loom is one of the most flexible KR systems in existence, and offers a
wide range of services: reasoning, editing, validation and explanation of model structures. It
has also been designed so as to incorporate different types of programming paradigms - data-
driven, object-oriented and logic programming - on top of a common shared knowledge base.
Loom can be considered as a complete programming environment.

Supported DL

Loom’s concept definition language belongs to the AL family of languages. As such, it supports
the definition of concepts and relations, has “top” and “bottom” concepts, concept negation,
concept conjunction, and universal and existential quantifiers. According to the constructs pre-
sented in Table 2.1, the extensions to this DL classify it as ALCQRIFO. This terminological



CHAPTER 2. DESCRIPTION LOGICS 11

language is quite powerful, but forces the use of incomplete reasoning algorithms for concept
classification and subsumption. The reason why its classifier is incomplete is that the subsump-
tion algorithms used are of the structural type, and given the expressiveness of the concept
definition language, it is impossible to provide efficient, complete classifiers using the type of
classification algorithms used by the KL-ONE family.

Classifier

Loom is more expressive by knowingly supporting intractable terminological constructs. The
justification given by Loom’s designers for the utility of an incomplete classifier is that complete
systems are only of theoretical interest, but are too restrictive to be of use in most applications.
The problem with this approach is that it is difficult to characterise the exact circumstances
which will result in incomplete reasoning or intractability. Loom deals with this by letting the
user limit the computational effort expended in seeking “expensive types of inferences”. But
the limits are still hard to define. The users cannot explicitly control how declarative knowledge
is used by the system.

Complexity of the classifier is comparatively efficient with respect to other KRS using struc-
tural subsumption algorithms, but many possible inferences are not supported. Loom cannot
reason about cardinality restrictions or role value restrictions. It is also known that reasoning
about inverse roles is incomplete. The exact circumstances that lead to incomplete reasoning
are not known. What has made it harder to pinpoint situations that lead to incompleteness of
the classifier is that, as the system was developed, the concept definition language was made
more expressive. As sources of incompleteness were found and solved, new ones arose.

The classifier does not support partial loading of knowledge bases. Disjoint relationships
between concepts have to be explicitly declared, which is contrary to the natural idea that any
unrelated concepts are automatically considered as disjoint. The classifier does not support
transitive roles. Assertions specifying transitivity can be made in the Abox, as well as about
role refinements. However, models compiled with Abox transitivity and refinement exhibit bad
performance.

Query Mechanism

Unlike most of its peers, Loom provides a powerful assertional reasoning facility, in the form of
the query and retrieval mechanism. The query language is a predicate calculus-based language.
This language is strictly more expressive than the description logics used in the concept defini-
tion language. It is possible to include predicate calculus-based expressions in description logics
expressions, using special operators, making it possible to even more expressive when defining
concepts. However, the classifier cannot reason about these expressions. The Loom query
language does not support questions returning concepts and formulas, only sets of individuals.

Open/Closed World Assumption

It is up to the user to decide whether a KB will assume that the world is closed or open, at
the moment of the KB’s creation. This assumption cannot be changed after expressions have
been asserted. Choosing closed world means that all the knowledge that is presently in the
knowledge base is all that is known about the individuals that inhabit the world. This will let
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Loom draw additional inferences (as opposed to the default open-world assumption). There are
no operators of functions that will switch the world from open to closed or vice-versa.

Additional Features

Inconsistent definitions are not treated as illegal, but are classified under the built-in concept
Incoherent, that can be easily accessed by the user. Recognition and truth maintenance only
takes place when Loom matcher is invoked. This causes the re-computation of the types of
the modified instances, and the changes are propagated throughout the KB using a forward-
chaining algorithm. When a concept is redefined, the necessary reclassifications are made and
the model is checked so as to ensure that model consistency is maintained.

The user can create, manipulate and query knowledge bases interactively and from within
applications. There are many pre-defined functions that are designed to facilitate application
programming. Loom has a context mechanism, that allows the definition of various contexts,
each with its own Tbox and Abox, which are organised into hierarchies. Assertions are propa-
gated through the knowledge bases following certain rules.

2.2.3 RACER v 1.7

RACER[29, 30, 31] was initially developed at the University of Hamburg, Germany. RACER
is actively supported and future releases are developed at Concordia University in Montreal,
Canada, and at the University of Applied Sciences in Wedel, Germany. Of all the evaluated
KR tools, this is the only one that is actively being developed and maintained.

Supported DL

RACER uses SHIQ[34] logic - a very expressive logic, that includes DL constructs like qualified
number restrictions, inverse roles, hierarchies, transitive roles and full negation. Simple roles,
that are non-transitive roles that have no transitive subroles, are allowed to have number
restrictions. Transitive roles cannot have this type of restriction because of the undecidability
that would result in the case of this unrestricted syntax.

Classifier

There have been advances in the development of reasoning algorithms for expressive description
logics, but mostly only considering Tbox reasoning. Only recently, Abox reasoning has sum-
moned interest. In previous systems, Abox reasoning was never implemented, as the complexity
of the proposed algorithms was intractable. RACER is the first system to support full-fledged
Tbox and Abox reasoning.

In order to be able to provide complete reasoning for an expressive DL like SHIQ, RACER
does not use the same type of classification algorithm as the KL-ONE family. Instead, it
uses tableau calculus-based algorithms. The complexity for this family of algorithms has been
determined for the worst-case, and the first systems using this type of reasoning algorithms
behaved in an acceptable manner in practice.

A RACER Tbox contains concept definitions, general concept inclusions (explicit subsump-
tion relations) and role definitions. Cyclic concept definitions are handled correctly. Multiple
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definitions can exist for a concept. These add on to the central definition of the concept, if the
resulting concept is coherent. RACER is very flexible w.r.t concept definition, and even allows
forward references to concepts that will be introduced later.

Role definitions must be unique, and can be arranged into hierarchies. Super roles cannot
be cyclic. Like Loom, roles can be given a range and domain. Simple roles can have number
restrictions that belong to Z and Q, and these restrictions are effectively used when dealing
with subsumption. Constraints can be established between individuals.

Query Mechanism

Even though RACER offers Abox reasoning, it only provides query functions that return pre-
defined sets of individuals, instead of a flexible query language, like Loom. However, these sets
can then be manipulated using the underlying implementation language of the DL tool. The
reasoning effort used for answering Abox queries can be controlled, by choosing either query
indexes or exploiting the query subsumption.

Open/Closed World Assumption

RACER operates under the open world assumption: what can’t be proved as false, is assumed
to be true. There are no operators or functions that allow the closing of the roles of an indi-
vidual. This is because closed world assumption requires non-monotonic reasoning, currently
not supported by DL systems.

Additional Features

This DL tool is available as a server, offering various operational modes. It offers a file-based
interface, a socket-based TCP stream interface and a HTTP-based stream interface. The file
interface of RACER supports queries given in KRSS-like syntax. Both the socket and HTTP
interfaces of the RACER Server can be used from application programs or graphical interfaces.
Various graphical client interfaces are available for the RACER server, which makes interaction
with KBs more user-friendly.

2.3 Conclusion

After a study of the characteristics offered by each system, and interacting with each one, it was
decided that Loom will be used as the DL-based reasoning tool in this dissertation. Loom has
a very expressive concept definition language and a powerful query and retrieval mechanism.
Although Loom has an incomplete classification algorithm, the experiments will be restricted
to a subset that is complete. The query facility and production rules can be used to detect
inconsistencies, provide solutions to these and propagate changes to the rest of the models.

The main reason for not choosing CLASSIC is the lack of expressiveness of the concept
definition language. RACER, with its highly expressive terminological language, transitive
roles and Abox reasoning, would have been an ideal candidate, but this choice would have
represented more work, as the lack of a query language would force the implementation of a
layer that could interpret the results of the query functions.



Chapter 3

UML Profile

In this chapter, a summarised overview of UML as a modelling language is given. This is
followed by a section that discusses the subset of the UML metamodel used in this study, with
respect to the diagram types used. As this study is a proof of concept, the expressiveness of
these diagrams was restricted, including only the model elements being studied in the case
study. Finally, the extension to the UML metamodel that allows reasoning with respect to
horizontal and evolution consistency, is presented.

3.1 UML

UML[48], as a visual modelling language, provides a family of diagrams with which aspects like
the structure and behaviour of a system can be defined in a clear and unambiguous fashion. In
an ideal situation, a system will be defined by a model composed of diagrams that accurately
represent its critical components. The following is a list of the kinds of diagrams that represent
the static and dynamic aspects of a system:

• Class diagram: shows a static representation of the system structure, as a collection of
classes and relationships (association, aggregation and . Class definitions are included in
this diagram, by specifying attributes and operations. Main diagram in a model, since it
specifies the model elements that are referenced by the rest of the diagrams.

• Statechart diagram: shows the behaviour of the instances of one class, as a collection of
states and transitions. These states represent the different stages of an object’s lifetime
in the system.

• Sequence diagram: shows the interaction between system objects, arranged in a time
sequence. Interactions are message sends between the represented objects.

• Use Case diagram: shows the functionalities that the user expects in the final product.
These functions are represented as sequences of actions that the system can perform, as
a result of the interaction between the system users (actors) and the system.

• Collaboration diagram: shows the interaction between objects, as free-form interactions
between objects. Messages are labelled chronologically, so as to maintain the ordering.

• Object diagram: shows a static view of the states of objects and their relationships, as
the configuration of the system as a certain point in time.

14
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• Activity diagrams: shows the behaviour of an operation as a set of actions.

• Component diagram: shows the system as a collection of physical components.

• Deployment diagram: shows how components will be deployed on specific hardware parts.

UML has a set of fundamental modelling concepts that represent the model elements used
in the different diagrams. The UML authors have tried to make this list as comprehensive as
possible, so that UML can be used in a wide range of scenarios. They avoided specialising the
notation towards certain areas, and preferred to include a notation extension mechanism, in
order to make the language more customisable. Groups that feel the need of a more specific
notation, or believe that the current notation and model elements do not support modelling of
certain aspects, are free to use this mechanism in order to extend the modelling language to
their own needs.

A UML profile is a specification that identifies a subset of the UML metamodel (which may be
the entire UML metamodel) that is used, and also specifies well-formedness rules beyond those
included in the normative UML specification that contribute to the definition of metamodel
elements. Standard elements beyond those specified by the identified subset of the UML model
are specified. A profile can also include the specification of additional semantics, expressed in
natural language. A UML profile was specified for this thesis, as new concepts were included so
as to permit reasoning with respect to model information. Also, this profile includes a subset
of the UML metamodel and well-formedness rules, as this thesis provides a proof of concept,
and some model elements were not used in the case study.

The UML profile used in this study includes a subset of the Core, Model Management,
Common Behavior, Collaborations and State Machines packages of the UML metamodel. This
includes the corresponding subset of well-formedness rules and semantics. The Core package
specifies the abstract syntax of Class diagrams. The concepts of models and relationships
between models are present in the Model Management package. The Common Behavior and
Collaborations packages specify the elements present in Sequence and Collaboration diagrams.
Finally, State diagrams are specified by the State Machines package. In the following sections,
more details will be given about the UML profile used.

3.2 Models

As mentioned in section 1.3, only three types of diagrams will be considered in this thesis: Class,
Sequence and Statechart diagrams. The system elements are defined in the class diagrams, their
individual behaviours appear in the statechart diagrams, and finally, their role in the execution
of the system is visible in the sequence diagrams. Using these three kinds of diagrams, static
and dynamic information on the system is available, and the size of the experiments is kept
manageable. Subsections 3.2.1, 3.2.2 and 3.2.3 present the details of the UML metamodel
subsets that correspond to these diagrams. This information is highly technical and can be
skipped by readers who are not familiar with the UML metamodel.

3.2.1 Class Diagram

From the Core Package - Backbone ([48]: page 2-13), the intermediate metaclasses Struc-
turalFeature and BehavioralFeature and the metaclass Constraint will not be considered in this
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Figure 3.1: Subset of the UML Core Package

thesis. BehavioralFeature is an abstract metaclass that only represents features like operations
and methods, so its omission has no effect on the type of elements that can be included in a class
diagram. StructuralFeature, like BehavioralFeature, only represents class feature attributes. A
Constraint is a semantic condition or restriction expressed in text, with respect to a model
element. This metaclass has been omitted from the profile, Constraints cannot be included in
class diagrams.

From Core Package - Classifiers ([48]: page 2-16), the metaclass hierarchies Interface,
DataType, Node, Component and Artifact are ignored1 as subclasses of the Classifier metaclass.
Only Class is kept, and this metaclass replaces Classifier in this profile. Of these metaclasses,
the only one that is used in class diagrams is the Interface metaclass. The omission of the
rest does not influence the expressiveness of the resulting class diagram notation for the consid-
ered case study. The Interface metaclass was omitted in order to make the experiments more
manageable.

From the Core Package - Relationships ([48]: page 2-14), the metaclasses Flow, Generaliz-
ableElement and AssociationClass are not considered. A Flow is a relationship between two
versions of an object or between an object and a copy of it. As it is a relationship between
objects, it cannot be included in class diagrams, so its elimination does not restrict the expres-
siveness of the class diagrams allowed. A GeneralizableElement is a model element that may
participate in a generalisation relationship. In a class diagram, this usually refers to a class or
interface. Since interfaces are not being considered in these experiments, classes are supposed
as being GeneralizableElements, and the abstract metaclass is removed. An AssociationClass
is an association that is also a class. It is a relationship that has features of its own. These are
not considered, like interfaces, as these constructs are not used in the case study.

None of the metaclasses belonging to Core Package - Auxiliary Elements ([48]: page 2-17) and
Extension Mechanisms ([48]: page 2-76) are included in this profile. From Data Types Package

1This includes their descendants.
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- Main ([48]: page 2-85), the metaclasses Multiplicity and MultiplicityRange are included, so
as to permit the use of multiplicities in the example class diagrams. An overview of the Core
Package subset used is shown in figure 3.1. The metaclass ModelElement is included, but not
displayed in the figure for reasons of clarity, as most of the elements present in the diagram
inherit from it, directly or indirectly.

3.2.2 Statechart Diagram
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Figure 3.2: Subset of the UML State Machines Package

From the State Machines Package - Main ([48]: page 2-141), the metaclasses and proper-
ties supporting concurrent states, stubbed transitions, submachines states, synch states and
time and signal events are omitted. This results in omitting the metaclasses SynchState, Sub-
MachineState, StubState, SignalEvent and TimeEvent and the metaattribute isConcurrent of
metaclass CompositeState. Additionally, the only kind of PseudoStates that will be allowed are
initial pseudo states. This means that deepHistory, shallowHistory, join, fork, junction and
choice pseudo states cannot be used when using this UML profile. All these characteristics have
been eliminated as the state machines studied in the case study do not use these constructs.
An overview of the State Machines Package subset used is shown in figure 3.2.

3.2.3 Sequence Diagram

The Common Behavior Package - Signals ([48]: page 2-94) is excluded as a whole, as only
synchronous stimuli between instances are considered in this study. From Common Behavior
Package - Links, the metaclass ObjectLink is ignored, as the corresponding model element for
class diagrams, AssociationClass, was ignored. As only sequence diagrams are considered in
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this profile, the model elements used in interaction diagrams are not included in this profile.
The result is that the Collaborations Package - Interaction subset is omitted from this profile.

From the Common Behavior Package - Actions ([47]: page 2-96), the metaclasses Retur-
nAction, SendAction and TerminateAction are ignored. As mentioned in Section 3.2.1, the
metaclass Classifier is replaced by its descendent, the metaclass Class. Sequence Diagrams
that comply with the metamodel of this profile cannot have return, send or terminate actions.
A return action is an action that results in returning a value to a caller. A send action is an
action that results in the asynchronous sending of a signal, and as signals have been omitted,
this action type has to be omitted. A terminate action results in self-destruction of an object.

From Common Behavior Package - Instances ([48]: page 2-96), the metaclasses DataValue,
SubsystemInstance, NodeInstance and ComponentInstance are ignored as subclasses of the In-
stance metaclass. Only Object is kept, and this metaclass replaces Instance in this profile.
This is due to the fact that only Class is considered as a Classifier. These metaclasses are not
considered in this profile, as they are not present in the case study.

From the Collaborations Package - Instances, only sequence diagrams presenting an Interac-
tionInstanceSet are supported. An InteractionInstanceSet is a set of Stimuli between Instances
within a CollaborationInstanceSet. However, the metaclasses InteractionInstanceSet and Col-
laborationInstanceSet have been omitted, as this information can be determined by looking at
the sequence model. This decision is strengthened by the fact that some current UML CASE
tools (e.g., Poseidon [26]) do not include this level of information in models produced. An
overview of the Common Behavior and Collaborations Packages subset used is shown in figure
3.3.

To be able to indicate if an AttributeLink is accessed or updated, the UninterpretedAction
metaclass is stereotyped into UpdateAction and AccessAction. In order to keep track of the
AttributeLink that is accessed or updated by an instance of AccessAction or UpdateAction,
different kinds of tag-value pairs are introduced. The pair (updateAttr, AttributeLink) keeps
track of UpdateActions and the pair (accessAttr, AttributeLink) keeps track of AccessActions.
These pairs are represented as associations in figure 3.3

In order to reason about the ordering of the Stimuli in a sequence diagram, two tag-value
pairs have been introduced. The pair (successor, Set(Stimulus)) keeps track of the Stimuli that
are successors of a Stimulus, in the scope of an activation box of an Object. Likewise, the pair
(predecessor, Set(Stimulus)) keeps track of the Stimuli that are predecessors of a Stimulus.
So as to be able to identify the Stimuli that belong to one activation box, two more tag-value
pairs have been introduced. The pair (activator, Set(Stimulus)) keeps track of the activating
Stimulus of a set of Stimuli that interact in one activation box. The pair (activee, Stimulus)
keeps track of the set of Stimuli that are activated by one Stimulus, thus identifying the set
of stimulus that interact in one activation box. Each pair of tag-value pairs are represented
together as a bidirectional associations in figure 3.5.

3.3 Model Management

The existing set of model elements includes the idea of a model as a component, a subsystem
or a package. Design, as the set of various models, is not present. The idea of maintaining
a link between different versions of a model is also not present. The only existing evolution
relationship is Refinement that specifies the refinement relationship between model elements
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at different semantic levels, such as analysis and design. Due to this, the profile has been
augmented with stereotypes, so as to be able to support model evolution.
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Figure 3.4: Horizontal, Vertical and Evolution Consistency

3.3.1 Traces

Two types of consistency[17, 16] have been distinguished in UML models. The first is hori-
zontal consistency, and indicates consistency between different models within the same version.
Evolution consistency indicates the consistency between different versions of the same model.
A third type of consistency, vertical consistency, which relates model elements at different se-
mantic levels. The three types of consistency are shown in figure 3.4: the horizontal arrows
describe horizontal consistency, the diagonal arrows describe evolution consistency and the ver-
tical arrows describe vertical consistency. Both horizontal and evolution consistency can be
expressed in this UML profile, by defining two stereotypes for the Trace metaclass: Horizon-
talTrace and EvolutionTrace (see figure 3.5). Vertical consistency can be expressed using the
existing Refinement stereotype.

3.3.2 Models

From the Model Management Package ([48]: page 2-182), the intermediate metaclasses Names-
pace and Package are ignored, as they are not explicitly used in the case study. This hierarchy
has been flattened, maintaining only the subclass Model. The namespace relationship is now
assumed by Model. The model elements that participate in a model are now directly related to
the owner model. In order to be able to deal with model versions, evolution and version con-
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sistency, the Model metaclass is stereotyped into VersionedModel, so as to include a tag-value
pair - (version, Integer) - that indicates the model version number.

To specify the kind of models that can be related by horizontal or evolution consistency
arrows, the VersionedModel metaclass in the Model Management Package is stereotyped to
distinguish between primitive models and composite models. For this reason, VersionedModel
is stereotyped into CompositeModel and PrimitiveModel. PrimitiveModel is an abstract meta-
class, that is further specialised (stereotyped), into ClassModel, SequenceModel and StateModel.
CompositeModel is a stereotyped VersionedModel that is a container for all the PrimitiveModels
that belong to the same version.

In order to keep track of the models belonging to a CompositeModel, a tag-value pair (vmodel,
Set(VersionedModel)) is introduced. For VersionedModel, a tag-value pair (container, Compos-
iteModel) is needed. Both tag-value pairs are represented together as a bidirectional association
in figure 3.5. Well-formedness rules must be specified for the newly introduced Model and Trace
stereotypes and tag-value pairs:

• A CompositeModel contains zero or more VersionedModels.

• A HorizontalTrace can only be specified between PrimitiveModels belonging to the same
CompositeModel.

• An EvolutionTrace can only be specified between different versions of the same Compos-
iteModel, or between different versions of the same PrimitiveModel.

• With respect to two models participating in an EvolutionTrace, the version number of the
client model must be greater than that of the supplier model.



Chapter 4

Experimental Setup

In this chapter, the environment needed for the experimentation process is described. In the
first section, the chosen DL tool, Loom 4.0, is discussed. The DL tool will be used as an
inference engine, storing user-defined models as instances of the UML metamodel. In second
section, the chosen UML CASE tool, Poseidon For UML CE 1.6, is discussed. The user-defined
models will be developed in this graphical environment, which saves model data as XMI files.
Finally, in section three, the SAXON 6.5.2 package is discussed. This package is a collection
of tools for processing XML documents. This will be used for translating the UML metamodel
and the user-defined models into Loom syntax, and vice-versa. The proposed tool interaction
can be seen in figure 4.1.

UML CASE tool

Poseidon for 
UML

XML processing

SAXON

DL reasoning engine

Loom
UML model in 

XMI format
UML model as 
logic assertions

Figure 4.1: Proposed interaction between the tools used in the experimentation process

4.1 DL Tool - Loom 4.0

The experiments in this dissertation involve the detection of inconsistencies at the UML model
level, using Description Logic. As a consequence of this requisite, and after evaluating various
existing tools (see Section 2.2) Loom[13, 39, 40] was chosen as the inference engine. The main
motivation for this choice is the powerful assertional reasoning facility it provides, in the form
of a query and retrieval mechanism. The UML metamodel will provide the main concept
definitions of the Tbox (see Section 2.1). The Abox will be populated by individuals derived
from user-defined UML models.

The conjunction of the Tbox, Abox and the query mechanism will allow the query and ma-
nipulation of models. This will permit the development of detection predicates for the different
inconsistencies defined at the UML level. A quick overview of Lisp functions and macros, and
Loom’s concept definition and query language is given in this section. As an example of the
concepts and relations used in the Tbox, the subset of the UML profile representing the class
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diagrams is translated into the corresponding Loom syntax. As an example of the individuals
that populate the Abox, a user-defined class diagram is translated into the corresponding Loom
syntax. This will allow a better understanding of the experiments presented in Chapter 6.

4.1.1 Lisp Overview

Loom is implemented in Lisp[25], and allows the use of Lisp functions, macros and keywords in
queries and predicates. In this section, a quick overview of the main functions and macros used
in the experimentation process, is given. Special forms are generally exceptions to normal Lisp
syntax that make coding easier and more convenient for the programmer. They are expressions
that do not follow the normal rules of evaluation.

Functions are defined using the defun special form, that receives the function name, argument
list and body as arguments. Another special form, setq is used to set variables in Lisp. progn is a
special form that stands for “program with no arguments”. It takes a number of expressions and
groups them all together in to a single expression that returns the value of the last expression
in the group. This is useful for writing if statements that execute more than one expression
at a time. The let special form is used to introduce local variables. A local variable exists
only for the duration of its scope, which in Lisp is the length of the let statement. This form
is sensitive to order of evaluation, a problem that can be avoided by using let*, which is less
efficient than let, but is not sensitive to order of evaluation.

The general printing function format is used. format takes at least two parameters, an output
stream and a string. If the string contains formatting directives, additional parameters might be
needed. When the first parameter is T, the result is printed to the standard output. Formatting
directives all begin with ~, like new line (~%) and symbol (~s). An additional argument has to
be given for each ~s directive, and is taken from the argument list (in order of directive) and
printed in the output.

The equalp function is a more flexible version of equal. In particular, it compares strings
case-insensitively, and it compares numbers without regard to type. Vectors are compared
recursively. All other objects are compared as if by equal. Various list manipulation functions
are used, specially car and cdr, that returns the value pointed to by the first pointer of the list,
and returns the value pointed ti by the second pointer of the list, respectively.

The functions first, second, third and fourth access the first, second, third and fourth
elements of a list, respectively. The sort function sorts a list stably, though destructively,
and returns the sorted list. It establishes the order of the elements by comparing them using
a predicate given as an argument. This predicate must be a binary function and must give
reliable results for any given pair of arguments, at least within a single call to sort.

4.1.2 Concept and Relation Definition

Loom’s concept definition language belongs to the AL family of languages. As such, it supports
the definition of concepts and relations, has “top” and “bottom” concepts, concept negation,
concept conjunction, and universal and existential quantifiers. According to the constructs
presented in Table 4.1, the extensions to this DL classify it as ALCQRIFO. This same table
shows the corresponding Loom syntax for each DL construct that is a part of the concept
definition language offered by this tool.

By looking at the syntax for qualified number restrictions, it becomes visible that it is also
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Constructor DL syntax Loom syntax
concept name C (defconcept C)

top > |C|THING

negation (C) ¬C (defconcept D :is (:not C))

conjunction C1 u C2 (defconcept D :is (:and C1 C2))

disjunction (U) C1 t C2 (defconcept D :is (:or C1 C2))

universal quant. ∀R.C (defconcept D :is (:all R C))

existential quant. (E) ∃R.C (defconcept D :is (:some R C))

qualified number restr. (Q) (≥ n R.C) (defconcept D :is (:and (:at-least n R)

(:all R C)))

(≤ n R.C) (defconcept D :is (:and (:at-most n R)

(:all R C)))

functional number restr. (F) (≥ 2 R) (defconcept D :is (:at-least 2 R))

(≤ 1 R) (defconcept D :is (:at-most 1 R))

one-of (O) {a1, . . . , an} (defconcept D :is (:one-of ’A1 ... ’An))

role name R (defrelation R)

role conjunction (R) R1 uR2 (defrelation S :is (:and R1 R2))

inverse roles (I) R−1 (defrelation S :is (:inverse R))

Table 4.1: DL constructs and the equivalent Loom syntax

possible to represent unqualified number restrictions, by omitting the (:all R C) predicate
in the concept definition. This construct was not used in the Tbox definition used in the
experimentation process, as the UML metamodel did not present ambiguities that would have
made it indispensable.

An equivalent manner of defining the qualified number restrictions is by setting certain re-
lation characteristics: domain and range. This approach has been preferred by the author, as
neater, more compact concept definitions that yield the same subsumption relations when the
Tbox definitions are classified, can be written. For example, (defconcept C (:and (:at-least 1

R) (:all R D))) (defrelation R) can be written as (defconcept C (:at-least 1 R)) (defrelation R :domain C :range D).
Also reducing the size of concept definitions, the predicate (:exactly n R) is syntactic sugar for
the longer (:and (:at-least n R) (:at-most n R)). In addition to the :all and :some quanti-
fiers, the :the keyword can be used, as shorthand for stating the fact that there is exactly one
filler (:some only specifies that there is at least one).

Both concept and relation definitions can include first-order logic expressions, using the
:satisfies keyword, that receives a first-order expression in the form of a query expression. In
the case of concept definitions, if C = (:satisifes (?X) Q), and I is an instance of C, then the
Loom query Q is satisfied when the variable ?X is bound to I. In the case of relation definitions,
if R = (:satisfies (?X1...?Xn) Q), and < I1, ..., In > is an instance of R, then the Loom
query Q is satisfied when the variables ?X1...?Xn are bound (in order) to I1...In. The use
of this keyword has been avoided, as reasoning with respect to these predicate calculus-based
expressions is not complete. Completeness is necessary when inconsistencies are being detected,
so as to assure that the model as a whole is consistent.

