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Abstract

Round-trip engineering is a popular technique for software development. A development en-
vironment with round-trip engineering support normally provides two views of the software
system: one view is the source code, containing the implementation of the software itself, and
the other view is more abstract, giving a global picture of the design of the system. If changes
are made in the source code, the environment is responsible for propagating them to the diagram
view. Similarly, if the diagram view changes, the changes are propagated to the code.

Many industry-level tools provide support for round-trip engineering. However, there is no
general approach to it. Each tool implements its own strategy for mapping code constructs
to diagrams and vice versa. Moreover, tools provide very limited options for customization,
enforcing the developer to adapt his development practices to the tool instead of being able to
adapt the tool to his needs.

We propose logic metaprogramming (LMP) as an approach for constructing more customizable
round-trip engineering tools. LMP is the use of logic programming to reason about source code
at meta-level. In this thesis, we show how it can be used for extracting diagrams from the code
and generating code from diagrams. Besides the advanced reasoning power, we believe that the
use of logic rules can lead to a clear, general and more flexible approach map between source
code and diagrams.

In this thesis, we focus on UML class diagrams to describe the design of the software system,
and Java as the source code language. We validate our approach with the implementation of
Lure, a prototype tool for round-trip engineering.
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Chapter 1

Introduction

Co-evolution [10] is a major concern in Software Engineering. This research area studies the
synchronization between the different views of a software system during its lifetime, in order to
manage its evolution. Throughout the evolution of a piece of software, there is no doubt that
higher-level views of the code play a key role. Some examples of the uses of these views are
architectural analysis, design refactoring or simply documentation.

A particulary interesting sub-area of co-evolution is round-trip engineering. This software de-
velopment technique keeps higher-level views (e.g., diagrams) of the source code up to date
while the code is being implemented, as well as it updates the source code when these views
change. The term “round-trip” comes from the fact that the developer can perform changes
both in the higher-level views and in the code, and the development environment is responsible
for propagating these changes to the other part. This development technique turns out to be
very comfortable, since it allows the developer to modify the code and have an ever-updated
design view of it, as well as to modify a design view and have the modification reflected in the
code [9].

But this propagation of changes is far from trivial and it is an important research problem how
to do this translation from source code to higher-level views and vice versa. Taking the example
of class diagrams from the Unified Modelling Language (UML) [32], the question is how to
consistently map entities in the class diagram (e.g., classes, attributes, associations, operations
etc) to those present in the source code (classes, instance variables, methods etc). For instance,
what should be done when an instance variable is added to the code? Should it be represented in
the diagram as an association, as an attribute or as something else? And, conversely, how should
an association class in the diagram be mapped to the source code? Should it be implemented as
a regular class, as a key-value dictionary in one of the sides of the association or as something
else?

Similar problems are also faced by reverse-engineering and code generation tools. A reverse-
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CHAPTER 1. INTRODUCTION 2

engineering tool that extracts class diagrams from source code usually defines a general strategy
for mapping code constructs to class diagrams. In an analogous way, a code generation tool
needs to know what code to generate for each entity of the diagram.

Much research has been done on reverse-engineering (e.g., [33, 38, 20]) and a large amount of
tools exist for generating code from higher-level views (e.g., [34, 2]). Especially in the former,
popular approaches emphasize on static and dynamic analysis of programs to try to extract
better abstract views from it. State-of-art tools that support round-trip engineering, such as
Together [7], Rose [34] or Fujaba [28], follow advanced code generation and reverse-engineering
strategies to transform diagrams into source code and vice versa.

An important problem, however, is that there is no standardized mapping between higher-level
views and code. Even if we restrict ourselves to specific languages such as the Unified Modelling
Language (UML, [32]) for describing the views, and Java [16] as implementation language, there
is no unique way to perform reverse-engineering or code generation. The mappings that allow
this usually depend on issues like developer expertise or company conventions. For example,
a company may, for some reason, decide to use its own collection framework, and this would
significantly impact the way in which associations (with multiplicity n) are represented in the
code. Moreover, modelling methodologies are still evolving, as well as programming languages,
so fixing strategies for mapping between both do not seem to be a good idea at all.

Therefore, the contribution of this thesis is to propose an approach a tool for round-trip engi-
neering which makes these mapping strategies explicit, and suitable for customization. We want
to provide the developer with the ability to indicate how the diagrams should be extracted from
the source code and how source code should be generated from diagrams.

1.1 Context

In this section, we describe the context in which we work and some important assumptions that
were made for this thesis.

1.1.1 Unified Modelling Language

The Unified Modelling Language (UML) [32] is by far the most popular standardized language
for modelling object-oriented software systems. The language is still evolving and it does not
yet completely satisfy all requirements for an object-oriented modelling language [9]. However,
taking into account its popularity and the lack of a better standardized modelling language, we
use UML in this thesis.

As a reduction of scope, our approach is restricted to UML class diagrams.
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1.1.2 Logic metaprogramming

Logic metaprogramming (LMP) is the use of a logic programming language at meta-level to
reason about source code. As it is confirmed by recent research (e.g., [10, 25, 23]), LMP is a
very suitable approach for extracting higher-level views from object-oriented source code. Since
UML class diagrams are such a kind of higher-level view, we believe that LMP is the appropriate
technology to build our round-trip engineering tool.

Therefore, in this thesis, we use LMP as the underlying technology to build our tool.

1.1.3 Round-trip engineering

We believe that round-trip engineering can be achieved by the composition of code generation
and reverse engineering. Whenever either diagram or code are changed, the environment is
responsible for propagating such changes to the other part through, respectively, code generation
or reverse engineering.

We are working in a context of round-trip engineering without parallel changes. That is, we do
not support changes to be done in the diagram and in the code at the same time. We think
that this is a rare scenario. Moreover, when possible, it should be avoided, since consistency
checking between versions is an ever error-prone process.

During the rest of this thesis (specifically, in chapter 5), we show that a consistent approach to
round-trip engineering can be achieved without support for parallel changes.

1.2 Approach

We divide round-trip engineering into two main parts: code generation and reverse-engineering.
The implementation of these processes are independent from each other but both rely on the
semantics stated in the diagram-code mapping strategies. These mapping strategies describe
how each UML entity is mapped to source code, and, consequently, what are the source code
patterns that imply the presence of a UML entity. For example, an instance variable i of type
Integer in the code of a class can, depending on the chosen strategy, imply the presence of an
attribute a in this class in the diagram.

Logic metaprogramming (LMP) has proven to be an adequate paradigm to reason about object-
oriented source code [10]. SOUL [40] is a LMP system built on top of the object-oriented
programming language Smalltalk. It provides an advanced reasoning mechanism with direct
reification of entities from the underlying Smalltalk system. Given its ability to recover high
level descriptions from programming language structures, we use SOUL for extracting UML
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class diagrams from object-oriented source code. The identification of simple UML entities
in the code, like classes or operations, is rather straightforward, but when it comes to more
complicated UML constructs, the complete power of LMP has to be used to identify them in
the source code.

In addition to reasoning about code, we need also to generate code from class diagrams. Besides
its ability to reason about code, some experiments [8, 24] have shown that, when properly
applied, LMP can provide clear and extensible code generators. These generators essentially
consist of user-defined predicates which define what has to be generated, leaving the actual
generation of code entities for a separate stage, which has a more imperative nature.

The use of the same paradigm, LMP, for both code generation and diagram extraction has some
interesting advantages. For instance, while generating code using LMP, we can use LMP itself
to query about the structures which are already present in the code.

1.3 Contribution

Our main contribution is a tool called Lure for doing round-trip engineering of object-oriented
programs using logic metaprogramming. Lure consists of customizable engines for code gener-
ation and for UML class diagram extraction. Such customization is achieved through the use of
declarative rules that state the desired mapping for UML entities in the code.

Lure allows the development of software systems in two languages: Smalltalk and Java. It is
constructed using Visual Works and SOUL. The class diagrams are represented by logic rules,
and facilities are provided to import them from and export them to popular CASE tools, where
they can be graphically manipulated by the user. To ensure correct extraction of diagrams from
code, Lure provides the facility of verifying equality between class diagrams.

In order to materialize our approach into a tool, the conception and implementation of other
components needed to be carried out and some of them can be mentioned as contributions of
our work too. Firstly, a generic object-oriented code generation engine was implemented which
can be easily extended to generate code starting from other information than class diagrams.
This generator can therefore be used independently from the round-trip tool. Secondly, to be
able to reverse-engineer the source code to UML in a customizable way, we developed a Library
for UML Code Reasoning. It consists of a set of predicates which use the UML-code mapping
strategies to reason about source code in terms of UML entities. This library can be used
independently from the round-trip tool. Using this library, the user can, for example, import
a portion of source code into the system and perform a query asking what are the associations
present on it.

Thirdly, we have improved the language-independence characteristics of SOUL’s Library for
Code Reasoning (LiCoR), making it more suitable for transparent reasoning about object-
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oriented source code, especially Smalltalk and Java.

1.4 Structure

In the next chapter, we make a brief review of current research work and tools in the area of
round-trip engineering, in order to better contextualize our work. In chapter 3, we introduce logic
metaprogramming, the technique which is the basis for our approach to round-trip engineering.
A description of how we use logic metaprogramming to perform code generation and reverse-
engineering is in chapter 4. The main chapters of this thesis are chapters 5 and 6. The first
contains a general view of how we do round-trip engineering using LMP, and the second contains
detailed descriptions of how to declare mappings between class diagrams and source code using
LMP.

Chapter 7 derives from the experiments we made to validate our approach. It describes a case
study: the development of a GSM billing application application using Lure, our prototype
tool for round-trip engineering.

Finally, in chapter 8, we discuss some conclusions that we achieved in this thesis and also some
interesting subjects for related future work.



Chapter 2

Round-trip engineering

The term “round-trip engineering” is not new, but, in recent years, it has become very popular
in the software development community. A confirmation for that can be seen in the number of
tools that support this development technique (e.g., Together Control Center [7], Rational XDE
[35], Gentleware Poseidon For UML [2], Fujaba [28]). This chapter performs a brief analysis of
the current context of round-trip engineering and how it is related to our work.

2.1 Overview

Although round-trip engineering is a popular software development technique, there are no
standards for implementing it. In fact, it seems that, in spite of its promising power and
productivity increase for the developers, there has not been much research performed specific
to round-trip engineering, as far as we could investigate.

Aßmann, in [3], presented a systematic method for round-trip engineering called ARE (Au-
tomatic Round-trip Engineering). He models round-trip engineering as a method of domain
transformation. So, if a modification to a system is too difficult to be performed in a certain
domain (e.g., text), a domain transformation can be applied that maps the system to another
domain (e.g., diagrams), where the user can more easily modify this system. Given that a in-
verse domain transformation exists to map the system back to the original domain, then the
modification has also been applied to this domain.

Using Aßmann’s approach, besides simple transformation composition systems, Burbeck and
Larsson propose the Model-View-Controller based Engineering (MVARE, [5]), which is an ap-
plication of the well-known MVC design pattern to software construction. The model is the
system itself, the data to be constructed. The views are the different views in which the sys-
tem can be presented or edited (text, diagrams etc). And the controller is the responsible

6
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for maintaining relations between views and model, ensuring that every change in every view
is propagated to the other views and to the model. Aßmann still suggests that his approach
can be applied also to aspect-oriented programming (AOP, [19]). He claims that AOP can be
achieved using ARE, given that a deweaver exists. In other words, one view would contain
the original code and separated aspects, and the other view would contain the woven code. To
transform from the first view to the second one, an aspect weaver is used, and to transform
from the second view to the first one, a deweaver is used. According to him, this can be seen as
round-trip engineering.

Henriksson and Larsson, in [18], give a definition for round-trip engineering systems: Let D be
the design of the product P , let r be a reverse-engineering procedure such that r(P ) = D and let g
be a product generation procedure such that g(D) = P . Iff g(r(P )) ≡ P (and thus r(g(D)) ≡ D)
then 〈g, r〉 is a round-trip engineering system. From this on, they build some more definitions
and, using the example of a relational database system, they show how round-trip engineering
with synchronization of multiple views can be achieved by the formalization of the domain of
these views.

Demeyer, Ducasse and Tichelaar, in [9], discuss round-trip engineering with a more pragmatic
approach. They defend that round-trip engineering tools should support a tight integration be-
tween reverse and forward engineering, with an adequate representation of source code. More-
over, according to them, round-trip engineering tools never are used alone. The developer
usually has a set of tools to perform design, coding, testing etc, implying in a need for inter-
operability among different tools. In this publication, they expose the shortcomings of UML
to support round-trip engineering (mainly the absence of representations for method invocation
and attribute access) and propose possible extensions for overcoming that.

Research on round-trip engineering is much related to reverse-engineering. On this area, ad-
vanced techniques have been developed to extract higher-level view diagrams, especially, UML
class diagrams, from source code.

Gogolla and Kollmann [15, 21], for example, have achieved good results on reverse-engineering
of Java source code to UML class diagrams. For this, they use information about the static
structure of the system, and also dynamic runtime information collected using the Java debug
interface (JPDA). Using this approach, they were able to discover, for example, fine-grained
details about class associations, such as association classes and aggregations.

2.2 Tool review

The construction of IDEs is a fast-evolving industry area and, from simple class diagrams to
detailed sets of design descriptions, round-trip engineering seems to be a compulsory feature to
make a tool competitive. In this section, we briefly evaluate three tools with support to round-
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trip engineering, trying to get a hint about the real current state of round-trip engineering tools
in the industry. The tools we evaluated were Borland Together Control Center [7], Fujaba [28]
and Gentleware AG Poseidon For UML [2].

Criteria

More than theoretical, this evaluation is practical. We tried to analyze the features we regard
as most important for round-trip engineering tools and IDEs in general. We used Java as
programming language and UML for design language, giving emphasis to class diagrams.

Our test case is a small Java application for the billing of GSM carriers, called GSMCase 1. The
application is simple and has 13 classes with 15 attributes, 18 operations, 14 associations and 4
generalizations. The associations with multiplicity N are represented by Java collections, as it
is common, and the accessors follow usual Java naming conventions (get- and set-).

The first activity we performed in all tools was to import the code of GSMCase. After that,
we performed some iterations of modification in the code and in the diagram, analyzing the
facilities provided by the tool. The items in which we focused our attention were:

Reverse-engineering How powerful is the reverse engineering technique used by the tool. For
example, does it recover association ends correctly, or how detailed is the extraction.

Customization As we pointed out in the introduction of this thesis, we regard the customiza-
tion of round-trip engineering tools as a major concern. So we analyzed the possibility
of customization offered by each tool in three different aspects: code generation (forward
engineering), reverse engineering and round-trip engineering itself (synchronization etc).

Supported diagrams Which are the diagrams supported by the tools. For example, class
diagrams, use cases, collaboration diagrams etc.

Round-trip synchronization How tightly integrated are model and source code editing. For
example, if the environment synchronize everything automatically, or if the user has to
request every synchronization.

Tagging If the tool interferes in the source code putting tags to express design information.

Variable abstraction level One of the main problems of reverse-engineering is filtering irrel-
evant information. Since the developer wants to use the design model to get a higher-level
view of the system, too much fine-grained diagrams are not suitable for this purpose. In
this item, we verify if the diagram view can be filtered to show only the relevant informa-
tion and, if so, up to which level.

1This same application was used for all the experiments of our approach, and will be described in chapter 7.
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Programming language support We evaluated the round-trip features for Java, but we also
verified what are the languages supported by each IDE.

Model editing We tried to determine how powerful and complete is the user interface for UML
editing, and how these editing operations affect the code.

Code editing What are the facilities provided for code editing and how they are related to the
UML model.

2.2.1 Together Control Center

Together [7] was probably the first popular tool to support UML round-trip engineering for Java.
The product has evolved and now belongs to a traditional producer of Java IDEs, Borland
Software Corporation. The version evaluated, 6.1, integrates development from analysis to
deployment in one tool.

Together implements the typical idea of round-trip engineering. As it can be seen in figure 2.1,
it provides a full-fledged code editor together with an always up-to-date diagram view of it. This
kind of environment seems to be quite handy for the developer, since, for example, the addition
of an association in the code immediately creates that association also in the diagram, where
the developer can have a more adequate view of the impact of this change in the global picture
of the system.

Let us list the items we evaluated in Together Control Center.

Reverse-engineering Recovered all classes, attributes and operations. Recovered only asso-
ciations with multiplicity 1. Accessors and mutators of instance variables were directly
mapped to properties, following naming conventions (get- and set-). From the associa-
tions, only the end classes and the direction were extracted. Features such as roles and
multiplicities must be edited manually by the user.

Customization Together is a very configurable IDE. Its options dialog has a large amount
of items allowing the configuration of low-level details of the IDE. However, the IDE
provides limited configuration about how the source code is mapped to diagram and vice-
versa. There are simple templates for instance variable comments (tags) which help the
environment to identify the characteristics of the association represented by this variable.

Supported diagrams Together supports eight types of UML diagrams: class, use case, se-
quence, collaboration, state chart, activity, component and deployment. Apart from
that, it provides another ten diagrams for different purposes (e.g., web application, entity-
relationship).
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Figure 2.1: Round-trip engineering in practice with Together Control Center.

Round-trip synchronization Together performs automatically all the synchronization be-
tween code and diagram. When the user modifies existing code in the IDE or in another
program, or imports new classes into the system, these changes are immediately reflected
in the design view.

Tagging Together tags the source code to identify meta-information about the diagram. For
example, when the user changes an association to be an aggregation, a tag is created in
the instance variable which represents this association stating: @link aggregation.

Variable abstraction level Together has many configurations to allow the user to hide specific
constructs, such as attributes, dependencies and links to self, from the diagram. It provides
three pre-defined diagram detail levels: analysis, design and implementation.

Programming language support Besides Java, Together supports C++, C# and Visual
Basic.
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Model editing Together contains a quite complete diagram editor called Designer, which al-
lows most of the graphic manipulation of all the supported diagrams.

Code editing Together provides some usual coding facilities like auto-complete, formatting
and simple optimizations. When the code (the Java file) is saved the modifications are
propagated to the diagram.

2.2.2 Fujaba

Fujaba [28] is an open source UML CASE tool project started at the software engineering group
of Paderborn University in 1997. Fujaba is the acronym for “From Uml to Java And Back
Again” and originally aims to provide an environment for round-trip engineering using UML as
visual programming language. During the last years, the environment has become a base for
several research activities, e.g., distributed software, database systems, modelling mechanical
and electrical systems.

As an IDE, Fujaba has limited functionalities, however its internal architecture and abilities to
re-engineer and generate source code have been subject to many publications (e.g., [29, 27, 30]).
Besides class diagrams, Fujaba can generate code from collaboration and state chart diagrams,
as well as to extract diagrams from its generated code.

The version we evaluated was Fujaba 4.0.0alpha. A list of the observed items follows.

Reverse-engineering All the classes, attributes and operations were extracted. However,
surprisingly no association was recovered from the code. Accessors and mutators were
considered regular methods. The only features extracted from the attributes were the
ones that can be represented by Java modifiers (final, static etc). Besides a class diagram,
Fujaba extracts activity diagrams for each method of the system.

Customization Fujaba does not provide configurations on how to map source code to diagram.

Supported diagrams From UML, Fujaba supports class diagram, state chart diagram and
activity diagram. Apart from that, it provides also an interesting kind of diagram, called
Dobs ([14]), which allows the visualization of memory objects as a graph.

Round-trip synchronization When a construct is added to (modified in or remove from)
the diagram, the environment automatically propagates these changes, reorganizing the
patterns that represent the modified construct in the code.

Tagging Fujaba makes no tagging comments in the source code.

Variable abstraction level Fujaba offers no configurations for setting the abstraction level
of the design view. The only related functionalities are hiding all attributes and/or all
operations of specific classes.
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Programming language support Fujaba is specific to the Java language.

Model editing The design-level editing of Fujaba is still evolving and is currently quite limited.
It does not support, for example, aggregations, compositions or association classes.

Code editing For code editing, Fujaba provides a simple text editor with syntax highlighting.

2.2.3 Poseidon

Gentleware AG Poseidon For UML [2] was derived from an open-source tool called ArgoUML
[1], and its original purpose is UML modelling. Among the evaluated tools, it is the one which
best adheres to the UML specification, providing, for example, all the standard features of
associations and attributes (e.g., changeability values, ordering). Recently, the tool has evolved
and become very popular. The UML editing is now extensible through an architecture of plug-
ins. One of the plug-ins that is offered by the tool producers themselves serves round-trip
engineering.

Poseidon does not aim to be a complete IDE as their focus is on UML modelling, so the round-
trip plug-in works as a watcher for source files. These source files can be edited by Poseidon itself
using its internal editor or by other tools. Poseidon maintains the UML diagrams consistent with
the source code in the files and, if the diagrams are modified, source code can be re-generated.

Let us show the observations we made while evaluating Poseidon For UML Professional Edition
version 1.6.1 02.

Reverse-engineering Poseidon recovered all classes, attributes and operations. It recognized
only associations with multiplicity 1. In cases where there were two association ends
between the same classes but with inverted direction, it merged the ends into a single
association.

Customization With respect to reverse-engineering, Poseidon allows simple configurations of
the mapping, such as the option to model Java attributes as UML associations or as UML
attributes. For code generation, it contains files with code templates which can be edited
by the user to customize, for example, the way accessors are generated.

Supported diagrams Class, Sequence, Collaboration, State chart, Activity, Use Case and
Deployment/Component/Object diagrams.

Round-trip synchronization Poseidon does not automatically re-generate code when the
diagram is changed, user intervention is needed for that. For reverse-engineering, Poseidon
monitors the source code files with a configurable interval and, in case of change, the
diagram is updated.
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Classes Generalizations Associations Attributes Operations
Originally 13 4 14 15 18
Together 13 4 11 28 66
Poseidon 13 4 9 6 123
Fujaba 13 4 0 28 128

Table 2.1: UML constructs extracted from the code of GSMCase.

Tagging Poseidon does not use any special tags in the source code.

Variable abstraction level Poseidon provides a set of options to hide diagram constructs
(e.g., accessors, operation parameters, private features).

Programming language support Poseidon is specific to Java.

Model editing Poseidon has a very comfortable and intuitive graphic user interface to edit
diagrams.

Code editing Poseidon provides a simple Java source code editor with syntax highlighting.

2.3 Discussion

As we could see, the three tools we reviewed have quite different approaches to round-trip
engineering, especially with respect to the way they extract a UML diagram from existing code.
Of course, one cause for this is that they focus on different goals: Fujaba is a proof of concept,
a tool that is derived from academic research on round-trip and reverse-engineering; Poseidon
is focused on UML modelling, providing round-trip engineering as a plug-in; and Together is a
tool originally directed to provide an environment for round-trip engineering.

However, even having different purposes, these tools are related to the same subject: mapping
source code to UML diagrams. Each one of them has its own approach for doing that. Fujaba
uses strict code conventions and programming styles for identifying UML constructs in the code.
If the code adheres to this conventions and styles, Fujaba can recognize advanced patterns of
code and reconstruct detailed class diagrams. But this patterns are very particular to Fujaba,
so using it to import “legacy” code or simply code that uses different conventions may cause
Fujaba round-trip engineering to fail.

Poseidon extracts class diagrams from code using simple strategies. For example, all methods
are extracted as operations or all attributes with primitive types are extracted as attributes. It
also uses some heuristics for merging association ends. Together also uses simple code-diagram
mappings.
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Table 2.1 shows a more concrete view of the results of the evaluated tools for doing reverse-
engineering. The line labelled as Originally shows how many UML constructs really exist in
the code. The other lines of the table list how many instances each tool extracted for the
different kinds of UML constructs contained in the code of GSMCase This shows some relevant
discrepancies between the reverse-engineering strategies. For example, Together extracted eleven
associations while Poseidon extracted 9 and Fujaba did not extract any. In fact, none of these
represent the real number of associations in GSMCase, since none of the tools was able to
identify associations with multiplicity N represented by collection classes. Poseidon recognizes
only arrays as N-multiplicity associations and Together needs special tags to mark collections
as associations.

Another discrepancy in this simple evaluation was the number of operations. Together brings the
diagram to a more abstract level, transforming all variables with accessors into properties with
read-only, write-only or read-write access. This reduces significantly the number of operations.
The evaluated version of Poseidon recognizes accessors only for attributes with primitive types,
leaving the ones for collections and associations displayed as regular methods. Fujaba did not
distinguish accessors and regular methods.

All this variance among the reverse-engineering mappings of these tools is aggravated by the fact
that all of them support very limited configurations regarding code-diagram mappings. Fujaba,
for example, has a very advanced mechanism for identifying associations and their features,
but if its strict code conventions are not followed, this identification of associations are totally
useless.

Conclusion

In this chapter, we have seen a part of current context of round-trip engineering. We mentioned
some research work on the area and reviewed three popular tools with round-trip engineering
support.

As we discussed in the previous section, different round-trip engineering tools have different
approaches to map source code to UML diagrams and vice versa. Each tool imposes its style of
representing the source code as diagrams, since none of them gives appropriate configurations
with respect to their way of mapping between code and diagram. This enforces the developers
have to adapt themselves to the tools, and not the other way around as it is expected.

In the next chapter, we introduce logic metaprogramming (LMP), a technique for reasoning
about object-oriented source code. In the following chapters, we show how LMP can be used
to define mapping strategies between source code and class diagrams. LMP has the great
advantage of being a declarative approach, which is very well suited for stating this kind of
mapping, making strategies clearly readable. Moreover, the ease for declaring strategies using
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LMP makes it more feasible the customization of mapping strategies accordingly to the needs
of the developer, or for LMP-experienced users to conceive their own strategies by themselves.



Chapter 3

Logic metaprogramming

Logic metaprogramming (LMP) is used by our tool (Lure) as the paradigm to support round-
trip engineering. In this chapter, we give an overview of LMP, describing its motivation and
principles.

3.1 Logic metaprogramming

Class-based object-oriented programs are usually structured as a complicated web of intercom-
municating classes. Developers who want to use or improve these programs need to understand
how they are organized. As programs get bigger, this is a very difficult task, since source code
contains a huge amount of very low-level detailed information, not allowing the developer to get
a higher-level view of the design.

Some techniques for program documentation and design provide global overviews of the pro-
gram, but mostly without linking it to the actual implementation. Design patterns [13] provide
design information without completely ignoring implementation aspects. However, they are only
available on paper in a reference guide. Cookbooks or tutorials provide only a very limited view
and are more targeted towards learning the basic features of the system.

Other development concerns also raise the need for a mechanism to extract — and ensure —
well-formed program structuring. For example, some programming conventions (e.g., ‘every
persistent class should have a store method’) represent the only correct way in which the system
can be implemented, and their violation is an error. These errors have to be dealt with and
non-trivial programming conventions can be quite difficult to verify.

