
Vrije Universiteit Brussel - Belgium
Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes - France
and

Universidad National de La Plata - Argentina

2001-2002

V
R

IJ
E

UNIVERSITEIT BRUSSE
L

S
C

IE
N

TIA VINCERE TENEBR
A

S

ECOLE DES MINES DE NANTES

Dynamic Aspect Composition

using

Logic Metaprogramming

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange)

By: Jessie Dedecker

Promotor: Prof. Theo D’Hondt (Vrije Universiteit Brussel)
Co-Promotor: Maximo Prieto (Universidad National de La Plata)

ii

Abstract

Separation of concerns has always been one of the most important goals in
computer science. However, not all concerns can be easily modularized in
the current programming languages. This resulted in the fact that some con-
cerns are implemented ad-hoc, that is by placing code that is spread across
one or more modular units. Such code is often called tangled or crosscut-
ting code. Crosscutting code results in software that is less reusable, less
readable and harder to maintain. Several programming tools have been pro-
posed to modularize these crosscutting concerns in aspects. Many of these
programming tools for advanced separation of concerns are built by creating
or modifying the compiler of the existent languages that weave the crosscut-
ting concern in the code. However, modifying a compiler makes it difficult
to introduce aspects at run-time. Introducing aspects at run-time is particu-
larly useful in distributed applications, where the crosscutting concerns can
depend on the machine where the object is located, thus requiring aspects
to be woven each time an object is migrating over the network. In this dis-
sertation we propose a composite aspect object to support dynamic weaving
of aspects. Furthermore, we propose to compose these composite aspect ob-
jects using a logic meta programming language. A logic meta programming
language allows us to reason about the source code and the structure of the
base level in a declarative style. Reasoning about the source code is useful
in a dynamic context, because it allows to adapt our composition strategy
depending on the changes that are made at run-time. Our model for dy-
namically typed object oriented languages defines a meta-architecture that
configures the meta-object protocol using logic meta programming rules for
supporting dynamic aspect compositions.

Acknowledgements

This dissertation would not have been what is it is today, without the im-
mense help and discussions of other people.

I would like to thank my promotor Theo D’Hondt, who gave me the op-
portunity to do the EMOOSE master that has been a wonderful and unfor-
gettable experience.

Also a big thank you goes to Maximo Prieto for our many interesting dis-
cussions about this dissertation even though he had a busy work schedule.

Many thanks go to Johan Brichau and Kris Gybels for discussing and ques-
tioning my ideas and for reading the dissertation in all its stages.

Tom Mens and Gustavo Rossi for proof-reading my dissertation and for
providing me with many useful suggestions for improving it.

Thanks also go to my parents for supporting me even though I was abroad.

Contents

1 The Thesis 1
1.1 Introduction . 1
1.2 Thesis Statement . 2
1.3 Outline of the Dissertation . 2

2 Techniques for Separation of Concerns 5
2.1 Introduction . 5

2.1.1 Concerns . 6
2.1.2 Tangled Code and Crosscutting Code 6

2.2 Achieving Separation of Concerns 7
2.2.1 Inheritance . 8
2.2.2 Design Patterns . 9
2.2.3 Reflection . 10

2.3 Aspect-Oriented Software Development 10
2.3.1 Issues in Aspect-Oriented Programming Languages . . 11
2.3.2 AspectJ . 12
2.3.3 Aspectual Components 15
2.3.4 Composition Filters 17
2.3.5 Multidimensional Separation of Concerns 19
2.3.6 Java Aspect Components 22

2.4 Comparison . 23
2.5 Summary . 23

3 Composition Issues 25
3.1 Introduction . 25
3.2 Composition Issues . 25

3.2.1 When Activated . 25
3.2.2 How Activated . 27
3.2.3 Choosing Aspects . 27
3.2.4 Compatibility . 28
3.2.5 Order . 28
3.2.6 Dependencies . 29

3.3 Evaluation of Existing Composition Tools 29

vi CONTENTS

3.3.1 AspectJ . 29
3.3.2 Composition Filters 32
3.3.3 Aspectual Components 32
3.3.4 Multi-Dimensional Separation of Concerns 33
3.3.5 Java Aspect Components 34

3.4 Proposed Solution . 34
3.5 Conclusion . 35

4 Composite Aspect Objects 37
4.1 Introduction . 37
4.2 The Model . 37

4.2.1 Composite Aspect Objects 37
4.2.2 Aspects . 38
4.2.3 Weaving . 40
4.2.4 The Notion of Self . 41
4.2.5 Adapting the Composite Aspect Object at Run-Time 42

4.3 Conclusion . 43

5 Composing the Composite Aspect Object using Logic Metapro-
gramming 45
5.1 Introduction . 45
5.2 What is Declarative Metaprogramming 45
5.3 Logic Metaprogramming . 46

5.3.1 Logic Programming 46
5.3.2 SOUL . 48

5.4 Aspect-Oriented Logic Metaprogramming 50
5.4.1 TyRuBa . 50
5.4.2 Aspect Specific Languages 52

5.5 Logic Activation Scheme . 53
5.5.1 Aspect Modules . 53
5.5.2 Aspect Configuration Module 58
5.5.3 Order Module . 58
5.5.4 Aspect Activation Module 58

5.6 Run-time Reasoning Library 59
5.6.1 Typing . 59
5.6.2 Collaborators . 59
5.6.3 Control Flow . 60

5.7 Composite Aspect Object Reasoning Rules 60
5.8 Solving Composition Issues 61

5.8.1 Activation . 61
5.8.2 Choosing an Aspect 62
5.8.3 Compatibility . 63
5.8.4 Order . 64
5.8.5 Dependencies . 65

CONTENTS vii

5.9 Performance Issues . 65
5.10 Conclusion . 66

6 Examples 67
6.1 Introduction . 67
6.2 Distributed Library . 67

6.2.1 Core Classes . 68
6.2.2 Aspects . 70
6.2.3 Implementation Details 71
6.2.4 Part-Object Classes 72
6.2.5 Book-Objects . 73

6.3 Secured Objects . 83
6.3.1 Part-Objects . 83
6.3.2 Aspect Modules . 83
6.3.3 Compatibility Rules 88
6.3.4 Order Module . 88
6.3.5 Aspect Activation Module 88

6.4 Conclusion . 89

7 Conclusion 91
7.1 Technical Contributions . 92
7.2 Future Work . 92

7.2.1 Efficiency . 93
7.2.2 Language Extensions 93
7.2.3 Validation . 93
7.2.4 Modelling Techniques and Process 93
7.2.5 Language Dependence 93
7.2.6 Selecting Objects for Adaptation 94
7.2.7 Dynamic Unweaving 94

A Implementation 95
A.1 Introduction . 95
A.2 Implementation Issues . 95

A.2.1 Reifying Messages at Run-Time in Smalltalk 95
A.2.2 Method Wrappers . 96
A.2.3 Changing the Notion of Self 97
A.2.4 Adapting a Composite Aspect Object 98

A.3 Design . 98
A.3.1 Class Diagram . 98
A.3.2 Processing a Message 99

A.4 Conclusion . 99

Chapter 1

The Thesis

1.1 Introduction

In this dissertation, we show how the composition problem of dynamically
woven aspects can be addressed flexibly using composite aspect objects.
We use logic meta programs to compose these composite aspect objects.
Composition issues are more difficult to resolve when we can dynamically
add and remove aspects in an application.

Modularization to manage complexity has always been one of the most
important goals in computer science[Dij76, Par72]. This has been expressed
with the development of new programming languages, i.e., crude assembly
languages have been replaced with object-oriented programming languages
over the years. However, it has come to the attention that not all concerns
can be easily modularized in the current programming languages. This re-
sulted in the fact that some concerns are implemented ad-hoc, that is by
placing code that is spread across one or more modular units. Such code
is often called tangled or crosscutting code. Crosscutting code results in
software that is less reusable, less readable and harder to maintain. The
research community is responding to this problem by proposing multiple
programming tools [KLM+97, BA01, OT01, LOO01] to extend existing pro-
gramming languages to support modularization of such crosscutting con-
cerns and hence, achieve a more advanced level of separation of concerns.
The language extensions often provide some syntactical construct for mod-
ularizing these crosscutting concerns. Many of these programming tools for
advanced separation of concerns are built by creating or modifying the com-
piler of the existent languages that weave the crosscutting concern in the
code [KLM+97, BA01, OT01, LOO01]. Another approach to achieve ad-
vanced separation of concerns is through the use of reflection [Sul01]. The
advantage of reflection over a modified compiler is that it allows one to dy-
namically weave and unweave the crosscutting concern into or out of the
application. This dynamism of adding and removing crosscutting concerns

2 The Thesis

is especially important in the context of distributed systems and component-
based systems. For example when we have a program that allows you to
dynamically plug and unplug components so that the availability of the sys-
tem is optimized while you can still upgrade its components. This all works
well until we come to realize that the components we want to plug into the
system can crosscut over the system.

In a distributed environment objects are passed over the network, but
often the available services of the distributed environments are different
(such as security policies, available memory, processing power, ...). Hence,
each time an object migrates to another environment it needs to consider
other concerns. Therefore, each time an object migrates we might want to
adapt the crosscutting concerns that are woven in the object to take care of
the new constraints and possibilities that pose itself in the new distributed
environment.

Composition of crosscutting concerns is not straightforward, for example
when two or more crosscutting concerns need to be woven in the same place
in the code they can create conflicts. Problems like these are harder to
solve when the weaving is done dynamically, because the conflicts have to
be detected and resolved at run-time.

A logic meta programming language allows us to reason about the source
code and the structure of the base level in a declarative style. Reasoning
about the source code is useful in a dynamic context, because it allows to
adapt our composition strategy depending on the changes that are made at
run-time.

1.2 Thesis Statement

In this dissertation, we show how the composition problem
of dynamically woven aspects can be addressed flexibly
using composite aspect objects. Secondly, we also show that logic
meta programs provide an expressive means to compose
these composite aspect objects.

1.3 Outline of the Dissertation

This section describes the road map for reading this dissertation.

• Chapter two explains the composition problem of modularizing some
concerns in an application and finally describes some tools for ad-
vanced separation of concerns that were proposed by the research com-
munity.

• Chapter three describes common composition issues that we think
must be solved in any good tool for doing advanced separation of
concerns.

1.3 Outline of the Dissertation 3

• Chapter four introduces the composite aspect object model for doing
advanced separation of concerns for aspects that can be dynamically
woven into the application.

• Chapter five describes how we can employ logic meta programming
for composing the composite aspect objects and how it can help us
resolve the composition issues described in chapter three.

• Chapter six describes the implementation of two small cases to show
the usefulness of the composite aspect object in an application.

• Chapter seven concludes this dissertation by giving a summary and a
discussion on the contributions we made. It also discusses future work.

Chapter 2

Techniques for Separation of
Concerns

2.1 Introduction

Programming has evolved from assembly programming into more advanced
programming paradigms, such as procedural programming, structured pro-
gramming, functional programming, logic programming and object-oriented
programming. These programming paradigms strive for better decomposi-
tion and modularization of programs. A better decomposition attributes to
a better separation of concerns [Dij76, Par72]. Separation of concerns in a
program has many benefits and is claimed to enhance the quality attributes
of the source code [FBLL02, OT99]:

• Adaptability: the lifespan of software increases and there is a need to
let software evolve and adapt to new requirements. A better separation
of concerns shapes software, so that it is easier to make changes to it,
without experiencing problems such as ripple effects.

• Reusability: a good modularized design with a strong cohesion and
weak coupling attributes to the reusability of the software. One can
reduce the cost and development time by reusing existing pieces of
software.

• Comprehensibility: the code becomes more understandable when
we have a clear separation of concerns, because we only have to read
code that is about the concern. In other words, the reader of the
code does not have to perform a mental switch between the different
concerns.

Currently object-oriented programming is the most popular program-
ming paradigm. With object-oriented programming the problem is decom-
posed into objects. One of the merits of object-oriented programming is

6 Techniques for Separation of Concerns

that it allows to modularize most of the concepts in the problem and so-
lution domain allowing for better evolution of the software. The idea is to
encapsulate all the relevant entities, that are likely to be subject to change,
into objects. This way we can extend these points of variability using the
common techniques, such as inheritance and aggregation.

The design process of an application often results in a single decomposi-
tion of the problem domain. This decomposition is often called the dominant
decomposition. Bass et al. [BCK98] gives two remarks on this:

1. There is no single correct decomposition of a software system.

2. No decomposition can ever achieve full separation of all the concerns.

The idea of having multiple views on software is also present in the UML
design language [FS97, Kru95], where you have different types of diagrams
on the same piece of software. Some of these diagrams express different
concerns. For example, the collaboration diagram expresses how a set of
objects interact together, while a class diagram expresses the static structure
between the different classes.

2.1.1 Concerns

Every good software engineer intuitively strives for separation of concerns
in all phases of the development. As with most terms used in computer
science, there is no well established definition for a concern. We use the
definition from [Boa00]:

Definition 1 (Concern) Those interests which pertain to the system de-
velopment, its operation or any other aspects that are critical or otherwise
important to one or more stakeholders. Concerns can be logical or physical
concepts, but they may also include system considerations such as perfor-
mance, reliability, security, distribution, and evolvability.

Examples of functional concerns are business rules and software features.
Examples of non-functional concerns are security policies, synchronization,
distribution, ... Some of these concerns are hard to modularize using the
standard techniques of modularization. Implementing such concerns often
leads to tangled code and crosscutting code.

2.1.2 Tangled Code and Crosscutting Code

Concerns that are spread across one or more modular unit often result in
tangled code and crosscutting code, because they are not confined to one
place in the code. This makes it hard to implement them, because the
developer needs to be aware of them when he implements other concerns.
Another problem is evolution. As the concerns are not modularized it is

2.2 Achieving Separation of Concerns 7

difficult to make changes to them. Parts of the changes are easily forgotten
as the code is dispersed over multiple parts.

Definition 2 (Tangled Code) We say that source code in one modular
unit is tangled when it contains pieces of code dealing with different concerns.

Definition 3 (Crosscutting Code) Source code implementing a given con-
cern is crosscutting when it is contained in more than one modular unit.

Definition 4 (Modularized Code) Modularized code is when the code of
a concern is grouped together in a unit and is loosely coupled with the code
of another unit. (i.e., a unit could be a class in a class-based object-oriented
language)

The code fragment below is an example of tangled and crosscutting code:

ShoppingCart>>buy

"synchronization concern"
monitor lock: self.

"authentication concern"
[auth isAuthenticated] whileFalse: [

auth authenticate
].

items do: [:item | item buy].

"synchronization concern"
monitor unlock: self.

2.2 Achieving Separation of Concerns

If we have a simple figure editor application, then we can represent the
figures as objects. As the program needs to evolve we can add new kinds of
figures and/or adapt existing ones. However, when we consider the problem
of updating the screen each time a figure has been manipulated, we have to
put code spread across the different methods to update the screen each time
the object is changed. The code for updating the screen is crosscutting the
different classes. The problem is that the concern of updating the screen is
not modularized. This crosscutting causes that the quality attributes of the
source code, as described above, are reduced.

A UML class diagram of part of the application is shown in figure 2.1. A
figure can be manipulated by sending a message to the object that represents
the figure. Figures can be grouped using the composite pattern [GHJV94].

8 Techniques for Separation of Concerns

+rotate()
+move()

FigureElement

+rotate()
+move()

CompositeFigure -Whole

1

-Part

1..*
+putPixel()

Display

+rotate()
+move()
+getX()
+getY()
+setX()
+setY()

Point

+rotate()
+move()
+getP1()
+getP2()
+setP1()
+setP2()

Line

12

UpdateScreen
Concern

Figure 2.1: UML Diagram for Simple Figure Editor

We will now try to separate the concern for keeping the screen up-to-date
with the internal data model using techniques available in some object-
oriented programming languages.

2.2.1 Inheritance

We can separate the code for updating the screen by creating a subclass for
each figure and override the methods that change the state of that figure.
In the overriding method we call the overridden method and after that we
can update the screen. This is shown in figure 2.2. There are 2 problems
with this solution:

1. The code for updating the screen is not tangled with the other code
anymore, but it is still spread across the different subclasses.

2. When we would like to make changes to the figure classes, for example
to introduce a specialization of the existing Line class, we can do this
by creating a subclass of Line. The problem is that the inheritance
relationship in most class-based languages is static and that we cannot
always reuse existing screen updating code for the different classes in
the hierarchy. Hence encapsulating crosscutting concerns in different
subclasses is not sufficient for separation of concerns.

The notion of inheritance is not made for separation of concerns, but it is
rather based on specialization for elements from the problem and solution
domain. Many variations of the inheritance mechanism exist that allow a
better separation of concerns, but many have the problem that the concerns
are still tangled across the code and do not allow reusability of the concern
to its full extend.

