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Chapter 1

Introduction

In the Beginning there was nothing, which exploded.

| Terry Pratchett, \Lords and Ladies"

The evolution of hardware technology, the economies of scale and the

advent of cheap and convenient networks have signi�cantly altered the view

on computing in the last decade.

In the early days of computing the attention was focused more on a

single, independent computer which performed all the processing needed to

accomplish a certain task. However, it is now becoming increasingly more

attractive to distribute this task amongst di�erent machines in a network.

In these distributed systems, each component, be it a high-end server

or a low-end PC, collaborates by means of distributed system software to

reach a certain goal. Ideally, this distributed software system manages each

components' resources and presents to the user an integrated computing

facility, regardless of the number or kind of the di�erent components.

An example of such a system which has recently been in the news, is

the SETI@Home system [20], organized by the Search for Extra-Terrestrial

Intelligence project (SETI). This project uses radio telescopes to scan the

heavens for radio signals of extraterrestrial origin. The goal of this project

is to locate radio sources of extraterrestrial origin which are clearly not

natural phenomena and not generated by a human artefact. These signals

would therefore indicate an extraterrestrial intelligence.

An important issue here is the processing of the signals received from

the telescopes. The raw data produced by the telescopes needs to be �ltered

in various ways to eliminate background radiation, remove earth-based and

1



CHAPTER 1. INTRODUCTION 2

satellite-based signals, and to detect signals which are deemed to be `inter-

esting'. This �ltering requires a high amount of computing power, for which

the SETI project does not have su�cient resources.

The SETI@home system was built to overcome this problem. The sys-

tem consists of a server program, dividing the data into small packets to

be processed, and a client program, which uses the Internet to fetch the

packets from the server, process them, and send the result back, again us-

ing the Internet. The idea is that people who are connected to the Internet

donate their excess CPU time by running the freely distributable client as

a background process on their machine.

This project has proven to be quite popular, given that at last count (8th

of July 1999) there were 782999 participants, spread out over 216 countries.

This leads the SETI@home organizers to proudly claim that \SETI@home

is now our planet's largest supercomputer".

Another, less spectacular, class of distributed systems is the class of

the, so called, \group-ware" applications. In these kinds of applications a

number of users work together on a common task, but each user works

on her individual computer. This class of distributed systems contains a

wide range of applications. A basic application would be a simple messaging

service for a group of users, allowing immediate communication between

group members. More advanced are the systems where di�erent users work

concurrently on the same data, for example a word processor which allows

di�erent persons to work on the same document, at the same time. Another

example of more advanced systems would be planning applications, where

each user has certain rights and responsibilities in the planning process and

the group as a whole creates the plan. And last, but not least, we can consider

the software development process where a group of developers work together

to create a program; these people collaborate to form the analysis, design

and implementation of the program.

When building a distributed system, an important issue is how the as-

pect of distribution is treated. Ideally, the fact that the system is distributed

should not pose an extra burden on the programmer. The programmer

should primarily keep in mind the functionality of the system and not need

to worry about secondary requirements generated by the distributed nature

of the application. This unless she is speci�cally working on the distribution

part, where it will be the primary concern. This idea is usually referred to

as \distribution transparency" [2].

To achieve this transparency, a number of abstractions have been de-

veloped to separate the concern of communication between the di�erent

programs in the distributed system from the base functionality. The most
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popular abstraction is the remote procedure call (or RPC [2]). When issuing

a remote procedure call, execution of the procedure is not done on the ma-

chine issuing the call, but on a di�erent, remote, machine. Parameters and

return value are transported, in a more or less transparent fashion, between

the calling and the called program, which allows the called program to work

with the data, and provides the calling program with a return value, if any.

There are a number of RPC mechanisms available for Java, each pro-

viding a di�erent degree of distribution transparency. However, none of

these packages provide full distribution transparency while providing the

programmer with a large degree of control. A recurring obstruction to full

transparency is the error-handling required for remote procedure calls.

The reason for this symptom can be tracked down to the fundamental

di�erence between a normal method call and a remote method call. The

fact that the object executing the method is located on another machine

has a number of consequences. Of these consequences, partial failures are

considered by many [26, 7] to be the de�ning problem for distribution trans-

parency. These people claim that it is impossible to achieve distribution

transparancy because of partial failures.

In a non-distributed system partial failures do not occur; if the machine

running the program fails to operate, the program will, obviously, cease to

operate. However, in a distributed system failures are not always total, they

may be partial: it is entirely possible that one computer fails while the others

keep on running, or that a part of the network is down, making it impossible

to communicate with a number of computers. Therefore it must be taken

into account that all remote method calls may fail, even, and especially,

where the local method calls would not fail.

To be able to achieve distribution transparency we should be able to

reason about the program without continously having to worry about possi-

ble errors at every method invocation. However, this does not mean we can

ignore that these errors may happen. At a certain point in the development

we should be able to concentrate on these failures and specify what to do

when an error occurs, i.e. we should be able to handle these errors separately

from the main program.

The idea here is to separate the concern of distribution out of the main

application. If this is achieved we can reason separately about, on one hand,

the core functionality of the application, and on the other hand, the dis-

tributed properties of the application.

One technique proposed to achieve a clear separation of concerns [9] is

Aspect-Oriented Programming or AOP [16]. In Aspect-Oriented Program-

ming each concern is expressed separately in a (possibly special-purpose)



CHAPTER 1. INTRODUCTION 4

aspect language. This allows a programmer to reason more easily about each

aspect. To create an executable program, the di�erent aspect descriptions

are compiled using a special-purpose tool, called an Aspect WeaverTM.

In previous work [3, 4, 5] we have implemented a framework for repli-

cation using AOP. In that work we have shown that AOP can be used to

achieve a high degree of replication transparency. Not to be confounded with

distribution transparency, replication transparency ensures that a program

using replicated data is unaware that any replicas of the data are being

kept, and is completely unaware of what technique is being used to keep

the replicas consistent [3]. It is clear that both transparency concepts are

related, therefore we feel that AOP can succesfully be used to also achieve

distribution transparency.

Applying the above technique to obtain a higher degree of distribution

transparency entails de�ning the di�erent languages and implementing an

Aspect Weaver. The Aspect Weaver can then be used to combine the base

program, de�ning the core functionality, with the aspect code, de�ning the

distribution aspect which includes the error-handling. This allows the dis-

tribution aspect to be speci�ed separately, making it possible to add this

concern in a separate stage of the software development.

An alternate way of viewing the above is the following: If the source of

a program is compiled with a standard Java compiler, which ignores the

separate aspect speci�cations, the system will not be distributed and will

consist of one process running on one machine. However, if the aspect weaver

is used to compile the sources, the result will be a distributed system.

1.1 Goals

We will use the methods proposed by AOP to achieve a higher degree of

distribution transparency for programs written in Java. The goal is to make

it much easier for the programmer to write a distributed application than

it currently is, using RMI or another distribution package. Speci�cally we

will concentrate on what these packages do not handle adequately: error-

handling.

This work di�ers from our previous work [3, 4, 5] in that the previous

only addressed the speci�c concern of replication, with emphasis on easy

implementation of di�erent replication algorithms. Building on previous ex-

perience, this work is more general and addresses all kinds of distributed

systems, placing emphasis on treating error-handling in a user-friendly fa-

shion. In 8.2 we will discuss how the previous work can be combined with
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the results of this thesis.

We will de�ne three aspect languages: Dist, Serv and Fix, which allow

the programmer to specify the aspect of distribution separately from the

main program, which is written in Java.

We will implement an Aspect Weaver for these languages, which will

generate Java source �les and use the javac compiler to generate class �les.

Also, it will use Java's RMI as a transport layer for the remote method

invocations.

To validate the functionality and ease of use of our solution, we will

develop a number of small distributed systems using our aspect languages

and our Aspect Weaver.

1.2 Overview

The next chapter will introduce a number of concepts relevant in the �eld of

distributed programming. We will �rst present some characteristics deemed

important for a distributed system, such as distribution transparency, and

continue with an overview of how remote procedure calls are implemented.

Chapter three will discuss a number of packages which provide support

for building distributed systems in Java. We will concentrate on user friend-

liness and the degree of transparency achieved when using these packages.

The fourth chapter will introduce aspect-oriented programming. We will

show the need for separation of concerns, and show that a number of concerns

can not be decomposed in the same fashion as others. Secondly, we will

present aspect-oriented programming as a technique to achieve separation

when this decomposition fails for some concerns. To conclude we will discuss

why we feel that distribution transparency can be achieved using AOP.

In chapter �ve we will �rst present some general issues pertaining to the

AOP system we developed, and will subsequently introduce the three aspect

languages we de�ned: Dist, Serv and Fix.

Chapter six will discuss the modi�cations which the weaver makes to

the base code, to integrate the di�erent aspects. We will discuss the various

steps of the process which transforms a local class into a remote class.

In the seventh chapter we will validate our claim that we achieve a higher

degree of distribution transparency. We will create two distributed systems:

a messaging application and a distributed library, using our AOP system.

The �nal chapter will present our conclusions and suggest some topics

for further research.



Chapter 2

Concepts

It takes 20 years to make an overnight success.

| Eddie Cantor

The �eld of distributed systems has a number of concepts and some ter-

minology which are not widely used in other �elds of computer science. This

chapter will introduce some of the most important concepts and terminology

of the �eld. We will �rst discuss some characteristics which are considered

as being important for distributed systems; resource sharing, fault tolerance

and transparency. We will continue with describing the remote procedure

calls, the widely-used paradigm for interaction within distributed systems,

and detail the support needed to be able to invoke them.

2.1 Important Characteristics of Distributed Sys-

tems

The usability of a distributed system is primarily determined by a small

number of base characteristics [2]. Of these the most important are resource

sharing, fault tolerance and transparency, which we will now briey intro-

duce.

2.1.1 Resource Sharing

The term resource is widely used in computer science, and therefore has a

large number of de�nitions. In the �eld of distributed systems, a resource

6



CHAPTER 2. CONCEPTS 7

usually refers to a `thing' that is shared amongst the di�erent users of the

distributed system. These `things' can be hardware entities, such as disks

or printers, or software entities such as databases or �les, and even abstract

concepts as CPU time.

It is clear that sharing physical resources, such as backup devices, print-

ers, scanners, and other expensive hardware, implies a signi�cant reduction

in the cost of the system. Because of this cost-e�ectiveness a lot of computer

systems, even those not normally considered as being a distributed system,

provide a number of basic sharing services, such as a shared printer service.

Sharing a software construct, such a database or a �le, is of utmost

importance in group-ware applications (sometimes also referred to as Com-

puter Supported Cooperative Working). Since all users are working towards

a common goal, the data de�ning what that goal is, and the data pertaining

to the status of the project has to be available to all users. Therefore this

class of applications depend heavily on shared data.

Resource sharing is obviously a very important element of a distributed

system. If there were no resources to share between the di�erent machines

of the distributed system, there would be not only no reason for them to

cooperate, but also no way in which they could, and therefore there would

be no distributed system at all.

Models for sharing resources

In a distributed system, we can make an abstract division between programs

providing a service, i.e. a shared resource, and programs using this service.

The users of a resource will communicate with a provider to access the

shared resource which is managed by that provider.

This basic interaction can be placed in two di�erent models of the work-

ing of a distributed system; the client-server model and the object-based

model [2].

The client-server model is a simple, widely-adopted model for distributed

systems: there is a set of server processes, each managing a certain number

of resources, and a set of client processes, using the resources provided by

the server processes. Server processes may themselves, at a certain point,

need access to services which are provided by another server. In those cases,

the �rst server process becomes a client process of the other server process.

It is therefore possible that a given process is both a client and a server.

In the above model, all shared resources held are managed by server

processes, while client processes use these resources by issuing requests to

the servers whenever needed. The servers will perform whatever processing
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required and return a result to the client process.

The object-based model is similar to object-oriented programming; each

shared resource is viewed as an object. Objects are uniquely identi�ed and

all objects are accessed in a uniform manner. This is in contrast to the

client-server model, where each service can have a di�erent access scheme.

The fact that all shared resources are viewed in the same manner adds a

higher degree of simplicity and exibility to the model.

In this model, shared resources are managed by objects. Whenever a

program needs to access a shared resource, it sends a message to the cor-

responding object, which will perform the needed processing and return a

result. Note that here also, a certain object may not only provide services,

but also need to use services provided by another object.

2.1.2 Fault tolerance

Sadly, computers sometimes fail. Whereas on a non-distributed system these

failures are usually total, i.e. the computer stops working, therefore the

program stops working, distributed systems are also prone to partial failures.

A partial failure occurs when only a part of the distributed system, say, a

limited number of computers, has failed.

Note that, since in a distributed system a service on a given computer

can depend on a number of other services provided by other computers,

this implies that services on computers which have not failed can also fail.

Therefore it is usually desirable that the system is able to handle partial

failures in an adequate way.

The design of fault-tolerant systems is based on two concepts: hardware

redundancy and software recovery [2]. By providing extra, redundant hard-

ware, this redundant hardware can take over whenever a failure occurs. This

solution is costly, and therefore not advised for all situations. In some cases

a form of software recovery can be used; the software can be designed to

recover from these failures in a more or less graceful way. This recovery can

range from reverting to a previous, known, state when an error is detected,

over providing some default values as the result of the failed request, to

informing the user that an unrecoverable error has occurred and shutting

down gracefully.

Of course, in a given system, these two concepts can be combined, for

example: for the main server machines, such as database servers, redundant

hardware can be allocated, while for less important machines, such as a print

server, the distributed system software may mark the service as temporarily

unavailable and queue requests until the problem is �xed.
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Total fault tolerance, i.e. the guarantee that the system will be fully

operational at all times, is an extremely di�cult goal. Usually the tolerance

of faults of a system is measured in availability. The availability of a system

is a measure which de�nes the proportion of time of which the system can

be used.

One possible use for a distributed system is providing a higher degree

of availability when faced with hardware faults. The idea is, that if a cer-

tain piece of hardware fails, whatever task that was using that hardware is

switched over to some other hardware. Ideally this process would happen

with a high degree of transparency, i.e. invisible to the user.

2.1.3 Distribution Transparency

A distributed system is usually built out of a collection of independent ma-

chines, however, it is perceived by the user, and by the application programs,

as one whole. If there is distribution transparency, the fact that the system is

built out of di�erent components is hidden, and the system is only perceived

as one, whole, entity [2].

In the book \Distributed Systems, Concepts and Design" [2] eight forms

of transparency are given, providing \a useful summary of the motivation

and goals for distributed systems". We will now briey describe these forms.

Access transparency. When local resources and remote resources are ac-

cessed using the same operations, we have access transparency. A fre-

quently used method used to obtain this transparency is the remote

procedure call, which we will discuss in the next section. Basically,

the idea is that using a remote resource is performed by executing a

procedure call which apperars identical to a `normal' procedure call,

ensuring access transparency.

Location transparency. If the actual location of a resource (i.e. on what

machine it is located) need not be known to be able to access it, there

is location transparency. The only thing the programmer, or the user,

has to do, is to request a certain service, without regard as to what

machine can deliver that service. The service will be provided without

the programmer, or the user, knowing on what machine the processing

was performed.

Concurrency transparency. There may be several processes using the

same resource, concurrently. In many cases, if a resource which was

not designed to be used concurrently, is used in a concurrent fashion,
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unexpected behavior results. This is a consequence of a form of in-

terference between the di�erent processes using the resource. With

concurrency transparency there will be no interference or unforeseen

e�ects between the di�erent processes.

Replication transparency. If we can have multiple copies of data entities

in the system without the application programs, or the users, having

knowledge of these replicas, we have replication transparency. Repli-

cas are frequently used to increase the performance, or to increase the

reliability of the system. As said in the introduction, this was an im-

portant element of our previous work [3, 4, 5]. In 8.2 we will discuss

how the previous work can be combined with the results of this thesis.

Failure transparency. When faults in the system are concealed, allowing

programs to keep on functioning despite failures in the system we have

failure transparency. A number of alternatives exist to provide failure

transparency; one example is having the program switch over to a

di�erent replica if one is available.

Migration transparency. In a number of cases, it is advantageous to mi-

grate some data or executable code between di�erent machines. One

example is moving an item `closer' to a process which uses it frequently,

this to increase access times to the data. If an item can be moved be-

tween di�erent elements in the system without a�ecting the processes

using this item, we have migration transparency.

Performance transparency. The performance of a distributed system

can often be improved by o�-loading processes from machines which

are heavily loaded onto machines which have a lower load. This process

is also known as \load balancing". If we can recon�gure the system to

improve performance as loads vary, there is performance transparency.

Scaling transparency. If the distributed system can expand in scale when

this is deemed necessary, for example by adding new server computers

or adding more user workstations, and this expansion does not require

a change in system structure or client algorithms, we have scaling

transparency.

Of the above eight, access and location transparency are considered to be

the most important. These two have the strongest e�ect on how the resources

in a distributed system are used, and therefore we will concentrate primarily

on these two when trying to achieve distribution transparency.
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The combination of access and location transparency is sometimes re-

ferred to as network transparency [2]. In a distributed system with network

transparency resources are used without regard of their distributed nature,

i.e. the system behaves as if it was a non-distributed system.

A good example of a network transparency is e-mail. When composing

a mail, the user need only know the e-mail address of the receiver (besides,

obviously, the message the user wants to transmit). Physical location of the

machine to which the user connects to read her e-mail is not necessary,

and the process of sending a mail to a user on a remote machine is exactly

identical to sending it to a user on the same machine. Note, however, that

this is has not always been so. In the early years of the Internet, if a mail

needed to be sent to a user on a di�erent machine, it was necessary to specify

the physical path from the senders machine, through all machines forwarding

the mail, to the recievers' machine. These paths were known as \bang paths"

[19], and knowledge of a good bang path could mean the di�erence between

a mail arriving in a few days, and a mail arriving in a week. It is obvious

that the current e-mail system, using only the address, is much easier to use

than the old one, where the entire path had to be known. This clearly shows

what advantages can be gained by introducing location transparency.

As stated above, access transparency is an important element of a dis-

tributed system. One method which aids in achieving this transparency is

the remote procedure call, which we will discuss next.

2.2 Remote Procedure Calls

As introduced above, in a distributed system clients request a service to

be performed by a server by sending a request message, and the server

returns a result after this operation has been performed. It is clear that

this interaction is highly similar to a normal procedure call, where a certain

service is performed for the caller by the callee, and a result is returned, if

required.

Due to this similarity, the above request-reply interaction can be repre-

sented as a remote procedure call or RPC. Conceptually, a remote procedure

call is an extension of the normal procedure call. The extension is that when

issuing a remote procedure call, the code is not performed on the machine

of the caller but on a di�erent, remote, machine.

Generally, a server process will make a number of procedures available to

the clients. Each procedure represents a part of a service the server provides,

and the client need only call the corresponding procedure. A complete service
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may then be viewed as a group of procedures, declared in one interface. This

allows a service to be considered as `just another module' which is used by

the client program.