The following example defines an elementary Tbox that represents some concepts associated
to people:

(defrelation gender :characteristics single-valued :domain Person :range Gender)
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(defrelation age :is (:and Integer) :characteristics single-valued)
(defrelation wife :domain Man :range Woman)
(defrelation husband :inverse wife)
(defrelation child :domain Parent :range Person)
(defrelation daughter :domain Parent :range Female)
(defrelation son :domain Parent :range Male)
(defrelation pet :domain Person :range Pet)

(defconcept Person :roles (gender age))
(defconcept Adult)
(defconcept Gender :partitions $Gender$)
(defconcept Female :in-partition $Gender$)
(defconcept Male :in-partition $Gender$)
(defconcept Woman :is (:and Person Adult (:the gender Female)))
(defconcept Man :is (:and Person Adult (:the gender Male)))
(defconcept Parent :is (:and Person (:some child Person)))
(defconcept Mother :is (:and Woman Parent))
(defconcept Father :is (:and Man Parent))
(defconcept Teacher :is (:and Person Adult))
(defconcept Pet)

Age and gender are defined as attributes of the Person concept, each allowing only one value.
Wife, husband, child, daughter, son and pet are modelled as relationships between concepts,
that are specified as the domain and range. Gender defines a disjoint partition, which only
has the concepts Male and Female as participants. The rest of the concepts are defined as
conjunctions of the previously defined concepts.

4.1.3 Individual Creation and Description Macros

Individuals are created with the (create identifier concept) function. The identifier ar-
gument is a symbol or string which identifies the new instance. If the identifier is NIL, the
individual is given a unique system-generated identifier. The concept argument is the concept,
or the name of the concept, to be used as the creation type of the new instance. When no
concept is supplied, the creation type is Thing. Assertions about the individuals are then made
using the tellm macro.

The (tellm propositions) macro asserts one or more propositions, and then calls the Loom
matcher to recompute the types of the affected instances. Each proposition in the propositions

argument above has the following syntax:

proposition ::=
( concept instance ) |
( relation instance+ value ) |
( :CREATE ?Var concept [:CLOS] ) |
( :SAME-AS instance instance ) |
( :ABOUT instance about-clause* )

The [:CLOS] switch present in the create form above informs Loom as to whether it should
look in the Tbox for the concept parameter, or if a Common Lisp Object System (CLOS) class
should be looked up.

Each about-clause in a proposition has the form:
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about-clause ::=
concept |
( concept ) |
( relation value ) |
( :FILLED-BY relation value+ ) |
( :FILLED-BY-LIST relation List ) |
( {:AT-LEAST | :AT-MOST | :EXACTLY} Integer relation ) |
( {:ALL | :SOME | :THE} relation concept )

The following examples show some elementary combinations of propositions, that create
individuals that belong to the universe defined in the example Tbox of Section 4.1.21:

(tellm (Person Joe))
(tellm (age Joe 30) (wife Joe Sue) (Teacher Sue))
(tellm (age (wife Joe) (+ (age Joe) 1)))
(tellm (Person Honey) (:same-as (wife Joe) Honey))
(tellm (:create ?X Dog) (pet Joe ?X))
(tellm (:about Mark Person (wife Jane)))
(tellm (:about Mark (child Fred) (child Mary)))
(tellm (:about Mark (:filled-by child Fred Mary Don)))
(tellm (:about Mark (:at-least 3 child) (:at-most 1 daughter) (:exactly 2 son)))

The (forgetm propositions) macro is used to retract propositions from the Loom database.
These propositions may state that an instance belongs to a given concept or has a particular
feature, or that a certain relationship holds between two or more instances. Each proposition
in the propositions argument above has the following syntax:

proposition ::=
( concept instance ) |
( relation instance+ value ) |
( :CREATE ?Var concept [:CLOS] ) |
( :ABOUT instance about-clause* )

Each about-clause in a proposition has the form:

about-clause ::=
concept | ( concept ) | ( relation value ) |
( :FILLED-BY relation value+ ) |
( {:AT-LEAST | :AT-MOST | :EXACTLY} Integer relation ) |
( {:ALL | :SOME | :THE} relation concept )

The forgetm macro acts as the inverse of the tellm macro. As such, the propositions are
constructed in the same way. For example, to undo the assertion (tellm (Person Joe)), the
assertion (forgetm (Person Joe)) has to be executed. When it is necessary to retract all the
fillers for a role, the * symbol can be used. For example, (forgetm (child Joe *)) retracts
all the fillers of the child role, for the individual Joe. In order to partially retract fillers, the
specific Loom identifications of these individuals should be known.

All the macros used in this section will automatically advance to a new knowledge base state.
In addition to this, all Aboxes defined during the course of the experimentation process have,

1Asserting the same fact more than once in a knowledge base will have no effect on the existing state of the
knowledge base
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as their creation policy, :classified-instance. This means that all instances are classified as
soon as possible. As a result, all knowledge bases automatically advance state and incorporate
all assertions immediately, updating the necessary individuals.

4.1.4 Query Language

The query and retrieval mechanism offered by Loom is very powerful. Expressions of arbitrary
complexity can be formed by using certain operators. The query processor evaluates these
expressions, and returns a list of instances or tuples that satisfy them. The inference capabilities
of the query processor have been limited by the system architects, in order to gain performance
speed. If the classifier is enabled, it discovers the inferences missed by the query processor.

Two data-retrieval macros are available: (do-retrieve variables query body) and
(retrieve variables query-expr). The variables argument is a symbol, or list of symbols,
each beginning with the character ?. The query argument is an expression in the Loom query
language. This language has the expressive power of the first-order predicate calculus. The
difference between both macros is that the do-retrieve macro executes a body of Lisp code
once for each instance or tuple retrieved by a given query.

The query expressions appearing in the query argument above have the following syntax:

query-expr ::=
( {:AND | :OR} query-expr+ ) |
( {:NOT | :FAIL} query-expr ) |
( :IMPLIES query-expr query-expr ) |
( {:FOR-SOME | :FOR-ALL} ( ?Var+ ) query-expr ) |
( :COLLECT ( ?Var ) query-expr ) |
( concept instance ) |
( relation instance+ value ) |
( :SAME-AS instance instance ) |
( :SUBSET instance instances ) |
( :PREDCALL LispPredicate value+ ) |
( :ABOUT instance about-clause* )

Each about-term in a query :about clause has the form:

about-clause ::=
concept |
( concept ) |
( relation value ) |
( :FILLED-BY relation value+ ) |
( {:AT-LEAST | :AT-MOST | :EXACTLY} Integer relation ) |
( {:ALL | :SOME | :THE} relation concept )

The following examples show some queries relative to the Tbox and Abox given as examples
in Sections 4.1.2 and 4.1.3, respectively:

(retrieve ?x (age Joe ?x))
(retrieve ?x (max (age (child Joe)) ?x))
(retrieve (?x ?y) (wife ?x ?y))
(retrieve ?x (:and (pet Joe ?x) (:not (Dog ?x))))
(do-retrieve (?x ?y) (wife ?x ?y) (format t "~S is married to ~S~%" ?x ?y))
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4.1.5 Tbox

In figure 4.2, the subset of the UML profile that specifies the properties of the class diagrams
is shown2. The complete translation of this subset into Loom syntax is detailed in this section.
The translation of the rest of the UML profile can be found in Appendix A.1. The UML profile
has been translated by package (see Chapter 3), with each metaclass translated as a concept,
each association translated as a relation and each attribute translated as a role of the concept
that models the corresponding metaclass. Inheritance is modelled through the subsumption
relationship, and also by establishing disjoint partitions. The set of OCL well-formedness rules
associated to each subset of the UML profile has also been specified in Loom, using logic rules
written in a combination of Lisp and Loom. The concept definitions of elements that appear in
more than one subset are later combined into single concept definitions.
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Figure 4.2: Subset of the UML Core Package

Network Initialisation

The creation of a knowledge base is known as the “network initialization” in Loom. This
terminology derives from the type of subsumption algorithm used by Loom, which is structural,
based on graphs. Thus, before facts can be asserted, the graph network has to be initialised.
A package must always be created for a knowledge base. Then, Loom is instructed to use this
newly created package for storing the Abox and Tbox assertions. In this case, the name of the
package is “UML”.

Various features can be set and unset for a knowledge base. The following list describes the
options used during the experimentation process, but a comprehensive list can be can be found
in the Loom manual[13] and site[35]:

• If the :display-match-changes feature is set, whenever a production memory match or
2Although it is not visible in this diagram, all the classes are descendants of the ModelElement class.
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instance classification occurs, Loom indicates which concepts have entered or exited the
type of each affected instance.

• If the :emit-match-stars feature is set, an asterisk is printed whenever the type of an
instance changes. Also, Loom prints a T whenever a new type is created as a result of
unifying a newly-matched concept with the concepts already in an instance’s type.

• If the :emit-classify-dots feature is set, a dot, minus, or plus is printed when a concept
is classified, unclassified, or completed, respectively, and an exclamation mark is printed
when a concept is sealed (i.e., ready to participate in data manipulation operations). Also,
the character M is printed when concepts merge during classification, U is printed when
they unmerge, and C is printed when a CLOS class is created.

• If the :ask-for-concept-names feature is set, Loom prompts the user for concept names
whenever system-defined concepts are generated. The prompting is done after the new
concepts have been completed. If the user declines to supply a name, the concept is
assigned a system-generated name.

A instance creation policy must be chosen for the knowledge base. This is done by call-
ing the creation-policy function. Legal policy values are :classified-instance - classifies
instances as soon as possible, :lite-instance - classifies instances when forced by the user
and :clos-instance - classifies instances as CLOS objects. The initialize-network function
clears all knowledge bases by destroying the concepts, relations, instances, and behaviours that
they contain. It also rebuilds the top-level knowledge base, populating it with built-in con-
cepts such as Thing and Constant. The following initialisation settings were used during the
experimentation process:

(defpackage "UML" (:use "COMMON-LISP"))
(in-package "UML")
(LOOM:use-loom "UML")
(set-features :display-match-changes :emit-match-stars :emit-classify-dots)
(unset-features :ask-for-concept-names)
(creation-policy :classified-instance)
(initialize-network)

Relation definition

• Attribute name, belongs to the ModelElement metaclass
(defrelation name :is (:and String) :characteristics :single-valued :domain

ModelElement :range String)

• Attribute the-prev-ver, belongs to the ModelElement metaclass
(defrelation the-prev-ver :characteristics :single-valued :domain ModelElement

:range ModelElement)

• Attribute kind, belongs to the Parameter metaclass
(defrelation kind :characteristics :single-valued :domain Parameter :range String)

• Attribute lower, belongs to the MultiplicityRange metaclass
(defrelation lower :is (:and Integer) :characteristics :single-valued :domain

MultiplicityRange :range Integer)
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• Attribute upper, belongs to the MultiplicityRange metaclass
(defrelation upper :is (:and String) :characteristics :single-valued :domain

MultiplicityRange :range String)

• Association between Action and Method metaclasses
(defrelation Action-method :domain Action :range Method)

(defrelation Method-action :is (:inverse Action-method))

• Association between Operation and Method metaclasses
(defrelation Is-specification-of :domain Operation :range Method)

(defrelation Has-specification :is (:inverse Is-specification-of))

• Association between Parameter and Operation metaclasses
(defrelation Has-parameter :domain Operation :range Parameter)

(defrelation Is-parameter-of :is (:inverse Has-parameter))

• Association between Class and Parameter metaclasses
(defrelation Parameter-class :domain Parameter :range Class)

(defrelation Class-parameter :is (:inverse Parameter-class))

• Association between Class and Attribute metaclasses
(defrelation Is-of-type :domain Attribute :range Class)

(defrelation Has-typed-feature :is (:inverse Is-of-type))

• Association between Class and Feature metaclasses
(defrelation Has-feature :domain Class :range Feature)

(defrelation Is-owned-by :is (:inverse Has-feature) :characteristics

:single-valued)

• Association between Class and Generalization metaclasses
(defrelation Is-generalization-of :domain Generalization :range Class)

(defrelation Is-child-of :is (:inverse Is-generalization-of))

• Association between Class and Generalization metaclasses
(defrelation Is-specialization-of :domain Generalization :range Class)

(defrelation Is-parent-of :is (:inverse Is-specialization-of))

• Association between Class and AssociationEnd metaclasses
(defrelation Is-participant-of :domain Class :range AssociationEnd)

(defrelation Has-participant :is (:inverse Is-participant-of))

• Association between Association and AssociationEnd metaclasses
(defrelation Association-associationEnd :domain Association :range

AssociationEnd)

(defrelation AssociationEnd-association :is (:inverse Association-

associationEnd))

• Association between Multiplicity and MultiplicityRange metaclasses
(defrelation Has-range :domain Multiplicity :range MultiplicityRange)

(defrelation Range-of :is (:inverse Has-range))

• Association between ModelElement and Multiplicity metaclasses
(defrelation Has-multiplicity :domain ModelElement :range Multiplicity)
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Concept definition

• ModelElement metaclass
(defconcept ModelElement

:roles (name the-prev-ver))

(tell (:about ModelElement (:at-most 1 In-namespace)))

• MultiplicityRange metaclass
(defconcept MultiplicityRange

:is-primitive (:and

(:exactly 1 Range-of))

:roles (lower upper))

• Multiplicity metaclass
(defconcept Multiplicity

:is-primitive (:and

(:at-least 1 Has-range)

(:all Has-range MultiplicityRange)))

• Action metaclass
(defconcept Action

:is (:and ModelElement)

:roles (isAsynchronous recurrence target))

• Class metaclass
(defconcept class

:is (:and ModelElement

(:all Instantiated Object)

(:all Is-child-of Generalization)

(:all Is-parent-of Generalization)

(:all Is-participant-of AssociationEnd))

:roles (isAbstract))

• Feature metaclass
(defconcept Feature

:is (:and ModelElement

(:at-most 1 Is-owned-by))

:partitions $Feature$

:roles (ownerScope visibility))

• Operation metaclass
(defconcept Operation

:is (:and Feature

(:all Has-specification Method)

(:all Has-parameter Parameter))

:in-partition $Feature$

:roles (concurrency isAbstract isLeaf isRoot isQuery))

• Method metaclass
(defconcept Method

:is (:and Feature
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(:exactly 1 Is-specification-of))

:in-partition $Feature$

:roles (body isQuery))

• Attribute metaclass
(defconcept Attribute

:is (:and Feature

(:all Is-of-type Class)

(:exactly 1 Is-of-type)

(:exactly 1 Has-multiplicity))

:in-partition $Feature$

:roles (initialValue changeability ordering targetScope))

• Parameter metaclass
(defconcept Parameter

:is (:and ModelElement

(:at-most 1 Is-parameter-of)

(:all Parameter-class Class)

(:exactly 1 Parameter-class))

:roles (defaultValue kind))

• Generalization metaclass
(defconcept Generalization

:is (:and ModelElement

(:exactly 1 Is-generalization-of)

(:exactly 1 Is-specialization-of))

:roles (discriminator))

• AssociationEnd metaclass
(defconcept AssociationEnd

:is (:and ModelElement

(:exactly 1 Has-participant)

(:exactly 1 AssociationEnd-association)

(:exactly 1 Has-multiplicity))

:roles (aggregation ordering isNavigable visibility))

• Association metaclass
(defconcept Association

:is (:and ModelElement

(:all Association-associationEnd AssociationEnd)

(:at-least 2 Association-associationEnd)))

4.1.6 Abox

Model Example

User-defined UML models must be translated into Loom individuals. Each element of these
models must be specified as an instance of the appropriate concept, filling the corresponding
associations and attributes of the UML metamodel. In this section, a partial translation of the
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class diagram presented in figure 4.3 is given. Full examples of translations of class, state and
sequence diagrams can be seen in Appendix A.2.

CashDispenser
+dispenseCash(amount:int)
+currentCash()

ATM
+getPIN()
+dispenseCash(amount:int)
+verifyAccount(cardNum:int, PIN:int)
+checkIfCashAvailable(amount:int)
+ejectCard()

CardReader
+ejectCard()

Session
+executeSession()

Transaction

PrintingATM

+executes

1

1 1

10..*

0..*

1

1

Figure 4.3: Class diagram example for UML to Loom translation

• Instances of the MultiplicityRange metaclass
(tellm (:about mr1-1.0 (lower 1) (upper 1)))

(tellm (:about mr2-1.0 (lower 1) (upper 1)))

• Instances of the Multiplicity metaclass
(tellm (:about m1-1.0 (Has-range mr1-1.0)))

(tellm (:about m2-1.0 (Has-range mr2-1.0)))

• Instance of the ClassModel metaclass
(tellm (:about Class-Diagram-1.0 (version 1.0)))

• Instances of the Class metaclass
(tellm (:about ATM-1.0

(name ATM)

(isAbstract false)

(In-namespace Class-Diagram-1.0)))

(tellm (:about PrintingATM-1.0

(name PrintingATM)

(isAbstract false)

(In-namespace Class-Diagram-1.0)))

(tellm (:about CardReader-1.0

(name CardReader)

(isAbstract false)

(In-namespace Class-Diagram-1.0)))

• Instance of the Parameter metaclass
(tellm (:about amount-dispenseCash-ATM-1.0

(name amount)

(Is-parameter-of dispenseCash-ATM-1.0)

(Parameter-class int)

(In-namespace Class-Diagram-1.0)))
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• Instances of the Operation metaclass
(tellm (:about getPIN-ATM-1.0

(name getPIN)

(Is-owned-by ATM-1.0)

(IsAbstract false)

(In-namespace Class-Diagram-1.0)))

(tellm (:about dispenseCash-ATM-1.0

(name dispenseCash)

(Is-owned-by ATM-1.0)

(IsAbstract false)

(In-namespace Class-Diagram-1.0)))

• Instance of the Generalization metaclass
(create ’ATM-PrintingATM-1.0 ’Generalization)

(tellm (:about ATM-PrintingATM-1.0

(name ATM-PrintingATM)

(Is-generalization-of PrintingATM-1.0)

(Is-specialization-of ATM-1.0)

(In-namespace Class-Diagram-1.0)))

• Instances of the AssociationEnd metaclass
(tellm (:about ATM-end1-1.0

(name ATM-end1)

(Has-multiplicity m1-1.0)

(Has-participant ATM-1.0)

(aggregation composite)

(isNavigable false)

(In-namespace Class-Diagram-1.0)))

(tellm (:about CashDispenser-end1-1.0

(name CashDispenser-end1)

(Has-multiplicity m2-1.0)

(Has-participant CashDispenser-1.0)

(aggregation none)

(isNavigable true)

(In-namespace Class-Diagram-1.0)))

• Instance of the Association metaclass
(tellm (:about CashDispenser-ATM-1.0

(name CashDispenser-ATM)

(In-namespace Class-Diagram-1.0)

(Association-associationEnd CashDispenser-end1-1.0)

(Association-associationEnd ATM-end1-1.0)))

Model Management Example

The model and trace information (see Section 3.3), which is not present in the user-defined
models as this is not part of the UML metamodel, but part of the extension proposed for
dealing with model evolution and consistency, has to be added manually. In this section, a
translation of the model and trace information presented in figure 4.4 is given.
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Figure 4.4: Model Evolution Example

• Instances of the CompositeModel metaclass
(tellm (:about Design1

(name Design)

(version 1)

(Contains-model Class-Diagram-1)

(Contains-model Sequence-Diagram1-1)

(Contains-model Sequence-Diagram2-1)))

(tellm (:about Design2

(name Design)

(version 2)

(Contains-model Class-Diagram-2)

(Contains-model Sequence-Diagram1-2)

(Contains-model Sequence-Diagram2-2)))

• Instances of the EvolutionTrace metaclass
(tellm (:about D1-D2

(name D1-D2)

(Supplier Design1)

(Client Design2)))

(tellm (:about CD1-CD2

(name CD1-CD2)

(Supplier Class-Diagram-1)

(Client Class-Diagram-2)))

• Instances of the HorizontalTrace metaclass
(tellm (:about CD1-SD1-1

(name CD1-SD1-1)

(Supplier Class-Diagram-1)

(Client Sequence-Diagram1-1)))

(tellm (:about CD1-SD2-1

(name CD1-SD2-1)

(Supplier Class-Diagram-1)
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(Client Sequence-Diagram2-1)))

(tellm (:about CD2-SD1-2

(name CD2-SD1-2)

(Client Class-Diagram-2)

(Supplier Sequence-Diagram1-2)))

(tellm (:about CD2-SD2-2

(name CD2-SD2-2)

(Client Class-Diagram-2)

(Supplier Sequence-Diagram2-2)))

4.2 UML CASE Tool - Poseidon For UML CE 1.6

Poseidon for UML[26, 9] is a commercial tool, that has its origins in the ArgoUML[4] open-
source project. However, Poseidon for UML is more mature, provides additional features and is
more stable. This software suite has various editions, each one targeted at different audiences,
so each edition offers a different set of functionalities. The edition used in this study is the
Community Edition (CE). This is the base version, with respect to the functionality offered
and is available without cost.

This edition is fully usable for modelling UML 1.4, is not restricted to non-commercial projects
or to evaluation periods. It contains all UML diagrams and all implemented diagram elements.
Projects can be created, saved and loaded, existing models can be browsed and even Java
code can be generated. The main restrictions of this tool is that printing and copy-and-paste
to external applications is not supported. Also, this edition can not load plug-ins. This is
available in other editions, like the Standard and Professional editions.

Poseidon for UML supports open standards extensively. This is true for the saving format as
well. UML is standardised by the Object Management Group (OMG)[49]. Part of the official
UML specification by the OMG is a mechanism for the exchange of models between different
tools. This mechanism is based on XML and has special extensions and rules to better represent
object-oriented structures as well as metadata. The OMG has specified a concrete application
of XML for this purpose, that is called the XML Metadata Interchange, or simply XMI for
short.

This version of the tool makes use of the latest version of this format (XMI 1.2). While most
other tools can only import or export XMI, Poseidon for UML uses XMI as default saving and
loading mechanism. The current version of XMI is by itself not sufficient to save all aspects of
an UML model. It can be used to transport the names and properties of all model elements,
but the diagram information (layout, colours etc.) is currently not included. This is included
in Poseidon For UML-specific files.

This XMI support makes Poseidon For UML the ideal tool for the experiments that are
carried out in this study. Using XML manipulation tools, the translation of user-defined models
into other formats, like Loom code, can be done automatically. Poseidon for UML is known to
produce one of the cleanest XMI files for its models, and many tools have chosen to support its
variant of XMI.
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4.3 Additional tools - Saxon 6.5.2

The SAXON[36] package is a collection of tools for processing XML documents. The main
components are:

• An XSLT[63] processor, which implements the Version 1.0 XSLT and XPath[62] Rec-
ommendations from the World Wide Web Consortium[61], with a number of powerful
extensions.

• A Java library, which supports a similar processing model to XSL, but allows full pro-
gramming capabilities, that are necessary if complex data processing or access external
services such as relational databases, will be performed.

• A slightly improved version of the Ælfred parser from Microstar, but SAXON can be used
with any SAX-compliant XML parser.

SAXON provides a set of services that are particularly useful when converting XML data
into other formats. The output format may be XML, or HTML, or some other format such as
data in a relational database. In the specific case of the experiments carried out in this study, it
is necessary to convert XMI files, that contain the names and properties of all model elements
of user-defined models, into logic assertions. This will allow the automated population of the
DL knowledge bases, which can later be queried so as to detect inconsistencies. This would
make the approach used in the tool support transparent to any user of the detection system,
as knowledge of logic rules and predicates would not be necessary.



Chapter 5

Case Study - The Banking
Simulation

In this chapter, the case study used to provide examples for the experiments, is detailed.
This design of an ATM simulation is an adapted version of the ATM simulation example by
Russell C. Bjork [7]. The static structure of the system is documented by means of three class
diagrams that combined, give the overall structure of the system. The dynamic behaviour of
the controlling objects of the system is documented by means of state diagrams for the classes
of the ATM hierarchy. The rest of the behaviour specified here, is documented as sequence
diagrams.

5.1 Static Structure

The class diagrams shown in figures 5.1, 5.2 and 5.3, combined, give the overall structure of
the banking system described in this chapter. The details of the class interfaces can be see in
Appendix B.

5.2 Dynamic Behaviour

The state and sequence diagrams shown in this section describe portions of the behaviour of
the banking system described in this chapter. As in the case of the static system description,
this documentation is not absolute - various diagrams have been simplified because of space
and clarity reasons. The behaviour described in this section is limited to what is needed to the
examples that will be given in Chapters 6 and 7.

The state diagram for the ATM class is shown in figure 5.4. This state diagram presents a
summary of the behaviour of an ATM machine, when a customer chooses to withdraw money
from his account. Supposing that the client has inserted a valid ATM card, he is prompted
to enter the associated PIN number. If the PIN is not valid, the card is returned to the user.
If a valid PIN has been entered, the ATM prompts the user to enter the amount to withdraw
from his account. First, the ATM checks that the client’s account has sufficient funds. If so,
the ATM proceeds to check if it can locally dispense this amount. Once these checks have
been passed, the ATM dispenses the money and ejects the card. If either the account, or the

38
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Keyboard
+readPIN(echoOn:boolean)
+readMenuChoice(numItems:int)
+readAmountEntry(echoOn:boolean)
+readTargetAccount(echoOn:boolean)

Display
+requestCard()
+requestPIN()
+displayMenu(whatToChoose:String, 
numItems:int, items:String[])
+requestAmountEntry()
+requestDepositEnvelope()
+reportTransactionFailure(explanation:String)
+requestReEnterPIN()
+reportCardRetained()
+requestTargetAccount()

EnvelopeAcceptor
+acceptEnvelope()

CashDispenser
+setCash(initialCash:int)
+dispenseCash(amount:int)
+currentCash()

ATM
+getPIN()
+getMenuChoice(whatToChoose:String, 
numItems:int, items:String[])
+getAmountEntry()
+checkIfCashAvailable(amount:int)
+dispenseCash(amount:int)
+acceptEnvelope()
+reEnterPIN()
+reportTransactionFailure(explanation:String)
+ejectCard()
+retainCard()
+getTargetAccount()
+verifyAccount(cardNum:int, PIN:int)

CardReader
+ejectCard()
+retainCard()
+checkIfCardInserted()

PrintingATM
+issueReceipt(cardNum:int, serialNum:int, desc:String, 
amount:int, balance:int)

ReceiptPrinter
+printReceipt(cardNum:int, serialNum:int, desc:String, 
amount:int, balance:int, atm:ATM)

1

1

1

1

1 1

1

1

1

1

1 1 1

1

Figure 5.1: Class Diagram - Part I, version 1

ATM, do not have sufficient funds for completing the withdrawal, the card is returned (these
transitions are not shown).

A second state diagram for the ATM class is shown in figure 5.5. This state diagram presents
a summary of the behaviour of an ATM machine, when a customer chooses to withdraw money
from his account, and includes the behaviour that results when the user repeatedly enters an
incorrect PIN number. Supposing that the client has inserted a valid ATM card, he is prompted
to enter the associated PIN number. If the PIN is not valid, the user is prompted again for his
PIN number. He has a maximum of 3 tries, and if these are used, the card is retained instead
of returned. If a valid PIN has been entered, the behaviour continues as that described for the
previous diagram.