2.2 Achieving Separation of Concerns 9

+rotate()
+move()

FigureElement

+rotate()
+move()

CompositeFigure -Whole

1

-Part

1..*
+putPixel()

Display

+rotate()
+move()
+getX()
+getY()
+setX()
+setY()

Point

+rotate()
+move()
+getP1()
+getP2()
+setP1()
+setP2()

Line

12

+setX()
+setY()

DrawablePoint

+setP1()
+setP2()

DrawableLine

UpdateScreen
Concern

Figure 2.2: Simple Figure Editor: Separation of Concerns Using Inheritance

2.2.2 Design Patterns

Some of the design patterns [GHJV94], tackle the problem of separation
of concerns. For example, the visitor pattern allows to separate a concern
that is spread across a class hierarchy into one class, namely the visitor.
In the example of the figure editor, we could use the observer pattern. In
the observer pattern we have a subject, the object that is interesting to be
observed and the observer, the object that is interested in the changes of
the subject. At each place where the state of the subject is updated we
notify the observers that have subscribed themselves at the subject. The
design is shown in figure 2.3. Using design patterns allows better separation
of concerns, but we still have some problems:

• Design patterns are implicitly present in the code, this makes it hard
to identify them and to read them.

• The hooks for the design patterns need to be present in the code. In
other words, they need to be foreseen, while we also want to implement
unanticipated changes in the requirements of the code. Changing the
code for installing the design pattern can require major changes in
design of the application.

• The code for the hooks is also crosscutting across the other code. For
example, the calls to the notify method in the observer design pattern
are implicitly placed across the other code.

10 Techniques for Separation of Concerns

+rotate()
+move()
+attach()
+detach()
+notify()

FigureElement

+rotate()
+move()

CompositeFigure -Whole

1

-Part

1..*

+update()

DisplayUpdater

+rotate()
+move()
+getX()
+getY()
+setX()
+setY()

Point

+rotate()
+move()
+getP1()
+getP2()
+setP1()
+setP2()

Line

12

+update()

«interface»
Observer

*

-observers

0..*

+putPixel()

Display

*

-theDisplay1

UpdateScreen
Concern

Figure 2.3: Simple Figure Editor: Separation of Concerns Using Design
Patterns

2.2.3 Reflection

Computational reflection [Mae87] is another means for achieving separation
of concerns [Sul01]. With computational reflection it is possible to add code
at the meta-level of the program. For example, with computational reflec-
tion it is possible to intercept messages that are sent. These messages are
then reified and can be manipulated, before they are eventually received by
the object. We can achieve separation of concerns, because the program-
ming happens at the meta-level rather than in the code of that method in
the base-level. For the figure editor example we could reify the messages
that change state and put code for updating the screen there. Using com-
putational reflection allows for a great deal of flexibility, but also has some
disadvantages:

• Computational reflection is not always supported by the programming
language. This means that if we want to use it, we are restricted in
the choice of our programming language.

• Programming at the meta-level is difficult and can introduce some
subtleties.

• Meta-level programming also has some performance issues that need
to be taken into account.

2.3 Aspect-Oriented Software Development

Another way for having separation of concerns is using aspect-oriented
programming (AOP). AOP provides extensions to already existing pro-
gramming languages, so that it becomes possible to modularize crosscut-
ting concerns. The word aspect is often used to denote a modularized

2.3 Aspect-Oriented Software Development 11

crosscutting concern. Currently there are many AOP tools in research
[KLM+97, BA01, OT01, LOO01]. Most of them are based on the idea of
having a language that specifies where the concern is spread across existing
code and what the should be done at these points. After the concerns have
been specified a weaver is employed to weave the aspects into the existing
source code, that is the code without the tangled concerns. AOP has also
some disadvantages:

• While the understandability of the separate modules is improved, the
understandability of the whole program becomes harder. This is be-
cause the weaver weaves code at some places where there is no explicit
call to that code.

• Debugging of aspect oriented code is harder too, because debugging of
the code is done over the weaved code and not in the separate modules.

In the next section we provide an overview of some AOP tools and try to
identify their problems and merits.

2.3.1 Issues in Aspect-Oriented Programming Languages

An AOP language is not a stand-alone programming language. It merely
complements an already existing language. Most of the time this underly-
ing language is using the object-oriented paradigm, however this is not a
requirement. In object-oriented programming the idea is to search for com-
monalities, and push them up in the hierarchy. With AOP the idea is to
specify tangled concerns and represent them as first-class entities.

Definition 5 (Base Program) The base program is the code where the
aspects are applied to.

When designing an AOP language we must take the following issues into
account [EFB01]:

Specification of Aspects

One important aspect of an AOP language is how it defines an aspect.
The modular construct it provides to encapsulate aspects. The syntactical
constructs that are provided to define how the aspect crosscuts over the
base program. The extension mechanisms the AOP language provides to let
the aspect evolve. The constructs it provides to improve reusability of the
aspect.

Composition Mechanisms

Once the aspects are specified, they need to be composed together in the
program. Some issues involved in the composition mechanisms are:

12 Techniques for Separation of Concerns

Generality Is the underlying aspect-language domain specific or is it a
general-purpose programming language?

Visibility Are aspects visible to each other or is only the underlying code
base visible for the aspects?

Conflicts How are conflicts between different aspects resolved?

Behavior Can aspects only add behavior or can they also remove behavior
from the underlying code base?

Implementation Mechanisms

The implementation techniques boil down to the difference between static
and dynamic composition mechanisms of the aspects:

Static Static composition mechanisms are compilers or pre-processors that
weave the code of the aspects at the different pointcuts. They have
the advantage that they are fast because the introduction of the code
is done at compile-time. The disadvantage is that it is impossible to
adapt them at run-time.

Dynamic Dynamic composition mechanisms could be implemented by us-
ing reflection and meta-object protocols. Their advantages and disad-
vantages are the opposite of the static one. The design of a reflective
architecture usually involves a tradeoff between the the level of flexi-
bility it provides and the performance.

Software Process

Implementation tools for realizing advanced separation of concerns are one
thing, but a methodology for creating aspects is also needed. Another impor-
tant issue of aspect-oriented programming techniques is the software process
they propose. Also the language constructs that enhance the reusability of
aspects are a part of the software process. Another issue is the verification
of correctness of the aspects and the ability to debug them.

2.3.2 AspectJ

AspectJ [KLM+97] is a language extension for doing aspect-oriented pro-
gramming in Java. The tool is a consolidation of previous work on reflection
and meta-object protocols.

In AspectJ a concern is expressed in terms of an aspect. An aspect is a
module that allows the developer to express crosscutting implementations.
AspectJ supports the expression of both static and dynamic crosscutting.

Static crosscutting changes the static type signature of a program.

2.3 Aspect-Oriented Software Development 13

Dynamic crosscutting gives the possibility to add and/or remove behav-
ior from a program at certain points in the flow of the program.

Note that static and dynamic crosscutting differs from static and dy-
namic composition. In the next subsections we discuss the dynamic cross-
cutting features of AspectJ.

Dynamic Joinpoint Model

AspectJ allows to change the behavior of software at certain well-defined
points in the flow of the execution. These points in the execution flow can
be specified using the dynamic joinpoint model. Pointcuts are a means to
specify sets of joinpoints and to refer to values at these joinpoints. Pointcuts
can be defined with a name or anonymously. An example of an anonymous
pointcut:

receptions(void Point.setX(int)) ||
receptions(void Point.setY(int))

This defines the point in the execution flow where an object of type Point
(i.e., the class Point or a subclass of it) receives a message setX() or setY().
It is also possible to give a name to the pointcuts:

pointcut moves(Point p):
receptions(void p.setX(int)) ||
receptions(void p.setY(int))

Also notice that the pointcut definition moves() has a parameter p, which is
bound to the value of the receiver of the message.

Advice

After having defined the places (joinpoints) in the execution flow and the
necessary data, it is possible to define the behavior that should be executed
at these points. The behavior is defined using advice. There are three
different kinds of advice:

Advice Before Executes at the instruction just before the joinpoint is
reached.

Advice After Executes at the instruction just after the joinpoint is fin-
ished.

Advice Around can be distinguished from the two other types of advice in
that they are strictly additive, that is to say that they do not remove
any computation from the base program. Around advice on the other
hand, has the capability of selectively preempting computation from
the base program.

14 Techniques for Separation of Concerns

abstract aspect Trace
{
abstract pointcut changes(Object o);

after(Object o): changes(o)
{
System.out.println(o + " has changed!");

}
}

aspect PointTrace extends Trace
{
pointcut changes(Object p):
receptions(void p.setX(int)) ||
receptions(void p.setY(int))

}

Figure 2.4: Example of modular aspects

An example advice logging the movements of the points onto the screen
would translate in the following advice:

after(Point p): moves(p)
{
System.out.println(p + " has moved!");

}

Reusability

AspectJ introduces aspect modules for encapsulating the definition of the
aspects. To promote the reusability of aspects pointcut definitions can be
postponed by declaring them as abstract. Using inheritance we can make
the aspects concrete by defining the abstract declaration. Figure 2.4 shows
an example the reusable abstract aspect Trace. However, the reusability of
aspects is restricted, because it is impossible to extend pointcuts that are
not abstract, so the PointTrace aspect cannot be extended anymore. We
can therefore say that AspectJ only supports anticipated reusability of the
aspects.

Composition Mechanisms

Composition is done statically using a modified compiler. If multiple aspects
are crosscutting in the same point then it is possible to define a static order

2.3 Aspect-Oriented Software Development 15

on them by using the dominates keyword. If aspectA dominates aspectB then
the advices of aspectA are executed before the advices of aspectB.

2.3.3 Aspectual Components

Aspectual components [LLM99] are proposed as an extension to AspectJ and
Adaptive Plug and Play (AP&P) Components. AP&P components [ML98]
are used for modelling behavioral composition, but they can also be used
for expressing aspects. The problem of AspectJ is that the modular units
provided by AspectJ do not provide a generic data model and therefore it
is too tightly coupled with the base program.

Figure 2.5 shows the example given in [LLM99]. It shows the implemen-
tation of an observer aspect for a game. The problem is that the aspect is
bound with the base, namely the class TicTacToe to which the aspect is ap-
plied1. Hard coding the structure of the base program in the aspect harms
their reusability. We can say that the AspectJ modules are tightly coupled
with the class structure of the base and do not have their own independent
structure.

[LLM99] gives following definition for the aspectual components:

Definition 6 (Aspectual Component) :

1. a set of participants forming a graph called the PG (represented by,
e.g., a UML class diagram.) A participant is a formal argument which
consists of:

• expected features (keyword expect)

• re-implementations (keyword replace)

• local features (data and operations.)

2. aspectual component-level definitions

• local classes, visible only within the aspectual component

• features (data and operations: there is a single copy of each global
data member for each deployment)

We further explain this definition using an example borrowed from [LLM99].
Figure 2.6 shows the implementation of the observer protocol aspect using
aspectual components. The components form a modular reusable entity
and consists of multiple participants. Each participant consists of a num-
ber of expected operations, such as the changeOp operation. ‘Expected’
operations can be compared with the abstract methods notion of the usual

1In current versions of AspectJ this issue is solved by a mechanism based on interfaces
that can have code attached to them.

16 Techniques for Separation of Concerns

aspect TTTDisplayProtocol {
static new Vector TicTacToe.observers = new Vector () ;
static new TicTacToe TTTObserver.game ;
static new void TicTacToe.attach (TTTObserver obs) {
observers.addElement(obs) ;

}

static new void TicTacToe.detach (TTTObserver obs) {
observers.removeElement (obs) ;

}

static new void TTTObserver.update() {
board.update(game);
status.update (game);

}

// all methods that change state
static after TicTacToe.startGame, TicTacToe.newPlayer,

TicTacToe.putMark,TicTacToe.endGame {
for (int i = 0 ; i != observers.size(); i++)
((Observer)observers.elementAt(i)).update();

}
}

Figure 2.5: Example: AspectJ code harming the reusability, because it is
dependent on the base program.

2.3 Aspect-Oriented Software Development 17

object-oriented languages: they are not implemented in the component it-
self. ‘Expected’ operations can also be replaced with a new implementation,
as a method from a superclass can be redefined in a subclass in the con-
text of inheritance. The previous definition of the replaced operation can be
called with the expected() keyword, which is similar to the super-mechanism
for accessing the previous definition of the method in the class/superclass
relationship.

After defining the components we can deploy them in onto an existing
class hierarchy. Deployment is done using a connector mechanism. Fig-
ure 2.7 shows the code for using the observer protocol aspect to connect the
TicTacToe game with two observers. The connector mechanism binds one or
more classes to the participants defined in the aspectual component. In the
example the class TicTacToe is bound to the Subject participant and both
the classes BoardDisplay and StatusDisplay are bound to the Observer partic-
ipant. In the connection with TicTacToe the ‘expected’ change operator is
bound to the operations startGame, newPlayer, putMark, endGame defined in
the TicTacToe class. The ‘expected’ operation subUpdate from the Observer
participant is given in the connector.

Reusability

The reusability of aspectual components improves that of AspectJ, because
both the base program and the aspectual components have their own inde-
pendent hierarchy. The connectors can also be incrementally extended using
a technique similar to inheritance.

Composition Mechanisms

The composition mechanism is static and is similar to that of AspectJ. The
execution order of the aspects can be manipulated with composite connec-
tors.

2.3.4 Composition Filters

Composition Filters [AT98, OT01] are used to express crosscutting concerns
in an application. The idea is that filters are wrapped around a class. Before
a message is received by an object it first passes through the input message
filters that are wrapped around its class. An incoming message filter either
accepts or rejects messages depending on a message pattern and the result of
evaluating a boolean expression. The semantics of accepting or rejecting a
message depends on the type of the filter. Examples of filter types semantics
are given in table 2.1. Analogous to the input message filters are the output
message filters for messages that were sent from within a certain object.
Figure 2.8 shows the conceptual model of the input and output filters.

18 Techniques for Separation of Concerns

component ObserverSubjectProtocol
{
participant Subject
{
expect void changeOp(Object[] args);
protected Vector observers = new Vector();
public void attach(Observer o)
{ observers.addElement(o); }
public void detach(Observer o)
{ observers.remove(o); }
replace void changeOp()
{
expected();
for (int i=0; i<observers.size(); i++)
{

((Observer)observers.elementAt(i)).update(this);
}

}
}
participant Observer
{
expect void subUpdate(Subject s);
protected Subject s;
public void update(Subject aSubject)
{
s = aSubject;
expected.subUpdate(aSubject);

}
}

}

Figure 2.6: Example: Observer/Subject protocol aspect using Aspectual
Components

Filter Type Accept Action Reject Action
Dispatch Dispatch message to the Proceed to the next filter

target object
Error Continue to the next filter Raise an exception
Wait Continue to the next filter The message is kept in a queue

until the evaluation expression
evaluates to true.

Table 2.1: Example Filter Types

2.3 Aspect-Oriented Software Development 19

connector ObserverSubjectConnectorToTicTacToe
{
TicTacToe is Subject with
{

changeOp = { startGame, newPlayer, putMark, endGame }
};

{ BoardDisplay, StatusDisplay } is Observer with
{

void subUpdate(Subject aSubject)
{
setGame((Game)aSubject);
repaint();

}
};

}

Figure 2.7: Example: Connecting Observer/Subject protocol aspect to ex-
isting classes.

Reusability

In the composition filters model the aspects are represented by the filters.
Each filter represents an orthogonal extension, that is to say that each fil-
ter extension to a class is considered independent from other filters. The
orthogonality eases the composition of the aspects, but it also makes the
system harder if not impossible to use for aspect interactions.

Composition Mechanisms

The composition mechanism is based on a modified compiler. The order of
the aspects is determined by the order in which the filters are put in the
system. The order of the filters is statically determined.

2.3.5 Multidimensional Separation of Concerns

Multidimensional separation of concerns (MDSOC) [OT99] is an extension
on previous work done on subject-oriented programming [HO93]. The idea
is that it is impossible to encapsulate all concerns in a single decomposition
of the program. Each decomposition has different properties and accom-
modates for different kinds of changes in the software. Decomposing the
software in a single dimension causes the code to become tangled and cross-
cutting as explained in section 2.1. With hyperspaces the idea is to achieve

20 Techniques for Separation of Concerns

methods

instance
variables

conditions

implementationinput filterset

received messages sent messages

output filterset

internals
externals

interface

Figure 2.8: Conceptual Model of Composition Filters

three goals with respect to the concerns:

1. Identification:
the first step in identifying concerns is by selecting them in the source
code, naming them and populate the concerns with the units that
contribute to them.

2. Encapsulation:
Encapsulating concerns allows them to be handled as first-class entities
and keeps the code of a concern localized.

3. Integration:
Once the concerns have been identified and encapsulated we must in-
tegrate them in order to create the software that contains the multiple
concerns.