Another motivation for the extraction of a consistent design-level view from the software system
is the analysis of change impact. How would a local change on the source code impact on the

16
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global design view? Would a certain design change be feasible given the current source code
structure?

The common issue in the mentioned problems is the incapability to easily express high-level
information about the program. To solve this, LMP introduces a logic programming language
as meta-language to express and reason about the structural information of software systems.
[40]

Logic metaprogramming (LMP) is the name given to a particular kind of multi-paradigm pro-
gramming. The starting point for LMP is an existing development environment for an object-
oriented programming language augmented with a declarative meta layer. [10]

This declarative layer is the implementation of a Prolog-like logic language which allows the
reasoning about the underlying system. The prefix “meta” is put before programming because
the logic language is used at meta-level with respect to the source code it reasons about.

The typical use of LMP is to declare logic rules and facts about the source code and perform
queries on the logic inference engine to extract information about this code. LMP implementa-
tions have a strong relation with the underlying system, using it as part of the knowledge base
which is queried.

3.2 Logic metaprogramming with SOUL

SOUL [41, 40] is a LMP implementation built on top of Smalltalk VisualWorks[6]. It provides
the basic features of a logic language and allows the direct reification of the objects from the
underlying Smalltalk system.

The syntax of SOUL is much like Prolog [36], therefore it can be used to solve regular logic
programming examples. Table 3.1 shows a simple Prolog example [4] and the correspondent code
using SOUL. The main difference is the notation for variables: in Prolog, they are capitalized
symbols; in SOUL, they start with a question mark (?).

This example declares four facts stating direct flights between two cities. 1 Then, two rules are
declared expressing what are the conditions for the existence of a flight (connection) between
two cities: either there are direct flights from the first city to the second one or the first city
has direct flights to some city which has connection to the second one. Finally, two examples
of queries are given: the first one asks if there are flights from Amsterdam to Fairbanks; and
the second one asks where can one fly to from Seattle. If we execute these queries, the first
query succeeds with YES (or true, in SOUL), and the second one succeeds with two solutions,
informing the names of the cities Anchorage and Fairbanks.

1This example and the rest of this thesis assume that the reader has basic knowledge about logic programming
or Prolog.
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Prolog

Facts

direct(amsterdam, seattle).

direct(amsterdam, paramaribo).

direct(seattle, anchorage).

direct(anchorage, fairbanks).

Rules
connection(X, Y) :- direct(X, Y).

connection(X, Y) :- direct(X, Z), connection(Z, X).

Queries
?- connection(amsterdam, fairbanks).

?- connection(seattle, X).

SOUL

Facts

direct(amsterdam, seattle).

direct(amsterdam, paramaribo).

direct(seattle, anchorage).

direct(anchorage, fairbanks).

Rules
connection(?x, ?y) if direct(?x, ?y).

connection(?x, ?y) if direct(?x, ?z), connection(?z, ?x).

Queries
if connection(amsterdam, fairbanks).

if connection(seattle, ?x).

Table 3.1: Prolog example and SOUL correspondent.

1st solution: {?x → Anchorage}

2nd solution: {?x → Fairbanks}

Interacting with Smalltalk

An important feature of SOUL is the manipulation of objects from the underlying Smalltalk
system. Smalltalk code can be inserted into the declarations of terms and this code is evaluated
when the query is executed. Let us discuss the following SOUL logic query:

if equals(?x, [ OrderedCollection new ]).

The predicate equals performs the logic unification of two values. Expressions between brackets
(‘[’ and ‘]’) are blocks of Smalltalk code, and the value of these expressions are the result of the
evaluation of the block. This means that [ OrderedCollection new ] evaluates to an instance of
the class OrderedCollection, and this is the value bound to the variable ?x in the only solution
for this example query:

1st solution: {?x → anOrderedCollection}
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Besides their use as terms, blocks of Smalltalk code can be used also as clauses. In this case, the
blocks are required to always return either true or false. Let us consider the following simple
rule which verifies if an integer is odd:

odd(?anInteger) if
[ ?anInteger odd ].

The clause [ ?anInteger odd ] calls the method odd of that object, which is supposed to be of
type Integer. This method returns true or false, implying, respectively, the success or failure
of the query.

Another point to notice in the previous example is the insertion of the logic variable ?anInteger

inside the Smalltalk code. This is the way Smalltalk receives the values from the logic engine.
The variable is replaced by the value to which it is bound at the time of clause evaluation.

Other features

As mentioned, SOUL provides the basic features of logic languages. In order to help the reader
to understand the examples throughout this thesis, let us describe some of them.

Lists Similarly to Prolog, SOUL contains a native data structure called list which serves for
the manipulation of sequences. As notational facilities, the symbols ‘<’ and ‘>’, for list
delimitation, and ‘|’, for head and tail separation, are provided.

The following example shows the extraction of the first element of a list.

if equals(<?head | ?tail>, <a, list, of, five, elements>).

The result of this query would have the variable ?head bound to the value a, and the
variable ?tail bound to the rest of the list, <list, of, five, elements>.

SOUL provides also helper predicates for list manipulation. Some examples of these are:

• append(?aList, ?anotherList, ?concatenatedList): ?concatenatedList is the con-
catenation of ?aList and ?anotherList. This predicate can be used to form the list
?concatenatedList or it can be used to find ?aList and/or ?anotherList from a given
?concatenatedList.

• list(?aList) for testing if ?aList is a SOUL list.

• member(?x, ?aList) for testing if ?x is an element of the list ?aList. This predicate
can also be used to generate multiple solutions with ?x bound to a different element
of the list in each of them.
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• noDuplicates(?aList, ?result) for removing all the duplicates from ?aList and stor-
ing the result in ?result.

• reverse(?aList, ?reversedList) for reversing the order of the elements of the list
?aList.

• sameElements(?aList, ?anotherList) for verifying whether ?aList contains the same
elements as ?anotherList, regardless of their order in the list.

Smalltalk collections can be used transparently as SOUL lists. The result of the following
query has three solutions, in one of them ?x would be bound to 1000, in the other, to 2000,
and in the other, to 3000.

if member(?x, [ Array with: 1000 with: 2000 with: 3000 ]).

The above query is equivalent to:

if member(?x, <1000, 2000, 3000>).

This kind of behavior gives some hints about how powerful is the ability of SOUL to
directly reify objects from the Smalltalk system.

Functors A functor is another type of data structure which can be used in SOUL. Its syntax
is the same as in Prolog. The following example uses a functor to express the information
about a person, containing its name and gender. The third predicate is a rule which
consults the gender of the parent of a person.

parentOf(person(Marcheline, female), person(Angelina, female)).
parentOf(person(Jon, male), person(Angelina, female)).
fatherOf(?father, ?someone) if
parentOf(?father, ?someone),
equals(?father, person(?fatherName, male)).

Quoted Code As we will see on chapter 4, SOUL can be used for generating any kind of source
code. For that purpose, a special notation is provided for making code concatenation much
simpler. The quoted code is put between curly braces (‘{’ and ‘}’) and logic variables can
be used inside it. These variables are replaced by a string representation of the value to
which they are bound in evaluation time, similarly as for blocks of Smalltalk code.

The following rule generates the code for a Java instance variable accessor:

generateAccessor(?TypeName, ?VariableName, ?Code) if
capitalizedStringOf(?CapitalizedVariableName, ?VariableName),
equals(?Code, {public ?TypeName get?CapitalizedVariableName() {
return ?VariableName;

}}).
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The predicate capitalizedStringOf is used here to capitalize the name of the instance
variable, in order to follow the usual convention for Java accessors.

So, when the following query is executed:

if generateAccessor(Person, caller, ?Code).

one solution is returned, in which the variable ?Code is bound to the quoted code:

public Person getCaller() {
return caller;

}

More syntax Here are some other syntax constructs of SOUL:

• The symbols + and - before a variable in the header of a rule mean that this variable
must be, respectively, bound and unbound. This is often used when the variable
must be substituted in a block of code, situation in which it must be bound. If the
following rule is queried with ?anInteger as an open (unbound) variable, it fails even
before the clause [ ?anInteger odd ] is evaluated.

odd(+?anInteger) if
[ ?anInteger odd ].

This is equivalent (syntactic sugar) to:

odd(?anInteger) if
atom(?anInteger),
[ ?anInteger odd ].

• A single question mark (?) as variable name means that that term is not important
at this point. It is the correspondent in SOUL to the underscore variables (‘_’) in
Prolog. Every occurrence of ? in the same rule represents another unique unbound
logic variable. In this example, we are not concerned about the name of the father:

fatherOf(?father, ?someone) if
parentOf(?father, ?someone),
equals(?father, person(?, male)).
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Figure 3.1: The structure of LiCoR.

3.2.1 Library for Code Reasoning — LiCoR

The main application of SOUL is source code reasoning. For this purpose, a Library for Code
Reasoning (or LiCoR, for short) is provided. This library consists of a set of logic predicates to
reason about Smalltalk code.

Originally, these predicates were a part of SOUL [41], but afterwards they were factored out in a
separate package and baptized as LiCoR. In the experiments for this thesis, we used NewLiCoR,
which is a refactored and optimized version of the previous one.

LiCoR has a layered structure. The lower layers contain the more primitive and fine-grained
predicates, and the higher layers use the lower ones to create more abstract reasoning predicates.
Figure 3.1 illustrates this structure.

Let us discuss the characteristics of each of these layers, from the lowest to the highest level:

LogicPrimitives This layer contains general logic predicates, such as findall, forall, not,
append, list etc. Actually, it is not a part of LiCoR but of SOUL.

Reification This layer represents the predicates which reify entities from the underlying lan-
guage. It is split up in two other layers: SmalltalkReification and PackageReification.

SmalltalkReification This layer does the actual interaction with the classes of Smalltalk,
reifying classes, methods, instance variables etc. Two examples of predicates from this
layer are class and methodInClass.

PackagingReification This is an environment-specific layer which deals with the packaging
constructs of VisualWorks (name spaces, bundles, protocols etc). Example of predicates:
bundle and classInCategory.
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ParseTreeTraversal This layer contains predicates to deal with the parse tree of methods.
The parse tree of a method is represented through a functor and the predicates of this
layer traverse this functor looking for specific information, such as assignments, temporary
variables etc.

Using LiCoR

The predicates of LiCoR can be used for verifying entities or relations, or for extracting them.
The predicate class, for example, can be used for verifying if a certain value is a class or for
getting all classes from the system. Let us consider the four following queries:

if class([ String ]).
if class([ String new ]).
if class(String).
if class(?class).

The first one verifies if [ String ] is a class. This query succeeds, because the evaluation of
this Smalltalk block returns the class String. The second one fails, since the value returned by
the block is not a class, but an instance of the class String. The third query also fails, because
the value passed to the predicate is merely a symbol and not a Smalltalk class 2. The last query
succeeds with a huge amount of solutions, since there is a solution for every class of the system:

1st solution: {?class → [ Array ]}

2nd solution: {?class → [ String ]}

3nd solution: {?class → [ Object ]}

...

The layers of LiCoR provide a rather complete set of predicates to reason statically about object-
oriented source code. Some of these predicates are described in table 3.2. Most of them can be
used both to verify or to lookup entities and relationships in the way we saw in the previous
example. For example, the predicate methodInClass(?M, ?C) can be called with both variables
bound and, in this case, the predicate verifies if the class bound to ?C contains the method
bound to ?M. If the predicate is called with both ?M and ?C as unbound variables, it returns
a solution for each method ?M in the system, associated with its corresponding class ?C. The
predicate can also be called with only one of the variables bound. In case ?M is the bound one,
this returns the class of the method bound to ?M. In case ?C is the bound one, all the methods
of the class bound to ?C are returned.

2class(String) is equivalent to class([ #String ]).
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Representational Mapping Predicate Description

class(?C) C is a class
instanceVariableInClass(?V,?C) V is an instance variable of class C

subclassOf(?C,?P) class C is a subclass of class P

superclassOf(?C,?P) class C is the superclass of class P

methodInClass(?M,?C) C implements the method M

methodWithName(?M,?N) M is a method called N

abstractMethodInClass(?M,?C) C implements an abstract method M

argumentsOfMethod(?A,?M) A is the list of the arguments of M
temporariesOfMethod(?A,?M) A is the list of the temporary variables of M

Table 3.2: Representational Mapping Predicates

A more complex example

To finish this section about LiCoR, let us take a look at a more complex example of its use [39],
which demonstrates the power and simplicity of using LMP to reason about code. This example
checks the system for all the method parameters which are not being used in its whole class
hierarchy. In this case, LMP helps the developer which may not have realized yet that a certain
parameter of a method is not being useful and can be removed. This is a way of discovering a
very specific kind of “dead code”.

Detecting whether a formal parameter is not used by a method boils down to checking whether
the method itself and none of its overriding or overridden methods uses this parameter. We can
use the following two logic rules to implement such an algorithm:

unusedParameter(?class, ?selector, ?parameter) if
methodInClass(?selector, ?class),
parameterOf(?parameter, ?selector, ?class),
forall(hierarchyImplements(?subclass, ?selector, ?class),
not(selectorUsesParameter(?subclass, ?selector, ?parameter))).

First, we retrieve the methods implemented by a given class (methodInClass predicate), and we
retrieve all the parameters of each method by means of the parameterOf predicate. For each
class in the hierarchy of the given class (including the class itself) that implements the given
method (gathered by means of the hierarchyImplements predicate), we check if it uses the given
parameter or not, using the selectorUsesParameter predicate. The selectorUsesParameter

predicate itself is implemented as follows:

selectorUsesParameter(?class, ?selector, ?parameter) if
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methodWithNameInClass(?method, ?selector, ?class),
parseTreeOfMethod(?parsetree, ?method),
parseTreeUsesVariable(?parsetree, ?parameter).

It uses a variant of the methodInClass predicate, the methodWithNameInClass predicate, which
returns the method identified by the class and the selector. The parse tree of this method
is obtained through the predicate parseTreeOfMethod. The parsetreeUsesVariable predicate
(from the ParseTreeTraversal layer of LiCoR) is then used to traverse this parse tree and look
for uses of the specified parameter.

All the predicates from this example, except unusedParameter and selectorUsesParameter, are
part of LiCoR.

3.2.2 SOULJava

SOUL and LiCoR were build using Smalltalk and can reason only about this language. However,
one of our research goals was to build a round-trip engineering tool which supports more than one
language, namely Smalltalk and Java. To do that, we use an add-on to SOUL called SOULJava
[12]. SOULJava takes advantage of the layered structure of LiCoR to replace some components
and provide the ability to reason about Java using SOUL.

LiCoR is organized in such a way that its predicates do not interact directly with the metaclasses
of Smalltalk to get information about them. Instead of this, all the meta-level calls are delegated
to a Meta-Level Interface (MLI), which is responsible for consulting the code repository for such
information. In the case of Smalltalk, this code repository is the Smalltalk image itself.

To enable the reasoning about Java, SOULJava swaps the MLI of LiCoR replacing it for a one
that is made to reason about Java. This MLI is connected to a code repository which it stores
information about Java source code. This structure is shown in figure 3.2.

SOULJava also provides a Java parser which enables the import of external Java code, and other
environment utilities, such as a Java code browser and editor.

Conclusion

As seen in this chapter and in the cited publications, LMP is a very suitable technology for
reasoning about the structure of object-oriented systems. The extraction of higher-level views
from source code can be clearly performed using or extending the predicates of LiCoR.

Since the subject of this thesis, round-trip engineering, is exactly about the management of
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Figure 3.2: Swapping of the MLI of LiCoR to Java.

a specific kind of higher-level view of source code, UML diagrams, LMP seems to be a very
appropriate choice as our main paradigm.

In the next chapter, another use of LMP is shown: code generation. The union of the ability of
LMP to extract higher-level views from the code with its ability to generated code are the two
main foundations of our approach to round-trip engineering.



Chapter 4

Code generation using LMP

Our approach for round-trip engineering has two foundations: code generation and reverse-
engineering. As we will discuss more deeply in chapter 6, reverse-engineering can be achieved
using the abilities of logic metaprogramming to extract design-level views from source code that
we saw in the previous chapter. In this chapter, we describe how we use logic metaprogramming
— in particular, SOUL — to generate code from design descriptions.

This chapter is mainly based on some experiments we conducted in [24].

4.1 Overview

The idea of using logic metaprogramming for generating code is not new; it was explored in
[8] under the exotic name TyRuBa. TyRuba is a LMP system designed for generating Java
code. SOUL, the LMP system which we use in this thesis, was originally conceived for reasoning
about the structure of Smalltalk programs [40]. Today, the two systems have grown much closer.
SOUL has taken inspiration from TyRuBa and has included similar code generation constructs,
while TyRuBa has been extended to allow better reasoning about existing program code. Until
recently, the only essential remaining difference was the target language they are considering:
Java for TyRuBa and Smalltalk for SOUL. However, even that difference has disappeared with
the implementation of SOULJava, which, as presented in the previous chapter, is an add-on to
SOUL for reasoning about and generating Java code.

Both in TyRuBa and SOUL, a code generator is written as a logic program (i.e., a set of logic
facts and rules) that builds an object-oriented program. In SOUL, for example, this is not a
difficult task, since SOUL is built on top of a Smalltalk system and we can easily interact with
the highly reflective nature of this system to add, remove or modify classes. To provide similar
behavior in Java, SOULJava contains its own code repository, which is manipulated through the

27
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predicates of LiCoR, allowing addition, removal or modification of Java code constructs. From
now on, we will focus on the use of SOUL and SOULJava to generate code, since these are the
tools we use in our thesis.

The code generation using SOUL consists of a set of logic predicates which form a layer of the
Library for Code Reasoning (LiCoR) called CodeGeneration. This logic layer is a façade for
the multi-language meta-level interface of LiCoR, which currently allows code generation for
Smalltalk (default) and Java (SOULJava add-on). These predicates normally receive a number
of parameters describing the entity to be generated (or removed, or modified) and succeed if,
and only if, the operation was successfully performed.

For example, for generating a class, one can use the simplest predicate for that purpose executing
the following logic query:

if compileClass(Foo).

This adds a class named Foo in the current code repository. In the case of Smalltalk, this adds
the class to the Smalltalk image. In Java, using SOULJava, the class is added to the internal
Java code repository.

4.2 The pull approach

In this section, we discuss the structure of our code generation engine.

If appropriate care is not taken, generating code with a logic metaprogramming language can be
tricky. This is because the reasoning subject changes while the logic program is being executed:
the logic program reasons about the program code while this program code itself is being changed
by code generation. One way to handle this is to arrange all the logic rules for code generation in
such a way that their evaluation sequence is ensured. This is not recommended as a good logic
programming strategy, given that such an approach is quite imperative and would be spread
out throughout the logic code, making it very difficult to be managed. Moreover, this conflicts
with the declarative nature of logic programming, in which what is preferred rather than how.
[4] The developer of a logic program should state what has to be generated, not having to worry
about how it is generated.

Therefore, to make a more appropriate use of SOUL for code generation, we use a different
approach that separates the generation process in two well-defined phases, collecting the logic
query part in one phase and the imperative part in the other. The major advantage of this is
that we can cleanly write the actual generation code in a completely declarative way. We call
this the pull approach. 1

1The term “pull” comes from the fact that the information is pulled in the first phase.
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The logic rule that implements our general code generation engine is the parameterless logic
predicate below:

generateCode if
accumulate(classToGenerate, ?Classes),
accumulate(instanceVariableToGenerate, ?InstanceVariables),
accumulate(methodToGenerate, ?Methods),
doAll(generateClass, ?Classes),
doAll(generateInstanceVariable, ?InstanceVariables),
doAll(generateMethod, ?Methods).

The first phase (the first three lines) queries the repository to accumulate all necessary infor-
mation about the entities to be generated. The second phase (the last three lines) takes this
accumulated information and actually generates the program code for each of these entities.
This separation is especially useful when the code is being updated rather than being generated,
because the current code can be freely consulted by the accumulation phase without needing
to care about possible side-effects of the generation phase. The implementation of the general
accumulate and doAll predicates is given below. The former takes as argument a ?Query that
returns, one by one, all entities of a certain kind (classes, instance variables, methods) to be
generated, and groups all these results in a ?List. The latter iterates over this list and, for each
entity in that list, invokes the appropriate code generation ?Action for that kind of entity. Their
code follows:

accumulate(?Query, ?List) if
findall(?Argument, ?Query(?Argument), ?List).

doAll(?Action, ?List) if
forall(member(?El, ?List), ?Action(?El)).

To make the logic program above work, two more things are needed: for each kind of entity
to be generated, a predicate that knows how to generate code for that entity, and a predicate
that tells us which are all the entities of that kind to be generated. The former is defined below
and basically delegates the responsibility on how to generate entities to the predicates in the
CodeGeneration layer of LiCoR:

generateClass(<?ClassName, ?SuperClassName, ?NamespaceName>) if
namespaceWithName(?Namespace, ?NamespaceName),
compileClass(?ClassName, ?SuperClassName, ?NamespaceName).

generateClass(<?ClassName, ?SuperClassName>) if
compileClass(?ClassName, ?SuperClassName).

generateClass(<?ClassName>) if
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compileClass(?ClassName).

generateMethod(<?ClassName, ?MethodCode, InstanceMethod>) if
classWithName(?Class,?ClassName),
compileMethod(?Class, ?MethodCode).

generateMethod(<?ClassName, ?MethodCode, Constructor>) if
classWithName(?Class,?ClassName),
compileConstructor(?Class, ?MethodCode).

generateInstanceVariable(<?ClassName, ?InstVarType, ?InstVarName, ?Visib>) if
classWithName(?Class, ?ClassName),
compileInstanceVariable(<?Visib, ?InstVarType, ?InstVarName>, ?Class).

To customize this generic code generation engine to create a specific code generator, the only
thing remaining to be done is to provide an implementation for each of the unary logic predicates
classToGenerate, instanceVariableToGenerate and methodToGenerate that declare the classes,
instance variables and methods to be generated. These predicates have the following form:

classToGenerate(?Description)
instanceVariableToGenerate(?Description)
methodToGenerate(?Description)

The parameter ?Description of each of these predicates will be bound to a list describing the
entity to be generated. For classes, it is a list <?ClassName, ?SuperClassName> consisting of the
name of the class to be generated and the name of the superclass of which it should inherit, or
a list <?ClassName> containing only the name of the class if it is a root class. Another alter-
native form is <?ClassName, ?SuperClassName, ?NamespaceName>, which takes also the name of
the namespace in which the class should be generated. For methods, we need the class name
and method code: <?ClassName, ?MethodCode>. For instance variables, we need a list consisting
of the class name, the type of the instance variable, its name and visibility of the variable:
<?ClassName, ?InstVarType, ?InstVarName, ?Visib>. Upon generation, the meta-level inter-
face for Java uses the given type declaration when adding a variable, while the meta-level
interface for Smalltalk discards this information.

This code generation engine cleanly separates the code generation algorithm from the declaration
of the entities to be generated, which has also advantages for composability of code generators.
When composing code generators, the code generation algorithm remains the same; we only
need to combine the facts or rules that declare the entities to be generated (and add / modify
a few rules to specify how the code generators being composed should interact).
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4.3 Example — generating a visitor design pattern

To illustrate how code generators are built using LMP, this section shows an example of a
generator which generates Java code for visitor design pattern.

The visitor design pattern [13] is fairly well known in the object-oriented community and is
complex enough to show the strengths of our approach to code generation without becoming
too large an example. The visitor design pattern is extremely useful when we need to perform
a variety of operations on a tree structure. Instead of implementing the functionality in each
type of tree node, all code for a given operation is grouped within one visitor class. The tree
nodes, or visited nodes, use a double dispatch method to accept a visitor object (representing the
operation to be performed) and call the corresponding visit method in that visitor object. 2 New
operations can be added easily by defining new visitors, without touching the implementation
of the tree.

We start by declaring, as logic facts, a description of the visited hierarchy, the name of the root
of the visitor hierarchy, and the required visitor operations.

visitedRoot(Node).
visitedNode(ExpressionNode, Node).
visitedNode(AssignmentNode, ExpressionNode).
visitedNode(VariableNode, Node).

visitorRoot(NodeVisitor).
visitorOperation(PrettyPrinting).
visitorOperation(Parsing).
visitorOperation(Compiling).

In other words, the class named NodeVisitor will be subclassed by three classes with names
containing “PrettyPrinting”, “Parsing” and “Compiling”. These visitor classes will interact
with the classes of the Node hierarchy — as declared by their name and superclass name in the
visitedNode facts — which will also be generated.

We first discuss the logic code that declares the classes to be generated, and then show the logic
rules which declare the methods to be generated for these classes.

Visited and visitor classes

Before actually generating classes (in the second phase), the generic code generator engine first
calls the classToGenerate rules to accumulate all required information on the classes to be

2It is convention to use the words “visit” and “accept” in the method names of, respectively, the visitor and
the visited nodes of the tree. [13]
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generated. For the visitor design pattern, we need to generate both the classes of the visitor
and the visited hierarchy. The logic rules that declare the visited classes are straightforward:

classToGenerate(<?Class>) if visitedRoot(?Class).
classToGenerate(<?Class, ?SuperClass>) if visitedNode(?Class, ?SuperClass).

In other words, a class with the name declared as visitedRoot will be generated, as well as all
classes declared as visitedNode, for which also the superclass is given, thus constructing the
hierarchy of visited classes.

For the classes of the visitor hierarchy, we have chosen to suffix the name of the classes declared
as visitorOperation with the string “Visitor”, to emphasize that these are visitor classes. This
is achieved in the visitorOpClass rule by making a meta-call to Smalltalk and using the string
concatenation operator (,) to append the suffix “Visitor” to the name of the operation. All
operation classes are to be generated as subclasses of the class declared as visitorRoot.

classToGenerate(<?Class>) if
visitorRoot(?Class).

classToGenerate(<?Class, ?SuperClass>) if
visitorRoot(?SuperClass),
visitorOpClass(?Class).

visitorOpClass(?Class) if
visitorOperation(?VisitorOp),
equals([ ?VisitorOp , ’Visitor’ ], ?Class).

Visitor and visited methods

Next, we need to declare the methods to be generated. For each visitor class, a visit method
is needed for each of the possible visited classes. A visitor class is either the visitorRoot or a
visitorOpClass. A visited class is either the visitedRoot or a visitedNode.

methodToGenerate(<?VisitorClass, ?Code>) if
visitorClass(?VisitorClass),
visitedClass(?ClassName),
visitorCodeForClass(?Code, ?ClassName).

visitedClass(?Class) if
visitedRoot(?Class).

visitedClass(?Class) if
visitedNode(?Class,?).

visitorClass(?Class) if
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visitorRoot(?Class).
visitorClass(?Class) if
visitorOpClass(?Class).