The state diagram for the PrintingATM class is shown in figure 5.6. This state diagram
presents a summary of the behaviour of a PrintingATM machine, when a customer chooses to
withdraw money from his account. Supposing that the client has inserted a valid ATM card, he
is prompted to enter the associated PIN number. If the PIN is not valid, the card is returned
to the user. If a valid PIN has been entered, the ATM prompts the user to enter the amount
to withdraw from his account. First, the ATM checks that the client’s account has sufficient
funds. If so, the ATM proceeds to check if locally, it can dispense this amount. Once these
checks have been passed, the ATM dispenses the money. The PrintingATM class, unlike its
parent the ATM class, can print receipts, and the user must now indicate if he wants one for
the current transaction. Afterwards, the card is ejected. If either the account, or the ATM, do
not have sufficient funds for completing the withdrawal, the card is returned (these transitions
are not shown).
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ATM
+getPIN()
+getMenuChoice(whatToChoose:String, 
numItems:int, items:String[])
+getAmountEntry()
+checkIfCashAvailable(amount:int)
+dispenseCash(amount:int)
+acceptEnvelope()
+reEnterPIN()
+reportTransactionFailure(explanation:String)
+ejectCard()
+retainCard()
+getTargetAccount()
+verifyAccount(cardNum:int, PIN:int)

0..*

Session
+executeSession()
+handleInvalidPIN()
+handleFailedTransaction()

Transaction
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()
+executeTransaction()

Bank
+initiateTransaction(cardNum:int, PIN:int, serialNum:int, 
atm:ATM, account:Account, amount:int, availableBalance:int, 
transaction:Transaction)
+finishTransaction(atm:ATM, serialNum:int, 
succeeded:boolean, transaction:Transaction)
+doInquiry(cardNum:int, PIN:int, serialNum:int, atm:ATM, 
account:Account, amount:int, availableBalance:int, 
transaction:Transaction)
+doTransfer(cardNum:int, PIN:int, serialNum:int, atm:ATM, 
fromAccount:Account, toAccount:Account, amount:int, 
availableBalance:int, transaction:Transaction)
+verifyPIN(account:Account, cardNum:int, PIN:int)

Account
+getValidCardNumbers()
+getCurrentBalance()
+setCurrentBalance(amount:int)

Customer
+getName()
+getAccountList() 1..*

1..2

1..*

0..*
1

0..*

1

1

0..*

0..*
1

1

1..*

Figure 5.2: Class Diagram - Part II, version 1

0..*

Transaction
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()
+executeTransaction()

Account
+getValidCardNumbers()
+getCurrentBalance()
+setCurrentBalance(amount:int)

1..*

1

0..*

Transfer
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()
+executeTransaction()

Deposit
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()
+executeTransaction()

Withdraw
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()
+executeTransaction()

Inquiry
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()
+executeTransaction()

Card
+getType()
+getPIN()
+getStatus()

1..* 1
1

1

1

0..*

0..*

0..*

0..*
hasSource

hasDest

credits

debits

AccountType
+getType()

1

0..*

Figure 5.3: Class Diagram - Part III, version 1
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PINEntry

Returning
Card GiveCash VerifyATM

Balance

VerifyAccount
BalanceAmountEntry[valid PIN]

[not valid PIN] checkIfCashAvailable()

verifyAccount()

dispenseCash()ejectCard()

Figure 5.4: ATM State Diagram, version 1

PINEntry

Returning
Card GiveCash VerifyATM

Balance

VerifyAccount
BalanceAmountEntry[valid PIN]

checkIfCashAvailable()

verifyAccount()

dispenseCash()ejectCard()

[not valid PIN && tries < 3]

RetainingCard

[not valid PIN && tries >= 3]

Figure 5.5: ATM State Diagram, version 2

PINEntry

Returning
Card GiveCash VerifyATM

Balance

VerifyAccount
BalanceAmountEntry[valid PIN]

[not valid PIN] checkIfCashAvailable()

verifyAccount()

dispenseCash()ejectCard()

PrintReceipt

issueReceipt()ejectCard()

Figure 5.6: PrintingATM State Diagram, version 1
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The sequence diagram shown in figure 5.7 represents the general interaction between the
classes ATM, Session, Bank, Display and CardReader, when a card is retained after the user
has entered two invalid PIN numbers in a row. Once the ATM has detected that a card has
been inserted, a new Session is created, that will log all the actions carried out by the user,
until the card is either ejected or retained. The Session starts by validating the user. This is
done by asking for the PIN number associated to the card that was inserted. This number is
then sent to the Bank, that verifies if the PIN - card number pair is valid. If the pair is not
valid, the Bank asks the Session to handle this. The Session will store, in an internal variable,
that the user has entered an invalid PIN, and will tell the ATM to ask the user for his PIN
number again. The ATM does this through the Display. Once a new PIN is obtained, it is
again checked by the Bank. As it is again invalid, the Session has to order the retention of
the card. This is done by sending a message to the ATM, that delegates the physical task of
retaining the card to the CardReader. The user is informed, again through the Display, that
his card has been retained by the ATM.

aDisplay:
Display

aBank:BankanATM:ATM aCardReader:
CardReader

aSession:
Session

1: checkIfCardInserted()

2: Session()

3: executeSession()

4: getPIN()

5: verifyPIN()

6: handleInvalidPIN()

7: reEnterPIN()

8: requestReEnterPIN()

9: verifyPIN()

10: handleInvalidPIN()

11: retainCard()

12: retainCard()

13: reportCardRetained()

Figure 5.7: Sequence Diagram: checking card and PIN number, version 1

The sequence diagram shown in figure 5.8 represents the general interaction between the
classes ATM, Session, Withdraw, Bank and CashDispenser, when a user decides to make a
withdrawal. The PIN - card number pair validity must be checked before carrying out these
steps. As the user wants to make a withdrawal, the Session creates a new Withdraw transaction.
The first step is obtaining the transaction-specific information from the user. In this case, the
user is prompted to enter the amount he wishes to withdraw. Secondly, the transaction is
initiated at the Bank, and carried out by the ATM, if there are enough funds locally. Finally,
the Bank is sent the finishTransaction message, notifying it that the transaction was either
carried out successfully, or failed because, in this case, the ATM did not have sufficient funds
with which to satisfy the withdrawal request.
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aBank:
Bank

anATM:
ATM

aCashDispenser:
CashDispenser

aSession:
Session

aWithdraw:
Withdraw

3: getTransactionSpecificsFromCustomer ()

1: Withdraw()

2: executeTransaction()

4: getAmountEntry()

7: currentCash()

6: checkIfCashAvailable()

8: dispenseCash()

9: dispenseCash()

5: initiateTransaction()

10: finishTransaction()

Figure 5.8: Sequence Diagram for withdraw transactions, version 1

The sequence diagram shown in figure 5.9 represents the general interaction between the
classes ATM, Session, Deposit, Bank and Keyboard, when a user decides to make a deposit.
The PIN - card number pair validity must be checked before carrying out these steps. As the
user wants to make a deposit, the Session creates a new Deposit transaction. The first step is
obtaining the transaction-specific information from the user. In this case, the user is prompted
to enter the amount he wishes to deposit. Secondly, the transaction is initiated at the Bank, and
carried out by the ATM, that should receive an envelope with the deposit in cash. Finally, the
Bank is sent the finishTransaction message, notifying it that the transaction was either carried
out successfully, or failed because, in this case, the ATM did not receive a deposit envelope.

The sequence diagram shown in figure 5.10 represents the general interaction between the
classes PrintingATM, Session, Inquiry and Bank, when a user decides to print an inquiry of
the state of his account. The PIN - card number pair validity must be checked before carrying
out these steps. As the user wants to inquire the state of the account, the Session creates a
new Inquiry transaction. The first step is obtaining the transaction-specific information from
the user, for example, print only balance, print all transactions for the week, etc. Afterwards,
the Bank is notified that the inquiry has taken place, and is carried out by the PrintingATM,
that prints out the information requested by the user.

The sequence diagram shown in figure 5.11 represents the general interaction between the
classes PrintingATM, Session, Transfer and Bank, when a user decides to make a transfer. The
PIN - card number pair validity must be checked before carrying out these steps. As the user
wants to make a transfer, the Session creates a new Transfer transaction. The first step is
obtaining the transaction-specific information from the user. In this case, the user is prompted
to enter the identification of the account to which he wants to make the transfer to. Secondly,
the transaction is initiated at the Bank, and carried out by the ATM, that should receive an
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anATM:
ATM

aKeyboard:
Keyboard

aSession:
Session

aDeposit:
Deposit

3: getTransactionSpecificsFromCustomer ()

1: Deposit()

2: executeTransaction()

4: getAmountEntry()

6: readAmountEntry()

aBank:
Bank

5: initiateTransaction()

7: finishTransaction()

Figure 5.9: Sequence Diagram for deposit transactions, version 1

aPrintingATM:
PrintingATM

aSession:
Session

anInquiry:
Inquiry

3: getTransactionSpecificsFromCustomer ()

1: Inquiry()

2: executeTransaction()

aBank:
Bank

5: doInquiry()

7: issueReceipt()

Figure 5.10: Sequence Diagram for inquiry transactions, version 1
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envelope with the deposit in cash. Afterwards, the Bank is notified that the transfer has taken
place, and the PrintingATM prints out a receipt.

aPrintingATM:
PrintingATM

aSession:
Session

aTransfer:
Transfer

3: getTransactionSpecificsFromCustomer ()

1: Transfer()

2: executeTransaction()

aBank:
Bank

5: doTransfer()

7: issueReceipt()

4: getTargetAccount()

Figure 5.11: Sequence Diagram for transfer transactions, version 1



Chapter 6

Classification of Inconsistencies

In this chapter, the set of inconsistencies discovered in this study are presented. In the first
section, a classification is proposed for these inconsistencies. This is a two-dimensional classi-
fication, based on the type of model that is affected and whether the inconsistencies are of the
structural or behavioural type. In the second section, each inconsistency is presented by means
of a definition, a UML example, the predicates used for its detection and some experimentation
results. Some solution predicates are also presented.

6.1 Proposed Classification

The proposed classification has been developed by categorising the inconsistencies by their
characteristics. The inconsistencies considered in this thesis are those that affect the structural
and behavioural aspects of the models. Another aspect, not considered in this study because
current UML CASE tools already deal with it, is compliance with UML well-formedness rules.
The inconsistencies that belong to the last aspect are usually caused by the violation of a UML
well-formedness rules, like duplicate class names in a class model.

In addition to classifying the inconsistencies by aspect, they are also classified by the type
of model that is affected. As mentioned in section 3.2, the types of diagrams considered in
this thesis are Class, State and Sequence diagrams. This decision is justified by the time limits
imposed on the development of this thesis, which makes it impossible to cover UML as a whole,
and only a proof of concept can be provided. In this study, two types of models are considered,
as defined by the Model Driven Architecture (MDA)[46]:

• Model: the elements included in this type of model serve as definitions for the elements
included in other models. Class diagrams are of this type.

• Instance: the elements included in this type of model are instances of elements defined in
other models. Sequence and State diagrams are of this type.

The resulting classification is shown in table 6.1, where the conflicts found are represented
by more general categories. For the purpose of the thesis, conflict is considered a synonym of
inconsistency. Note that this is only one of possible classifications. On the following pages,
an overview of these categories is given. In section 6.1.2, concrete detection predicates and
examples are given for the actual conflicts. The roles used in the queries correspond to those

46
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defined by the UML metamodel in the profile created for these experiments, which are available
in Appendix A.1. All detection predicates only inform the user about the inconsistencies that
are detected, as some inconsistencies are introduced deliberately by designers and their solution
is not always desired.

Behavioural Structural
model-model conflict - inherited association conflict

- dangling (type) reference

model-instance conflict - incompatible definition - instance definition missing

instance-instance conflict - invocable behaviour conflict - disconnected model
- observable behaviour conflict
- incompatible behaviour conflict

Table 6.1: Two-dimensional inconsistency conflict table

6.1.1 Behavioural Inconsistencies

The inconsistencies considered in this category refer to situations in which the behaviour of the
system, as defined in Sequence and State models, is incomplete, incompatible or inconsistent
with respect to existing behaviour or definitions.

Model-Model Conflicts

No inconsistencies were found in this category. This is due to the fact that the only type of
Model model considered in this dissertation are class diagrams, and inconsistencies between
diagrams of this kind are syntactical.

Model-Instance Conflicts

I) Incompatible Definition
The inconsistencies included in this category are those that are related to model elements
that do not comply with the definitions that apply to them.

• Multiplicity: arises when a link between objects in a sequence diagram does not re-
spect the multiplicity restrictions imposed by the class diagrams in the corresponding
VersionedModel.

• Navigation: arises when a link between objects in a sequence diagram does not
respect the navigability restrictions imposed on the associations in the class diagrams
of the corresponding VersionedModel.

• Abstract Object: arises when an abstract class that has no concrete subclasses in the
class diagrams of the corresponding VersionedModel, is instantiated in a sequence
diagram.
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Instance-Instance Conflicts

I) Invocable Behaviour Conflicts
The inconsistencies included in this category are those that are related violations of invo-
cation consistency[18]. Invocation consistency requires that an object of a subclass of class
A can be used wherever an object of class A is required. These state diagrams have to be
protocol state machines[48]. A transition in a protocol state machine has as its trigger a
call event that references an operation of the class, and an empty action sequence.

• State vs. State: each sequence of the superclass state diagram should be contained
in the set of sequences of the state diagram for the subclass.

• Sequence vs. Sequence: the ordered collection of stimuli sent by an object of super-
class should be contained in the ordered collection of stimuli sent by an object of the
subclass.

• State vs. Sequence: the ordered collection of stimuli received by an object of the
superclass in a sequence diagram, should exist as a sequence of the state diagram for
the subclass.

II) Observable Behaviour Conflicts
The inconsistencies included in this category are those that are related violations of ob-
servable behaviour consistency. Observation consistency[18] requires that an object of
the subclass always behave like an object of the superclass, when viewed according to the
superclass description. These state diagrams have to be protocol statecharts.

• State vs. State: after hiding all new events, each sequence of the subclass state
diagram should be contained in the set of sequences of the superclass state diagram.

• Sequence vs. Sequence: after hiding stimuli that are associated to newly introduced
operations, the ordered collection of stimuli sent by an object of the subclass should
be contained in the ordered collection of stimuli sent by an object of the superclass.

• State vs. Sequence: after hiding stimuli that are associated to newly introduced
operations, the ordered collection of stimuli received by an object of the subclass in
a sequence diagram, should exist as a sequence of the state diagram for the superclass.

III) Incompatible Behaviour Conflicts
The inconsistencies included in this category are those that are related to conflicting
behaviour definitions for a class in a VersionedModel.

• State vs. Sequence: arises when the ordered collection of stimuli received by an
object in a sequence diagram does not exist as a sequence of events in the protocol
state machine of the object’s class.

6.1.2 Structural Inconsistencies

The inconsistencies considered in this category refer to situations in which the structure of the
system, as detailed in class diagrams, is incomplete, incompatible or inconsistent with respect
to existing behaviour or definitions.
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Model-Model Conflicts

I) Inherited Association Conflicts
The inconsistencies included in this category are those that are related to inherited asso-
ciations between different classes in the class diagrams of a VersionedModel.

• Infinite Containment: arises when the composition (the multiplicity constraints of
these composition relationships are important) and inheritance relationships between
classes in the class diagrams of a VersionedModel form a cycle that produces infinite
containment of the instances of the affected classes.

II) Dangling (Type) Reference
Arises when a parameter’s or attribute’s type refers to a class that does not exist in any
of the class diagrams of the corresponding VersionedModel.

Model-Instance Conflicts

I) Instance Definition Missing
The inconsistencies included in this category are those that are related to the fact that
an element definition does not exist in a VersionedModel, as it has either been removed
from a diagram or not included yet.

• Classless Instances: arises when an object in a sequence diagram is the instance
of a class that does not exist in any of the class diagrams of the corresponding
VersionedModel.

• Classless Statechart: arises when the state machine of a state diagram is associated
to a class that does not exist in any of the class diagrams of the corresponding
VersionedModel.

• Dangling (Inherited) Feature Reference: arises when a stimulus, event, guard or
action references an attribute or operation that does not exist in the corresponding
class (or its ancestors).

• Dangling (Inherited) Association Reference: arises when a link in a sequence diagram
is related to an association that does not exist between the classes of the linked
objects (or between the ancestors of these classes).

Instance-Instance Conflicts

I) Disconnected Model
The inconsistencies included in this category are those that are related to the topography
of the diagrams, specifically, when there are one or various elements that are not connected
to the main diagram.

• State: arises when a state or transition has been deleted/omitted, resulting in a set
of states that are not reachable from the initial state.

• Sequence: arises when an object or link has been deleted/omitted, resulting in a set
of objects that are not reachable.
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6.2 Experimental Results

On the following pages, the inconsistencies that were briefly introduced in section 6.1, are
now explained in greater detail. Each inconsistency example includes a UML example, the
detection code used and practical results obtained when the detection code was applied to the
UML examples. The examples have been extracted from the Banking Simulation (see Chapter
5).

6.2.1 Incompatible Definition

Multiplicity

Affected Diagrams: Class, Sequence

This inconsistency arises when an object in a sequence diagram does not respect the multi-
plicity restrictions imposed in the class diagrams of the corresponding VersionedModel. Each
multiplicity consists of a range and the multiplicity restrictions that can be checked are with
respect to the top and bottom limits of this range. The top and bottom limits indicate the
maximum and minimum number, respectively, of instances of the associated class with which
instances of the class in question can interact with.

Example

Keyboard
+readPIN(echoOn:boolean)
+readMenuChoice(numItems:int)
+readAmountEntry(echoOn:boolean)
+readTargetAccount(echoOn:boolean)

Display
+requestCard()
+requestPIN()
+displayMenu(whatToChoose:String, 
numItems:int, items:String[])
+requestAmountEntry()
+requestDepositEnvelope()
+reportTransactionFailure(explanation:String)
+requestReEnterPIN()
+reportCardRetained()
+requestTargetAccount()

EnvelopeAcceptor
+acceptEnvelope()

CashDispenser
+setCash(initialCash:int)
+dispenseCash(amount:int)
+currentCash()

ATM
+getPIN()
+getMenuChoice(whatToChoose:String, 
numItems:int, items:String[])
+getAmountEntry()
+checkIfCashAvailable(amount:int)
+dispenseCash(amount:int)
+acceptEnvelope()
+reEnterPIN()
+reportTransactionFailure(explanation:String)
+ejectCard()
+retainCard()
+getTargetAccount()
+verifyAccount(cardNum:int, PIN:int)

CardReader
+ejectCard()
+retainCard()
+checkIfCardInserted()

Session
+executeSession()
+handleInvalidPIN()
+handleFailedTransaction()

0..*

1

1

1

1

1 1

1

1

1

1

1

Figure 6.1: Class Diagram - Part I, version 2
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aCashDispenser1
:CashDispenser

aCashDispenser2
:CashDispenser

anATM:ATM aSession:Session

1: dispenseCash(amount)

2: dispenseCash(amount)

3: dispenseCash(amount)

Figure 6.2: Sequence Diagram: multiplicity conflict

In the UML model that consists of the diagrams shown in figures 6.1 and 6.2 an example of
this inconsistency can be seen. According to the class diagram, an instance of the ATM class can
be associated with at most one instance of the CashDispenser class. In the sequence diagram,
an instance of the ATM class is associated to two instances of the CashDispenser class, disobeying
the limit set by the multiplicity of the association.

Predicates

The multiplicity function calculates the information needed in order to determine if an
object in a sequence diagram is violating the multiplicity constraints imposed by an association
in a class diagram. This information consists of the number of objects related to a specific object
through the same association, and the top limit of the multiplicity range of this association. If
there are more objects than allowed by the range, the user is notified.

(defun multiplicity (?object1 ?class1 ?class2 ?seq-model ?association)
(let* ((?count1 (length (retrieve (?object1 ?object2 ?stimulus ?link)
(:and
(Instance-of-class ?object1 ?class1)
(In-namespace ?object1 ?seq-model)
(Instance-of-class ?object2 ?class2)
(In-namespace ?object2 ?seq-model)
(Sender-of ?object1 ?stimulus)
(Receiver-of ?object2 ?stimulus)
(Stimulus-link ?stimulus ?link)
(Link-association ?link ?association)))))

(?count2 (first (first (retrieve (?bound ?assocEnd ?multiplicity ?mult-range)
(:and
(Association-associationEnd ?association ?assocEnd)
(Has-participant ?assocEnd ?class2)
(Has-multiplicity ?assocEnd ?multiplicity)
(Has-range ?multiplicity ?mult-range)
(upper ?mult-range ?bound)))))))

(if (> ?count1 ?count2)
(format t "Multiplicity conflict: ~S accesses ~S instances of ~S,
only ~S permitted~%" ?class1 ?count1 ?class2 ?count2))))

Results

The predicate was applied to the model presented in the example. The results that were
obtained indicate that the object aCardReader, that belongs to Sequence Diagram 5 (see figure
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6.2), accesses 2 instances of the CashDispenser class, where the existing association between the
classes ATM and CashDispenser restricts this number to 1 instance.

Multi. conflict: |I|ANATM-1.0 accesses 2 instances of |I|CASHDISPENSER-1.0,
only 1 permitted

Navigation

Affected Diagrams: Class, Sequence

This inconsistency arises when an object in a sequence diagram does not respect the navi-
gability restrictions imposed on the object’s class, by specifying the sense of navigation on the
associations in the class diagrams of the corresponding VersionedModel.

Example

aDisplay:Display aCardReader:
CardReader

aSession:
Session

anATM:ATM

1: checkIfCardInserted()

2: Session()

3: executeSession()

4: getPIN()

5: requestPIN()

Figure 6.3: Sequence Diagram: navigability conflict

In the UML model that consists of the diagrams shown in figures 6.1 and 6.3 an example
of this inconsistency can be seen. According to the class diagram, an instance of the ATM class
can control an instance of the CardReader class. An ATM object will be able to send messages
to the CardReader object, and to receive replies to these messages. CardReader objects cannot
send messages to ATM objects. In the example, a CardReader object sends a getPIN message to
an ATM object, and thus, is inconsistent with the association definition.

Predicates

This predicate queries the knowledge base directly, looking for objects that send messages to
objects when forbidden by the navigation constraints imposed on the related association. The
objects and the associations that they violate are printed on screen.

(do-retrieve (?object1 ?object2 ?seq-model ?class1 ?class2 ?stimulus ?operation
?association ?associationEnd2)
(:and
(Object ?object1)
(In-namespace ?object1 ?seq-model)
(Instance-of-class ?object1 ?class1)
(Object ?object2)
(In-namespace ?object2 ?seq-model)
(Instance-of-class ?object2 ?class2)
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(Sender-of ?object1 ?stimulus)
(Receiver-of ?object2 ?stimulus)
(Sends-operation ?stimulus ?operation)
(Has-feature ?class2 ?operation)
(Related-to ?stimulus ?association)
(AssociationEnd-Association ?associationEnd2 ?association)
(Is-participant-of ?class2 ?associationEnd2)
(isNavigable ?associationEnd2 false)

)
(format t "Nav. Inc: association ~S navigation is violated by object ~S~%"
(get-value ?association ’name) (get-value ?object1 ’name)))

Results

The predicate was applied to the model presented in the example. The results that were
obtained indicate that the aCardReader object sends a message to an instance of the ATM class,
when this is prohibited by the navigation constraint of the related association.

Nav. Inc: association |I|CARDREADER-ATM navigation is violated by object
|I|ACARDREADER

Abstract Object

Affected Diagrams: Class, Sequence

This inconsistency arises when an abstract class, that has no concrete subclasses, is instan-
tiated in a sequence diagram. If the abstract class has concrete subclasses, the behaviour
specified in the sequence diagram would apply to the instances of these subclasses. This is
equivalent to declaring that the abstract class is the static type of the object, and during ex-
ecution, dynamically typing it as one of the concrete subclasses of the abstract class. This is
done so as to take advantage of polymorphism offered by object-oriented languages.

Example

In the UML model that consists of the diagrams shown in figures 6.4 and 6.5, the Transaction

class is abstract and has no concrete subclasses. However, it is instantiated in the sequence
diagram, which is inconsistent with the definition.

Predicates

The abstract-objects function calculates the information needed in order to determine if an
abstract class, that has no concrete subclasses, is instantiated. This information consists of the
list of inheritance relationships in which the abstract class participates as the parent class, and
the list of objects that instantiate the abstract class. If the abstract class does not participate
in any inheritance relationship as a parent, it has no subclasses. The user is notified of the
inconsistency, and the list of objects that instantiate the class is printed.

(defun abstract-objects (?class)
(let* ((?list-gen
(retrieve (?generalization)
(:and
(isAbstract ?class true)
(Is-generalization-of ?class ?generalization))))
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ATM
+getPIN()
+getMenuChoice(whatToChoose:String, 
numItems:int, items:String[])
+getAmountEntry()
+checkIfCashAvailable(amount:int)
+dispenseCash(amount:int)
+acceptEnvelope()
+reEnterPIN()
+reportTransactionFailure(explanation:String)
+ejectCard()
+retainCard()
+getTargetAccount()
+verifyAccount(cardNum:int, PIN:int)

0..*

Session
+executeSession()
+handleInvalidPIN()
+handleFailedTransaction()

Transaction
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()
+executeTransaction()

Bank
+initiateTransaction(cardNum:int, PIN:int, serialNum:int, 
atm:ATM, account:Account, amount:int, availableBalance:int, 
transaction:Transaction)
+finishTransaction(atm:ATM, serialNum:int, 
succeeded:boolean, transaction:Transaction)
+doInquiry(cardNum:int, PIN:int, serialNum:int, atm:ATM, 
account:Account, amount:int, availableBalance:int, 
transaction:Transaction)
+doTransfer(cardNum:int, PIN:int, serialNum:int, atm:ATM, 
fromAccount:Account, toAccount:Account, amount:int, 
availableBalance:int, transaction:Transaction)
+verifyPIN(account:Account, cardNum:int, PIN:int)

Account
+getValidCardNumbers()
+getCurrentBalance()
+setCurrentBalance(amount:int)

Customer
+getName()
+getAccountList() 1..*

1..2

1..*

0..*
1

0..*

1

1

0..*

0..*
1

1

1..*

CashDispenser
+setCash(initialCash:int)
+dispenseCash(amount:int)
+currentCash()

1

1

Figure 6.4: Class Diagram - Part II, version 2

anATM:ATM aCashDispenser:
CashDispenser

aSession:
Session

aTransaction:
Transaction

3: getTransactionSpecificsFromCustomer ()

1:Transaction()

2: executeTransaction()

4: getAmountEntry()

6: currentCash()

5: checkIfCashAvailable()

7: dispenseCash()

8: dispenseCash()

Figure 6.5: Sequence Diagram: abstract object inconsistency
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(?list-obj
(retrieve (?object)
(:and
(Instance-of-class ?object ?class)))))

(if (and (equalp NIL ?list-gen) (< 0 (length ?list-obj)))
(format t "~S has abstract objects ~S~%" ?class ?list-obj))))

Results

The predicates were applied to the model presented in the example. The results that were
obtained indicate that the Transaction class has been instantiated in a sequence diagram, even
though it has no concrete subclasses. fi is a Loom function that finds the individual associated
to the Loom identifier given as an argument.

UML(315): (abstract-objects (fi transaction-1.0))
|I|TRANSACTION-1.0 has abstract objects ((|I|ATRANSACTION-1.0))
NIL

6.2.2 Invocable Behaviour Conflicts

Invocable Behaviour - State vs. State

Affected Diagrams: State

This inconsistency arises when the behaviour of a subclass is not invocation consistent[18] with
that of its superclass. In this case, class behaviour is specified using protocol state machines[48].
Invocation consistency asserts that each sequence of the superclass state diagram should be con-
tained in the set of sequences of the state diagram for the subclass. The corresponding notion
of behaviour inheritance is based on the substitution principle[37]. This principle requires that
an object of a subclass of class A can be used wherever an object of class A is required.

Example

PINEntry

Returning
Card GiveCash VerifyATM

Balance

VerifyAccount
BalanceAmountEntry[valid PIN]

[not valid PIN] checkIfCashAvailable()

verifyAccount()

dispenseCash()ejectCard()

Figure 6.6: ATM State Diagram, version 1

In the UML model that consists of the diagrams shown in figures 5.1, 5.2, 5.3, 6.6 and 6.7,
the behaviour of the PrintingATM class is invocation consistent with respect to that of the ATM

class. This is because each trace of the superclass’ state diagram can be found in the state
diagram of the subclass. Hence, there are no inconsistencies.

Predicates
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PINEntry

Returning
Card GiveCash VerifyATM

Balance

VerifyAccount
BalanceAmountEntry[valid PIN]

[not valid PIN] checkIfCashAvailable()

verifyAccount()

dispenseCash()ejectCard()

PrintReceipt

issueReceipt()ejectCard()

Figure 6.7: PrintingATM State Diagram, version 1

New concepts and relationships were introduced into the Tbox, which are used for storing
state machine traces. The SMTrace represents one trace of a state machine, and is associated to
the default top state of the machine, using the Belongs-to-top relationship.