The items are further explained in the three following subsections.

Identification

Concerns are put in a multidimensional space. Each axis represents a di-
mension of a concern. Each point on the axis represents a concern in the
dimension. By making the dimensions of the concerns explicit and identify-
ing the code units in these dimensions it is possible to find which concerns
are affecting code. We can also find the interaction points of the different
concerns.

Encapsulation

The matrix of dimensions explained above allows to identify the sets of
concerns and overlapping areas between them, but it does not provide an

2.3 Aspect-Oriented Software Development 21

encapsulation mechanism. The sets of units cannot be seen as encapsulated
entities, because the units call upon each other and are too tightly coupled.
The units are decoupled with hyperslices. Hyperslices are declared to be
declaratively complete. This means that a hyperslice must at least provide a
declaration for each function and variable that is used by its members. The
definition however, does not need to be provided, the items can be declared
abstract. By making a hyperslice declaratively complete we state what the
hyperslice needs in order to be functional. It also makes the hyperslice
loosely coupled, making the unit encapsulated.

Integration

Several hyperslices can be composed and form pieces of working software or
new hyperslices, depending on whether there are abstract declarations left.
Hyperslices can also give conflicts, for example, when two hyperslices provide
the same method. There are several solutions for resolving this conflict:

• one hyperslice overrides the method of the other

• both methods are executed:
we need to define in what order and how the return value is computed

Hypermodules are used to specify the relationships between the hyperslices
and also specify the composition rules on how the conflicts are to be resolved.
Composition rules for two hyperslices PayRoll and Personnel:

hypermodule PayrollPlusPersonnel
hyperslices: Payroll, Personnel;
relationships:
mergeByName;

end hypermodule

These composition rules will join the behavior of the methods that have the
same name in the two hyperslices together.

Reusability

Hyperslices are composed in a component-oriented fashion. The tool which
implements MDSOC for Java, named Hyper/J, includes a tool for composing
hyperslices. Reusability of aspects is claimed to be better, because aspects
do not rely on a dominant model.

Composition Mechanisms

The composition tool is based on a pre-compiler that translates the hyper-
modules to regular Java code.

22 Techniques for Separation of Concerns

2.3.6 Java Aspect Components

Java Aspect Components (JAC) [PSDF01] is a framework that supports
aspect-oriented programming in Java. Aspects can be woven and unwoven at
run-time using reflective properties of the language. Unlike the other aspect-
oriented programming tools JAC does not propose new language extensions,
instead it tries to define a generic architecture. JAC consists of the following
program parts:

JAC aspect objects are attached to participants (regular base objects).
A JAC aspect object can consist of the following methods:

• Wrapping methods are used to attach behavior before or after a
base object method.

• Role methods are used to extend the behavior of one or more
base objects with some code.

• Exception handlers are automatically activated when an excep-
tion is raised within the base object it is attached to.

Weaver The weaver deploys the JAC aspect objects in the correct base
objects.

Composition Aspect Object When multiple JAC aspect components are
attached to the same base object then conflicts can arise. Composition
aspect objects are employed to resolve such conflicts.

Reusability

JAC aspect objects are claimed to be fully reusable and extensible, because
they do not define any aspect pointcuts in the code. In our opinion this is
not completely true, because the way the aspect object is activated is not
externalized and must be handled in the aspect code. When an aspect object
is activated it is passed the method and argument list of the method it is
wrapped around. The code of the aspect object has to use this information
to get information from the base program. The problem is that the way an
aspect should be activated is not externalized and this is tangled in the code
of the aspect. This harms the reusability of the aspects.

Composition Mechanism

JAC distinguishes itself from the other aspect-oriented programming tools
in that it has a weaver that can install aspects at run-time, rather than at
compile-time.

2.4 Comparison 23

AspectJ Aspectual Composition MDSOC JAC
Components Filters

Generality General General General General General
Purpose Purpose Purpose Purpose Purpose

Visibility Yes No No Yes Yes
Conflicts Order Order No Order Composition

Aspect
Behavior A/R A/R A/R A/R A/R
Impl. Compile Compile Compile Compile Run-Time
Mechanics
Reusability Dependent Good Good Good Dependent

Table 2.2: Comparison of Aspect Tools (A=Add/R=Remove)

2.4 Comparison

Table 2.2 compares the different approaches to the issues that were described
in section 2.3.1. From the comparison we learn that most AOP tools cannot
be used for distributed applications or component based applications that
require run-time weaving of the aspects.

2.5 Summary

In this chapter we have briefly discussed the problems of concerns that are
difficult to modularize. Such concerns decrease the quality attributes of the
source code and often result in so-called spaghetti code. Existing language
constructs are often insufficient to modularize all concerns. Concerns are
often added implicitly by editing the code of the base program instead of
adding them in a modularized way. Many tools have been developed to
complement existing programming languages with the ability to modularize
crosscutting concerns. We have discussed and compared some of these tools.
Most of the tools are not able to express dynamic crosscutting concerns.

Chapter 3

Composition Issues

3.1 Introduction

When we need to weave multiple aspects to the same base program then the
composition mechanism should allow someone to regulate the interactions
and possible conflicts among the aspects. First, we give an overview of the
different composition issues that occur when trying to weave aspects in an
application. We then identify how these issues are addressed in some of the
existing aspect-oriented composition tools.

3.2 Composition Issues

In [PSDF01] an overview of some composition issues is given. Most of them
are open issues, that is to say that they are still under discussion in the
research community. We have reduced these composition issues to five prob-
lems associated with aspect-oriented programming. The composition issues
and the illustrative examples used in this section are from [PSDF01]. The
AspectJ code from the examples serves to illustrate how the composition
issues tend to get tangled in the advice code. This harms the reusability of
the aspects in other contexts.

3.2.1 When Activated

The decision to activate an aspect sometimes depends on run-time properties
of the application or even on the context of the caller. We give two examples
of each of these activation problems:

Property-Dependent Activations

Sometimes an aspect should only be activated when a certain condition is
fulfilled. For example, an authentication aspect only needs to get activated
if the user has not already been authenticated:

26 Composition Issues

aspect authentication {
abstract pointcut authentications();

before(): authentications() {
while (!isAuthenticated()) do
// authenticate

}
}

Another example is that a display only needs to be updated if the changes
to the state of a model affect the view.

Context-Dependent Activations

Some aspects need to perform dynamic context-dependent tests to remain
semantically consistent. Consider the example of a counting aspect. The
aspect is responsible for counting the number of times it has been activated.
The code for a counting aspect that increments a counter each time before
the method m1 in class A has been activated.

aspect CountingAspect {
private int counter;
pointcut pc1(): target(A) && call(void m1());
before(): pc1() {
counter++;

}
}

Suppose we know that method m2 in the same class calls m1 ten times.
We could optimize the counting aspect by incrementing the counter with ten
instead of incrementing it ten times separately. The code for this is shown
below:

aspect WrongOptimizedCountingAspect {
private int counter;
pointcut pc1(): target(A) && call(void m1());
pointcut pc2(): target(A) && call(void m2());
before(): pc1 {
counter++;

}
before(): pc2 {
counter += 10;

}
}

3.2 Composition Issues 27

This aspect will not function correctly, because when the message m2 is
sent it will increment the counter with ten and continue to increment the
counter with ten times one. In order to function correctly we need to specify
that the advice attached to the pointcut pc1 should not be activated when
the advice attached to pointcut pc2 has already been activated. Code for
solving this problem is shown below:

aspect OptimizedCountingAspect {
private int counter;
private boolean applied = false;
pointcut pc1(): target(A) && call(void m1());
pointcut pc2(): target(A) && call(void m2());

before(): pc1 {
if (applied) { applied = false; skip }
counter++;
applied = false;

}
before(): pc2 {
counter += 10;
applied = true;

}
}

Context-dependent aspects are called jumping aspects in [BMD00], be-
cause the pointcuts depend on the context in which a component is used.

3.2.2 How Activated

If we consider the optimized counter aspect from above again, then we can
see that the aspect has become more dependent on the base program. This
makes the aspect less reusable and harder to read. Ideally we would have
a simple counter aspect and depending on the run-time or static properties
we decide to increment the counter with another value. How the aspect is
activated should be fully externalized from the aspect code, so that is it
decoupled from the base program.

3.2.3 Choosing Aspects

Sometimes it is useful to have two aspects that handle the same crosscutting
concern, but in a different way. For example, depending on the network-load
we could decide to alter the compression algorithm. When there is a fast
connection we use a compression algorithm that provides better quality, but
needs more bandwidth. When the connection is saturated we could use a

28 Composition Issues

compression algorithm that requires less bandwidth, but that delivers worse
quality:

aspect MediaCompression {
abstract pointcut pc1();
before(): pc1 {

if (Network.getLoad() > TRESHOLD)
// low-quality compression

else
// high-quality compression

}
}

The code above shows how the code for choosing between the two aspects
gets tangled in the advice code.

3.2.4 Compatibility

When an aspect is to be woven into an existing application a compatibility
conflict can occur. For example, when an logging aspect is woven into the
base program, but the base program already contains some logging facilities,
then the weaver should be able to detect this and refuse to weave the logging
aspect.

3.2.5 Order

Sometimes, two or more aspects need to be woven at the same place in the
base program. For example a semaphore aspect and a logging aspect that
both need to be wrapped around a single method. In that case it might
be necessary to specify which aspect should be handled before the other
aspect. We can distinguish between a static order and a dynamic order of
the aspects.

Static Order

Static order between two aspects defines an unconditional precedence be-
tween two or more aspects. The semaphore and logging aspect are an ex-
ample of a static order, the semaphore aspect always needs to be activated
before the logging aspect.

Dynamic Order

Dynamic order between two aspects defines a conditional precedence be-
tween two or more aspects, that is to say that the order can depend on the
run-time properties of an application. For example, if we have an authenti-
cation and a logging aspect, then depending on the status of the application

3.3 Evaluation of Existing Composition Tools 29

we want to activate the logging before or after the authentication. If a secu-
rity breach is suspected we decide to log before authenticating, in the other
case we decide to log after authentication.

3.2.6 Dependencies

Sometimes one aspect depends on another aspect to perform a certain fea-
ture. For example, a billing aspect might need a timing aspect to let the
invoice depend on the time the service was utilized. In the case we want
to weave the billing aspect we might want to automatically weave the tim-
ing aspect with it or report an error when the aspect cannot be found.
Also, when the billing aspect is skipped, then the timing aspect can also be
skipped (unless there are other aspects depending on it).

3.3 Evaluation of Existing Composition Tools

This section compares how the previously mentioned issues are resolved in
some of the aspect-oriented programming tools that we discussed in the
previous chapter. They are summarized in table 3.1.

3.3.1 AspectJ

When Activated

Property-dependent activations . When the pointcut that is attached
to an advice does not match, then the advice is not executed. Pointcuts can
depend on the run-time properties using an if-pointcut. The advantage is
that the condition is moved outside of the advice so that the reusability of
the aspect is not harmed.

Context-dependent activations are achieved using the control flow based
pointcuts. The problem is that the consistency rules are mixed in the point-
cuts. Moreover, the consistency rules are more permanent than the point-
cuts. In the example from section 3.2.1 we would have to repeat the consis-
tency rule (using the control flow pointcut) each time we reuse the aspect
in another base program. So each time the aspect is reused in a different
context, the developer that reuses the aspect has to keep the consistency
rule in mind.

How Activated

How the aspect is activated can be partially externalized by making use of
the pointcut parameters. However, when we would need to convert some
of the collected parameters we have to do this in the aspect code, because

30 Composition Issues

Composition When How Choosing Compatibility Order
Technology Activated Activated Aspects
AspectJ P/C Partially Implicit No Static

Tangled
CF P Tangled Implicit No Static
AC No Tangled No No Static
Hyper/J C Partially No No Static

Tangled
JAC P/C Tangled Yes Yes Static

Dynamic

Composition Dependencies Composition
Technology Coding Style
AspectJ No Declarative

CF No Declarative
AC Yes Composition Language
Hyper/J No Composition Language

JAC Yes Imperative

Table 3.1: Summary of Composition Technologies vs. Composition Issues
(P=Property C=Context)

3.3 Evaluation of Existing Composition Tools 31

the pointcuts do not allow to put code to convert the parameters in the
pointcuts. This harms the reusability of the aspect code.

Choosing an aspect

Choosing an aspect can be simulated in AspectJ by splitting the choices
between the different aspects in different advices and specifying which advice
should become active in the pointcut that is attached to the advice. This
solution however, is not completely satisfying. One could say that the code
to choose between several aspects is tangled in the pointcuts of the different
aspects.

Compatibility

Compatibility is not supported.

Order

Static Order is supported using the dominates relationship. The domi-
nates relationship is introduced so that if two or more advices need to be
woven at the same joinpoint, then the weaver knows in which order the ad-
vices should be placed. When an aspect A dominates aspect B, then all the
advices from aspect A are executed before the advices of aspect B. There
are several problems with this solution:

1. The granularity of the dominates relationship is limited to that of a
whole aspect. If you consider the problem that an aspect A contains
advices a and b and an aspect B contains advices c and d. Then we
are unable to express that advice a should be woven before advice c,
and that advice b should be woven after advice d.

2. The dominates relationship is tangled in the aspect declaration, which
makes it harder to reuse the aspect. For example in the case that the
aspect is to be reused in an application where the other aspect is not
needed.

Dynamic Order Advices are woven at compile-time and cannot be al-
tered at run-time.

Dependencies

Aspect dependencies are not supported.

32 Composition Issues

3.3.2 Composition Filters

When Activated

Property-dependent activations Filters either accept or reject a mes-
sage. The acceptance or rejection of a message is determined by a set of
patterns over the message name together with a condition. The message
can be rejected if either the pattern does not match or the condition evalu-
ates to false. Depending on the semantics of the filter the message is then
handled by the next filter.

Context-dependent activations are not supported.

How activated

It is not possible to specify how a filter should be activated.

Choosing an aspect

Choosing an aspect can be done by weaving multiple filters and use opposite
boolean conditions to choose between one filter or another.

Compatibility

Checking the compatibility is not supported.

Order

Static Order is done by ordering the incoming and outgoing filters. The
order of the filters is determined by their order in the composition rules.

Dynamic Order Filters are statically woven into the program text at
weave-time and the order cannot be changed at run-time.

Dependencies

Specification of dependencies is not supported.

3.3.3 Aspectual Components

When Activated

Property-dependent activations is not supported.

Context-dependent activations are not supported.

3.3 Evaluation of Existing Composition Tools 33

How Activated

It is not possible to specify how an aspectual component should be activated.

Choosing an aspect

Choosing an aspect is not supported.

Compatibility

Checking the compatibility is not supported.

Order

Static Order is done using composite connectors. Connectors can be
used to determine a static order for the different aspects.

Dynamic Order is not supported.

Dependencies

Dependencies can be specified by creating a new component that is com-
posed of all the necessary components. Instead of weaving each aspectual
component separate, the composed component needs to be woven using a
connector requiring all the weaving directions.

3.3.4 Multi-Dimensional Separation of Concerns

When Activated

Property-dependent activations are not supported.

Context-dependent activations are achieved using an extended version
of the bracket construct in the composition of several hyperslices. The
bracket construct can be used to add a call before or after a certain method
in a hyperslice. The construct has been extended with a from directive to
determine when the bracket is applicable using the origin of the call site.
The call sites are partitioned in hyperslices.

How Activated

Aspects that are bracketed around a method can either be given the original
parameters or the name of the class and the name of the method. It is not
specified how arguments can actually be converted, so this would need to
be done in the aspect code, which harms the reusability.

34 Composition Issues

Choosing an aspect

Choosing an aspect is not supported.

Compatibility

Checking the compatibility is not supported.

Order

Static Order is done using the order relationship. The order is specified
on the level of methods and helps in defining a partial order when several
methods are merged together.

Dynamic Order is not supported.

Dependencies

Specifying dependencies is not supported.

3.3.5 Java Aspect Components

JAC supports all the issues using composition aspects, except for the issue of
how to activate the aspect. However, JAC does not provide any syntactical
constructs to support these issues and the issues are implemented in an
imperative coding style. This means that the behavior of the composite
aspect objects becomes hard to read, and therefore it is more difficult to
predict the behavior of the overall system. In our opinion the composition
issues should be written in a language that declaratively specifies how the
composition issues should be solved, rather than in an imperative coding
style. Such a declarative coding style would enhance the readability and
understandability of the system.

The activation of the JAC components is not externalized and is tangled
in the aspect code as we already explained in section 2.3.6. This harms the
reusability of the aspects.