The predicate visitorCodeForClass generates the code of the visitor method (visit), which is
specific to each visited class. It contains a quoted code template for visitor methods which is
filled in at evaluation time with the value of the variable ?Visited, which corresponds to the
name of the visited class.

visitorCodeForClass(?Code, ?Visited) if
equals(?Code, {public void visit?Visited(?Visited vis) {}}).

Here is an example of the generated code of a visitor method:

public void visitAssignmentNode(AssignmentNode vis) {}

Finally, we still need to describe the double-dispatch methods to be generated on the visited
hierarchy. These methods are generated in each class visited class.

methodToGenerate(<?Visited, ?Code>) if
visitedClass(?Visited),
visitorRoot(?Root),
visitedCodeForClass(?Code, ?Visited, ?Root).

The process of formatting the visited methods is the same as for visitor methods, the only
difference is the quoted code template, which now corresponds to an “accept” method:

visitedCodeForClassForJava(?Code, ?Visited, ?VisitorRoot) if
equals(?Code, {public void accept(?VisitorRoot visitor) {
return visitor.visit?Visited(this); }})

An example of the generated code follows:

public void accept(NodeVisitor visitor) {
return visitor.visitAssignmentNode(this); }
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4.4 Reverse-engineering using LMP

We have discussed about SOUL and its abilities to extract higher-level views from source code. In
our case, these higher-level views are class diagrams. In this thesis, we will show the definition of
code-diagram mapping strategies which allow one to perform ad hoc queries about UML entities
present in the code, such as a query to discover which are attributes present in the class Foo:

if dcAttributeInClass(?Attribute, [ Foo ]).

However, since our round-trip engineering tool does automatic extraction of diagrams from code,
we need more than the ability to make queries about UML constructs present in the code. We
need a way to somehow save these diagrams. In other words, we need to generate diagrams
from code.

Taking into account the same reasons that we discussed for code generation, we also use the
pull approach for the reverse engineering part of our approach to round-trip engineering. The
obvious difference is that now we are not generating code, but extracting a class diagram. So,
in the first phase, we query for all the information about the UML constructs which have to be
extracted, and, in the second phase, we generate a new diagram with this information.

Our class diagrams are internally represented by logic facts. For example, a class is represented
by a fact in the following form: 3

umlClass(?Diagram, ?Name, ?Concreteness)

Our goal is to extract facts with exactly the same form. Instead of performing queries like
classToGenerate, in reverse-engineering, we perform queries related to UML constructs, like
classToExtract, attributeToExtract or associationToExtract. When all this information has
been collected, we store it in the predicate repository of SOUL, allowing the extracted predicate
to be normally queried. The summarized code of the main predicate for diagram extraction is
the following:

extractDiagram if
accumulate(classToExtract, ?Classes),
accumulate(attributeToExtract, ?Attributes),
accumulate(associationToExtract, ?Associations),
...
doAll(extractClass, ?Classes),

3The complete description of our internal representation of UML diagrams by means of logic facts is given
later on, in section 6.1.
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doAll(extractAttribute, ?Attributes),
doAll(extractAssociation, ?Associations),
...

The predicates of the second phase take each of the results in the lists returned by the first
phase and add the appropriate fact for it in the predicate repository. For doing that, they
use the predicate compileUmlRule, which concatenates the extraction suffix (e.g., “euml”) to
the predicate name and calls the predicate compileRule of SOUL to finally add the rule to the
predicate repository.

extractClass(<?Diagram, ?Name, ?Concreteness>) if
compileUmlRule(Class, <?Diagram, ?Name, ?Concreteness>).

extractAttribute(<?Diagram, ?ClassName, ?Type, ?Name, ?Visibility>) if
compileUmlRule(Attribute, <?Diagram, ?ClassName, ?Type, ?Name, ?Visibility>).

...

compileUmlRule(?PredicateSuffix, ?Description) if
extractedUmlPrefix(?ExtractedPrefix),
umlRepository(?LogicRepository),
compileRule(?LogicRepository, [ ?ExtractedPrefix , ?PredicateSuffix ],

?Description).

Conclusion

In this chapter, we have shown our approach to code generation using LMP, the pull approach.
In fact, what happened is that, after some unsuccessful attempts to build LMP code generators
for UML using ad hoc techniques, we realized that a much more general approach was needed,
and this is how this approach was conceived. The clear division between a phase with declarative
rules to state what to generate, and an imperative phase actually generating the code was decisive
to create a usable and general code generator.

As we have shown in the example of the visitor design pattern, this code generator turns out
to be quite simple to use, since the developer just declares rules about the entities that should
be generated. The approach is also general, given that it can be used to generate any kind of
code, and not only object-oriented. An indication of that is the way we completely inverted it
to generate class diagrams from source code instead of source code from class diagrams.

In the next chapter, 5, we describe our general approach to round-trip engineering using LMP,
which has code generation and reverse-engineering as foundations. Later on, in chapter 6, we
explain how the pull approach for code generation and diagram extraction is used to create
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clear and extensible mapping strategies between code and class diagram. In section 6.3, we will
discuss about how this approach can be used to support multi-language code generation.



Chapter 5

Round-trip engineering using LMP

In this chapter, we describe our general approach to round-trip engineering. We discuss impor-
tant issues for synchronizing class diagrams and source code and we introduce the way in which
logic metaprogramming can be used to map constructs from source code to class diagrams and
vice versa.

5.1 From diagram to code and back again

A typical way to start the development of a software system is to create a UML class diagram
and start writing code based on that diagram. The process of writing the initial code is often
automated in a process called code generation (or forward engineering).

Reverse-engineering is the process of extracting more abstract views from source code. In our
case, these views are UML class diagrams.

Both code generation and reverse-engineering can be seen as a kind of code transformation.
When generating, we have a class diagram — which can be regarded as code in a higher-level
language — that is transformed into programming language source code. And when extracting,
we have a portion of source code and it is transformed into a diagram.

These transformations, implicitly or explicitly, follow some well-defined mapping strategies for
mapping concepts from class diagrams to source code, and vice versa. These mapping strategies
define how the code is generated from a given diagram and how a diagram is extracted from a
given portion of code.

Let us say that we have a code generation engine gs which follows the mapping strategy s
to generate code from diagrams, and a reverse-engineering engine es which follows the same
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Figure 5.1: Code generation and diagram extraction without manual changes.

strategy s for extracting diagrams from code. If we use gs to generate code from a diagram D
and we use es to extract a diagram De from this code, then D = De. Equation 5.1 formalizes
this.

es(gs(D)) = D (5.1)

This means that if the generated source code is not modified, it still has a correspondence to the
diagram from which it was generated, and such diagram can be extracted from the code again
using the appropriate reverse-engineering engine. Figure 5.1 illustrates this.

It is important to notice that, in this case, the generation engine does not take any already
existing code into account. All the code that is generated was derived from the diagrams using
the diagram-code mapping strategies. In the same way, the reverse-engineering engine does not
have any knowledge about the original diagram. It only extracts information from the source
code.

This mechanism of generation and extraction is possible given that the source code ideally
contains all the information which is present in the diagram. Every little arrow the designer
draws in the diagram is intended to express some structure or behavior that should be present
in the software system, and the source code is the way it is actually implemented. Given that,
it is “just” a matter of knowing how to extract the diagram from the code.

Knowing how to extract diagrams from any existing code — i.e., reverse-engineering techniques
—, is a complex task which is still unsolved, as we discussed in chapter 2. However, we are not
facing that problem here. In figure 5.1, we choose a given mapping strategy for generating code,
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ensuring the way in which the constructs from the UML class diagram are generated in the code.
In other words, we know how the UML constructs are being represented in the code because we
assumed a given convention. Having this, we can assume the same strategy for extracting the
diagram from the code.

5.1.1 A small example

Let us show a simple example to demonstrate how logic rules are used to declare the mapping
strategies which generate code and extract diagrams. This example generates Java code from a
class diagram with classes and attributes.

First of all, we need to declare the UML class diagram using logic predicates. In this example,
we use a simplified definition style. The complete set of rules used in our approach are defined
later on in chapter 6.

umlClass(?ClassName).
umlAttribute(?ClassName, ?Type, ?Name, ?Visibility).

The umlClass predicate declares a class named ?ClassName. The predicate umlAttribute declares
an attribute of type ?Type in the class named ?ClassName. This attribute is named ?Name and
has the visibility ?Visibility (public or private). 1

Some concepts in this diagram representation are easily mapped to code: a class with a certain
name in the diagram is a class with the same name in the code; an attribute with a certain
name in a diagram class is an instance variable with the same name in a code class.

But there is one feature of UML class attributes that is not straightforward to be represented
in the code: ?Visibility. This happens because, accordingly to the official coding conventions
for Java ([26], section 10.1), instance variables of classes are supposed to have private visibility,
except for extra-ordinary cases. Public access to them is usually provided by accessor methods
(get- and set-).

To generate code accordingly to this convention, in this example, every public UML attribute
is an instance variable with an accessor, and a private attribute is an instance variable without
accessor.

We have now stated the conceptual mapping strategy between source code and UML class
diagram that we use in this example. We use the same mapping strategy both for generating
the code and for extracting the class diagram. However, one important thing to notice here

1For clarity, other features of UML class attributes such as type and changeability were omitted in this
example.
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Figure 5.2: Code generation queries.

is that, in the implementation of the logic predicates for the mapping, this strategy is split
in two: code generation mapping strategies and reverse-engineering mapping strategies. Both
correspond to the same conceptual mapping, but are declared in separately in the code.

Code Generation

The code generation engine is responsible for performing queries to discover what code should
be generated and for actually generating it. This is illustrated by figure 5.2. (step 1) The
generation engine queries the mapping strategies to know which classes, methods and instance
variables should be generated. (step 2) The mapping strategies inspect the class diagram to
build the code that has to be generated. (step 3) The logic engine generates the code.

The queries performed by the logic engine (step 1) are quite simple. They ask for every class,
instance variable or method that should be generated. The mapping strategies must declare
logic predicates with the same headers as those of the query from the generation engine. These
headers are the following:

classToGenerate(<?ClassName, ?SuperClassName, ?NamespaceName>)
instanceVariableToGenerate(<?ClassName, ?Type, ?VariableName>)
methodToGenerate(<?ClassName, ?MethodCode>)

The mapping strategies of this example are also simple. Our diagram has no generalizations —
i.e., every class is subclass of Object — and we are going to generate a class in the code for every
class in the diagram. These classes are generated in a pre-defined package called umlgenerated.
The rule that declares this generation is the following:
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classToGenerate(<?ClassName, Object, umlgenerated>) if
umlClass(?ClassName).

Every attribute from the UML diagram is represented by an instance variable in the code:

instanceVariableToGenerate(<?ClassName, ?Type, ?AttributeName>)
umlAttribute(?ClassName, ?Type, ?AttributeName, ?).

Notice that we discard the third parameter (?Visibility) of the predicate umlAttribute when
generating instance variables. As mentioned, in this example, we represent the visibility of
class attributes through accessors. Accessors are methods, and are therefore treated in the
methodToGenerate predicate:

methodToGenerate(<?ClassName, ?MethodCode>)
umlAttribute(?ClassName, ?AttributeName, public),
stringCapitalizedOf(?CapitalizedName, ?AttributeName),
equals(?Code, {public ?TypeName get?CapitalizedName() {
return ?AttributeName;

}}).

This logic rule states that an accessor method should be generated for every UML class attribute.
First, the name of the accessor is created according to Java conventions, then a quoted code
template is used to format the code of the accessor.

The three rules that we just described form the mapping strategies that we chose for generating
code from our class diagram. They are queried by the code generation engine (classToGenerate,
methodToGenerate etc), which corresponds to step 1 of figure 5.2, and they perform queries on
the UML class diagram predicates (umlClass, umlAttribute), which correspond to step 2.

Step 3 of figure 5.2 is the actual code generation, where the generation engine takes the informa-
tion returned by the query on the mapping strategies and transforms it into code, as described
in chapter 4.

So, if we have a diagram described by the following facts:

umlClass(Person).
umlAttribute(Person, name, String, public).
umlAttribute(Person, age, int, private).

The code generation engine using the mapping we just stated would generate:
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public class Person {
private String name;
private String age;
public String getName() {
return name;

}
}

UML class diagram reverse-engineering

The mechanism for extraction of a UML class diagram from code is similar to the one for code
generation. It also uses the mapping strategies for querying what has to be generated. The
difference is that, now, a class diagram is generated instead of code.

As illustrated by figure 5.3, the reverse engineering engine queries the mapping strategies, which,
taking the source code into account, determine which classes and attributes have to be created
in the diagram. Notice that the original diagram is not used in this process.

In the previous section, the generation engine was interested in which classes, instance variables
and methods needed to be generated in the code, so it made queries like classToGenerate etc.
Now, when doing reverse-engineering, we are interested in which entities need to be created
in the diagram. In our example, since we are working on a reduced representation of class
diagrams, these entities are classes and attributes. The headers of the queries done by the
reverse-engineering engine are:

classToExtract(?ClassName).
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attributeToExtract(?ClassName, ?Type, ?Name, ?Visibility).

As in code generation, the mapping strategies have to define rules with these headers.

To extract classes, we have to be careful to not extract a UML class diagram that contains all
the classes of the system (which, for example, are thousands in case of Visual Works 7). We can
restrict this using, for example, the names of the classes or a specific namespace. We choose the
second option because it is more generic:

classToExtract(?ClassName) if
generatedClass(?Class),
classWithName(?Class, ?ClassName).

generatedClass(?Class) if
namespaceWithName(?Namespace, umlgenerated),
classInNamespace(?Class, ?Namespace),

These predicates state that a UML class should be extracted for every class that exists in
the namespace (package) called umlgenerated. This is the namespace where the classes where
generated in the code generation phase.

The extraction of the attributes requires the declaration of auxiliary predicates for the determi-
nation of the visibility.

attributeToExtract(?ClassName, ?Type, ?Name, ?Visibility) if
generatedClass(?Class),
instanceVariableInClass(?Name, ?Class),
instanceVariableWithType(?Name, ?Type),
attributeInClassWithVisibility(?Type, ?Name, ?Class, ?Visibility),
classWithName(?Class, ?ClassName).

attributeInClassWithVisibility(?Type, ?Name, ?Class, public) if
accessorForInstanceVariableInClass(?, ?Type, ?Name, ?Class).

attributeInClassWithVisibility(?Type, ?Name, ?Class, private) if
accessorForInstanceVariableInClass(?, ?Type, ?Name, ?Class).

The predicate attributeToExtract returns one result for every instance variable present in each
of the generated classes. The name of the attribute is the name of the instance variable. The
visibility of the attribute is returned by the predicate attributeInClassWithVisibility, which
verifies the presence of an accessor for the instance variable that represents the attribute in the
code. The attribute is public in case this accessor exists, and false otherwise.

To verify the presence of an accessor for an instance variable, a method is searched which is
named as an accessor. In case this method is found, its parse tree is matched with the pattern



CHAPTER 5. ROUND-TRIP ENGINEERING USING LMP 44

of an accessor method, i.e., a method whose body consists only of a return statement for the
instance variable. The following rule does this verification using the predicates methodInClass

and parseTreeOfMethod from LiCoR:

accessorForInstanceVariableInClass(?Accessor, ?Type, ?Name, ?Class) if
stringCapitalizedOf(?Capitalized, ?Name),
methodInClass(?Accessor, ?Class),
parseTreeOfMethod(?ParseTree, ?Accessor),
equals(?ParseTree,

method(?Class,
signature(?, ?, ?Type, [ ’get’ , ?Capitalized ], <>),
arguments(<>),
?,
statements(<return(variable(?Type, ?VariableName))>))).

Using these rules for reverse-engineering, we can extract exactly the same diagram we used for
code generation. More details about how these rules work will be given in the next chapter.

5.1.2 Discussion

This section showed how mapping strategies between UML class diagrams and source code can
be clearly stated using logic rules. Starting from a logic representation of a simplified UML class
diagram, we used such strategies to generate source code. And using the LiCoR library, which
allows us to reason about source code in terms of logic programming, we described simple logic
rules which enable the extraction of the same UML class diagram from the generated source
code.

Using an example, we also showed that if code is generated from a diagram accordingly to a
conceptual mapping strategy, the use of the same conceptual strategy in the reverse-engineering
phase will produce a diagram which is equal to the original one.

The mapping strategies that we used here could have been implemented in any other program-
ming language. One could, for example, write a Java tool which takes an ad hoc representation
of a UML class diagram and generates code from it. As we did in the example, this tool would
also follow a mapping strategy. The same applies for a reverse-engineering tool.

The problem for developing such tools in an imperative language like Java is that the declaration
of the mapping strategies is not clearly separated from the code of the transformation engine
(code generator or diagram extractor). This kind of program usually assumes a specific mapping
strategy and this is implemented is a hard-wired way into the code of the transformation engine,
providing very few possibilities of parametrization or substitution.
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As we brought out in chapters 1 and 2, the ability to substitute diagram-code and code-diagram
mapping strategies must be key feature in a code generation, reverse engineering or round-trip
engineering tool.

This section has shown that a good way to achieve this goal is to state this mapping strategies
using a logic language. Like this, the strategies can be well separated from the transformation
engines, thus becoming more easily interchangeable. For example, if we wanted to change the
strategy we followed and state that all the attributes in the diagram should be public and
mapped to private instance variables in the code, we would only have to eliminate the rule
methodToGenerate and change the rule umlAttributeToExtract to:

umlAttributeToExtract(?ClassName, ?Type, ?Name, public) if
generatedClass(?Class),
instanceVariableInClass(?Name, ?Class),
instanceVariableWithType(?Name, ?Type),
classWithName(?Class, ?ClassName).

5.2 Achieving round-trip engineering

Round-trip engineering is about supporting changes in both class diagram and source code, and
to have such changes reflected in the other side. The problem is: we have two views of the same
software system (source code and class diagram) and we want to keep them consistent. When
the code changes, the tool performs an update in the diagram. And when the diagram changes,
the tool performs an update in the code.

Up to now, we are not dealing with code or diagram updates. Our code generation engine takes
information only from the UML class diagram and generates code, and the reverse-engineering
engine takes information from the source code and extracts a class diagram. When the code is
being generated, code which is already present in the repository in not taken into account, that
is, this is a code creation process and not a code update process.

Code or diagram update is naturally more complicated than simple generation or extraction,
given that, in the former, what is present in the existing part has also to be taken into account.
A possible solution to avoid this complication is to store all the information about the system in
one view at a time. For example, we can use a diagram view which contains all the information
about the system (design, implementation etc). Then we transform this into a source code view,
which contains all the information too, so that we do not need the diagrams anymore. When
desired, we transform this source code view again into a diagram view which also contains all
the description of the system, so that we can discard the source code view, and so on. That is,
at every moment during the development of the system, only one view represents it completely.
This view can be either the source code or UML diagrams, but not both at the same time.
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Figure 5.4: Ideal round-trip engineering.

Figure 5.4 illustrates this.

Let us follow the example of this figure. We start from UML diagrams and generate source code
from them. Then the code is manually changed by the developer. Now, when the developer
wants to change something at diagram level, UML diagrams are extracted from the source code
that was manually changed. Now, the developer can make the desired modifications in these
diagrams. Afterwards, source code is generated from the modified diagram, and so on.

We can notice that the first diagrams (UML Diagrams1 in figure 5.4) were not taken into account
when UML Diagrams2 were extracted from Source Code2 (the source code that was modified by
the developer). To do this, we assume that, when manually changing the code, the developer
follows the same mapping strategies that the round-trip engine does. This should be no problem
since we believe that, using LMP, mapping strategies can be easily implemented to meet the
practices of the developer.

This described scenario of round-trip engineering seems to be ideal. One just has to worry about
the conception of mapping strategies for code generation and reverse-engineering, that is, how
to transform the diagram view into a source code view which is equivalent, and vice versa.

But, unfortunately, this is not the real context.

5.2.1 Round-trip engineering with updates

Even if we used the whole set of diagrams from the Unified Modelling Language [32] — like we
suggested with “UML Diagrams” instead of “UML class diagram” in figure 5.4 —, we would
not be able to express all the information which is present in the source code. There are parts
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of the source code which are very particular to it. The main example of this are method bodies.
Method bodies are the core part of the behavior of a system. Even though there are UML
diagrams for representing this (e.g., Statechart or Sequence diagrams), they are not enough
powerful to express all the information present in the method bodies. 2

On the other side, source code is not capable to represent information about the whole system
either. Design-level information is sometimes mapped to code constructs which do not unam-
biguously identify their presence. For example, association classes (figure 5.5) are really difficult
to be determined in the code [21]. Implementation of association classes is usually achieved by
the means of a map (key-value dictionary) in the source class with instances of the target class
as keys, and the association class as values. The problem is that not all the maps that follow this
pattern necessarily represent association classes. Reverse-engineering mappings which assume
this kind of pattern could incorrectly extract association classes. A developer which starts to
deal with the code at this stage might think that such constraint exists while it does not.

Person Company

Job

* *

employee employer

Figure 5.5: Job is an association class.

In fact, the observations we made in the two previous paragraphs are the motivation for the
management of co-evolution between source code and higher-level models. It is not possible to
extract all the higher-level design information from the code on demand. Models need to be
kept updated along the lifetime of a software system. They must not be discarded after the
code starts to be manually changed.

To have our approach for round-trip engineering following this idea, we need to keep both class
diagram and source code. When code is generated, the code that possibly already exists is
not discarded as well as the existing diagram is not discarded when the source code is being
reverse-engineered.

It is important to remember that our approach does not handle parallel changes in both diagram
and source code at the same time. This would be the case when the source code is changed and
the diagram is changed too. When, for example, the code generation engine would be generating
code again, it would have to check the whole consistency between the changes in the code and
in the diagram.

2We do not claim that this is a shortcoming of UML diagrams. Their goal is to describe design-level infor-
mation and not every detail of implementation.
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Figure 5.6: Round-trip engineering without discarding existing information.

In other words, we assume that the developer changes either the diagram or the code. When
he is going to make changes in the other side, the appropriate transformation engine (code
generation or reverse-engineering) has to be used to obtain the version which is appropriate for
modifications.

In the example illustrated by figure 5.6, the developer builds a class diagram and the generation
engine generates code from it. After the generation, the developer manually changes the code
(e.g., to add some method bodies). Now, when the developer decides that he wants to make
changes at design-level again, the reverse-engineering engine is used to extract the appropriate
diagram which he can modify. The same thing would happen, now with code generation, when
the developer wants to manually change the code.

Regarding the way in which transformations are performed, figure 5.6 shows that the exist-
ing diagram (UML Class Diagram1) is now taken into account when reverse-engineering the a
new class diagram (UML Class Diagram2) from the modified code (Source Code2). We do not
completely rely on the mapping strategies to extract the diagram anymore, since we know that
there may be ambiguities or missing information in the code and this problems can be solved
using the diagram that already exists. The same goes for code generation, which also takes
the existing code (Source Code2) into account to generate new code (Source Code3) from the
changed diagram (UML Class Diagram3).

Still on figure 5.6, one can notice that it contains only class diagrams, in contrast to figure 5.4,
which referred to a set of UML diagrams. Class diagrams are the most popular among UML
diagrams and are very suitable for representing the static structure of a software system. In this
thesis, as a reduction of scope, we restrict ourselves to UML class diagrams. 3.

3Generalization of the approach to other UML diagrams is mentioned in section 8.2 as future work.
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5.2.2 Refining the updates

In order to clarify the way in which existing code and class diagram are used in the transfor-
mation process, we divide source code and diagram into two parts: a unambiguously mappable
and a ambiguously mappable. These parts help us to organize the transformation and tell from
where each of the transformed constructs was brought. Let us describe this divisions of class
diagrams:

Unambiguously mappable This part represents the diagram constructs which are easily
mappable to source code and can also be extracted from it only using the information
from the code.

A common example of these constructs are classes. The presence of a class in the diagram
is simply inferred from the presence of that class in the code. That is, the previous existing
diagram does not have to be consulted when doing the reverse-engineering in this case.

Ambiguously mappable These are the constructs in the diagram which are not easily recov-
ered when doing reverse-engineering of source code. To be able to completely identify one
of these constructs, information from the previously existing diagram has to be used.

Associations are example of this. Associations are not directly represented in the code.
What is actually in the code are the association ends, which are normally mapped to
instance variables, and not the associations themselves. So, when recovering a class dia-
gram, we can only find the association ends. These ends then have to be merged to form
an association. However some information about the association, such as its name, cannot
be found in the code. In this case, the previous existing diagram has to be consulted to
maintain the original name of the association.

With the addition of the concept of the distinction of ambiguous and unambiguous parts of
diagram and code, figure 5.7 shows how these parts are used in the transformations, illustrating
the final view of our approach.

The transformations are made mainly using the mapping strategies and, when needed, the
already existing code or diagram is used. For example, in the case of reverse-engineering,
the class diagram is extracted from the source code using the mapping strategies for reverse-
engineering. In case of constructs which are not unambiguously extractable from the code, the
previously existing diagram is used.

Let us take the example of a developer which starts to develop a software system by building
a class diagram. This diagram (modified class diagram, in figure 5.7) contains ambiguous and
unambiguously mappable constructs. All of these constructs are used by the mapping strategies
and the code generation engine to generate the initial code (generated source code). Then the
developer modifies the code not regarding which part is ambiguously or unambiguously mappable
— he does not have to care about that, this is a task for the development environment.
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Figure 5.7: Development cycle using our approach for round-trip engineering.

Now, the reverse-engineering engine, together with the mapping strategies, extracts a new dia-
gram (extracted class diagram) from the modified source code, solving possible ambiguities using
the previously existing diagram (modified class diagram). Notice that the main extraction mech-
anism is the black arrow between modified source code and extracted class diagram, and the gray
arrow represents the queries done to solve ambiguity conflicts when doing reverse-engineering.

The next step is the manual change of the diagram by the developer. Then the cycle begins
again. The diagram resulting from this change (modified class diagram) is used by the mapping
strategies to generate new code (generated source code). Ambiguities which appear in this
generation process (e.g., method bodies) are solved by querying the previously existing code
(modified source code).

Conclusion

A näıve approach to round-trip engineering could be to try to have only one representation of
the system at a time. For example, to start from a diagram D1 to and generate code C1 from
it. To change this code and then extract a diagram D2 from it. Then generate code from D2

and so on. We discussed that this approach is not feasible because there are constructs which
are particular to code and constructs which are particular to diagrams.

Instead of that, we proposed a kind of “co-evolution” approach, in which the environment
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maintains both diagram and code up-to-date, without discarding any of them. When the code
is being generated, the previously existing code is taken into account, as well as the existing
diagram is taken into account when doing reverse-engineering.

To implement this approach, we introduced the use of logic metaprogramming (LMP). LMP
is a natural technique for stating the kind of transformation rules we need. As we will see in
the next chapter, even quite complex mapping strategies can be clearly declared using LMP,
achieving an interesting separation between the transformation engine and the transformation
rules themselves.