(LOOM:defrelation Belongs-to-top
:domain SMTrace
:range VersionedState)
(LOOM:defrelation Has-trace
:is (:inverse Belongs-to-top))

(LOOM:defrelation trace-value :characteristics :single-valued)

(LOOM:defconcept SMTrace
:is-primitive (:exactly 1 Belongs-to-top)
:roles (trace-value))

The generate-traces function recursively generates the traces of a state machine. A trace[56]
is a sequence of states, starting from the initial state, with the events that trigger the transitions
from state to state intercalated between the different states. The first part of the predicate
assigns the current trace to a newly created SMTrace instance, and then associates it with the
current state machine. The second part finds all the transitions from the current state, and
recursively follows each one of these paths, adding the current trigger information to the trace.

(defun generate-traces (?top-state ?state1 ?aux)
(let ((?trace (create ’nil ’SMTrace)))
(tellm (about ?trace
(Belongs-to-top ?top-state)
(trace-value ?aux))))

(do-retrieve ()
(:and
(Is-container-of ?top-state ?state1)
(for-some (?transition ?state2 ?callevent)
(:and
(Is-source-of ?state1 ?transition)
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(Is-target-of ?state2 ?transition)
(Is-container-of ?top-state ?state2)
(Triggered-by ?transition ?callevent)
(:predcall #’generate-traces ?top-state ?state2
(:predcall #’cons (name ?state2)
(:predcall #’cons (name ?callevent) ?aux))))))

(T)))

The check-traces function checks that the traces associated to ?top-state1 exist in ?top-state2.
As these experiments are conducted under the Open World assumption, it is necessary to man-
ually close the Has-trace role, so as to be able to reason with respect to all the existing traces of
a machine. The first part of the function does this, by counting how many traces a machine has,
and then asserting that the machine has exactly that amount of traces. The second part checks
that each trace of the first machine has a counterpart in the second machine. Afterwards, the
Has-role is re-opened, by cancelling the assertion made previously about the amount of fillers
of the role, and the result of the comparison is returned.

(defun check-traces (?top-state1 ?top-state2)
(let* ((?flag)

(?count1 (first (retrieve ?x (count (Has-trace ?top-state1) ?x))))
(?count2 (first (retrieve ?x (count (Has-trace ?top-state2) ?x)))))

(tellm (about ?top-state1 (:exactly ?count1 Has-trace)))
(tellm (about ?top-state2 (:exactly ?count2 Has-trace)))
(do-retrieve (?x)
(:and
(name ?top-state1 ?x)
(for-all (?trace1)
(:implies
(Has-trace ?top-state1 ?trace1)
(for-some (?trace2)
(:and
(Has-trace ?top-state2 ?trace2)
(:same-as (trace-value ?trace1) (trace-value ?trace2)))))))

(setq ?flag "OK"))
(forgetm (about ?top-state1 (:exactly ?count1 Has-trace)))
(forgetm (about ?top-state2 (:exactly ?count2 Has-trace)))
(if (equalp ?flag "OK")
(format NIL "Consistency OK"))))

The check-states and check-transitions functions are auxiliary functions used by the check-
invocable-consistency in order to perform some checks before actually comparing the two sets
of traces. The check-states function checks that the states of ?top-state1 exist in ?top-state2.
The check-transitions function checks that the transitions of ?machine1 exist in ?machine2.
Finally, the check-invocable-consistency uses the check-traces function so as to check the
traces. The ?machine1 parameter is associated with the parent class.

(defun check-invocable-consistency (?machine1 ?machine2 ?top-state1 ?top-state2)
(format t "~S ~S~%" ?machine1 ?machine2)
(let ((?states (check-states ?top-state1 ?top-state2)))
(format t "~%~S~%" ?states)
(if (not (eql ?states NIL))
(let ((?transitions (check-transitions ?machine1 ?machine2)))
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anATM:ATM

1: dispenseCash()

2: dispenseCash()

(a) ATM object

anATM:ATM

1: dispenseCash()

2: dispenseCash()

(b) PrintingATM object

Figure 6.8: Sequence diagram extracts, showing the behaviour of ATM and PrintingATM
objects

(format t "~%~S~%" ?transitions)
(if (not (eql ?transitions NIL))
(let ((?traces (check-traces ?top-state1 ?top-state2)))
(format t "~%Invocable ~S~%" ?traces)))))))

Results

The predicates were applied to the model presented in the example. The results that were
obtained indicate that the behaviour defined for the classes ATM and PrintingATM, through
protocol state machines, is invocation consistent.

|I|ATM-STATEMACHINE-1.1 |I|PRINTINGATM-STATEMACHINE-1.1
"States OK"
"Transitions OK"
Invocable "Consistency OK"
NIL

Invocable Behaviour - Sequence vs. Sequence

Affected Diagrams: Sequence

This inconsistency arises when the behaviour of a subclass is not invocation consistent[18]
with that of its superclass. In this case, class behaviour is specified by the ordered collection of
stimuli that its instances send, activated by the reception of a stimulus. Invocation consistency
asserts that the set of sequences of messages sent by the instances of the superclass should
be contained in the set of sequences of messages sent by the instances of the subclass. The
corresponding notion of behaviour inheritance is based on the substitution principle[37]. This
principle requires that an object of a subclass of class A can be used wherever an object of class
A is required.

Example

In the UML model that consists of the diagrams shown in figures 5.1, 5.2, 5.3, 6.8(a) and
6.8(b), the behaviour of the aPrintingATM object is invocation consistent with respect to the
anATM object. Figure 6.8(a) shows an extract of a sequence diagram that presents the behaviour
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of the ATM class when a dispenseCash message is received. Figure 6.8(b) shows the same sit-
uation, with respect to the PrintingATM class. Even though the subclass incorporates new
behaviour, in this case, sending a printReceipt message, it still offers the behaviour established
by the superclass, which is sending a dispenseCash message.

Predicates

The generate-sent-operations function generates the ordered collection of stimuli sent when
an activator stimulus is received. Using a query, the list of stimuli sent by the corresponding
object when the stimuli (given as the function argument) is received, is generated. Then, the
stimuli are ordered by name, so it is necessary to correctly label each one, using integers. The
ordered list is returned.

(defun generate-sent-operations (?activator)
(let* ((?ordered-rec-ops)
(?received-ops (retrieve (?name1 ?name2 ?activee ?callaction ?operation)
(:and
(Stimulus-Activee ?activator ?activee)
(name ?activee ?name1)
(Initiates ?activee ?callaction)
(CallAction-operation ?callaction ?operation)
(name ?operation ?name2)))))

(setq ?ordered-rec-ops (sort ?received-ops ’< :key ’first))))

The invoc-seq function checks for invocation consistency between the behaviour that is ob-
served when the same message is received by objects that instantiate classes related by inheri-
tance. The list of messages sent by each object, in response to the activator stimulus received
by each one, is generated using the generate-sent-operations, and is given to the invoc-seq

function as arguments. The function then compares these two lists, in order to determine if
the behaviour specified by the parent object is present in the child object. The user is notified
about the result of this comparison.

(defun invoc-seq (?parent-seq ?child-seq)
(let* ((?current-parent (first ?parent-seq))
(?current-child (first ?child-seq)))
(if (equalp NIL ?parent-seq)
(format t "invocation consistent")
(if (equalp NIL ?child-seq)
(format t "not invocation consistent")
(if (equalp (second ?parent-seq) (second ?child-seq))
(invoc-seq (cdr ?parent-seq) (cdr ?child-seq))
(invoc-seq ?parent-seq (cdr ?child-seq)))))))

Results

The predicate was applied to the model presented in the example. The results that were
obtained indicate that an object of the subclass PrintingATM can substitute an object of the
superclass ATM, given the behaviour defined in the sequence diagrams. The PrintingATM objects
can behave like an ATM object, if required. fi is a Loom function that finds the individual
associated to the Loom identifier given as an argument.

UML(27): (invoc-seq (generate-sent-operations (fi stima2-1.0))
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(generate-sent-operations (fi stimb2-1.0)))
invocation consistent
NIL

Invocable Behaviour - State vs. Sequence

Affected Diagrams: Sequence, State

This inconsistency arises when the behaviour of a subclass is not invocation consistent[18]
with that of its superclass. In this case, the superclass behaviour is specified by the ordered
collection of stimuli that its instances receive and the subclass behaviour is specified using
a protocol state machine[48]. Invocation consistency asserts that the sequences of messages
received by the instances of the superclass are contained in the set of sequences of the state
diagram for the subclass. The corresponding notion of behaviour inheritance is based on the
substitution principle[37]. This principle requires that an object of a subclass of class A can be
used wherever an object of class A is required.

Example

aCashDispenser:
CashDispenser

aCardReader:
CardReader

anATM:ATM aSession:
Session

1: checkIfCashAvailable()

2: currentCash()

3: dispenseCash()

6: ejectCard()

5: ejectCard()

4: dispenseCash()

Figure 6.9: Sequence Diagram: invocation consistency

In the UML model that consists of the diagrams shown in figures 5.1, 5.2, 5.3, 6.9 and 6.10,
the behaviour of the PrintingATM class is not invocation consistent with respect to the object
representing the ATM class. This is because the ejectCard transition from the GiveCash state to
the ReturningCard state has been accidentally deleted (see figure 6.7 for the correct version of
the state diagram).

Predicates

The generate-received-operations function generates the ordered collection of stimuli re-
ceived by the object received as a parameter. Using a query, the list of stimuli received by the
parameter object is generated. Then, the stimuli are ordered by name, so it is necessary to
correctly label each one, using integers. The ordered list is returned.
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PINEntry

Returning
Card GiveCash VerifyATM

Balance

VerifyAccount
BalanceAmountEntry[valid PIN]

[not valid PIN] checkIfCashAvailable()

verifyAccount()

dispenseCash()

PrintReceipt

issueReceipt()ejectCard()

Figure 6.10: PrintingATM State Diagram, version 2

(defun generate-received-operations (?object)
(let* ((?ordered-rec-ops)
(?received-ops (retrieve (?name1 ?name2 ?stimulus ?callaction ?operation)
(:and
(Receiver-of ?object ?stimulus)
(name ?stimulus ?name1)
(Initiates ?stimulus ?callaction)
(CallAction-operation ?callaction ?operation)
(name ?operation ?name2)))))

(setq ?ordered-rec-ops (sort ?received-ops ’< :key ’first))))

The traverse-sm function recursively traverses a state machine, using the ordered collection
of stimuli as a guide when choosing transitions. The traversal does not necessarily start at
the initial state, as the behaviour depicted in a sequence diagram usually has omissions, in
contrast to protocol state machines, that should be as complete as possible. The first part of
the function is the end condition for the recursion: either a final state has been reached, or all
the behaviour specified by the sequence diagram has been examined. If this is not the case, a
query is used in order to find the transitions exiting from the current state. Using the sequence
diagram behaviour as a guide, one of these is chosen, and the recursion continues. If there are
no suitable transitions from the current state, an inconsistency has been found, and the user is
notified.

(defun traverse-sm (?from ?from-name ?seq-list)
(let* ((?aux) (?current (second (first ?seq-list))))
(format t "Current operation: ~S~%" ?current)
(if (or (equalp (format NIL "~S" (get-value ?from ’name)) "|I|FINAL")

(equalp ?seq-list NIL))
(format t "No behaviour consistency problems")
(do-retrieve (?transition ?operation ?name ?callevent ?state)
(:and
(Is-source-of ?from ?transition)
(Triggered-by ?transition ?callevent)
(Is-occurence-of ?callevent ?operation)
(name ?operation ?name)
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(Is-target-of ?state ?transition)
)
(if (equalp ?operation NIL)
(traverse-sm ?state (get-value ?state ’name) ?seq-list)
(if (equalp ?name ?current)
(traverse-sm ?state (get-value ?state ’name) (cdr ?seq-list))
(format t "Inconsistency found at state: ~S~%" ?from-name)))))))

Results

The predicate was applied to the model presented in the example. The results that were
obtained indicate that instances of the subclass PrintingATM cannot be substituted by instances
of the superclass ATM if the behaviour of the subclass is that described by the state diagram of
the example. This is due to the fact that there are no transitions exiting from the GiveCash

state that have the ejectCard event as a trigger. fi is a Loom function that finds the individual
associated to the Loom identifier given as an argument.

UML(49): (traverse-sm (fi VerifyAccountBalance-SM-1.0) "VerifyAccountBalance"
(generate-received-operations (fi anATM-1.0)))
Current operation: |I|CHECKIFCASHAVAILABLE
Current operation: |I|DISPENSECASH
Current operation: |I|EJECTCARD
Inconsistency found at state: |I|GIVECASH
NIL

6.2.3 Observable Behaviour Conflicts

Observable Behaviour - State vs. State

Affected Diagrams: State

This inconsistency arises when the behaviour of a subclass is not observation consistent[18]
with that of its superclass. In this case, class behaviour is specified using protocol state ma-
chines. Observation consistency means that, after hiding all new events, each sequence of the
subclass state diagram should be contained in the set of sequences of the superclass state di-
agram. So, an object of the subclass should always behave like an object of the superclass, if
viewed only according to the superclass description.

Example

In the UML model that consists of the diagrams shown in figures 5.1, 5.2, 5.3, 6.6 and 6.7,
the behaviour of the PrintingATM class is observation consistent with respect to the ATM class.
This is because each trace of the subclass’ state diagram, omitting the events associated to the
operations introduced in the subclass, can be found in the state diagram of the superclass.

Predicates

The generate-traces2 function recursively generates the traces of a state machine. A trace[56]
is a sequence of events. In this specific case, traces are stored as state-event sequences, starting
from the initial state, with the events that trigger the transitions from state to state interca-
lated between the different states. The difference between this function and the generate-traces
function is that this function generates traces omitting events that reference operations that
have been introduced in the subclass. The first part of the predicate assigns the current trace
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to a newly created SMTrace instance, and then associates it with the current state machine. The
second part finds all the transitions from the current state, and recursively follows each one of
these paths, adding the current trigger information to the trace, if the associated operation can
be found in the superclass.

(defun generate-traces2 (?machine1 ?machine2 ?top-state1 ?top-state2 ?state1
?aux ?aux-inst)
(let* ((?f "OK")

(?trace (create ’nil ’SMTrace)))
(tellm (about ?trace
(Belongs-to-top ?top-state2)
(trace-value ?aux)))
(do-retrieve (?x)
(:and
(Belongs-to-top ?x ?top-state2)
(:not (:same-as ?x ?trace))
(:same-as (trace-value ?x) (trace-value ?trace)))
(setq ?f "NOT OK"))
(if (equalp ?f "NOT OK")
(forget-all-about ?trace)))

(do-retrieve (?generalization ?parent ?child)
(:and
(Is-container-of ?top-state2 ?state1)
(Is-statemachine-of ?machine2 ?child)
(Is-statemachine-of ?machine1 ?parent)
(Is-specialization-of ?generalization ?parent)
(Is-generalization-of ?generalization ?child)
(for-some (?transition ?state2 ?state3 ?callevent ?operation ?operation2)
(:and
(Is-source-of ?state1 ?transition)
(Is-target-of ?state2 ?transition)
(Is-container-of ?top-state2 ?state2)
(Is-container-of ?top-state1 ?state3)
(:same-as (name ?state2) (name ?state3))
(Triggered-by ?transition ?callevent)
(Has-feature ?parent ?operation)
(Has-feature ?child ?operation2)
(:or
(:and
;operation is owned by the parent class
(Is-occurence-of ?callevent ?operation)
(:predcall #’generate-traces2 ?machine1 ?machine2 ?top-state1
?top-state2 ?state2
(:predcall #’cons (name ?state2)
(:predcall #’cons (name ?callevent) ?aux)) ?aux-inst)

)
(:and
;operation is owned by the child and parent classes
(Is-occurence-of ?callevent ?operation2)
(:same-as (name ?operation) (name ?operation2))
(:predcall #’generate-traces2 ?machine1 ?machine2 ?top-state1
?top-state2 ?state2
(:predcall #’cons (name ?state2)
(:predcall #’cons (name ?callevent) ?aux)) ?aux-inst)
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)
(:and
;operation is owned by the child class, not owned by parent
(Is-occurence-of ?callevent ?operation2)
(for-all (?z)
(:implies
(Has-feature ?parent ?z)
(:not (:same-as (name ?z) (name ?operation2)))))

(:predcall #’generate-traces2 ?machine1 ?machine2 ?top-state1
?top-state2 ?state2 (:predcall #’cons (name ?state2)
(:predcall #’cons (name ?aux-inst) ?aux)) ?aux-inst)

)
(:and
;transition has no event
(Is-occurence-of ?callevent NIL)
(:predcall #’generate-traces2 ?machine1 ?machine2 ?top-state1
?top-state2 ?state2
(:predcall #’cons (name ?state2)
(:predcall #’cons (name ?callevent) ?aux)) ?aux-inst))))))

(T)))

The check-observable-consistency uses the generate-traces function in order to generate
the traces for the superclass’ state machine. Afterwards, the generate-traces2 function is used
to generate the traces for the subclass’ state machine. This is due to definition of observation
consistency, where the traces of the subclass must be a subset of the superclass’ set of traces.
In order to be able to make this comparison, the events that reference new operations must
be hidden. Finally, the check-traces function is used to compare the two sets of traces. The
?machine1 argument is associated with the parent class.

(defun check-observable-consistency (?parent ?machine1 ?machine2 ?top-state1
?top-state2 ?initial-state1 ?initial-state2)
(let ((?aux-inst (create ’nil ’CallEvent))

(?count1 (first (retrieve ?x (count (Has-feature ?parent) ?x)))))
(tellm (about ?parent (:exactly ?count1 Has-feature)))
(tellm (about ?aux-inst (name none)))
(generate-traces ?top-state1 ?initial-state1 ’(initial))
(generate-traces2 ?machine1 ?machine2 ?top-state1 ?top-state2 ?initial-state2
’(initial) ?aux-inst)
(format t "~S ~S~%" ?machine1 ?machine2)
(let ((?traces (check-traces ?top-state1 ?top-state2)))
(format t "~%Observable ~S~%" ?traces))
(forgetm (about ?parent (:exactly ?count1 Has-feature)))))

Results

The predicates were applied to the model presented in the example. The results that were
obtained indicate that the behaviour defined for the classes ATM and PrintingATM, through
protocol state machines, is observation consistent.

|I|ATM-STATEMACHINE-1.1 |I|SATM-STATEMACHINE-1.1
Observable "Consistency OK"



CHAPTER 6. CLASSIFICATION OF INCONSISTENCIES 65

Observable Behaviour - Sequence vs. Sequence

Affected Diagrams: Sequence

This inconsistency arises when the behaviour of a subclass is not observation consistent[18]
with that of its superclass. In this case, class behaviour is specified by the ordered collection of
stimuli that its instances send, activated by the reception of a stimulus. Observation consistency
means that, after hiding all the stimuli that reference new operations, the set of sequences of
messages sent by the instances of the subclass are contained in the set of sequences of messages
sent by the instances of the superclass. So, an object of the subclass should always behave like
an object of the superclass, if viewed only according to the superclass description.

Example

In the UML model that consists of the diagrams shown in figures 5.1, 5.2, 5.3, 6.8(a) and
6.8(b), the behaviour of the aPrintingATM object is observation consistent with respect to the
anATM object. Figure 6.8(a) shows an extract of a sequence diagram that presents the be-
haviour of the ATM class when a dispenseCash message is received. Figure 6.8(b) shows the
same situation, with respect to the PrintingATM class. According to the definition of observa-
tion consistency, the stimuli associated to new behaviour are not considered, as is the case of
stimulus 3: printReceipt. The result is that the remaining sequence {2:dispenseCash} exists
in the parent state diagram. The detection predicates for this inconsistency have not yet been
developed.

Observable Behaviour - State vs. Sequence

Affected Diagrams: Sequence, State

This inconsistency arises when the behaviour of a subclass is not observation consistent[18]
with that of its superclass. In this case, the superclass behaviour is specified using a protocol
state machine[48] and the subclass behaviour is specified by the ordered collection of stimuli
that its instances receive. Observation consistency means that, after hiding all new events, each
sequence of the subclass state diagram should be contained in the set of sequences[56] of the
superclass state diagram. So, an object of the subclass should always behave like an object of
the superclass, if viewed only according to the superclass description.

Example

In the UML model that consists of the diagrams shown in figures 5.1, 5.2, 5.3, 6.6 and 6.11,
the behaviour of the PrintingATM object is observation consistent with respect to the behaviour
defined for the ATM class. According to the definition of observation consistency, the stimuli as-
sociated to new behaviour are not considered, as is the case of stimulus {5: issueReceipt}.
The result is that the remaining sequence, {1:checkIfCashAvailable → 3:dispenseCash →

6:ejectCard}, exists in the parent state diagram.

Predicates

This predicate queries the knowledge base directly, looking for operations that have to be
passed along in inheritance relationships. If an operation is directly owned by the parent class, or
has been inherited by the parent class, it is passed onto the child class, as an Inherited-feature.
As this predicate only considers one level of inheritance, it has to be executed as many times
as there are levels in the class hierarchy.
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aCashDispenser:
CashDispenser

aCardReader:
CardReader

aPrintingATM:
PrintingATM

aSession:
Session

1: checkIfCashAvailable()

2: currentCash()

3: dispenseCash()

7: ejectCard()

6: ejectCard()

4: dispenseCash()

5: issueReceipt()

Figure 6.11: Sequence Diagram: observation consistency

(do-retrieve (?generalization ?parent ?child ?operation)
(:and
(Generalization ?generalization)
(Is-specialization-of ?generalization ?parent)
(Is-generalization-of ?generalization ?child)
(or
(Has-feature ?parent ?operation)
(Inherited-feature ?parent ?operation)))

(tellm (Inherited-feature ?child ?operation)))

The generate-received-operations2 function generates the ordered collection of stimuli re-
ceived by the object received as a parameter, including only the stimuli associated to inherited
operations. Using a query, the list of stimuli received by the parameter object is generated.
Then, the stimuli are ordered by sequence, so it is necessary to correctly label each one, using
integers. The ordered list is returned.

(defun generate-received-operations2 (?object)
(let* ((?ordered-rec-ops)
(?received-ops (retrieve (?name1 ?name2 ?stimulus ?callaction ?operation
?class)
(:and
(Receiver-of ?object ?stimulus)
(name ?stimulus ?name1)
(Initiates ?stimulus ?callaction)
(CallAction-operation ?callaction ?operation)
(Instance-of-class ?object ?class)
(Inherited-feature ?class ?operation)
(name ?operation ?name2)))))

(setq ?ordered-rec-ops (sort ?received-ops ’< :key ’first))))

Finally, the traverse-sm function is used to compare the behaviour of the superclass behaviour
is specified using a protocol state machine and the subclass behaviour is specified by the ordered
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collection of stimuli that its instances receive. The ordered collection of stimuli is generated
with the generate-received-operations2. The traverse-sm function used is the one presented
in section 6.2.2.

Results

The predicates were applied to the model presented in the example. The results that were
obtained indicate that the behaviour defined for the classes ATM and PrintingATM, through the
superclass protocol state machine and messages received by subclass objects, is observation
consistent. fi is a Loom function that finds the individual associated to the Loom identifier
given as an argument.

UML(49): (traverse-sm (fi VerifyAccountBalance-SM-1.0) "VerifyAccountBalance"
(generate-received-operations (fi aPrintingATM-1.0)))
Current operation: |I|CHECKIFCASHAVAILABLE
Current operation: |I|DISPENSECASH
Current operation: |I|EJECTCARD
Current operation: NIL
No behaviour consistency problems
NIL

6.2.4 Incompatible Behaviour Conflicts

Incompatible Behaviour - State vs. Sequence

Affected Diagrams: Sequence, State

This inconsistency arises when the sequence of messages received by an object in a sequence
diagram is inconsistent with the behaviour established by the protocol state machine of the
object’s class. A sequence of messages is inconsistent with respect to a protocol state machine
if it is not possible to find a path in the state machine that follows the order established by
the sequence. It is only possible to alert the user about the existence of this inconsistency, the
user must determine whether the problem lies in the protocol state machine or the sequence
diagram.

Example

In the UML model that consists of the diagrams shown in figures 5.1, 5.2, 5.3, 6.6 and 6.12
an inconsistency of this type is detected. Using the protocol state machine as a template that
indicates the permitted behaviour sequences, the ordering of the stimuli received by the instance
of the ATM class is perceived as inconsistent with the established behaviour, since it receives a
ejectCard message after an checkIfCashAvailable message. The protocol state machine of this
class has no sequence modelling this behaviour.

Predicates

The generate-received-operations and traverse-sm functions are used in the detection of
this type of inconsistency. Both these functions are presented in Section 6.2.2 - Predicates. The
generate-

received-operations function generates the ordered collection of stimuli received by the object
received as a parameter. In this case, it is used generate the list of stimuli of the objects
that instantiate the class in question. The traverse-sm function recursively traverses the state
machine associated to the class in question, using the ordered collection of stimuli as a guide
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aCashDispenser:
CashDispenser

aCardReader:
CardReader

anATM:ATM aSession:
Session

1: checkIfCashAvailable()

2: currentCash()

3: ejectCard()

4: ejectCard()

5: dispenseCash()

6: dispenseCash()

Figure 6.12: Sequence Diagram: incompatible behaviour

when choosing transitions. If an inconsistency is found, the user is notified.

Results

The predicate was applied to the model presented in the example. The results that were
obtained indicate that the messages received by the object anATM, presents behaviour that is
not consistent with that defined for the object’s class, ATM (see figure 6.6), as there are no
transitions exiting from the VerifyATMBalance state that have ejectCard as a trigger. fi is a
Loom function that finds the individual associated to the Loom identifier given as an argument.

UML(49): (traverse-sm (fi VerifyAccountBalance-SM-1.0) "VerifyAccountBalance"
(generate-received-operations (fi anATM-1.0)))
Current operation: |I|CHECKIFCASHAVAILABLE
Current operation: |I|EJECTCARD
Inconsistency found at state: |I|VERIFYATMBALANCE
NIL

6.2.5 Inherited Association Conflicts

Infinite Containment

Affected Diagrams: Class

This inconsistency arises when the composition and inheritance relationships between classes
in the class diagrams of a VersionedModel form a cycle and combined with the multiplicities of
the compositions, define a class whose instances will, directly or indirectly, be forced to contain
at least one instance of the same class, causing an infinite chain of instances. This is probably
due to the fact that the designer has overlooked an existing inheritance relationship.

Example

In the UML model that consists of the diagram shown in figure 6.13, an example of this
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Session
+executeSession()
+handleInvalidPIN()
+handleFailedTransaction()

Transaction
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()
+executeTransaction()

1..*

1

1..*

1

A B

Figure 6.13: Infinite containment

inconsistency can be seen. The association marked as A is the original one, visible in figure 5.2.
The association marked as B has been accidentally added to this diagram. The aggregation
and multiplicity constraints cause an infinite containment inconsistency because each instance
of the Transaction class must have at least one instance of the Session class, whose instances
must have at least one instance of the Transaction class. The detection predicates for this
inconsistency have not yet been developed.

6.2.6 Dangling (Type) Reference

Affected Diagrams: Class

This inconsistency arises when the type of an attribute does not exist as a class in the cor-
responding VersionedModel. It also arises when the type of a parameter of an operation does
not exist as a class in the corresponding VersionedModel. The type of the parameter or attribute
may have been removed, or may have not been included in a class diagram yet.

Example

In the UML model that consists of the diagram shown in figure 6.14, an inconsistency of this
type is detected. The Account class has been deleted, but is still being used as the type of
various operation parameters in the Bank class (see figures 5.1, 5.2 and 5.3 to see the details of
the class interfaces).

Predicates

This predicate queries the knowledge base directly, looking for parameters that have types that
are classes that do not belong to any class diagrams. The parameters and their invalid types
are printed on screen.