3.4 Proposed Solution

In this section we describe what features the composition technologies should
provide in order to successfully handle the issues discussed in section 2.3.1
and section 3.2 in a dynamic context:

• Static vs. Dynamic Weaving
In [RV97, Bol99, Sul01] several examples are given why dynamic weav-
ing of aspects is preferred over a static weaving method for some

3.5 Conclusion 35

applications. Consider for example a component system that allows
someone to plug and unplug components at run-time. Crosscutting
concerns, such as logging can also be seen as components. A sec-
ond application where dynamic aspects are useful is in the context
of distributed systems. For example, when an object is transported
to another device the object needs to consider different resources and
services that are provided by its new environment. The adaptations
to its new environment can be seen as aspects, but the aspects de-
pend on the environment where the object is living. This means that
new aspects sometimes have to be woven when an object moves from
one device to another. Considering such applications we choose for a
composition mechanism that allows dynamic weaving of aspects.

• Composability of Aspects
The composition mechanism needs to be able to compose different
aspects together [ATB00]. This means effectively that if you take two
aspects and you combine them together that you have a new aspect
that is again reusable.

• Aspect Conflicts
When different aspects are composed together they can cause conflicts
[PTC00, Pul00, PSDF01, BMD02]. In section 3.2 we discussed some
of these issues in more detail. The composition mechanism needs to
provide mechanisms to resolve or avoid conflicts in a declarative coding
style and untangled from the aspect code.

• Visibility of Aspects
To resolve conflicts, an aspect sometimes needs to be able to access
and therefore be aware of the presence of the other aspects in the
application.

• Reusability
To improve the reusability of the different aspects, both the aspect
code, the composition issues and the aspect activation code should be
fully separated.

• Composition Language
To improve the readability and the understandability of the full pro-
gram, the composition of aspects should be declaratively specified
rather than in an imperative way.

3.5 Conclusion

In this chapter we discussed some composition issues that rise when we want
to weave one or more aspects into a base program. We tried to identify how

36 Composition Issues

these issues are solved in some existing composition tools for aspect-oriented
programming. A summary is shown in table 3.1. Most of the issues are not
supported. The issues that are supported by the programming tool are often
crosscutting the aspects or are solved implicitly. These problems affect the
reusability of the aspects. In section 3.4 we described what features the
composition mechanism should provide to solve these composition issues in
a dynamic context.

Chapter 4

Composite Aspect Objects

4.1 Introduction

In this chapter we introduce a new model for achieving advanced separation
of concerns based on run-time weaving of the aspects. The design of our
model is based on the solution we proposed in section 3.4.

4.2 The Model

In this section we introduce the notion of a composite aspect object. In
composite aspect objects the code of a crosscutting concern is encapsulated
in an object. The specification of how the concern is crosscutting the base
program is put in a separate module, called an activation scheme.

4.2.1 Composite Aspect Objects

When an object receives a message in a language with a reflective meta-
architecture, then the meta-object searches for the code for handling the
message that was sent. It does this by locating the source code and exe-
cuting that code. In the composite aspect object model we extend this by
searching the code of multiple objects instead of one object. Each of these
objects represents a software concern that should be executed at that point.
Multiple composite aspect objects can point to the same code of a single ob-
ject. This means that the code of a single object can encapsulate the code
of a concern that is crosscutting over multiple other objects. The composite
aspect object is living at the meta-level of the language, but has an object
identity associated with it, so that base level objects can send messages to it.
Figure 4.1 shows what happens at the meta-level when a message is sent to
the composite aspect object. The composite aspect object provides several
services:

• locating and executing the code of the objects.

38 Composite Aspect Objects

Meta Level

Base Level

Meta-
Object a'

Object a

Composite
Aspect Object

Object b Object c Object d

Object
ID

Figure 4.1: Example Model of a Composition Aspect Object

• providing the necessary parameters so that the code can execute, hence
the composite aspect object acts as an adapter to activate objects that
have a different protocol.

• determining the order in which the objects are activated by sending
the objects a message. The order of the aspects can be determined
dynamically so that the order can depend run-time values.

• exposing details from the execution environment to the objects if
needed. For example, the sender of the message.

These services are provided at run-time and are therefore all adaptable at
run-time.

Running Example To make the model a bit more concrete we use a
running example for the next subsections. Consider an object representing
a queue. The queue-object has four operations: push:, pop, top and isEmpty.
The queue can be accessed concurrently by different processes and we would
like to log the operations on the queue. The synchronization aspect and the
logging aspect are crosscutting the functionality provided by the queue. The
structure of the composite aspect object is shown in figure 4.2.

4.2.2 Aspects

In our model an aspect is represented by two entities:

1. The concerns that are crosscutting the program are encapsulated in
regular objects that live at the base level. Objects that are part of
a composite aspect object are called part-objects. Each part-object
has a unique identifier within the composite aspect object and im-
plements a software concern from the problem or solution domain of

4.2 The Model 39

Log

Activation Scheme

Semaphore
3,7

4,6

5

Client
Object

1

Composite Aspect
Object

log: ... lock

unlock

...

...

Queue

items

push:

pop

a Collection

...

...

top ...

isEmpty ...

2Self

Figure 4.2: Queue Example using a Composite Aspect Object

the application. One part-object can be put in multiple composite
aspect objects, this makes it possible to modularize concerns that are
crosscutting multiple objects. The part-objects have a protocol that
is specific to the software concerns they implement. Representing the
crosscutting concerns as objects has the advantage that we can change
their implementation at run-time by plugging, unplugging or replacing
them in the composite aspect object. Furthermore, we can extend the
functionality of the crosscutting concerns using regular object-oriented
techniques such as inheritance and aggregation.

2. The way the services of the composite aspect object are configured
determine how the functionality implemented in the part-objects are
crosscutting the program. The configuration of these services is deter-
mined by what we call an activation scheme. An activation scheme is
a first class entity, represented as an object so that it can be adapted
to changes in the environment.

It is important to note in our model that both the part-objects and the
activation scheme are represented as first class entities. Since both entities
define an aspect we can say that our aspects are adaptable at run-time. Also
note that our aspects are based on objects rather than classes. We can take
one object and adapt its behavior rather than having to change its class for
changing the behavior.

Running Example The activation scheme describes how the queue-,
semaphore- and logging object are activated when the composite aspect
object receives a message. An example activation scheme for the method

40 Composite Aspect Objects

client CAO Activation Scheme

(1) push:()

(2) delegate:()

Semaphore

(3) lock()

Queue

(5) push:()

true()

Log

true()

()

(4) log:()

true()

true()

()

(6) log:()

(7) unlock()

()

Figure 4.3: Activation Scheme for Figure 4.2

push: for the above example is shown in figure 4.3. The activation scheme
can be determined dynamically. We could for example add a condition to
each activation sequence, so that when the condition evaluates to true we
execute the activation and when it evaluates to false we skip to the next
activation sequence.

4.2.3 Weaving

There are several possibilities to apply the composite aspect object depend-
ing on the time the crosscutting concerns are identified:

Compile-Time Installation

When the crosscutting concerns are identified at compile-time we can change
the meta object of the base object, so that it constructs a composite aspect
object that includes the base and the objects that implement the different
crosscutting concerns, instead of creating the base object immediately.

Running Example When a new queue is constructed we return a com-
posite aspect object that contains the queue, a semaphore object and a
logging object as part-objects. Figure 4.4 shows an example of how the
constructor could be implemented in this case.

4.2 The Model 41

Queue class>>new
| compositeAspect scheme queue lock logging |
compositeAspect := CompositeAspect new.
scheme := QueueScheme new.
"set object that fulfills the Queue role"
scheme queue: super new.
"set object that fulfills the Semaphore role"
scheme lock: Semaphore new.
"set object that fulfills the Logging role"
scheme logging: Log new.
"set the activation scheme"
compositeAspect strategy: scheme.
^compositeAspect.

Figure 4.4: Example Implementation the Constructor of the Queue in
Smalltalk

Run-Time Installation

When the crosscutting concerns need to be applied at run-time we can create
a composite aspect object at run-time and replace all existing objects with
the composite aspect object. In Smalltalk this can be achieved using the be-
come: operation. The become: operation is a primitive method understood
by all objects. When it is sent to an object it changes all the references to
the receiver of the message to the object that was passed as a parameter.
We realize that this is a strong requirement on the language. An alternative
that is less restrictive is to change the constructors of all classes so that they
always return a composite aspect object that contains an instance of the
class. Once we have a composite aspect object we can change its structure
at run-time and thus adapt the composite aspect object (i.e., add the objects
that implement the crosscutting concerns and change the activation scheme
so that it reflects how the part-objects are crosscutting the behavior).

4.2.4 The Notion of Self

An important aspect of the part-objects is their binding of “Self” in a com-
posite aspect object. There are two ways to bind the “Self”-value:

1. rebind “Self” to the composite aspect object.

2. keep “Self” bound to the part-object.

Below we show an example that shows that both possibilities to bind “Self”
are useful in one composite aspect object. Consider an object from which we
want to log the different messages that were sent to the object. We compose

42 Composite Aspect Objects

a composite aspect object that consists of two part-objects, an object that
implements the logging aspect and the object that we want to log. If we
want to log the messages that were sent from within the object itself then
we need to have its “Self” bound to the composite aspect object. However,
binding “Self” of the logging object to the composite aspect object is not
desired, because we would have to pollute the protocol of the composite
aspect object with the the protocol of the logging object. We do not want
to do this, because in this example the composite aspect object does not
compose the concept of logging, but rather the concept of the object that
we are logging. Since the two possibilities are common we allow both in our
model.

Running Example The composite aspect object is composed of three
objects, but the concept that the composite aspect object composes is de-
termined by one single object, the queue object. Furthermore, we might
want to log the operations done that are activated by self-sends. For this
reason we decide to bind the “Self” of the queue object to that of the com-
posite aspect object.

4.2.5 Adapting the Composite Aspect Object at Run-Time

Imagine that the queue object is passed over the network to a device that
has limited memory resources. Therefore, we decide to restrict the size of
the queue. When an element is pushed onto the queue when it is at its full
capacity we decide to throw an OverflowException. The aspect for throwing
exceptions at the correct time depends on the resources available in the
machine where the object will live. Hence, the aspect needs to be woven
each time the object migrates to another device. We must also throw an
exception when a pop-operation is performed while there are no elements in
the queue. We encapsulate the code of the aspect for throwing and checking
the exceptions in a class QueueError that has three methods:

1. willOverflow
returns true or false depending on the memory available in the machine
where the object lives of the queue.

2. willUnderflow
returns true when there are no more elements in the queue and false
when there is at least one element in the queue.

3. throw:
takes an object representing the exception as parameter that needs to
be thrown.

When the composite aspect object is deserialized we can weave the instance
of the QueueError class to handle the change in memory resources that is

4.3 Conclusion 43

Activation What Activation
Sequence Condition

1 queueError throw: OverflowException error willOverflow
2 semaphore lock true
3 logging log: ’push: accessed’ true
4 queue push: (args at: 0) true
5 logging log: ’push: terminated’ true
6 semaphore unlock true

Table 4.1: Adapted Activation Scheme for push: message

specific to the device by adding it to the composite aspect object and chang-
ing the activation scheme so that the exceptions are checked and activated
at the correct moment:

DynamicWeaver>>adaptForErrorHandling: compositeAspect
| oldStrategy newStrategy |
compositeAspect add: QueueError new.
"retrieve the old activation scheme"
oldStrategy := compositeAspect strategy.
"convert the old activation scheme to throw exceptions"
newStrategy := oldStrategy withErrorHandling.
"Set the new activation scheme"
compositeAspect strategy: newStrategy.
^compositeAspect.

4.3 Conclusion

In this chapter we introduced the notion of a composite aspect object to
achieve advanced separation of concerns. This model is dynamic and aspects
can be added, removed and replaced at run-time. The model has several
advantages:

• The activation scheme can be replaced so that different schemes can
be chosen and adapted to the changes in the composite aspect object.

• The code of the crosscutting concerns is encapsulated in regular classes.
It is the activation scheme that defines how the crosscutting concerns
should be activated in the specific context. Hence, the code of the
crosscutting concerns can be reused in different contexts, but with an
activation scheme that is adapted to the context of its use.

A disadvantage of the model is that because the activation scheme is de-
termined dynamically each time a message is received that this may have

44 Composite Aspect Objects

a negative impact on the performance. We believe this negative impact on
the performance is minimal, because we can use more static versions for
activation schemes that do not have dynamic properties or optimize them
using caching.

This model forms the basis for our weaving technology. The next step
is to define an activation scheme that expresses the pointcuts of the part-
objects in a single object and how multiple aspects relate together to help
us resolve the composition issues explained in chapter 3.

Chapter 5

Composing the Composite
Aspect Object using Logic
Metaprogramming

5.1 Introduction

In the previous chapter we introduced composite aspect objects as a meta-
object that is composed of part-objects and an activation scheme. An acti-
vation scheme defines how messages received by a composite aspect object
should be processed by the part-objects of which it is composed. We de-
scribed the activation scheme as a black-box entity that determines how and
when certain part-objects had to be activated. In section 3.4 we pointed out
that we could benefit from a declarative language for expressing the composi-
tion of different aspects. In this chapter we discuss a possible implementation
of an activation scheme using logic meta-programming rules to determine
the activation sequence. We choose for logic metaprogramming, because of
the inherent declarative nature. Another advantage of logic metaprogram-
ming is the ability to inspect the structure of our program, which can be
useful to express dynamic aspect compositions depending on the dynamic
program structure. The next three sections serve as an introduction to
logic metaprogramming. They are followed by a discussion of an activation
scheme expressed using logic metaprogramming.

5.2 What is Declarative Metaprogramming

When we write programs that act on other programs then we are doing
meta-programming. Hence, programs that are acting on other programs are
called meta-programs and the programs that are acted upon are called base
programs. We can distinguish between at least two types of metaprogram-
ming:

46Composing the Composite Aspect Object using Logic Metaprogramming

1. Compile-time Metaprogramming:
The meta-program is employed at compile-time to change other pro-
grams. They usually come in the flavor of a preprocessor or are in-
tegrated with the compiler of the language. An example of such a
system is the template-system in C++ [Str97].

2. Run-time Metaprogramming:
The meta-program is employed at run-time and are usually integrated
in the programming language, such as in Smalltalk [GR83]

Declarative metaprogramming combines a declarative language used at the
meta-level together with a certain base language (e.g. an object-oriented
language).

5.3 Logic Metaprogramming

Logic metaprogramming is a particular instance of declarative metaprogram-
ming. The declarative language that is used at the meta level is a logic
programming language (e.g. Prolog).

The base level is the program where the meta-program is reasoning
about. In logic metaprogramming this level is expressed as facts, rules and
terms at the meta-level. Meta level programs are used to reason and ma-
nipulate the base-level.

In this section we discuss two different implementations of logic metapro-
gramming languages, but first we give a short introduction to logic program-
ming.

5.3.1 Logic Programming

Logic programming is about implementing relations. A logic program is a
collection of horn clauses. A horn clause is of the form:

H ← B1, ..., Bn

H is called the head of the rule, while the B1, ..., Bn is usually called
the body of the rule. H is said to be proven if B1..n is proven to be true.
When there is no body and thus n = 0, then H is unconditionally true.
Such horn clauses are usually called facts, while horn clauses with n > 0
are called rules. Results are computed by querying the system. A query is
usually of the form ← Q. When querying the system we are in fact trying
to construct a proof by contradiction. When a solution can be found for
the query we say that the query succeeds; when no solution is found we say
that the query failed. A query is computed by an algorithm that is called
resolution. Resolution is based on a special variable binding mechanism that
is called unification.

5.3 Logic Metaprogramming 47

Todd Lies

John AnnaBarbara

Saskia

Figure 5.1: Family Tree

Example The syntax is similar to the rules describes above. Differences
are the ← is represented as “if” and the logic variables that start with a
“?”. Consider the family tree shown in figure 5.1. The tree is expressed as
following facts:

married(todd, lies).
parent(todd, john).
parent(lies, john).
parent(todd, anna).
parent(lies, anna).

married(john, barbara).
parent(john, saskia).
parent(barbara, saskia).

female(barbara).
female(anna).
female(lies).
male(todd).
male(john).

We now define some rules that allow us to identify the father and mother
relationships in the family tree.

father(?Parent, ?Child) if
parent(?Parent, ?Child), male(?Parent).

mother(?Parent, ?Child) if
parent(?Parent, ?Child), female(?Parent).

The father-rule should be read as ?Parent is the father of ?Child if there exists
a parent-relationship between ?Parent and ?Child and there exists a male-
relationship for the ?Parent. The mother-rule is constructed similarly. Rules
can be used to construct other rules, which is shown in the grandfather-rule
shown below:

48Composing the Composite Aspect Object using Logic Metaprogramming

grandfather(?Grandfather, ?Grandchild) if
parent(?Parent, ?Grandchild),
father(?Grandfather, ?Parent).