Chapter 6

Mapping strategies

This chapter gives a detailed view of how the code-diagram and diagram-code mapping strategies
are declared using SOUL. After describing our logic representation of UML class diagrams, we
show a complete example of how a UML class diagram is mapped to Java source code and how
a UML class diagram is reverse-engineered from this generated code. We also describe a simple
method for verifying if this reverse-engineering process was correct. Finally, we discuss the
language-independence of our approach, illustrating how it can be applied to other languages.

To achieve round-trip engineering, our goal is to maintain the source code updated and consistent
with its class diagram. On one hand, we have the class diagram itself, which is, as we discussed
in the previous chapter, represented by logic predicates. On the other hand, we have the source
code, which, with the help of the Library for Code Reasoning (LiCoR), can also be reasoned
about by means of logic predicates.

Having both views — code and diagram — expressed in a logic language provides us a good
starting point to also state our mapping between them also by means of logic predicates. As
such, we can use normal logic programming to map code to diagram and vice versa.

6.1 UML Class Diagram representation

“Class diagrams show the static structure of the model, in particular, the things that
exist (such as classes and types), their internal structure, and their relationships to
other things.” [32]

Let us start by formalizing the way in which we represent a UML class diagram using logic
predicates.

52
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UML class diagrams have a simple structure. The elements that can be contained in a class
diagram are defined in the Unified Modelling Language specification [32]. The most important
are classes, operations, attributes, associations and generalizations. Some features of these
constructs are very specific and rarely used (e.g., stereotypes of associations or powertypes
of generalizations). In this thesis, we assumed that a reduced set of possible class diagram
constructs is sufficient to validate our approach. The addition of other constructs can be regarded
as future work.

We decided to represent the main constructs of class diagrams only: classes, attributes, opera-
tions, generalizations and associations. 1 The most important features of each of these constructs
are also represented: visibility, changeability, multiplicity etc. The following list describes each
of these constructs.

Classes A class is a description of a set of objects that share the same attributes, operations,
methods, relationships, and semantics [32]. A class is represented by predicates following
this pattern:

umlClass(?Diagram, ?Name, ?Concreteness)

• ?Diagram is the diagram that contains this class. This argument exists because there
may be more than one diagram declared in the logic system.

• ?Name is the name of the class.

• ?Concreteness indicates whether this class is concrete or abstract. The possible
values are concrete and abstract.

Here is an example of the declaration of a class called Communication in a diagram called
GSMCase.

umlClass(GSMCase, Communication, abstract).

Attributes An attribute is a named slot within a class that describes a range of values that
instances of the class may hold [32]. Attributes are represented by predicates following
this pattern:

umlAttribute(?Diagram, ?ClassName, ?Name, ?Type, ?Visibility,
?Changeability)

• ?Diagram is the diagram that contains this attribute.

• ?ClassName is the name of the class which contains this attribute.

1Since we are working in the context of both Smalltalk and Java, we decided not to use interfaces, since they
are very specific to Java.
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• ?Name is the name of the attribute.

• ?Type is the name of the type of this attribute.

• ?Visibility indicates the visibility of this attribute. It can have the following values:
public, protected or private.

• ?Changeability indicates the changeability of this attribute. The possible values are:
frozen, for attributes that have constant value, and changeable, for attributes that
can have their value changed.

There is also another predicate, optional for each attribute, for specifying its initial value.
The term ?Value can be any valid expression in the language for which the code will be
generated:

umlAttributeInitialValue(?Diagram, ?ClassName, ?Name, ?Value).

This is the example of an attribute and its initial value:

umlAttribute(GSMCase, Caller, active, Boolean, public, changeable).
umlAttributeInitialValue(GSMCase, Caller, active, true).

Operations An operation is a service that can be requested from an object to effect behavior
[32]. In our approach, an operation is described by:

umlOperation(?Diagram, ?ClassName, ?Name, ?Parameters, ?ReturnType,
?Concreteness, ?Visibility)

• ?Diagram is the diagram that contains this operation.

• ?ClassName is the name of the class that contains this operation.

• ?Name is the name of the operation.

• ?Parameters are the parameters for the operation. These parameters are described
in a list which contains sublists of two elements stating the type and name of each
parameter.

• ?ReturnType is the name of the return type of this operation.

• ?Concreteness indicates whether this operation is concrete or abstract. The possible
values are concrete and abstract.

• ?Visibility indicates the visibility of this operation. Possible values are public,
protected or private.

Here is an example of a predicate that represents a UML operation:
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umlOperation(GSMCase, Main, printInvoices, <<Integer, aMonth>>, void,
concrete, private).

Generalizations A generalization is a taxonomic relationship between a more general element
and a more specific element, i.e., a subclass [32]. In our approach, the generalizations of a
UML class diagram are represented by the following predicate:

umlClassGeneralizes(?Diagram, ?Superclass, ?Superclass)

• ?Diagram is the diagram that contains this generalization.

• ?Superclass is the name of the more general class.

• ?Subclass is the name of the more specific class.

An example of a class generalization follows:

umlClassGeneralizes(GSMCase, Communication, SMS).

In order to help the representation of the concepts of subclass and superclass in the dia-
gram, we declare three more logic rules. Using these rules, we can assume that a certain
class has always a superclass, either from a generalization or simply by being a subclass
of the root class, Object.

umlSuperclassOf(?Diagram, ?SuperclassName, ?SubclassName) if
umlClassGeneralizes(?Diagram, ?SuperclassName, ?SubclassName).

umlSuperclassOf(?Diagram, Object, ?SubclassName) if
umlClass(?Diagram, ?SubclassName, ?),
not(umlClassGeneralizes(?Diagram, ?, ?SubclassName)).

umlSubclassOf(?Diagram, ?SubclassName, ?SuperclassName) if
umlSuperclassOf(?Diagram, ?SuperclassName, ?SubclassName).

Associations An association defines a semantic relationship between class [32]. Associations
are the most complex structure of a class diagram, given the large number of annotated
attributes (e.g., navigability, changeability, ordering etc). In our representation, associ-
ations are represented by a predicate with many arguments. Notice that we treat only
binary associations.

umlAssociation(?Diagram,
?ClassName1, ?ClassName2,
?AssociationName,
?Role1, ?Role2,



CHAPTER 6. MAPPING STRATEGIES 56

?Navigability1, ?Navigability2,
?Changeability1, ?Changeability2,
?Visibility1, ?Visibility2,
?Lower1, ?Upper1, ?Lower2, ?Upper2,
?Ordering1, ?Ordering2).

The following list describes each of these items. The suffixes “1” and “2” refer to the two
distinct association ends.

• ?Diagram is the diagram that contains this association.

• ?ClassName is the name of the class in this end of the association.

• ?Role is the role name in this end of the association.

• ?Navigability indicates whether this end (target end) is accessible from the other
end (source end). It can be inaccessible or navigable.

• ?Changeability indicates the changeability of this association end. The possible
values are: frozen, for ends that have fixed value; addOnly, for associations with
upper multiplicity n to which elements can only be added but not removed or set;
and changeable, for association ends that can have the value freely changed.

• ?Visibility indicates the visibility of this end of the association. Possible values are
public, protected or private.

• ?Lower and ?Upper represent, respectively, the lower and upper multiplicities of this
end of the association. ?Lower can assume the values 0 or 1, while upper can assume
1 or n.

• ?Ordering indicates whether this association end is ordered. This applies only for
ends with upper multiplicity n. The possible values are ordered, unordered and
notapplicable (if upper multiplicity equals to 1).

This fact has a simple constraint: the two ends have to be put in alphabetical order of the
name of the classes. This is to avoid ambiguity in the reverse-engineering, as we will see
later on. An example of a predicate for an association end follows. In this example, an
operator has one or more pricing policies:

umlAssociation(GSMCase,
Operator, PricingPolicy,
defines,
operator, pricingPolicy,
inaccessible, navigable,
changeable, changeable,
public, public,
1, 1, 1, n,
notapplicable, ordered).
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As we show later on in this chapter, we are often more concerned about association ends
rather than the complete association. So, to be able to easily refer to all the information
for one of the association ends, we declared two rules which are based on the previous one.
We show here only one of them, since the other is the same but in the opposite direction.

umlAssociationEnd(?Diagram, ?ClassName1, ?ClassName2, ?Role2,
?Navigability2, ?Changeability2, ?Visibility2,
?Lower2, ?Upper2, ?Ordering2) if

umlAssociation(?Diagram, ?ClassName1, ?ClassName2, ?, ?, ?Role2,
?, ?Navigability2, ?, ?Changeability2, ?,
?Visibility2, ?, ?, ?Lower2, ?Upper2, ?, ?Ordering2).

6.2 A mapping strategy

This section finally brings us to a concrete example of something we have been discussing since
the very first chapter: a strategy for mapping between code and class diagram. We describe
conceptually how we are going to map class diagram constructs to source code and, after that,
we show how this conceptual mapping is declared in logic predicates to get information about
the diagram and transform it into source code, and vice versa.

But, first, let us remember an important point about our approach to round-trip engineering.
To make round-trip engineering feasible by means of code generation and reverse-engineering,
we have to be sure that the same mapping strategies are used both when generating code and
when extracting the class diagram. Unfortunately, although the strategies for generating and
extracting are conceptually the same, in the logic predicates they are stated separately. One
of them states what are the code entities to be generated given the existing UML entities, and
the other states what are the UML entities to be generated given the existing code entities.
Therefore, to conceive a mapping strategy, we have to follow define the following mappings:

Conceptual mapping This is the first task to do when constructing a mapping strategy. It
consists of stating conceptually what is the mapping that we are going to use in our
example. This is a very important step, since all our mapping strategy predicates will be
based on what is stated in this conceptual mapping.

Code generation mapping This mapping is stated by logic predicates that describe what are
the UML patterns which imply the generation of code constructs. The code generation
engine performs queries on the predicates of this mapping, such as classToGenerate or
methodToGenerate.

Reverse-engineering mapping This mapping is stated by logic predicates that describe what
are the code patterns which imply the extraction of UML constructs. The reverse-
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engineering engine performs queries on the predicates defined in this mapping, such as
associationToExtract or operationToExtract.

It is important to remember that, besides the fact that the code generation and the reverse-
engineering mapping have to be coherent to the conceptual mapping, the developer must use
the conceptual mapping as a coding convention. It is no use to have an environment which
propagates, for example, changes in the code to the diagram accordingly to a mapping strategy
if the developer does not follow this strategy while manually editing the code.

6.2.1 Conceptual mapping

The conceptual mapping we have chosen is described in table 6.1. All the mapping strategies
in this section generate code for Java. A discussion about how our approach can be applied to
other languages, like Smalltalk, is presented on section 6.3.

Looking at this table, we notice that declaring code diagram mapping strategies is not easy, even
in a natural language. To make it clearer, we chose to organize this table as it would be read by
someone who wants to perform reverse-engineering. So it states how class diagram constructs
are represented in the code. The other way around, i.e., how code constructs can be mapped to
code, can be deduced from this.

Some of the mappings are quite straightforward, like classes and generalizations, which are one-
to-one mapped to source code constructs. But others are more complex, such as attributes and,
in particular, association ends. More details about this mapping will be given when we show its
declaration using logic rules.

6.2.2 Code generation mappings

Both code generation and reverse-engineering, the two pillars on which our approach is founded,
use a pull approach to perform the transformations. The pull approach, as it was described in
chapter 4, has two phases: one, called the query phase, to discover what has to be generated;
and another one, called the generation phase, for actually generating the entities. The mapping
strategies correspond to the query phase and are consulted by the transformation engines.

In the case of code generation, we need to implement the queries of the code generation engine.
These queries ask for the constructs that can be generated in the code: classes, methods and
instance variables. The headers of the queries are these:

classToGenerate(?Description)
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UML Source code

class class
concreteness concreteness

generalization inheritance relationship

attribute instance variable (primitive type)
changeability changeable if the variable is written somewhere

outside the initializer method, frozen otherwise
visibility The visibility of the accessor method. If the variable

does not have a corresponding accessor, then the
visibility of the variable itself

initial value If such assignment exists, the literal assigned to the
instance variable inside the constructor

operation method in the code which is not an accessor, a
mutator, an initializer or an add method

visibility visibility
concreteness concreteness

association end instance variable with:
non-primitive type (upper multiplicity=1)
container type (upper multiplicity=n)

role instance variable name
navigability every association end present in the code is navigable
changeability upper multiplicity=1: changeable if variable is

written somewhere in the class outside the initializer
frozen otherwise.
upper multiplicity=n: changeable if either the
variable is written somewhere in the class outside the
initializer, or there are calls to its remove or set

methods. If none of the conditions to be changeable

is satisfied but there are calls to its add methods,
then addOnly. Otherwise, frozen.

visibility The visibility of the accessor method. If the variable
does not have a correspondent accessor, then the
visibility of the variable itself

association name not mapped to the code

Table 6.1: UML conceptual mapping of the example.



CHAPTER 6. MAPPING STRATEGIES 60

instanceVariableToGenerate(?Description)
methodToGenerate(?Description)

The term ?Description should be bound to a list which contains all the information about the
construct which has to be generated. In each case, ?Description has a different meaning. The
description of classes is a logic list of the following format:

<?ClassName, ?SuperClassName, ?ClassNamespaceName, ?Concreteness>

It generates a class with a given superclass in a given namespace. The ?Concreteness term
distinguishes abstract classes from the concrete ones.

For instance variables, the description list is as follows:

<?ClassName, ?TypeName, ?VariableName, ?Visibility>

This generates an instance variable named ?VariableName with type ?TypeName and a given
?Visibility in the class ?ClassName.

For methods, the format of the ?Description list is:

<?ClassName, ?MethodCode, ?KindOfMethod>

The first two elements of this description are intuitive: the name of the class where the method
should be generated and the actual code of the method. The third element of the list is a
variable which specifies the kind of the method which is being compiled. It can be a normal
method (InstanceMethod) or a constructor (Constructor).

Now, let us describe the actual logic predicates for the code generation mapping strategies.

Classes

The classes that need to be generated are exactly the ones that are in the diagram. We have
also to take the generalizations into account, but this is also simple since we have declared the
auxiliary rules to make their use easier. So this is the predicate for the generation of classes:

classToGenerate(<?Name, ?SuperName, ?NamespaceName, ?Concreteness>) if
namespaceForDiagram(?Namespace, ?Diagram),
namespaceWithName(?Namespace, ?NamespaceName),
umlClass(?Diagram, ?Name, ?Concreteness),
umlSuperclassOf(?Diagram, ?SuperName, ?Name)
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The predicate namespaceForDiagram is used to retrieve the namespace in which all the classes
of the diagram should be generated. 2 After obtaining the name of the namespace with the
namespaceWithName predicate of LiCoR, the representation of the diagram predicates umlClass

and umlSuperclassOf are used to built the remainder of the class description list.

Instance variables

As we can verify in table 6.1, there are two kinds of UML constructs which are mapped to
instance variables: attributes and association ends.

For attributes One instance variable is generated for every attribute. For the name of the
type of the attribute, we use an auxiliary predicate, implementationTypeNameOf, to be able to
translate a data type of the class diagram to a data type of the implementation language. For
example, we can translate Double to java.lang.Double. The rule for the mapping of instance
variables is:

instanceVariableToGenerate(<?ClassName, ?TypeName, ?Name, private>) if
umlAttribute(?, ?ClassName, ?Name, ?UmlTypeName, ?, ?),
implementationTypeNameOf(?TypeName, ?UmlTypeName).

Notice that, for both attributes and association ends, we generate instance variables with private
visibility. Public access to them is provided by accessors and mutators, as we describe later on.

For association ends One instance variable is generated also for each navigable association
end, so we need to declare another rule for the predicate instanceVariableToGenerate:

instanceVariableToGenerate(<?ClassName, ?TypeName, ?Name, ?>) if
umlAssociationEndInstanceVariable(?Diagram, ?ClassName, ?, ?, ?TypeName,

?Name, ?).

We use the predicate umlAssociationEndInstanceVariable to find all the instance variables that
have to be generated for the association ends of the diagram. This was factored out from the
above rule because, as we will see, this auxiliary predicate is useful in other situations too. Its
code follows:

2We assume that all the classes of the diagram are in the same namespace.
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umlAssociationEndInstanceVariable(?Diagram, ?Class1, ?Class2, ?Role,
?TypeName, ?VariableName, ?Visibility) if

umlAssociationEnd(?Diagram, ?Class1, ?Class2, ?Role, navigable, ?,
?Visibility, ?, ?Upper, ?Ordering),

associationEndInstanceVariableName(?Role, ?Upper, ?VariableName),
associationEndInstanceVariableType(?Class2, ?Upper, ?Ordering, ?TypeName).

An instance variable is generated for every association end. There are two other predicates which
are used here. The first, associationEndInstanceVariableName, does a simple transformation
in the name of the role to make it plural in case of association ends with multiplicity n. The
other predicate, associationEndInstanceVariableType, is used to obtain the type of the instance
variable for this association end. In cases when the upper multiplicity is 1, the type is the class in
the target side of the association. When the upper multiplicity is n, then the type is a container
type (collection). This container type is java.util.Vector for ordered association ends, and
java.util.Set for unordered ones.

Methods

In order to fulfill the requirements of the conceptual mapping strategy that we chose, in addition
to methods corresponding to the operations of the diagram, we have to generate accessor meth-
ods, mutators and constructors. We also generate add and remove methods for the associations
with upper multiplicity n.

For operations Operations are the first construct we encounter for which we must use infor-
mation from the existing code when generating. Now, we do not have to think about the first
code generation, when there is only the class diagram and no code. We have to think about the
case where the developer has already changed the code, probably including working code in the
method bodies. Taking that into account, we generate one method for each operation in the
diagram, however, when a method with that name already exists in the code, the body of the
method to be generated is used instead of a template one.

The main logic rule for the generation of methods for operations is:

operationToGenerate(<?ClassName, ?Code, InstanceMethod>) if
umlOperation(?, ?ClassName, ?Name, ?UmlParameters, ?UmlReturnType,

?Abstract, ?Visibility),
implementationTypeNameOf(?ReturnType, ?UmlReturnType),
findall(<?Type, ?ParName>,

and(member(<?UmlType, ?ParName>, ?UmlParameters),
implementationTypeNameOf(?Type, ?UmlType)),
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?Parameters),
generateOperationCode(?ClassName, ?Name, ?Parameters, ?ReturnType, ?Abstract,

?Visibility, ?Code).

For each UML operation, the return and parameter types are mapped to types of the implemen-
tation language. After that, the predicate generateOperationCode generates the appropriate
code for the method. When the method is abstract, the generateOperationCode simply gen-
erates its signature with the abstract keyword. When the operation is concrete, there are two
cases: when the method already exists in the code and when it does not. There is one rule for
each of these cases. The first case is:

generateOperationCode(?ClassName, ?Name, ?Parameters, ?ReturnType, concrete,
?Visibility, ?MethodCode) if

generateMethodName(?Visibility, concrete, ?ReturnType, ?Name, ?Parameters,
?MethodName),

classWithName(?Class, ?ClassName),
methodWithNameInClass(?Method, ?MethodName, ?Class),
methodWithSourceCode(?Method, ?MethodCode).

The auxiliary predicate generateMethodName generates the name (signature) of a method. Then,
it is verified if the class named ?ClassName already contains a method with this signature. In
case it contains, then the source code of this method is returned as the source code of the
operation to be generated.

Another rule is declared for the case when the operation is not yet represented as a method in
the code.

generateOperationCode(?ClassName, ?Name, ?Parameters, ?ReturnType, concrete,
?Visibility, ?MethodCode) if

generateMethodName(?Visibility, concrete, ?ReturnType, ?Name, ?Parameters,
?MethodName),

not(and(classWithName(?Class, ?ClassName),
methodWithNameInClass(?Method, ?MethodName, ?Class))),

generateEmptyMethodBody(?ReturnType,?MethodBody),
equals(?MethodCode, {?MethodName { ?MethodBody }}).

This rule ensures that, in the given class, there is not yet a method with the same name as
the one which is being generated. After that, the predicate generateEmptyMethodBody is used
to generate an empty method body. This predicate returns and empty body when the return
type is void, otherwise it returns null, 0, false etc, depending on the return type. This body
is then combined with the method name to form the complete code of the method.
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For accessors and mutators Accessors and mutators are a quite important part of our con-
ceptual mapping strategy. They are used to map the visibility and changeability of associations
and attributes. The generation of all the accessor and mutator methods is organized by the
following rules:

methodToGenerate(?MethodDescription) if
accessorToGenerate(?MethodDescription).

methodToGenerate(?MethodDescription) if
mutatorToGenerate(?MethodDescription).

accessorToGenerate(?MethodDescription) if
accessorForAttributeToGenerate(?MethodDescription).

accessorToGenerate(?MethodDescription) if
accessorForAssociationToGenerate(?MethodDescription).

mutatorToGenerate(?MethodDescription) if
mutatorForAttributeToGenerate(?MethodDescription).

mutatorToGenerate(?MethodDescription) if
mutatorForAssociationToGenerate(?MethodDescription).

The rules which consult the class diagram to check which accessors and mutators have to be
generated are very simple. They all just get information about the variables and format it as
an accessor or mutator.

The code for the generation of accessors for attributes follows:

accessorForAttributeToGenerate(<?ClassName, ?Code, InstanceMethod>) if
umlAttribute(?, ?ClassName, ?VariableName, ?UmlType, ?Visibility, ?),
implementationTypeNameOf(?TypeName, ?UmlType),
generateAccessorCode(<?Visibility, ?TypeName, ?VariableName>, ?Code).

For each UML attribute, the code of the accessor is generated with its visibility, the implemen-
tation type of its type and its name. The predicate generateAccessorCode puts this information
in the appropriate form of an accessor:

generateAccessorCode(<?Visibility, ?TypeName, ?VariableName>, ?Code) if
stringCapitalizedOf(?CapitalizedInstVar, ?VariableName),
equals(?Code, {?Visibility ?TypeName get?CapitalizedInstVar()

{ return ?VariableName; }}).

Accessors for association ends are very similar. They use a predicate which we have already
discussed, umlAssociationEndInstanceVariable, to check which are the association ends from
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the diagram which need to be represented in the code. Then, the same predicate as for attribute
accessors, generateAccessorCode, is also used to format this information:

accessorForAssociationToGenerate(<?ClassName, ?Code, InstanceMethod>) if
umlAssociationEndInstanceVariable(?, ?ClassName, ?, ?, ?TypeName,

?VariableName, ?Visibility),
generateAccessorCode(<?Visibility, ?TypeName, ?VariableName>, ?Code).

The generation of mutators is analogous to the generation of accessors. The only difference is
that we only generate mutators for attributes and association ends which are changeable. For
example, for attributes, we enforce the ?Changeability term of the predicate umlAttribute to
have the value changeable.

For add methods Association ends with upper multiplicity n have a changeability attribute
which can assume the values frozen, changeable and addOnly. We do not generate mutators for
neither addOnly nor frozen association ends. The only difference between these two changeability
values in the code is that instance variables representing ends with addOnly changeability have
calls to its add methods. These add methods are specific to the container type which is being
used. In our case, we are using java.util.Vector and java.util.Set, and we consider the
method add(Object) as the add method for these types.

To express in the code this distinction between the changeabilities, we generate an add method
for association ends which have the addOnly changeability. The following code is an example
of an add method for the association end which has the role named activeSession of the type
HttpSession:

public void addActiveSession(HttpSession activeSession) {
activeSessions.add(activeSession);

}

For generating add methods, we declare another rule for the predicate methodToGenerate, which
calls addForAssociationToGenerate.

methodToGenerate(?MethodDescription) if
addForAssociationToGenerate(?MethodDescription).

The rule addForAssociationToGenerate finds every association end which changeability addOnly

and upper multiplicity n. For each of them, it generates an add method using the predicate
generateAddCode.
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addForAssociationToGenerate(<?Class1, ?Code, InstanceMethod>) if
umlAssociationEnd(?Diagram, ?Class1, ?Class2, ?Role, ?, addOnly, ?, ?, n, ?),
umlAssociationEndInstanceVariable(?Diagram, ?Class1, ?Class2, ?Role,

?TypeName, ?VariableName, ?Visibility),
generateAddCode(<?Visibility, ?Class2, ?Role, ?VariableName>, ?Code).

The formatting predicate is much similar to that of accessors and mutators. It capitalizes the
role name of the association and inserts it, together with the original role name, visibility, target
class name and variable name, into the template to form the code of the method.

generateAddCodeForJava(<?Visibility, ?Class2, ?Role, ?VariableName>,
?Code) if

stringCapitalizedOf(?Capitalized, ?Role),
equals(?Code, {?Visibility void add?Capitalized(?Class2 ?Role)
{ this.?VariableName.add(?Role); }})

For constructor and initializers The last methods which we need to generate in the code are
constructors and initializers. Initializers are private instance methods which are responsible for
doing the initializations of the object, such as default initial values, initialization of associations
etc. They are called by the constructor. The following code is the example of a constructor and
its corresponding initialize method:

public Student(String name, String registration) {
super(name); //call the constructor of the superclass
initialize(registration); //call the initialize method

}
private void initialize(String registration) {
this.registration = registration; //initialization of an attribute
this.age = 0; //a default value for an attribute
this.courses = new java.util.Vector(); //initialize an N association

}

We generate one constructor for each class. This constructor contains a call to the constructor of
the superclass, and a call to the initialize method of the same class. The predicate for generating
the code is the following:

constructorToGenerate(<?ClassName, ?Code, Constructor>) if
umlClass(?Diagram, ?ClassName, ?),
diagramExtractInitializeData(?Diagram, ?ClassName, ?InitializePairs, ?),
diagramExtractConstructorParameters(?Diagram, ?ClassName, ?ConstructorPairs),
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umlSuperclassOf(?Diagram, ?SuperClassName, ?ClassName),
diagramExtractConstructorParameters(?Diagram, ?SuperClassName, ?SuperPairs),
generateConstructorCode(<?ClassName, public, ?ConstructorPairs, ?SuperPairs,

?InitializePairs>, ?Code).

Besides the size of this predicate, its code is fairly simple. The main idea is that the generation
of a constructor needs three lists with information about parameters:

• The parameters of the initialize method of the class, to build the call to it. These parame-
ters are: (1) the association ends with lower multiplicity equal to 1 or changeability equal
to frozen, because this enforces the user to pass a value for them in the creation of an
instance of this class; (2) all the attributes which are frozen, for the same reason.

• The parameters of the constructor itself, to build its signature. The parameters of the
constructor of a class are the parameters of the initialize method of the class plus the
parameters of the constructor of the super class.

• The parameters of the constructor of the superclass, to build the call to it. The parameters
of the constructor of the superclass are built recursively using the name of the super class.
This recursion stops when the super class is Object, since its constructor already exists
and has no parameters.