2.2.1 Di�erences With Normal Procedure Calls

Although the aim of an RPC is to preserve as far as possible the semantics

of a normal procedure call, there are a number of important di�erences

between a normal procedure call and a remote procedure call [2, 26, 7]. We

will outline these below:

� A remote procedure call is executed in a di�erent environment from

the environment of the caller. Therefore a number of variables available

to the caller, such as global variables, are usually not available to the

callee.

� Parameter passing is handled di�erently. Parameters are usually di-

vided in input, output and in/out parameters. Input parameters are

parameters copied from the caller to the callee. Any changes made to

them by the callee will not be seen in the caller. This is equivalent to

parameters passed by value in a normal procedure call. Output para-

meters are analogous to input parameters, but these are passed from

the callee to the caller, replacing any possible value they had before

the call. A prime example of an output parameter is the return value.

In/out parameters are the combination of input and output parame-

ters, they are copied from the caller to the callee, at the beginning of

the call, and copied back at the end of the call. This can be considered

analogous to parameters passed by reference in a normal procedure

call.

De�ning if a parameter is input, output, or in/out is either performed

in a special interface de�nition language, or in the used programming

language itself. The last is obviously only possible if the language pro-

vides su�cient support for declaring interfaces and the nature of the

parameters of each procedure in the interface.

� Because the callee does not execute in the same environment as the

caller, direct memory references (i.e. pointers) cannot be passed as

parameters, as they would not be correct in the other environment.

� To pass data structures from caller to callee and back, the data must be

converted into a format which can be successfully transmitted over the
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network. This implies that hierarchical data structures must be `at-

tened' to a stream of bytes, which can subsequently be used to recreate

(a copy of) the original data structure `on the other side'. The process

of taking a, possibly hierarchical, data structure and transforming it

into a format suitable for transport over the network is called mar-

shalling. Similarly, the process of taking the network suitable format

and recreating the original data structure is called unmarshalling.

� As mentioned above, a distributed system may su�er from a partial

failure, i.e. a number of the machines of the system may fail. This

means that, at any give time, an RPC cannot be completed because,

either the remote machine cannot be contacted to invoke the procedure

(if, for example, it is not functioning at this time), or there is no indi-

cation of termination of the procedure on the remote machine (if, for

example, it has failed while executing the procedure). The possibility

of failure of the RPC has to be taken into account here, and, preferably

some recovery action has to be provided by the programmer.

Because of the di�erences mentioned above, some extra infrastructure is

required to allow a RPC to be performed.

2.2.2 Required Infrastructure

Because of the di�erences between a normal, local, procedure call, and a

remote procedure call, a certain amount of support is necessary to be able to

perform remote procedure calls. This support code is provided by a special

RPC package. This package is usually a part of the compiler of the used

programming language, or a separately acquired package.

Stub and Skeleton

Based on the declared interface of the service, a certain amount of support

code is generated. For example, the marshalling and unmarshalling algo-

rithms used are generated using the declarations of the data types used as

parameters in the procedure calls.

The support code comprises of two proxies for the object: the client stub

and server skeleton [2]. Figure 2.1 presents a schematic representation of the

interaction between stub and skeleton, which we will now discuss.

� The client stub acts as a `stand-in' (i.e. a proxy) for the server in

the clients' process. When the client performs the RPC, it actually
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Figure 2.1: A schematic overview of the interaction between stub and skele-

ton. Zig-zag arrows represent network communications.

performs a normal, local, procedure call on the client stub. The client

stub subsequently marshals the parameters of the call, contacts the

server skeleton, and communicates that a certain method must be

called with certain parameters, which are given in marshalled form.

Also, the client stub is responsible for raising an error condition in

case the RPC cannot be completed successfully.

� The server skeleton acts as a `stand-in' (i.e. a proxy) for the client in

the servers' process. When contacted by the client stub and informed

to perform a procedure call, the skeleton unmarshals the parameters

and proceeds to perform the, now local, procedure call on the server.

When the procedure returns, the result, if any, is marshalled and com-

municated to the stub, which will unmarshal it and return it to the

client process.

Generating the above support code is usually accomplished by running

an interface compiler. This compiler has as input the declared interface of
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the service, and produces as output the code for the stub and skeleton.

The stub code must subsequently be included in the executable code of the

client, and the skeleton code in the executable code of the server, to be able

to invoke the RPC. Inclusion of this code is usually performed when the

di�erent object �les of the programs are linked into an executable �le.

Binding

We have now seen how a RPC is performed, by having stub and skeleton

communicating the needed information amongst themselves, but we have

not yet seen how the communication link between these two proxies is set

up. It is obvious that for the stub and skeleton to be able to communicate,

they must �rst get a reference to each other to be able to set up a link.

A two-step process is used to let the stub and skeleton get a reference

to each other.

The �rst step in this process is what is known as the binding step. In this

step, a server process makes a service known to the system. This is usually

performed by providing an association between a name and a reference to

the service. This reference mainly contains the hostname of the machine on

which the server is running, and the port number on which the skeleton will

listen for incoming connections.

The task of managing the above associations in a distributed system is

performed by a service known as the binder. When in the above step, the

server provides the association, it provides it to the binder.

The second step is performed by the client; whenever it wishes to access

a certain service, it contacts the binder and requests a reference for a service

by providing its name. The binder will return the requested reference, if the

association exists, or an error if the association does not exist. When the

client receives the reference, this is usually automatically converted to a

stub, which is connected to the skeleton indicated in the reference.

Note that the binder is a crucial element for the operation of the system.

If there were no binders, no references would be able to be obtained, and

therefore no remote resources would be able to be accessed. Therefore it

is advised to provide some fault-tolerance for the binder, for example by

having multiple binders running on di�erent machines. This would also solve

a possible bottleneck, since all clients now need not pass through only one

binder, but can use multiple, spreading the load over di�erent binders.

However, we are now faced with a chicken-and-egg problem; to be able

to contact the binder to get a reference to a service, we need to get the

reference of the binder. There are a number of ways in which this can be
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solved: we can let the binder run on a known port on a known machine, or

let the operating system provide the location of the binder, for example in

an environment variable, or we can let the client send a broadcast message

asking for all binders to identify themselves.

To be able to use the binder, the code used to interact with it, and the

code of the binder itself, must be provided as a part of the infrastructure

delivered by the RPC package.

2.3 Conclusions

In this chapter a number of important concepts were introduced. We have

de�ned a number of characteristics which are deemed important for a dis-

tributed system; the sharing of resources, the degree of fault tolerance and

the transparency of the system. Subsequently we have introduced the re-

mote procedure call as a mechanism for interaction of the di�erent elements

in a distributed system, and we have given an overview of the infrastructure

required to be able to perform these.

Having presented a number of concepts of distributed systems, we will

now introduce and evaluate a number of packages which aim to facilitate

the building of distributed systems in Java.



Chapter 3

Distribution Mechanisms for

Java

If at �rst you don't succeed, you're running about average.

| M.H. Alderson

A number of packages exist which provide support for building dis-

tributed systems in Java. In this chapter we will introduce and evaluate

a number of these packages, ordered in function of increasing ease of use.

We will start with RMI [23]; the package which is included as standard in

Java. Following this we will discuss Objectspace Voyager [10], a commercial

package built as a replacement for RMI. We will conclude this chapter with

a discussion of two academic research projects; JEDI [1] and JavaParty [18].

3.1 Java RMI

Java, as of version 1.1, includes a package for remote procedure calls, called

Remote Method Invocations or RMI, which is contained in the java.rmi

package and its sub-packages. Since Java is not a procedural language, but

an object-oriented language, a conceptual di�erence exists between RPC

and RMI. We do not call procedures, but invoke methods of objects, which

implies a dynamic dispatch of the method invocation due to polymorphism.

Also where in RPC procedures are declared to be a part of a module, in RMI

methods are declared to belong to an interface which will be implemented

by an object. A service delivered by a server class is therefore encapsulated

17
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into an object. This conforms to the object-based model for the workings of

a distributed system. Note that in this chapter, as in the rest of the text,

we assume that the reader is familiar with Java.

We will now provide an overview on how the RMI package is used. We

will create a small, distributed, \Hello, World" application, consisting of a

Hello class, which can print out the well-known text on standard output,

and a Runner class which will use this \greeting service". We will �rst de�ne

the hello service, and subsequently discuss on how we can make this service

available to the clients. Once the service complete, we will de�ne a client,

and specify how the system can be compiled and run. As a last item, we will

perform a short evaluation of the transparency of the RMI package.

3.1.1 De�ning the Service

The �rst step we will take is de�ning the service which will be made avail-

able to client programs. This step consists of two parts: First we need to

declare the remote interface which declares how to use the functionality of

the service. Second, we need to de�ne the class whose instances implement

the functionality in the remote interface. We will discuss these parts in the

following two paragraphs, and conclude this section with a discussion of

parameter passing.

Declaring the Remote Interface

In RMI a remote service is declared by de�ning a Java remote interface for

that service.

A Remote interface is an interface which implements the standard Java

interface java.rmi.Remote. The java.rmi.Remote interface is an interface

which does not declare any methods, its only purpose is being a ag to

indicate that the interface implementing it is a remote interface. Also, all

methods belonging to a remote interface must declare that they throw the

exception java.rmi.RemoteException, in addition to any other exceptions

they may throw.

The methods declared in the interface represent the various parts of

the service which can be required by the clients. In our example, the only

functionality required is printing out hello, so the following remote interface

can be used:

public interface Interf_Hello implements java.rmi.Remote {

public void sayHello() throws java.rmi.RemoteException;

}
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The above code is fairly straightforward; we de�ne an interface named

Interf Hello which extends java.rmi.Remote, to indicate that it is a re-

mote interface. The interface contains one method: sayHello, taking no

arguments and having no return value. The method declares it can throw a

java.rmi.RemoteException, because this is a requirement for all methods

in a remote interface.

The importance of the remote interface will become clearer as we further

develop the example. We will see that this interface is the only type that

can be used to access the resource remotely.

De�ning a Remote Class

Now the service we have declared above in the Interf Hello interface must

be implemented by a concrete class. This class, implementing the remote

interface, is called a remote class.

The remote class will de�ne all methods declared in the remote interface.

Each method will perform whatever action is required to deliver the service

speci�ed by that method. It is, of course, allowed to de�ne extra methods,

but these will not be able to be called remotely; only the methods declared

in the interface can be called remotely.

In our example, the class Hello implements the service de�ned in the

Interf Hello interface as follows:

public class Hello implements Interf_Hello {

public void sayHello() {

System.out.println("Hello, world!");

}

}

Note that although the method sayHello has been declared in the in-

terface as throwing java.rmi.RemoteException, the implementation need

not declare it. This is because when the exception will be thrown, it will not

be thrown by this code, but by code of the RMI package which handles the

actual remote method invocation.

Parameter Passing

In our example we do not pass any parameters to the remote method and

we do not have a return value. However this does not mean no parameters

may be passed in a remote method invocation. A remote method invocation
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may indeed include parameters, but these must conform to some rules which

de�ne the way they are passed.

Basically, parameters must either be primitive types, classes which im-

plement the interface java.io.Serializable, or remote classes. If a remote

method call includes a parameter which does not belong to one of the above

categories (i.e. a class which is not serializable and not remote), the remote

method invocation will fail.

Also, if a parameter is a remote class, the type of the parameter may not

be the remote class, but it must be the remote interface declared by that

class. We will discuss the reason for this below.

How a parameter is passed depends on which category it belongs to:

� Serializable classes and primitive types (which are also serializable)

will be passed by value, i.e. it will behave as an input parameter if it

is a parameter of the method call or it will behave as an output para-

meter if it is the return value of the method call. The marshalling and

unmarshalling process used for the parameter passing is the standard

Java serialization mechanism, which normally ignores static and tran-

sient �elds (although this can be overridden, for more information, see

[21]).

� Remote classes will be passed by reference; the parameter is not copied

over, but a remote reference to its skeleton is handed out, which is

why the declared type of the parameter must be the remote interface.

The proxy of the process `receiving' the parameter will automatically

convert this reference to a stub referring to that skeleton. This implies

that any method calls to that parameter will be remote method calls.

Having discussed the elements pertaining to the implementation of the

service, we must now make sure it can be used by the clients, i.e. the service

must be made available to the clients.

3.1.2 Making the Service Available

Once the code for the service completed, it now has to be made available to

client programs so they can access it.

Depending on how the service will be accessed, we have either one or

three steps. The �rst step is identical for both cases: we have to export the

object, to make it available over the network.

If the object will need to be looked up by clients, two further steps are

required, i.e. for objects which will only be passed as reference parameters

of remote method calls we need not perform these step.
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The second step is the binding step, where the object is bound to a name,

so the object can be looked up by clients. The third step is the de�nition of

the server process which performs the actual instantiation of the object.

We will now detail these three steps.

Exporting

To be able to use the service, encapsulated in an object, that object has to

be exported. Exporting an object makes it available to be accessed remotely,

concretely this entails creating the objects' skeleton, so remote references to

this skeleton can be handed out.

An object can be exported in two ways: If the object is a subclass of

java.rmi.server.UnicastRemoteObject, it is automatically exported at

instantiation time. However, in this case, the constructors of the class must

declare to throw java.rmi.RemoteException, because the export may fail.

If the object is not a subclass of UnicastRemoteObject, the static method

exportObject of UnicastRemoteObject, which takes one parameter of type

Object, can be used to export this object.

Therefore, we need to alter the Hello class:

public class Hello

extends java.rmi.server.UnicastRemoteObject

implements Interf_Hello {

public Hello() throws java.rmi.RemoteException {

super();

}

public void sayHello() {

System.out.println("Hello, world!");

}

}

We have chosen to make the class a subclass of UnicastRemoteObject,

which ensures instances are automatically exported whenever they are cre-

ated. We have explicitly de�ned the constructor to draw attention to the

fact that it throws java.rmi.RemoteException, also, we will extend this

constructor in the following step.

The class UnicastRemoteObject is the unique subclass of the class

java.rmi.server.RemoteServer. The RemoteServer class \is the common
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superclass to all server implementations and provides the framework to sup-

port a wide range of remote reference semantics" [23]. The idea is that the

various subclasses of this class de�ne di�erent semantics for remote referen-

ces. At this moment only one subclass is de�ned; UnicastRemoteObject,

which \provides support for point-to-point active object references using

TCP-based streams" [23]. However, it is conceivable that later other sub-

classes are added, extending the functionality of the RMI package.

Note that an object may only be exported once, if the object has already

been exported, a RemoteException will be thrown. The reasons for this

behavior are not speci�ed.

Binding

To make it possible for clients to obtain a reference to a remote service, the

service has to be bound to a name, so it can be looked up.

Binding an object to a name is performed by calling the bind or rebind

static methods on the java.rmi.Naming class. These methods take as ar-

guments an URL and a object which implements the java.rmi.Remote

interface.

To bind our service to the name \HelloService", we change the Hello

class as follows:

public class Hello

extends java.rmi.server.UnicastRemoteObject

implements Interf_Hello {

public Hello() throws java.rmi.RemoteException {

super();

java.rmi.Naming.rebind("///HelloService",this)

}

public void sayHello() {

System.out.println("Hello, world!");

}

}

The �rst argument of the rebindmethod is the URL of the object, it is a

short form, omitting protocol and host name. RMI will use the default proto-

col to access this object, and the object will be available on the default port of

the current host. If we assume that the host containing this object is named

tongariki, the full URL would be "rmi://tongariki/HelloService".
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Note that \for security reasons" [23], the host which is used in the above

URL must be equal to the local host. The idea is that a malicious program

may not overwrite the registry of a remote machine, so that its services are

used instead of the intended services.

The object which is bound to the name is not the object given as pa-

rameter, but the objects skeleton. Whenever a lookup is performed on the

binder, a reference to a skeleton (or an error) will be returned.

It is also possible to specify a port number in the URL, for example

we could use the URL "//tongariki:4242/HelloService", to specify that

the registry should be located on port 4242. If no port number is speci�ed,

the registry is located on the default RMI port, which is 1099.

De�ning the Server

Once all objects the server will export are de�ned, we have to create the

server program itself. This executable program will, when run, instantiate

the correct objects ensuring they become available to the clients.

In our example, only one instance of one class, the Hello class, needs to

be created. An easy way to achieve this, is to provide the class with a main

method, as follows:

public class Hello

extends java.rmi.server.UnicastRemoteObject

implements Interf_Hello {

public Hello() throws java.rmi.RemoteException {

super();

java.rmi.Naming.rebind("///HelloService",this)

}

public void sayHello() {

System.out.println("Hello, world!");

}

public static void main(String[] args) {

new Hello();

}

}

The Hello class is now executable, running it results in the server being

run, and one instance of the class being made available to the clients. Note
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that, although the main method will �nish after the creation of the instance,

the program will not end. This is because a separate non-daemon thread has

been created which handles incoming connections to the Hello object, and

the Java VM does not quit until all non-daemon threads have ended.

Were we to have a number of objects of di�erent classes on the server, it

could be advisable to create a special Server class, responsible for instan-

tiating the correct objects. All that would be necessary is a main method

whose body simply creates the needed instances.

Also, it is not required to have the export and bind statements to be

performed in the object being exported. The only requirement is that the

object is given as a parameter. For example, we could remove the export

and bind actions from the constructors of the classes, and perform them in

the main method of the aforementioned Server class.

3.1.3 Making a Client

Now the server is fully de�ned, we can proceed with creating a client which

will use this server. As this process is fairly straightforward, we will �rst

present the full code, followed by a brief discussion.

public class Runner {

public static void main(String[] args) {

try {

Interf_Hello hel = (Interf_Hello)

java.rmi.Naming.lookup("//tongariki/HelloService");

hel.sayHello();

}

catch(java.rmi.RemoteException ex) {

ex.printStackTrace();

}

}

}

This executable class basically performs two operations: It �rst looks

up the HelloService, and second performs the remote method invocation of

the only method de�ned by the service. This two operations are enclosed

within a try - catch construct because the lookup and the remote method

invocation may fail, which results in them throwing a RemoteException.

Should this happen, we print out a stack trace of the exception and quit.
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A closer inspection of the lookup method is warranted here. Note that

the argument of the lookup is again an URL, but here we specify a host-

name; tongariki. This is because we assume that the HelloService will be

running on that machine. Also note the explicit cast to the interface of the

service; Interf Hello. This is because the lookup method is declared to

return an object of type java.rmi.Remote. We do not cast here to the class

implementing the remote interface. This is because the object returned by

the lookup method is not a instance of that class, but an instance of the

stub class for that class.

The above allows us to perform a `normal' method invocation on the

result of the lookup. The result, which is the stub, will handle the process of

transporting the method invocation to the server, and returning the eventual

result (in this case there is none).

3.1.4 Compiling and Running the System

Once all classes in the system have been de�ned, we can proceed to create

the executables and run the system.