When multiple rules with the same head are in the rule repository, then
the inference engine tries to construct a proof by trying out all the rules
in the order they are put in the repository. Rules with the same head are
expressing the logical OR-operator. The example shown below is a recursive
rule for defining the ancestor-relationship between different persons:

ancestor(?Person, ?Ancestor) if parent(?Ancestor, ?Person).
ancestor(?Person, ?Ancestor) if parent(?Parent, ?Person),

ancestor(?Parent, ?Ancestor).

Note that the non-recursive rules must be listed first in the repository. This
is necessary in order to stop the recursion.

Launching the query:

if ancestor(saskia, ?Ancestor)

produces the following answers using backtracking:

• ?Ancestor ← john

• ?Ancestor ← barbara

• ?Ancestor ← todd

• ?Ancestor ← lies

For more information on logic programming we refer to [Fla94].

5.3.2 SOUL

The acronym SOUL stands for Smalltalk Open Unification Language, a
logic programming language that has been implemented and integrated
with Smalltalk [Wuy98]. SOUL is used for reasoning about the structure of
object-oriented programs. An example use of SOUL is the extraction and
synchronization between design information and the code of the program.
SOUL is actively available at run-time in the Smalltalk image.

SOUL provides a layered set of rules to reason about the base language
structure:

logic layer: contains the predicates that add core logic-programming func-
tionality, such as list handling, arithmetic, program control, repository
handling,...

representational layer: this layer reifies some of the concepts from the
base language (e.g., class, superclass, methods and instance variables).

5.3 Logic Metaprogramming 49

basic layer: this layer adds more predicates to facilitate reasoning about
the base code (e.g., parse tree traversal, typing, code generating, ac-
cessing code and other auxiliary rules). This layer is necessary, because
the representational layer only provides the most primitive informa-
tion.

design layer: groups all predicates that express particular design nota-
tions, such as programming conventions, design patterns and UML
class diagrams.

Examples

As an example we will describe the class-rule, that interacts with the under-
lying Smalltalk image. The rule can be used to retrieve classes from the base
level or verify their existence. The class-rule is the logical representation of
a class in the logic meta level.

class(?C) if
atom(?C),
[Smalltalk includes: ?C].

class(?C) if
var(?C),
generate(?C, [Smalltalk allClasses]).

The first rule handles the case where the logic variable has been assigned a
value to validate if the class is available in the Smalltalk image:

• atom(?C)
checks to see if there is a value bound to the ?C variable

• [Smalltalk includes: ?C]
Uses the language symbiosis to check if the Smalltalk image includes
the class bound to the ?C variable. Note that the value of the block is
the value of the last method-call that is executed in the block. When
the block is used in the body of the rule then it has to return a boolean
value.

The second rule handles the case the the logic variable is unbound and
generates the classes that are available in the Smalltalk image.

• var(?C)
checks to see if there the variable ?C is unbound.

• generate(?C, [Smalltalk allClasses])
the generate-predicate binds the values from a collection (generated
here by the “Smalltalk allClasses”-command) one by one, while back-
tracking, to the variable ?C.

50Composing the Composite Aspect Object using Logic Metaprogramming

class Stack {
int pos = 0 ;
Stack() {
contents = new Object[SIZE];}
public Object peek () {
return contents[pos]; }
public Object pop () {
return contents[--pos]; }
... }

Figure 5.2: Regular Java Code for
Stack Implementation.

class(Stack).
var(Stack,int,pos,{int pos = 0;}).
constructor(Stack,[],{public Stack()},
{contents = new Object[SIZE]; }).
method(Stack,Object,peek,[],
{public Object peek()},{return...}).
method(Stack,Object,pop,[],
{public Object pop()},{return...}).
...

Figure 5.3: Stack Implementation
using Logic Propositions.

In current research SOUL is extended with basic predicates to facilitate the
construction of aspect-oriented languages for specific domains.

5.4 Aspect-Oriented Logic Metaprogramming

5.4.1 TyRuBa

The acronym TyRuBa stands for Type-Oriented Logic Metaprogramming
for Java1. The principle of TyRuBa is to use a logic programming to ma-
nipulate types at compile-time [DD99]. TyRuBa can be distinguished from
SOUL in that TyRuBa is a pre-compiler, while SOUL is actively available in
the Smalltalk image at run-time. Base language programs are represented as
a set of logic propositions. One of the most important features of TyRuBa
is the use of quoted code blocks2 into the logic rules. Quoted code blocks
allow pieces of Java code to be used as terms in the logic rules. Quoted code
blocks are surrounded with curly braces. Figure 5.3 shows a set of logic
propositions that represent the Java program shown in figure 5.2. Even-
tually the TyRuBa system can use the logic propositions in figure 5.3 to
constructs the regular Java code.

TyRuBa can be used to do aspect-oriented programming[DD99]. Con-
sider the aspect of synchronization. The method pop() with the synchro-
nization concern tangled in the code of the method is shown in figure 5.4.

With TyRuBa we can separate the synchronization code from the base
code as is shown in figure 5.5. The COOL allRequired-rule is used to generate
a combined condition from all the required-rules. The conditions are then
combined using a conjunction.

Depending on the instructions given to the TyRuBa system it will com-
pose the aspect code with the base code using the logic inference process.

1Java is a registered trademark of Sun Corporation
2Quoted code blocks are now also available in SOUL

5.4 Aspect-Oriented Logic Metaprogramming 51

Object void pop() {
synchronized (this) {
while(this.isEmpty()) {

try {
wait();

} catch (InterruptedException e) { }
}
return contents[--pos];

}
}

Figure 5.4: POP method with synchronization tangled

method(COOL,?class,?Return,?name,?Args,?head,{
synchronized (this) {
while(?condition) {

try {
wait();

} catch (InterruptedException e) { }
}
?body;

}
}) if method(JCore,?class,?Return,?name,?Args,?head,?body),

COOL_allRequired(?class,?name,?condition).

required(Stack, pop, {this.isEmpty()}).

Figure 5.5: Separation of the synchronization aspect

52Composing the Composite Aspect Object using Logic Metaprogramming

The code for the aspects is separated from the base program, because they
are encapsulated in different logic facts. Querying the TyRuBa system for
JCore method infers a regular non-synchronized version of the stack, while
querying for a COOL method infers a synchronized version of the Stack.

5.4.2 Aspect Specific Languages

With aspect-oriented logic metaprogramming we can provide a framework
that allows developers to implement their own aspect-specific languages
(ASL) [BMD02]. An ASL has the advantage over other approaches to
aspect-oriented programming in that they allow to create constructs that are
closer to the problem domain of the aspect language. Hence it is more nat-
ural to specify the aspects for a particular application in an aspect-specific
language. The framework provides several primitive weaving rules that can
be used to create the ASL. In the case that the ASLs are not fully orthogo-
nal to each other we can have conflicts. Since all ASLs are using the same
primitive rules for instructing the weaver one can specify how the different
ASLs should cooperate together.

Imagine that we have the primitive weaving rules shown in table 5.1. We
can construct a small aspect specific language for tracing the execution of a
program using the rules shown below:

adviceBefore(method(?class,?selector),
{ Logger log: ’Enter ?class>>?selector’

for: thisObject }) if
logMethod(?class,?selector).

adviceAfter(method(?class,?selector),
{ Logger log: ’Exit ?class>>?selector’

for: thisObject }) if
logMethod(?class,?selector).

The aspect-specific language we have constructed has one language con-
struct, namely logMethod. We can specify the methods to log by specify-
ing logMethod-rules such as for example: logMethod([Pipe],drain:) that
specifies that we want to trace the method drain: in class Pipe. The log-
Method-rule can also contain a body. For example, if we want to trace the
method drain: in all the subclasses of the class Pipe, then we could define
the logMethod-rule as:

logMethod(?subclass, drain:) if
subclass([Pipe], ?subclass)

More complex ASLs can be constructed similarly.

5.5 Logic Activation Scheme 53

Rule Explanation
adviceBefore(?m, ?c) execute the code bound to the

variable ?c before the method
bound to the variable ?m

adviceAfter(?m, ?c) execute the code bound to the
variable ?c after the method
bound to the variable ?m

Table 5.1: Primitive Rules for Instrumenting the Weaver

5.5 Logic Activation Scheme

In most of the current work done on logic metaprogramming the logic rules
have been employed at compile-time to reason about and change the struc-
ture of the programs. In this section we describe how we can apply the
logic meta-rules to make run-time decisions. In chapter 4 we discussed that
aspects are defined as part-objects implementing a crosscutting concern and
an activation scheme that determines how the services provided by the com-
posite aspect object should be configured. Hence, the activation scheme
can benefit from a declarative language, because of the declarative nature
of the activation schemes. Also, since we want to express a decision schema
a programming language gives us more flexibility and expressivity. As our
declarative language we use a logic programming language.

The logic activation scheme consists of different modules of rules:

• Aspect Modules

– Activation Rules
– Internal Rules
– Compatibility Rules

• Aspect Configuration Module

• Order Module

• Aspect Activation Modules

Each of these set of rules are explained in the following subsections. Fig-
ure 5.6 shows how the modules are layered together.

5.5.1 Aspect Modules

Aspect modules define how and when part-objects are activated. A logic
activation scheme can contain multiple aspect modules. Aspect modules
are associated with one or more part-objects and are implemented with the
part-objects. An aspect module consists of three types of rules:

54Composing the Composite Aspect Object using Logic Metaprogramming

Aspect Module

Part-
Object

Aspect Module

Part-
Object

Aspect Activation
Module

Aspect Module

Part-
Object

Aspect Module

Part-
Object

Aspect Activation
Module

OR

Aspect Activation
Module

Order Module

unconditional conditional

Aspect Configuration
Module

Aspect Configuration
Module

Aspect Configuration
Module

Aspect Configuration
Module

Figure 5.6: Layering of the Modules in a Logic Activation Scheme

Activation Rules

The activation rules are resolved when either a message is sent to a composite
aspect object or when an exception occurs while processing a message. The
activation rules provide the interface between the composite aspect object
and the aspect modules. There are four different types of activation rules
that specify how the part-objects are activated:

1. before(+?receivedSel, +?receivedArgs, -?partName, -?sel, -?args)
the before-rules specify what part-objects should be activated before
the base functionality is executed.

2. base(+?receivedSel, +?receivedArgs, -?partName, -?sel, -?args)
the base-rules specify the core functionality that should be executed.
The base-rules give the possibility of spreading the core functionality
over multiple part-objects.

3. after(+?receivedSel, +?receivedArgs, -?partName, -?sel, -?args)
the after-rules specify what part-objects should become active after
the base functionality is executed.

4. catch(+?exc, +?receivedSel, +?receivedArgs, -?partName, -?sel, -?args)
defines how exceptions, that are generated within the composite as-
pect object, should be handled. When no rule matches the exception
that was generated the exception is thrown outside to the caller.

The “+” sign in front of the logic variables means that the rule is inferred
with the logic variables bound to a value. The logic variables with a “-” sign
are left open and are searched for when inferring the rules. The meaning

5.5 Logic Activation Scheme 55

of the logic variables is shown in table 5.2. The rules are inferred at run-
time after a well-defined event has occurred. Depending on the results of
inferring the rules the composite aspect object activates zero, one or more
part-objects. When multiple results are computed by inferring the activation
rules, then all the results are used to activate the part-objects. Table 5.3
defines when the rules are activated.

Example To make the activation rules more concrete we work out an
aspect module for a simple caching aspect. The aspect module covers the
activation of two part-objects. One part-object fulfills the role of an object
that needs to be cached and has the identifier cached. The other part-object
is responsible for caching the results of methods and has the identifier cache.

base(?selector, ?args, cache, retrieve:withArgs:, ?partArgs) if
cachedSelector(?selector),
inCache(?selector, ?args),
append(<?selector>, ?args, ?partArgs).

base(?selector, ?args, cached, ?selector, ?args) if
not(inCache(?selector, ?args)).

after(?selector, ?args, cache, store:selector:args:, ?partArgs) if
cachedSelector(?selector),
not(inCache(?selector, ?args)),
result(cached, ?selector, ?result),
append(<?result, ?selector>, ?args, ?partArgs).

Looking at the rules we can distinguish between two cases:

1. the method that is called is in the cache
the first rule is applicable and will activate the part-object named
cache, to retrieve the value that was stored in the cache, by sending
the message retrieve:withArgs:.

2. the method that is called is not in the cache

(a) the second rule is applicable and activates the part-object named
cached, by delegating the message that was received, to compute
the value.

(b) The third rule is activated right after the second rule and will
activate the part-object cache to store the value computed by the
second rule the cache.

56Composing the Composite Aspect Object using Logic Metaprogramming

Variable Semantics
?exc Exception that occurred while processing a message

?receivedSel Selector received by the composite aspect object
?receivedArgs Arguments received by the composite aspect object
?partName Name of the part-object that has to be activated

?sel Name of the selector that has to be activated
?args Argument list that needs to be provided for

activating the object

Table 5.2: Semantics of the variables in the activation rules.

Rule When
before The composite aspect object received a message
base The composite aspect object received a message

and after the before-rule
after The composite aspect object received a message

and after the base-rule
catch An exception was thrown while processing a message
check A part-object has been added or removed from the

composite aspect object

Table 5.3: Rule Activation Points.

5.5 Logic Activation Scheme 57

Internal Rules

The internal rules usually determine conditions on the part-objects and can
be used while resolving the activation rules.

Example In the caching example the inCache-rule is an example of
an internal rule. An example implementation of the inCache-rule is shown
below:

inCache(?selector, ?args) if
partObject(cache, ?cacheObj),
[?cacheObj isCached: ?selector withArgs: ?args].

The rule searches for the part-object that fulfills the role as cache and uses
the symbiosis of the logic metaprogramming language to check of the part-
object has the result associated with the selector and arguments in cache.

Compatibility Rules

It is possible to change the structure of a composite aspect object at run-
time. When we change the part-objects in a composite aspect object we
might want to check if the changed object still provides the required services
that are required by the aspect modules and check the compatibility of the
new aspects. For this reason we propose to add compatibility rules to the
aspect modules. The compatibility rules are of the form:

check(+?partName, +?partObject)

The rules are activated each time a part-object is added, removed or
replaced from the composite aspect object. When the compatibility rule
in the composite aspect object cannot be inferred then the part-object is
rejected and an exception is thrown.

Example The rules of the caching aspect module presumes that the
part-object that fulfills the role as cache understands the messages send to
it. We can check the compatibility with the rule below:

check(cache, ?cacheObj) if
instanceOf(?cacheObj, ?cacheClass),
understands(?cacheClass, retrieve:withArgs:),
understands(?cacheClass, store:selector:args:),
understands(?cacheClass, isCached:withArgs:).

The first rule in the body searches for the class from the part-object named
cache. The subsequent rules are part of the SOUL reasoning library and
are used to check if the class has a method that associated with a certain
message.

58Composing the Composite Aspect Object using Logic Metaprogramming

5.5.2 Aspect Configuration Module

We discussed in section 5.4 that we can create aspect specific languages using
logic metaprogramming for static aspects. We can do the same to compose
the composite aspect object. An aspect module then defines an aspect
specific language. The rules that configure the aspect module cannot be
included in the aspect module itself, because they would harm the reusability
of the aspect modules. Therefore we propose to separate the configuration
rules in a separate aspect configuration module.

Example The caching aspect module needs to be configured by defin-
ing which selectors should be cached in the composite aspect object. For
example if we want to cache the methods read: and translate: we add the
rules:

cachedSelector(read:).
cachedSelector(translate:).

5.5.3 Order Module

When multiple aspects need to be woven at the same place, then conflicts
on the order of the aspects can exist. For this reason we have dominates-
rules which are similar to the dominates relationships as used in AspectJ.
However, the dominates-rule is inferred at each event, which means that the
relationship can depend on dynamic information put in the body of the rule.
One problem is that the logic engine can generate multiple solutions for the
ordering. To overcome this problem we choose to take the first order that
has been generated.

dominates(?aspectBefore, ?aspectAfter)

5.5.4 Aspect Activation Module

Sometimes we want to fully deactivate a module depending on some con-
ditions. For example, when the logging aspect has been deactivated. For
this reason we introduce aspect activation modules. An aspect activation
module declares when a module should become active. Aspect activation
modules contain activation-rules. The head of an activate-rule contains the
name of the aspect module that it regulates. The body of an activate-rule
defines what conditions should be met before the aspect module can become
active. An active-rule without a body unconditionally activates the aspect
module.

active(?aspectModule)

5.6 Run-time Reasoning Library 59

5.6 Run-time Reasoning Library

In the previous section we have introduced the logic activation scheme. Logic
rules are inferred at run-time to determine the activations of the composite
aspect object and check the compatibility of the part-objects. SOUL comes
with rules to reason about the static information about the code (such as
the class-hierarchy), but does not provide rules for reasoning about the run-
time environment. In this section we introduce a small library of rules that
makes it possible to reason about the run-time environment. As such, it
represents the dynamic information can be used to program the modules
from the logic activation schemes.