These parameters are obtained as the logic lists ?InitializePairs, ?ConstructorPairs and
?SuperPairs, using auxiliary predicates. The first of them is for finding the parameters of the
initialize method of a class:

diagramExtractInitializeParameters(?Diagram, ?ClassName, ?ParameterPairs) if
findall(<?Type, ?Name>,

and(umlAssociationEnd(?Diagram, ?ClassName, ?Class2, ?Role, navigable,
?Changeability, ?, ?Lower, ?Upper, ?),

or(equals(?Lower, 1), equals(?Changeability, frozen)),
associationEndInstanceVariableType(?Class2, ?Upper, ?Ordering, Type),
associationEndInstanceVariableName(?Role, ?Upper, ?Name)),

?AssociationParameterPairs),
findall(<?Type, ?Name>,

and(umlAttribute(?Diagram, ?ClassName, ?Name, ?UmlType, ?, frozen),
implementationTypeNameOf(?Type, ?UmlType)),

?AttributeParameterPairs),
append(?AssociationParameterPairs, ?AttributeParameterPairs, ?BrutePairs),
noDups(?BrutePairs, ?PairsAsSet),
sorted(?PairsAsSet, ?ParameterPairs).



CHAPTER 6. MAPPING STRATEGIES 68

This predicate has two findall predicates. The first one collects all the types and names
of the instance variables which represent associations with lower multiplicities equal to 1 or
changeability equal to frozen. The second findall finds all the instance variables representing
attributes which have the changeability frozen. Each of the findall predicates accumulates
lists with type and name of the instance variables. The two resulting lists are them appended
and the possible duplicated elements are removed. Before returning the pairs of parameters, the
list is sorted in order to create some deterministic order in the list, because we cannot ensure
the sequence in which the rules will be evaluated and collected by the findall predicates.

For obtaining the parameters of the constructor of a class, we use another auxiliary predicate,
called diagramExtractConstructorParameters. This predicate is based on a recursion on the
hierarchy of classes:

diagramExtractConstructorParameters(?Diagram, ?ClassName, ?ParameterPairs) if
umlSuperclassOf(?Diagram, ?SuperClassName, ?ClassName),
diagramExtractInitializeParameters(?Diagram, ?ClassName, ?MyInitializePairs),
diagramExtractConstructorParameters(?Diagram, ?SuperClassName, ?SuperPairs),
append(?MyInitializePairs, ?SuperPairs, ?ParameterPairs).

First of all, it gets the parameters of the initialize method of the class, using the predicate di-
agramExtractInitializeParameters, which we have just described. After that, it obtains the
superclass of the class and the parameters of its constructor. To get these, the predicate
diagramExtractConstructorParameters itself is used, causing a recursion which ends when the
?ClassName variable is Object. The rule for this stop condition is the following:

diagramExtractConstructorParameters(?Diagram, Object, <>).

Notice that this rule does not overlap with the previous one, because when the previous one
is called with Object as ?ClassName the predicate umlSuperclassOf fails, since Object does not
have a superclass.

Having all this information about the parameters, we can use it to format the code of the
constructor:

generateConstructorCode(<?ClassName, public, ?ConstructorPairs, ?SuperPairs,
?InitializePairs>, ?Code) if

generateMethodArgumentList(?ConstructorPairs, ?ConstructorArgs),
generateMethodCallArgumentList(?SuperParameterPairs, ?SuperArgs),
generateMethodCallArgumentList(?InitializeParameterPairs, ?InitializeArgs),
equals(?Code, {?Visibility ?ClassName(?ConstructorArgs) {

super(?SuperArgs);
initialize(?InitializeArgs);}})
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This rule does mainly formatting of the receiving lists and puts it in a quoted code template
for constructors. The predicate generateMethodArgumentList generates a string with the dec-
laration of the parameters of a method from a logic list of pairs. For example, from the list
<<Client,buyer>,<LineItem,item>>, it generates:

Client buyer, LineItem item

The predicate generateMethodCallArgumentList generates a string with the names of the pa-
rameters separated by commas.

Now that we have generated the constructors calling the initialize methods, we need to generate
also the initialize methods themselves. Initialize methods are private instance methods which
are responsible for the initialization of instance variables of the class. We generate one initialize
method for each class. The rule for doing that is the following:

initializeToGenerate(<?ClassName, ?Code>) if
umlClass(?Diagram, ?ClassName, ?),
diagramExtractInitializeData(?Diagram, ?ClassName, ?ParameterPairs,

?AssignPairs),
generateInitializeCode(<?ClassName, private, ?ParameterPairs, ?AssignPairs>,

?Code)

This rule takes each class from the diagram, obtains the information needed to build its initialize
method and formats the code for the method using the rule generateInitializeCode. The
predicate diagramExtractInitializeData returns all the assignments which have to be made in
the initializer as a list of variable-value pairs, and also a list with the parameters of the initializer
to allow the construction of its signature. The code of this predicate is the following:

diagramExtractInitializeData(?Diagram, ?ClassName, ?ParameterPairs,
?AssignPairs) if

umlClass(?Diagram, ?ClassName, ?),
findall(<?Name, ?AssociationInitialValue>,

and(umlAssociationEnd(?Diagram, ?ClassName, ?, ?Role2, navigable,
?, ?, ?, n, ?Ordering),

associationInitialValue(?Ordering, ?AssociationInitialValue),
associationEndInstanceVariableName(?Role2, n, ?Name)),

?AssociationAssignmentPairs),
findall(<?AttributeName, ?InitialValue>,

and(umlAttributeInitialValue(?Diagram, ?ClassName, ?AttributeName,
?UmlInitialValue),

implementationExpressionOf(?InitialValue, ?UmlInitialValue)),
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?AttributeAssignmentPairs),
append(?AttributeAssignmentPairs, ?AssociationAssignmentPairs, ?AllPairs),
diagramExtractInitializeParameters(?Diagram, ?ClassName, ?ParameterPairs),
findall(<?Name, ?Value>,

and(member(<?Name, ?Value>, ?AllPairs),
not(member(<?, ?Name>, ?ParameterPairs))),

?AssignmentPairs).

This is the largest among the predicates for code generation mapping strategies, however, its
explanation is quite simple. The algorithm is the following: for each class in the diagram, for
all of its navigable association ends with upper multiplicity equal to n of the class, the name
of its representing variable and an initialization for it are stored in a list. This initialization
value, in the case of Java, can be new java.util.Vector(), for ordered association ends, and new

java.util.Set() for unordered ones. After that, variable-value pairs are also stored for each
attribute with an initial value defined in the diagram. Notice that this initial value is translate
to an implementation language expression by the predicate implementationExpressionOf. This
can be used, for example, to translate UML expressions in higher-level languages such as OCL
[17] to the actual implementation language. Having the assignment pairs, we need to remove
some of them which can become superfluous since they are also being received as parameters of
the initialize method. For example, an association end which has the changeability frozen and
it is going to be received as parameter of the initializer cannot be assigned with a new instance
of a container type.

Having now all the information to generate the initialize method, we only need to call the
predicate generateInitializeCode to format its code. This predicate has two rules, and these
rules have following code:

generateInitializeCode(<?ClassName, ?Visibility, ?ParameterPairs, ?AssignPairs>,
?Code) if

generateMethodName(?Visibility, concrete, void, initialize, ?ParameterPairs,
?MethodName),

not(and(classWithName(?Class, ?ClassName),
methodWithNameInClass(?, ?MethodName, Class))),

findall(?Assign,
and(member(<?Type, ?VariableName>,?ParameterPairs),

equals(?Assign, { this.?VariableName = ?VariableName;})),
?ParameterAssignmentList),

findall(?Assign,
and(member(<?Left, ?Right>, ?AssignPairs),

equals(?Assign, {this.?Left = ?Right; })),
?ValueAssignmentList),

append(?ParameterAssignmentList, ?ValueAssignmentList, ?AssignmentList),
listAsSeparatedString(?AssignmentList, [Character cr asString], ?Assignments),
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equals(?Code, {?MethodName { ?Assignments }}).

generateInitializeCode(<?ClassName, ?Visibility, ?ParameterPairs, ?AssignPairs>,
?Code) if

generateMethodName(?Visibility, concrete, void, initialize, ?ParameterPairs,
?MethodName),

classWithName(?Class, ?ClassName),
methodWithNameInClass(?Method, ?MethodName, ?Class),
methodWithSourceCode(?Method, ?Code).

The first of these rules verifies and succeeds only if there is no initialize method yet in the code.
In this case, it collects of the assignments of parameters and all the assignments that were passed
by bound to ?AssignPairs. These assignments are then concatenated together separated by a
line break. After that the name of the method and the assignments are inserted into a quoted
code template to form the code of the initialize method.

In the second rule, we see another point in which we take the possible existing code into account
for generation. This rule succeeds if there is already a method with this name in the code. In
this case, the code of the generated initialize method is the code of the method which already
exists, providing the developer with the ability to modify and adapt the initializations at his/her
convenience.

6.2.3 Reverse-engineering mappings

In this section, we describe in detail the rules for the mapping strategies from code to class
diagram.

As for the diagram-code mapping strategies, the code-diagram mapping strategies are queried
by the transformation engine (reverse-engineering engine, in this case). As we saw in code
generation, the queries from the transformation engine represent our goals, i.e., what we want
to generate. In that case, we wanted to generate classes, instance variables and methods. Now,
in reverse-engineering, we want to extract UML class diagram constructs from the code. For
this, we have predicate headers which are similar to those of code generation, but related to
the constructs we want to extract from the code. As our conceptual sense here is extraction of
diagram rather than generation, the suffixes are toExtract instead of toGenerate:

classToExtract(?Description)
attributeToExtract(?Description)
attributeInitialValueToExtract(?Description)
operationToExtract(?Description)
generalizationToExtract(?Description)
associationToExtract(?Description)
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The description term in all these predicates is a list with the same elements as the predicates for
logic description of UML class diagrams seen in section 6.1. For example, the classToExtract

predicate has a list with the same form as the predicate for the description of a UML class,
umlClass:

classToExtract(<?Diagram, ?Name, ?Concreteness>)
umlClass(?Diagram, ?Name, ?Concreteness)

This is natural, since we want to extract all the characteristics representable in our UML class
diagram logic description.

Library for UML Code Reasoning

We have organized the predicates of this mapping strategy as a library, called Library for UML
Code Reasoning. This library is built on top of LiCoR and, apart from using it to do reverse-
engineering, we can use it to make ad hoc queries about UML constructs which are present in
the code. For example, we can perform a query for finding out what are all the associations
present in the code of a diagram named GSMCase:

if dcAssociationEnd(GSMCase, ?AssociationEnd).

For the sake of organization, all the predicates of the Library for UML Code Reasoning have
the name prefixed with “dc” (historical acronym for “diagram-code”).

The Library for UML Code Reasoning represents the conceptual mapping that we have chosen
for this example and contains all of the mapping predicates for reverse-engineering.

Classes

The extraction of UML classes from the code is straightforward: one UML class for each source
code class. This is done by the predicate classToExtract:

classToExtract(<?Diagram, ?Name, ?Concreteness>) if
dcClass(?Diagram, ?Class),
classWithName(?Class, ?Name),
dcClassWithConcreteness(?Diagram, ?Class, ?Concreteness).
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This rule uses the predicate dcClass to extract all the code classes which belong to a diagram.
After that, the predicate classWithName of LiCoR is used to get the name of each class, and the
predicate dcClassWithConcreteness gets its concreteness (abstract or concrete).

The predicate dcClass is very important since it delimits the diagram in the code. It does this
using a namespace constraint. The classes of a diagram are the classes related in a determined
namespace, which is related to the diagram through the rule namespaceForDiagram. 3 The
predicate dcClass has the following code:

dcClass(?Diagram, ?Class) if
dcNamespace(?Diagram, ?Namespace),
classInNamespace(?Class, ?Namespace).

The predicate for determining the concreteness of a class, dcClassWithConcreteness, has two
very simple rules:

dcClassWithConcreteness(?Diagram, ?Class, abstract) if
dcClass(?Diagram, ?Class),
abstractClass(?Class).

dcClassWithConcreteness(?Diagram, ?Class, concrete) if
dcClass(?Diagram, ?Class),
not(abstractClass(?Class)).

Both of these rules use the predicate dcClass to ensure that the variable ?Class is bound to a
class of this diagram. After that, they use the predicate abstractClass of LiCoR to verify if the
class is abstract or not.

Attributes

According to our conceptual strategy, the extraction of attributes uses the convention that
attributes represented in the code as instance variables of primitive types. The main rule for
their extraction is the following:

attributeToExtract(<?Diagram, ?ClassName, ?Name, ?TypeName, ?Visibility,
?Changeability>) if

dcInstanceVariableForAttribute(?Diagram, ?, ?Class, ?Attribute),
classWithName(?Class, ?ClassName),
dcAttributeWithName(?Diagram, ?Attribute, ?Name),

3In Java, namespaces are packages.
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dcAttributeWithTypeName(?Diagram, ?Attribute, ?TypeName),
dcAttributeWithVisibility(?Diagram, ?Attribute, ?Visibility),
dcAttributeWithChangeability(?Diagram, ?Attribute, ?Changeability).

This rule uses the dcInstanceVariableForAttribute to obtain all the attributes of every class
of the diagram. This attribute is a functor which contains information to identify it in the code.
This functor is then used to recover all the characteristics of this attribute.

The predicate which really identifies an instance variable as the representation of an attribute
is dcInstanceVariableForAttribute. It obtains each instance variable in the diagram which has
a primitive type, and constructs a functor with its information:

dcInstanceVariableForAttribute(?Diagram, ?InstanceVariable, ?Class, ?Attribute) if
dcClass(?Diagram, ?Class),
instanceVariableWithTypeInClass(?InstanceVariable, ?Type, ?Class),
dcPrimitiveType(?Diagram, ?Type),
equals(?Attribute, attribute(?Class, ?InstanceVariable, ?Type)).

The predicates dcAttributeWithName and dcAttributeWithTypeName are very simple. They only
analyze the functor to retrieve the respective information about the attribute. The extraction
of visibilities and changeabilities, however, uses the advanced reasoning features of LiCoR and
SOULJava, such as parse tree traversal.

For extracting the visibility of an attribute, we need to verify if there is an accessor for it. Given
that this accessor exists, the visibility of the attribute is the visibility of the accessor method.
If the accessor does not exist, then the visibility of the instance variable. The code follows:

dcAttributeWithVisibility(?Diagram, ?Attribute, ?Visibility) if
dcInstanceVariableForAttribute(?Diagram, ?InstanceVariable, ?Class, ?Attribute),
and(dcAccessorForInstanceVariable(?Diagram, ?Method, ?InstanceVariable, ?Class),

methodWithVisibility(?Method, ?Visibility))).
dcAttributeWithVisibility(?Diagram, ?Attribute, ?Visibility) if
dcInstanceVariableForAttribute(?Diagram, ?InstanceVariable, ?Class, ?Attribute),
not(dcAccessorForInstanceVariable(?Diagram, ?, ?InstanceVariable, ?Class)),
instanceVariableWithVisibility(?InstanceVariable, ?Visibility).

The first rule succeeds when there is an accessor method for the instance variable that represents
the attribute, returning the visibility of this method as the visibility of the attribute. The second
rule covers the case when there is no accessor method for the instance variable, returning the
visibility of the instance variable as the visibility of the attribute.

Now a question can be raised: what is the definition of an accessor method?
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An accessor is a method which is used to access the value of an instance variable. In Java, they
usually have the form:

public VariableType getVariableName () {

return VariableName ;

}

However, different developers or companies can opt to choose another convention, for exam-
ple, use only the name of the variable as the name of the method, or maybe to enforce some
verification before returning the value.

Using logic metaprogramming, we have a very declarative and clear way to express the form of
accessors, which can be easily changed, according to appropriate conventions. In our convention,
we chose to use accessors in the way they are normally used in Java. Therefore, to extract and
accessor, we analyze its name and its form to see if it conforms to our conventions.

To analyze the structure of a method, we use its logic parse tree. This parse tree is a logic
functor which contains all the information about the structure of a method, including its return
type, name, parameters, modifiers and body.

In the original version of SOUL, which reasons about Smalltalk, the parse tree of method is
specific to this language. The syntax of Smalltalk is very simple making it very easy to express
the body of a method through a logical functor. In Java, using SOULJava, we have a language-
specific parse tree representation also but it is quite more complex than the one of Smalltalk,
given the complexity of the syntax of Java itself (static typing, arrays, operators etc). The parse
tree of a Java method has the following general format: 4

method(?Class,
signature(?Visibility, ?Modifiers, ?ReturnType, ?Name, ?Parameters),
arguments(?ArgumentDeclarations),
temporaries(?TemporaryVariables),
statements(?Statements of method))

To illustrate this better, let us show the source code of a method and its corresponding logic
parse tree. This is the code of the accessor for the instance variable mainOperator of a class
Main:

private void setMainOperator(Operator mainOperator) {
this.mainOperator = mainOperator;

}

And this is the corresponding logic parse tree:

4For clarity, we omitted some parts of the parse tree which are not relevant in this context.
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method([Main],
signature(private, <>, void, setMainOperator, <>),
arguments(<variableDecl(Operator, mainOperator)>),
temporaries(<>),
statements(<assign(fieldAccess(variable(Main, this), mainOperator),

variable(Operator, mainOperator))>))

In fact, this is a normal data structure containing the representation of the abstract syntax tree
returned by the Java compiler. The important point here is that the statements of the method
are arranged in a recursive structure (e.g., nested method calls or control structures) which can
be traversed by the backtracking engine in search for specific constructs. The determination of
accessor methods and changeability of instance variables are an example of this.

Back in our mapping strategy predicates, we were looking for a way to find accessors for a given
instance variable in the code. We do analyzing the parse three of every method in the class:

dcAccessorForInstanceVariable(?Diagram, ?Method, ?InstanceVariable, ?Class)
dcClass(?Class),
instanceVariableWithName(?InstanceVariable, ?VariableName),
instanceVariableWithType(?InstanceVariable, ?Type),
classWithName(?Type, ?TypeName),
methodInClass(?Method, ?Class),
stringCapitalizedOf(?Capitalized, ?VariableName),
parseTreeOfMethod(?ParseTree, ?Method),
equals(?ParseTree,

method(?Class,
signature(?, ?, ?TypeName, [ ’get’ , ?Capitalized ], <>),
arguments(<>),
?,
statements(<return(variable(?TypeName, ?VariableName))>))).

This rule uses the predicate dcClass together with some predicates of LiCoR to obtain all
the information about the possible accessor. The predicate parseTreeOfMethod is a predicate
of LiCoR which returns the parse tree representation of a method. This parse three is unified
through the predicate equals with our template representation of an accessor. This only succeeds
when the parse tree has the same structure as the one defined in our template.

The determination of mutator methods follows the same idea, the only difference is the template
for the parse tree.

Another characteristic needed for the extraction of attributes is the changeability. As we de-
scribed in our conceptual mapping (table 6.1), the changeability of an attribute is changeable
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if the instance variable which represents it in the code is written somewhere outside the initial-
izer method, and frozen otherwise. Therefore, to extract the changeability of an attribute, we
analyze all the methods of its class to verify if its instance variable is assigned with some value.
5 The main rule for this is dcAttributeWithChangeability:

dcAttributeWithChangeability(?Diagram, ?Attribute, changeable) if
dcInstanceVariableForAttribute(?Diagram, ?InstanceVariable, ?Class, ?Attribute),
one(and(methodInClass(?Method,?Class),

not(dcInitializeInClass(?Diagram,?Method,?Class)),
dcInstanceVariableAssignedWithValueInMethod(?Diagram, ?InstanceVariable, ?,

?Method))).

dcAttributeWithChangeability(?Diagram, ?Attribute, frozen) if
dcAttribute(?Diagram, ?Attribute),
not(dcAttributeWithChangeability(?Diagram, ?Attribute, changeable)).

The first rule looks up for all the instance variables which represent attributes in a class. For
each of these, it verifies if they are assigned with a value in some method of the class, except
the initialize method. If so, then the changeability of the attribute is changeable.

The second rule just negates the first one, expressing that all the attributes whose instance
variable is assigned with some value have the changeability set to frozen.

To find all the instance variables which are assigned with a value in a given method, we traverse
the parse tree of this method searching for all assignments. The following predicate needs to
receive a method bound to the variable ?Method. It returns a solution for every different value
assigned to that instance variable inside this method. This is the code of the predicate:

dcInstanceVariableAssignedWithValueInMethod(?InstanceVariable, ?Value, ?Method) if
instanceVariableWithName(?InstanceVariable, ?VarName),
findall(<?VarName, ?Value>,

traverseJavaMethodParseTree(?Method, <?VarName, ?Value>,
processAssignmentInMethod),

?BruteResults),
noDuplicates(?BruteResults, ?Results),
member(<?VarName, ?Value>, ?Results).

processAssignmentInMethod(assign(fieldAccess(variable(?, this), ?FieldName),
?Value),

<?FieldName, ?Value>).

5Notice that the good programming practice of generating all the instance variables as private in the code
keeps us from having to verify assignments for it outside its class.
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This rule finds all the values which are assigned to a variable. To do that, it makes use of the
predicate traverseJavaMethodParseTree of LiCoR. This predicate traverses the parse tree of a
method trying to satisfy a given predicate and returns one solution for each succeeding of it.
The form of the traverseJavaMethodParseTree is:

traverseJavaMethodParseTree(?Method, ?Result, ?ProcessPredicateName)

The term ?ProcessPredicateName is the name of the predicate which is use applied in each
iteration of the tree traversal process. It must be a predicate with two terms, the first for trying
to unify with the current parse tree element, and the other for formatting the result, in case of
success of this unification.

Given so, we defined a predicate called processAssignmentInMethod which succeeds for assign-
ments to instance variables and returns a pair with its name and the assigned value. In our
rule, the name of the instance variable is then unified with ?VarName, which contains the name
of the instance variable for which we are searching assignments.

Attribute initial values

We have also to extract the predicates for the attributes which have an initial value. When
we generated the code, we have mapped initial values of attributes to assignments inside the
initialize method. This is exactly the strategy that we use here to extract initial values from
the code. The main predicate follows:

attributeInitialValueToExtract(<?Diagram, ?ClassName, ?Name, ?InitialValue>) if
dcAttributeWithInitialValue(?Diagram, ?Attribute, ?InitialValue),
dcClassWithName(?Diagram, ?Class, ?ClassName),
dcAttributeWithName(?Diagram, ?Attribute, ?Name).

This rule mainly manipulates the information from the attribute returned by the predicate
dcAttributeWithInitialValue. This predicate searches for the initialize method of the class
which contains the attribute and then, inside this method, tries to find an assignment of a
literal to the instance variable which represents the attribute. For example, all the assignments
inside the following method represent attributes with initial values:

private void initialize() {
this.consumedEnergy = 0;
this.available = false;
this.invoiceType = "perMonth";

}
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This is the code of the predicate dcAttributeWithInitialValue:

dcAttributeWithInitialValue(?Diagram, ?Attribute, ?InitialValue) if
dcAttribute(?Diagram, ?Attribute),
dcInstanceVariableForAttribute(?Diagram, ?InstanceVariable, ?Class, ?Attribute),
dcInitializeInClass(?Diagram, ?Method, ?Class),
dcInstanceVariableAssignedWithLiteralInMethod(?Diagram, ?InstanceVariable,

?ImplValue, ?Method)
implementationExpressionOf(?ImplValue, ?InitialValue).

Conversely to what we have done when generating code, we translate the initial value expression
from implementation language to a possibly higher-level one. To find the initializer of a class,
the parse tree of the method is again used. In the predicate dcInitializeInClass, we search for
a method in the class which has the name (not the signature) equal to “initialize”. The parse
tree template for this is:

method(?, signature(?, ?, ?, initialize, ?), ?, ?, ?))

Having the initialize method, we now need to search for assignment of literals to the instance
variable representing our attribute. This process also requires logic analysis of the parse tree
and is done by the predicate dcInstanceVariableAssignedWithLiteralInMethod:

dcInstanceVariableAssignedWithLiteralInMethod(?Diagram, ?InstanceVariable,
?Literal, ?Method) if

dcInstanceVariableAssignedWithValueInMethod(?Diagram, ?InstanceVariable,
literal(?, ?Literal), ?Method).

This rule calls the predicate dcInstanceVariableAssignedWithValueInMethod, which we have
just discussed, with the value literal(?, ?Literal). This functor is the representation used
for literal assignments in the logic parse tree of methods. It has the general format:

literal(?Type, ?Value)

This searches for assignments of literals to the instance variable bound to ?InstanceVariable.
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Operations

In our conceptual mapping, UML operations are directly mapped to methods when generating
code. But when doing reverse-engineering, the mapping is not simply bidirectional. There are
methods in the code which we do not want to represent as operations in the diagram: acces-
sors, mutators, add methods, initializers and constructors. This is our predicate for extracting
operations from the code:

operationToExtract(<?Diagram, ?ClassName, ?OperationName, ?Parameters,
?ReturnType, ?Concreteness, ?Visibility>) if

dcOperationInClass(?Diagram, ?Operation, ?Class),
classWithName(?Diagram, ?Class, ?ClassName),
dcMethodWithName(?Diagram, ?Operation, ?OperationName),
dcParametersOfMethod(?Diagram, ?Parameters, ?Operation),
dcMethodWithReturnType(?Diagram, ?Operation, ?ReturnType),
dcOperationWithConcreteness(?Diagram, ?Operation, ?Concreteness),
dcOperationWithVisibility(?Diagram,? Operation, ?Visibility).

The main idea of this predicate is that the dcOperationInClass finds each method which repre-
sents an operation, and the other predicates simply do queries to LiCoR to obtain information
about it, such as name and parameters. This information is represented in the method itself
and does not need any advanced reasoning. The predicate dcOperationInClass is quite simple
too:

dcOperationInClass(?Diagram, ?Operation, ?Class) if
dcClass(?Diagram, ?Class),
methodInClass(?Method, ?Class),
not(dcAccessorForInstanceVariable(?Diagram, ?Method, ?, ?Class)),
not(dcMutatorForInstanceVariable(?Diagram, ?Method, ?, ?Class)),
not(dcInitialize(?Diagram, ?Method, ?Class)),
not(dcAddForInstanceVariable(?Diagram,?Method, ?, ?Class)).

It finds all methods in all classes, then verifies if it is not an accessor, mutator, initializer or
add method. Notice that constructors are not verified because they are not returned by the
methodInClass predicate. From the negated predicates, we have already discussed the ones
about accessors, mutators and initialize methods. The predicate dcAddForInstanceVariable,
used for determination of add methods, is very similar to those for determination of accessors
and mutators, only differing in the parse tree template.
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Generalizations

As they are easily for being generated, generalizations are also easy to be extracted from the
code. Every generalization in the source code (class-superclass relationship) is mapped to a
UML generalization. The predicate that does that is the following:

generalizationToExtract(<?Diagram, ?SuperclassName, ?SubclassName>) if
dcClass(?Diagram, ?Superclass),
dcClass(?Diagram, ?Subclass),
superclassOf(?Superclass, ?Subclass),
classWithName(?Superclass, ?SuperclassName),
classWithName(?Subclass, ?SubclassName).