First we need to create the .class �les for the all the classes in the

system, which can be done by running any standard Java compiler. However

this does not conclude the compilation. We still have to generate the skeleton

and stub �les for all remote classes. This is performed by running the RMI

compiler on those classes.

In the standard Java Development kit, this compiler is named rmic. rmic

takes as arguments the names of remote classes, and produces as output the

skeleton and stub classes of these classes. To be able to produce this output,

rmic needs access to the .class �les of the remote classes and to the .class

�le of the remote interface.

For our example, we need to run rmic on the class Hello, which will

generate the .class �les Hello Skel.class and Hello Stub.class

To run the system, we �rst have to place the .class �les for all classes

used by the server on the server machine, including the skeleton class �le,

and we have to place the .class �les for all classes used by the client,

including the stub class �le, on the client machine.

Second we have to start the registry service on the server machine. When

using the standard Java Development kit, this service is started by executing

the rmiregistry program. It is possible to specify a speci�c port for the

registry to run on, by specifying it as a command-line parameter. If no port

number is given, the default RMI port (1099) is used.

Third we have to start the server program. This is done by running the
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executable class which corresponds to the server program, in our example

this is the Hello class. Once the server is started, the client programs can

use the services provided by the server.

So as a last step, we can run our programs. In our example this means

running the Runner class. The result of executing the program will be that

the text "Hello, world!" is printed out on the console of the server.

Having completed the description of the usage of RMI, we can now pro-

ceed to a short evaluation of the transparency of this package.

3.1.5 Evaluation of RMI

When looking at ease-of-use, RMI is clearly a signi�cant improvement over

using sockets for accessing a remote service [1, 18]. RMI allows us to treat

a remote object almost as if it were a local object, once a reference to the

object is obtained we can invoke methods on it almost as if it were local.

Where RMI falls short, is in the two \almost"s above. We still have

to make a signi�cant distinction between remote and local objects. This is

because of the following points:

� We have to declare an interface for the remote class, and we can only

get a reference of an object which has as type this interface, and not

the type of the remote class.

� There is no mechanism to create an instance of a remote object from

within a client on a given server. This functionality can be needed if,

for example, we want to create a new datum on a storage server. It is

possible to create instances remotely, but to do this the programmer

has to implement a proprietary instance creation mechanism. This can

be done, for example by de�ning a Factory class which is placed on

the server and which sole functionality is to create instances whenever

the corresponding method is invoked.

� We cannot perform direct variable access on the instance variables of

the object; we can only perform method invocations on the object.

We only can perform variable access by de�ning accessor and mutator

methods and use these.

� We cannot invoke static methods of the class of the object, because

these cannot be declared in the interface, which is our only access to

the functionality of the object.
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� The rules for parameter passing put a number of restrictions on the

types of the parameters; parameters have to be either serializable or

remote, and if they are remote their declared type must be their remote

interface and not the class.

� A method invocation on a remote object may throw an exception,

where if it were local it would not. Therefore these method invocations

must ultimately be inclosed in a try-catch statement which contains

appropriate error-handling code.

� Bootstrapping the system is not straightforward. The remote objects

must ensure that they are exported before they are used, and if neces-

sary should be bound to a name using the binder service. The clients

must obtain a reference to bound objects using the binder service.

� At compile time, the RMI compiler must be called on each remote

class to create its skeleton and stub class .

Although each of these elements may individually be seen as a minor

inconvenience, the combined result is a clear distinction between normal

and remote objects, which makes RMI a somewhat complex package to use.

To address this complexity, a number of alternate remote method invo-

cation packages have been developed. A very well known package is Voyager,

by Objectspace, which we will discuss next.

3.2 Voyager

In this section we will introduce a commercial RPC package for java; Ob-

jectspaces' Voyager.

Voyager is a product family of Objectspace, built to ease distributed

computing in Java. Voyager consists of a number of di�erent packages, of

which the Voyager ORB, also known as Voyager Core Technology, is the

bottom layer upon which the other packages are built.

Voyager Core Technology consists of an Object Request broker that sup-

ports RMI and CORBA. A notable feature of this ORB is automatic runtime

generation of the skeletons and the stubs of RMI and CORBA.

The Voyager ORB is freely available from Objectspaces' Voyager web

site [10]. While it provides a wide number of features including multicasts

and agents, we will only investigate the remote method invocation features

relevant to our thesis. For more information, see [11].
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For simplicity's sake, we will, from here on, refer to the Voyager ORB

solely as Voyager.

We will now re-implement our previous example using Voyager. This

re-implementation will follow the same sequence of steps as in the RMI

example; �rst we de�ne the service, then make it available to the clients,

followed by implementing a client, and �nally compile and run the system.

3.2.1 De�ning the Service

As above, the �rst step is de�ning the service which will be used by the

client programs. This step consists of two parts: First we need to declare

the interface for the service, and second we need to de�ne the class whose

instances implement the service. We will also discuss the \default interface"

feature of Voyager, and we will conclude with a discussion of parameter

passing.

Declaring the Remote Interface

As in RMI, declaration of a service is achieved by specifying an interface

for this service. However, whereas in RMI a remote interface must imple-

ment java.rmi.Remote and all methods belonging to that interface must

declare that they throw the exception java.rmi.RemoteException, this is

not required in Voyager.

Hence, we can de�ne the interface for our example as follows:

public interface IHello {

public void sayHello()

}

As we said above, it is not required for the methods to declare they throw

a RemoteException, this is because handling of exceptions is performed

according to the type of the exception.

Exceptions thrown during the remote method invocation which are a

subclass of java.rmi.RemoteException, (and therefore caused by the pro-

cess of performing the remote method invocation) can be handled in two

ways. If the method which has been invoked declares that it can throw

a RemoteException, no special action needs to be taken, and the excep-

tion is simply thrown. If the method does not declare that it can throw

such an exception (as above), the RemoteException will be wrapped in a

java.lang.RuntimeException and this RuntimeException is thrown.
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RuntimeExceptions are de�ned as \exceptions that can be thrown during

the normal operation of the Java Virtual Machine." [22] Also, \A method

is not required to declare in its throws clause any subclasses of RuntimeEx-

ception that might be thrown during the execution of the method but not

caught." [22]

This means that the program using remote method invocations need not

declare to handle any exceptions caused by the remote method invocations

themselves. If such an exception occurs, a RuntimeException will be thrown,

which, if not caught somewhere (which is not unusual, considering their

nature), will cause the VM to print out a stack trace of the exception and

exit.

The following section, where we de�ne the class, will clarify why we have

followed this convention.

De�ning a Remote Class

Now the service we have declared above in the IHello interface must be im-

plemented by a concrete class, providing the implementation for the service.

The code for the example is straightforward:

public class Hello {

public void sayHello() {

System.out.println("Hello, world!");

}

}

There is one noteworthy di�erence between this class and the class in

the RMI example: this class does not declare that it implements the IHello

interface.

The reason why we can omit this declaration is discussed in the following

section.

The Default Interface

Usually, when an object implements a remote interface, this interface is

written by the programmer of the object and it represents the methods

which will only be called remotely. However, Voyager provides a tool, called

igen which automatically generates the \default interface" for a given class.

The default interface contains all the public methods of the class, and its

name is derived from the Voyager interface naming convention, which is the
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letter I followed by the name of the class (for example, the interface for a

class Foo will be named IFoo).

In our example the default interface of the class Hello as generated by

igen is remarkably similar to the interface we have de�ned manually above:

/**

* IHello.java

* <p>

* @version 1.0

* @author generated by igen 2.0.2 [rest deleted]

*/

public interface IHello extends java.rmi.Remote

{

void sayHello();

}

The default interface can be used to remote-enable classes of which the

source code is not available or cannot be changed, and which do not im-

plement a suitable remote interface. Whenever a Voyager skeleton object is

created (i.e. when a remote object is exported), Voyager veri�es if the de-

fault interface for that class is available. If the default interface is available,

the skeleton will also implement the default interface.

For example, if in our application we would want to create a Java Vector

in a remote program, we would �rst need to run igen on the Vector class,

which results in IVector interface source code being created. Once this is

compiled, and made accessible to Voyager, whenever a Vector is created

using Factory.create(), the returned proxy will implement the IVector

interface, i.e. all public methods of the Vector class.

The automatic usage of the default interface has one interesting advan-

tage: Using the default interface, it is not necessary to declare that a class

which will be used remotely implements a remote interface, as we have done

above, since the default interface can be used for remote operations. This

implies however, that public methods which were not meant to be used re-

motely can now be used remotely, if a default interface for the class has been

created and made available to Voyager.

Parameter Passing

As in RMI, a Voyager remote method invocation may include parameter

passing, but these must conform to some rules which de�ne the way they
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are passed.

As in RMI, an object is either passed by reference or passed by copy.

If the object implements the java.rmi.Remote or Voyagers' IRemote

interface it will be passed by reference. Concretely, a Voyager Proxy object

(a skeleton) will be created at the site executing the method which will refer

to the passed parameter. Because a Proxy object is created, the type of the

object in the executing method cannot be the original class but must be a

remote interface. This has as a consequence not only that the object must

implement a remote interface, but that the executing method must declare

as the type of the parameter the remote interface and not the class of the

object.

If the object does not implement one of the two above interfaces, is is

passed by copy. The copy is performed using the Java serialization mecha-

nism, which requires the object and its contained objects to implement the

java.io.Serializable interface (recall that primitive types are de�ned as

being serializable). If this is not the case, serialization will fail, the object

cannot be copied, and the remote method invocation will fail.

The implementation of the service now being complete, we will proceed

with discussing how this service may be made available to the clients.

3.2.2 Making the Service Available

There are two ways in which the de�ned service can be made available to

the clients: we can proceed analogous to RMI; by using a binding service to

make it known to the system, or we can use the remote instantiation feature

of Voyager. We will now discuss both of these options.

Exporting and Binding

When using Voyager, there is no need to export an object, Voyager will

automatically export the object when a remote reference to the object is

handed out. However, there is the possibility to manually export an object,

by using the static method export de�ned in the voyager.Proxy class.

Voyager provides a simple naming service. As is RMI, the naming service

allows objects to be bound to a name and exported, so that they may be

looked up by other applications by providing the given name. All operations

of the naming service are de�ned as static methods on the Namespace class.

The bind()method will, given an name expressed as an URL and an ob-

ject, bind that object to the name. Expressing the name as an URL requires

a port and a name for the object to be given. To lookup a bound object, the
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lookup() method is invoked with argument the URL of the bound object.

If the object can be resolved, a Proxy to the object is returned, which can

be cast to the remote interface. A NamespaceException will be thrown if

the object cannot be found.

For our example, we could create a server class which instantiates the

required object and binds it to a name so it can be looked up. We will

however use the second option available to us, which is remote instantiation.

Remote Instantiation

Voyager provides a Factory class, which contains a create method. This

method can be used to create instances of a given class. There is, however,

a signi�cant di�erence between Factory.create and the new keyword in

Java: the Factory returns a Voyager Proxy object to the object and not the

object itself. This implies two things: First; the type of the result is not of

the generated class, and second; the created object need not be local.

Since the type of the result is a proxy, the object which has been created

must implement a remote interface. Since the proxy will also implement

the remote interface, the result has to be cast to the remote interface, and

messages can be sent to the object.

Also, since the result is a proxy, the created object may well reside on a

di�erent machine. The create method provides facilities for this: an extra

parameter can be given which speci�es the URL where the object should

be created. This URL should point to a port belonging to a Java program

which is running a Voyager server, and which has access to the .class �le

de�ning the class.

At this point we should note that Voyager also provides a minimal server

which can be started up on the command line. This server performs one

action: it opens a Voyager port and waits. The port can then be used, for

example, by other programs to create objects in the server. The minimal

Voyager server can access .class �les in the standard Java classpath, in an

extra directory given as argument upon startup, and �les served by a http

server of which the URL is given as argument upon startup.

This combination allows us to let our client create the needed object on

a Voyager server, by invoking the Factory.create method. The concrete

implementation will be given in the following part.
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3.2.3 Making a Client

Having �nished the server, we can now proceed with creating a client for

the services provided by the server.

The code for our example is as follows:

public class Runner{

public static void main(String[] args){

try {

Voyager.startup();

IHello hel = (IHello)

Factory.create("Hello","//tongariki:4242");

hel.sayHello();

Voyager.shutdown();

}

catch (Exception ex) {

ex.printStackTrace();

}

}

}

This executable class performs four operations: it �rst starts up Voyager,

then creates an object remotely, subsequently performs a method invocation

on the remote object, and �nally shuts down Voyager. These operations are

contained in a try-catch statement, because the startup method may throw

a voyager.StartupException (if Voyager has already been started), the

create method may throw a java.lang.Exception, and the remote method

invocation may throw a java.lang.RemoteException.

To be able to use the Voyager package, Voyager �rst has to be started

up, which is performed by calling the static method startup on the Voyager

class. Voyager can also be shut down, by calling the shutdown method.

Once Voyager is started, we can create the object for the remote greeting

service by using the create method. We specify that the server for our

example was named tongariki, and that the port should be number 4242.

If we do not provide a port number, Voyager will use its default port number.

Note that, the result of this operation is an object of the Proxy class, which

has to be cast to the appropriate interface, in our case IHello.
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When the reference is obtained we can simply perform the method in-

vocation.

With all the code for the system done, we can now proceed with com-

piling and running the system.

3.2.4 Compiling and Running the System

To compile the system, we can use any standard Java compiler, which will

produce the necessary .class �les.

Unlike RMI, Voyager does not require us to compile any skeleton or

stub �les, as it performs dynamic proxy generation. This means, that when-

ever a proxy object is required in the operation of the program, Voyager

will on-the-y generate the class for the proxy (if it is not already in mem-

ory) and instantiate a proxy. The advantage of this is that the programmer

does not need to concern herself with the proxy classes when creating the

applications. There is however also a disadvantage, which is the runtime

overhead. Because the proxy classes are generated on-the-y each time the

program is run, there is a certain overhead involved with the creation of

these proxies. Sadly, there is no facility for saving the proxy classes for a

subsequent execution of the program. To eliminate the overhead, the \static

proxy generation" feature of the Voyager ORB Professional has to be used.

To run the system, we �rst have to place the .class �les for all classes

used by the server, including the Voyager class library, on that server ma-

chine and we have to place the .class �les for all classes used by the client,

including the Voyager class library, on the client machine.

To start up the server, the executable class for that server has to be run,

or if using the minimal Voyager server, as in our example, this server has

to be run by running the voyager executable. The minimal server can be

given a command-line argument which indicates the port number it should

be running on, in our example this is 4242.

Having started the server, we can now run the clients. In our example,

this is achieved by running the Runner executable class.

Having �nished and run the system, we can now perform an evaluation

of Voyager.

3.2.5 Evaluation of Voyager

Looking at ease of use, Voyager scores higher than RMI. This is because we

need to perform less work to make a class remote than in RMI and because

of some extra features. We do not need to manually declare the interfaces,
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the igen tool can deduce them for us. With Voyager we can also create classes

remotely, which we could not do with RMI. Voyager automatically exports

objects as needed, RMI does not. Also we do not need to run a separate

proxy compiler, as Voyager generates the proxies on the y.

However, there is still a clear distinction between remote and local ob-

jects; as can be seen from the following:

� If we get a reference to a remote class, this is to the classes' interface

and not to the class itself. We still have to handle remote classes by

their interfaces. There is also an inconsistency between the require-

ments for interfaces of classes which are created remotely, and classes

which are obtained as by-reference return values. This will be discussed

in some detail below.

� We can create instances remotely, but this mechanism is di�erent from

Java's instance creation mechanism (the new statement).

� Although we can mask exceptions thrown by a remote method invoca-

tion (which will probably cause the VM to exit if an exception occurs),

we cannot mask exceptions thrown by an object creation.

� As in RMI, we cannot perform direct variable access on the instance

variables of the object.

� As in RMI, we cannot invoke static methods of the class of the object.

� We have analogous rules for parameter passing as in RMI, which are

di�erent from normal parameter passing rules.

Note that the last point; choice of passing by reference or by copy is

quite simplistic. This simple choice mechanism causes inconsistencies be-

tween object creation and parameter passing. Whereas any kind of object

(which implements any interface) can be created remotely by using the

Factory.create() method, and be used \by reference" as it were, only

objects which implement the Remote or the IRemote interface can be passed

by reference.

Furthermore, if the object passed as a parameter does not implement

one of the above interfaces it must implement the Serializable interface

or the remote method invocation will fail. This is a stark contrast to object

creation, where there is no such constraint at all.

Also, when passing objects by reference, the object must explicitly de-

clare it implements a remote interface, whereas when creating an object
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remotely, this does not need to be done. The implicitly implemented de-

fault interface can be used for remote object creation, but not for parameter

passing.

These inconsistencies imply that the programmer must keep foremost in

his mind what interfaces the arguments of all remote method invocations

implement and not implement. This obviously needs not be the case, because

when creating remote objects all of this is done transparently.

A root problem here is the di�erence in which a remote object creation

and a remote method invocation are speci�ed in the program text. A re-

mote object creation is speci�ed by calling a method on a Factory object,

which declares it will return a Proxy. A remote method invocation is, in the

program text, identical to a standard method invocation. The interaction

between the need to satisfy the type checker in the remote method invoca-

tion, and the building of a Proxy for arguments passed by reference can be

described as follows:

� Voyager needs to create a Proxy object on the site executing the

method.

� This proxy is not of the same class as the original object.

� The type checker cannot allow the type (in this case the class) of the

formal parameter to be di�erent from the type of the actual parameter.

(Excluding subtype relationships.)

� Although the proxy is generated on the y, and can therefore imple-

ment the default interface (which the class does not need to specify),

again the type checker does not allow this. This is because the declared

type of the parameter is the class and the actual type is the default

interface, which are di�erent types.

� Therefore the type of formal and actual parameter must be changed

in the program text to a common type, which is the remote interface.

� If this is changed, the class of the parameter must explicitly declare

that it implements the remote interface to satisfy the type checker at

compile time.

This problem does not occur in object creation, since Factory.create()

declares it returns a Proxy object, which it does, satisfying the type checker.

The proxy can then be cast to an interface it supports, such as a default

interface.
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To solve this problem, either remote method invocations must be imple-

mented through a special syntax (which would be a case of the cure being

worse than the disease), or the proxy system must be changed to satisfy the

type checker, or we should have a pre-processor change the source code of

the class before it is compiled.

Having discussed the most important non-academic packages; RMI and

Voyager, we will now introduce some noteworthy academic solutions for

transparent distribution, starting with JEDI.

3.3 JEDI

The Java Environment for Distributed Invocation (JEDI) [1] is an alterna-

tive system for remote method calling, using dynamic method invocation.

With dynamic method invocation no statically compiled interfaces are nec-

essary, it is possible to call any method of a remote object at run-time.