(do-retrieve (?operation ?parameter ?class1 ?class2)
(:and
(Operation ?operation)
(Is-owned-by ?operation ?class1)
(Has-parameter ?operation ?parameter)
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ATM
+getPIN()
+getMenuChoice(whatToChoose:String, 
numItems:int, items:String[])
+getAmountEntry()
+checkIfCashAvailable(amount:int)
+dispenseCash(amount:int)
+acceptEnvelope()
+reEnterPIN()
+reportTransactionFailure(explanation:String)
+ejectCard()
+retainCard()
+getTargetAccount()
+verifyAccount(cardNum:int, PIN:int)

0..*

Session
+executeSession()
+handleInvalidPIN()
+handleFailedTransaction()

Transaction
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()
+executeTransaction()

Bank
+initiateTransaction(cardNum:int, PIN:int, serialNum:int, 
atm:ATM, account:Account, amount:int, availableBalance:int, 
transaction:Transaction)
+finishTransaction(atm:ATM, serialNum:int, 
succeeded:boolean, transaction:Transaction)
+doInquiry(cardNum:int, PIN:int, serialNum:int, atm:ATM, 
account:Account, amount:int, availableBalance:int, 
transaction:Transaction)
+doTransfer(cardNum:int, PIN:int, serialNum:int, atm:ATM, 
fromAccount:Account, toAccount:Account, amount:int, 
availableBalance:int, transaction:Transaction)
+verifyPIN(account:Account, cardNum:int, PIN:int)

Customer
+getName()
+getAccountList() 1..*

0..*

1

0..*
1

1

1..*

CashDispenser
+setCash(initialCash:int)
+dispenseCash(amount:int)
+currentCash()

1

1

Figure 6.14: Class Diagram - Part II, version 3
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(Parameter-class ?parameter ?class2)
(In-namespace ?class2 NIL))

(format t "Type of the parameter ~S of operation ?S of class ~S, does not
exist in any class diagram" (get-value ?parameter ’name) (get-value
?operation ’name) (get-value ?class1 ’name)))

This predicate queries the knowledge base directly, looking for attributes that have types
that are classes that do not belong to any class diagrams. The attributes and their invalid
types are printed.

(do-retrieve (?attribute ?class)
(:and
(Attribute ?attribute)
(Is-of-type ?attribute ?class)
(In-namespace ?class NIL))

(format t "The type of the ~S attribute of class ?S does not exist in any
class diagram" (get-value ?attribute ’name) (get-value ?class ’name)))

Results

The first predicate was applied to the model presented in the example. The results that were ob-
tained indicate that various operation parameter types of the Bank class are invalid, as reference
the Account class, that has been deleted from the model.

The type of the parameter |I|ACCOUNT of operation |I|INITIATETRANSACTION of
class |I|BANK, does not exist in any class diagram
The type of the parameter |I|ACCOUNT of operation |I|DOINQUIRY of class
|I|BANK, does not exist in any class diagram
The type of the parameter |I|FROMACCOUNT of operation |I|DOTRANSFER of class
|I|BANK, does not exist in any class diagram
The type of the parameter |ITO|ACCOUNT of operation |I|DOTRANSFER of class
|I|BANK, does not exist in any class diagram
The type of the parameter |I|ACCOUNT of operation |I|VERIFYPIN of class |I|BANK,
does not exist in any class diagram

6.2.7 Instance Definition Missing

Classless Instances

Affected Diagrams: Class, Sequence

This inconsistency arises when an object in a sequence diagram is the instance of a class
that does not exist in any of the class diagrams of the corresponding VersionedModel. This
can be caused by the fact that the designer has eliminated the class from the class diagrams,
without updating the sequence diagrams; or has forgotten to include this new class in the class
diagrams.

Example

In the UML model that consists of the diagrams shown in figures 6.15 and 6.16, this consis-
tency problem arises as the designer has deleted the CardReader class in the class diagram, and
has forgotten to update the sequence diagram, that still has instances of this class.
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Keyboard
+readPIN(echoOn:boolean)
+readMenuChoice(numItems:int)
+readAmountEntry(echoOn:boolean)
+readTargetAccount(echoOn:boolean)

Display
+requestCard()
+requestPIN()
+displayMenu(whatToChoose:String, 
numItems:int, items:String[])
+requestAmountEntry()
+requestDepositEnvelope()
+reportTransactionFailure(explanation:String)
+requestTargetAccount()

EnvelopeAcceptor
+acceptEnvelope()

CashDispenser
+setCash(initialCash:int)
+dispenseCash(amount:int)
+currentCash()

ATM
+getPIN()
+getMenuChoice(whatToChoose:String, 
numItems:int, items:String[])
+getAmountEntry()
+checkIfCashAvailable(amount:int)
+dispenseCash(amount:int)
+acceptEnvelope()
+reportTransactionFailure(explanation:String)
+ejectCard()
+getTargetAccount()
+verifyAccount(cardNum:int, PIN:int)

1

1

1

1
1

1

1

1

1

1

Figure 6.15: Class Diagram - Part I, version 3

aDisplay:Display anATM:ATM aCardReader:
CardReader

1: requestCard()
2: checkIfCardInserted()

n: ejectCard()

. .
 .

Figure 6.16: Sequence Diagram: classless instance
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Predicates

This predicate queries the knowledge base directly, looking for objects that instantiate classes
that do not belong to any class diagrams. The objects and their invalid classes are printed.

(do-retrieve (?object ?class ?seq-model ?model)
(:and
(Object ?object)
(Instance-of-class ?object ?class)
(In-namespace ?class NIL)
(In-namespace ?object ?seq-model)
(Contains-model ?model ?seq-model))

(format t "Object ~S instantiates ?S class, that does not exist in any
class diagram" (get-value ?object ’name) (get-value ?class ’name)))

Results

The predicate was applied to the model presented in the example. The results that were
obtained indicate that the object aCardReader is the instance of the CardReader class, a class
that does not belong to any class diagrams of the corresponding VersionedModel.

Object |I|ACARDREADER instantiates |I|CARDREADER class, that does not exist in
any class diagram

Classless Statechart

Affected Diagrams: Class, State

This inconsistency arises when a StateModel is associated to a class that does not exist in
any of the class diagrams of the corresponding VersionedModel. This can be caused by the
fact that the designer has eliminated the class from the class diagrams, without deleting the
StateModel; or has forgotten to include this new class in the class diagrams.

Example

CardAbsent CardPresent

[checkForCardInserted == true]

ejectCard

[checkForCardInserted == false]

Figure 6.17: Card Reader State Diagram, version 1

In the UML model that consists of the diagrams shown in figures 6.15 and 6.17, this consis-
tency problem arises as the designer has deleted the CardReader class from the class diagram,
and has forgotten to delete the associated StateModel from the UML model.

Predicates

This predicate queries the knowledge base directly, looking for StateModels that model the
behaviour of classes that do not belong to any class diagrams. The StateModels and their
invalid classes are printed.
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(do-retrieve (?state-model ?statemachine ?class ?model)
(:and
(StateModel ?state-model)
(In-namespace ?statemachine ?state-model)
(Is-stateMachine-of ?statemachine ?class)
(In-namespace ?class NIL)
(Contains-model ?model ?state-model))

(format t "StateModel ~S defines behaviour of ?S class, that does not exist
in any class diagram" (get-value ?state-model ’name) (get-value ?class
’name)))

Results

The predicate was applied to the model presented in the example. The results that were ob-
tained indicate that the state machine CardReader-StateMachine is the machine of the CardReader
class, that does not belong to any class diagrams of the corresponding Versioned model.

StateModel |I|CARDREADER-STATE-DIAGRAM defines behaviour of
|I|CARDREADER class, that does not exist in any class diagram

Dangling (Inherited) Feature Reference

Affected Diagrams: Class, Sequence, State

This inconsistency arises when a stimulus, trigger, action or guard references a non-existing
attribute or operation in a class diagram. This includes inherited features that are lost when
the inheritance links between classes are broken. This inconsistency can also be caused by the
removal of existing features, or by their omission when creating the class diagram.

Example

In the UML model that consists of the diagrams shown in figures 6.18, 6.19 and 6.20, various
of examples of this consistency problem can be seen. The diagram shown in figure 6.18 is a
modified version of that shown in figure 5.1. In this new version, the interfaces of some of the
classes have been modified. Concretely, the following modifications have been made:

• Session

handleInvalidPIN operation has been removed

• Display

requestReEnterPIN, reportCardRetained operations have been removed

• CardReader

retainCard operation has been removed

• ATM

retainCard, reEnterPIN operations have been removed

The sequence diagram shown in figure 6.19 includes various examples of this consistency
problem, as it was not updated so as to include the modifications made to the class diagram.
Links A through G are associated to actions that refer to operations that are no longer in the
definition of the system. If a member of the development team is not informed of the latest
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Keyboard
+readPIN(echoOn:boolean)
+readMenuChoice(numItems:int)
+readAmountEntry(echoOn:boolean)
+readTargetAccount(echoOn:boolean)

Display
+requestCard()
+requestPIN()
+displayMenu(whatToChoose:String, 
numItems:int, items:String[])
+requestAmountEntry()
+requestDepositEnvelope()
+reportTransactionFailure(explanation:String)
+requestTargetAccount()

EnvelopeAcceptor
+acceptEnvelope()

CashDispenser
+setCash(initialCash:int)
+dispenseCash(amount:int)
+currentCash()

ATM
+getPIN()
+getMenuChoice(whatToChoose:String, 
numItems:int, items:String[])
+getAmountEntry()
+checkIfCashAvailable(amount:int)
+dispenseCash(amount:int)
+acceptEnvelope()
+reportTransactionFailure(explanation:String)
+ejectCard()
+getTargetAccount()
+verifyAccount(cardNum:int, PIN:int)

CardReader
+ejectCard()
+checkIfCardInserted()

PrintingATM
+issueReceipt(cardNum:int, serialNum:int, desc:String, 
amount:int, balance:int)

ReceiptPrinter
+printReceipt(cardNum:int, serialNum:int, desc:String, 
amount:int, balance:int, atm:ATM)

1

1

1

1

1

1

1

1

1

1

1 1

1

1

Session
+executeSession()
+handleFailedTransaction()

0..*

1

Figure 6.18: Class Diagram - Part I, version 4

aDisplay:
Display

aBank:BankanATM:ATM aCardReader:
CardReader

aSession:
Session

1: checkIfCardInserted()

2: Session()

3: executeSession()

4: getPIN()

5: verifyPIN()

6: handleInvalidPIN()

7: reEnterPIN()

8: requestReEnterPIN()

9: verifyPIN()

10: handleInvalidPIN()

11: retainCard()

12: retainCard()

13: reportCardRetained()

AB

C

DE

F
G

Figure 6.19: Sequence Diagram: dangling (inherited) feature references
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changes in the static system definition, he may assume that this behaviour is valid and build on
top of it, only to realise that this behaviour was not supported by the system when the system
code is finally executed.

CardAbsent CardPresent

[checkForCardInserted == true]

ejectCard

[checkForCardInserted == false]

CardRetained

retainCard

[checkForCardInserted == false]

A

Figure 6.20: Card Reader State Diagram, version 2

The state diagram shown in figure 6.20 includes an example of this consistency problem, as it
was not updated so as to include the modifications made to the class diagram. The event that
triggers transition A refers to an operation that no longer exists in the definition of the system.
There are no other transitions to the CardRetained state, and the existing one is invalid, so this
state is unreachable, and should be removed from this diagram. If a member of the development
team is not informed of the latest changes in the static system definition, he may assume that
this state is reachable for instances of this class, and therefore will develop the code needed to
process this state. This leads to wasted effort, since this code will never be executed.

Predicates

The predicates for this inconsistency are of two types: the ones that deal with stimuli, triggers,
actions and guards that refer to non-existing operations, and the ones that deal with references
to existing operations, but to which the class in question has no access, as there is no inheritance
relationship between the class in question and the owner of the referenced operation. The first
three predicates deal with non-existing operations. The last three predicates deal with existing
operations. An auxiliary function is used in order to determine the if two classes are related
through inheritance.

The following predicate queries the knowledge base directly, looking for stimuli that reference
non-existing operations. The stimuli and their invalid operations are printed.

(do-retrieve (?link ?stimulus ?call-action ?operation)
(:and
(Link ?link)
(Link-stimulus ?link ?stimulus)
(Initiates ?stimulus ?call-action)
(CallAction-operation ?call-action ?operation)
(In-namespace ?operation NIL))

(format t "Stimulus ~S in link ~S references non-existing operation ~S"
?stimulus ?link ?operation))

The following predicate queries the knowledge base directly, looking for transitions that are
triggered by events that reference non-existing operations. The transitions, events and their
invalid operations are printed.
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(do-retrieve (?transition ?call-event ?operation)
(:and
(Transition ?transition)
(Triggered-by ?transition ?call-event)
(Is-occurence-of ?call-event ?operation)
(In-namespace ?operation NIL))

(format t "Transition ~S triggered by ~S references non-existing operation ~S"
?transition ?call-event ?operation))

The following predicate queries the knowledge base directly, looking for transitions that have
effects that reference non-existing operations. The transitions and their invalid operations are
printed.

(do-retrieve (?transition ?call-action ?operation)
(:and
(Transition ?transition)
(Transition-action ?transition ?call-action)
(CallAction-operation ?call-action ?operation)
(In-namespace ?operation NIL))

(format t "Transition ~S references non-existing operation ~S" ?transition
?operation))

An auxiliary function, related, returns T if the two classes are related by inheritance rela-
tionships, with the first argument being the supposed ancestor of the second argument. A class
is considered as being “related” to itself, as this simplifies the conditional code of the predicates
that uses it. If two classes are not related by inheritance relationships, NIL is returned.

(defun related (?parent ?class)
(if (equalp ?parent ?class)
T
(do-retrieve (?child ?generalization)
(:and
(Is-specialization-of ?generalization ?parent)
(Is-generalization-of ?generalization ?child)
(:predcall #’related ?child ?class))
(return T))))

The following predicate queries the knowledge base directly, looking for stimuli that reference
existing operations to which the class in question has no access, as there is no inheritance
relationship between the class in question and the owner of the referenced operation. The
stimuli and their invalid operations are printed.

(do-retrieve (?link ?stimulus ?object ?class1 ?call-action ?operation ?class2)
(:and
(Link ?link)
(Link-stimulus ?link ?stimulus)
(Received-by ?stimulus ?object)
(Instance-of-class ?object ?class1)
(Initiates ?stimulus ?call-action)
(CallAction-operation ?call-action ?operation)
(not (In-namespace ?operation NIL))
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(Is-owned-by ?operation ?class2))
(if (not (related (?class2 ?class1)))
(format t "~S stimulus in link ~S references operation ~S, which is not
available through inheritance" ?stimulus ?link ?operation)))

The following predicate queries the knowledge base directly, looking for transitions that are
triggered by events that reference existing operations to which the class in question has no
access, as there is no inheritance relationship between the class in question and the owner of
the referenced operation. The transitions, events and their invalid operations are printed.

(do-retrieve (?transition ?state-machine ?class1 ?call-event ?operation
?class2)
(:and
(Transition ?transition)
(Transition-stateMachine ?transition ?state-machine)
(Is-stateMachine-of ?state-machine ?class1)
(Triggered-by ?transition ?call-event)
(Is-occurence-of ?call-event ?operation)
(not (In-namespace ?operation NIL))
(Is-owned-by ?operation ?class2))

(if (not (related (?class2 ?class1)))
(format t "Transition ~S triggered by ~S references operation ~S, which is
not available through inheritance" ?transition ?call-event ?operation)))

The following predicate queries the knowledge base directly, looking for transitions that have
effects that reference existing operations to which the class in question has no access, as there
is no inheritance relationship between the class in question and the owner of the referenced
operation. The transitions and their invalid operations are printed.

(do-retrieve (?transition ?state-machine ?class1 ?call-action ?operation
?class2)
(:and
(Transition ?transition)
(Transition-stateMachine ?transition ?state-machine)
(Is-stateMachine-of ?state-machine ?class1)
(Transition-action ?transition ?call-action)
(CallAction-operation ?call-action ?operation)
(not (In-namespace ?operation NIL))
(Is-owned-by ?operation ?class2))

(if (not (related (?class2 ?class1)))
(format t "Transition ~S references ~S, which is not available through
inheritance" ?transition ?operation)))

Results

The first predicate was applied to the first example, in which various stimulus in a sequence
diagram reference non-existing operations, as these were removed from the class diagram.

Stimulus |I|STIM6-1.0 in link |I|LINK6-1.0 references non-existing operation
|I|HANDLEINVALIDPIN-SESSION-1.0
Stimulus |I|STIM7-1.0 in link |I|LINK7-1.0 references non-existing operation
|I|REENTERPIN-ATM-1.0
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Stimulus |I|STIM8-1.0 in link |I|LINK8-1.0 references non-existing operation
|I|REQUESTREENTERPIN-DISPLAY-1.0
Stimulus |I|STIM10-1.0 in link |I|LINK10-1.0 references non-existing operation
|I|HANDLEINVALIDPIN-SESSION-1.0
Stimulus |I|STIM11-1.0 in link |I|LINK11-1.0 references non-existing operation
|I|RETAINCARD-ATM-1.0
Stimulus |I|STIM12-1.0 in link |I|LINK12-1.0 references non-existing operation
|I|RETAINCARD-CARDREADER-1.0
Stimulus |I|STIM13-1.0 in link |I|LINK13-1.0 references non-existing operation
|I|REPORTCARDRETAINED-DISPLAY-1.0
NIL

The second predicate was applied to the second example, in which a trigger in a state diagram
references a non-existing operation, as it was removed from the class diagram.

Transition |I|TRANS4-1.0 triggered by |I|ACTION2-1.0 references non-existing
operation |I|RETAINCARD-CARDREADER-1.0
NIL

Dangling (Inherited) Association Reference

Affected Diagrams: Class, Sequence

This inconsistency arises when a link in a sequence diagram is related to a non-existing associa-
tion in a class diagram. This includes inherited associations that are lost when the inheritance
links between classes are broken - these are referred to as illegal associations. This inconsis-
tency can also be caused by the removal of existing associations, or by the omission of the
necessary associations, when creating the class diagram - these are referred to as non-existing
associations.

Example

In the UML model that consists of the diagrams shown in figures 6.21 and 6.22, two examples
of this consistency problem can be seen. The first example appears when the inheritance
relationship marked as A in figure 6.21 is deleted. As a result, the PrintingATM class does not
inherit the association between the ATM and CashDispenser classes, which leaves the links A and
B of the sequence diagram referencing an illegal association. The second example appears when
the association between the ATM and CashDispenser classes, marked as B in the class diagram,
is deleted. Now, links A and B of the sequence diagram refer to a non-existing association. The
detection of this inconsistency will draw the attention of the designer to the missing association
in the class diagram, allowing its correction.

Predicates

The predicates for this inconsistency are of two types: the ones that deal with links that refer
to non-existing associations, and the ones that deal with references to existing associations, but
to which the class in question has no access, as there is no inheritance relationship between
the class in question and the owner of the referenced operation. The first predicate deals with
non-existing associations. The last function deals with existing associations.

The following predicate queries the knowledge base directly, looking up links that reference
non-existing associations. The links and their invalid associations are printed.
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Keyboard
+readPIN(echoOn:boolean)
+readMenuChoice(numItems:int)
+readAmountEntry(echoOn:boolean)
+readTargetAccount(echoOn:boolean)

Display
+requestCard()
+requestPIN()
+displayMenu(whatToChoose:String, 
numItems:int, items:String[])
+requestAmountEntry()
+requestDepositEnvelope()
+reportTransactionFailure(explanation:String)
+requestReEnterPIN()
+reportCardRetained()
+requestTargetAccount()

EnvelopeAcceptor
+acceptEnvelope()

CashDispenser
+setCash(initialCash:int)
+dispenseCash(amount:int)
+currentCash()

ATM
+getPIN()
+getMenuChoice(whatToChoose:String, 
numItems:int, items:String[])
+getAmountEntry()
+checkIfCashAvailable(amount:int)
+dispenseCash(amount:int)
+acceptEnvelope()
+reEnterPIN()
+reportTransactionFailure(explanation:String)
+ejectCard()
+retainCard()
+getTargetAccount()
+verifyAccount(cardNum:int, PIN:int)

CardReader
+ejectCard()
+retainCard()
+checkIfCardInserted()

PrintingATM
+issueReceipt(cardNum:int, serialNum:int, desc:String, 
amount:int, balance:int)

ReceiptPrinter
+printReceipt(cardNum:int, serialNum:int, desc:String, 
amount:int, balance:int, atm:ATM)

A

B

1

1

1

1

1

1

1
1

1

1

1
1

1

1

Figure 6.21: Class Diagram - Part I, version 5

aPrintingATM:
PrintingATM

aCashDispenser:
CashDispenser

aSession:
Session

aWithdraw:
Withdraw

3: getTransactionSpecificsFromCustomer ()

1: Withdraw()

2: executeTransaction()

4: getAmountEntry()

6: currentCash()

5: checkIfCashAvailable()

7: dispenseCash()

8: dispenseCash()

A

B

Figure 6.22: Sequence Diagram for withdraw transactions, version 2
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(do-retrieve (?link ?association)
(:and
(Link ?link)
(Link-association ?link ?association)
(In-namespace ?association NIL))

(format t "~S association does not exist in any class diagram" ?association))

An auxiliary function, pred1, is used in order to execute the conditions necessary so as to
determine if the classes involved are related by inheritance. The dangling-link function calcu-
lates the information needed in order to determine if a link is referencing an existing association
to which the class in question has no access, as there is no inheritance relationship between the
class in question and the owner of the referenced operation. This information consists of the list
of classes that participate in the association and the classes that are instantiated by the objects
related by the link. Various combinations are given by Loom, as it matches the variables with
all the possible sets of values, and for this reason, the list of classes has to be manipulated so
as to check if there is at least one valid combination classes. If no valid combination of classes
if found, the link cannot reference the association.

(defun pred1 (?list)
(let ((?flag1 (related (first ?list) (third ?list)))
(?flag2 (related (second ?list) (fourth ?list)))
(?flag3 (related (first ?list) (fourth ?list)))
(?flag4 (related (second ?list) (third ?list))))
(or (and ?flag1 ?flag2) (and ?flag3 ?flag4))))

(defun dangling-link (?link ?association)
(let* ((?list
(retrieve (?class1 ?class2 ?class3 ?class4 ?assocEnd1 ?assocEnd2 ?stimulus
?object1 ?object2)
(:and
(Association-associationEnd ?association ?assocEnd1)
(Association-associationEnd ?association ?assocEnd2)
(Has-participant ?assocEnd1 ?class1)
(Has-participant ?assocEnd2 ?class2)
(Link-stimulus ?link ?stimulus)
(Received-by ?stimulus ?object1)
(Sent-by ?stimulus ?object2)
(Instance-of-class ?object1 ?class3)
(Instance-of-class ?object2 ?class4))))
(?list2 (mapcar ’my-subseq ?list))
(?list3 (mapcar ’pred1 ?list2)))
(if (equalp NIL (or (first ?list3) (second ?list3) (third ?list3)
(fourth ?list3)))
(format t "~S association exists, but not available through inheritance"
?association)
(format t "No problem"))))

Results

The first predicate was applied to the second example, where the association between the
ATM and CashDispenser classes was removed. The results that were obtained indicate that the
association between the ATM and CashDispenser does not exist.
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|I|CASHDISPENSER-ATM-1.0 association does not exist in any class diagram
NIL

The second predicate was applied to the first example, where the inheritance link between
the ATM and PrintingATM classes was removed. The results that were obtained indicate that,
even though the association between the ATM and CashDispenser exists in the class diagram,
the PrintingATM class no longer inherits it, and cannot reference it. fi is a Loom function that
finds the individual associated to the Loom identifier given as an argument.

UML(270): (dangling-link (fi linka1-1.0) (fi cashdispenser-atm-1.0))
|I|CASHDISPENSER-ATM-1.0 association exists, but not available through
inheritance
NIL

6.2.8 Disconnected Model

Disconnected Model - State

Affected Diagrams: State

This inconsistency arises when a diagram has one or various states or transitions that are
not connected to the main diagram. This usually occurs when the connecting states or transi-
tions have been removed from the diagram. It can also occur when the designer himself creates
a disconnected diagram, for example, by forgetting to include a transition in a state diagram.

Example

PINEntry

Returning
Card GiveCash VerifyATM

Balance

VerifyAccount
Balance

[not valid PIN] checkIfCashAvailable()

dispenseCash()ejectCard()

Figure 6.23: ATM State Diagram, version 3

In the UML model that consists of the diagram shown in figure 6.23, this consistency problem
arises as the designer has deleted the AmountEntry state from the model (visible in figure 6.6).
This causes the automatic deletion of the transitions to and from this state. The result is a
disconnected diagram, as the states VerifyAccountBalance, VerifyATMBalance and GiveCash are
not reachable from the initial state.

Predicates

In the case of state diagrams, this inconsistency is detected by checking that all the states in
the diagram are reachable from the initial state. This is equivalent to checking if there exists at
least one path from the initial state to each state. The find-path function does this recursively,
using a query to find the transitions exiting from the current state, following each one until
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either reaching the state in question, or arriving at a state that has no outgoing transitions,
that is not a final state.

(defun find-path (?top-state ?state1 ?state2)
(let* ((?cond (ask (:same-as ?state1 ?state2))))
(if (equal ?cond T)
(format t "State ~S is reachable~%" ?state2)
(do-retrieve ()
(:and
(Is-container-of ?top-state ?state1)
(for-some (?transition ?state)
(:and
(Is-source-of ?state1 ?transition)
(Is-target-of ?state ?transition)
(Is-container-of ?top-state ?state)
(:predcall #’find-path ?top-state ?state ?state2))))

()))))

Results

The predicate was applied to the model presented in the example. The results that were
obtained indicate that the states VerifyAccountBalance, VerifyATMBalance and GiveCash are
not reachable, as no path could be found from the initial state to each one of them, and
therefore, the model is disconnected. fi is a Loom function that finds the individual associated
to the Loom identifier given as an argument.

UML(40): (find-path (fi top-asm-1.0) (fi initial-asm-1.0)
(fi PINEntry-asm-1.0))
State |I|PINENTRY-ASM-1.0 is reachable
NIL
UML(41): (find-path (fi top-asm-1.0) (fi initial-asm-1.0)
(fi VerifyAccountBalance-asm-1.0))
NIL
UML(42): (find-path (fi top-asm-1.0) (fi initial-asm-1.0)
(fi VerifyATMBalance-asm-1.0))
NIL
UML(43): (find-path (fi top-asm-1.0) (fi initial-asm-1.0)
(fi GiveCash-asm-1.0))
NIL
UML(44): (find-path (fi top-asm-1.0) (fi initial-asm-1.0)
(fi ReturningCard-asm-1.0))
State |I|RETURNINGCARD-ASM-1.0 is reachable
NIL
UML(45): (find-path (fi top-asm-1.0) (fi initial-asm-1.0)
(fi final-asm-1.0))
State |I|FINAL-ASM-1.0 is reachable
NIL

Disconnected Model - Sequence

Affected Diagrams: Sequence
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This inconsistency arises when a diagram has one or various objects that are not connected to
the main diagram. This usually occurs when the connecting objects have been removed, which
leads to the removal of the associated links. It can also be caused by the removal or omission
of a link.

Example

anATM:ATM aKeyboard:
Keyboard

aSession:
Session

aDeposit:
Deposit

3: getTransactionSpecificsFromCustomer ()

1: Deposit()

2: executeTransaction()

4: getAmountEntry()

5: readAmountEntry()

Figure 6.24: Sequence Diagram for deposit transactions, version 2

anATM:ATM aKeyboard:
Keyboard

aSession:
Session

aDeposit:
Deposit

3: getTransactionSpecificsFromCustomer ()

1: Deposit()

2: executeTransaction()

5: readAmountEntry()

Figure 6.25: Sequence Diagram for deposit transactions, version 3 - deleted link

A valid sequence diagram is shown in figure 6.24, representing the interaction between system
objects when the ATM user decides to make a deposit. In the first example, visible in figure
6.25, the diagram becomes disconnected when the link between the aDeposit and anATM objects
is removed. In the second example, visible in figure 6.26, the diagram becomes disconnected
when the anATM object is removed. This causes the removal of all the links to and from this
object, resulting in a disconnected diagram, as the aKeyboard object has no interaction with
the rest of the diagram.