One solution is returned for every pair of classes from the diagram which have a generalization
relationship between them. Notice that generalizations which have one of the classes outside
the diagram are not returned.

Associations

Before stating to discuss the extraction of associations, let us distinguish the associations from
association ends. From the UML specification [32]:

“An association end is an endpoint of an association, which connects the association
to a classifier. Each association end is part of one association.”

In our mapping strategy, we are only treating binary associations, so each association has two
ends. This ends, however, are not necessarily both represented in the code. As we saw in section
6.2.2, only navigable association ends are represented in the code.

When extracting the diagram, though, we want the associations to treated as whole again and
not as two separated ends. To do that, we extract all the association ends from the code and,
afterwards, we merge them to create the associations. Let us discuss first how to extract the
association ends.

As for code generation, the predicates for doing reverse-engineering of association ends are also
quite lengthy, given the large amount of features an end has. The main predicate for extracting
associations has the following code:
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associationEndToExtract(<?Diagram, ?ClassName1, ?ClassName2, ?Role, ?Navigability,
?Changeability, ?Visibility, ?Lower, ?Upper, ?Ordering>) if

dcAssociationEndBetween(?Diagram, ?AssociationEnd, ?Class1, ?Class2),
classWithName(?Diagram, ?Class1, ?ClassName1),
classWithName(?Diagram, ?Class2, ?ClassName2),
dcAssociationEndWithRoleName(?Diagram, ?AssociationEnd, ?Role),
dcAssociationEndWithNavigability(?Diagram, ?AssociationEnd, ?Navigability),
dcAssociationEndWithChangeability(?Diagram, ?AssociationEnd, ?Changeability),
dcAssociationEndWithVisibility(?Diagram, ?AssociationEnd, ?Visibility),
dcAssociationEndWithMultiplicity(?Diagram, ?AssociationEnd, ?Lower, ?Upper),
dcAssociationEndWithOrdering(?Diagram, ?AssociationEnd, ?Ordering).

This rule looks up for all the association ends present in the code of the diagram using the predi-
cate dcAssociationEndBetween. This predicate returns a functor in the variable ?AssociationEnd
which is then used to extract each feature of the association end, such as role name, multiplicity
and ordering. Let us describe some of these predicates.

The most important one is dcAssociationEndBetween, which does the actual identification of an
association end between a source class and a target class:

dcAssociationEndBetween(?Diagram, ?AssociationEnd, ?Class1, ?Class2) if
dcInstanceVariableForAssociationEndInClass(?Diagram, ?, ?Class1,

?AssociationEnd),
dcAssociationEndWithTarget(?Diagram, ?AssociationEnd, ?Class2).

An association end in the code is represented by an instance variable with a non-primitive
type. These non-primitive typed instance variables split in two cases: container-typed and non-
container-typed. For instance variables with types that are not container types, the target class
is the type of the instance variable itself. The predicate for this is quite similar to the one we
used for extracting attributes:

dcInstanceVariableForAssociationEndInClass(?Diagram, ?InstanceVariable,
?Class, ?AssociationEnd) if

dcClass(?Diagram, ?Class),
instanceVariableWithTypeInClass(?InstanceVariable, ?Type, ?Class),
not(dcPrimitiveType(?Diagram, ?Type)),
not(dcContainerTypeForOrdering(?Type, ?)),
equals(?AssociationEnd, associationend(?Class, ?InstanceVariable, ?Type)).

The functor returned has three elements: the source class of the association end, the instance
variable representing it and the target class. For instance variables with container types, there is
another rule, which returns a functor with four elements: the source class, the instance variable,
the container type and the target class:
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dcInstanceVariableForAssociationEndInClass(?Diagram, ?InstanceVariable,
?Class, ?AssociationEnd) if

dcInstanceVariableWithContainerTypeInClass(?Diagram,?InstanceVariable,
?ContainerType, ?Type, ?Class),

equals(?AssociationEnd,
associationend(?Class, ?InstanceVariable, ?ContainerType, ?Type)).

But discovering the type contained in the container type is not straightforward, since collections
can accept any type of object. We need to infer the type contained inside this collection. To infer
this type, we inspect all the methods that are called in (messages that are sent to) the instance
variable that represents the association end. Methods like add(Object) or remove(Object) serve
for manipulating the objects inside the collection. Using information from the parse tree of the
method which calls the method in the collection, we can discover the type which is being passed
to the collection.

Here, we can notice the advantage of using LMP. This kind of type inference would probably
be very difficult to be implemented in a non-declarative language. Using the declarative nature
of SOUL, we see that, beside being long, the rule for finding the type of the collection is quite
intuitive:

dcInstanceVariableWithContainerTypeInClass(?Diagram, ?InstanceVariable,
?ContainerType, ?Type, ?Class) if

instanceVariableWithTypeInClass(?InstanceVariable, ?ContainerType, ?Class),
dcContainerTypeForOrdering(?ContainerType, ?),
instanceVariableWithName(?InstanceVariable, ?VariableName),
dcUnaryHandlingMessagesForContainerType(?Messages, ?ContainerType),
findall(?AType,

and(methodInClass(?M, ?Class),
traverseJavaMethodParseTree(?M, send(?, fieldAccess(variable(?, this),

?VariableName),
?Message,

<variable(?AType, ?)>),
isMessageSend),

member(?Message, ?Messages)),
?RawCandidateList),

noDuplicates(?RawCandidateList, ?CandidateList),
chooseOneWithUser(?CandidateList,

{Please choose the type for ?InstanceVariableName of ?Class: }]
?Type).

First, we obtain the type of the instance variable and verifies if it is a container type. If so,
we obtain its name and the names of the messages which manipulate collections of that type.
Having this, we traverse the parse tree of all methods of the class, looking for all the messages
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sent to this instance variable. For that, we use the predicate traverseJavaMethodParseTree

passing isMessageSend as the process predicate. We are only interested in the type that is
passed as argument for the method call, and we bind it to the variable ?AType. After the
findall, ?RawCandidateList is a list with all the types that have been found. After eliminating
the duplicated types using noDuplicates, it may happen that there is more than one option of
type in the list. For this, we use the predicate chooseOneWithUser. In cases where there is only
one element in the list, this element is bound to ?Type, otherwise, a list with the options appears
to the user, who has to choose one among them.

Now that we have the functor with the association end, we have to extract its features. The
predicate for extracting the role name (dcAssociationEndWithRoleName) uses the same predicate
we used in code generation for mapping the role name to the name of the instance variable,
associationEndInstanceVariableName. It maps plurals back to singular in case of associations
with upper multiplicity n.

The navigability is an easy one: all the association ends in the code are navigable.

For the changeability of association ends, as established in table 6.1, we have five possible
cases, depending on the upper multiplicity. For ends with upper multiplicity equal to 1, the
determination of changeability is mostly the same as for attributes: if assignments for the
variable exist outside the initializer method, then it it changeable; frozen, otherwise. For
multiplicities n, we have three possibilities: changeable, addOnly and frozen which are covered
by the following a predicates:

dcAssociationEndWithChangeability(?Diagram, ?End, changeable) if
dcAssociationEndWithUpperMultiplicity(?Diagram, ?End, n),
one(or(dcAssociationEndChangeableByAssignment(?Diagram, ?End),

dcAssociationEndChangeableBySend(?Diagram, ?End))).

dcAssociationEndWithChangeability(?Diagram, ?End, addOnly) if
dcAssociationEndWithUpperMultiplicity(?Diagram, ?End, n),
not(dcAssociationEndWithChangeability(?Diagram, ?End, changeable)),
dcInstanceVariableForAssociationEndInClass(?Diagram, ?InstVar, ?Class, ?End),
one(and(methodInClass(?Method, ?Class),

not(dcInitializeInClass(?Diagram, ?Method, ?Class)),
dcContainerAddingSend(?SendName),
dcInstanceVariableWithSendInMethod(?Diagram, ?InstVar, ?SendName, ?,

?Method))).

dcAssociationEndWithChangeability(?Diagram, ?End, frozen) if
dcAssociationEndWithUpperMultiplicity(?Diagram, ?End, n),
not(dcAssociationEndWithChangeability(?Diagram, ?End, changeable)),
not(dcAssociationEndWithChangeability(?Diagram, ?End, addOnly)).
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The first of these predicates covers changeable association ends. According to table 6.1, an
association ends is changeable if the variable which represents it is either written somewhere
in the class outside the initializer, or there are calls to its remove or set methods. The pred-
icate dcAssociationEndChangeableByAssignment searches for assignments just in the same way
it is done for attributes or association ends with upper multiplicity 1. To verify if the remove

and set methods are called in the instance variable representing the association, the predicate
dcAssociationEndChangeableBySend is used:

dcAssociationEndChangeableBySend(?Diagram, ?End) if
dcInstanceVariableForAssociationEndInClass(?Diagram, ?InstVar, ?Class, ?End),
one(and(methodInClass(?Method, ?Class),

not(dcInitializeInClass(?Diagram, ?Method, ?Class)),
dcContainerChangingSend(?Send),
dcInstanceVariableWithSendInMethod(?Diagram, ?InstVar, ?Send, ?, ?Method))).

First, this rule obtains the instance variable which represents the instance variable. Then, it
succeeds if at least one message is sent to the instance variable such that the message satisfies
the predicate dcContainerChangingSend. These messages are remove and set:

dcContainerChangingSend(remove).
dcContainerChangingSend(set).

The predicate dcInstanceVariableWithSendInMethod does a parse tree traversal looking for mes-
sage sent in a method:

dcInstanceVariableWithSendInMethod(?Diagram, ?InstanceVariable, ?MethodName,
?Arguments, ?Method) if

traverseJavaMethodParseTree(?M, send(?, fieldAccess(variable(?, this),
?FieldName),
?MethodName,

?Arguments)).

The second rule for the changeability of association ends with multiplicity n covers the change-
ability addOnly. According to table 6.1, ends with addOnly changeability do not satisfy any
condition to be changeable but have a call to the method. It first checks if the end is not
changeable, then performs the same verification as dcAssociationEndChangeableBySend, but
now looking for sends of the add message:

dcContainerAddingSend(add).
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The rule for frozen n-multiplicity ends, as a typical “otherwise” rule, just denies the other two
cases.

Now, to complete the description of the main predicate for extracting association ends which we
presented in page 82, associationEndToExtract, we are only missing three features: visibility,
multiplicity and ordering. For extracting the visibility, we look for the visibility of the accessors
just like we do for attributes (page 6.2.3). The extractions of the upper and lower multiplicities
are split in two by the following rule:

dcAssociationEndWithMultiplicity(?Diagram, ?End, ?Lower, ?Upper) if
dcAssociationEnd(?Diagram, ?End),
dcAssociationEndWithUpperMultiplicity(?Diagram, ?End, ?Upper),
dcAssociationEndWithLowerMultiplicity(?Diagram, ?End, ?Lower).

To obtain the upper multiplicity is easy: if the instance variable representing the association
end has a container type, then the multiplicity is n. Otherwise, it is 1. This is done by the
following rule:

dcAssociationEndWithUpperMultiplicity(?Diagram, ?End, n) if
dcInstanceVariableForAssociationEndInClass(?Diagram, ?InstVar, ?Class, ?End),
dcInstanceVariableWithContainerTypeInClass(?Diagram, ?InstVar, ?, ?, ?Class).

dcAssociationEndWithUpperMultiplicity(?Diagram, ?End, 1) if
not(dcAssociationEndWithUpperMultiplicity(?Diagram, ?End, n)).

During the generation of code, we used the information about lower multiplicity of associations
to generate the initialize methods. So we now search for this information in the initialize
methods. An instance variable representing an association end with lower multiplicity equal
to 1 is initialized with a parameter of the initialize method. The rules which state this is the
following:

dcAssociationEndWithLowerMultiplicity(?Diagram, ?End, 1) if
dcInstanceVariableForAssociationEndInClass(?Diagram, ?InstVar, ?Class, ?End),
dcInitializeInClass(?Diagram, ?Method, ?Class),
parametersOfMethod(?Parameters, ?Method),
member(<?, ?Name>), ?Parameters),
dcInstanceVariableAssignedWithValueInMethod(?, ?InstVar, variable(?, ?Name),

?Method).

dcAssociationEndWithLowerMultiplicity(?Diagram, ?End, 0) if
not(dcAssociationEndWithLowerMultiplicity(?Diagram, ?End, 1)).
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The first rule obtains the instance variable which represents the association end and verifies if, in-
side the initialize method of the class of this variable, there is an assignment of a parameter value
to the variable. This is done by the predicate dcInstanceVariableAssignedWithValueInMethod,
which we have already discussed. If such assignment exists, then the lower multiplicity is 1.
Otherwise, as the second rules states, it is 0.

Finally, we extract the ordering of the association ends. For association ends with upper mul-
tiplicity n, we verify the type of the collection: if it is java.util.Set, then it is an unordered

end; if it is java.util.Vector, then it is an ordered end. For ends with upper multiplicity 1,
the ordering is notapplicable. The rules for this are the following:

dcAssociationEndWithOrdering(?Diagram, ?End, ?Ordering) if
dcInstanceVariableForAssociationEndInClass(?Diagram, ?InstVar, ?Class, ?End),
dcInstanceVariableWithTypeInClass(?Diagram, ?InstVar, ?Type, ?Class),
dcContainerTypeForOrdering(?Type, ?Ordering).

dcAssociationEndWithOrdering(?Diagram, ?End, notapplicable) if
dcInstanceVariableForAssociationEndInClass(?Diagram, ?InstVar, ?Class, ?End),
dcInstanceVariableWithTypeInClass(?Diagram, ?InstVar, ?Type, ?Class),
not(dcContainerTypeForOrdering(?Type, ?Ordering)).

dcContainerTypeForOrdering([#’java.util.Set’], ordered).
dcContainerTypeForOrdering([#’java.util.Vector’], unordered).

The first rule covers ends with upper multiplicity equals to n and discovers the ordering based
on the type of the instance variable, using the predicate dcContainerTypeForOrdering. The
second rule is used for association ends that are represented by an instance variable which does
not have container type. These have upper multiplicity equal to 1 and the ordering is always
notapplicable.

Merging associations ends

Now that we have extracted the association ends, it is time to merge them into complete as-
sociations. To do this, we find all the pairs of association ends which are between the same
classes and group their features together in one list. These are associations which have two
navigable ends. Notice that, as we have already mentioned, we support only one association per
pair of classes. Associations with one navigable end are created for the ends which do not have
corresponding inverse end. The predicate for this is the following:

extractCodeAssociation(<?Diagram, ?ClassName1, ?ClassName2, ?Name, ?R1, ?R2, ?N1,
?N2, ?C1, ?C2, ?V1, ?V2, ?L1, ?U1, ?L2, ?U2, ?O1, ?O2>) if
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dcAssociationEndBetween(?Diagram, ?End1, ?Class1, ?Class2),
dcAssociationEndBetween(?Diagram, ?End2, ?Class2, ?Class1),
classWithName(?Class1, ?ClassName1),
classWithName(?Class2, ?ClassName2),
smallerThan(?ClassName1, ?ClassName2),
dcAssociationWithName(?Diagram, ?End1, ?Name),
associationEndToExtract(<?Diagram, ?ClassName1, ?ClassName2, ?R1, ?N1,

?C1, ?V1, ?L1, ?U1, ?O1>),
associationEndToExtract(<?Diagram, ?ClassName2, ?ClassName1, ?R2, ?N2,

?C2, ?V2, ?L2, ?U2, ?O2>),

extractCodeAssociation(<?Diagram, ?ClassName1, ?ClassName2, ?Name, ?R1, ?R2, ?N1,
?N2, ?C1, ?C2, ?V1, ?V2, ?L1, ?U1, ?L2, ?U2, ?O1, ?O2>) if

dcAssociationEndBetween(?Diagram, ?End1, ?Class1, ?Class2),
not(dcAssociationEndBetween(?Diagram, ?End2, ?Class2, ?Class1)),
classWithName(?Class1, ?ClassName1),
classWithName(?Class2, ?ClassName2),
smallerThan(?ClassName1, ?ClassName2),
dcAssociationWithName(?Diagram, ?End1, ?Name),
associationEndToExtract(<?Diagram, ?ClassName1, ?ClassName2, ?R1, ?N1,

?C1, ?V1, ?L1, ?U1, ?O1>),
equals(<?R2, ?N2, ?C2, ?V2, ?L2, ?U2, ?O2>,

<nil, inaccessible, nil, nil, nil, nil, nil>).

The first of the rules for this predicate covers the cases when there are two inverted association
ends between two classes. It finds the first association end and then tries to find another one
between the same classes but with inverted direction. If we just extracted the association ends
without giving an order to the class names, we would have all of them in double. This would
happen because, for example, if we had two inverse ends A→B and B→A, ?Class1 would be
bound to A and ?Class2 would be bound to B in one solution. But there would be also another
solution where ?Class1 would be bound to B and ?Class2 to A. To avoid this, we allow only
one of these solutions to succeed by enforcing that the first class name must be alphabetically
smaller (be first in the dictionary) than the second one. After this, we obtain the name of the
association by means of the predicate dcAssociationWithName and the rest of the characteristics
of the ends by means of the predicate associationEndToExtract.

The second rule is for the case when there is only one association end between two classes. In
this case, the features of the inaccessible association end are left as nil. There is also another
rule which is just the same as this second one but with the names ?Class1 and ?Class2 inverted
in the first and second clauses.

The last diagram extraction predicate that we are going to discuss is dcAssociationWithName.
As the reader may remember, we did not use the name of the association when generating code.
Thus, we do not have from where to extract it in the code. Now is when the original diagram
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takes place. We are going to consult it to obtain the information about the name of a given
association. In case the given association did not exist before, we ask the user for a new name.
The rules are:

dcAssociationWithName(?Diagram, ?End, ?Name) if
dcAssociationEndBetween(?Diagram, ?End, ?Source, ?Target),
classWithName(?Source, ?SourceName),
classWithName(?Target, ?TargetName),
umlAssociationAll(?Diagram, ?SourceName, ?TargetName, ?Name,

?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?).

dcAssociationWithName(?Diagram, ?End, ?Name) if
dcAssociationEndBetween(?Diagram, ?End, ?Source, ?Target),
classWithName(?Source, ?SourceName),
classWithName(?Target, ?TargetName),
not(umlAssociation(?Diagram, ?SourceName, ?TargetName, ?Name,

?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)),
promptUser({Please enter a name for the association ?End:}, ?Name).

When we generated code, we consulted the original code in order not to override the code of
existing methods. Is is analogous to what we are doing now, consulting the existing diagram to
get the correct information about the association name.

6.2.4 Verifying the extraction

Our approach for round-trip engineering claims that when the same mapping strategies are used
for code generation and reverse-engineering, we are able to generate code from a class diagram
and extract the same class diagram from this generated code. For example, given a diagram D,
if we generate code C from it using the conceptual mapping strategy S, and, without changing
the code, if we extract a diagram Dnew from C using the same strategy S, then Dnew is equal
to D.

We do not have yet a formal method to verify this process. There is no formalism for verifying
if a code generation mapping strategy and a reverse-engineering mapping strategy follow the
same conceptual mapping strategy.

But we can at least do stress tests to verify if our mapping strategies are consistent. For
this purpose, we have developed a simple test tool to perform automated tests on the results
returned by the round-trip engine. This tool consists of a set of logic predicates which compare
the original diagram with the extracted one.
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Our original diagram is declared by logic facts prefixed with “uml”. In order not to mix the ex-
tracted predicates with the original ones, our round-trip tool, Lure, provides a parametrization
of this prefix. Therefore we have a set of facts prefixed with “uml” for the original diagram, and
a set of facts prefixed with “euml” for the extracted diagram.

Having this, we can define our set of predicates which are going to verify:

• What was extracted and should not have been.

• What was not extracted and should have been.

• What was extracted incorrectly.

All the predicates are split in two parts: identification and features. Identification is the minimal
information needed for identifying that UML construct uniquely. Features are all the charac-
teristics of the construct. Let us take the predicate class as an example. It is stated by the
following rule:

umlClass(?Diagram, ?Name, ?Concreteness)

The two first parameters of this rule, ?Diagram and ?Name, serve for identification of the class
while the third, ?Concreteness is a feature of it.

All the constructs whose generation and extraction process are going to be verified must be
declared in a toVerify fact, which has the form:

toVerify(?PredicateSuffix, ?IdentificationList, ?FeaturesList1, ?FeaturesList2)

The term ?FeaturesList2 is a repetition of ?Features1 but with different variable names. This
is used to test incorrectly extracted facts. The verification of class facts, for example, is stated
by the following fact:

toVerify(Class, <?Diagram, ?ClassName>, <?Concreteness1>, <?Concreteness2>).

After the declaration of the toVerify facts for all the UML constructs whose code generation
and diagram extraction process need to be verified, we just have to run the query:

if verifyGenerationExtraction(?Error).
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This query will return one result for each inconsistency (error) that it finds in the registered
facts. Example of this inconsistencies are:

<missing, eumlAttribute, <GSMCase, Call, duration>>
<incorrect, eumlAttribute, <GSMCase, Call, startTime>, <Date, public, frozen>,

<Date, public, changeable>>
<inexcess, eumlAttribute, <GSMCase, Call, caller>>

The first list represents an inconsistency where an attribute is missing in the extracted diagram.
In the original diagram, there is an attribute called duration in the class Call, but it was not
extracted from the code. This can mean that there is a problem in the generation of attributes
or in the extraction itself. The second inconsistency is an attribute which was extracted but
incorrectly: the changeability, which should be frozen, was extracted as changeable. The third
inconsistency is an attribute which was extracted from the code but does not exist in the original
diagram. This could have been caused, for example, by the misrecognition of an association end
as an attribute.

Implementation of the verification

The implementation of this verification illustrates how clear, well-organized and elegant the use
of logic programming to reason about software systems is. By writing down four simple rules,
we can built a very useful verification tool to check the correctness of the development using
our tool. Let us take a quick look at these rules.

The first one is just a utility rule to concatenate the prefixes to the predicate name which is
determined in the predicate toVerify with four terms:

toVerify(?Predicate1, ?Predicate2, ?Identification, ?Features1, ?Features2) if
toVerify(?Predicate, ?Identification, ?Features1, ?Features2),
originalUmlPrefix(?OriginalPrefix),
equals(?Predicate1, [ (?OriginalPrefix , ?Predicate) ] ),
extractedUmlPrefix(?ExtractedPrefix),
equals(?Predicate2, [ (?ExtractedPrefix , ?Predicate) ] ).

Now, we define our three other rules which verify each of the inconsistency items that we
mentioned in the previous section: missing fact, fact in excess and incorrectly extracted fact.
This is the one which checks for missing facts:

verifyUml(?Error) if
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toVerify(?Predicate1, ?Predicate2, ?Identification, ?Features1, ?Features2),
append(?Identification, ?Features1, ?All1),
apply(?Predicate1, ?All1),
append(?Identification, ?Features2, ?All2),
not(apply(?Predicate2, ?All2)),
equals(?Error, <missing, ?Predicate2, ?Identification>).

After getting the names and data about the predicates to be verified, this rule appends the lists
of ?Identification and ?Features1 (original diagram) to form the whole description of the class.
Then ?Predicate1 is applied to this list to find all the classes that existed in the original diagram.
After that, the same concatenation is done for ?Identification and ?Features2, resulting in
?All2. Now, descriptions with the same identification of each class that was found in the original
diagram are verified to exist in the extracted diagram, by applying ?Predicate2 to ?All2. This
is negated, that is, it succeeds only if the class that exists in the original diagram does not exist
in the extracted diagram. If so, this rule verifyUml succeeds returning the information about
the inconsistency.

The predicate for finding classes that should not have been extracted but were has the same
form. It swaps ?Predicate1 and ?Predicate2, and changes the way information is given about
the error.

For the verification of UML constructs that were extracted with incorrect features, we declare
another verifyUml rule:

verifyUml(?Error) if
toVerify(?Predicate1, ?Predicate2, ?Identification, ?Features1, ?Features2),
append(?Identification, ?Features1, ?All1),
apply(?Predicate1, ?All1),
not(apply(?Predicate2, ?All1)),
append(?Identification, ?Features2, ?All2),
apply(?Predicate2, ?All2),
equals(?Error,

<incorrect, ?Predicate2, ?Identification, ?Features1, ?Features2>).

This beginning of this rule is the same as the one for verification of missing extractions, verifying
all the classes that exist in the original diagram. After that, it ensures that each class was not
correctly extracted by negating the application of ?Predicate2 to the results of ?Predicate1.
Having succeeded this step, the predicate generates a new list of terms (?All2) with the same
identification but with different feature variables. It then finds the features that were extracted
for that class by applying ?Predicate2 to this ?All2. After confirming the inconsistency, infor-
mation about it is returned as result of this rule: the name of the incorrectly extracted predicate,
the identification of the class, the original features and the extracted features.
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This simple verification predicates provide an interesting tool for developing and verifying map-
ping strategies. Using it, generation/extraction tests can be instantly and automatically verified.

6.3 Language independence

Up till now, all the examples we have shown are in Java. This was the main language we used
for our experiments. However, one of our goals while conceiving our approach was not to make
it language-specific, we wished to make it as language-independent as possible.

Evidently, we knew from the beginning that this was a very difficult goal, if possible at all.
Language independence often has to do with language meta-models, their relations and trans-
formations between them (e.g., [11]). Instead, we tried to reduce the set of language-specific
constructs that we treated. We developed our approach having a generic object-oriented lan-
guage in mind, with the usual constructs they contain: classes, instance variables and methods.

From this, we developed a code generation engine and a reverse-engineering engine that are
language-independent. Language-independent in the sense that they do not refer to language
specific constructs and can be used to do code generation or reverse-engineering of general
object-oriented languages, given that (1) the language provides the constructs cited above and
(2) there is an implementation of the MLI of LiCoR for this language.

For this thesis, we had two implementations of the MLI available for use: Java and Smalltalk. For
most of the experiments, we used Java, essentially because it is a statically typed language, which
makes it easier to extract information from the code (e.g., types of attributes or parameters). We
also used Smalltalk for some experiments, mainly to test if what would be the issues encountered
when doing a language-independent round-trip engineering tool.