Dynamic method invocation was chosen to avoid a number of preproces-

sing steps, such as de�ning the interface, exporting the objects and running

the RMI compiler. This was done because these steps are considered to

introduce unnecessary complexity.

The primary goal here was to provide a remote method call system which

is simple to use. Whereas other remote procedure call packages may require

a nontrivial amount of steps to be performed before a remote procedure call

can be performed, JEDI simpli�es or eliminates as many of the steps as

possible.

JEDI is a library-based system; there is no extra compiler involved, only

an extra library is necessary. All interactions required to call a method

remotely are performed through methods of this library. This simpli�es

the compilation step, making it equal to the compilation step of a non-

distributed program.

Using this system, any public method of an exported object can be called

by a client, without the object having to be modi�ed in any way. This means

that objects for which source is not available can also be made remote, for

example, it is possible to remotely call methods on objects belonging to the

Java class library.

We will now implement our \Hello, World!" example using JEDI. We will

�rst de�ne the service, subsequently de�ne the client and run the system,

and we will conclude with a small evaluation.
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3.3.1 De�ning the Service

As said above, we do not need to declare an interface for the service, we can

directly proceed to implement the class.

For our example, the code, including the server, would be as follows:

public class Hello {

public void sayHello() {

System.out.println("Hello, world!");

}

public static void main(String[] args) {

Hello hel = new Hello();

info.jedi.Repository.local().bind(hel,"HelloService");

}

}

The code for the service is straightforward and does not need any clari�-

cation. The only notable point is in the main, where after we create a Hello

object, we bind the new object using the local binder service, which auto-

matically exports the object. This does not throw any exceptions (whereas

using RMI or Voyager exporting and/or binding may throw exceptions).

As can be expected, methods may contain parameters and a return value.

However there is a strict rule for the parameters (and return value); they

must be serializable. Non-serializable objects may not be passed as para-

meters, as all parameters are passed by copy. This might seem to exclude

remote objects to be passed by reference, but it does not. As we shall see

later, the stub for a remote object is a JEDI Proxy object. These objects

are serializable, which allows the remote object to which they refer to be

passed by reference.

Having de�ned the server, we can now proceed with making a client for

the service o�ered by the server.

3.3.2 De�ning the Client

The client is fairly straightforward; we only need to obtain a reference to

the remote object and perform the method invocation:
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public class Runner {

public static void main(String[] args) {

try {

info.jedi.Proxy hel =

new info.jedi.Proxy("tongariki","HelloService");

hel.function("sayHello");

}

catch (Exception ex) {

ex.printStackTrace();

}

}

}

Obtaining a reference is performed by instantiating a new Proxy object,

with arguments the name of the server running the service (in our example

"tongariki"), and the name of the service ("HelloService"). This opera-

tion may throw an UnknownHostException if the host cannot be found.

Once the reference is obtained, a method call can be performed by cal-

ling the function method on the proxy. This method takes as argument the

name of the method to be executed remotely, and optionally a Java Vector

containing the arguments for the remote method. Exceptions thrown in the

remote method will be re-thrown by function, which is why function de-

clares it throws Exception. Exceptions due to the process of executing the

method call remotely will also be thrown by function.

Once all code is written, it can be compiled by any Java compiler. As

expected we need to place all classes needed by the server, including the

JEDI libraries on the server machine, and perform the similar action for

the client on the client machine. Running server and clients is performed by

simply running the corresponding executable classes.

3.3.3 Evaluation

JEDI provides yet another improvement in the user-friendliness of remote

method invocations, but we have to pay a price; the syntax for remote

method invocations is radically di�erent from normal method invocations.

JEDI still falls short in the following areas:

� As in RMI, we have no standard protocol to create objects remotely

� As in RMI and Voyager, we cannot perform direct variable access on

the instance variables of the object.
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� We have analogous rules for parameter passing as in RMI and Voyager,

which are di�erent from normal parameter passing rules.

� The syntax for remote method invocations is radically di�erent. Also,

there is no static type checking on the remote method calls, since

these are performed by using the function method, which takes as

argument the name of the method and a Vector of parameters, and

returns an Object.

� Remote method invocations may throw an Exception.

We will now introduce the �nal package; JavaParty, which promises truly

transparent remote objects in Java.

3.4 JavaParty

An extremely interesting package for easing distribution is JavaParty. Java-

Party adds remote objects to Java in a transparent fashion but avoids the

\disadvantages of explicit socket communication, the programming over-

head of RMI, and many disadvantages of the message-passing approach in

general" [18].

This package extends Java with one class modi�er; remote, and adds a

preprocessor and a run-time system. JavaParty is primarily aimed at pa-

rallel programming in workstation clusters of a heterogeneous nature, i.e.

containing di�erent kinds of machines.

JavaParty implements distributed shared memory; all processes part of

the system share their memory, i.e. there is no distinction between local and

remote object references and all memory is accessible from all processes.

The remote class modi�er was introduced because classes for which

source is not available, such as the Java class library, cannot be transformed

into remote classes, partly because a preprocessor approach is used, and

partly because if the classes contain native code these are designed speci�-

cally to be run in a non-remote fashion [18].

By using the remote class modi�er, a programmer indicates the objects

of this class can be placed on a remote machine if needed. Placing of these

objects is achieved by a separate \distribution strategy" algorithm. These

strategies are implemented using the well-known \Strategy" design pattern

[6] and can be selected at runtime. Also, the runtime system monitors the

interaction of the remote objects, and may migrate these to other servers if

considered appropriate.
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3.4.1 The \Hello, World!" application

Using this system, our example application becomes extremely simple, as

can be seen below:

public remote class Hello {

public void sayHello() {

System.out.println("Hello, world!");

}

}

public class Runner {

public static void main(String[] args) {

Hello hel = new Hello();

hel.sayHello();

}

}

This code is completely equal to a non-distributed version, save the use

of the remote class modi�er for the Hello class. Because of the distributed

shared memory, we do not have to concern ourselves with the remote-ness

of the instances of Hello.

There is only one hitch in the system, which is in the referencing of

objects on remote machines. Objects on remote machines must be either

remote objects, or be serializable, in which case access is performed on a

local copy of the object. If an object is not remote and not serializable, it

cannot be accessed remotely and an error will occur. This is highly similar

to the restrictions we have seen for parameter passing in all three previous

packages.

3.4.2 Evaluation

JavaParty is the most user-friendly package for distributed applications, it

provides a distributed shared memory system which makes remote objects

almost identical to local objects. Because of this, almost no distinction has

to be made between local and remote objects, making the distribution trans-

parent.

Note the \almost" above, there is one distinction left, which is the re-

striction on remote references; they must either be remote or serializable
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objects. It can be argued that this restriction is not that severe: objects

which will be placed remotely will in most cases be objects developed by

the programmer, and therefore can be made remote or serializable. Also the

most used `primitive classes' such as String, and all numeric classes of the

java.lang package are serializable.

However, in making remote objects identical to local objects, we have lost

something. Namely, we lost the ability to specify error-handlers for failing

remote method invocations. In the environment JavaParty is aimed for, this

is not a signi�cant problem, as errors are not so likely to occur when using

clustered workstations. This is due to the high reliability of the local area

networks (or special-purpose interconnections) they are connected to and to

the high reliability of the workstations themselves.

But if we leave this environment, errors are much more likely to occur,

and to have a stable distributed system we must be able to specify what to do

in case a method invocation fails. Yet, as we have seen above, this diminishes

the ease-of use of the distribution package. This is because at each method

invocation we must consider if it is local or not, and if necessary add error-

handlers. Having to keep this in mind signi�cantly decreases the ease of use

of the distribution package. Therefore we need to �nd an alternate way in

which the error-handlers can be speci�ed.

We will propose such an alternative in the following chapter, where we

will discuss Aspect-oriented Programming.

3.5 Conclusions

This chapter gave an overview of four packages which can be used to simplify

the creation of distributed Java programs.

We have discussed the RMI package, available as standard in Java. We

have seen that, although it signi�cantly eases the development of distributed

systems, compared to sockets, it is still somewhat lacking.

The next package we discussed, Voyager, was built to make the devel-

opment of distributed systems easier than when using RMI. We found that,

indeed Voyager is easier to use, but there is still room for improvements.

The third package, JEDI, delivered most of these improvements. How-

ever, an important shortcoming is that the syntax for remote method invo-

cations is radically di�erent form normal method invocations. This places a

great emphasis on the kind of object the method is invoked, and lowers the

ease of use.

The last package, JavaParty, provides the easiest solution for building
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distributed systems. However, this ease of use made us lose some control.

More speci�cally, we have lost the ability to specify error-handlers for the

remote method invocations.

What we need to �nd now, is a method which can give us the ease of

use delivered by JavaParty, combined with the control we need to be able

to handle errors. We believe Aspect-oriented Programming can be used to

achieve this goal.



Chapter 4

Aspect-Oriented

Programming

Do not pray for easy lives. Pray to be stronger men!

Do not pray for tasks equal to your powers.

Pray for power equal to your tasks.

| Phillips Brooks

Applications which need to ful�ll a large number of requirements are

generally di�cult to develop. One principle can be used to ease the develop-

ment of these applications: separation of concerns. However it is not always

easy to separate these concerns, as some of them have a system-wide impact.

A technique to separate out these system-wide concerns is Aspect-Oriented

programming (AOP).

In this chapter we will introduce the principle of separation of concerns,

and discuss AOP as a technique to achieve this separation where, until now,

it was hard, if not impossible, to achieve. We will conclude the chapter with

a discussion on how AOP can be used to achieve distribution transparency.

4.1 Separation of Concerns

When developing an application, the programmer has to ensure that a wide

variety of requirements be met. To be able to meet this diversity of re-

quirements, various techniques and methodologies have been developed to

44
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reduce the complexity of the software, to increase its comprehensibility, and

therefore also to ease its maintenance.

Common to many of the above techniques is the \divide and conquer"

concept. The software is decomposed into smaller pieces, which individually

are easier to comprehend and manage, and these pieces are later combined

into the full system.

A good decomposition allows each separate piece, to address a speci�c

concern of the application, i.e. a speci�c subset of related requirements, such

as the core algorithm of the application, the organization of the data, con-

currency, persistence, etc. . . . In OO programming, we divide into classes, the

idea being that each (group of) classes will address one concern. Handling

these concerns separately, not only conceptually but also at an implemen-

tation level, greatly enhances coding and maintenance. This is because the

programmer only needs to keep in mind the exact concern she is working

on, and can ignore the other concerns, which signi�cantly reduces the com-

plexity of the task at hand. The above principle is aptly named separation

of concerns [9]. The ideal of this separation is that each concern of the ap-

plication is addressed in one and only one module, or class, of the program.

However, this ideal is hard to achieve. This is because a number of

`special-purpose' concerns, such as concurrency, distribution, persistence,

etc. . . . can not be decomposed into these modules. This is because these con-

cerns have a system-wide impact, they can not be added by simply adding

a new module to the system. An example would be concurrency; adding

a `synchronization' object to the system is not enough, every method that

needs synchronization will have to make a call to this object. This means

that the code in a wide number of existing classes will have to be adapted,

breaking the separation of the concurrency concern. The special-purpose

concerns mentioned above are said to cross-cut the class structure [15, 16].

For a number of these special concerns, the programming language pro-

vides constructs which handle this concern. For example, in Java synchro-

nization is handled with the synchronized keyword and the wait, notify

and notifyAll methods. However, it still proves to be hard to write and

understand code using these constructs [9, 8]. Also, if the number of special-

purpose concerns in the program increases, it will progressively become more

di�cult to comprehend the code, increasing the di�culty of developing and

maintaining the program.

The above problem occurs because although the di�erent concerns can

be speci�ed independently in an abstract fashion, integrating them into �nal

code is hard, as is extracting the original concerns from the produced code.

This is largely due to the fact that although there is a loose coupling between
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the concerns at a conceptual level, at code level this coupling becomes strong

when the concerns have been integrated.

Were the di�erent concerns not only separated at a conceptual level, but

also at a code level, by e.g. having one class for each concern, we would have

a full separation of concerns. This full separation would lead to a higher

level of abstraction, making the code easier to understand and maintain.

A number of techniques have been developed, addressing the problem of

these cross-cutting concerns, achieving a higher separation of concerns. One

of these technique is Aspect-Oriented Programming, which we will discuss

in the next section.

4.2 Aspect-Oriented Programming

In this section we will introduce Aspect-Oriented Programming (AOP) [15,

16]. We will detail how concerns are split into aspects and components, dis-

cuss how aspects are treated separately and how they are combined into

executable code. We will conclude with an example showing how this tech-

nique achieves separation of concerns.

In Aspect-Oriented Programming, the concerns which cross-cut the class

structure are called aspects. They are said to \cut across both each other

and the �nal executable code" [15]. As said above, although these aspects

can be easily separated at a conceptual level, the code which integrates these

aspects is \a tangled mess of aspects" [15]. This tangling of aspects indicates

that in the code the concerns are not separated, which makes the program

hard to comprehend.

In AOP, a concern is either implemented in a component, or in an aspect.

A concern is called a component if it can be encapsulated cleanly into a

module (such as a class or a group of classes). A concern that can not be

encapsulated cleanly into a module, is called an aspect. In a program, all

concerns which are components are sometimes also called the base aspect.

An example of an aspect would be the concurrency concern we mentioned

above. It is clear that this concern can not be addressed solely by adding a

`synchronization' object; calls to this object must be added in various other

objects, at the point where synchronization is required. This prohibits clean

encapsulation of the concurrency concern, making it an aspect.

AOP allows the programmer not only to reason separately about the

aspects, but also to implement them in separate modules. This is achieved

by specifying the code pertaining to an aspect in a separate aspect �le, in a

special aspect language.
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The aspect languages are designed to allow the aspect to be easily ex-

pressed by the programmer. The �rst aspect languages which were designed

were aspect-speci�c, for example, there are languages for concurrency con-

trol [25], numerical accuracy [13], and space optimization [17]. Because of

this speci�c nature of the languages, the programmer can express the code in

a natural form, leading to a greater ease of use. Current AOP research, how-

ever, is heading towards a more general aspect language, in which various

aspects can be expressed [14].

Once all components and aspects are de�ned, a special tool, called an

Aspect Weaver, combines these into executable code. The weaver is able to

do this because it knows not only how each aspect can be transformed into

code, but it also knows the relationships between the di�erent aspects, and

the correct way to combine them.

Example

Now let us consider how our previous example, the concurrency concern, is

handled using AOP. One AOP tool which handles this concern is AspectJ

[14], a previous version of which was known as D [25].

Using this tool, the programmer writes the base aspect code, i.e. ignoring

the concurrency aspect, in Java. This implies that the special Java constructs

for concurrency (synchronized, wait, notify, notifyAll) are not used in

this code. Addressing concurrency is done by de�ning the concurrency aspect

in a separate aspect �le, not in Java, but in a special aspect language.

In D, a special language named Cool is used to specify concurrency con-

trol. Using Cool, a so-called \coordinator object" is described for objects

of a given class. This coordinator object has a coordination strategy which

is applied to the methods of the object. Methods can be declared to be

self-exclusive, mutually exclusive, or a guard can be placed on the method's

execution.

A method which is declared to be self-exclusive, will not be run concur-

rently on an object, i.e. if multiple threads try to simultaneously run this

method on the same object, this execution will not occur in parallel, but

serially.

A method belonging to a group of methods which are declared to be

mutually exclusive, prohibits the other methods of that group to be run

concurrently. In other words, if multiple threads try to simultaneously run a

number of methods of the same mutually exclusive set, on the same object,

this execution will not occur in parallel, but serially.

Last but not least, �ner control can be obtained by using guarded sus-
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pension of threads. A boolean expression is provided which speci�es if the

method can be executed or not; if the expression is true, the method will be

executed, if not, it will be suspended until the expression becomes true.

Using these declarations, the coordination strategy can be declared out-

side of the class de�nitions. This allows the concern of coordination to be

addressed separately from the other concerns, giving us true separation of

concerns.

To produce the executable code, the aspect weaver included in D has to

be run, with, as arguments, the names of the Java �les, and the name of the

aspect �le. The weaver will subsequently produce a number of Java .class

�les, which integrate the base aspect and the concurrency aspect.

Having seen how AOP can be used to achieve separation of concerns,

we will now introduce how we can use this technique to achieve distribution

transparency.

4.3 AOP and Distribution Transparency

Using AOP, a concern which can not be encapsulated in one module can be

separated out of the application, so it can be reasoned about separately.

Should we try to encapsulate the concern of distribution in a separate

`distribution' module without using AOP, we will encounter a number of

problems. Making an application a distributed application, entails placing

objects on separate machines, and changing the method invocations on these

objects into remote method invocations.

Even when using the most powerful tool we have mentioned, JavaParty,

we still need to adapt the code of a large number of classes; we need to add

the remote modi�er to the classes. Should we elect not to use JavaParty

because of the impossibility to perform recovery from partial failures, the

changes to the class structure are even more widespread. Therefore we can

conclude that distribution has to be considered as being an aspect.

Now consider the de�nition of distribution transparency we used previ-

ously: \If there is distribution transparency, the fact that the system is built

out of di�erent components is hidden, and the system is only perceived as

one, whole, entity."

Seen from the \separation of concerns" principle, this de�nition can be

rede�ned as: \If there is distribution transparency, the concern that the sys-

tem is built out of di�erent components is separated out. The system is

perceived as one entity when the programmer is not working on the distri-

bution concern."
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This de�nition leads us to state that we can achieve full distribution

transparency, by using AOP.

We propose, and will develop in the rest of this thesis, the following

approach to achieving full distribution transparency:

� Remote classes have to be speci�ed separately, in a special aspect �le.

As in JavaParty, method calls to these objects will be remote method

calls.

� The rules for parameter passing in methods of these remote classes

must be as straightforward as possible.

� Location of these remote classes will also be de�ned separately from

the main program, by de�ning it in the aspect �le described above.

� To provide a possibility to recover from partial failures, error-handlers

can optionally be speci�ed in a second aspect �le. If no error-handlers

are speci�ed, a default error-handler will be used.

To achieve this, a number of aspect languages have to be de�ned and an

aspect weaver for these languages has to be implemented. In the following

chapter we will introduce the aspect languages we have de�ned, and the

subsequent chapter will detail the transformations performed by the aspect

weaver.

4.4 Conclusions

This chapter introduced the principle of separation of concerns, which is

used to ease the development of software. Separation of concerns is akin to

\divide and conquer": complexity is reduced to manageable pieces which

can be handled individually.

However, some concerns can not be separated out using OO program-

ming, because they have a system-wide impact and cross-cut the chosen

decomposition [24]. Many of the pieces mentioned above need to contain el-

ements pertaining to these concerns. Aspect-Oriented Programming solves

this problem by letting these special concerns, called aspects, be de�ned sep-

arately. A tool, called the Aspect Weaver, combines these di�erent aspects

together with the programs' `normal' code into the �nal executable.

We have deduced why distribution has to be considered as being an

aspect, and have stated that full transparency can be achieved using AOP.