5.6.1 Typing

We have two typing rules that are for checking the type of objects living in
the environment:

1. instanceOf(?obj, ?class)
expresses the type-relationship between an object and its class.

2. kindOf(?obj, ?class)
expresses the kind-of-relationship between an object and a class.

Remember that we can use logic rules in different ways so we can search for
all objects of a certain class living in the environment.

5.6.2 Collaborators

Often objects need to collaborate with other objects in order to provide the
requested services. We have three rules that allow us to inspect the internal
collaborators of an object:

1. field(?obj, ?varName, ?refObj)
The field rule expresses the relationship between an object, its instance
variable name and the object the instance variable refers to.

2. accessor(?obj, ?varName, ?sel)
instance variables are always private in Smalltalk, however often meth-
ods are available for accessing the instance variables. The accessor rule
expresses the relationship between the object, variable name and the
selector for accessing the variable name.

3. referToEachOther(?objX, ?objY)
the referToEachOther rule expresses the relationship of objects that
collaborate together.

60Composing the Composite Aspect Object using Logic Metaprogramming

5.6.3 Control Flow

Sometimes we want to know in which context a certain message was sent.
For this reason we have rules expressing the control flow history of a certain
message:

1. cflow(?obj, ?sel, ?args)
The cflow-rule infers all objects that are currently activated on the
call-stack.

2. sender(?c, ?cSel, ?cArgs, ?r, ?rSel, ?rArgs)
The sender-rule expresses the caller-receiver relationship between two
activations on the call-stack.

5.7 Composite Aspect Object Reasoning Rules

Besides reasoning about the run-time of the environment we also want to
reason about the structure and the environment of the composite aspect
object. The following rules allow to reason about the composite aspect
object:

1. whole(?whole)
The whole-rule is used for retrieving the composite aspect object in
which a certain rule was activated.

2. partObject(?partName, ?partObj)
The partObject-rule expresses the relationship between the objects
and their unique identifier that are part of the composite aspect object
in which the rule is evaluated.

3. aspectModule(?logicModule)
The aspectModule-rule matches with the names of the aspect modules
that are currently present in the system.

4. aspectSender(?caller, ?callerSel, ?callerArgs)
This rule is used to match the object that sent a message to the com-
posite aspect object.

5. receivedSelector(?selector, ?arguments)
The rule matches the selector and the arguments in which the com-
posite aspect object was activated.

6. result(?partName, ?selector, ?result)
The rule matches a value that was computed by the part-object named
?partName and was activated with the selector ?selector to the variable
?result. The results that were computed by part-objects are only kept
during the handling of one message by the composite aspect object.

5.8 Solving Composition Issues 61

5.8 Solving Composition Issues

In this section we show how to solve the composition issues that were dis-
cussed in chapter 3 using the logic activation scheme in conjunction with
the rules introduced above.

5.8.1 Activation

Some crosscutting concerns need to be activated depending on some run-
time properties of the system or depending on the context in which they are
called.

Property-Dependent Activations

In the bodies of the before-, base-, after- and catch-rules we can use the
language symbiosis provided by the logic metaprogramming language to
access the run-time properties of the system. For example, if we only want
to activate a logging aspect when the logging is activated we can use the
following rule:

before(?selector, ?receivedArgs, logging, log:, ?selector) if
logSelector(?selector),
partObject(logging, ?logObject),
[?logObject isActive].

Explanation of the rule:

• logSelector(?selector)
an internal rule used to infer if we are interested in logging the selector.

• partObject(logging, ?logObject)
rule is used to find the part-object in the composite aspect object that
is responsible for logging.

• [?logObject isActive]
using the language symbiosis provided by the logic meta programming
language we send the message isActive to the part-object that is re-
sponsible for logging to find out if it was activated.

Context-Dependent Activations

The activation of an aspect sometimes depends on the context in which the
aspect is activated. We work out the example of a view that is installed on
a collection to display it contents. The collection has two selectors to add
elements: add: for adding a single element and addAll: for adding a collection
of elements. We encapsulate the crosscutting concern of updating the screen

62Composing the Composite Aspect Object using Logic Metaprogramming

in an aspect. Hence the composite aspect object contains two objects, a
collection object and an object for notifying other objects of changes. The
notify aspect needs to be activated each time the state of the collection is
updated, therefore the aspect needs to be activated when add: or addAll: is
send. Now, suppose the addAll: method is implemented in terms of the add:
method:

Collection>>addAll: aCollection
aCollection do: [:element | self add: element].

In that case the notify aspect will be activated once after the addAll: and n
times after the add: (if there are n elements in aCollection), while we only
want to activate the notify aspect after the addAll: has been executed. We
want to express that the notify aspect should not be activated if it is called
in the context of executing addAll: method.

To express this we can make use of the aspectSender-predicate that was
introduced above:

after(?selector, ?args, notifier, notifyAll, <>) if
stateChange(?selector),
partObject(collection, ?caller),
not(aspectSender(?caller, addAll:, ?callerArgs))

Explanation of the rule:

• stateChange(?selector)
check to see if the selector that was sent to the composite aspect object
changed the state.

• partObject(collection, ?caller)
this rule unifies with any of the object that fulfills the role as collection
in the composite aspect object.

• not(aspectSender(?caller, addAll:, ?callerArgs))
this rule defines that the caller must not be the collection in the context
of the addAll: method.

5.8.2 Choosing an Aspect

When two or more part-objects provide a different implementation for the
same crosscutting concern and are woven in the same composite aspect
object, then we must specify when which part-object should be activated.
One option would be to put this decision in the activation rules in the
aspect modules. However, we think this decision should not be specified in
the activation rules because of three reasons:

1. The decision process is implicitly put in the activation rules.

5.8 Solving Composition Issues 63

2. When multiple activation rules are used to define when the aspect
should become active, then we need to put the same condition in all
the activation rules.

3. It harms the reusability of our activation rules in a context where there
is only one implementation of the aspect necessary.

Consider again the example of the two compression aspects that we discussed
in section 3.2.1. We have two objects implementing a high compression al-
gorithm (providing a lower quality) and a low compression algorithm (pro-
viding good quality). A class diagram of the compression classes is shown
in figure 5.7. We add both objects to the composite aspect object, with the
identifiers highCompression and lowCompression. The activation rules, that
defines when and how the compression objects should be activated, should
not use the explicit name of the part-object that needs to be activated (such
as the name highCompression or lowCompression). Instead the activation
rule uses an abstract name (such as compression) in the activation rules. For
example:

before(?selector, ?args, compression, compress, <>) if
...

We can now separately specify the decision process between the two part-
object as follows:

partObject(compression, ?compressionObject) if
[Network isSaturated],
partObject(highCompression, ?compressionObject).

partObject(compression, ?compressionObject) if
[Network isSaturated not],
partObject(lowCompression, ?compressionObject).

Now, when the composite aspect object infers the before rule it will resolve
the abstract name compression using the partObject rules.

Note that these rules are not put in the activation rules of the aspect
module. The complete process of choosing the correct part-object is put in
these two rules and is not crosscutting multiple aspect modules. The advan-
tage is that it becomes more readable, changeable and the aspect module
can be fully reused.

5.8.3 Compatibility

Because of the dynamic model of the composite aspect object we can add,
remove or change the part-objects at run-time. This allows for a great deal
of flexibility, which is not always needed and can sometimes endanger the

64Composing the Composite Aspect Object using Logic Metaprogramming

+compress()
+decompress()
+setData()
+getData()

-media

GeneralCompression

+compress()
+decompress()

LowCompression

+compress()
+decompress()

HighCompression

Figure 5.7: UML Diagram of Compression Classes

safeness of the application, for example if we put a part-object that does not
implement the protocol required by the logic activation scheme (i.e. enforce-
ment of type-safeness). To resolve these issues we can use the compatibility-
rules introduced above in section 5.5.1. The compatibility rules define what
properties are required from the part-objects and are included in the logic
activation scheme. The rules can check both the structure and the dynamic
properties of the part-objects using the run-time reasoning library. If the
check-rules cannot be inferred when the part-objects are added or removed,
then an InconsistentCAOError exception is thrown.

5.8.4 Order

When two or more aspects need to be activated at the same point in time,
then it might be necessary to specify the order in which the aspects need
to be activated. As explained above in section 5.5.3, we have introduced a
dominates-relationship between two aspect modules in a composite aspect
object.

Static Order

When the order between two aspects is static then we can use the rule
with an empty body. For example, if we have an object that is accessed by
multiple threads then we need a semaphore aspect to ensure the consistency
of the data accesses in your object. Now, if we need logging on the same
object, we need to lock the object before we log the accesses to the object.
Example: dominates(semaphore, logging).

Dynamic Order

Sometimes we might want to let the order depend on dynamic properties.
For example [PSDF01], if we have an object that is available over the net-
work with both an authentication and a logging aspect we might want to
log operations before the authentication if we suspect someone is trying to
intrude in the system and to log after authentication in other cases. We can

5.9 Performance Issues 65

specify the dynamic order of aspects by putting a body in the dominates-
rule. The example can be specified with the following rules:

dominates(logging, authentication) if
[Network intrusionDetected].

dominates(authentication, logging) if
[Network intrusionDetected not]

5.8.5 Dependencies

As pointed out in section 3.2.6 sometimes an aspect depends on other aspects
to provide a certain service. For example, when we have a billing aspect
that creates invoices for the time a certain service was provided. The billing
aspect depends on a timing aspect to measure the time a certain service was
used. We can use the aspect activation modules to specify the dependencies
between one or more aspect modules. Suppose we have an aspect module
for the billing aspect called billing and an aspect module for timing aspect
called timer. We can now define that the billing aspect can only be activated
if the timer aspect is present and active with the following rule:

active(billing) if
aspectModule(timer),
active(timer)

We can also add a rule that weaves a timer aspect if no timer aspect is
present:

active(billing) if
not(aspectModule(timer)),
whole(?cao),
[?cao addModule: TimerAspect. true],
[?cao add: ’timer’ part: Timer new. true]

The rule first checks to see if there is no timer aspect module present. Then
we bind the composite aspect object to the cao variable. Eventually we add
the a timer aspect module and weave a part-object responsible for timing
services using the language symbiosis.

5.9 Performance Issues

Logic programming languages have a bad reputation when it comes to per-
formance. Since the outcome of the results of several queries steer the acti-
vation of the different part-objects we can wonder if it is appropriate to use
a logic language. In [Roy90] it is shown that logic programs can be com-
piled into code that approaches the efficiency of an imperative programming

66Composing the Composite Aspect Object using Logic Metaprogramming

language. The system could further be optimized using a caching system,
because some of the rules compute the same results are computed for in-
ferring different rules. However, the SOUL logic engine that was used to
implement the logic activation scheme is not optimized and this is an area
for future work discussed in section 7.2.1.

5.10 Conclusion

In this chapter we have explained how to define the composite aspect object
protocol using a logic activation scheme. Such a logic activation scheme
consists of logic metaprogramming rules. These rules are separated in several
modules related to the issues that they resolve. Aspect modules serve to
define the protocol of the composite aspect object and activate the objects
implementing a certain crosscutting concern. They include activation rules
that define how and when the different part-objects in the composite aspect
object should be activated. Furthermore, they provide rules to define the
required properties from the part-objects. The order module is introduced
to define static and dynamic orders between the aspect modules. The aspect
activation modules define rules to specify when to activate and deactivate
an aspect module. The modules provide an expressive means to solve the
issues that were discussed in chapter 3. The issues are resolved in separate
modules, so that they do not affect the reusability of the aspect modules
and their part-objects.

Chapter 6

Examples

6.1 Introduction

In the previous chapter we introduced the logic activation scheme and the
run-time reasoning library. In this section we work out two small examples
to show the practical use of the composite aspect object. The first example
shows the capability for dynamically weaving aspects in a distributed sys-
tem and the second example demonstrates how some composition issues are
solved in our composite aspect object model.

6.2 Distributed Library

The first case demonstrates the dynamic weaving capabilities of the com-
posite aspect objects. As a case we work out a digital library system that
can be accessed from multiple clients over a network. Users can search for
books in the digital library. Users can add books to the digital library. The
books can be saved both in the digital library (to prevent that the books are
deleted if the digital library program terminates) and on the client side if
the user decides that he likes the book and wants to view it when he is not
connected to the network. The books are saved in different ways depending
on the infrastructure available on the machine where the book is located.
The digital library server will make the books persistent in a SQL database
to speed up the queries for searching the books by the numerous clients on
the system. The clients on the other hand will make the books persistent in
files, since the workstations are not equipped with a SQL database. Another
issue we want to take into account is that of the available bandwidth of the
network. The bandwidth depends on the quality of the connection between
the digital library server and the client connection. Corporate clients might
have a fast connection that has a good throughput, while mobile clients usu-
ally have a small throughput. Other factors that could influence the network
connection are the geographical locations and the general saturation of the

68 Examples

network (dip vs. peak hours). We should be able to adapt the strategy of
transferring files depending on these conditions.

6.2.1 Core Classes

In this subsection we describe the classes that are used for our case and their
behavior:

Library

Represents a collection of books.

• add: aBook
method for adding a book to the library

• remove: aQuery
method removes all books that match the query that was passed as a
parameter.

• search: aQuery
method returns a collection of books that match the query given as
parameter

Book

Represents a book from the library.

• author: anAuthor
sets the author of the book

• author
returns the author of the book

• isbn: anISBN
sets the isbn number of the book

• isbn
returns the isbn number of the book

• title: aTitle
set the title of the book

• title
return the title of the book

• at: aPageNumber put: aPage
adds or replaces a page in the book

6.2 Distributed Library 69

• at: aPageNumber
returns the page number in the book

• numberOfPages
returns the number of pages in a book

Page

Represents a single page within a book.

• text: aText
sets the text in the page

• text
returns the text contained in the page

Query

The abstract query class is used to determine whether a book matches the
criteria set by the query. There is a subclass for each field in the book
(author, title, isbn, ...). Queries can be combined (with the logical and/or-
operator) using the composite pattern [GHJV94].

• keep: aBook
method returns true when the book matches the query and false in
the other case.

LibraryServer

Provides the portal for accessing a library through a network connection.

• library: aLibrary
sets the library the server provides access to

• library
return the library the server provides access to

• initialize
initializes the server

• start
starts the server

• stop
stops the server

70 Examples

6.2.2 Aspects

In the small case presented above we can identify three aspects, namely
distribution, synchronization and persistence. In this case we focus on the
distribution and persistence aspects. Most of the current aspect-oriented
programming tools cannot handle these aspects sufficiently, because of their
dynamic properties such as the available bandwidth of the network and the
persistence of the books that differ depending on the machine where the
books are located.

Distribution

Most of the object-oriented programming languages have support for two
strategies for passing objects over a network connection.

• By copy
The object and all its collaborators are recursively copied and trans-
mitted over the network. On the other end of the network the object
and its collaborators are reconstructed. A new object identity is cre-
ated on the machine to which the object has been copied.

• By reference
The object is not copied, instead a reference to the object is sent
over the network. On the other end of the network the reference is
constructed and all messages passed to this reference are forwarded
over the network to the computer where the object lives. Hence, the
reference on another machine acts as a proxy that redirects all its
method calls to the real object.

One strategy is more appropriate than another, depending on the properties
of the application we want to construct. For example: pass-by-reference is
mostly appropriate for big objects, but it requires a continuous network
connection.

Persistence

The implementation of the persistence aspect depends on the machine at
which books need to be made persistent. For example, when books are
made persistent in the library server we want to save them into a database
system. Database systems provide superior capabilities for searching the
books. However, the machines of the users that search for books also want
to save the books so that they can view them when they are disconnected
from the network. The machines of the regular users do not have a database
server installed, so they want to save the book in a regular file. When
a user is using a monochrome palm device he might want to remove the
illustrations in the book to save memory on the device. The above examples

6.2 Distributed Library 71

show that the persistence aspect is dynamical and depends on the machine
where the book is located. Each time a book is passed over the network
the receiving machine needs to weave the correct persistence aspect into the
book. Below we work out the persistence of books in a SQL database and
files. To automate the synchronization between the run-time state and the
persistent state, we specify that the run-time state should be made persistent
when the state of a book object has changed ten times.

6.2.3 Implementation Details

This subsection discusses some implementation details that improve the
understandability of the implementations of the different aspects below.
More particularly we discuss the serialization protocol that is provided
in Smalltalk and the framework that allows us to distribute objects in
Smalltalk.

Serialization

In Smalltalk, each object understands a set of four messages that are used to
serialize and deserialize objects. The first two messages are for serialization
and the last two messages are for the deserialization of objects. We shortly
discuss them below, because they are used to implement the distribution
aspect:

1. objectForDataStream: aStream
This method is called before an object is serialized and takes a stream-
ing object as parameter. It gives the object the possibility to provide
a surrogate object for serialization instead of itself.