Predicates

In the case of sequence diagrams, this inconsistency is detected by checking that all objects
receive at least one stimulus. The only exception to this rule is the object that sends the first
stimulus. This object will be detected as a false positive. The check-dd-seq function checks if
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aKeyboard:
Keyboard

aSession:
Session

aDeposit:
Deposit

3: getTransactionSpecificsFromCustomer ()

1: Deposit()

2: executeTransaction()

Figure 6.26: Sequence Diagram for deposit transactions, version 4 - deleted object

each object in a sequence diagram receives at least one stimulus. Objects that receive external
stimuli in order to initiate the object interaction are detected as false positives.

(defun check-dd-seq (?diagram)
(let* ((?received-stim
(retrieve (?object ?stim)
(:and (Object ?object)
(In-namespace ?object ?diagram)
(receiver-of ?object ?stim)))))

(if (equalp ?received-stim NIL)
(format t "~S receives no stimuli~%" ?object))))

Results

The predicate was applied to the model presented in the example. The results obtained from
the first example indicate that the objects anATM and aSession receive no stimuli. In the case
of the anATM object, this is true, as the removal of the link from the aDeposit object causes the
division of the original model into two separate models. The detection of the aSession object
is a false positive, as it receives an external stimulus that is not included in the model, in order
to start the object interaction.

|I|ANATM-A-1.0 receives no stimuli
|I|ASESSION-A-1.0 receives no stimuli
NIL

The results obtained from the second example indicate that the objects aKeyboard and
aSession receive no stimuli. In the case of the aKeyboard object, this is true, as the removal
of the anATM object causes the division of the original model into two separate models. The
detection of the aSession object is again a false positive, as it receives an external stimulus.

|I|AKEYBOARD-A-1.0 receives no stimuli
|I|ASESSION-A-1.0 receives no stimuli
NIL
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6.3 Discussion

The lack of transitive roles is notorious in the case of inheritance hierarchies and inherited
features. In order to reason about inherited features, the auxiliary role Inherited-feature

was created. This role has to be filled manually (the user has to execute a query) and after
being filled, needs to be truth maintained manually. This is cumbersome and error-prone. A
similar problem can be seen when dealing with class inheritance relationships, as only one level
of inheritance is visible at a time - class is either the parent or child of a Generalization.
In this case, the approach that was taken was to query the knowledge base as to what the
relationship between two classes was, instead of creating an Ancestors role that would have
to be truth maintained. This second approach has the advantage that it does not need to be
truth maintained, but the disadvantage that a recursive query has to be carried out on the
knowledge base. The size of the examples used make the use of either approach feasible, but
no real comparison has been made.

Whenever the results of a query have to be manipulated, the query has to be wrapped in
a Lisp function, so that Lisp’s list management facilities are available. Loom has some list
manipulation predicates, but these are hard to use in comparison to the ones offered by Lisp.
Queries can be quite long, as it is necessary, in some cases, to pass through various levels of
indirection in order to obtain the information that is needed. In this study, the use of long
queries has usually been favoured, as the task of truth maintaining auxiliary roles requires more
effort.

Some functions are hard to read, as these make recursive calls when making predicate
calls to themselves in the queries that represent the body of these functions. For example,
generate-trace2 (see Section 6.2.2), which is used to generate a special form of state machine
traces. It is quite long, with various conditions in the function queries. With respect to the
open world assumption, a work-around was used in order to switch from an open world to a
closed world semantics and vice-versa, for individuals. This was necessary when wanting to
reason about all the existing fillers of a role. This was done by manually closing a role by stat-
ing that the instance can have exactly as many role-fillers as it currently has. After executing
the queries that needed a closed world, these assertions were removed from the knowledge base,
which permits the addition of new role-fillers.



Chapter 7

Design Restructurings

In this chapter, the results of detecting design restructurings in UML models are presented
and discussed. In the first section, the approach used for restructuring detection in this thesis,
which relies solely on UML models, is explained. An excellent overview of current research on
formalisms, techniques, languages and tools that apply to this problem has been compiled by
Mens et. al [43]. Later in the section, the concrete application of the technique proposed in
this thesis is presented, with respect to the detection of the Pull Up Method and Push Down
Method refactorings [22].

7.1 Proposed Approach

Traditionally, refactorings and restructurings are applied at code level[50, 54]. An emerging
trend is to deal with refactorings at a higher level of abstraction than source code, for example,
with UML design models[5, 8]. One reason for this change is due to the advantages offered by
working at this level. The source code has a lot of information, distributed through various
locations, in a format in which abstractions are not easily deduced at a glance. Applying
refactorings to system designs, in UML - for example, by representing the system design as
diagrams, these abstractions are more apparent.

Another reason for this shift to the design level is that the UML abstract syntax is defined
by means of a metamodel. This metamodel establishes the relationships between the different
model elements, thus linking all the information present in a user-defined model. The DL
approach followed in this study takes advantage of these relationships, as the UML metamodel
is used as the base definition of the concepts and relations that define the logic world used
(see Section 4.1), and user-defined model elements are created as instances of these concepts,
ensuring well-formedness and consistency of the models through the use of predicates.

Current refactoring tools focus on applying refactorings when solicited by the user. For ex-
ample, Boger et. al [8] have developed the Refactoring Browser for Poseidon for UML[26], a
popular UML CASE tool. This CASE tool was used to develop the examples presented in this
thesis. The Refactoring Browser allows the direct application of refactorings to class, state
and activity diagrams. Before performing the refactoring, the browser issues warnings if the
refactoring is likely to alter the model’s behaviour. Error messages are generated if a modifi-
cation will result in a inconsistent model. The refactorings offered are basic restructurings, for
example, decomposing a composite state or deleting an attribute, corresponding to state and

87
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class diagrams, respectively.

This still leaves the problem of deciding when and where restructurings should be applied.
As the user has to state the model management information (see Section 3.3), the relationships
between the model elements that belong to different models can be established, through the
horizontal and evolution traces that link the different models. This information can be used to
deduce where a refactoring should be applied, by determining the existence of certain necessary
pre-conditions.

For example, a pre-condition for recommending a Safe Remove Method [22] refactoring is that
the associated operation can not be called by any objects, meaning that it is not used. This is
determined by analysing the sequence diagrams associated to the class diagram in which the
operation’s owner appears. If there are no instances of the owner class (or one of its descendants)
that receives or sends a stimulus that calls the operation in question, the operation is not used,
and could be removed from the design. In this way, it is possible to recommend restructurings,
but it will always depend on the user if the recommendation is accepted or ignored.

7.2 Examples

7.2.1 Detecting a Pull Up Method Refactoring

The Banking Simulation described in Chapter 5 was slightly modified for this example. Figure
7.1 shows a modification that was made to the Bank class, where the doTransaction() operation
was added, as a way of standardising bank notifications. As a result, the sequence diagrams that
involve instances of the subclasses of the Transaction class have been modified. The sequence
diagrams describing the new behaviour of the Transfer and Inquiry classes can be seen in figures
7.2 and 7.3 (the diagrams for Withdraw and Deposit have been omitted, but are similar). The
original diagrams can be located in Section 5.2.

Bank
+initiateTransaction(cardNum:int, ..., transaction:Transaction)
+finishTransaction(atm:ATM, ..., transaction:Transaction)
+doInquiry(cardNum:int, ..., transaction:Transaction)
+doTransfer(cardNum:int, ..., transaction:Transaction)
+verifyPIN(account:Account, cardNum:int, PIN:int)

Bank
+initiateTransaction(cardNum:int, ..., transaction:Transaction)
+finishTransaction(atm:ATM, ..., transaction:Transaction)
+doTransaction(cardNum:int, ..., toAccount:Account)
+verifyPIN(account:Account, cardNum:int, PIN:int)

Figure 7.1: Bank class, versions 1 and 2

Improvements on the design of the class diagram based on information available in the se-
quence diagrams, can be suggested. More specifically, a Pull Up Method refactoring[22] can
be proposed. A recurring factor in this set of sequence diagrams is that the operation ex-
ecuteTransaction() first calls the operation getTransactionSpecificsFromCustomer(), then the
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aPrintingATM:
PrintingATM

aSession:
Session

aTransfer:
Transfer

3: getTransactionSpecificsFromCustomer ()

1: Transfer()

2: executeTransaction()

aBank:
Bank

5: doTransaction()

7: issueReceipt()

4: getTargetAccount()

Figure 7.2: Sequence Diagram for transfer transactions, version 2

aPrintingATM:
PrintingATM

aSession:
Session

anInquiry:
Inquiry

3: getTransactionSpecificsFromCustomer ()

1: Inquiry()

2: executeTransaction()

aBank:
Bank

5: doTransaction()

7: issueReceipt()

Figure 7.3: Sequence Diagram for inquiry transactions, version 2
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doTransaction(), and afterwards, issueReceipt(). The body of the operation getTransaction-
SpecificsFromCustomer() is different for each kind of transaction, while the body of the op-
eration executeTransaction() is the same for each kind of transaction. This fact allows the
conclusion that the operation executeTransaction() can be pulled up and become a concrete
method of the abstract class Transaction.

Predicates

The sequence diagrams considered show communicating instances. Subsequent arrows on the
same lifeline map into Stimuli obeying the predecessor association in the UML metamodel. Each
Stimulus has an instance of the activator association in the UML metamodel to the Stimulus
corresponding to the incoming arrow of the activation. The Stimulus holds the sender and
receiver Instance. To be able to detect a candidate operation to pull up, the roles activator,
predecessor and successor (which is the inverse of predecessor) on the class Stimulus in the
UML metamodel are used. The activator, predecessor and successor information had to be
manually added to the knowledge base, because this information is not available in the XMI
files representing the sequence diagrams generated by Poseidon.

The get-activees function generates the ordered collection of stimuli that are activated in
response to receiving the activating stimulus. In a sequence diagram, this ordered collection
(called activees in these experiments) is equivalent to the method body. Using a query, the list
of stimuli that are activated by the parameter stimulus, is generated. Then, the stimuli are
ordered sequentially. The ordered list is returned.

(defun get-activees (?stim1)
(sort
(retrieve (?name-action ?action ?name-stim ?stim2)
(:and (Stimulus ?stim2)
(Stimulus-activee ?stim1 ?stim2)
(name ?stim2 ?name-stim)
(Initiates ?stim2 ?action)
(name ?action ?name-action)))
’< :key ’third))

The following predicate finds and associates the corresponding activees to every stimulus in
the knowledge base.

(do-retrieve (?stim)
(Stimulus ?stim)
(tellm (about ?stim (activees (:predcall #’get-activees ?stim)))))

The pull-up-method method receives a class as a parameter, and compares the activee sets of
the activator stimulus corresponding to an operation, for all the instances of its direct subclasses.
This is done by first finding an instance of one of these subclasses. Once an activator stimulus
for this instance is found, it is necessary to check if similar activator stimuli exist for instances
of the other subclasses. The pre-condition for this refactoring is that these activator stimuli
must have the same activee set, for all the instances of the subclasses of the parent class that
receive the same activator stimuli. If this condition is met, the user is then informed of the
candidate methods that could be pulled up. Remark that the parent - child relationship has
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to be manually closed1, in order for the for-all statement to have effect. For example, in the
Transaction example, that has four subclasses, the following assertion must be added to the
knowledge base: (tellm (about Transaction-1.0 (:exactly 4 Is-parent-of)))

(defmethod pull-up-method (?parent ?oper ?gen ?child ?obj ?stim ?act)
:situation
(:and
(Class ?parent)
(Generalization ?gen)
(Is-specialization-of ?gen ?parent)
(Operation ?oper)
(Is-generalization-of ?gen ?child)
(Has-feature ?child ?oper)
(Instance-of-class ?obj ?child)
(Receiver-of ?obj ?stim)
(Initiates ?stim ?act)
(:same-as (name ?act)(name ?oper))
(:about ?stim (:at-least 1 Stimulus-Activee))
(for-all (?gen1)
(:implies
(Is-specialization-of ?gen1 ?parent)
(for-some (?child2 ?obj2 ?stim2 ?act2)
(:and
(Is-generalization-of ?gen1 ?child2)
(Instance-of-class ?obj2 ?child2)
(Receiver-of ?obj2 ?stim2)
(Initiates ?stim2 ?act2)
(:same-as (name ?act2)(name ?oper))
(:about ?stim2 (:at-least 1 Stimulus-Activee))
(:same-as (activees ?stim)(activees ?stim2)))))))

:response ((LOOM::say "Operation" (get-value ?oper ’name) "should be pulled up from
subclass" (get-value ?child ’name) "to parent class" (get-value ?parent ’name))))

The following predicate queries the knowledge base so as to find the necessary arguments for
the pull-up-method method.

(do-retrieve (?parent ?oper ?gen ?child ?obj ?stim ?act)
(:and
(Class ?parent)
(Generalization ?gen)
(Is-specialization-of ?gen ?parent)
(Is-generalization-of ?gen ?child)
(Has-feature ?child ?oper)
(Instance-of-class ?obj ?child)
(Receiver-of ?obj ?stim)
(Initiates ?stim ?act))

(perform (pull-up-method ?parent ?oper ?gen ?child ?obj ?stim ?act)))

Results

The class diagram shown in figure 7.4 shows the portion of the Banking Simulation static
structure that illustrates the Transaction class hierarchy before any changes were applied to

1This tells the reasoning engine that the current fillers of the relationship are all the fillers it will have.
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the Bank class and the sequence diagrams (see figures 7.1, 7.2 and 7.3). The class diagram shown
in figure 7.5 shows the same portion as figure 7.4, after including the recommended changes,
that were derived from the information contained in the sequence diagrams. As expected, after
applying the predicates to the example, it has been recommended that the executeTransaction()
method be pulled up from the Transaction subclasses to the Transaction class.

Transaction
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()
+executeTransaction()

Transfer
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()
+executeTransaction()

Deposit
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()
+executeTransaction()

Withdraw
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()
+executeTransaction()

Inquiry
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()
+executeTransaction()

Figure 7.4: Transaction hierarchy, version 1

Transaction
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()
+executeTransaction()

Transfer
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()

Deposit
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()

Withdraw
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()

Inquiry
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()

Figure 7.5: Transaction hierarchy, version 2

Operation |I|EXECUTETRANSACTION should be pulled up from the subclass |I|INQUIRY to
parent class |I|TRANSACTION
Operation |I|EXECUTETRANSACTION should be pulled up from the subclass |I|DEPOSIT to
parent class |I|TRANSACTION
Operation |I|EXECUTETRANSACTION should be pulled up from the subclass |I|WITHDRAW to
parent class |I|TRANSACTION
Operation |I|EXECUTETRANSACTION should be pulled up from the subclass |I|TRANSFER to
parent class |I|TRANSACTION

7.2.2 Detecting a Push Down Method Refactoring

The Banking Simulation described in Chapter 5 was slightly modified for this example. Figure
7.6 shows a modified version of the ATM class hierarchy, were the issueReceipt() operation is
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owned by the ATM class, and not by the PrintingATM class, as in the original example. The
sequence diagrams that involve instances of the classes of the ATM class hierarchy have not
been modified. The sequence diagrams describing the behaviour of the Deposit class, one with
respect to the ATM class, and the other with respect to the PrintingATM class, are shown in
figures 7.7 and 7.8, respectively.

ATM
+getPIN()
+getMenuChoice(whatToChoose:String, 
numItems:int, items:String[])
+getAmountEntry()
+checkIfCashAvailable(amount:int)
+dispenseCash(amount:int)
+acceptEnvelope()
+reEnterPIN()
+reportTransactionFailure(explanation:String)
+ejectCard()
+retainCard()
+getTargetAccount()
+verifyAccount(cardNum:int, PIN:int)
+issueReceipt(cardNum:int, serialNum:int, 
desc:String, amount:int, balance:int)

PrintingATM

ReceiptPrinter
+printReceipt(cardNum:int, serialNum:int, desc:String, 
amount:int, balance:int, atm:ATM)

1

1

Figure 7.6: ATM hierarchy, version 1

Improvements on the design of the class diagram based on information available in the se-
quence diagrams, can be suggested. More specifically, a Push Down Method refactoring[22]
can be proposed. In this set of sequence diagrams, the operation issueReceipt() is only sent to
instances of the PrintingATM class, and never instances of the ATM class, that is the owner of
the operation. This fact allows the conclusion that the operation issueReceipt() can be pushed
down and become a method of the class PrintingATM.

Predicates

The generate-rec-sent-operations function generates the set of stimuli that are sent or received
by all the instances of a class, that is passed as a parameter. This list includes the information
about the operations that are called by the stimuli.

(defun generate-rec-sent-operations (?class)
(retrieve (?name ?operation ?object ?stim ?action)
(:and
(Instance-of-class ?object ?class)
(:or
(Receiver-of ?object ?stim)
(Sender-of ?object ?stim))
(Initiates ?stim ?action)
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anATM:
ATM

aKeyboard:
Keyboard

aSession:
Session

aDeposit:
Deposit

3: getTransactionSpecificsFromCustomer ()

1: Deposit()

2: executeTransaction()

4: getAmountEntry()

6: readAmountEntry()

aBank:
Bank

5: initiateTransaction()

7: finishTransaction()

Figure 7.7: Sequence Diagram for deposit transactions, version 1

aPrintingATM:
PrintingATM

aKeyboard:
Keyboard

aSession:
Session

aDeposit:
Deposit

3: getTransactionSpecificsFromCustomer ()

1: Deposit()

2: executeTransaction()

4: getAmountEntry()

6: readAmountEntry()

aBank:
Bank

5: initiateTransaction()

7: finishTransaction()

8: issueReceipt()

Figure 7.8: Sequence Diagram for deposit transactions, version 2
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(CallAction-operation ?action ?operation)
(name ?operation ?name))) )

The check-use function recursively checks if an operation has been used by the instances
of a class. This is done by generating the list of stimuli that are sent and received by all the
instances of the class, using the generate-rec-sent-operations, and passing it to this function
as a parameter. This function then takes the first element of the list, compares it to the
operation passed as a parameter. If these match, the operation is being used by instances of
the class. If not, the function is re-invoked, with the original operation and rest of the list as
parameters.

(defun check-use (?oper ?list)
(if (equalp NIL ?list)
(format NIL "NOT USED")
(if (equalp (first (car ?list)) (get-value ?oper ’name))
(format NIL "USED")
(check-use ?oper (cdr ?list)))))

The push-down-method function checks whether an operation is invoked exclusively by direct
subclasses of the operation’s owner. This is done by first checking if the operation is used by
the instances of the owner class. Then, a query is used to find the direct subclasses of the owner
class. As with the owner class, each subclass is checked, so as to determine if the operation is
received or sent by at least one instance of the subclass. Finally, a condition is checked for each
subclass found, so as to determine if the operation is used by the subclass. If this condition is
met, the user is then informed of the candidate methods that could be pushed down, and into
which subclasses.

(defun push-down-method (?parent ?oper)
(let ((?list2) (?flag2) (?list1) (?flag1))
(setq ?list1 (generate-rec-sent-operations ?parent))
(setq ?flag1 (check-use ?oper ?list2))
(do-retrieve (?gen ?child)
(:and
(Is-generalization-of ?gen ?child)
(Is-specialization-of ?gen ?parent))
(progn ()
(setq ?list2 (generate-rec-sent-operations ?child))
(setq ?flag2 (check-use ?oper ?list2))
(if (and (equalp ?flag1 "NOT USED") (equalp ?flag2 "USED"))
(format t "Operation ~S in class ~S should be pushed down to class ~S~%"
(get-value ?oper ’name) ?parent ?child))))))

The following predicate queries the knowledge base so as to find the necessary arguments for
the push-down-method operation.

(do-retrieve (?parent ?oper)
(:and
(Class ?parent)
(Has-feature ?parent ?oper))

(push-down-method ?parent ?oper))
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Results

The class diagram shown in figure 7.6 shows the portion of the Banking Simulation static
structure that illustrates the ATM class hierarchy, as modified for this example. The class
diagram shown in figure 7.9 shows the same portion as figure 7.6, after including the recom-
mended changes, that were derived from the information contained in the sequence diagrams.
As expected, after applying the predicates to the example, it has been recommended that the
issueReceipt() method can be pushed down from the ATM class to the PrintingATM.

ATM
+getPIN()
+getMenuChoice(whatToChoose:String, 
numItems:int, items:String[])
+getAmountEntry()
+checkIfCashAvailable(amount:int)
+dispenseCash(amount:int)
+acceptEnvelope()
+reEnterPIN()
+reportTransactionFailure(explanation:String)
+ejectCard()
+retainCard()
+getTargetAccount()
+verifyAccount(cardNum:int, PIN:int)

PrintingATM
+issueReceipt(cardNum:int, serialNum:int, desc:String, 
amount:int, balance:int)

ReceiptPrinter
+printReceipt(cardNum:int, serialNum:int, desc:String, 
amount:int, balance:int, atm:ATM)

1

1

Figure 7.9: ATM hierarchy, version 2

Operation |I|ISSUERECEIPT in class |I|ATM-1.0 should be pushed down to class
|I|PRINTINGATM-1.0
NIL



Chapter 8

Tool Support

In this chapter, Conan - Consistency Analyser for UML is introduced. This tool implements
the ideas presented in this thesis, allowing users to inspect and analyse UML models in a formal
manner. It receives as input UML models, provided in XMI format by Poseidon for UML[26],
which are then translated into logic code and asserted into a knowledge base maintained by the
Loom[35] DL reasoning engine. This tool has been implemented in Java, and uses SAXON[36]
for the XMI - logic code translation. Figure 8.1 shows the main functionalities offered by
Conan: assertion of model evolution information, model element information and detection
and solution predicates.

UML CASE tool

Poseidon for 
UML

XML processing

SAXON

DL reasoning 
engine

Loom

Conan - Consistency Analyser for UML

Assert model 
evolution 

information

Assert model 
element 

information

Assert detection 
and solution 
predicates

UML model in 
XMI format

Figure 8.1: Conan - Consistency Analyser for UML
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8.1 Asserting Model Element Information

UML models are created by users with Poseidon for UML. This application stores the infor-
mation present in these diagrams in XMI format. The user must then load his model files
into Conan, using the Model menu. This causes the translation of the XMI data into logic
assertions. These are automatically loaded into a knowledge base, maintained by Loom. The
user can immediately start analysing the consistency of these models individually, or can create
relationships (see Section 8.2) between the currently loaded models, and analyse the consistency
of models with respect to other models.

In the case of certain model elements, additional information has to be given, in order for
the detection predicates to work. This is because this information is not present in the UML
metamodel, and as a result, is not present in the Poseidon-generated XMI files. These new
relationships and attributes are visible in the proposed UML extension presented in Chapter 3.
An example is the successor - predecessor relationship between stimuli in a sequence diagram.
This allows reasoning with respect to the ordering of the stimuli, but is not included in the
UML metamodel. As a result, the user must add this information. A Model View window is
opened for each model loaded.

8.2 Asserting Model Evolution Information

As mentioned in Section 1.1, current UML CASE tools do not provide tools adequate versioning
capabilities[26, 4]. This is due to the lack of support for these ideas in the current specifications
of UML[48]. The current UML metamodel provides poor support for consistency preservation
and software evolution, e.g. versions are not supported. The idea of maintaining a link between
different versions of a model is not present. As a result, models are saved in different files, and
it is not possible to link the elements of these models. It is not possible to specify relationships
between models, so this information is not available in the model data provided by these CASE
tools.

In Conan, this information is specified by creating horizontal and evolution traces between
currently loaded models. These relationships can be created through the Add menu of a
Design View window, that shows the models and traces that belong to a composite model.
These relationships are automatically integrated into the working knowledge base, allowing the
immediate detection of horizontal and evolution-based inconsistencies. Figure 8.2 shows how
primitive models are added to a composite model.

8.3 Asserting Detection and Solution Predicates

Once all the necessary model and model element information has been loaded, the user can
start analysing his models. Conan currently supports inconsistency detection for the conflicts
presented in this thesis, involving class, sequence and state diagrams. In this version, only
detection predicates are available. Predicates are applied by choosing them from the Predicate

menu. Figure 8.3 shows the application of the Disconnected Model detection predicate to
composite model. The results are shown in the Output View window.
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Figure 8.2: Screenshot - adding primitive models to a composite model
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Figure 8.3: Screenshot - detecting incompatible behaviour



Chapter 9

Conclusion

In this chapter, an overview of this thesis and the related work is provided. The main research
questions are revisited and the methodology used to explore them is discussed. This chapter
also summarises the main findings, and discusses the significant issues and recommendations
emerging from the study. Finally, limitations and directions for future research are presented.

9.1 Related Work

Current CASE tools do not provide any support for evolution of UML models. In this thesis, a
UML profile that allows model management, has been studied. The underlying ideas are based
on earlier work to extend the UML metamodel with support for evolution [45, 44].

Finkelstein et al. [21] explain that consistency between partial models is neither always pos-
sible nor is it always desirable. They suggest the use of temporal logic to identify and handle
inconsistencies. This formalism is used to describe sequences of actions that lead to inconsis-
tencies, unlike the approach taken in this thesis that uses logic to find conflicting instances.

Grundy et al. [28] claim that a key requirement for supporting inconsistency management is
the facilities for developers to configure when and how inconsistencies are detected, monitored,
stored, presented and possibly automatically resolved. They describe their experience with
building complex multiple-view software development tools supporting inconsistency manage-
ment facilities. The DL approach is also easily configurable, by adding, removing or modifying
logic rules in the knowledge base.

In addition, Finkelstein [20] has elaborated a list of the technical challenges that arise when
trying to build a toolset that deals with evolution and consistency. Tools dealing with these
two aspects should help establish, express and reason about the relationships between formal
languages and check consistency with respect to these relationships and to provide diagnos-
tic feedback. Where inconsistencies have been detected, these tools should help visualise the
inconsistencies. The user should be able to specify policies with respect to when consistency
should be checked and when resolution mechanisms should be applied. This approach has been
used as a guideline for the tool development in this study (see Chapter 8).

A wide range of different approaches for checking consistency has been proposed in the
literature. Engels et al. [18] motivate a general methodology to deal with consistency problems
based on the problem of protocol statechart inheritance. In that example, statecharts as well as
the corresponding class diagrams, are important. Communicating Sequential Processes (CSP)
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are used as a mathematical model for describing the consistency requirements. This idea is
further enhanced in [16, 19] with dynamic meta modelling rules as a notation for the consistency
conditions because of their graphical, UML-like notation. Model transformation rules are used
to represent evolution steps, and their effect on the overall model consistency is explored. Using
DL, it was possible to detect similar consistency problems.

Ehrig and Tsiolakis [15] investigate the consistency between UML class and sequence dia-
grams. UML class diagrams are represented by attributed type graphs with graphical con-
straints, and UML sequence diagrams by attributed graph grammars. As consistency checks
between class and sequence diagrams only existence, visibility and multiplicity checking are
considered. In [60] the information specified in class and statechart diagrams is integrated into
sequence diagrams. The information is represented as constraints attached to certain locations
of the object lifelines in the sequence diagram. The supported constraints are data invariants
and multiplicities on class diagrams and state and guard constraints on state diagrams. Fradet
et al. [24] use systems of linear inequalities to check consistency for multiple view software
architectures.

The problem of verifying whether the interactions expressed by a collaboration diagram can
indeed be realised by a set of state machines, has been treated by Schfer et al.[58]. They have
developed HUGO, a prototype tool that checks if state machines (compiled into PROMELA
[32] models), and collaborations (translated into sets of Büchic automata) match up, using the
SPIN model checker to verify the model against the automata. This problem has also been
analysed by Litvak et al. [38], using an algorithmic approach, instead of using external model
checkers. They have put their ideas into practice, by implementing the BVUML tool, that
receives the state and sequence diagrams as XMI files produced by ArgoUML.