To achieve this goal, we have determined and outlined a strategy, which will

be developed further in the following chapters.



Chapter 5

The Aspect Languages

Language . . . it's a virus.

| Laurie Anderson, \Home of the brave"

To make it possible to achieve distribution transparency, we have created

an AOP system named Distra. It consists of three aspect languages and an

Aspect Weaver. In this chapter, we will �rst discuss some general issues and

subsequently introduce these three languages. The next chapter will give an

overview of the transformations performed by the weaver, which we named

DistraC.

5.1 General

Before we introduce the aspect languages, we will �rst discuss some general

issues pertaining to the functionality of the system. We will �rst talk about

the transport layer which is used in the generated systems. Secondly, we

will discuss the remote instantiation ability and thirdly we will introduce

the parameter passing rules. To conclude this part we will detail the default

error-handlers.

RMI and Remote Instantiations

To ease development of our aspect weaver, named DistraC, we have decided

to use RMI as a transport layer for the distributed systems generated by

DistraC. RMI has the advantages that it is much easier to use than sockets

and TCP connections, and that it is included as standard in Java. We have

50
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chosen not to use one of the more advanced solutions we discussed in chapter

three, as RMI provided us with su�cient functionality, while having the

convenience to be included as standard in Java.

As mentioned in chapter three, RMI does not include a mechanism to

create instances of objects remotely. However, to make remote classes behave

identically to local classes, we must be able to instantiate instances remotely.

To be able to do this, we have included a remote instantiation behavior which

is totally transparent to the programmer of the base aspect, i.e. instantiating

an object remotely is identical to instantiation of an object locally.

However, when handling the distribution aspect, the programmer should

be aware that a remote instantiation is a two-step process: �rst a connection

to the remote class is made, and second an instance of that class is created.

This process will have an impact on the speci�cation of the location of the

class, and on error-handling.

More speci�cally, it is important to know that on every instance creation

a connection to a remote class will be made, which allows a �ne control on

the placement of the instances, and since instantiation implies two remote

operations, two classes of errors can occur here.

Parameter Passing

Also important for the behavior of remote classes is how parameters are

passed. Because we are using RMI, we are con�ned to the parameter passing

rules of RMI. However, we have managed to simplify these rules somewhat.

Recall that using RMI, a remote method invocation may fail if a parameter

is not serializable nor a remote class.

To avoid these failures from occurring, DistraC will attempt to transform

non serializable, non remote classes into remote classes. Sadly, this trans-

formation cannot be applied to classes for which the source is not available

(which we will call system classes, for sake of brevity). Examples of these

classes are the classes of the Java class library.

This gives us the following rules to determine which passing mode is used

(the �rst rule that matches is the rule which is used):

1. All classes declared as remote are passed by reference

2. Serializable classes (which are not declared as remote) are passed by

copy

3. All other non-system classes, (which are non-serializable and not de-

clared as remote) are passed by reference.
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The third rule implies that some classes will automatically be trans-

formed into remote classes. Except for the system classes described above,

transformation into remote classes will happen transparently, the user need

not worry about this. However, if DistraC encounters a system class which

should be made remote for the generated program to work, DistraC will

print out an error message and stop.

We estimate that this need not be a serious problem. A large number

of the classes in the Java class libraries are serializable, so passing them

as parameters will not be a problem. Many of the classes which are not

serializable are classes which have a strong connection with the VM the

program is running on, such as java.lang.System, and therefore may not

make much sense in an environment where multiple VM's are running the

program.

However, should the programmer wish to use a non-serializable system

class in the program, this can be achieved by writing a `wrapper' class for

this class, whose objects would simply contain a reference to an object of

the system class and forward the method calls to that object. This wrapper

class would then be used in the program wherever the original class is used,

and as for this class the source is available, it can be made remote.

Creating this wrapper class and replacing the references to it could be

performed automatically by DistraC, but as we estimate that it would only

be used very infrequently, and due to time constraints, we have not imple-

mented this feature.

The Default Error-handler

To ease the development of the distributed system, especially in the early

phases of implementing the distribution aspect, Distra provides a default

error-handler.

The idea here is that at some points of the development, the programmer

does not want to concern herself with failures. The primary concern initially

is the layout of the objects in the system, partial failures need not be handled

gracefully at this point.

To facilitate this, a default error-handler is provided. If for a given remote

method invocation, no error-handler is speci�ed by the programmer, the

default error-handler will be used.

The default error-handler produced by DistraC is identical to the default

error-handler of Voyager we mentioned in chapter three; it wraps the excep-

tion thrown by the remote method invocation in a Java RuntimeException

and rethrows it.
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We can now proceed with introducing the aspect languages used by

Distra. We will start with the language for the base functionality. Not sur-

prisingly, this language is Java.

5.2 Java

The language in which the base functionality is written is Java. However,

we have to impose one important restriction on the programs: the exception

java.rmi.RemoteException may not be thrown nor caught in the code.

This restriction guarantees that the concern of distribution is completely

separated out. The semantics of the RemoteException are that it is thrown

as a result of a remote method invocation. If this exception is thrown in

the base aspect code, this would mean that the concern of distribution

is included in the code. This is exactly what we want to avoid by spec-

ifying the distribution concern as an aspect, therefore we cannot allow

RemoteExceptions to be thrown or caught in the base aspect code.

Writing our \Hello, world!" example from chapter three is now extremely

simple, as we need not concern ourselves with the distribution aspect. (Note

that more extensive examples are contained in chapter seven.) The code is

totally identical to a non-distributed version, as can be seen below:

public class Hello {

String thetext;

public Hello(String text) {

thetext = text;

}

public void sayHello() {

System.out.println(thetext);

}

}

public class Runner {

public static void main(String[] args) {

Hello hel = new Hello("Hello, world!");

hel.sayHello();

}

}
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We have altered this example somewhat, so we can later illustrate some

of the features of Distra. The example now includes a constructor, which

takes as argument the text to be said.

To make this program a distributed program, we need to specify this

in a separate aspect �le, written in the Dist language, which we will now

introduce.

5.3 Dist

Speci�cation of the remote classes is done in a separate aspect �le. This �le

contains a number of declarations of remote classes and their location, writ-

ten in the Dist language. This section will give an overview of this language,

guided by its' abstract grammar.

The Dist language, of which the grammar is given in appendix A, is a

language we designed to easily allow speci�cation of remote classes, including

speci�c attributes of these classes. We will now discuss this language, guided

by the grammar.

5.3.1 Basics

The �rst three productions form the basic elements of the speci�cation, they

are used to specify that a number of classes are remote:

Distfile:

(Classdist)*

Classdist:

"class" FullyQualdName [Location] [Extends]

FullyQualdName:

<IDENTIFIER>

The Dist �le contains the speci�cations of a number of classes, the name

of each class being a fully quali�ed name, i.e. the name includes the package

of the class. This is done to avoid errors in case of duplicate class names.

Only non-system classes can be speci�ed here, i.e. can be made remote. The

reason for this restriction will be discussed in depth in the following chapter.

Basically, we need to modify the source of a class to make it remote, so if

we cannot access the source, we cannot make the class remote.
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The most basic remote classes does not include a Location description.

Instances of these classes cannot be created remotely. They can only be

used as reference parameters for remote method invocations. If we want

to instantiate objects remotely, we need to specify a location, as will be

explained in the next subsection.

5.3.2 Locations

To enable instances of classes to be created remotely, a location must be

speci�ed.

Location:

<HOSTNAME>":"<PORTNUMBER> | Block

Adding a Location part to a remote class makes it possible for instances

of this class to be created remotely. To specify which machine the instances

will be located on, an identi�er indicating host name and port number is

required. This can either be speci�ed literally or in a block of Java code.

The literal speci�cation has to be of the form hostname:portnumber e.g:

tongariki:4242. If the speci�cation is a block of Java code, this block will

be executed every time an instance of the class is created. The return value

of the block will indicate the server name, therefore it must be a Java String

of the above form, e.g. freturn "akivi:"+(4240+2);g If the String equals

null (e.g. the result of freturn null;g), no connection to a remote class

will be made, and the instance will be created locally.

A more extensive example of using a block to specify a location, will be

given in 5.3.4, as in the experiments detailed in chapter seven.

5.3.3 Additions

Last but not least, we can add some extra functionality to the class, which

is relevant to the concern of distribution.

Extends:

"extends" ClassBody

In some cases, extra functionality only pertaining to the distribution

aspect will have to be added to a non-remote part of the class. Extends

allows extra variables and methods to be declared in the body of the part,

ClassBody corresponds to a block declaring instance variables and de�ning

methods.
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Note that this functionality is placed on a local class, i.e. on the client,

and not on the remote class, i.e. on the server. This allows this functionality

to be used before a connection to the remote class is made, for example it

can be used to determine the location of the remote class to connect to.

The following subsection describes an example of the usage of the dist

�le, including the use of an extends clause.

5.3.4 Example

Let us now transform our \Hello, world!" example into a distributed system.

The simplest way in which to do this, is to create a Dist �le with the

following contents:

class HelloWorld

tongariki:4242

This speci�es that the HelloWorld class is a remote class, and that

instances of this class will be created on the server named tongariki, on

port number 4242.

As we have not speci�ed any error-handlers, DistraC will include the

default error-handlers. For our example, this means that the program will

stop when an error occurs.

We can extend this example with some extra features, such as a prim-

itive form of load-balancing. Suppose we have not one but two servers

named tongariki and akivi, and our client will create a large number

of HelloWorld objects. We can split the creation of the objects over the two

servers by specifying a Dist �le with this contents:

class HelloWorld {return split();}

extends {

private static int index = 0;

private static String[] hostnames =

{"tongariki:4242","akivi:4242"};

private String split() {

if (index == 0)

return hostnames[index++];

else

return hostnames[index--];

}

}
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This �le speci�es that the method named split should be called to de-

termine the hostname of the remote class and de�nes two static variables and

the split method. The return value of this method will alternate between

the two host names, providing a form of load balancing.

Should we now want to add error-handling to this example, we would

need to specify error-handlers. These speci�cations are performed in the Fix

language, which we will introduce next.

5.4 Fix

Speci�cation of error-handling of remote classes is done in a separate �le.

This �le contains a number of declarations of error-handlers for remote

classes, written in the Fix language. This section will give an overview of

Fix, guided by its' abstract grammar.

We designed the Fix language, of which the grammar is available in

appendix A, speci�cally to allow easy speci�cation of exception handlers for

exceptions thrown by remote invocations.

Note that in this �le exception handlers can be speci�ed for classes which

are not explicitly speci�ed as being remote in the Dist �le. This is useful

when classes are automatically transformed into remote classes due to the

rules of parameter passing.

It is not an error to have Fix speci�cations for a class which will not be

made remote. Fix speci�cations for classes which are not remote are simply

ignored. Also, if no Fix speci�cation is given for a remote class, the default

error-handlers will be generated for that class.

5.4.1 Basics

Fixfile:

(Classfix)*

Classfix:

"class" FullyQualdName [Extends][New][Bootstrap]

[Creates][Invokes]

The Fix �le contains the speci�cations of a number of classes, the name

of each class being a fully quali�ed name, i.e. the name includes the package

of the class. This is done to avoid errors in case of duplicated class names.

There are three major categories of error-handlers; Bootstrap, Creates

and Invokes. Each catches errors occurring at speci�c categories of remote
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method invocations.

1. Bootstrap handlers catch errors occurring when the connection to the

remote class is made, i.e. when the program connects to a remote

class with the intent to subsequently create an instance of this remote

class. (These handlers only apply to classes for which instances can be

created remotely.)

2. Creates handlers catch errors occurring when creating an instance re-

motely. (These handlers only apply to classes for which instances can

be created remotely.)

3. Invokes handlers catch errors occurring during an invocation of a

method of the remote class.

5.4.2 Exception Handlers

We will now discuss the di�erent categories of exception handlers;

Bootstrap:

BootCatchBlocks

BootCatchBlocks:

"{"(BootCatchBlock)*"}"

As stated above, exceptions can occur whenever the program tries to

connect to a remote class, so an instance can be created. Once a reference

to the remote class is obtained, a constructor of this class will be invoked.

The type of exceptions which can be thrown here are:

java.rmi.RemoteException if the remote host could not be contacted.

java.net.MalformedURLException if the name of the remote host, as

speci�ed in the Dist �le contains illegal characters, such as slashes

(\/").

java.rmi.UnknownHostException if the host, as speci�ed in the Dist

�le, is unknown.

Note that subclasses of the above exceptions may also be thrown. To

catch these exceptions a number of BootCatchBlocks can be speci�ed, which

are grouped by surrounding curly braces. This allows multiple exception

handlers, each for a di�erent kind of exception, to be speci�ed.
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Note that if an error-handler is speci�ed, error-handlers have to be spec-

i�ed for all of the above exceptions, DistraC will not generate the default

error-handlers for the remaining exceptions. For example, if only an error-

handler for java.rmi.RemoteException is speci�ed, an error will occur at

compile time, because no handlers are speci�ed for the two other exceptions.

DistraC could perform a scan of the de�ned error-handlers, to de�ne which

are not included, but we did not implement this due to lack of time.

BootCatchBlock:

"catch" "(" <TYPENAME> <PARAMNAME> ")"

(Block | BootBreak | BootSwitch)

BootBreak:

"break" [Block]

BootSwitch:

"switch" [Block]

The speci�cation of the error-handler is highly similar to how the \catch"

part of a Java \try-catch" is speci�ed. A class of exception is speci�ed in

<TYPENAME> and a name for the formal parameter in <PARAMNAME>. This

name can then be used in the block of Java code which contains the actual

error-handling code.

We have extended the Java \catch" part here by allowing a "break" or

a "switch" keyword (which may be followed by a optional Block) instead

of a Java Block.

Using the "break" keyword indicates that the instance should not be

made remotely, but should be made locally. When using a BootBreak no

connection will be made to the remote class at this time, and the instance

will be made locally.

The "switch" keyword indicates that the connection should be switched

to another server. If no Java Block is given, the server used is the one

indicated in the Dist �le. If a Java Block is given here, this block should

return a String of the form hostname:portnumber which indicates the server

to connect to. As in the Dist �le, if the String indicating the remote server

equals null, no link will be made to the server and the instance will be

created locally.

Switching to another server entails trying to establish a connection to the

alternative server. Note that this process can also fail. The error-handlers

used to handle this failure will, of course, be the bootstrap error-handlers.
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This can of course lead to the program looping if all the servers it tries

to connect to are down, and there is no other alternative provided (such

as a BootBreak). We assume it is the responsibility of the programmer to

determine if this is the required behavior, and, if not, to change the error-

handling code.

Creates:

(Create)+

Create:

FormalParameters CatchBlocks

As there can be multiple constructors of a class, an exception handler

can be speci�ed for each. To identify for which constructor the handlers are

intended, the formal parameters are used. Note that the parameters must

be placed within braces, e.g. (String first, int second).

Whenever an instance is created remotely, java.rmi.RemoteException

and any of its subclasses can be thrown.

Invokes:

(Invoke)+

Invoke:

MethodDeclarator CatchBlocks

MethodDeclarator:

<METHODNAME> FormalParameters

To specify for which method an exception handler is intended, the me-

thod name and the formal parameters (as above) are required. (This to take

into account overloaded method names.)

Whenever an invocation occurs, java.rmi.RemoteException and any of

its subclasses can be thrown.

Note that if the method has a declared return value di�erent from void,

the CatchBlock has to return an object (or primitive) of the declared type.

If this does not happen, a compile error will occur.

CatchBlocks:

"{" (CatchBlock)* "}"

CatchBlock:
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"catch" "(" <TYPENAME> <PARAMNAME> ")"

(Block | Break | Switch)

Break:

"break" Block

Switch:

"switch" Block

CatchBlocks are similar to BootCatchBlocks, therefore we will only de-

scribe the di�erences between the Break and Switch parts and the BootBreak

and BootSwitch parts.

The Break part allows the link to a remote instance of the class to be bro-

ken, and a local instance to be created. The di�erence between a BootBreak

and a Break is that here the Block is required. This is because actual cre-

ation of the local instance is achieved by calling the method with the name

"distrac break instance" from within the block. For each constructor a

private "distrac break instance" method, with formal parameters iden-

tical to the formal parameters of the constructor, will be included in the

object. Whereas the constructors may create the object remotely (depend-

ing on the speci�cations in the Dist �le), these methods will always create

an instance locally.

The Switch part allows this instance to refer to another remote instance,

this instance would, as it were be, \switched" to another remote instance.

The important conceptual di�erence between a BootSwitch and a Switch

is that here we do not switch servers, but switch instances. The second

di�erence here is, as in the Break, that the block is required. To switch to

another remote instance, the private method "distrac switch instance"

must be called from within the block. The method has one parameter, the

type of which is the class of this instance. (Note that this method will only

be generated by DistraC if there is at least one Switch speci�ed for this class

in the Fix �le.)

If the Break or Switch parts are part of an Invoke error-handler, the call

which caused this error will be re-executed on the new instance. The call, in

case of a Switch, may of course also fail. The error-handlers used to handle

these failures will be the ones speci�ed for this call, i.e. the ones the Switch

is a part of.
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5.4.3 Additions

Last but not least, as in the Dist �le, some additions to the class can be

speci�ed.

Extends:

"extends" ClassBody

New:

"new" Block

In some cases, extra functionality only pertaining to the error-handlers

aspect will have to be added to a non-remote part of the class. Extends

allows extra variables and methods to be declared in the body of the part,

ClassBody corresponds to a block declaring instance variables and de�ning

methods. New allows a block of statements to be executed locally whenever a

new instance is created. This can be used to e.g. initialize instance variables

declared in the Extends.

Note that, as in Dist, this functionality is placed locally. This allows

error-handling code to be performed locally, avoiding that new errors are

caused by the error-handling code.

5.4.4 Example

Let us now extend our example with some error-handling. Suppose we have

two servers available: tongariki and akivi. We are not using them for load

balancing, the �rst server is the `main' server, the second is a backup. To

assure automatic roll-over to the backup server at instance creation time we

specify the following Fix �le (assuming we are using the Dist �le which does

not use load-balancing):

class HelloWorld

extends { private boolean first = true; }

{

catch(Exception ex} switch {

if(first) {

first = false;

return "akivi:4242";

}

else return null;

}

}
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The �le is fairly straightforward; we �rst declare an instance variable

first which determines if we are trying the �rst server or not. Upon failure

to connect to the remote host we specify that a switch to another host will

be made. If we tried to connect to the �rst server, we switch to the second

server. If we tried to connect to the second server, we will not connect to a

remote server, but create the instance locally.