Most of the problems are overcome with the architecture of LiCoR, which allows transparent
reasoning about a base object-oriented language. Since the mapping strategies are built on top
of LiCoR, they take advantage of this fact. The rule classToExtract listed below, for example,
can be used both for Java and for Smalltalk:

classToExtract(<?Name, ?Concreteness>) if
classWithName(?Class, ?Name),
classWithConcreteness(?Class, ?Concreteness).

classWithConcreteness(?Class, abstract) if
abstractClass(?Class).

classWithConcreteness(?Class, concrete) if
not(abstractClass(?Class)).

It only uses predicates from LiCoR. Like this, when the MLI being used is for Smalltalk,
Smalltalk classes are returned. If the MLI is for Java, i.e., we are using SOULJava, Java classes
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MLI

classesFor:

classNameOf:

...

MLIForJava

classesFor:

classNameOf:

...

MLIForSmalltalk

classesFor:

classNameOf:

...

current

Figure 6.1: The hierarchy of the MLI with the abstract MLI and two concrete implementations:
one for Java and one for Smalltalk.

are returned. The MLI is a Smalltalk façade which is responsible for the meta-level manipulation
of the entities from the base language. To better understand how this mechanism for language
independence works, let us take a look at the implementation of the predicate classWithName:

classWithName(?Class, ?ClassName) if
class(?Class),
equals(?ClassName, [ Soul.MLI current classNameOf: ?Class ])

The first rule called ensures that a class is bound to the variable ?Class. This can be by just
verifying is the bound atom is a class or by looking up for all the classes of the system, in case
?Class is an open variable. Afterwards, a Smalltalk invocation to the MLI is made to obtain
the name of the class. This name is then unified with the variable ?ClassName.

The class Soul.MLI is a singleton which contains an instance of the active MLI, which can
be MLIForJava or MLIForSmalltalk. The hierarchy of the MLI is illustrated by figure 6.1. The
method current returns the current implementation, which is used to obtain the name of ?Class
in the previous example.

However, in some points of the mapping strategies, some differences between the languages
appear that are above the level of the MLI. One major example of this are the templates of
quoted code. An accessor for Java has the same essential structure of an accessor for Smalltalk,
but, down in code, the syntax is very different.

To overcome this problem, we use the dynamic ability of SOUL to use variables as predicate
names. The name of the active language is used to build the name of the predicate which has
to be called. The example of the accessor becomes:
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generateAccessorCode(<?Visibility, ?Type, ?VariableName>, ?Code) if
currentLanguage(?Language),
{generateAccessorCodeFor?Language}(<?Visibility, ?Type, ?VariableName>, ?Code).

generateAccessorCodeForSmalltalk(<?Visibility, ?Type, ?VariableName>, ?Code) if
equals(?Code, {?VariableName
^ ?VariableName}).

generateAccessorCodeForJava(<?Visibility, ?Type, ?VariableName>, ?Code) if
stringCapitalizedOf(?CapitalizedInstVar, ?VariableName),
equals(?Code, {?Visibility ?Type get?CapitalizedInstVar() {
return ?VariableName; }}).

Like this, the predicate generateAccessorCode in a language independent way. But the way
the accessor is generated depends on the language which is being used. The active language is
obtained through the predicate currentLanguage, which consults the MLI and returns a string
with the name of the language.

6.3.1 Language independence issues

Let us discuss some of the problems we faced while implementing our tool for both Java and
Smalltalk.

Most of the problems we encountered were the related to the absence of static types in Smalltalk.
It is quite a difficult task to extract a class diagram with types from a language without static
typing. This problem occurs in the when we need to know the types of parameters, instance
variables and for inferring the types contained in collections.

In the case of instance variables, we made use of the Smalltalk type inference mechanism of
LiCoR. This mechanism is an algorithm which traverses the parse tree of the methods of the
class looking for the messages that are sent to the instance variable and the expression types
which are assigned to it. The first possible types for the instance variable are obtained by finding
the classes which understand all the messages sent to the instance variable. The rest are the
expression types which are assigned to the instance variable. These expression types result, for
example, from message sent for instance creation (e.g., Contract new).

All these possible values are returned by the predicate classWithInstvarOfType, which is specific
to Smalltalk. Our rule stores these results in a list and, in case there is more than one option,
the options are shown to the user, who has to choose one among them.

Having this, to make a language-independent predicate for determining the type of an instance
variable, we implemented the three following rules:
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dcInstanceVariableWithType(?InstanceVariable, ?Type, ?Class) if
currentLanguage(?Language),
{dcInstanceVariableWithTypeFor?Language}(?InstanceVariable, ?Type, ?Class).

dcInstanceVariableWithTypeForJava(?InstanceVariable, ?Type, ?Class) if
instanceVariableWithType(?InstanceVariable, ?Type, ?Class).

dcInstanceVariableWithTypeForSmalltalk(?InstanceVariable, ?Type, ?Class) if
findall(?OneType,

classWithInstvarOfType(?Class, ?InstanceVariable, ?Type),
?ListOfTypes),

chooseOneWithUser(?ListOfTypes,
{Choose a type for ?InstanceVariable of class ?Class},
?Type).

The first rule just chooses the appropriate predicate to call, based on the current language.
If we are using Java, the regular predicate instanceVariableWithType is called and immedi-
ately returns the correct type of the instance variable. If we are using Smalltalk, the rule
dcInstanceVariableWithTypeForSmalltalk uses the predicate classWithInstvarOfType of LiCoR
to collect all the possible types for the instance variable. After collecting them, the predicate
chooseOneWithUser is used to show the user the list of possible types. If there is only one option,
it is chosen automatically.

For parameters, return types and types contained in collections, we did not use type inferencing
because it was not available in LiCoR. So to workaround this problem, we used a simple tagging
mechanism by means of logic facts. So, if the developer adds a method or an instance variable
with a collection type, he must also add a fact stating the type information about it. This way,
the mapping strategies can consult these facts to correctly reverse-engineer the code. Example
of these facts are:

typingTag(operation, GSMCase, Call, addToInvoice, void, <Double, Integer>).
typingTag(container, GSMCase, Contract, clients, <Client>).

The first facts declares the typing information about the parameters and return type of the
operation addToInvoice of class Call. The second one declares that the type contained in the
collection clients of the class Contract is Client.

These were the artifices we implemented in order to recover type information in Smalltalk.
Another option would be to work with non-typed diagrams, i.e., diagrams without explicit
types for the attributes and parameters. But we have not done experiments with that.

Apart from this, there are some other points in which we need separation between predicates
for Smalltalk and for Java. Here are some of them:
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Parse tree traversal The parse trees of methods are very different between Smalltalk and
Java. The cause for that is, again, that Java has static types and Smalltalk does not.
The parse tree of Smalltalk is quite simple, reflecting the simplicity of the syntax of this
language. In contract, the parse tree of a Java method is far more complex since it contains
all type information about every expression, assignment, parameter or variable. Therefore,
every time a parse tree has to be analyzed, two different predicates has to be created, one
for Java and one for Smalltalk.

Code generation formatting This is an inherent consequence from the fact the we are work-
ing with different languages : the code is different. Therefore, the predicates for format-
ting code have to be split in two rules as well. One example of that is the predicate
generateAccessorCode, shown in page 94.

Code conventions Smalltalk standard coding conventions are different than the ones of Java.
The usual example is that accessors in Smalltalk have the name of the instance variable
and, in Java, they follow the JavaBeans naming convention [37] (getVariableName). This
also implies the creation of separate rules for Java and Smalltalk.

6.4 Lure — our tool for round-trip engineering

Lure6 is the prototype tool which resulted from our experiments on doing round-trip engineer-
ing. It allows the development of Java applications and can be extended to support Smalltalk.
The default mapping strategies are the ones we showed in chapter 6, but other strategies can
be implemented and installed according to the preferences of the developer. This section serves
as a brief demonstration and user instructions.

Lure is essentially based on SOUL, LiCoR and SOULJava. Like these, Lure is built on top
of a Smalltalk IDE, Cincom VisualWorks [6]. Therefore, to use Lure, the user has to start
VisualWorks and load the following bundles of classes (preferably in this order): SOUL, LiCoR,
SOULJava and Roundtrip. After loading the last bundle, all the rules of Lure are automatically
loaded into the logic repository of SOUL and the tool can already be used.

6.4.1 Starting to use Lure

There are two ways to start using Lure: from a UML class diagram or from Java source code.
The instructions for doing this follow.

From a UML class diagram A design description of the system (in this case, a class diagram)
is a usual way to start developing a software system. Our class diagram, as we discussed,

6The name Lure derives from Logic for UML Round-trip Engineering.
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Figure 6.2: Importing a directory with Java source files.

is represented by logic facts. The developer can manually create these facts to declare his
diagram. This can be a quite annoying process for diagrams with more than half a dozen
classes, so another way to do it is to create the diagrams using a CASE tool, and import
them using the Lure XMI interface. This process is detailed in section 6.4.3.

From source code Instead of starting from a design description, the developer can start by
using existing code. To do this, the import facility of SOULJava is used. The user must
open the file browser of VisualWorks and browse to the files to be imported. These can be
single Java source files or a directory containing them. Figure 6.2 shows the pop-up menu
containing the option “Import Java Dir” which appears when a folder is right-clicked with
the mouse. Choosing this option causes all the *.java files inside that directory to be
imported into the Java code repository.

After the import of the source code or of the diagram, one more small configuration has to be
made. The user has to declare a logic fact called namespaceNameForDiagram which states the
name of the namespace (package, in case of java) in which are the classes of the diagram. This is
namespace where the classes of the diagram are generated. It servers also as a restriction of scope
for reverse-engineering, making only the classes from this namespace to be extracted. Therefore,
all the classes of a diagram must be in the same namespace. One example of declaration of this
logic fact is:

namespaceNameForDiagram(gsmcase, GSMCase).
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Figure 6.3: The process of development using Lure.

6.4.2 Round-trip engineering with Lure

The process of development using Lure is simple and it is illustrated in figure 6.3. Let us say
that the developer imports a set of Java files with the source code of an application into the
environment (SourceCode1). At the time he wants to change the design of this application, he
has to execute the following query:

if extractDiagramAndOverride

This extracts a UML class diagram from the code and declares it with facts in the logic
repository of SOUL (ClassDiagram1). The predicate extractDiagramAndOverride is similar
to extractDiagram, which we have seen in chapter 6, with the difference that, after extracting,
it removes the previously existing diagram and saves the extracted one with the prefix uml.
The predicate extractDiagram does not do this in order to allow the verification of extraction
(section 6.2.4). The changes the developer performs in this diagram result in a modified dia-
gram, represented by ClassDiagram2 in figure 6.3. Now, when the developer wants to edit the
application at source code level, he needs to update the existing code (SourceCode1) using the
information from the modified diagram (ClassDiagram2). To do this, the following query is
executed:

if generateCode

Having done that, the code is up-to-date with respect to the diagram and can be freely modified
by the developer. When he wants to change the application at design-level again, the query
for extracting code must be executed again. The only difference is that now a diagram already
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Figure 6.4: The Java Code Browser of SOUL Java.

exists (ClassDiagram2) and is used together with the source code (SourceCode3) to generate a
new diagram (ClassDiagram3). From this point on, the cycle starts again, alternating between
code generations and diagram extractions.

6.4.3 Editing code and diagram

The Java code repository where the source code is stored can be browser through the SOULJava
Code Browser. This tool, illustrated in figure 6.4, provides basic functionalities for editing the
code from the repository.

If the developer wants to use its preferred IDE to edit the Java code, it can be exported using the
predicate exportPackageWithName. This rule exports all the classes in a package to a directory
with a given name. An example of use of this predicate is:

if exportPackageWithName(gsmcase, [’/home/joao/workspace/GSMCase/src/’]).

This exports the classes of the package gsmcase to the indicated directory. To import the
modified code again into Lure, the developer can use the code import facility of SOULJava, as
already described.

The environment of Lure itself does not provide a possibility for graphic manipulation of class
diagrams. Inside the tool, the only way to modify a class diagram is to edit its logic facts.
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However, Lure provides an XMI [31] interface for exchanging diagrams with other tools. The
developer can export the class diagram to an XMI document. And this document can be
imported by a CASE tool that supports graphic visualization and editing of class diagrams. To
update the code with the diagram again, the diagram can be imported back into Lure also
using the XMI interface.

To export a diagram, the query exportDiagramWithName has to be executed:

if exportDiagramWithName(gsmcase, [’/home/joao/gsmcase.xmi’]).

This example saves the diagram gsmcase as an XMI file with the indicated name.

For our experiments, we used Gentleware Poseidon version 1.6.1 02, a CASE tool for UML
modelling. It imports XMI documents and allows graphic visualization and editing of the
diagrams. It also exports the diagrams as XMI documents. A diagram exported from Poseidon
can be imported into Lure using the predicate exportDiagramWithName. One example of that
is:

if importDiagramWithName(gsmcase, [’/home/joao/gsmcase.xmi’]).

This query creates the logic facts for the diagram gsmcase, importing them from the indicated
XMI document into Lure.

Conclusion

Declarative programming — of which logic programming is a particular kind —, in the strong
sense, means that programs are theories and all control information is supplied automatically
by the system. [22].

In this chapter, indeed, we have not seen any declaration of control information, nothing stating
how to generate code from a class diagram or how to extract a diagram from the code. Every
logic rule or fact we showed here stated either code patterns for UML constructs or UML patterns
for code constructs. In the terminology we assumed, we just stated mapping strategies.

In fact, this term turns out to be very appropriate. We have a set of strategies available, all of
them declared in the logic repository, representing our knowledge (or, why not, our theory) about
how code is mapped to diagram and vice versa. The code generation and reverse-engineering
engines, which represent the automated (mechanic) part of the system, query these strategies
in order to perform their tasks.
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Using this approach, we achieve a true separation between the mechanic part, with its imperative
nature, and the knowledge part, with its declarative nature. The main benefit of this separation
is ease to modify the strategies without having to touch the transformation engine. Moreover,
this modification — and the actual declaration — of the mapping strategies is done through a
logic programming language, a kind of programming that is well-known for its ease and power
for declaring and reasoning about knowledge bases.

As we showed in section 6.2.3, the backtracking engine of SOUL together with LiCoR can be
very handy to perform quite advanced reasoning about source code structure. We can, for
example, discover all the messages that are sent to all the instance variables of all classes of the
system by means of just one query:

if instanceVariableWithNameInClass(?InstVar, ?VarName, ?Class),
methodInClass(?Method, ?Class),
traverseJavaMethodParseTree(?Method, send(?, fieldAccess(variable(?, this),

?VarName), ?Message, ?), isMessageSend).

We have also shown that the structure of the meta-level interface (MLI) of LiCoR, the lan-
guages facilities of SOUL and a good design of the mapping strategies predicates can lead to an
interesting solution to language-independence. We demonstrated this by showing examples of
predicates for transparent multi-language reasoning about Java and Smalltalk code.

Finally, we described Lure, the concrete implementation of our approach for round-trip engi-
neering using LMP.



Chapter 7

Case Study — GSMCase

In this chapter, we describe some experiments that we have made to validate our approach.
They were mainly based on a case study called GSMCase. First, we give a short description
of the GSMCase application and then we demonstrate how Lure is used to do round-trip
engineering with this application. We show how GSMCase evolves from a simple class diagram
to a fully-working application.

7.1 Case defintion

7.1.1 Requirements

The first thing to do is to define our case. GSMCase is a small application for simulating the
billing of GSM telecommunication systems. It does not have a graphic user interface and the
only use case is the following:

1. Generate simulation data about contracts, clients, calls etc.

2. Compute and print the invoices for all the generated data.

When the application is started, the main method should be responsible for performing these
three operations in order.

103
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Figure 7.1: The initial class diagram of our case study, GSMCase.

7.1.2 Initial diagram

We start the development of our system by defining the initial design, described as a UML
class diagram. This diagram, illustrated in figure 7.1, contains thirteen classes and fourteen
associations.

Unfortunately, some of the features in this diagram are not yet supported by our tool. These
constructs are aggregations (Contract–GroupedInvoice and Contract–PrincingPolicy) and more
than one association between two classes (Main–Operator). In the case of the aggregations, we
declare them as regular associations. In the case where there is more than one association
between one class, we leave them both declared in the code.

The class diagram of GSMCase is defined using logic facts. They follow the same representation
which we have described in section 6.1. Some examples of the facts that describe the class
diagram of GSMCase are the following:

umlClass(GSMCase, Main, concrete).
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...
umlAttribute(GSMCase, Caller, simNumber, String, public, frozen).
...
umlAttributeInitialValue(GSMCase, Contract, invoiceType, [ ’perCaller’ ]).
...
umlOperation(GSMCase, Caller, computeInvoice, <<Integer, aMonth>>,

void, concrete, public).
...
umlClassGeneralizes(GSMCase, Communication, SMS).
...
umlAssociation(GSMCase, Communication, Invoice, [#’was billed in’],

communication, invoice, navigable, navigable, changeable,
changeable, public, public, 1, 1, 0, n, ordered, ordered).

...

7.2 Round-trip engineering

To describe the experiment of developing GSMCase using Lure, this section tells a summarized
history about how it was started, the changes we have chosen to make and the how we have
reached the final product, a working application for simulation of billing for GSM companies.

7.2.1 First code generation

Having declared the class diagram, we can now start the process of round-trip engineering. The
first task is to generate code from the initial class diagram. As described in chapter , this is
done by the query:

if generateCode

This first code generation process takes approximately 14 seconds to be executed 1. It generates
the whole skeleton for the system: all the classes, instance variables for attributes and asso-
ciation ends, constructors, initializers, add methods, accessors, mutators and empty methods
for operations. Table 7.1 lists the number of UML constructs in the initial diagram and the
number of code constructs in the generated code. As expected, the number of classes in the
code is the same as in the diagram. The number of instance variables generated is the sum
of navigable association ends and attributes. The large amount of methods is related to the
number of accessors, mutators, add and initialize methods.

1The time measurements were carried out in a PC with a Pentium III processor, 650 MHz, 128 MB of RAM,
running Windows 2000.
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UML constructs in GSMCase

Class 13
Generalization 4
Operation 18
Attribute 15
Associations 14 (28 ends)

Code constructs in GSMCase

Class 13
Method 118
Constructor 13
Instance variable 39

(a) (b)

Table 7.1: (a) Constructs in the initial UML class diagram of GSMCase. (b) The constructs
that exist in the code after the first code generation.

Let us pick one of the generated classes to discuss about the generated constructs. The class
PhoneNr represents a GSM phone number. A phone number is related to its owner (Caller)
and accumulates all the communications (Communication) that have been made to it. The code
generated for the class PhoneNr can be seen in figure 7.2.

Since the class PhoneNr is not the child class of any generalization in the diagram, in the code
it is generated as a subclass of Object. The first instance variable, receivedCommunications,
represents the association end of PhoneNr in the association PhoneNr-Communication. Since a
PhoneNr can receive zero or more communications (short text messages (SMS) or calls (Call)),
this association end is represented by a collection type. Since the Communication end is ordered,
this collection type is java.util.Vector. The end on the Communication side of the associ-
ation has the changeability addOnly, so no mutator was generated for this instance variable.
The generated methods were one accessor, getReceivedCommunications, and one add method,
addReceivedCommunication.

The second instance variable is caller and represents the association between PhoneNr and
Caller. In the class diagram, the association end in the Caller side has the changeability
changeable, so, besides the acessor, a mutator was also generated for the caller instance vari-
able.

The third instance variable, phoneNumber, is the actual text representation of the phone number
and represents the UML attribute with the same name. Since the attribute has changeability
frozen, only an accessor was generated for it, and not a mutator. Another fact to notice
is the type of this variable: java.lang.String. The diagram we have built did not contain
any language-specific type like this one. The type String of the diagram was translated into
java.util.String during the generation of the instance variable.

As for all classes, a constructor was generated for this class which calls the constructor of the
super class and the initialize method of this class. The initialize method receives the parameter
phoneNumber, which corresponds to the value which must be assigned to the instance variable
phoneNumber, which represents a frozen attribute. The initialize method also assigns a new
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instance of java.util.Vector to the variable receivedCommunications, in order to correctly
initialize the association end.

7.2.2 Implementing the simulation data

Now, we are going to start to insert behavior in our system, that is fill in the method bodies
and get the code working. The next functionality that we are going to implement now is the
generation of the simulation data. This consists of creating some instances of the classes of
GSMCase with hypothetic values for attributes, and connecting these instances through the
class associations.

Initially, we had planned that this should be in the class Main, but then we changed our minds
and decided to create another separate class to take care of this data creation. We called this
class DataGenerator and it has a one-to-one association with the class Main. Another change
we wanted to perform in the code was addition of a method called getMainPhoneNr in the class
Caller, to make it easier to get the first phone number of that caller (notice in the diagram that
a caller can have n phone numbers).

7.2.3 Verifying the changes

Our next step now is to take a look at how the diagram stayed after this change in the code.
Before that, we are going to make use of our verification tool (section 6.2.4) to verify all the
exact changes between the original diagram and the one that is going to be extracted now. As
we described in section 6.4.2, we can extract the diagram without overriding the previous one
by running the query:

if extractDiagram

In this experiment, the extraction query took about 63 seconds to extract a class diagram from
the code and stored it in the logic repository of SOUL. Using the notation we defined in section
6.2.4, some of the differences we found were:

<inexcess, eumlClass, <GSMCase, DataGenerator>>
<inexcess, eumlAssociationEnd, <GSMCase, DataGenerator, Main>>
<inexcess, eumlOperation, <GSMCase, DataGenerator, generateData,<>>>
<inexcess, eumlOperation, <GSMCase, DataGenerator, generateDuration,<>>>
...
<inexcess, eumlOperation, <GSMCase, Caller, getMainPhoneNr,<>>>
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package gsmcase;

public class PhoneNr extends Object {
public java.util.Vector receivedCommunications;
public Caller caller;
public java.lang.String phoneNumber;
public java.util.Vector getReceivedCommunications() {
return receivedCommunications;

}
public Caller getCaller() {
return caller;

}
public java.lang.String getPhoneNumber() {
return phoneNumber;

}
private void initialize(java.lang.String phoneNumber) {
this.phoneNumber = phoneNumber;
this.receivedCommunications = new java.util.Vector();

}
public void addReceivedCommunication(Communication receivedCommunication) {
(this.receivedCommunications).add(receivedCommunication);

}
public PhoneNr(java.lang.String phoneNumber) {
super();
this.initialize(phoneNumber);

}
public void setCaller(Caller caller) {
this.caller = caller;

}
}

Figure 7.2: Code generated for the class PhoneNr.
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7.2.4 Changing the design

Our next task is to implement the algorithm to compute the invoices and print them in the
console. However, by taking a closer look at how we have initially designed the system, we have
just realized that an interesting improvement can be done in the class structure. Instead of
implementing a huge algorithm with nested loops iterating through all the operators, contracts
etc, we can implement a visitor design pattern [13] to take care of the invoice computations and
printings.

To adapt our classes to work with the visitor, we create a class Visited and make the classes
Operator, Contract and Caller be a subclass of it. We create also a Visitor class and a
specialization of it called InvoicerVisitor. The class InvoicerVisitor is our concrete visitor,
which “visits” all the classes calculating and printing the invoices.

When doing this, we have also realized that the class GroupedInvoice is not needed anymore
and, from now on, all the invoices are calculated per caller.

To perform these changes, some new facts and rules had to be added to the diagram:

umlClass(GSMCase, Visited, abstract).
umlClass(GSMCase, Visitor, abstract).
umlClass(GSMCase, InvoicerVisitor, concrete).
umlClassGeneralizes(GSMCase, Visitor, InvoicerVisitor).
umlClassGeneralizes(GSMCase, Visited, ?Sub) if
member(?Sub, <Operator, Contract, Caller>)

umlOperation(GSMCase, Visitor, visitCaller, <<Caller, caller>>,
void, concrete, public).

umlOperation(GSMCase, Visitor, visitContract, <<Contract, contract>>,
void, concrete, public).

umlOperation(GSMCase, Visitor, visitOperator, <<Operator,operator>>,
void, concrete, public).

umlOperation(GSMCase, Visited, accept, <<Visitor,visitor>>,
void, abstract, public).

Notice that we generate visitXXX methods as concrete methods. Like this, they will be generated
with empty bodies, leaving the overriding as optional for the subclass. In the case of the accept

method, we declare it as abstract, because each class will have to implement it in its own way.

7.2.5 Finishing the implementation

After properly updating the diagram, we executed the code generation query one more time.
This time, code was generated in 34 seconds. Now that we have generated code for all the visited
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Contract

+creditLimit : Integer

+invoiceType : Integer = "perCaller"

+accept(...)

Operator

+name : String

+accept(...)

Client

+name : String

PhoneNumber

-number : String

Caller

+simNumber : String

+active : Boolean = false

+accept(...)

+getMainPhoneNr()

PricingPolicy

+smsUnitPrice : Double

+callPricePerSecond : Double

Communication

+amount()

+belongsToInvoice(...)

SMS

+sentTime : Long

+amount()

+belongsToInvoice(...)

Call

+duration : Integer

+startTime : Long

+amount()

+belongsToInvoice(...)

InvoicePerCaller

+print()

Invoice

+month : Integer

+year : Integer

+amount : Double = 0.0

+print()

+addAmount(...)

Visited

+accept(...)

Visitor

+visitContract(...)

+visitCaller(...)

+visitOperator(...)

InvoicerVisitor

-mont : Integer

-year : Integer

+visitContract(...)

+visitCaller(...)

+visitOperator(...)

+visitMain(...)

DataGenerator

-randomSeed : Long

+generateData()

+generateCommunications(...)

+generateDate()

+getCaller(...)

+getCaller(...)

+generateDuration()

+getRandom(...)

Main

+start()

+triggerVisitor()

emits SIM

0..*

defines

0..*

uses

0..*

stores

uses

0..*

0..*

was billed in

makes

0..*

receives

+receivedCommunication

+calle

0..*

0..*

0..*

contracted operator

contracted client

0..*

+knownOperator

has known operators1..*

has main operator

+mainOperator

0..*

0..*

makes

0..*

receives

+calle

has known operators1..*

+knownOperator

0..*

contracted client

was billed in

+receivedCommunication

0..*

emits SIM

Figure 7.3: The final class diagram GSMCase.

and visitor classes, we have to insert working code into them in order to calculate and print
the invoices. In addition to implementing the “visit” methods, we also implement the methods
which calculate the prices for each communication and the methods that print them, and we
also add some utility methods.

Unfortunately, one of the features that are not yet supported by Lure are static methods.
To have a working application in Java, a static method called main is required. For that, we
implement a simple method which creates an instance of the class Main and calls the start

method. The main method is not extracted to the class diagram.