The work presented in this thesis is related to design refactorings in two ways: with DL,
refactorings to improve a given design can be suggested (see Chapter 7), or models can be
checked so as to determine if a given design refactoring was performed correctly, in the sense
that it preserves design consistency (see Chapter 6). Both uses go beyond current support
for UML refactorings [57, 8] as for example that is being integrated into CASE tools such as
Poseidon.

Another aspect related to evolving UML models, but not treated in this thesis, is co-evolution.
Also known as vertical consistency, it deals with maintaining consistency at different levels of
refinement. The situation that has been studied the most is the synchronisation of design
and source code artefacts. Wuyts[64] uses logic meta-programming to support co-evolution
of object-oriented design and source code, implementing a synchronisation framework, SOUL,
that provides a layered library of logic rules that allows reasoning about Smalltalk code. Del
Valle[14] uses this frame-work to provide general support for round-trip engineering between
UML models and Java source code.

Finally, note that consistency of models should not be confused with consistency of a mod-
elling language. UML has been formalised within rewriting logic and implemented in the Maude
system by Ambrosio Toval and his students [1, 59]. Their objectives are to formalise UML and
transformations between different UML models. They focus on using reflection to represent
and support the evolution of the metamodel.
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9.2 Summary

In this thesis, an approach for detection and resolution of inconsistencies between different
versions of a UML model, specified as a collection of class, sequence and state diagrams, is
proposed and validated. For research purposes, this study is restricted to a significant subset of
the UML metamodel. This profile was extended so as to permit the representation of a diagram
as a unit. This extended UML profile also allows the specification of the relationships between
different diagrams, using horizontal and evolution traces.

The formalism used is description logic, a decidable fragment of first-order predicate logic.
More specifically, the Loom knowledge representation tool is used to formally specify UML
models as a collection of concepts and roles. Logic rules were used to specify consistency
constraints, to suggest ways to resolve inconsistencies, and even to propose ways to improve
the design by means of refactorings. Based on simple but illustrative examples, the feasibility
of the approach is shown.

Based on a number of already performed small-scale experiments, it has been demonstrated
that DL tools can be very helpful in detecting design inconsistencies and resolving these incon-
sistencies semi-automatically. Some initial experiments were carried out in the field of design
restructurings, were it was demonstrated that it is possible to detect and suggest refactorings,
on the UML level.

Introducing evolution steps at the UML level has the advantage that it captures and shows
the system abstractions in a visual manner, whereas these same abstractions are scattered
throughout the code. As a result, the author believes that giving the designer the opportunity
to apply changes directly to UML diagrams will make it easier to maintain evolving systems.
Even more, this should strengthen the design - source code link, as the designs will effectively
be an accurate visual representation of the code.

Keeping design and source code synchronised will reinstate the role of the UML models as
a documentation tool. What is increasingly frequent in projects today is that UML is used
to provide an initial design, from which skeleton code is generated, but as the source code is
modified, the design is not updated because the effort and hours necessary to carry this out
is often seen as expendable. Project managers prefer to allocate these resources to the actual
implementation effort, so as to meet deadlines.

Another advantage of working at the UML level, is that a generic, language independent
approach can be offered, as UML maps to most object-oriented languages. Language-specific
restructurings could also be included, as the approach used is easily configurable, through the
assertion of facts in the knowledge base.

Concluding, this thesis offers a generic framework for working with evolving UML models,
with functional consistency checking schemes. Unlike other studies, that are dedicated to the
exhaustive study of a few consistency problems with a certain technique, this study has tried to
group an exhaustive set of the possible consistency problems1, and uses the same approach to
deal with them all. The author believes that this approach will be considered useful by users,
as it provides uniform support for the different consistency problems.

1Eighteen consistency problems were found when analysing class, state and sequence diagrams.
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9.3 Future Work

The work done in this dissertation can be continued in several directions:

• Further develop the framework, incorporating support for all the UML diagram types
where the DL approach is applicable. It will be necessary to study exactly how these
diagrams are related to those already incorporated in the study - the links between the
different model elements will have to be deduced and formalised.

• The expressiveness of the supported diagrams must be extended. This means that the
supported UML metamodel must be extended, and more OCL well-formedness rules must
be included. Changes introduced by the new UML standard, version 2.0, will have to be
studied and introduced.

• Due to the amount of existing OCL well-formedness rules, it would be interesting to study
the possibility of of automatically translating these into DL.

• This study demonstrated that it was possible to use the DL approach in order to detect
design restructurings. The experiments concerning refactorings were limited to the study
of two refactorings. Currently, more than 80 refactorings have been recognised, and
Fowler[22] maintains an actualised Alphabetical List[23] on his Refactoring site. These
have to be analysed, so as to determine if they can be applied to UML models and, if so,
what information is necessary for their detection.

• A design decision taken with respect to the detection predicates is that these only inform
the user about the inconsistency. This allows the separation of detection and solution,
as some inconsistencies are introduced deliberately by designers and their solution is
not always desired. Solution predicates have been developed for some of the detection
predicates. This coverage has to be extended to the rest of the predicates.

• The case study analysed in this thesis is small, and the examples used to test the detection
predicates were elaborated so as to produce the inconsistencies. The scalability of the DL
approach should be studied, specially with legacy systems as case studies, as these would
provide larger examples, have natural evolution steps, and the inconsistencies have not
been artificially introduced.

• The concepts and relations that define the Tbox used should be studied, in order to see if
it is possible to define additional concepts and relations (not from the UML metamodel)
that will let the detection code be shorter, more understandable and efficient. Refining the
Tbox should lead to a revision of the detection predicates, allowing for their optimisation
and refinement.

• The current generation of DL tools use tableau calculus, that allows the implementation
of more expressive DLs, while being more efficient. Loom is less expressive than these
DLs, but it was chosen as the DL tool for this thesis because of the query language it
provides. For example, RACER, one of these new-generation DLs, has a client-server
architecture, which is ideal for communication between applications, but has no query
language, which makes writing detection predicates more complex.

• The ideas presented in this thesis can be extended, so as to deal with co-evolution and
consistency maintenance between different levels of abstraction, more specifically, source
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code and UML models. This idea, which is also explored in [27] will allow the provision
of better formal support for the round-trip engineering and model-driven architecture
process.

• Finally, it would be nice to change from the distributed application approach, which was
easier to manage while studying the problem, to the actual implementation of a UML
CASE tool plugin, making the use of the detection predicates transparent for user. The
other alternative is to using a DL tool as the underlying engine for a UML CASE tool,
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view software architectures. In Proc. Int’l Conf. ESEC/FSE’99, volume 1687 of Lecture
Notes in Computer Science, pages 410–428. Springer-Verlag, 1999. 102

[25] Free Software Foundation. GNU Emacs Lisp Reference Manual version 2.5, Nov 1998.
http://gnu.digitaltrust.it/manual/elisp-manual-20-2.5/elisp.html. 23

[26] gentleware.com. Poseidon, April 8 2003.
http://www.gentleware.com/products/poseidonPE.php3. 19, 36, 87, 97, 98

[27] Pieter Van Gorp, Hans Stenten, Tom Mens, and Serge Demeyer. A UML extension for
automating source-consistent design improvements based on refactoring contracts. In Proc.
6th International Conference on the Unified Modeling Language, 2003. 105

[28] John C. Grundy, John G. Hosking, and Warwick B. Mugridge. Inconsistency management
for multiple-view software development environments. IEEE Transactions on Software
Engineering, 24(11):960–981, 1998. 101
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Appendix A

Code Translations

A.1 UML Profile

(load "outliner.lisp")
(defpackage "UML" (:use "COMMON-LISP"))
(in-package "UML")
(use-loom "UML")
(set-features :display-match-changes :emit-match-stars :emit-classify-dots)
(unset-features :ask-for-concept-names)

(creation-policy :classified-instance)
(change-context ’UML-THEORY)
(initialize-network)

(defrelation name :is (:and String) :characteristics :single-valued)

(defrelation version :characteristics :single-valued)

(defrelation the-prev-ver :characteristics :single-valued)

(defrelation Instance-of-subclass-of :characteristics :single-valued)

(defrelation operations-received :characteristics :single-valued)

(defrelation kind :characteristics :single-valued)

(defrelation added :characteristics :single-valued)

;role definition
;R action-state
(defrelation Entry-action-of :domain Action :range State)
(defrelation Has-entry-action :is (:inverse Entry-action-of))
;
;R action-state
(defrelation Exit-action-of :domain Action :range State)
(defrelation Has-exit-action :is (:inverse Exit-action-of))
;
;R action-state
(defrelation Do-activity-of :domain Action :range State)

111
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(defrelation Has-do-activity :is (:inverse Do-activity-of))
;
;R action-actionsequence
(defrelation Has-action :domain ActionSequence :range Action)
(defrelation Action-of :is (:inverse Has-action))
;
;R action-argument
(defrelation Has-argument :domain Action :range Argument)
(defrelation Argument-of :is (:inverse Has-argument))
;
;R action-stimulus
(defrelation Initiated-by :domain Action :range Stimulus)
(defrelation Initiates :is (:inverse Initiated-by))
;
;R action-transition
(defrelation Action-transition :domain Action :range Transition)
(defrelation Transition-action :is (:inverse Action-transition)
:characteristics :single-valued)
;
;R object-class
(defrelation Instance-of-class :domain Object :range Class)
(defrelation Instantiated :is (:inverse Instance-of-class))
;
;R stimulus-object
(defrelation Sender-of :domain Object :range Stimulus)
(defrelation Sent-by :is (:inverse Sender-of))
;
;R stimulus-object
(defrelation Receiver-of :domain Object :range Stimulus)
(defrelation Received-by :is (:inverse Receiver-of))
;
;R operation-object (NOT FROM METAMODEL)
(defrelation Receives-call :domain Object :range Operation)
(defrelation Received-by-object :is (:inverse Receives-call))
;
;R operation-object (NOT FROM METAMODEL)
(defrelation Sends-call :domain Object :range Operation)
(defrelation Sent-by-object :is (:inverse Sends-call))
;
;R stimulus-operation (NOT FROM METAMODEL)
(defrelation Sends-operation :domain Stimulus :range Operation)
(defrelation Sent-by-stimulus :is (:inverse Sends-operation))
;
;R stimulus-association (NOT FROM METAMODEL)
(defrelation Related-to :domain Stimulus :range Association)
(defrelation association-stimulus :is (:inverse Related-to))
;
;R class-operation (NOT FROM METAMODEL)
(defrelation Inherited-feature :domain Class :range Operation)
(defrelation Inherited-by :is (:inverse Inherited-feature))
;
;R stimulus-object
(defrelation Argument-of-stimulus :domain Object :range Stimulus)
(defrelation Has-object-argument :is (:inverse Argument-of-stimulus))
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;
;R stimulus-stimulus
(defrelation Stimulus-Predecessor :domain Stimulus :range Stimulus)
(defrelation Stimulus-Successor :is (:inverse Stimulus-Predecessor))
;
;R stimulus-stimulus
(defrelation Stimulus-Activator :domain Stimulus :range Stimulus)
(defrelation Stimulus-Activee :is (:inverse Stimulus-Activator))
;
;R attributeLink-updateAction
(defrelation Updates-attribute :domain AttributeLink :range UpdateAction)
(defrelation Is-updated-by :is (:inverse Updates-attribute))
;
;R attributeLink-accessAction
(defrelation Accesses-attr :domain AttributeLink :range AccessAction)
(defrelation Is-accessed-by :is (:inverse Accesses-attr))
;
;R object-attributeLink
(defrelation Has-slots :domain AttributeLink :range Object)
(defrelation Is-slot-of :is (:inverse Has-slots))
;
;R attributeLink-attribute
(defrelation AttributeLink-attribute :domain AttributeLink :range Attribute)
(defrelation Attribute-attributeLink :is (:inverse AttributeLink-attribute))
;
;R compositeState-stateVertex
(defrelation Is-container-of :domain CompositeState :range StateVertex)
(defrelation Is-subvertex-of :is (:inverse Is-container-of) :characteristics
:single-valued)
;
;R stateMachine-state
(defrelation StateMachine-state :domain StateMachine :range State)
(defrelation State-stateMachine :is (:inverse StateMachine-state))
;
;R stateVertex-transition
(defrelation Is-outgoing-of :domain Transition :range StateVertex)
(defrelation Is-source-of :is (:inverse Is-outgoing-of))
;
;R stateVertex-transition
(defrelation Is-incoming-of :domain Transition :range StateVertex)
(defrelation Is-target-of :is (:inverse Is-incoming-of))
;
;R state-transition
(defrelation Is-internalTransition-of :domain Transition :range State)
(defrelation Has-internalTransition :is (:inverse Is-internalTransition-of))
;
;R operation-callAction
(defrelation Operation-callAction :domain Operation :range CallAction)
(defrelation CallAction-operation :is (:inverse Operation-callAction))
;
;R stateMachine-transition
(defrelation StateMachine-transition :domain StateMachine :range Transition)
(defrelation Transition-stateMachine :is (:inverse stateMachine-transition))
;
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;R transition-guard
(defrelation Transition-guard :domain Transition :range Guard)
(defrelation Guard-Transition :is (:inverse Transition-guard))
;
;R action-method
(defrelation Action-method :domain Action :range Method)
(defrelation Method-action :is (:inverse Action-method))
;
;R transition-callEvent
(defrelation Triggered-by :domain Transition :range CallEvent)
(defrelation Is-trigger-of :is (:inverse Triggered-by))
;
;R operation-callEvent
(defrelation Is-occurence-of :domain CallEvent :range Operation)
(defrelation Operation :is (:inverse Is-occurence-of))
;
;R operation-method
(defrelation Is-specification-of :domain Operation :range Method)
(defrelation Has-specification :is (:inverse Is-specification-of))
;
;R parameter-operation
(defrelation Has-parameter :domain Operation :range Parameter)
(defrelation Is-parameter-of :is (:inverse Has-parameter))
;
;R stateMachine-class
(defrelation Has-stateMachine :domain Class :range StateMachine)
(defrelation Is-stateMachine-of :is (:inverse Has-stateMachine))
;
;R class-createAction
(defrelation Created-by :domain Class :range CreateAction)
(defrelation Creates :is (:inverse Created-by))
;
;R class-parameter
(defrelation Parameter-class :domain Parameter :range Class)
(defrelation Class-parameter :is (:inverse Parameter-class))
;
;R class-attribute
(defrelation Is-of-type :domain Attribute :range Class)
(defrelation Has-typed-feature :is (:inverse Is-of-type))
;
;R class-feature
(defrelation Has-feature :domain Class :range Feature)
(defrelation Is-owned-by :is (:inverse Has-feature) :characteristics :single-valued)
;
;R class-generalization
(defrelation Is-generalization-of :domain Generalization :range Class)
(defrelation Is-child-of :is (:inverse Is-generalization-of))
;
;R class-generalization
(defrelation Is-specialization-of :domain Generalization :range Class)
(defrelation Is-parent-of :is (:inverse Is-specialization-of))
;
;R class-associationEnd
(defrelation Is-participant-of :domain Class :range AssociationEnd)
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(defrelation Has-participant :is (:inverse Is-participant-of))
;
;R association-associationEnd
(defrelation Association-associationEnd :domain Association :range AssociationEnd)
(defrelation AssociationEnd-association :is (:inverse Association-associationEnd))
;
;R link-linkEnd
(defrelation Link-linkEnd :domain Link :range LinkEnd)
(defrelation LinkEnd-link :is (:inverse Link-linkEnd))
;
;R link-object
(defrelation Owned-by :domain Link :range Object)
(defrelation Owns-link :is (:inverse Owned-by))
;
;R link-stimulus
(defrelation Link-stimulus :domain Link :range Stimulus)
(defrelation Stimulus-link :is (:inverse Link-stimulus))
;
;R link-association
(defrelation Link-association :domain Link :range Association)
(defrelation Association-link :is (:inverse Link-association))
;
;R linkEnd-associationEnd
(defrelation LinkEnd-associationEnd :domain LinkEnd :range AssociationEnd)
(defrelation AssociationEnd-linkEnd :is (:inverse LinkEnd-associationEnd))
;
;R modelElement-model
(defrelation In-namespace :domain ModelElement :range Model :characteristics
:single-valued)
(defrelation Owned-element :is (:inverse In-namespace))
;
;R compositeModel-versionedModel
(defrelation Contains-model :domain CompositeModel :range VersionedModel)
(defrelation Contained-by :is (:inverse Contains-model))
;
;R model-abstraction
(defrelation Supplied-by :domain Model :range Abstraction)
(defrelation Supplier :is (:inverse Supplied-by))
;
;R model-abstraction
(defrelation Client :domain Abstraction :range Model)
(defrelation Has-client :is (:inverse Client))
;
;R multiplicity-multiplicityRange
(defrelation Has-range :domain Multiplicity :range MultiplicityRange)
(defrelation Range-of :is (:inverse Has-range))
;
;R lower
(defrelation lower :is (:and Integer) :characteristics :single-valued)
;
;R upper
(defrelation upper :is (:and String) :characteristics :single-valued)
;
;R multiplicity-modelElement
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(defrelation Has-multiplicity :domain ModelElement :range Multiplicity)
;
;the activee set
(defrelation activees :characteristics :single-valued)
;
;Concept MODELELEMENT
(defconcept ModelElement
:roles (name the-prev-ver))
(tell (:about ModelElement (:at-most 1 In-namespace)))
;
;Concept MULTIPLICITYRANGE
(defconcept MultiplicityRange
:is-primitive (:and
(:at-most 1 Range-of)
(:at-least 1 Range-of))

:roles (lower upper))
;
;Concept MULTIPLICITY
(defconcept Multiplicity
:is-primitive (:and
(:at-least 1 Has-range)
(:all Has-range MultiplicityRange)))

;
;Concept ACTION
(defconcept Action
:is (:and ModelElement
(:at-most 1 Entry-action-of)
(:at-most 1 Exit-action-of)
(:at-most 1 Do-activity-of)
(:at-most 1 Action-transition)
(:at-most 1 Action-of))

:partitions (($Action$ (CallAction CreateAction DestroyAction ActionSequence
UninterpretedAction)))

:roles (isAsynchronous recurrence target))
;
;Concept CALLACTION
(defconcept CallAction
:is (:and Action
(:at-most 1 CallAction-operation)
(:at-least 1 CallAction-operation))

:in-partition $Action$
:roles (isAsynchronous))
;
;Concept CREATEACTION
(defconcept CreateAction
:is (:and Action
(:at-most 1 Creates)
(:at-least 1 Creates))

:in-partition $Action$)
;
;Concept DESTROYACTION
(defconcept DestroyAction
:is (:and Action)
:in-partition $Action$)
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;
;Concept ACTIONSEQUENCE
(defconcept ActionSequence
:is (:and Action)
:in-partition $Action$)
;
;(defconcept ActionSequence
; :is Action :in-partition $Action$)
;
;Concept UNINTERPRETEDACTION
(defconcept UninterpretedAction
:is (:and Action)
:in-partition $Action$
:partitions (($UninterpretedAction$ (UpdateAction AccessAction))))
;
;Concept UPDATEACTION
(defconcept UpdateAction
:is (:and UninterpretedAction
(:at-most 1 Updates-attribute)
(:at-least 1 Updates-attribute))

:in-partition $UninterpretedAction$)
;
;Concept ACCESSACTION
(defconcept AccessAction
:is (:and UninterpretedAction
(:at-most 1 Accesses-attr)
(:at-least 1 Accesses-attr))

:in-partition $UninterpretedAction$)
;
;Concept OBJECT
(defconcept Object
:is (:and ModelElement
(:at-least 1 Instance-of-class)
(:at-most 1 Instance-of-class))

:roles (Instance-of-subclass-of operations-received))
;
;Concept STIMULUS
(defconcept Stimulus
:is (:and ModelElement
(:at-least 1 Sent-by)
(:at-most 1 Sent-by)
(:at-least 1 Received-by)
(:at-most 1 Received-by)
(:all Initiates Action)
(:at-least 1 Initiates)
(:at-most 1 Initiates)
(:all Belongs-to InteractionInstanceSet)
(:at-most 1 Stimulus-Activator)
(:all Stimulus-link Link)
(:at-most 1 Stimulus-link))

:roles (activees added))
;
;Concept INTERACTIONINSTANCESET
(defconcept InteractionInstanceSet
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:is (:and ModelElement
(:at-least 1 Consists-of)
(:at-least 1 Exists-in-context)
(:at-most 1 Exists-in-context)))

;
;Concept COLLABORATIONINSTANCESET
(defconcept CollaborationInstanceSet
:is (:and ModelElement
(:all Is-context-for InteractionInstanceSet)
(:all Participating-instance Object)
(:at-least 1 Participating-instance)))

;
;Concept CLASS
(defconcept class
:is (:and ModelElement
(:all Instantiated Object)
(:all Created-by CreateAction)
(:all Has-stateMachine StateMachine)
(:all Is-child-of Generalization)
(:all Is-parent-of Generalization)
(:all Is-participant-of AssociationEnd))

:roles (isAbstract)
)
;
;Concept ATTRIBUTELINK
(defconcept AttributeLink
:is (:and ModelElement
(:all Is-slot-of Object)
(:at-most 1 Is-slot-of)
(:at-least 1 Is-slot-of)
(:all Is-updated-by UpdateAction)
(:all Is-accessed-by AccessAction)
(:all AttributeLink-attribute Attribute)
(:at-most 1 AttributeLink-attribute)
(:at-least 1 AttributeLink-attribute)))

;
;Concept STATEVERTEX
(defconcept StateVertex
:is (:and ModelElement
(:at-most 1 Is-subvertex-of)
(:all Is-source-of Transition)
(:all Is-target-of Transition))

:roles (OK)
:partitions $StateVertex$)
;
;Concept PSEUDOSTATE
(defconcept PseudoState
:is (:and StateVertex)
:in-partition $StateVertex$
:roles (kind))
;
;Concept STATE
(defconcept State
:is (:and StateVertex
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(:at-most 1 State-stateMachine)
(:all Has-internalTransition Transition)
(:all Has-entry-action Action)
(:at-most 1 Has-entry-action)
(:all Has-exit-action Action)
(:at-most 1 Has-exit-action)
(:all Has-do-activity Action)
(:at-most 1 Has-do-activity))

:in-partition $StateVertex$
:partitions $State$)
;
;Concept FINALSTATE
(defconcept FinalState
:is (:and State)
:in-partition $State$)
;
;Concept SIMPLESTATE
(defconcept SimpleState
:is (:and State)
:in-partition $State$)
;
;Concept COMPOSITESTATE
(defconcept CompositeState
:is (:and State
(:all Is-container-of StateVertex))

:in-partition $State$
:roles (isConcurrent isRegion))
;
;Concept STATEMACHINE
(defconcept StateMachine
:is (:and ModelElement
(:at-most 1 Is-stateMachine-of)
(:all StateMachine-state State)
(:at-most 1 StateMachine-state)
(:at-least 1 StateMachine-state)))

;
;Concept TRANSITION
(defconcept Transition
:is (:and ModelElement
(:exactly 1 Transition-stateMachine)

; (:at-most 1 Transition-stateMachine)
(:all Transition-guard Guard)
(:at-most 1 Transition-guard)
(:at-most 1 Is-outgoing-of)
(:at-least 1 Is-outgoing-of)
(:at-most 1 Is-incoming-of)
(:at-least 1 Is-incoming-of)
(:at-most 1 Is-internalTransition-of)
(:all Triggered-by CallEvent)
(:at-most 1 Triggered-by)
(:all Transition-action Action)
(:at-most 1 Transition-action))

:roles (OK))
;
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;Concept GUARD
(defconcept Guard
:is (:and ModelElement
(:at-most 1 Guard-transition)
(:at-least 1 Guard-transition))

:roles (expression))
;
;Concept CALLEVENT
(defconcept CallEvent
:is (:and ModelElement
(:at-most 1 Is-occurence-of)
(:at-least 1 Is-occurence-of)))

;
;Concept FEATURE
(defconcept Feature
:is (:and ModelElement
(:at-most 1 Is-owned-by))

:partitions $Feature$
:roles (ownerScope visibility))
;
;Concept OPERATION
(defconcept Operation
:is (:and Feature
(:all Operation CallEvent)
(:all Has-specification Method)
(:all Has-parameter Parameter)
(:all Operation-callAction CallAction))

:in-partition $Feature$
:roles (concurrency isAbstract isLeaf isRoot isQuery))
;
;Concept METHOD
(defconcept Method
:is (:and Feature
(:at-most 1 Is-specification-of)
(:at-least 1 Is-specification-of))

:in-partition $Feature$
:roles (body isQuery)) ;last 1 from behavioral feature
;
;Concept ATTRIBUTE
(defconcept Attribute
:is (:and Feature
(:all Is-of-type Class)
(:at-most 1 Is-of-type)
(:at-least 1 Is-of-type)
(:exactly 1 Has-multiplicity))

:in-partition $Feature$
:roles (initialValue changeability ordering targetScope))
;
;Concept PARAMETER
(defconcept Parameter
:is (:and ModelElement
(:at-most 1 Is-parameter-of)
(:all Parameter-class Class)
(:at-most 1 Parameter-class)
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(:at-least 1 Parameter-class))
:roles (defaultValue kind))
;
;Concept GENERALIZATION
(defconcept Generalization
:is (:and ModelElement
(:at-most 1 Is-generalization-of)
(:at-least 1 Is-generalization-of)
(:at-most 1 Is-specialization-of)
(:at-least 1 Is-specialization-of))

:roles (discriminator))
;
;Concept ASSOCIATIONEND
(defconcept AssociationEnd
:is (:and ModelElement
(:at-most 1 Has-participant)
(:at-least 1 Has-participant)
(:at-most 1 AssociationEnd-association)
(:at-least 1 AssociationEnd-association)
(:exactly 1 Has-multiplicity)
(:all AssociationEnd-linkEnd LinkEnd))

:roles (aggregation ordering isNavigable visibility))
;
;Concept ASSOCIATION
(defconcept Association
:is (:and ModelElement
(:all Association-associationEnd AssociationEnd)
(:at-least 2 Association-associationEnd)
(:all Association-link Link)))

;
;Concept ABSTRACTION
(defconcept Abstraction
:is (:and ModelElement
(:all Supplier Model)
(:at-least 1 Supplier)
(:all Client Model)
(:at-least 1 Client))

:roles (mapping))
;
;Concept LINK
(defconcept Link
:is (:and ModelElement
(:all Link-linkEnd LinkEnd)
(:at-least 2 Link-linkEnd)
(:all Owned-by Object)
(:at-most 1 Owned-by)
(:at-most 1 Link-association)
(:at-least 1 Link-association)))

;
;Concept LINKEND
(defconcept LinkEnd
:is (:and ModelElement
(:at-most 1 LinkEnd-link)
(:at-least 1 LinkEnd-link)
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(:at-most 1 LinkEnd-associationEnd)
(:at-least 1 LinkEnd-associationEnd)))

;
;Concept MODEL
(defconcept Model
:is (:and ModelElement)
:partitions $Model$)
;
;Concept ARGUMENT
(defconcept Argument
:is-primitive (:and
(:all Argument-of Action)
(:at-most 1 Argument-of))

:roles (value))
;
;Concept VERSIONEDMODEL
(defconcept VersionedModel
:is (:and Model
(:at-most 1 Contained-by))

:roles (version)
:in-partition $Model$
:partitions $VersionedModel$)
;
;Concept COMPOSITEMODEL
(defconcept CompositeModel
:is (:and VersionedModel
(:all Contains-model VersionedModel))