Recall that remote instance creation is a two-step process, here we have

only handled the �rst step: connecting to the remote class. We can handle

the second step: creating the instance, and handle errors occurring during

the method invocation, by specifying the following in the Fix �le:

class HelloWorld

extends {

private boolean first = true;

private void doSwitch() {

HelloWorld hello = new HelloWorld("Hello, world!");

distrac_switch_instance(hello);

}

}

{

catch(Exception ex}

switch {

if(first) {

first = false;

return akivi:4242;

}

else

return null;

}

}

(String text) {

catch (RemoteException ex)

switch {doSwitch();}

}

sayHello() {

catch (RemoteException ex)

switch {doSwitch();}

}
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We specify here that if an error occurs when invoking the constructor,

or when invoking the method, we should switch to another instance of the

object, which will be performed in the doSwitch method. This method,

which we de�ned in the extends, is simple: it creates a new instance and

switches over to this instance. Because the error-handler for the �rst part of

instance creation will switch over to the backup server, or to a local instance,

we need not specify anything extra here.

Now to ensure that the servers contain the remote classes of which we

want to create an instance, we need to specify this. Our last aspect language;

Serv, was created to facilitate these speci�cations.

5.5 Serv

Because instances can be created on a remote machine, there is a need for a

\server" program in which these classes will reside. DistraC will create these

server programs, one for each host and port combination.

However, as the host and port names can be given by a block of code,

there is no practical way to let DistraC deduce on which computer instances

of a remote class can be created. Therefore this information has to be spec-

i�ed separately.

We have designed the Serv language, of which the grammar is given in

appendix A, to easily specify which classes are placed on which host.

A Serv �le de�nes a number of servers, by providing host name and port

number, in the form hostname:portnumber e.g: tongariki:4242.

For each server a number of classes can be speci�ed as being contained

on that server, so that instances of these classes can be created there. The

name of each class should be a fully quali�ed name, i.e. the name includes

the package of the class. This is done to avoid errors in case of duplicate

class names.

Example

For our example, in both the load-balancing and the fault-redundant version,

we need to specify the following in the Serv �le:

tongariki:4242 {

HelloWorld; }

akivi:4242 {

HelloWorld; }
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We have now seen all the aspect languages, and can now proceed with

detailing how the aspect weaver will transform the given code, integrating

all the aspects. These transformations are the subject of the next chapter.

5.6 Conclusions

In this chapter we detailed some general design decisions and introduced the

aspect languages, Dist, Fix and Serv.

We �rst discussed the use of RMI as a transport layer for the gener-

ated programs and how remote instantiations become a two-step process.

Furthermore we introduced our rules for parameter passing, and the default

error-handler provided by DistraC.

We talked about the languages used in the system; Java, to which we

have added a restriction of not allowing any RemoteExceptions, and our

three aspect languages: Dist, Fix and Serv, which we speci�ed fully.

With full knowledge of the languages we de�ned, we can now detail

how our aspect weaver transforms the input �les, integrating these di�erent

aspects into an executable �le.



Chapter 6

Transformations to the Code

If everything's under control,

you're going too slow.

| Mario Andretti

Having introduced the aspect languages in the previous chapter, we can

now discuss how DistraC, our aspect weaver, will transform the input code,

to provide code which integrates these aspects.

We will �rst introduce the interfaces generated by the weaver, which we

have called classfaces. Secondly we will discuss how a class is made remote

by splitting it into a local proxy and a remote part. Thirdly we will talk

about how correct parameter passing is achieved, according to the rules we

have introduced in the previous chapter. Following this, we will detail how

instances of remote classes are created, with special emphasis on remote

instantiation. Finally, we will give an overview of the servers created by

DistraC.

6.1 Classfaces

As the programs generated by DistraC will use RMI as a transport layer,

all remote classes will have to implement a remote interface. Recall that in

RMI the type of a reference to a remote class is not the type of the remote

class, but the type of a remote interface, implemented by the class.

Therefore, DistraC automatically generates a remote interface for each

remote class. We call this interface a classface, and its name is the name

66
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of the remote class, to which Classface is prepended. Note that DistraC

veri�es that a class with this name does not exist. If such a class exists, the

name of the classface will be changed such that there are no conicts.

A classface extends the interface java.rmi.Remote, contains all non-

static methods de�ned in the remote class and extends the throws clause of

each method with a java.rmi.RemoteException. As said in chapter three,

a remote interface needs to extend java.rmi.Remote, and have all declared

methods throw java.rmi.RemoteException.

RemoteExceptions

Extending the throws clauses of all methods may lead to incorrect code.

This is because, in Java, a sub-interface (or subclass) of a given interface (or

class) is not allowed to extend the throws clauses of the declared methods.

This might not seem to be a problem, because no methods are declared in

the java.rmi.Remote interface, but this is not the case.

The problem lies with Object; all interfaces are subclasses of Object,

therefore, for a number of methods, such as equals and toString, we may

not extend the throws clause.

We have a straightforward solution for this problem: instead of using the

original name of the method in the classface, we prepend the string distrac

to the name of the method. This ensures that these methods have not been

declared in a super-interface, and therefore we can extend the throws clause

with java.rmi.RemoteException. Note that, for consistency reasons, we do

not only prepend the names of the methods declared in Object, we prepend

distrac to all the method names in the interface.

Now, because we have changed the method names, this implies that

the remote class cannot implement the classface. Therefore, extra methods

are added to the remote class. These methods, with name and parameters

declared in the classface, forward the method call to the original method.

We could have chose to rename the methods in the class, but this would

imply that we would need to change all the method invocations using the old

method names to the new method names. We have not done this because

the `forwarding' methods which are added will be used to enable correct

parameter passing, which we will discuss in section 6.3.

There is one disadvantage to this solution, which is that method names

in the code may not start with distrac . If this is the case, errors may occur.

For example, consider a remote class containing the methods distrac boo

and boo. The classface will declare the methods distrac distrac boo and

distrac boo. This implies that a method distrac boo will be created in the
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remote class, which redirects the method call to boo. However, the remote

class already contains a method called distrac boo, therefore the method

is declared twice, and the code is incorrect.

We could have the weaver search for these cases and handle them cor-

rectly. But, considering the extra processing this would imply, and the fact

that this is not relevant to the core of our work, we have elected to impose

the rule that no methods may start with distrac .

Static Methods

Note that we have speci�ed that only non-static methods of the remote class

are contained in the classface, which means that the static methods will not

be executed remotely. The reason for this is that there is an unresolved issue

if several remote objects of the same class exist on di�erent servers.

With all objects of a remote class on one server, the class methods can

be executed by the class on that server, which conserves the semantics of

class methods and class variables. However, when these remote objects are

distributed over di�erent servers, it is not clear where the class methods

must be executed: do we consider the class methods to be limited in e�ect

to the server on which that class is located, or should the e�ect be on all

occurrences of that class, spread out over the di�erent servers?

It seems more logical to consider the second, i.e. we should have a `global'

class, of which all occurrences on the di�erent servers are a reection. How-

ever, this poses a twofold problem: �rstly, where should the processing of

a remote class be performed; on one occurrence, or on all occurrences, and

secondly, where are the values of the class variable kept; on one occurrence,

or on all occurrences?

The �rst option, centralizing all class information in one occurrence

seems the most straightforward. However, this implies that if the server

containing this occurrence fails, invoking static methods will be problematic

because of the possibility that the other occurrences will be in an invalid

state since their static variables have not been updated. This implies that,

at least, we must perform replication on the static variables to achieve a

system which can recover if a server fails.

Because of the extra work this replication would entail, we have decided

not to perform static methods remotely. However, this does not prohibit this

feature to be added to the system later.

Having introduced the classface for the remote class, we can now proceed

with detailing the transformations needed to make a class truly a remote

class.
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6.2 Remote Classes

As our goal is to achieve distribution transparency, we want accesses to the

remote class to be as transparent as possible, i.e. a remote class should be

indistinguishable from a local class.

To achieve this, we have two options: we could change all references and

accesses to the remote class so they handle the `remote-ness', or we could

replace the remote class with a proxy, which encapsulates the `remote-ness'.

We have chosen the second option, because of this encapsulation. It limits

the impact of the class changes, making the code easier and faster to process,

and making resulting code smaller and easier to read.

This entails that making a class a remote class �rst consists of splitting

it up into two parts, a local proxy and the real remote class. The local proxy

will contain a reference to the real remote class, forward method calls to this

remote part, and handle the extra processing required due to the remote

method invocations. The remote part will perform the actual processing,

and return the result, if any, to the proxy, which will return it to the caller.

A schematic overview of this transformation is given in �gure 6.1.

Before After transformation

Target Target

Parent Remote

Method forwards

Remote_target

Classface_Target

Parent

Figure 6.1: The transformation process making a class named \Target" re-

mote. On the left hand side the situation before, on the right hand side the

situation after the transformation. Rounded boxes represent interfaces.
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Figure 6.2 gives an overview of how these two classes interact when a

method is invoked on the proxy.

Time Caller Target

Foo

Foo

Remote_target

distrac_Foo

Figure 6.2: The interaction between the Proxy (named \Target") and the

remote part (named \Remote Target") when a object (\Caller") invokes a

method \Foo" on the Proxy. We have included the passing of return value

as dotted lines. Note that the method call \distrac Foo" is a remote method

invocation.

We will now discuss these two classes in more detail. We will �rstly talk

about the proxy and secondly detail the remote part.

The Proxy

The proxy is the part of the remote class which takes care of the overhead

generated by the remote method invocations, encapsulating the `remote-

ness' of the class.

Basically, the proxy forwards incoming method calls to the remote part

of the class, and handles all overhead induced by RMI. This makes the

proxy a `drop-in' replacement for the original remote class, i.e. it replaces

the original class and provides the same functionality. Therefore, the name

of the proxy class is identical to the name of the original class, and the

proxy class has the same superclass and implements the same interfaces as

the original class.

To forward the method calls, the proxy contains, internally, a reference

to the remote part, which has as type the classface of the remote class. All
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methods of the proxy will call the corresponding method on the reference,

making it a remote method invocation. Also, these methods will perform

some transformations needed for correct parameter passing, which we will

discuss in 6.3, and will handle exceptions thrown by RMI. Recall that these

exception handlers are, or the handlers speci�ed in the Fix �le, or the default

error handlers generated by DistraC.

Note that, as the error-handlers of the Fix �le are added here, the con-

tents of the Extends in the Fix �le, are also added to the proxy, and not to

the remote part.

We have not yet discussed how the reference to the remote part is ob-

tained. This reference can be obtained in two ways, either through a remote

instantiation, which we will discuss in 6.4 or it can be given as a parameter

to a remote method invocation, which we will discuss in 6.3.

However, before we discuss this, we must �rst detail the functionality of

the remote part.

The Remote Part

The easiest way to envision the remote part, is to consider it as the original

class, with a di�erent name, and some extra methods.

The name of this remote part is the name of the remote class, to which

Remote is prepended. Note that DistraC veri�es that a class with this name

does not exist. If such a class exists, the name of the remote part will be

changed such that there are no conicts.

The extra methods added to the class, are those we described when

introducing the classface; they enable the class to implement the classface,

handle extra processing required for parameter passing, and forward method

invocations to the original method.

To be able to be used in a remote method invocation, �rstly the remote

part is also set to implement the classface which was generated for the

remote class, and secondly, the remote part is immediately exported when

it is created.

Having divided the class in proxy and remote part, we must now ensure

that the parameters and return values of the remote method invocations are

passed correctly between the di�erent machines.

6.3 Parameter Passing

Recall that in the previous chapter, we introduced the following parameter

passing rules:
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1. All classes declared as remote are passed by reference

2. Serializable classes (which are not declared as remote) are passed by

copy

3. All other non-system classes, (which are non-serializable and not de-

clared as remote) are passed by reference.

We will now discuss the transformations required for these rules, in re-

verse order.

To satisfy rule three, the classes which satisfy this rule will be trans-

formed into remote classes, which will result in rule one being applied. Note

that this implies that the parameters of the method of these classes will also

have to satisfy these rules, which implies that some of these classes may

also be made remote. DistraC performs this transitive closure to determine

which classes have to be made remote in a special, pre-processing stage and

will return an error here if a class is encountered for which the source is not

available.

Satisfying rule two is straightforward. This is because the rule is identical

to the RMI rule which states that serializable classes are passed by copy. As

we are using RMI as the underlying transport layer, no extra processing has

to be made.

Rule one requires a larger amount of work; if we determined that a

parameter is a remote object, that parameter is not a reference to the remote

part, but to the proxy of the part. Therefore, the proxy must be unwrapped

from the remote object, so the remote part may be passed as reference, and

the part must be re-wrapped in a proxy at the receiving end.

These wrapping and unwrapping operations will be performed by the

forwarding methods in the proxy and by the forwarding methods in the

remote part.

Note that passing the remote part as parameter entails that the method

in the classface cannot have as type the proxy of the remote part. The type

will be the type of the remote part. Also, this requires that the proxies pro-

vide an alternate instantiation, which just wraps an existing remote object.

A �nal remark of parameter passing is how interfaces are handled. The

above parameter passing rules apply, of course, not only to objects whose

type is a given class, but also to objects whose type is an interface. This

implies a certain overhead when passing an interface type as a parameter.

As DistraC generates proxies for remote classes and not for remote interfaces,

the interface is not wrapped in a proxy for the interface but an interface for

the class.
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To allow this, the interface will be transparently extended with a method

which allows the class of the object to be determined. When the remote part

needs to be wrapped in a proxy, the class of that proxy will be determined

using the above method, and the object will be wrapped in a proxy of that

class.

This procedure allows casts from the interface of the parameter to the

actual class of the parameter to be performed in the methods using that

object, which is a situation which can occur quite frequently in Java.

Having a proxy wrap an existing remote part is a �rst way in which a

proxy can refer to a remote part. A second way to have this reference in a

proxy, is when the proxy is instantiated normally, which we will discuss in

the next section.

6.4 Remote Instantiation

As a proxy is a drop-in replacement for the original class, this proxy will

be instantiated by the base code, instead of the original class, whenever the

base code intends to instantiate the original class. It is obvious that because,

essentially, the proxy forwards method calls to a remote part, this remote

part must also be instantiated when the proxy object is created.

Instantiation of the remote part can be performed in two di�erent ways:

� If the Dist �le does not contain a speci�cation for remote instantia-

tion, the constructors of the proxy will create a remote part locally by

invoking the corresponding constructors in the remote part.

� If the Dist �le does contain a speci�cation for remote instantiation,

the constructors of the proxy will create a remote part on a remote

machine.

However, RMI does not provide a mechanism to instantiate an object

remotely, therefore we must implement a mechanism for remote instantiation

ourselves. The mechanism we used is inspired by the well-known Factory

design pattern [6].

For each remote class which can be instantiated remotely, we create

a Bootstrap class. This class contains methods which create an instance

of the remote part of the remote class, and returns this remote part. For

each constructor of the remote class, a corresponding method exists in the

bootstrap class.

But to be able to create a remote instance, an instance of the bootstrap

class will have to be placed on the server which will contain the remote part
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of that instance. This is because instantiation can not be done across virtual

machines. We need to place the bootstrap object in the Java virtual machine

where the remote part should be.

The above implies that the bootstrap object is itself a remote object. To

make this remote object available to the proxies, each server will instantiate

an instance of this object, as indicated in the Serv �le, and will register this

object in the RMI binder under a prede�ned name (the name of the class).

An overview of the structure for a remote class which can be instantiated

remotely, is given in �gure 6.3.

Classface_
Bootstrap_
Target

Target

Parent Remote

Method forwards

Remote_target

Classface_Target

Instantiation

Bootstrap_Target

Figure 6.3: An overview of the classes resulting from the transformation

process if the class can be instantiated remotely. Rounded boxes represent

interfaces.

To instantiate an object remotely, the constructors of the proxy now

have to:

1. Obtain a reference to a bootstrap object by using the lookup method

provided by the RMI binder. The host name used in the lookup is the

host name given in the Dist �le, either literally or by a block of code.

2. Invoke the factory method corresponding to the constructor. This will

return a reference to the remote part of the object, which will be used

by the proxy as the target object of the method redirections.
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These two steps, which use RMI, may throw exceptions. The error-

handlers used to catch these errors are, respectively, the Bootstrap handlers

and the Creates handlers declared in the Fix �le. Recall that if the Fix �le

does not declare any error handlers, the default error handlers are used.

Also note that, as determining the host name when obtaining a reference

to a bootstrap object is performed in the proxy, the contents of the Extends

clause of the Dist �le is placed in the proxy.

In this section we have briey mentioned the servers which will be created

by DistraC. We will now give an overview of these servers.

6.5 The Servers

As each object must be contained in a Java VM to be able to access and use

it, we must provide a virtual machine for the remote objects. These virtual

machines will be our servers.

Using the Serv �le, DistraC will generate a number of class �les, one for

each server declared in the Serv �le. These executable class �les will, when

run, enable remote objects to be created on that server.

The code of the server class is straightforward, it consists of two main

steps:

1. The RMI binder service, called the registry, is started on that server,

i.e. on the local host, with the port speci�ed in the Serv �le. Although

only a single RMI registry is needed for a distributed system, and all

bindings can be placed in that binder, this is not advisable. This is

because, if the machine holding the registry fails, no bindings can be

resolved, and the entire distributed system can become un-operational.

Therefore we use one binder per server, and only the objects located

on that server are registered in that binder. If the machine containing

that server fails, only lookup of objects on that server will fail (which

is acceptable because the server itself will be un-operational).

2. For each remote class of which instances can be created on this server,

as declared in the Serv �le, an instance of the bootstrap class will

be created, exported and bound to a predetermined name. When the

clients obtain a reference to the bootstrap object, they will use host-

name and port de�ned in the Dist �le to address the binder service on

that host machine with corresponding port, and request the object of

the predetermined name.
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Exporting the bootstrap objects will launch a number of non-daemon

threads which handle the RMI connections to the bootstrap objects. This

implies that no extra waiting or looping code must be de�ned in the server

class, and therefore or discussion of the code of the server is complete.

Having now seen the transformations performed by the weaver, we can,

in the next chapter, introduce the experiments we performed to determine

the achieved degree of distribution transparency.

6.6 Conclusions

In this chapter we described the transformations performed by the weaver,

which integrate the di�erent aspects into executable code.

We �rst introduced classfaces, the interfaces through which the remote

classes will be accessed. This was followed by an overview of how a class is

made remote by splitting it up into a local proxy and a remote part. Next, the

issue of parameter passing was discussed, detailing how the rules described in

the previous chapter are applied. Following this, we described how instances

of remote classes are created, emphasizing remote instantiation. And last,

but not least, we have given an overview of the servers generated by DistraC.

Having fully described the aspect languages and given an overview of the

workings of the weaver, we can now give an overview of the experiments we

performed to determine if we have a high degree of distribution transparency,

while still retaining su�cient control of error-handling.



Chapter 7

Main Experiments

\That's why it's always worth having a few philosophers around the place.