2. storeDataOn: aStream
This method writes the object onto the stream that was provided as
a parameter.

3. readDataFrom: aStream size: sizeOfObject
reads the data from the stream to reconstruct the serialized object.

4. comeFullyUpOnReload: aStream
This method gives the opportunity to perform some actions after the
object has been deserialized from a stream. The value returned from
this method is what is considered to be the deserialized object.

Distribution Framework

For distributing object over several computers we have made use of Remote
Smalltalk [Dec02], a framework for distributing objects in the Smalltalk pro-
gramming language. Each object has a method remoteType. The method

72 Examples

returns the symbols #copy or #reference, specifying how the object should
be passed over the network. Objects are by default send by reference, al-
though this can be changed by overriding the method remoteType in a sub-
class. Objects representing numbers, strings, boolean values, the nil object,
... are passed by copy. The main problem with the distribution framework
is that the code that is responsible for the distribution is tangled in the class
of the objects that we want to access over the network. Methods have to be
added to one or more classes to regulate their distribution properties, hence
the distribution concern is still tangled.

6.2.4 Part-Object Classes

In this section we describe the classes of the objects responsible for the
persistence and distribution of objects. Note that, like in the previous ex-
amples, we do not intend to make the perfect classes for persistence and
distribution. The classes are for the persistence and distribution of general
objects, but can be further extended using inheritance and aggregation for
specific classes of objects.

SQLPersistence

Class responsible for the persistence of general objects to a SQL database
server.

• openWithPrimaryKey: aKey from: aTable
returns the object that was saved using the key aKey from a table
named aTable

• saveWithPrimaryKey: aKey to: aTable object: anObject
saves the object anObject into a table named aTable with the key aKey

• refreshWithPrimaryKey: aKey from: aTable object: anObject
synchronizes both the object anObject that was made persistent in the
table aTable and the living object with the key aKey

FilePersistence

Class responsible for the persistence of general objects to a file.

• saveOnFile: aFileName object: anObject
saves anObject into a file named aFilename

• openFromFile: aFileName
returns the object that was saved into a file named aFileName

• refreshFromFile: aFileName object: anObject
synchronizes both the object anObject that was made persistent and
the living object from the file named aFileName

6.2 Distributed Library 73

NetworkObject

The class NetworkObject provides methods for specifying the object trans-
mission mode:

• byCopy
returns the symbol #copy

• byReference
returns the symbol #reference

• transferObject: anObject
sets the object to be transferred

Counter

The class Counter is used to check the number of times the state of an object
has been changed:

• increment
increments the counter with one.

• = aNumber
returns true if the counter has reached aNumber.

• < aNumber
returns true if the counter is below aNumber.

• reset
sets the counter to zero.

6.2.5 Book-Objects

In this subsection we discuss how the different aspects are weaved into the
objects that represent the books from our digital library.

Part-Objects

The composite aspect object of book-objects contains the part-objects with
the following names:

book the part-object is an instance of the class Book.

persistence the part-object is an instance of the SQLPersistence class when
the object resides on the server-side and is an instance of the FilePer-
sistence class on the side of a client.

network the part-object is an instance of the class NetworkObject

counter the part-object that is responsible for counting the number of times
an object has changed.

74 Examples

Aspect Modules

The composite aspect objects for book-objects are composed of four aspect
modules that are named the same as the part-objects.

book In the book aspect module we have one rule that declares that all
selectors that are understood by the part-object named book should be dele-
gated to that object, except for the selectors that are named objectForDataS-
tream: and remoteType. These selectors have to be explicitly mentioned,
because they are understood by every object (and thus also the part-object
book), but we want to handle them in the other aspect modules.

base(?rSel, ?rArgs, book, ?rSel, ?rArgs) if
not(equals(?rSel, objectForDataStream:)),
not(equals(?rSel, remoteType)),
partObject(book, ?baseObject),
instanceOf(?baseObject, ?baseClass),
understands(?baseClass, ?rSel).

This solution is not completely satisfying, because the rules that check that
the received selector is not objectForDataStream: or remoteType are put
in the body of the base-rule, because of their conflicting nature with the
network aspect module. This restricts the reusability of the book aspect
module. We move these rules out of the base-rule and put them in an aspect
activation module to improve the reusability of the book aspect module.

active(book) if
not(receivedSelector(objectForDataStream:, ?)),
not(receivedSelector(remoteType, ?))

The rule specifies that the book aspect module should not become active
when the selector received by the composite aspect object is either object-
ForDataStream: or remoteType.

counter We want to synchronize the run-time state with persistent state
after each ten times the state of the object has changed. For this we need
to employ a counter aspect that counts the number of times the state has
changed. We can update the counter with the following rules:

after(?rSel, ?rArgs, counter, increment, <>) if
updateCounter(?rSel),
partObject(counter, ?counterObj),
resetAt(?resetNumber),
[?counterObj < ?resetNumber].

after(?rSel, ?rArgs, counter, reset, <>) if

6.2 Distributed Library 75

updateCounter(?rSel),
partObject(counter, ?counterObj),
resetAt(?resetNumber),
[?counterObj = ?resetNumber].

The rules check if the counter needs to be updated and if the counter needs
to be reset or incremented.

Aspect Configuration Module The counter aspect module can be
configured with two rules:

• updateCounter(?selector)
defines when the counter should be updated.

• resetAt(?aNumber)
defines the number at which the counter should be reset.

In our case the counter if configured with the following rules:

updateCounter(author:).
updateCounter(isbn:).
updateCounter(title:).
updateCounter(at:put:).

resetAt(10).

The first four facts are the selectors that change the state of a book and the
last fact defines the number at which the counter should be reset.

We can make the updateCounter-rule less susceptible to changes in the
book class by using the SOUL library to check which selectors are changing
the state. The following rule checks if the selector that is received has
changed the state of the book:

updateCounter(?rSel) if
partObject(book, ?bookObj),
instanceOf(?bookObj, ?bookClass),
selectorParseTree(?bookClass,?rSel,?tree),
assignmentStatement(?tree, ?var, ?value).

The rule checks the parse tree of the source code to see if the method
associated with the selector contains an assignment statement. Using such
a rule at run-time has the advantage that changes made to the composite
aspect object (i.e. if the book object is replaced with another object that
has a different implementation) will automatically adapt to the new changes.
The disadvantage of such rules is that they have a negative impact on the
efficiency. We believe however, that this could be optimized with advanced
caching techniques.

76 Examples

persistence As we explained above, the SQLPersistence and the FilePersis-
tence class have a different protocol that is more specialized to the crosscut-
ting concern they are implementing. For this reason we have to define two
different persistence aspect modules. One that is used for the SQLPersis-
tence class on the server side and another that is used for the FilePersistence
class.

Aspect Module for SQL Database The rules for the SQLPersistence
class are shown below:

base(load:, ?args, persistence,
openWithPrimaryKey:from:, ?argsWithTable) if

table(?table),
append(?args, <?table>, ?argsWithTable).

base(save, <>, persistence,
saveWithPrimaryKey:to:object:, <?key, ?table, ?object>) if

table(?table),
persistentPart(?object),
dbkey(?key).

base(refresh, <>, persistence,
refreshWithPrimaryKey:from:object:, <?key, ?table, ?object>) if

table(?table),
persistentPart(?object),
dbkey(?key).

after(?rSel, ?rArgs, persistence,
refreshWithPrimaryKey:from:object:, <?key, ?table, ?object>) if

needsSynchronization(?rSel),
table(?table),
persistentPart(?object),
dbkey(?key).

dbkey(?key) if
persistentPart(?object),
keyField(?field),
equals(?key, [?object ?field asString]).

1. The first rule makes the composite aspect object delegate load:-messages
to the persistence object. The argument passed with load: contains
the isbn number of the book. The rule adapts the parameter list by
appending the table name of the database where the objects are stored.

6.2 Distributed Library 77

2. The second rule is for handling the save-message. It retrieves the key
of the object by the internal rule dbkey, which is used to retrieve the
value of the field that determines the primary key (in our case the field
that hold the isbn). Furthermore, it uses the persistentPart-rule to find
the part that should be made persistent.

3. The third rule is similar to the previous one.

4. The fourth rule is an after rule and defines when the run-time state
should be synchronized with the persistent state.

5. The dbkey-rule is used to retrieve the value that should serve as key
in the database.

Aspect Configuration Module Our aspect module is reusable for
different objects by reconfiguring the aspect module with three rules:

1. the persistentPart rule specifies which part of the composite object will
be made persistent.

2. the keyField rule specifies which field of the object will serve as the
primary key in the database.

3. the table rule specifies the table where the books will be stored.

4. the needsSynchronization(?rSel) what conditions should be fulfilled to
synchronized the run-time state with the persistent state.

The server side is configured with the following rules:

persistentPart(?object) if
partObject(book, ?object),

keyField(isbn).

table(books).

needsSynchronization(?rSel) if
updateCounter(?rSel),
partObject(counter, ?counterObj),
resetAt(?aNumber),
[?counterObj = ?aNumber].

Notice that the interaction between the counter aspect and the persistence
aspect are fully encapsulated in the aspect configuration module. In effect
the interaction between the two aspect modules is specified in the needsSyn-
chronization-rule. Encapsulating these interactions in the aspect configura-
tion modules allows us not only to fully reuse the counter and persistence

78 Examples

part-objects, but also the counter and persistence aspect modules in different
contexts.

Aspect Module for Files Now we define the aspect module that
saves the objects in files for the composite aspect object of books on the
client-side:

base(load:, ?args, persistence, openFromFile:, ?args).

base(save, <>, persistence,
saveOnFile:object:, <?filename, ?object>) if

persistentPart(?object),
filename(?filename).

base(refresh, <>, persistence,
refreshFromFile:object:, <?filename, ?object>) if

persistentPart(?object),
filename(?filename).

after(?rSel, ?rArgs, persistence,
refreshFromFile:object:, <?filename, ?object>) if

needsSynchronization(?rSel),
persistentPart(?object),
filename(?filename).

The rules are similar to the rules above from the persistence aspect
module for the databases.

Aspect Configuration Module The persistence aspect for files is
reusable by configuring three rules:

1. The persistentPart-rule is identical to the one above.

2. The needsSynchronization-rule is identical to the one above.

3. The filename-rule is used to retrieve the filename that should be used
to save and refresh the object. In this example we used the title of the
book.

The client is configured with following rules:

persistentPart(?object) if
partObject(book, ?object).

needsSynchronization(?rSel) if
updateCounter(?rSel),

6.2 Distributed Library 79

partObject(counter, ?counterObj),
resetAt(?aNumber),
[?counterObj = ?aNumber].

filename(?title) if
persistentPart(?partName),
partObject(?partName, ?partObject),
equals(?title, [?partObject title])

network The rules of the network aspect module define how and which
part-objects from the composite aspect object should be passed over the
network:

base(objectForDataStream:, ?receivedArgs, network,
transferObject:, <?object>) if

transfer(?object).

base(remoteType, ?receivedArgs, network, byCopy, <>) if
transferMode(copy).

base(remoteType, ?receivedArgs, network, byReference, <>) if
transferMode(reference).

The first base-rule delegates the objectForDataStream: selector to the trans-
ferObject: method of the network object with as argument the part that is
selected to be transferred. The following two base-rules are for handling a
remoteType-message. The first rule delegates the remoteType-message to the
byCopy method on the network part-object if the transferMode-rule is set to
copy. The second rule delegates the remoteType-message to the byReference
method if the transferMode-rule is set to reference.

Aspect Configuration Module There are two rules that need to be
configured when reusing the network aspect module:

• transfer(?object)
specifies the object that should be exported.

• transferMode(?mode)
specifies if the object should be passed by copy or passed by reference.

We can now configure our persistence aspect, so that the transfer mode of
the objects depend on different heuristics. We can for example transfer the
book by reference if the book contains more than hundred pages and transfer
the book by copy if it has less than hundred pages with the following rules:

80 Examples

transfer(?object) if
partObject(book, ?object).

transferMode(copy) if
partObject(book, ?book),
[?book numberOfPages < 100].

transferMode(reference) if
partObject(book, ?book),
[?book numberOfPages >= 100].

Other heuristics such as the network throughput or a combination of mul-
tiple heuristics can also be used. In [LK97] an aspect-oriented language is
constructed for handling the aspect of distribution. They allow to change
the properties of the way an object is passed over the network depending
on the method that is remotely invoked. Our approach is more dynamic as
it allows to take any run-time property into account to adapt the way an
object is passed over the network.

Order Module

There is a conflict between the counter and the persistence aspect modules.
The persistence aspect interacts with the counter to know whether it should
synchronize the run-time state with the persistent state. In order to function
correctly the counter aspect should be updated before the persistence aspect
is checking the value of the counter. We can specify this in an order module
with the following rule:

dominates(counter, persistence).

Dynamic Weaving of the Persistence Aspect

As we already mentioned above, we have to dynamically weave the persistent
aspects depending on the computer where a book object arrives. Each time
a book object arrives over the network we create a composite aspect object
and weave the aspects that are needed on the machine where the object
has arrived. In section 6.2.3 we saw that after an object is deserialized the
method comeFullyUpOnReload: is called. We can use this method to create
a composite aspect object and weave the aspects that are needed for the
machine where it arrived. Because we do not want to tangle the dynamic
weaving of the book objects in the Book class we invoke the dynamic weaver
at the meta-level. The dynamic weaver that weaves book objects on the
client-side is shown in figure 6.1. Its counter-part for weaving the book at
the server-side is shown in figure 6.2.

6.2 Distributed Library 81

DynamicWeaver>>weaveBook: aBook
| compositeAspect strategy persistence network |
"Create new composite aspect object"
compositeAspect := CompositeAspect new.
"Create new activation scheme based on"
"Logic Metaprogramming"
strategy := LMPStrategy new.
"Assign the logic activation scheme to"
"the composite aspect object"
compositeAspect strategy: strategy.
"Create the object that will be responsible for"
"the persistence using files"
persistence := FilePersistence new.
"Create the object that will be responsible for"
"the object transfers over the network"
network := NetworkObject new.
"Add all the part-objects in the composite aspect"
"object"
strategy add: ’book’ part: aBook.
strategy add: ’persistence’ part: persistence.
strategy add: ’network’ part: network.
strategy add: ’counter’ part: Counter new.
"Configure the composite aspect object to use the"
"following logic activation scheme"
strategy addModule: BookAspect.
strategy addModule: CounterAspect.
strategy addModule: FileAspect.
strategy addModule: NetworkAspect.
strategy addModule: ClientConfiguration.
^ compositeAspect

Figure 6.1: Wrapping the book object after it is deserialized at the client-
side

82 Examples

DynamicWeaver>>weaveBook: aBook
| compositeAspect strategy persistence network |
"Create new composite aspect object"
compositeAspect := CompositeAspect new.
"Create new activation scheme based on"
"Logic Metaprogramming"
strategy := LMPStrategy new.
"Assign the logic activation scheme to"
"the composite aspect object"
compositeAspect strategy: strategy.
"Create the object that will be responsible for"
"the persistence using a SQL database"
persistence := SQLPersistence new.
"Create the object that will be responsible for"
"the object transfers over the network"
network := NetworkObject new.
"Add all the part-objects in the composite aspect"
"object"
strategy add: ’book’ part: aBook.
strategy add: ’persistence’ part: persistence.
strategy add: ’network’ part: network.
strategy add: ’counter’ part: Counter new.
"Configure the composite aspect object to use the"
"following logic activation scheme"
strategy addModule: BookAspect.
strategy addModule: CounterAspect.
strategy addModule: SQLAspect.
strategy addModule: NetworkAspect.
strategy addModule: ServerConfiguration.
^ compositeAspect

Figure 6.2: Wrapping the book object after it is deserialized at the server-
side

6.3 Secured Objects 83

6.3 Secured Objects

The second example focusses on some composition issues. In some applica-
tions we want to restrict the access to the selectors of one or more objects
to a limited number of people in a distributed application. Since the object
contains critical data we would like to know who has accessed the object.
When we are suspecting someone is hacking the system we want to show all
attempts to access data in the secured object, so then we want to log the
accesses that have not been authorized. This example has different software
concerns that are crosscutting some classes and that would be tangled in an
object-oriented programming language without support for advanced sepa-
ration of concerns. In the subsections below we show how these crosscutting
concerns can be separated using the composite aspect object model.

6.3.1 Part-Objects

In the small example we can distinguish between at least three aspects:

1. Secured Object
The implementation of the object that needs to be secured. In a real-
world example, this can be a complex object, but for the simplicity
of this case we assume that the object has a selector which prints
sensitive information on the screen.