:in-partition $VersionedModel$)
;
;Concept PRIMITIVEMODEL
(defconcept PrimitiveModel
:is (:and VersionedModel)
:in-partition $VersionedModel$
:partitions $PrimitiveModel$)
;
;Concept CLASSMODEL
(defconcept ClassModel
:is (:and PrimitiveModel)
:in-partition $PrimitiveModel$)
;
;Concept SEQUENCEMODEL
(defconcept SequenceModel
:is (:and PrimitiveModel)
:in-partition $PrimitiveModel$)
;
;Concept STATEMODEL
(defconcept StateModel
:is (:and PrimitiveModel)
:in-partition $PrimitiveModel$)
;
;Concept TRACE
(defconcept Trace
:is (:and Abstraction)
:partitions $Trace$)
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;
;Concept HORIZONTALTRACE
(defconcept HorizontalTrace
:is (:and Trace)
:in-partition $Trace$)
;
;Concept EVOLUTIONTRACE
(defconcept EvolutionTrace
:is (:and Trace)
:in-partition $Trace$)

A.2 User-defined Models

A.2.1 Class Diagram Example

CashDispenser
+dispenseCash(amount:int)
+currentCash()

ATM
+getPIN()
+dispenseCash(amount:int)
+verifyAccount(cardNum:int, PIN:int)
+checkIfCashAvailable(amount:int)
+ejectCard()

CardReader
+ejectCard()

Session
+executeSession()

Transaction

PrintingATM

+executes

1

1 1

10..*

0..*

1

1

Figure A.1: Class diagram example for UML to Loom translation

• Instances of the MultiplicityRange metaclass
(tellm (:about mr1-1.0 (lower 1) (upper 1)))

(tellm (:about mr2-1.0 (lower 1) (upper 1)))

(tellm (:about mr3-1.0 (lower 1) (upper 1)))

(tellm (:about mr4-1.0 (lower 0) (upper "*")))

(tellm (:about mr5-1.0 (lower 1) (upper 1)))

(tellm (:about mr6-1.0 (lower 0) (upper "*")))

(tellm (:about mr7-1.0 (lower 1) (upper 1)))

(tellm (:about mr8-1.0 (lower 1) (upper 1)))

• Instances of the Multiplicity metaclass
(tellm (:about m1-1.0 (Has-range mr1-1.0)))

(tellm (:about m2-1.0 (Has-range mr2-1.0)))

(tellm (:about m3-1.0 (Has-range mr3-1.0)))

(tellm (:about m4-1.0 (Has-range mr4-1.0)))

(tellm (:about m5-1.0 (Has-range mr5-1.0)))

(tellm (:about m6-1.0 (Has-range mr6-1.0)))
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(tellm (:about m7-1.0 (Has-range mr7-1.0)))

(tellm (:about m8-1.0 (Has-range mr8-1.0)))

• Instance of the ClassModel metaclass
(tellm (:about Class-Diagram-1.0 (version 1.0) (name Class-Diagram)))

• Instances of the Class metaclass
(tellm (:about ATM-1.0

(name ATM)

(isAbstract false)

(In-namespace Class-Diagram-1.0)))

(tellm (:about PrintingATM-1.0

(name PrintingATM)

(isAbstract false)

(In-namespace Class-Diagram-1.0)))

(tellm (:about CardReader-1.0

(name CardReader)

(isAbstract false)

(In-namespace Class-Diagram-1.0)))

(tellm (:about CashDispenser-1.0

(name CashDispenser)

(isAbstract false)

(In-namespace Class-Diagram-1.0)))

(tellm (:about Session-1.0

(name Session)

(isAbstract false)

(In-namespace Class-Diagram-1.0)))

(tellm (:about Transaction-1.0

(name Transaction)

(isAbstract true)

(In-namespace Class-Diagram-1.0)))

• Instances of the Parameter metaclass
(tellm (:about amount-dispenseCash-ATM-1.0

(name amount)

(Is-parameter-of dispenseCash-ATM-1.0)

(Parameter-class int)

(In-namespace Class-Diagram-1.0)))

(tellm (:about cardNum-verifyAccount-ATM-1.0

(name cardNum)

(Is-parameter-of verifyAccount-ATM-1.0)

(Parameter-class int)

(In-namespace Class-Diagram-1.0)))

(tellm (:about PIN-verifyAccount-ATM-1.0

(name PIN)

(Is-parameter-of verifyAccount-ATM-1.0)

(Parameter-class int)

(In-namespace Class-Diagram-1.0)))

(tellm (:about amount-checkIfCashAvailable-ATM-1.0
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(name amount)

(Is-parameter-of checkIfCashAvailable-ATM-1.0)

(Parameter-class int)

(In-namespace Class-Diagram-1.0)))

(tellm (:about amount-dispenseCash-CashDispenser-1.0

(name amount)

(Is-parameter-of dispenseCash-CashDispenser-1.0)

(Parameter-class int)

(In-namespace Class-Diagram-1.0)))

• Instances of the Operation metaclass
(tellm (:about getPIN-ATM-1.0

(name getPIN)

(Is-owned-by ATM-1.0)

(IsAbstract false)

(In-namespace Class-Diagram-1.0)))

(tellm (:about dispenseCash-ATM-1.0

(name dispenseCash)

(Is-owned-by ATM-1.0)

(IsAbstract false)

(In-namespace Class-Diagram-1.0)))

(tellm (:about verifyAmount-ATM-1.0

(name verifyAmount)

(Is-owned-by ATM-1.0)

(IsAbstract false)

(In-namespace Class-Diagram-1.0)))

(tellm (:about checkIfCashAvailable-ATM-1.0

(name checkIfCashAvailable)

(Is-owned-by ATM-1.0)

(IsAbstract false)

(In-namespace Class-Diagram-1.0)))

(tellm (:about ejectCard-ATM-1.0

(name ejectCard)

(Is-owned-by ATM-1.0)

(IsAbstract false)

(In-namespace Class-Diagram-1.0)))

(tellm (:about ejectCard-CardReader-1.0

(name ejectCard)

(Is-owned-by CardReader-1.0)

(IsAbstract false)

(In-namespace Class-Diagram-1.0)))

(tellm (:about dispenseCash-CashDispenser-1.0

(name dispenseCash)

(Is-owned-by CashDispenser-1.0)

(IsAbstract false)

(In-namespace Class-Diagram-1.0)))

(tellm (:about currentCash-CashDispenser-1.0

(name currentCash)

(Is-owned-by CashDispenser-1.0)
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(IsAbstract false)

(In-namespace Class-Diagram-1.0)))

(tellm (:about executeSession-Session-1.0

(name executeSession)

(Is-owned-by Session-1.0)

(IsAbstract false)

(In-namespace Class-Diagram-1.0)))

• Instance of the Generalization metaclass
(create ’ATM-PrintingATM-1.0 ’Generalization)

(tellm (:about ATM-PrintingATM-1.0

(name ATM-PrintingATM)

(Is-generalization-of PrintingATM-1.0)

(Is-specialization-of ATM-1.0)

(In-namespace Class-Diagram-1.0)))

• Instances of the AssociationEnd metaclass
(tellm (:about ATM-end1-1.0

(name ATM-end1)

(Has-multiplicity m1-1.0)

(Has-participant ATM-1.0)

(aggregation composite)

(isNavigable false)

(In-namespace Class-Diagram-1.0)))

(tellm (:about ATM-end2-1.0

(name executes)

(Has-multiplicity m3-1.0)

(Has-participant ATM-1.0)

(aggregation none)

(isNavigable true)

(In-namespace Class-Diagram-1.0)))

(tellm (:about ATM-end3-1.0

(name ATM-end3)

(Has-multiplicity m7-1.0)

(Has-participant ATM-1.0)

(aggregation composite)

(isNavigable false)

(In-namespace Class-Diagram-1.0)))

(tellm (:about Session-end1-1.0

(name Session-end1)

(Has-multiplicity m4-1.0)

(Has-participant Session-1.0)

(aggregation none)

(isNavigable true)

(In-namespace Class-Diagram-1.0)))

(tellm (:about Session-end2-1.0

(name Session-end2)

(Has-multiplicity m5-1.0)

(Has-participant Session-1.0)
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(aggregation aggregate)

(isNavigable true)

(In-namespace Class-Diagram-1.0)))

(tellm (:about CashDispenser-end1-1.0

(name CashDispenser-end1)

(Has-multiplicity m2-1.0)

(Has-participant CashDispenser-1.0)

(aggregation none)

(isNavigable true)

(In-namespace Class-Diagram-1.0)))

(tellm (:about CardReader-end1-1.0

(name CardReader-end1)

(Has-multiplicity m8-1.0)

(Has-participant CardReader-1.0)

(aggregation none)

(isNavigable true)

(In-namespace Class-Diagram-1.0)))

(tellm (:about Transaction-end1-1.0

(name Transaction-end1)

(Has-multiplicity m6-1.0)

(Has-participant Transaction-1.0)

(aggregation none)

(isNavigable true)

(In-namespace Class-Diagram-1.0)))

• Instances of the Association metaclass
(tellm (:about Session-ATM-1.0

(name Session-ATM)

(In-namespace Class-Diagram-1.0)

(Association-associationEnd Session-end1-1.0)

(Association-associationEnd ATM-end2-1.0)))

(tellm (:about CashDispenser-ATM-1.0

(name CashDispenser-ATM)

(In-namespace Class-Diagram-1.0)

(Association-associationEnd CashDispenser-end1-1.0)

(Association-associationEnd ATM-end1-1.0)))

(tellm (:about CardReader-ATM-1.0

(name CardReader-ATM)

(In-namespace Class-Diagram-1.0)

(Association-associationEnd CardReader-end1-1.0)

(Association-associationEnd ATM-end3-1.0)))

(tellm (:about Session-Transaction-1.0

(name Session-Transaction)

(In-namespace Class-Diagram-1.0)

(Association-associationEnd Session-end2-1.0)

(Association-associationEnd Transaction-end1-1.0)))
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A.2.2 Sequence Diagram Example

aPrintingATM:
PrintingATM

aSession:
Session

anInquiry:
Inquiry

3: getTransactionSpecificsFromCustomer ()

1: Inquiry()

2: executeTransaction()

aBank:
Bank

5: doInquiry()

7: issueReceipt()

Figure A.2: Sequence diagram example for UML to Loom translation

• Instance of the SequenceModel metaclass
(tellm (:about Sequence-Diagram-1.0 (version 1.0) (name Sequence-Diagram)))

• Instances of the Object metaclass
(tellm (:about aPrintingATM-1.0

(name aPrintingATM)

(In-namespace Sequence-Diagram-1.0)

(Instance-of-class PrintingATM-1.0)))

(tellm (:about aBank-1.0

(name aBank)

(In-namespace Sequence-Diagram-1.0)

(Instance-of-class Bank-1.0)))

(tellm (:about aSession-1.0

(name aSession)

(In-namespace Sequence-Diagram-1.0)

(Instance-of-class Session-1.0)))

(tellm (:about anInquiry-1.0

(name anInquiry)

(In-namespace Sequence-Diagram-1.0)

(Instance-of-class Inquiry-1.0)))

• Instances of the Link metaclass
(tellm (:about link1-1.0

(name link1)

(In-namespace Sequence-Diagram-1.0)

(Link-stimulus stim1-1.0)))

(tellm (:about link2-1.0
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(name link2)

(In-namespace Sequence-Diagram-1.0)

(Link-stimulus stim2-1.0)))

(tellm (:about link3-1.0

(name link3)

(In-namespace Sequence-Diagram-1.0)

(Link-stimulus stim3-1.0)))

(tellm (:about link4-1.0

(name link4)

(In-namespace Sequence-Diagram-1.0)

(Link-stimulus stim4-1.0)))

(tellm (:about link5-1.0

(name link5)

(In-namespace Sequence-Diagram-1.0)

(Link-stimulus stim5-1.0)))

• Instances of the Stimulus metaclass
(tellm (:about stim1-1.0

(name 1)

(In-namespace Sequence-Diagram-1.0)

(Sent-by aSession-1.0)

(Received-by anInquiry-1.0)

(Initiates create1-1.0)))

(tellm (:about stim2-1.0

(name 2)

(In-namespace Sequence-Diagram-1.0)

(Sent-by aSession-1.0)

(Received-by anInquiry-1.0)

(Initiates call1-1.0)

(Stimulus-Activee stim3-1.0)

(Stimulus-Activee stim4-1.0)

(Stimulus-Activee stim5-1.0)

(Stimulus-Predecessor stim3-1.0)))

(tellm (:about stim3-1.0

(name 3)

(In-namespace Sequence-Diagram-1.0)

(Sent-by anInquiry-1.0)

(Received-by anInquiry-1.0)

(Initiates call2-1.0)

(Stimulus-Predecessor stim4-1.0)))

(tellm (:about stim4-1.0

(name 4)

(In-namespace Sequence-Diagram-1.0)

(Sent-by anInquiry-1.0)

(Received-by aBank-1.0)

(Initiates call3-1.0)

(Stimulus-Predecessor stim5-1.0)))

(tellm (:about stim5-1.0

(name 5)
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(In-namespace Sequence-Diagram-1.0)

(Sent-by anInquiry-1.0)

(Received-by aPrintingATM-1.0)

(Initiates call4-1.0)))

• Instances of the CallAction metaclass
(tellm (:about call1-1.0

(name executeTransaction)

(In-namespace Sequence-Diagram-1.0)

(CallAction-operation executeTransaction-Inquiry-1.0)))

(tellm (:about call2-1.0

(name getTransactionSpecificsFromCustomer)

(In-namespace Sequence-Diagram-1.0)

(CallAction-operation getTransactionSpecificsFromCustomer-Inquiry-1.0)))

(tellm (:about call3-1.0

(name doInquiry)

(In-namespace Sequence-Diagram-1.0)

(CallAction-operation doInquiry-Bank-1.0)))

(tellm (:about call4-1.0

(name issueReceipt)

(In-namespace Sequence-Diagram-1.0)

(CallAction-operation issueReceipt-ATM-1.0)))

• Instance of the CreateAction metaclass
(tellm (:about create1-1.0

(name Inquiry)

(In-namespace Sequence-Diagram-1.0)

(Creates Inquiry-1.0)))

A.2.3 State Diagram Example

CardAbsent CardPresent

[checkForCardInserted == true]

ejectCard

[checkForCardInserted == false]

Figure A.3: State diagram example for UML to Loom translation

• Instance of the StateModel metaclass
(tellm (:about CR-State-Diagram-1.1 (version 1.0) (name CR-State-Diagram)))

• Instance of the StateMachine metaclass
(tellm (:about CR-StateMachine-1.0

(name CR-StateMachine)

(In-namespace CR-State-Diagram-1.0)
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(Is-stateMachine-of CR-1.0)

(StateMachine-state top-CRSM-1.0)))

• Instance of the CompositeState metaclass
(tellm (:about top-CRSM-1.0

(name top)

(In-namespace CR-State-Diagram-1.0)

(Is-container-of initial-CRSM-1.0)

(Is-container-of CardAbsent-CRSM-1.0)

(Is-container-of CardPresent-CRSM-1.0)))

• Instance of the PseudoState metaclass
(tellm (:about initial-CRSM-1.0

(name initial)

(In-namespace CR-State-Diagram-1.0)

(kind initial)))

• Instances of the SimpleState metaclass
(tellm (:about CardAbsent-CRSM-1.0

(In-namespace CR-State-Diagram-1.0)

(name CardAbsent)))

(tellm (:about CardPresent-CRSM-1.0

(In-namespace CR-State-Diagram-1.0)

(name CardPresent)))

• Instances of the Transition metaclass
(tellm (about trans1-1.0

(name trans1)

(In-namespace CR-State-Diagram-1.0)

(Transition-stateMachine CR-StateMachine-1.0)

(Is-outgoing-of initial-CRSM-1.0)

(Is-incoming-of CardAbsent-CRSM-1.0)))

(tellm (about trans2-1.0

(name trans2)

(In-namespace CR-State-Diagram-1.0)

(Transition-stateMachine CR-StateMachine-1.0)

(Is-outgoing-of CardAbsent-CRSM-1.0)

(Is-incoming-of CardPresent-CRSM-1.0)))

(tellm (about trans3-1.0

(name trans3)

(In-namespace CR-State-Diagram-1.0)

(Transition-stateMachine CR-StateMachine-1.0)

(Is-outgoing-of CardPresent-CRSM-1.0)

(Is-incoming-of CardAbsent-CRSM-1.0)))

(tellm (about trans4-1.0

(name trans4)

(In-namespace CR-State-Diagram-1.0)

(Transition-stateMachine CR-StateMachine-1.0)

(Is-outgoing-of CardAbsent-CRSM-1.0)

(Is-incoming-of CardAbsent-CRSM-1.0)))
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• Instances of the CallEvent metaclass
(tellm (:about callevent1-1.0

(name ejectCard)

(Is-trigger-of trans3-1.0)

(Is-occurence-of ejectCard-CardReader-1.0)

(In-namespace CR-State-Diagram-1.0)))

(tellm (:about callevent2-1.0

(name none)

(Is-trigger-of trans1-1.0)

(Is-trigger-of trans2-1.0)

(Is-trigger-of trans4-1.0)

(In-namespace CR-State-Diagram-1.0)))

• Instances of the Guard metaclass
(tellm (:about guard1-1.0

(name guard1)

(expression "checkForCardInserted==true")

(Guard-transition tran2-1.0)

(In-namespace CR-State-Diagram-1.0)))

(tellm (:about guard2-1.0

(name guard2)

(expression "checkForCardInserted==false")

(Guard-transition tran4-1.0)

(In-namespace CR-State-Diagram-1.0)))
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Case Study - Static Structure

Keyboard
+readPIN(echoOn:boolean)
+readMenuChoice(numItems:int)
+readAmountEntry(echoOn:boolean)
+readTargetAccount(echoOn:boolean)

Display
+requestCard()
+requestPIN()
+displayMenu(whatToChoose:String, 
numItems:int, items:String[])
+requestAmountEntry()
+requestDepositEnvelope()
+reportTransactionFailure(explanation:String)
+requestReEnterPIN()
+reportCardRetained()
+requestTargetAccount()

EnvelopeAcceptor
+acceptEnvelope()

CashDispenser
+setCash(initialCash:int)
+dispenseCash(amount:int)
+currentCash()

ATM
+getPIN()
+getMenuChoice(whatToChoose:String, 
numItems:int, items:String[])
+getAmountEntry()
+checkIfCashAvailable(amount:int)
+dispenseCash(amount:int)
+acceptEnvelope()
+reEnterPIN()
+reportTransactionFailure(explanation:String)
+ejectCard()
+retainCard()
+getTargetAccount()
+verifyAccount(cardNum:int, PIN:int)

CardReader
+ejectCard()
+retainCard()
+checkIfCardInserted()

PrintingATM
+issueReceipt(cardNum:int, serialNum:int, desc:String, 
amount:int, balance:int)

ReceiptPrinter
+printReceipt(cardNum:int, serialNum:int, desc:String, 
amount:int, balance:int, atm:ATM)

1

1

1

1

1 1

1

1

1

1

1 1 1

1

Figure B.1: Class Diagram - Part I, version 1

The class diagrams shown in figures B.1, B.2 and B.3, combined, give the overall structure
of the Banking Simulation case study. In this appendix, the class interfaces have been detailed
to the level of what each operation present in the class diagrams does. This system is in no
way complete, as various constructors, accessors and mutators have been omitted from this
simulation, so as not to sacrifice clarity.

• ATM class: manages the ATM and its component parts. Handles withdraw, deposit,
inquiry and transfer transactions. It cannot issue receipts.

– getPIN(): gets the PIN number from the user.

133
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ATM
+getPIN()
+getMenuChoice(whatToChoose:String, 
numItems:int, items:String[])
+getAmountEntry()
+checkIfCashAvailable(amount:int)
+dispenseCash(amount:int)
+acceptEnvelope()
+reEnterPIN()
+reportTransactionFailure(explanation:String)
+ejectCard()
+retainCard()
+getTargetAccount()
+verifyAccount(cardNum:int, PIN:int)

0..*

Session
+executeSession()
+handleInvalidPIN()
+handleFailedTransaction()

Transaction
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()
+executeTransaction()

Bank
+initiateTransaction(cardNum:int, PIN:int, serialNum:int, 
atm:ATM, account:Account, amount:int, availableBalance:int, 
transaction:Transaction)
+finishTransaction(atm:ATM, serialNum:int, 
succeeded:boolean, transaction:Transaction)
+doInquiry(cardNum:int, PIN:int, serialNum:int, atm:ATM, 
account:Account, amount:int, availableBalance:int, 
transaction:Transaction)
+doTransfer(cardNum:int, PIN:int, serialNum:int, atm:ATM, 
fromAccount:Account, toAccount:Account, amount:int, 
availableBalance:int, transaction:Transaction)
+verifyPIN(account:Account, cardNum:int, PIN:int)

Account
+getValidCardNumbers()
+getCurrentBalance()
+setCurrentBalance(amount:int)

Customer
+getName()
+getAccountList() 1..*

1..2

1..*

0..*
1

0..*

1

1

0..*

0..*
1

1

1..*

Figure B.2: Class Diagram - Part II, version 1

0..*

Transaction
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()
+executeTransaction()

Account
+getValidCardNumbers()
+getCurrentBalance()
+setCurrentBalance(amount:int)

1..*

1

0..*

Transfer
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()
+executeTransaction()

Deposit
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()
+executeTransaction()

Withdraw
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()
+executeTransaction()

Inquiry
+getTransactionSpecificsFromCustomer()
+finishApprovedTransaction()
+executeTransaction()

Card
+getType()
+getPIN()
+getStatus()

1..* 1
1

1

1

0..*

0..*

0..*

0..*
hasSource

hasDest

credits

debits

AccountType
+getType()

1

0..*

Figure B.3: Class Diagram - Part III, version 1
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– getMenuChoice(whatToChoose:String, numItems:int, items:String[]): gets choice from
a menu of options from the user.

– getAmountEntry(): asks user to enter an amount of money.

– checkIfCashAvailable(amount:int): checks if the cash dispenser has a certain amount
of cash.

– dispenseCash(amount:int): dispenses cash to the user.

– acceptEnvelope(): accept a deposit envelope from the user.

– reEnterPIN(): asks the user to re-enter the PIN.

– reportTransactionFailure(explanation:String): informs the user that a transaction
failed, and why.

– ejectCard(): returns the card to the user at the end of a session.

– retainCard(): retains the card because the user did not enter a valid PIN.

– getTargetAccount(): asks the user to enter an account identification, when making
transfers.

– verifyAccount(cardNum:int, PIN:int): verifies the validity of the card - PIN number
pair.

• PrintingATM class: inherits from the ATM class, adding printing capabilities to the
functionalilties offered by its parent.

– issueReceipt(cardNum:int, serialNum:int, desc:String, amount:int, balance:int): print
a receipt for a transaction.

• CardReader class: manages the magnetic strip card reader.

– ejectCard(): physically ejects the user’s card.

– retainCard(): physically retains the user’s card.

– checkForCardInserted(): reports if a readable card has been inserted in the card
reader.

• Display class: manages the video display unit.

– requestCard(): asks the user to insert a valid card in the card reader.

– requestPIN(): asks the user to enter his PIN through the keyboard.

– displayMenu(whatToChoose:String, numItems:int, items:String[]): displays a menu
of options for the user to chose from.

– requestAmountEntry(): asks the user to enter an amount of money, through the
keyboard.

– requestDepositEnvelope(): asks the user insert a deposit envelope in the envelope
acceptor.

– reportTransactionFailure(explanation:String): informs the user that a transaction
failed, and why.

– requestReEnterPIN(): asks the user to re-enter his PIN, as the previously entered
one was invalid.

– reportCardRetained(): informs the user that his card has been retained, because of
too many incorrect PIN entries.
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– requestTargetAccount(): asks the user to enter the identification of the account to
which he wants to make a transfer to, through the keyboard.

• Keyboard class: manages the keyboard used for customer input.

– readPIN(echoOn:boolean): reads the PIN typed by the user.

– readMenuChoice(numItems:int): reads the menu item chosen by the user.

– readAmountEntry(echoOn:boolean): reads the amount entered by the user.

– readTargetAccount(echoOn:boolean): reads the account identification entered by the
user.

• CashDispenser class: manages the cash dispenser.

– setCash(initialCash): sets the initial amount of money available in the ATM’s cash
dispenser.

– dispenseCash(amount:int): physically dispenses money to the user.

– currentCash(): reports the amount of cash currently available in the cash dispenser.

• EnvelopeAcceptor class: manages the slot that accepts a deposit envelope from the cus-
tomer.

– acceptEnvelope(): physically accepts a deposit envelope from the user.

• ReceiptPrinter class: manages the printer that produces customer receipts.

– printReceipt(cardNum:int, serialNum:int, desc:String, amount:int, balance:int, atm:ATM):
physically prints a receipt for a transaction.

• Session class: logs and controls a user session, which starts when the user inserts a card,
and ends when this card is either ejected or retained. Controls the amount of invalid PIN
numbers entered by the user.

– executeSession(): starts the log and control of a user session.

– handleInvalidPIN(): performs the actions needed to control the entry of an invalid
PIN.

– handleFailedTransaction(): performs the actions needed to control the failure of a
transaction.

• Bank class: manages communications with a bank.

– initiateTransaction(cardNum:int, PIN:int, serialNum:int, atm:ATM, account:Account,
amount:int, availableBalance:int, transaction:Transaction): initiates a Withdraw or
Deposit transaction.

– finishTransaction(atm:ATM, serialNum:int, succeeded:boolean, transaction:Transaction):
informs the bank whether or not a Withdraw or Deposit transaction was physically
completed.

– doInquiry(cardNum:int, PIN:int, serialNum:int, atm:ATM, account:Account, amount:int,
availableBalance:int, transaction:Transaction): performs an inquiry transaction.

– doTransfer(cardNum:int, PIN:int, serialNum:int, atm:ATM, fromAccount:Account,
toAccount:Account, amount:int): performs a transfer transaction.
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– verifyPIN(account:Account, cardNum:int, PIN:int): verifies the validity of the ac-
count - card number - PIN number trio.

• Customer class: manages bank customers.

– getName(): gets the customer’s name.

– getAccountList(): gets the list of accounts associated to the customer.

• Account class: manages customer accounts.

– getValidCardNumbers(): gets the list of valid card numbers associated to the account.

– getCurrentBalance(): gets the current balance of the account.

– setCurrentBalance(amount:int): sets the current balance of the account to a certain
amount.

• Transaction class: abstract class, encompasses the common features of the various types
of transaction available in this simulation.

– (abstract) getTransactionSpecificsFromCustomer(): get specific information relevant
to the transaction, from the user.

– (abstract) finishApprovedTransaction(): finishes a transaction once it has been ap-
proved by the bank.

– (abstract) executeTransaction(): executes the steps necessary to carry out a trans-
action.

• Withdraw class: inherits from the Transaction class, implements the withdrawal-specific
functionalities.

– getTransactionSpecificsFromCustomer(): asks the user the amount of cash he wishes
to withdraw, etc.

– finishApprovedTransaction(): finishes a transaction once it has been approved by the
bank.

– executeTransaction(): executes the steps necessary to carry out a transaction.

• Deposit class: inherits from the Transaction class, implements the deposit-specific func-
tionalities.

– getTransactionSpecificsFromCustomer(): asks the user to insert the deposit envelope,
etc.

– finishApprovedTransaction(): finishes a transaction once it has been approved by the
bank.

– executeTransaction(): executes the steps necessary to carry out a transaction.

• Transfer class: inherits from the Transaction class, implements the transfer-specific func-
tionalities.

– getTransactionSpecificsFromCustomer(): asks the user to enter the account identifi-
cation to which he wants to transfer money, etc.

– finishApprovedTransaction(): finishes a transaction once it has been approved by the
bank.
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– executeTransaction(): executes the steps necessary to carry out a transaction.

• Inquiry class: inherits from the Transaction class, implements the inquiry-specific func-
tionalities.

– getTransactionSpecificsFromCustomer(): asks what type of information should ap-
pear on the receipt, etc.

– finishApprovedTransaction(): finishes a transaction once it has been approved by the
bank.

– executeTransaction(): executes the steps necessary to carry out a transaction.

• AccountType class: manages the different types of account, like debit and savings accounts.

– getType(): gets the account type.

• Card class: manages the customer magnetic cards.

– getType(): gets the card type.

– getPIN(): gets the PIN number associated to the card.

– getStatus(): gets the status of the card (active, stolen, etc.).
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