One minute it's all Is Truth Beauty and Is Beauty Truth, and Does A Falling Tree

in the Forest Make A Sound if There's No one There to Hear It,

and then just when you think they're going to start dribbling one of 'em says,

Incidentally, putting a thirty-foot parabolic reector on a high place

to shoot the rays of the sun at an enemy's ships would be

a very interesting demonstration of optical principles."

| Terry Pratchett, \Small Gods"

To validate our claim that a higher degree of distribution transparency

can be achieved though AOP, we have performed a number of experiments,

of which two will be discussed in this chapter.

The �rst experiment is a distributed messaging application, in which

users can send short, textual, messages to other users, the second is a simu-

lation of a distributed library, where books are searched for in a distributed

fashion.

7.1 The Messaging Application

Our �rst experiment is a messaging application, where users can send mes-

sages to each other in real time. We will �rst give an overview of the appli-

cation, second we will describe the implementation of the base aspect, and

third is a description of the distribution aspect. We will conclude with a

discussion on some points of interest.

77
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7.1.1 Situation

A currently quite popular and reasonably small class of distributed systems

are messaging applications. These allow a user, when registered, to send

short, textual, messages to other registered users, which arrive immediately.

Our �rst experiment is such a messaging system. We have decided to

only provide basic functionality, to keep the example short and easier to

understand.

The system is structured as follows:

� There is one central server for the system, which will keep a list of reg-

istered clients. The server will inform all clients when this list changes,

i.e. when a client has subscribed or unsubscribed itself.

� As implied above, a client can register and unregister itself on the

server. Registering implies providing a unique name for the client (usu-

ally the username or her alias) and a reference to the mailbox used by

the client.

� A client can request a list of the currently registered clients to the

server. The server will return a list containing the names of the clients.

Also, a client can obtain a reference to another clients' mailbox.

� To send a message to another client, a given client obtains the reference

to the other clients' mailbox, and places this message in this mailbox.

Also, the following items are relevant for error-handling:

� The server is assumed to be a machine with a high availability that

can recover from a failure. This means that down time will be minimal,

and the state of the server after a failure is resolved, will be identical

to the state immediately before the failure occurred.

� Clients are more error-prone, and may fail at any time. It is acceptable

for a message to a client to be lost, but only if the sending user is

informed of this loss.

Having seen the overall structure and functionality of the system, we will

now discuss the code for the base aspect, i.e. ignoring the issues created by

the distributed nature of the system.
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7.1.2 The Base Aspect

We will now introduce the code for the classes of the base aspect. We will

�rst discuss the ContactManager and the ContactSingleton classes, which

are the classes responsible for managing the list of users. Second, we will

introduce the Message class, which contains the actual messages passed

around, and the MailBox class, which is the representation of a user in the

system. Third, and last, we will briey discuss the user interface.

ContactManager

Management of the list of users and their mailboxes is performed in the

ContactManager.

The ContactManager keeps the associations of users and their mailboxes

in a standard Java Hashtable, with as key the user name and value the

mailbox. A user can only add her mailbox to the Hashtable, if the username

is not already a key in the table.

Upon modi�cations of the hashtable, the manager will notify all mail-

boxes in the table by calling the usersChanged method on each mailbox. A

Java Vector containing the names of the connected users can be obtained

by calling the method getUsers.

To get the mailbox for a given user, the method getMailBox must be

called, with as parameter the name of that user. If the user does not exist, a

UserNotFoundExceptionwill be thrown. This exception is a simple subclass

of the standard Java Exception, which does not add any extra functionality.

(Therefore we will not include the code for this exception here.)

The code for the ContactManager is straightforward, as can be seen

below:

package dmsg; import java.util.*;

public class ContactManager {

private Hashtable users;

public ContactManager() {

users = new Hashtable();

}

public boolean addUser(String name, MailBox box) {

if (users.containsKey(name))

return false;
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else {

users.put(name, box); updateUsers();

return true;

}

}

public void removeUser(String name) {

users.remove(name); updateUsers();

}

private void updateUsers() {

Enumeration boxes = users.elements();

while (boxes.hasMoreElements()){

MailBox mb = (MailBox) boxes.nextElement();

mb.usersChanged();

}

}

public Vector getUsers() {

Vector retval = new Vector();

Enumeration usernames = users.keys();

while(usernames.hasMoreElements())

retval.addElement(usernames.nextElement());

return retval;

}

public MailBox getMailBox(String name)

throws UserNotFoundException {

Object box = users.get(name);

if (box == null)

throw new UserNotFoundException

("User "+name+" not registered here");

return (MailBox) box;

}

}
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ContactSingleton

To register herself, and to be able to contact other users, a user must �rst ob-

tain a reference to the ContactManager. It is obvious that only one manager

may be allowed in the system, since it centralizes all user contact informa-

tion.

A well-known design pattern that guarantees uniqueness of an object and

an easy way in which this unique object can be accessed is the Singleton

design pattern [6]. The class ContactSingleton is used to implement this

pattern for the ContactManager class.

The idea here is that ContactManager is never instantiated directly,

but always through the ContactSingleton class. This class has a static

variable which contains a reference to the unique ContactManager instance.

The method getInstance returns this unique instance.

Getting a reference to the unique class is easily performed through the

following code: (new ContactSingleton()).getInstance();. The advan-

tage of this implementation of the Singleton pattern is that no static meth-

ods are used, which is important in our case, since DistraC does not handle

static method invocations correctly.

The code for ContactSingleton is quite simple:

package dmsg;

public class ContactSingleton {

private static ContactManager themanager;

public ContactSingleton() {

if (themanager == null)

themanager = new ContactManager();

}

public ContactManager getInstance() {

return themanager;

}

}

Message and MailBox

The actual data which is passed around between the di�erent users, are

simple messages, represented in the Message class. This class is a simple

wrapper for the username of the sender and the text being transmitted, as

can be seen below:
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package dmsg;

public class Message implements java.io.Serializable {

public String username;

public String text;

public Message(String user, String thetext) {

username = user; text = thetext;

}

}

To send a message to a user, we need to put it in her MailBox. There-

fore, the MailBox class is the representation of a user within the system. It

contains a Vector of Messages, and provides a method addMessage which

adds a new message to the Vector.

This class is executable, the main method will set up and run the appli-

cation by creating a MailBox instance, using the Singleton pattern to obtain

a reference to the ContactManager, registering the user, and creating a user

interface, which we will describe in the next part.

The code for the MailBox class is quite simple, as can be seen below:

package dmsg;

import java.util.*;

public class MailBox {

private Vector messages;

private FancyUI ui;

public MailBox() {

messages = new Vector();

}

public void addMessage(Message msg) {

messages.addElement(msg); ui.newMessage();

}

public Vector getMessages() {

return messages;

}
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public void setUI(FancyUI theui) {

ui = theui;

}

public void usersChanged() {

if (ui != null)

ui.usersChanged();

}

public static void main(String args[]) {

if (args.length != 1) {

System.out.println("Need user name as argument!");

System.exit(1);

}

MailBox mb = new MailBox();

ContactManager cm =

(new ContactSingleton()).getInstance();

if (!cm.addUser(args[0],mb)){

System.out.println("User name already in use.");

System.exit(1);

}

FancyUI ui = new FancyUI(cm,args[0],mb);

mb.setUI(ui); ui.usersChanged();

}

}

FancyUI

We have also implemented a user interface for the system, in the FancyUI

class. We will not include it here as it is quite large, while not containing

much relevant code. Three methods are of interest: usersChanged, sayError

and sendMessage.

The usersChanged method will display a new list of online users, based

on the result of calling the getUsers method on the ContactManager. Dis-

playing an error message is achieved by calling the static sayError method,

which will print out this message for the user to see. The reason why this

method is static will be discussed in 7.1.4. sendMessage sends a message
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to a given user, the code for the method is straightforward, as can be seen

below:

public void sendMessage(String username, String msg) {

try {

MailBox mb = cm.getMailBox(username);

mb.addMessage(new Message(thisname, msg);

}

catch(UserNotFoundException ex) {

sayError(ex.toString()); usersChanged();

}

}

Having �nished the base aspect, we can now concentrate on the distri-

bution aspect.

7.1.3 The Distribution Aspect

With the code for the base functionality complete, we can now reason about

which classes should be made remote, where these remote classes should be

placed, and how to handle errors.

Dist and Serv

Deciding which classes should be remote is quite straightforward: We need

the contact manager to be placed on a central server, but we need to take

into account the singleton design pattern.

Therefore if we declare ContactSingleton to be remote, and locate it

on a central server, the unique instance of the ContactManager will also be

located on the server. To achieve this, we specify the following in the Dist

�le:

class dmsg.ContactSingleton tongariki:4242

We need not specify any other class as being remote; DistraC will auto-

matically deduce which other classes should be made remote because of the

parameter passing rules.

However, to illustrate the rules, we will discuss how they are applied to

the MailBox and Message classes.
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� MailBox will be made remote. This is because it will be given as a

parameter to the addUsermethod of the ContactManager class, which

is also remote. The last because it is given as return value of the

getInstance method of ContactSingleton.

� Message will not be made remote. It is a parameter of a method of

the MailBox class (which, as deduced above, is remote), but, because

it implements the Serializable interface, it is not made remote.

Having speci�ed a remote class which can be instanced remotely, we need

to indicate the servers on which this class can reside. This is achieved by

the following Serv �le:

tongariki:4242 {

dmsg.ContactSingleton;

}

With the above speci�cations, we can compile a working messaging sys-

tem. However, this system will not be able to recover from any partial fail-

ures, such as, e.g. a users' machine failing.

Fix

To add failure recovery to the distributed system, we have to specify a

number of exception handlers in a Fix �le.

Recall that the server was speci�ed to be on a machine with high avail-

ability. This implies that communications from the clients to the server will

rarely fail, and if there is a server failure, this will be quickly resolved. There-

fore, in case there is a communication failure, we can let the clients retry

until the communication completes successfully.

This strategy is realized by giving the following Fix speci�cations for the

ContactSingleton and the ContactManager class:

class dmsg.ContactSingleton

{

catch(Exception ex)

switch {

FancyUI.sayError("Server down, retrying.");

return "tongariki:4242";

}

}

() {
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catch(java.rmi.RemoteException ex)

switch {

distrac_switch_instance(new ContactSingleton());}

}

getInstance() {

catch(java.rmi.RemoteException ex)

switch {

distrac_switch_instance(new ContactSingleton());}

}

class dmsg.ContactManager

extends {

private void retry() {

FancyUI.sayError("Server down, retrying.");

ContactManager newcm =

(new ContactSingleton()).getInstance();

distrac_switch_instance(newcm);

}

}

addUser(String name, MailBox box) {

catch(java.rmi.RemoteException ex)

switch {retry();}

}

getMailBox(String name) {

catch(java.rmi.RemoteException ex)

switch {retry();}

}

getUsers() {

catch(java.rmi.RemoteException ex)

switch {retry();}

}

removeUser(String name) {

catch(java.rmi.RemoteException ex)

switch {retry();}

}

The above speci�es that whenever an exception is thrown while con-

tacting the server, �rst an error is printed out, and second the instance is

switched over to a new instance. This `new' instance will be the singleton,

located on the same server. However, the server may still be inoperational,
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therefore the error-handlers will be re-invoked, which implies that the server

will be re-contacted, et cetera . . . In other words, while the server is down,

the client will retry until the server is contacted successfully.

As stated in the speci�cations, clients are more error-prone. If a message

can not be delivered because a client has failed, the message may be lost,

but an error-message has to be printed out. This can be easily handled by

the following Fix code:

class dmsg.MailBox

addMessage(Message msg) {

catch(java.rmi.RemoteException ex) {

FancyUI.sayError("could not deliver message.");

}

}

7.1.4 Discussion

This experiment showed us how we can easily create a distributed system

using DistraC.

When programming the base functionality we did not need to concern

ourselves with the distributed nature of the system. All the functionality

relevant to the distribution aspect has been speci�ed solely in the aspect

languages created for that purpose. Using these separate declarations, it

was easy to specify the distributed nature of the system, which included

error-handling.

An interesting point in this example is the use of the Singleton design

pattern. In distributed systems services are usually made available by bind-

ing them to a name in the binder. Clients wishing to use the service get a re-

ference to it, using the binder service. DistraC does not provide this feature,

however this does not mean that services made available by a server can not

be used by clients, as this is exactly what happens in this experiment. Using

the singleton allows us to easily connect to an existing service delivered by

a server. This is because the semantics of a singleton in a non-distributed

program is highly similar to the semantics of a service delivered by a server

in a distributed system: there is one instance of the service available, and

clients can easily get a reference to that instance.

Note that if static method calls were correctly handled by DistraC, we

could have implemented the singleton without needing to create an extra

class. However we feel that the overhead of creating this extra class for the

singleton is not signi�cant, as it aids to the legibility of the program.
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Also notable in this example was a problem which arose when writing

the error-handling code. Concretely: whenever we wanted to print out an

error message, we had to call a method on the user interface. However, the

proxy objects for both remote classes did not have a reference to the user

interface object, and therefore no instance methods of the user interface

could be called. We solved this by changing the code of the user interface

which displays the error; we added a static method that prints out the error.

However, when doing this, we changed the code for the base aspect, which

means that the error-handling has not been separated out completely.

On a more abstract level this problem can be stated as follows: the error-

handling code might need references to objects which the normal code does

not need. Therefore, there can be cases, as above, where the error-handler

can not access certain objects, because the base code which caused this error

to occur does not contain a reference to the required object.

A possible solution for this would be to extend the error-handling aspect

with the facility to insert code for error-handling in more locations than

currently is the case. This code would then store references needed for error-

handlers in a location which can be accessed by them in, for example, a static

variable.

Concretely, we suggest that this code may be added to each method of

each class in the system, and also that extra methods and variables may be

added to all classes. This would allow object references to be stored whenever

they would be necessary to handle errors later.

7.1.5 Conclusion

Our �rst experiment was a distributed messaging application, where each

user can send a textual message to any other user logged in to the system.

We have seen how the base functionality can be speci�ed without needing

to keep in mind the distribution aspect, and how this distribution can easily

be added later in a completely separate phase.

We have noted the similarity between the Singleton design pattern and

the concept of clients connecting to a service provided by a server. We have

shown that the singleton can be used to provide this feature to programs

made with DistraC.

Also, we have encountered the problem that in some cases error-handlers

may need to access objects which are not referenced in the correspond-

ing base aspect code. We have proposed as a solution extending the error-

handling aspect with the possibility to specify code to be executed in a wider

variety of locations. This code would then store the needed references where
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they would be accessible to the error-handlers.

7.2 The Distributed Library

The second experiment is a simpli�ed simulation of a distributed library,

where books can be searched for on di�erent locations. First we will present

a small overview, followed by a description of the base functionality and a

description of the distribution aspect. We will conclude with a short discus-

sion of the experiment.

7.2.1 Situation

A di�erent kind of application from our �rst experiment, this experiment is

a simple simulation of a distributed library. The library could be considered

similar to a big university library, where the books are kept in multiple

locations on campus. The main functionality which is required, is to be able

to search for a book by name or by author.

Each location keeps a database of its books locally, and can perform the

search locally. The overall application needs only to delegate the search to

the di�erent locations, and join the results.

The library we simulate will consist of two locations. One of these two

locations contains a pair of servers in a mirrored con�guration, i.e. if one

of the two servers fail, all clients can immediately switch over to the other

server without loss of data. The other location, however, contains only one

server, and there is no guarantee on its availability.

Given this overall structure, we will now specify the base aspect code for

this distributed library.

7.2.2 The Base Aspect

The code for the base aspect, which we will introduce here, contains four

major classes: the Library, Location, Booklist and Book classes. We will

now give an overview and provide the code for each of these classes.

Library

The Library class is the top-level representation of the distributed library;

all interactions with the library are through this class.

A Library object contains an array of Location objects, in this case

two; one for each location of books. When creating the library, the array is
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�lled with the Location objects, and �nding a book is performed through

the findBook method, which returns a list of found books.

This class also contains a main method, which runs a simple simula-

tion which �rst looks up a book by title and prints out the results, and

subsequently looks up a book by author and prints out the results.

The code for the Library class is quite simple, as can be seen below:

package library;

public class Library {

private Location[] locales;

public Library() {

locales = new Location[2];

locales[0] = new Location("\\library\\first","One");

locales[1] = new Location("\\library\\secnd","Two");

}

public BookList findBook(Author auth) {

BookList list = new BookList();

for (int i=0; i<locales.length; i++) {

BookList newlist = locales[i].findBook(auth);

newlist.appendTo(list);

}

return list;

}

public BookList findBook(Title titl) {

BookList list = new BookList();

for (int i=0; i<locales.length; i++) {

BookList newlist = locales[i].findBook(titl);

newlist.appendTo(list);

}

return list;

}

public static void main(String args[]) {

Library lib = new Library();

System.out.println("Looking for title title2");

System.out.println(lib.findBook(new Title("title2")));
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System.out.println("Looking for author author1");

System.out.println(lib.findBook(new Author("author1")));

System.out.println("done");

System.exit(0);

}

}

Location

As implied above, a physical location containing a number of books, is rep-

resented by a Location object, which has access to a database representing

these books.

A Location object will keep these books in a Java Vector, which it will

�ll in when the object is instantiated. (We have deliberately not included this

code below, as it is quite large while not being relevant to the discussion).

Looking for a book is then accomplished by a simple linear search through

the list, which will return a BookList containing the found books. Note that

we do not stop when a book is found, as a location may contain multiple

books with the same author or title.

As can be seen, code for the Location class is straightforward:

package library;

import java.util.*;

import java.io.*;

public class Location {

private String name;

private Vector books;

public Location(String filename, String locname) {

name = locname;

books = new Vector();

//Read stuff from file filename and put in books

//CODE DELETED

}

public void addBook(Book abook) {

books.addElement(abook);

}
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public BookList findBook(Author auth) {

BookList list = new BookList();

for(int i=0; i<books.size();i++) {

Book abook = (Book) books.elementAt(i);

if (abook.hasAuthor(auth))

list.addBook(abook);

}

return list;

}

public BookList findBook(Title titl) {

BookList list = new BookList();

for(int i=0; i<books.size();i++) {

Book abook = (Book) books.elementAt(i);

if (abook.hasTitle(titl))

list.addBook(abook);

}

return list;

}

}

BookList and Book

The Booklist class is a simple implementation of a list of books. Books can

be added to the list, one list can be appended to another list, and the entire

list can be printed out.

The code for BookList is given below:

package library;

import java.util.*;

public class BookList implements java.io.Serializable {

private Vector thelist;

public BookList() {

thelist = new Vector();

}

public void addBook(Book b) {

thelist.addElement(b);
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}

public void appendTo(BookList other) {

for(int i=0; i<thelist.size(); i++)

other.addBook((Book)thelist.elementAt(i));

}

public String toString() {

String result = "--\n";

for(int i=0; i<thelist.size();i++)

result += thelist.elementAt(i).toString()+"\n--\n";

return result;

}

}

Book

A book in the library is represented by the Book class. A Book contains a

title and a Vector of authors. Author and Title are themselves classes, each

a simple wrapper around a String. As these classes are extremely simple, we

will not give their code here. The only remarkable about them is that they

are serializable, which is required, as they are contained in a Book which

also implements the Serializable interface.