After implementing the code of the visitor, our application is finished and working. When
started, it creates the simulation data (contracts, clients, calls etc), calculates the invoices for
each of the clients, then prints these invoices and exits. From the working code, we extracted
a class diagram to analyze the final design of GSMCase. This extraction took 78 seconds. The
graphic representation of this diagram can be seen in figure 7.3.
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Conclusion

The complete source for this application, which can be found in appendix A, has more than 600
lines of code. We started from a high-level design, with abstractions for all the classes we thought
we would need. From this design, we generated a large amount of source code, as we mentioned
in table 7.1 (a). At a certain point, we realized that the design of the application should be
changed, that a visitor design pattern would be a more appropriate approach for calculating and
printing the invoices. Thanks to the round-trip engineering tool, we did not need to perform
this kind of design change at code level, editing superclass references, modifying constructors,
initializations etc. Using Lure, we could extract the class diagram from the system, modify it
accordingly to our needs, and then re-generate the code.

We can also notice the importance of having consistence between code generation and reverse-
engineering. For example, it is no use to generate the large amount of helper methods that
we have generated in the beginning (accessors, mutators, initializers etc) if, when doing the
reverse-engineering of the code, we do not recognize them as helper methods. This would create
one operation for each of these methods in the diagram, making it more polluted. The same for
association ends: if we did not recognized the instance variables that we generated for association
ends with multiplicity n as representing association ends, we would extract many attributes of
type, for example, java.util.Vector, that would only make the diagram more confusing.

With respect to the use of Lure, even being only a research prototype, it has shown to be
quite handy in this case study. We carried out the development of this application with 600
lines of code in one day. Its performance is also acceptable, since the transformations usually
took not more than one minute. Of course, it cannot be compared to an industry-level tool,
like Together Control Center, in the aspects of ease of use and performance, and neither have
we tested its scalability to bigger applications. But, assuming the goal we proposed to our-
selves when constructing it — managing round-trip engineering semi-automatically using logic
metaprogramming —, its overall results are quite good.



Chapter 8

Conclusion and future work

8.1 Conclusion

Round-trip engineering is currently a popular technique for developing software systems. In
fact, it results from an old need in the software engineering community: the ability to maintain
design views of a system while it evolves. Round-trip engineering is the maintenance of design
views specifically while the source code is being developed.

Since UML is the most popular modelling language these days, it is very common to use it as the
way to express the design views while doing round-trip engineering. As we discussed in chapter
2, UML round-trip engineering is being considered as a mandatory feature in industry-level
integrated development environments (IDEs). However, there is no standardized way neither of
representing the source code as UML diagrams, nor to generate source code from UML diagrams.
This is a significant problem, given that different tools use different approaches, enforcing the
developer to change its practices when he changes from one tool to other. Moreover, as we saw
also in chapter 2, existing round-trip approaches provide very limited support for customizing
the way in which code generation and reverse-engineering are performed. The developer cannot
adapt the tool to his needs and is forced to adapt himself to the tool.

In this thesis, we presented logic metaprogramming (LMP) as a good alternative to do round-
trip engineering of software systems. LMP, as described by us in chapter 3, is a technique
which uses a logic programming language at meta-level to reason about object-oriented source
code. Our claim that LMP is suitable for doing round-trip engineering is based on two of its
characteristics:

Reasoning power LMP has proven to be an efficient paradigm to reason about object-oriented
source code, and extract design views from it. Since UML diagrams are a particular kind
of design views, LMP can be used for creating them by extracting their patterns from
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source code. As we extensively discussed in section 6.2.3, the characteristics of LMP, such
as unification, pattern-matching and backtracking, provide a very powerful tool to infer
UML constructs from the code. An example of that is the predicate in which we deduced
the changeability of associations, by traversing the parse trees of all methods in a class,
searching for assignments and method sends.

This reasoning power can be used not only to increase the level of abstraction but also
to generate detailed source code from design descriptions. Section 6.2.2 described how we
applied LMP to the generation of Java source code from UML class diagrams.

Clearness If we want to provide a customizable way to map from UML diagrams to source
code and vice-versa, an interesting first step is to define an explicit way to declare this
mapping. This mapping cannot be tangled in the code of the code generator or the reverse-
engineering engine. The declarative nature of LMP provides a clear way to define these
strategies. They are declared by means of logic rules which are totally separated from the
transformation engines.

Joining these two characteristics, we have a technique which, one, has enough power to extract
diagrams from code and generate code from diagrams, and, two, is naturally suited for clearly
defining these kind of mappings. This seems to be a correct path towards the conception of
powerful and customizable round-trip engineering tools.

Our main experiments were focused on class diagrams and Java, and resulted in a prototype
tool called Lure. This tool is used for doing UML round-trip engineering of Java code. It can
also be used for separately as a Java code generator or a UML reverse-engineering tool.

In our experiments with another language, namely Smalltalk, we have seen that using LMP —
in particular, SOUL and LiCoR — can also cope with some aspects of language independence.
In section 6.3, we described how to implement language-independent predicates for transparent
reasoning about (code generation for) Java and Smalltalk.

8.2 Future work

In this section, we mention some possible and interesting topics for future research related to
this thesis.

Only one mapping strategy As we saw in section 6.2, we have one conceptual mapping
strategy for mapping UML constructs for code constructs. When we implemented this
strategy, we split it in two parts. One which has logic predicates for representing the
mapping strategies from class diagram to source code, and other for representing the
mapping strategies from source code to class diagram.
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We do not see this as an ideal solution, since the responsibility of maintaining both im-
plementation strategies consistent is of the developer of the strategies. The verification
tool which we presented in section 6.2.4 serves as an auxiliary tool for verifying exam-
ples of generation and extraction, but it is not a formal approach for checking whether
the strategy used for code generation is consistent with the one being used for diagram
extraction.

Therefore, an important extension of our approach would be the ability to unify the
mapping strategies of code generation and reverse-engineering into only one mapping. In
this way, we would be able to ensure that code is being generated and reverse-engineered
using the same mapping. However, this does not seem to be a trivial task, if possible at
all.

Round-trip engineering with change consistency check In this thesis, we have studied
round-trip engineering focused on the mapping strategies for code generation and reverse-
engineering. What we did was to directly propagate the changes from diagram to code
and vice versa. We did not verify if these changes were consistent, if they would damage
the structure of the existing constructs in the resulting part. For example, if the developer
removes an operation in the design view, when this change is propagated to the code, it
may cause errors, since there may be methods whose code is calling that operation. Same
thing when a change is made in the code which can influence in a high-level design decision
(e.g., breaking a design pattern at code level).

Therefore, consistency checks before change propagation can be regarded as an interesting
subject when doing round-trip engineering. One of the possibilities for implementing this
could be to insert an additional step before every change propagation (code generation or
reverse-engineering) to verify if the changes made in one view are valid in the other view.

Filtering design information One of the subjects which we would like to have studied, but
did not because of time constraints was the variable abstraction level of design diagrams.
Round-trip engineering (and round-trip engineering) tools, in general, extract all the con-
structs they find in the code, and this often results in a diagram which is not very adequate
for higher-level design analysis by the user. Diagrams with too many constructs and too
much information look graphically polluted and do not provide the developer with the
desired global coarse-grained view of the system.

An interesting area of study is how to define a general mechanism for filtering the informa-
tion which is shown to the user in the diagram. This should derive from pre-defined levels
of abstraction and from developer-defined rules. These could be application-independent
(e.g., “hide all the navigabilities of associations”) or specific to the needs of the application
(e.g., “hide all the classes with the prefix ’Impl’”).

Generalization for other UML diagrams This is a natural direction for continuation of our
work, whose focus was exclusively on class diagrams. The Unified Modelling Language
defines a set of nine diagrams, and some of them would surely help to illustrate the design
view when doing round-trip engineering.
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Supporting simultaneous changes Our approach is based on sequential updates. That is,
when the developer wants to change the code, he generates code from the diagram and
when he wants to change the diagram, he extracts this diagram from the code. We do not
support the case when the developer changes the design and the code simultaneously. In
our case study, we showed that round-trip engineering can be normally performed using
this approach. However, there are other scenarios when simultaneous changes might be
interesting. A typical case is team development. When many people are developing the
same software, an environment which does not allow simultaneous changes can cause a
decrease in productivity, since the developers have to do the checkout/modify/commit
cycle one at a time.

For these kind of scenarios, it would be interesting to study how the support for simulta-
neous changes could be added to our approach. This would probably have to do with the
consistency check that we have just mentioned, which would have to be performed before
generating the code or extracting the diagram in order to verify if the changes made in
both sides do not have conflicts.

Language independence In our experiments, we have identified some characteristics of LMP
that can help on the conception of a language-independent tool for round-trip engineering.
However, since we had chosen to focus on one language, we did not studied this issue in
deep. More formal definitions of language independence issues could be subject to future
research. This would probably be accompanied with a re-organization of LiCoR in terms
of a language-independent meta-model.
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Appendix A

Final code for GSMCase

This appendix has the code that resulted from our case study, GSMCase. The major part of
this code was automatically generated.

public class Call extends Communication {

private java.lang.Integer duration;

private java.util.Date startTime;

public java.lang.Integer getDuration() {

return duration;

}

public java.util.Date getStartTime() {

return startTime;

}

public java.lang.Double amount() {

return new Double(this.getCaller().getContract().getPricingPolicy()

.getCallPricePerSecond().doubleValue() * duration.doubleValue());

}

public java.lang.Boolean belongsToInvoice(InvoicePerCaller inv) {

return new java.lang.Boolean(true);

}

private void initialize(java.lang.Integer duration, java.util.Date startTime) {

this.duration = duration;

this.startTime = startTime;

}

public Call(java.lang.Integer duration, java.util.Date startTime, Caller caller,

PhoneNr callee) {

super(caller, callee);

this.initialize(duration, startTime);

}

}

public class Caller extends Visited {

private Operator operator;

private Contract contract;

private java.util.Vector phoneNrs;

private java.util.Vector invoices;

private java.util.Vector communications;

private java.lang.String simNumber;

private java.lang.Boolean active;

120
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public Operator getOperator() {

return operator;

}

public Contract getContract() {

return contract;

}

public java.util.Vector getPhoneNrs() {

return phoneNrs;

}

public java.util.Vector getInvoices() {

return invoices;

}

public java.util.Vector getCommunications() {

return communications;

}

public java.lang.String getSimNumber() {

return simNumber;

}

public java.lang.Boolean getActive() {

return active;

}

public PhoneNr getMainPhoneNr() {

return (PhoneNr) phoneNrs.firstElement();

}

private void initialize(Operator operator, Contract contract,

java.lang.String simNumber) {

this.operator = operator;

this.contract = contract;

this.simNumber = simNumber;

this.active = new Boolean(true);

this.phoneNrs = new java.util.Vector();

this.invoices = new java.util.Vector();

this.communications = new java.util.Vector();

}

public void addPhoneNr(PhoneNr phoneNr) {

(this.phoneNrs).add(phoneNr);

}

public void addInvoice(InvoicePerCaller invoice) {

(this.invoices).add(invoice);

}

public void addCommunication(Communication communication) {

(this.communications).add(communication);

}

public void removePhoneNr(PhoneNr phoneNr) {

(this.phoneNrs).remove(phoneNr);

}

public void removeInvoice(InvoicePerCaller invoice) {

(this.invoices).remove(invoice);

}

public void removeCommunication(Communication communication) {

(this.communications).remove(communication);

}

public Caller(Operator operator, Contract contract, java.lang.String simNumber) {

super();

this.initialize(operator, contract, simNumber);

}

public void setOperator(Operator operator) {

this.operator = operator;

}

public void setContract(Contract contract) {

this.contract = contract;

}

public void setPhoneNrs(java.util.Vector phoneNrs) {

this.phoneNrs = phoneNrs;
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}

public void setInvoices(java.util.Vector invoices) {

this.invoices = invoices;

}

public void setCommunications(java.util.Vector communications) {

this.communications = communications;

}

public void setActive(java.lang.Boolean active) {

this.active = active;

}

public void accept(Visitor visitor) {

visitor.visitCaller(this);

}

}

public class Client extends Object {

private java.util.Vector operatorContracts;

private java.lang.String name;

public java.util.Vector getOperatorContracts() {

return operatorContracts;

}

public java.lang.String getName() {

return name;

}

private void initialize() {

this.operatorContracts = new java.util.Vector();

}

public void addOperatorContract(Contract operatorContract) {

(this.operatorContracts).add(operatorContract);

}

public void removeOperatorContract(Contract operatorContract) {

(this.operatorContracts).remove(operatorContract);

}

public Client() {

super();

this.initialize();

}

public void setOperatorContracts(java.util.Vector operatorContracts) {

this.operatorContracts = operatorContracts;

}

public void setName(java.lang.String name) {

this.name = name;

}

}

public abstract class Communication extends Object {

private Caller caller;

private PhoneNr callee;

private Invoice invoice;

public Caller getCaller() {

return caller;

}

public PhoneNr getCallee() {

return callee;

}

public Invoice getInvoice() {

return invoice;

}

public abstract java.lang.Double amount();

public abstract java.lang.Boolean belongsToInvoice(InvoicePerCaller invoice);

private void initialize(Caller caller, PhoneNr callee) {

this.caller = caller;
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this.callee = callee;

}

public Communication(Caller caller, PhoneNr callee) {

super();

this.initialize(caller, callee);

}

public void setInvoice(Invoice invoice) {

this.invoice = invoice;

}

}

public class Contract extends Visited {

private Operator operator;

private Client client;

private PricingPolicy pricingPolicy;

private java.util.Set callers;

private java.lang.Integer creditLimit;

private java.lang.String invoiceType;

public Operator getOperator() {

return operator;

}

public Client getClient() {

return client;

}

public PricingPolicy getPricingPolicy() {

return pricingPolicy;

}

public java.util.Set getCallers() {

return callers;

}

public java.lang.Integer getCreditLimit() {

return creditLimit;

}

public java.lang.String getInvoiceType() {

return invoiceType;

}

private void initialize(Operator operator, Client client, PricingPolicy pricingPolicy,

java.lang.Integer creditLimit) {

this.operator = operator;

this.client = client;

this.pricingPolicy = pricingPolicy;

this.creditLimit = creditLimit;

this.invoiceType = "perCaller";

this.callers = new java.util.HashSet();

}

public void addCaller(Caller caller) {

(this.callers).add(caller);

}

public void removeCaller(Caller caller) {

(this.callers).remove(caller);

}

public Contract(Operator operator, Client client, PricingPolicy pricingPolicy,

java.lang.Integer creditLimit) {

super();

this.initialize(operator, client, pricingPolicy, creditLimit);

}

public void setPricingPolicy(PricingPolicy pricingPolicy) {

this.pricingPolicy = pricingPolicy;

}

public void setCallers(java.util.Set callers) {

this.callers = callers;

}

public void setInvoiceType(java.lang.String invoiceType) {
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this.invoiceType = invoiceType;

}

public void accept(Visitor visitor) {

visitor.visitContract(this);

}

}

public class DataGenerator extends Object {

private Main main;

private java.lang.Long randomSeed;

public void setMain(Main main) {

this.main = main;

}

public Main getMain() {

return main;

}

public void generateData() {

Operator op1 = new Operator("BASE");

Operator op2 = new Operator("TIM");

PricingPolicy pp1 = new PricingPolicy(op1);

PricingPolicy pp2 = new PricingPolicy(op2);

pp1.setCallPricePerSecond(new Double(0.01d));

pp1.setSmsUnitPrice(new Double(0.12d));

pp2.setCallPricePerSecond(new Double(0.005d));

pp2.setSmsUnitPrice(new Double(0.1d));

Client client1 = new Client();

Client client2 = new Client();

client1.setName("VUB");

client2.setName("PUCPR");

Contract con1 = new Contract(op1, client1, pp1, new Integer(100));

Contract con2 = new Contract(op2, client2, pp2, new Integer(50));

op1.addClientContract(con1);

op2.addClientContract(con2);

Caller caller1 = new Caller(op1, con1, "Kim");

Caller caller2 = new Caller(op1, con1, "Johan");

Caller caller3 = new Caller(op2, con2, "Joao");

con1.addCaller(caller1);

con1.addCaller(caller2);

con2.addCaller(caller3);

PhoneNr pn1 = new PhoneNr(caller1, "91077351");

PhoneNr pn2 = new PhoneNr(caller2, "91072935");

PhoneNr pn3 = new PhoneNr(caller3, "91149517");

caller1.addPhoneNr(pn1);

caller2.addPhoneNr(pn2);

caller3.addPhoneNr(pn3);

this.generateCommunications(new Caller[] {caller1, caller2, caller3});

main.addKnownOperator(op1);

main.addKnownOperator(op2);

}

private void generateCommunications(Caller [] callers) {

Communication [] coms = new Communication[50];

for (int i = 0; i < coms.length / 2; i++) {

Caller c = this.getCaller(callers);

coms[i] = new Call(this.generateDuration(), this.generateDate(), c,

this.getCaller(callers, c).getMainPhoneNr());

c.addCommunication(coms[i]);

}

for (int i = coms.length / 2; i < coms.length; i++) {

Caller c = this.getCaller(callers);

coms[i] = new SMS(this.generateDate(), c,

this.getCaller(callers, c).getMainPhoneNr());

c.addCommunication(coms[i]);

}
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}

private java.util.Date generateDate() {

return new java.util.Date();

}

private Caller getCaller(Caller [] callers) {

return callers[this.getRandom(callers.length)];

}

private Caller getCaller(Caller [] callers, Caller c) {

Caller ca;

do ca = callers[this.getRandom(callers.length)]; while (ca == c);

return ca;

}

private java.lang.Integer generateDuration() {

return new java.lang.Integer(this.getRandom(10000));

}

private int getRandom(int n) {

java.util.Random r = randomSeed == null ? new java.util.Random()

: new java.util.Random(randomSeed.longValue());

int i = r.nextInt(n);

this.randomSeed = new Long(r.nextLong());

return i;

}

private void initialize() {

}

public DataGenerator() {

super();

this.initialize();

}

}

public abstract class Invoice extends Object {

private java.util.Vector communications;

private java.lang.Integer month;

private java.lang.Integer year;

private java.lang.Double amount;

public java.util.Vector getCommunications() {

return communications;

}

public java.lang.Integer getMonth() {

return month;

}

public java.lang.Integer getYear() {

return year;

}

public java.lang.Double getAmount() {

return amount;

}

public void addAmount(java.lang.Double anAmount) {

if (this.amount == null) this.amount = new Double(0);;

this.amount = new Double((this.amount).doubleValue() + anAmount.doubleValue());

}

public void print() {

System.out.println("Total: R$ " + this.getAmount());

for (java.util.Iterator iter = communications.iterator(); iter.hasNext(); ) {

Communication element = (Communication) iter.next();

System.out.print(element.getClass().getName() + " \t");

System.out.print(element.getCaller().getMainPhoneNr().getPhoneNumber() + "\t");

System.out.print(element.getCallee().getPhoneNumber() + "\t");

System.out.println(element.amount());

}

}

private void initialize(java.lang.Integer month, java.lang.Integer year) {

this.month = month;
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this.year = year;

this.amount = new Double(0.0d);

this.communications = new java.util.Vector();

}

public void addCommunication(Communication communication) {

(this.communications).add(communication);

}

public void removeCommunication(Communication communication) {

(this.communications).remove(communication);

}

public Invoice(java.lang.Integer month, java.lang.Integer year) {

super();

this.initialize(month, year);

}

public void setCommunications(java.util.Vector communications) {

this.communications = communications;

}

public void setAmount(java.lang.Double amount) {

this.amount = amount;

}

}

public class InvoicePerCaller extends Invoice {

private Caller caller;

public Caller getCaller() {

return caller;

}

public void print() {

System.out.println("Caller " + caller.getSimNumber());

super.print();

}

private void initialize(Caller caller) {

this.caller = caller;

}

public InvoicePerCaller(Caller caller, java.lang.Integer month,

java.lang.Integer year) {

super(month, year);

this.initialize(caller);

}

public void setCaller(Caller caller) {

this.caller = caller;

}

}

public class InvoicerVisitor extends Visitor {

private java.lang.Integer month;

private java.lang.Integer year;

private void initialize() {

}

public InvoicerVisitor() {

super();

this.initialize();

}

public void visitMain(Main main) {

System.out.println("Printing invoices for " + month + "/" + year);

for (java.util.Iterator iter = main.getKnownOperators().iterator(); iter.hasNext(); ) {

((Operator) iter.next()).accept(this);

}

}

public void visitCaller(Caller caller) {

InvoicePerCaller inv = new InvoicePerCaller(caller, month, year);

for (java.util.Iterator iter = caller.getCommunications().iterator(); iter.hasNext(); ) {
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Communication com = (Communication) iter.next();

inv.addCommunication(com);

inv.addAmount(com.amount());

}

inv.print();

}

public void visitContract(Contract contract) {

System.out.println("---------------------------------");

System.out.println("Contract of client " + contract.getClient().getName());

for (java.util.Iterator iter = contract.getCallers().iterator(); iter.hasNext(); ) {

((Caller) iter.next()).accept(this);

}

}

public void visitOperator(Operator operator) {

System.out.println("=================================");

System.out.println("Operator " + operator.getName());

for (java.util.Iterator iter = operator.getClientContracts().iterator(); iter.hasNext(); ) {

((Contract) iter.next()).accept(this);

}

}

public java.lang.Integer getMonth() {

return month;

}

public java.lang.Integer getYear() {

return year;

}

public void setMonth(java.lang.Integer integer) {

this.month = integer;

}

public void setYear(java.lang.Integer integer) {

this.year = integer;

}

}

public class Main extends Object {

private java.util.Vector knownOperators;

private Operator mainOperator;

public java.util.Vector getKnownOperators() {

return knownOperators;

}

public Operator getMainOperator() {

return mainOperator;

}

public static void main(String [] args) {

(new Main(new java.util.Vector(), null)).start();

}

public void start() {

DataGenerator gen = new DataGenerator();

gen.setMain(this);

gen.generateData();

this.triggerVisitor();

}

private void triggerVisitor() {

InvoicerVisitor visitor = new InvoicerVisitor();

visitor.setMonth(new Integer(8));

visitor.setYear(new Integer(2003));

visitor.visitMain(this);

}

private void initialize(java.util.Vector knownOperators, Operator mainOperator) {

this.knownOperators = knownOperators;

this.mainOperator = mainOperator;

}

public void addKnownOperator(Operator knownOperator) {
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(this.knownOperators).add(knownOperator);

}

public void removeKnownOperator(Operator knownOperator) {

(this.knownOperators).remove(knownOperator);

}

public Main(java.util.Vector knownOperators, Operator mainOperator) {

super();

this.initialize(knownOperators, mainOperator);

}

public void setKnownOperators(java.util.Vector knownOperators) {

this.knownOperators = knownOperators;

}

public void setMainOperator(Operator mainOperator) {

this.mainOperator = mainOperator;

}

}

public class Operator extends Visited {

private java.util.Vector clientContracts;

private java.util.Vector pricingPolicys;

private java.util.Vector callers;

private java.lang.String name;

public java.util.Vector getClientContracts() {

return clientContracts;

}

public java.util.Vector getPricingPolicys() {

return pricingPolicys;

}

public java.util.Vector getCallers() {

return callers;

}

public java.lang.String getName() {

return name;

}

private void initialize(java.lang.String name) {

this.name = name;

this.clientContracts = new java.util.Vector();

this.pricingPolicys = new java.util.Vector();

this.callers = new java.util.Vector();

}

public void addClientContract(Contract clientContract) {

(this.clientContracts).add(clientContract);

}

public void addPricingPolicy(PricingPolicy pricingPolicy) {

(this.pricingPolicys).add(pricingPolicy);

}

public void addCaller(Caller caller) {

(this.callers).add(caller);

}

public void removeClientContract(Contract clientContract) {

(this.clientContracts).remove(clientContract);

}

public void removePricingPolicy(PricingPolicy pricingPolicy) {

(this.pricingPolicys).remove(pricingPolicy);

}

public void removeCaller(Caller caller) {

(this.callers).remove(caller);

}

public Operator(java.lang.String name) {

super();

this.initialize(name);

}

public void setClientContracts(java.util.Vector clientContracts) {
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this.clientContracts = clientContracts;

}

public void setPricingPolicys(java.util.Vector pricingPolicys) {

this.pricingPolicys = pricingPolicys;

}

public void setCallers(java.util.Vector callers) {

this.callers = callers;

}

public void accept(Visitor visitor) {

visitor.visitOperator(this);

}

}

public class PhoneNr extends Object {

private java.util.Vector receivedCommunications;

private Caller caller;

private java.lang.String phoneNumber;

public java.util.Vector getReceivedCommunications() {

return receivedCommunications;

}

public Caller getCaller() {

return caller;

}

public java.lang.String getPhoneNumber() {

return phoneNumber;

}

private void initialize(Caller caller, java.lang.String phoneNumber) {

this.caller = caller;

this.phoneNumber = phoneNumber;

this.receivedCommunications = new java.util.Vector();

}

public void addReceivedCommunication(Communication receivedCommunication) {

(this.receivedCommunications).add(receivedCommunication);

}

public PhoneNr(Caller caller, java.lang.String phoneNumber) {

super();

this.initialize(caller, phoneNumber);

}

public void setCaller(Caller caller) {

this.caller = caller;

}

}

public class PricingPolicy extends Object {

private Operator operator;

private java.lang.Double smsUnitPrice;

private java.lang.Double callPricePerSecond;

public Operator getOperator() {

return operator;

}

public java.lang.Double getSmsUnitPrice() {

return smsUnitPrice;

}

public java.lang.Double getCallPricePerSecond() {

return callPricePerSecond;

}

private void initialize(Operator operator) {

this.operator = operator;

}

public PricingPolicy(Operator operator) {

super();

this.initialize(operator);
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}

public void setOperator(Operator operator) {

this.operator = operator;

}

public void setSmsUnitPrice(java.lang.Double smsUnitPrice) {

this.smsUnitPrice = smsUnitPrice;

}

public void setCallPricePerSecond(java.lang.Double callPricePerSecond) {

this.callPricePerSecond = callPricePerSecond;

}

}

public class SMS extends Communication {

private java.util.Date sentTime;

public java.util.Date getSentTime() {

return sentTime;

}

public java.lang.Double amount() {

return this.getCaller().getContract().getPricingPolicy().getSmsUnitPrice();

}

public java.lang.Boolean belongsToInvoice(InvoicePerCaller inv) {

return new java.lang.Boolean(true);

}

private void initialize(java.util.Date sentTime) {

this.sentTime = sentTime;

}

public SMS(java.util.Date sentTime, Caller caller, PhoneNr callee) {

super(caller, callee);

this.initialize(sentTime);

}

}

public abstract class Visited extends Object {

public abstract void accept(Visitor visitor);

private void initialize() {

}

public Visited() {

super();

this.initialize();

}

}

public abstract class Visitor extends Object {

public void visitOperator(Operator operator) {

}

public void visitContract(Contract contract) {

}

public void visitCaller(Caller caller) {

}

private void initialize() {

}

public Visitor() {

super();

this.initialize();

}

}