The Book code is included below:

package library;

import java.util.*;

public class Book implements java.io.Serializable

{

private Vector authors;

private Title thetitle;

public Book(Title tit, Author auth) {

thetitle = tit;

authors = new Vector();

authors.addElement(auth);

}

public void addAuthor(Author auth) {
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authors.addElement(auth);

}

public Title getTitle() {

return thetitle;

}

public boolean hasAuthor(Author auth) {

for(int i=0; i<authors.size(); i++)

if (auth.equals((Author)authors.elementAt(i)))

return true;

return false;

}

public boolean hasTitle(Title title) {

return title.equals(thetitle);

}

public String toString() {

String theauthors ="";

for(int i=0; i<authors.size(); i++)

theauthors +=

((Author)authors.elementAt(i)).getName() +" ";

return "Book title:"

+ thetitle.getName()

+ "\n auths:" + theauthors;

}

}

Given the above code and descriptions we can compile and run the sim-

ulation. The resulting program will not be distributed, i.e. all will be run in

one Java VM. To make the program a distributed system, we need to specify

the distribution aspect, which will be done in the following subsection.

7.2.3 The Distribution Aspect

De�ning the distribution aspect consists of two main parts: specifying loca-

tions of remote classes, using Dist and Serv, and specifying error-handlers,

using Fix.
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7.2.4 Dist and Serv

As said in the overview, we have two locations, each placed on their own

server. This implies that we have to specify a Dist �le for the Location class,

which assures that the objects are instantiated in their respective server. A

valid Dist �le is the following:

class library.Location {

serv = places[idx++];

return serv;

}

extends {

private static int idx=0;

private static String[] places =

{"tongariki:4242","akivi:4242"};

private String serv;

}

As the Booklist, Book, Title and Author classes are serializable, and

the Library class is never passed as a parameter to a method invocation,

DistraC will not generate any other remote classes. The only remote class

is the Location class, which can be instantiated remotely.

This implies that we must create a Serv �le for the di�erent servers used

in the system. Note that there are not two, but three servers in the system;

recall that one of the two locations contains two servers in a mirrored con-

�guration. The two mirrored servers of that location are named tongariki

and vinapu, the server of the second location is named akivi.

tongariki:4242 {

library.Location;

}

vinapu:4242 {

library.Location;

}

akivi:4242 {

library.Location;

}

The system will now work in a distributed fashion. However there is no

error-handling yet, this will be introduced when providing the Fix speci�ca-

tions.
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Fix

As there is only one remote class in the system, the Fix �le needs only provide

a speci�cation for this one class. However, the strategy for the exception

handlers is twofold: For the location with the mirrored servers we need to

switch over from one server to the other, and for the other location we need to

implement an alternative error-handling strategy, for example: constructing

and using the class locally.

Deciding which strategy to use is fairly simple; in the Serv �le we de-

liberately saved the host name of the server the object should be on in the

serv variable. We can use this saved name here to determine which strategy

to use.

To implement switching over to another server, we specify a switch block

in the boot catch, which according to the name contained in the serv vari-

able, either switches over to a mirror server, or creates the class locally.

Now all the other error-handlers need to do, is switch over to a new

instance, which will be placed according to the strategy described above.

The Fix code is fairly simple, as can be seen below:

class library.Location

extends {

private String fil, loc;

private void doSwitch() {

Location newloc = new Location(fil, loc);

distrac_switch_instance(newloc);

}

}

new {

fil = filename; loc = locname;

}

{

catch(Exception ex)

switch {

if (serv.equals(places[1]))

serv = null;

else if (serv.equals(places[0]))

serv = "vinapu:4242";

else

serv = places[0];

return serv;

}
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}

(String filename, String locname){

catch (java.rmi.RemoteException ex)

switch {doSwitch();}

}

findBook(Title titl) {

catch (java.rmi.RemoteException ex)

switch {doSwitch();}

}

findBook(Author auth) {

catch (java.rmi.RemoteException ex)

switch {doSwitch();}

}

7.2.5 Discussion

In this experiment we have veri�ed that, as in the �rst experiment, we can

easily create a distributed system, thanks to the fact that the distribution

aspect has been split out form the base functionality.

This split allowed us to concentrate fully �rst on implementing the base

algorithm, without having to think about the distributed nature of the sys-

tem. Second, we could handle the distribution completely separately from

the base aspect, we did not need to make any modi�cations in the base

aspect code.

However, this experiment revealed a second notable omission in DistraC,

which is that a remote instantiation must either make an instance of that

class remotely or make it locally. More concretely: for the location on the

server akivi (which did not provide for a means of fault-tolerance), if an

error ocurred, the only option we had was to place the Location object on

the local host. Although we could pop up an error message to the user, the

base algorithm required at all times that a Location object be contained at

each index in its array of locations.

This implies that if we did not place this Location object locally, the

program would have to be terminated, even though it would have been able

to continue if it would somehow `skip' this object.

A solution here is to let the remote instantiation also be able to re-

turn an instance of a subclass of this type. This subclass would then be

designed speci�cally to rectify the problem that occurred. In our example,

the Location subclass, would not search though a list of books, but solely

return an empty BookList object.
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The same functionality can also be added to the error-handlers of the

method invocations, i.e. it should also be possible to switch to an instance

of a subclass if errors occur at that point.

7.2.6 Conclusion

Our second experiment was a simulation of a library application, where a

search for a book could be performed in a distributed fashion.

Again we have seen that the base functionality can be implemented with-

out needing to consider the distributed nature of the �nal system. We showed

how the distribution aspect can be easily implemented in a separate phase.

Also, we have noted a second de�ciency in the error-handling capabilities

of DistraC: we should be able to not switch to another instance of a remote

class in case of errors, but we should also be able to switch to a subclass of

that class, which would contain speci�c error-handling code which can not

be placed in the current exception handlers, because it is needed at a later

point in the execution of the program.

7.3 Conclusion

In this chapter we veri�ed the claim that we can achieve a higher degree of

distribution transparency through the use of AOP.

We developed two experiments: a messaging application, and a dis-

tributed library simulation. In both cases we could develop the base func-

tionality without needing to concern ourselves with the distributed nature

of the �nal application, and we could implement the distribution concern

separately, in a later step.

This made the applications easy to develop, indeed leading to a higher

degree of distribution transparency.

However, there were two negative points in the capability to handle er-

rors: First it was shown that error-handlers may need access to objects which

are not made available to them by the base aspect code at that point, and

that therefore it should be made possible to include support code for the

exception handler in a wide variety of locations. Second it was shown that

in some cases it should be possible for an error-handler to switch the object

to an object of another class, which contains speci�c error-handling code

which will be used in the further execution of the program.



Chapter 8

Conclusions and Further

Research

Time is a great teacher,

but unfortunately it kills all its pupils.

| Hector Berlioz

8.1 Summary

In a distributed system, a number of computers, connected to a common

network, cooperate to achieve a common goal. An important issue when

creating such systems, is how the concern of distribution is treated.

Ideally, the distribution should be transparent, i.e. when programming

the core functionality of the application, the programmer should not have

to concern herself with secondary requirements generated by the distributed

nature of the system. It should be possible to treat the concern of distribu-

tion in a separate phase.

Sadly, current packages which facilitate the building of distributed sys-

tems do not provide this distribution transparency. A recurring symptom is

the inability to reason separately about errors generated by the distributed

nature of the application.

In this thesis we created a package which aids in the process of building

a distributed systems and provides a much higher degree of distribution

transparency. This high degree of transparency is achieved because it is now

possible to implement the distribution concern completely separately from
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the base functionality.

We �rst introduced a number of concepts speci�c to the �eld of dis-

tributed computing, such as distribution transparency. A widely used para-

digm to achieve a certain degree of distribution transparency is the remote

method call. We gave an overview of how a remote method call works, why it

is fundamentally di�erent from a normal method call, and what is required

for a distribution package to be able to provide this feature.

To determine the degree of distribution transparency provided by current

packages, we studied a number of packages providing support for building

distributed systems in Java. In this study we found that the package which

had the highest ease of use, and provided the highest degree of transparency,

did this at a signi�cant cost. Speci�cally: it was impossible to specify any

error-handling code for exceptions thrown by the remote procedure call pro-

cess.

We conclude that this impossibility to achieve distribution transparency,

while keeping the control over such important parts as error-handling, is

caused by the impossibility to decompose distribution using the same de-

composition mechanism as is used for the base functionality.

Therefore, we must use a decomposition mechanism which does allow the

programmer to specify the distribution concern using a di�erent decompo-

sition mechanism as the one used for the base functionality. One technique

which allows this is Aspect-Oriented Programming. Using AOP, these spe-

cial concerns, termed aspects, are speci�ed separately, which implies a full

separation of concerns. Having this separation of concerns will guarantee a

higher degree of distribution transparency because of the fact that the dis-

tribution aspect is speci�ed completely separate from the base functionality.

We used Aspect-Oriented Programming to achieve a high degree of dis-

tribution transparency in our thesis. We de�ned three special-purpose aspect

languages: Dist, Serv and Fix. These languages are used, respectively, to de-

�ne what classes are remote, i.e. possibly reside on a di�erent computer,

and on which computer they are placed, what computers contain instances

of which remote classes, and what are the exception handlers for the remote

method invocations used to access these remote classes.

After de�ning these languages, we introduced DistraC, the tool which

combines these speci�cations with the base functionality, written in Java,

to form executable code. More speci�cally, we described how input code is

transformed, according to the speci�cations in the aspect languages.

To validate the claim that through Aspect-Oriented Programming we

achieved a higher degree of distribution transparency, we performed a num-

ber of experiments, of which we discussed two: a messaging application,
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and a simulation of a distributed library. In these experiments we veri�ed

that it is now indeed possible to specify the distribution concern separately,

including the distribution-speci�c error-handling.

Therefore we feel that we can state that we have obtained a signi�-

cantly higher degree of distribution transparency, through the use of Aspect-

Oriented Programming.

8.2 Further Research

An important area of research within Aspect-Oriented Programming is how

to construct weavers which integrate a large number of aspects into exe-

cutable code. We feel it should be quite straightforward to integrate replica-

tion and concurrency control aspects into DistraC, further increasing the dis-

tribution transparency by also including replication and concurrency trans-

parency.

The justi�cation for this statement is threefold:

1. In our previous work [3, 4, 5], dealing with replication transparency, we

transformed each variable reference to a remote method call to a repli-

cation server, which handled the speci�cs relevant to the replication

algorithm. This same transformation can be applied to the interme-

diate Java code generated by DistraC. It is clear that this will not

interfere with the already existing code, as our previous work had a

high degree of replication transparency, and there is no interference

between the replication aspect and the distribution aspect.

Concretely, adding replication transparency only implies that some

extra remote method invocations, to some extra classes, with their

own, speci�c error-handlers, are added to the code.

2. We previously studied AspectJ, an Aspect-Oriented Programming ex-

tension to Java, which includes the concurrency aspect. In this study,

we found that the actions of the weaver basically consisted of adding

variables to the class, code which changed the values of these vari-

ables and guard code at the beginning of methods, and code changing

the values of the variables at the end of the methods. Now, instead

of adding this code to a local class, this code could be added to the

remote part of a remote class, ensuring that the concurrency control

strategy for that class is applied on that server. This is quite straight-

forward, we could, for example, add this code to the class before it is
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transformed into a remote class, which implies that it will be included

in the remote part of the class after the transformation.

3. We do not see a need at this time for the variables of the concur-

rency aspect code to be replicated, but it is of course possible that the

concurrency aspect code will need access to variables of the base func-

tionality. However, as the variables of the base aspect, if so speci�ed,

will be replicated totally transparently by the replication aspect there

is no interference between the concurrency and replication aspect.

As for our AOP system, some extra work can be performed on the aspect

languages and to DistraC, most importantly the error-handling capabilities

which we found missing in 7.1.4 and 7.2.6 should be added to the system.

Also, some of the features we did not implement due to lack of time, such as

automatically generating wrapper classes for system classes which are not

serializable and are passed as parameters to remote method calls, can be

added.

Having successfully tackled what is de�ned by many the de�ning problem

of distribution transparency [26, 7], we can add transparency features to our

system, so full distribution transparency can be achieved. Note that some

other distribution packages, such as JavaParty [18], already include a large

number of these features, indicating that it should not be a major problem

to achieve full distribution transparency.

Speci�cally, if we have a replication system in place, we could use its

features for correctly forwarding direct variable accesses to the remote class,

by using the variable reference transformation mechanism described above.

Also, with replication of static variables provided, our main problem in cor-

rectly handling static method invocations will be eliminated, and we could

easily provide correct forwarding of static method invocations. This would

transform our system into a system providing distributed shared memory

for the programs which are created using it.

8.3 Conclusions

In this dissertation we created an Aspect-Oriented Programming system

which aids in the development of distributed systems by letting the distri-

bution concern be speci�ed separately from the base functionality.

Due to the fact that the distribution concern can be speci�ed separately,

we have obtained a signi�cantly higher degree of distribution transparency.

Using our system, a programmer, when working on the base functionality,
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does not need to keep in mind a large number of the secondary requirements

generated by the distributed nature of the program. This is because these

secondary requirements, belonging to the distribution aspect, can be treated

in a totally di�erent phase of development.



Appendix A

The Aspect Languages

This appendix contains the grammars for the three aspect languages we

de�ned: Dist, Fix and Serv.

Note that all aspect �les can also contain Java-like comments, and all

whitespaces (spaces, tabs, newlines) are treated as if they were one space.

A.1 Dist Grammar

Distfile:

(Classdist)*

Classdist:

"class" FullyQualdName [Location] [Extends]

FullyQualdName:

<IDENTIFIER>

Location:

<HOSTNAME>":"<PORTNUMBER> | Block

Extends:

"extends" ClassBody

New:

"new" Block
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A.2 Fix Grammar

Fixfile:

(Classfix)*

Classfix:

"class" FullyQualdName [Extends][New][Bootstrap]

[Creates][Invokes]

Bootstrap:

BootCatchBlocks

BootCatchBlocks:

"{"(BootCatchBlock)*"}"

BootCatchBlock:

"catch" "(" <TYPENAME> <PARAMNAME> ")"

(Block | BootBreak | BootSwitch)

BootBreak:

"break" [Block]

BootSwitch:

"switch" [Block]

Creates:

(Create)+

Create:

FormalParameters CatchBlocks

Invokes:

(Invoke)+

Invoke:

MethodDeclarator CatchBlocks

CatchBlocks:

"{" (CatchBlock)* "}"
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CatchBlock:

"catch" "(" <TYPENAME> <PARAMNAME> ")"

(Block | Break | Switch)

Break:

"break" Block

Switch:

"switch" Block

Extends:

"extends" ClassBody

New:

"new" Block

A.3 Serv Grammar

Servfile:

(Server)*

Server:

<HOSTNAME> ":" <PORTNUMBER>

"{" BootClasses "}"

BootClasses:

(FullyQualdName ";")*

FullyQualdName:

<IDENTIFIER>



Bibliography

[1] Jonathan Aldrich, James Dooley, Scott Mandelsohn, and Adam Rifkin.

Providing easier access to remote objects in client-server systems.

http://www.ugcs.caltech.edu/~jedi.

[2] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Sys-

tems, Concepts and design. Addison-Wesley, second edition, 1994.

[3] Johan Fabry. A framework for replication using Aspect-oriented

Programming. Licentiaatsthesis, Vrije Universiteit Brussel, Faculteit

Wetenschappen - Departement Informatica, 1998.

[4] Johan Fabry. Replication as an aspect. In Ecoop '98 Workshop Reader,

number 1543 in LNCS. Springer-Verlag, 1998.

[5] Johan Fabry. Replication as an aspect - the naming problem. In Ecoop

'98 Workshop Reader, number 1543 in LNCS. Springer-Verlag, 1998.

[6] Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-

sign Patterns: Elements of Reusable Object-Oriented Software. Addison

Wesley, 1995.

[7] Rachid Guerraoi and Mohamed E. Fayad. OO Distributed program-

ming is not Distributed OO Programming. Communications of the

ACM, 42(4), April 1999.

[8] Per Brinch Hansen. Java's insecure parallelism. ACM SIGPLAN No-

tices, 34(4), April 1999.

[9] Walter L. H�ursh and Cristina Videira Lopes. Separation of concerns,

February 1995. College of Computer Science, Northeastern University.

[10] Objectspace Inc. Objectspace: Products - Voyager.

http://www.objectspace.com/products/voyager1.htm.

107



BIBLIOGRAPHY 108

[11] Objectspace Inc. Objectspace Voyager Core Technology 2.0 User Guide.

Included in Voyager Core Technology software package.

[12] Sun Microsystems Inc. Enterprise JavaBeans home page.

http://java.sun.com/products/ejb.

[13] John Irwin et al. Aspect-oriented programming of sparse matrix code,

1997. Xerox Palo Alto Research Center.

[14] Gregor Kiczales et al. AspectJ home page.

http://www.parc.xerox.com/spl/projects/aop/aspectj/.

[15] Gregor Kiczales et al. Aspect-oriented programming, a position paper,

1996. Xerox Palo Alto Research Center.

[16] Gregor Kiczales et al. Aspect-oriented programming, 1997. Xerox Palo

Alto Research Center.

[17] Anurag Mendhekar, Gregor Kiczales, and John Lamping. RG: a case-

study for aspect-oriented programming, 1997. Xerox Palo Alto Research

Center.

[18] Michael Philippsen and Matthias Zenger. JavaParty | transparent

remote objects in java. Concurrency: Practice and Experience, 9(11),

1997.

[19] Eric S. Raymond et al. The jargon �le, version 4.0.0.

http://www.wins.uva.nl/%7Emes/jargon/t/Top.html.

[20] SETI@home. SETI@home: Search for extraterrestrial intelligence at

home. http://setiathome.ssl.berkeley.edu.

[21] Sun Microsystems, Inc. Java object serialization documentation.

http://java.sun.com/products/jdk/1.1/docs/guide/serialization.

[22] Sun Microsystems, Inc. Java platform application programming inter-

face. http://java.sun.com/products/jdk/1.1/docs/api/packages.html.

[23] Sun Microsystems, Inc. RMI documentation.

http://java.sun.com/products/jdk/1.1/docs/guide/rmi.

[24] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton,

Jr. N degrees of separation: Multi-dimensional separation of concerns.

In Proceedings of International Conference on Software Engineering

(ICSE'99), 1999.



BIBLIOGRAPHY 109

[25] Cristina Videira Lopes and Gregor Kiczales. D: a language framework

for distributed programming, 1997. Xerox Palo Alto Research Center.

[26] Jim Waldo, Geo� Wyant, Ann Wollrath, and Sam Kendall. A note on

distributed computing, November 1994.