2. Authentication
We have an object that is responsible for the authentication of the
users that want to access the secured object from over the network.

3. Logging
We have an object that is responsible for logging the information on
an output device.

The UML class diagram of the classes that implement these three software
concerns is shown in figure 6.3. These three objects are composed together
in a composite aspect object. In the composite aspect object we give each
of the objects the following unique identifiers:

Object Identifier
Secured Object data
Authentication authenticator

Logging logger

6.3.2 Aspect Modules

We need three aspect modules, one for each part-object. The modules are
named identical to the part-objects authenticator, logger and data. In this
section we discuss the rules included in each aspect module.

84 Examples

+showData()

-pincode

Data
+log:()
+setOutputStream:()
+openStream()
+closeStream()

-outStream

Log

+addLogin:password:()
+authenticate:()
+login:password:address:()
+lastLogin:()
+logout:()
+verified:()

-userBase

Authentication

Figure 6.3: UML Class Diagram of Secured-Objects Example

base(?rSelector, ?rArgs, data, ?rSelector, ?rArgs) if
partObject(data, ?baseObject),
instanceOf(?baseObject, ?baseClass),
understands(?baseClass, ?rSelector)

Figure 6.4: Rule for Exposing the Interface of the Data-Object to the Com-
posite Aspect Object

In a first step we define the interface of the composite aspect object.
We want the interface of the composite aspect object to match that of the
secured object and we want to add a logout selector to invalidate a session.

Data Aspect Module

The data aspect module contains one rule, which is shown in figure 6.4. This
rule defines that all the selectors of the data object are part of the interface
of the composite aspect object. The base-rule consists of three rules in its
body:

1. The partObject-rule unifies the ?baseObject variable with the object
that is put in the composite aspect object as data-object.

2. The instanceOf-rule unifies the object that was found and binds its
class to the ?baseClass variable.

3. The understands-rule is used to check if the selector that was received
by the composite aspect object is understood by the class.

So, if this base-rule can be proved when the composite aspect object has
received a message, then the same selector and the same argument list is used
to activate the data-object. Note that this rule will adapt to the interface of
the data-object that is currently used in the composition of the composite
aspect object. The data-object can be interchanged with any other object
without having to change the data aspect module. This improves both the
reusability and run-time adaptability of our aspect module.

6.3 Secured Objects 85

Authentication Aspect Module

The authentication aspect module is more complicated. The calls to the
secured object can originate from different clients accessing the computer
through the network. Depending on the machine where the call came from
we need to check if the person using that machine has already been authen-
ticated. Remote calls to the secured objects are handled by a thread that is
listening on a certain port and when a new connection is made then a socket
object is created and passed to the broker as a parameter of the message
process: for handling the call. To be able to distinguish the different ma-
chines we need to know the network address of the machine where the call
came from. The network address of the machine is stored in the socket. We
can find the network address of a socket using the control flow of the call
with the following internal rule:

remoteAddress(?address) if
cflow(?broker, process:, <?socket>),
instanceOf(?broker, [RSTBroker]),
equals(?address, [?socket remoteAddress])

The rule searches in the active method calls for the activation of the method
from the broker that handled the call. To implement this without the cflow-
rule we would end up in changing a lot of methods for passing the remote
address as a parameter.

The second internal rule is used to check whether the call comes from
a machine that has been authenticated before. The internal rule is shown
below:

authenticated(?login) if
remoteAddress(?address),
partObject(authenticator, ?authObject),
[?authObject verified: ?address],
equals(?login, [?authObject lastLogin: ?address])

The rule unifies the ?login variable with the person that has been logged in.
The rule consists of four parts:

1. remoteAddress(?address)
the network address of the machine where the call originated from is
bound to the logic variable ?address

2. partObject(authenticator, ?authObject)
unifies the object that fulfills the role as authenticator part-object with
the variable ?authObject

3. [?authObject verified: ?address]
we make use of the SOUL symbiosis with the Smalltalk environment

86 Examples

to send the message verified: with as parameter the network address of
the machine where the call originated from. The authenticator object
should return true if the machine is properly authenticated and false
in the other case.

4. equals(?login, [?authObject lastLogin: ?address])
the equals-rule is used to bind the person that is authenticated to the
?login variable.

The three subsequent rules are used to define how and when the authen-
tication should be applied in the composite aspect object:

before(?securedSelector, ?, authenticator, authenticate:,
<?address>) if

not(authenticated(?login)),
remoteAddress(?address),
securedSelector(?securedSelector).

catch(?exception, ?securedSelector, ?args, whole,
?securedSelector, ?args) if

instanceOf(?exception, [AuthException]).

base(logout, <>, authenticator, logout:, <?address>) if
remoteAddress(?address)

1. The before-rule defines that the composite aspect object should ac-
tivate the authentication (by sending the object that fulfills the role
as authenticator the authenticate: message with the network address of
the remote machine) when we are not already authenticated and when
the selector we received is secured.

2. The catch-rule determines the strategy what should happen when the
authentication fails. In this case we resend the message that we re-
ceived to the composite aspect object, which results in a new try to
authenticate the user. So, in our example the policy for failed authen-
tication attempts is to retry the authentication. It is possible to have
a more complicated policy (for example, when a maximum of three
authentication tries are allowed) by adding an object and adapting
the catch-rule so that it defines a failure policy and redirect all the
exceptions to that object.

3. The base-rule makes the composite aspect object understand the lo-
gout: message, by delegating it to the authenticator object to invali-
date the session.

6.3 Secured Objects 87

Aspect Configuration Module The authentication aspect module is
configured with one rule that defines the selectors that need authentication:

securedSelector(showData)

The rule defines the fact that showData is a secured selector. Note that if
we want to secure all the selectors of the base object that we could define a
securedSelector that is similar to the base-rule from above, instead of having
to define all the selectors separately. Another example of a more advanced
configuration rule is that we could check the source code of the data object
to determine which selectors have to be secured. For example, if the data
that needs to be secured is put in an instance variable named pincode in the
data object, then we can use the SOUL library [Wuy98] to search for all the
methods that access the pincode instance variable and secure them instead
of manually specifying the secured selectors.

Logging Aspect Module

A second requirement of the example was that we wanted to log who had
accessed a certain selector in the secured object. Note that this requires an
interaction between the logging aspect and the authentication aspect. For
the logging functionality we have added an object which fulfills the role as
the logger. For activating the logger we use the rule shown below:

before(?securedSelector, ?, logger, log:, ?message) if
logSelector(?securedSelector, ?message).

Aspect Configuration Module We configure the logging aspect module
with with the following rules:

logSelector(?selector, <{?login has accessed ?selector}>) if
securedSelector(?selector),
authenticated(?login),
[Network intrusionDetected not]

logSelector(?selector, <{Someone tried to access ?selector}>) if
securedSelector(?selector),
[Network intrusionDetected]

Basically the first rule defines that the logging aspect should log when the
message is a secured selector and the access to the selector was authenticated
when the network is in a normal state. The second rule defines to log every
attempt to access a selector when an intrusion in the network is detected.

88 Examples

6.3.3 Compatibility Rules

In the case of the authentication the dynamic weaving capabilities might
compromise the security of the system. For example, a malicious host could
replace the authentication object with another class that has the same in-
terface, but always authenticates the call. For this reason we might specify
that the part-object authenticator should always be of the class Authentica-
tion that we provided with the system. Furthermore, we want to check that
the call to change the composite aspect object does not come from a remote
machine. For this we can use the following compatibility rule:

check(authenticator, ?authObject) if
instanceOf(?authObject, [Authentication]),
not(remoteAddress(?address)).

The first rule in the body of the compatibility rule checks that the new
object is of the class Authentication. The second rule checks that the change
to composite aspect object does not originate from a remote machine.

6.3.4 Order Module

This example shows a dynamic order conflict between the logging aspect and
the authentication aspect. Dynamic orders cannot be expressed with most
of the current aspect-oriented programming tools. More particularly, the
order of the the logging and authentication aspect depends on the fact that
we are suspecting if someone is hacking the system or not. In the former
case the logging aspect should be activated before the authentication aspect,
to log all the accesses to the system, while in the latter case we activate the
logging aspect after the authentication aspect in order to log the user that
accessed the secured object. We can express this very simply in the logic
activation scheme by adding an order module with the following rules:

dominates(logging, authentication) if
[Network intrusionDetected].

dominates(authentication, logging) if
[Network intrusionDetected not]

6.3.5 Aspect Activation Module

The logging message of the logging aspect includes the user that has accessed
the secured object. This means that the logging aspect depends on the
activation of the authentication aspect for functioning correctly in that case.
When everything is being logged we do not depend on the authentication
aspect, because we do not include the user name. This means that the
logging aspect depends on the authentication aspect depending on the some
condition. We can specify this dependency with the following rule:

6.4 Conclusion 89

active(logging) if
[Network intrusionDetected not],
active(authentication)

active(logging) if
[Network intrusionDetected]

The first rule denotes that the logging aspect module can only be activated
if the authentication aspect is also active when there is no network intrusion
detected. The second rule says that the logging aspect does not depend on
any other aspects when there is a network intrusion detected.

6.4 Conclusion

In this chapter we worked out two cases to show the applicability of the
composite aspect object model in real-world cases. The first case showed how
the model can be used in a distributed environment with aspects that depend
on the client where the object lives and emphasized the dynamic weaving
capabilities of the composite aspect object model. The second example
of secured objects showed how we can resolve conflicts. Both cases also
demonstrated how aspect interactions can be encapsulated in the aspect
configuration modules so that both the part-objects and the aspect modules
are reusable in different contexts.

Chapter 7

Conclusion

Separation of concerns has always been a major goal in software engineering.
It has come to the attention that some concerns cannot be modularized
cleanly in current programming languages. Such concerns lead to tangled
and crosscutting code and therefore language extensions are proposed to
encapsulate these crosscutting concerns. Most of these language extensions
are based on creating a pre-compilers.

Pre-compilers work fine until we come to realize that some aspects need
to be introduced dynamically at run-time. Examples of such systems are
component systems that support dynamic plugging and unplugging of com-
ponents or distributed systems that want to weave aspects into migrating
objects to support their new environment.

There are some issues when composing a program using aspects. For
example, an aspect may depend on one or more other aspects in order to
perform its task or the order of the aspects may be depending on several
conditions. These composition issues are even more important when aspects
can be dynamically added to the application. Solving these composition
issues in most of the current composition tools is impossible or harms the
reusability of the aspects.

We proposed a composite aspect object model that supports advanced
separation of concerns in a dynamic environment. It does so by using the
reflective capabilities and the meta-architecture of the underlying language.
Aspects are first-class entities that are divided into part-objects (objects
that provide the behavior of the software concern) with an activation scheme
(that determines when and how the objects should become active). When a
message is sent to a composite aspect object it uses the activation schemes
to determine which part-objects should be activated in order to process the
message. With composite aspect objects the aspects can be added, adapted
or removed at run-time.

We have shown that logic metaprogramming provides an expressive means
to specify the activation schemes. Indeed, the declarative nature allows us

92 Conclusion

to create activation schemes that are easily reusable and definable. We
have split up the logic activation schemes into aspect modules that define
how and when the part-objects should be activated. Aspect modules also
include compatibility rules that allow us to declaratively specify what is ex-
pected from the part-objects in order to have a correct behavior. Further
we have order modules that specify the dynamic sequence in which the as-
pect modules should be activated. Aspect activation modules are used to
specify dependencies between the aspect modules of a composite aspect ob-
ject. The logic activation scheme allows us to specify relationships between
multiple aspects in a declarative way, helping us to solve the composition
issues without harming their reusability.

We can view our model as a meta-architecture that configures the meta-
object protocol using logic meta programming rules for supporting dynamic
aspect compositions.

The cases described in chapter 6 have been implemented to test the im-
plementations of the composite aspect object model and the logic activation
schemes. They showed the usefulness of the model and the logic activation
schemes.

7.1 Technical Contributions

This dissertation has led to the following implementations:

• Composite aspect object model has been implemented using the ad-
vanced meta-architecture of Smalltalk.

• Logic activation schemes have been implemented using SOUL as the
declarative metaprogramming language.

• The run-time reasoning library for SOUL has been implemented. It
extends and enhances a prototype that was provided by Kris Gijbels.

With these implementations we have shown both the feasibility of the com-
posite aspect object model and the logic activation schemes.

7.2 Future Work

This dissertation provides a model for doing advanced separation of concerns
with dynamic aspects. Further it uses logic metaprogramming to define
activation schemes. There are however several areas that need to be further
looked at:

7.2 Future Work 93

7.2.1 Efficiency

The use of a logic metaprogramming language for defining the activation
rules provides an expressive means, but lowers the efficiency of our model. It
is possible to optimize SOUL or logic metaprogramming language by means
of advanced caching (so that we can avoid calculating the same results again)
and compiling the rules into native code as we explained in section 5.9.

7.2.2 Language Extensions

The composite aspect object and the logic activation scheme provide the
implementation mechanisms for dynamic weaving of aspects. A language
could be constructed that eases the application of the composite aspect
object in practical situations. Such a language should also have support for
specifying the points where the composite aspect object should be adapted
and how this should be done.

7.2.3 Validation

We have validated our model by implementing some small cases, because
of the limited time available. However, using the composite aspect object
model in a real world applications is necessary to further assess the ease of
use of our model.

7.2.4 Modelling Techniques and Process

A good implementation of an application starts with a good design. There
is a need for enhancing the current modelling techniques to take aspects into
account. Much work still needs to be done expressing a model using static
or dynamic aspects in an application. There is also a need to adapt the
software process for developing software using aspect oriented development
tools.

7.2.5 Language Dependence

Currently the model has been implemented in Smalltalk. Further study
is needed to see if the model is implementable in other dynamically typed
object-oriented languages.

The model we have presented is only applicable for dynamically typed
systems, because the set of messages understood by the composite aspect
object is determined by the logic metaprogramming rules. We feel that
porting the system to static typing system would become possible if we
pose certain restrictions in the composite aspect object, like fixing the set
of understood messages upon creation. However, this has not been looked
into and should be studied further.

94 Conclusion

7.2.6 Selecting Objects for Adaptation

When dealing with dynamic aspects we have to define the points where
the aspects need to be woven into objects. In this dissertation we have
always done this before or after the execution of certain methods at the
meta level. Using the declarative metaprogramming language and the run-
time reasoning library we could define logic queries over the objects that are
living in a machine to determine the objects that need to be adapted.

7.2.7 Dynamic Unweaving

In this dissertation we have not explicitly discussed the unweaving of aspects.
There are two possibilities for the unweaving of aspects. We could disable
the aspect by adapting the aspect activation module or we could remove
the part-object and the aspect module from the composite aspect object.
Both options are feasible in the composite aspect object model with few
modifications.

Appendix A

Implementation

A.1 Introduction

In this chapter we describe our design and implementation issues of the
composite aspect object model. As our implementation language we have
chosen for Smalltalk, because of its meta-architecture that is one of the most
advanced. Another reason was the availability of the logic metaprogramming
language SOUL for the Smalltalk language that enabled us to implement the
logic activation scheme we described in chapter 5.

A.2 Implementation Issues

In this section we describe some of the implementation issues we encountered
while implementing the composite aspect object model in Smalltalk.

A.2.1 Reifying Messages at Run-Time in Smalltalk

When we take a look back at the conceptual model of the composite aspect
object in figure 4.1 on page 38, then we can see that the composite aspect
object decides what object to activate next depending on the message it
received. We can do this in two ways:

1. Implement a method for each message that can be send to the compos-
ite aspect object and execute the activation scheme for that method.

2. Reify the message that was sent to the composite aspect object and
reason.

Because the structure of the composite aspect object can change at run-time
(the part-object can be changed and the activation strategy can be adapted)
the protocol of the composite aspect object can also change at run-time.
Hence the first option of implementing a method for each message that
could be send to the composite aspect object is overly static and cannot be

96 Implementation

used in this case. Thus each time a message is sent to the composite aspect
object then its meta-object needs to send a reified version of that message
to the composite aspect object. In Smalltalk, when a message is sent to an
object and that message does not appear in the protocol of the class of the
object then the message that was sent is reified and passed as an argument
to the method doesNotUnderstand:. The composite aspect object overrides
this method and uses the reified message to decide what objects to activate
next. One problem however, is that messages that are understood by the
class Object and its parent classes are not catched since they appear in the
protocol. To overcome this problem we had to override certain methods and
redirect them manually to the doesNotUnderstand: method.

A.2.2 Method Wrappers

In this section we explain the use and implementation of method wrap-
pers [BFJR98]. Method wrappers are useful to add code before and af-
ter a method of a certain class without altering the hierarchy of its class.
Smalltalk is a pure object-oriented language in the sense that everything
is represented as an object, so a class of an object is also an object. One
of the responsibilities of classes is to keep the shared behavior of its in-
stances. Therefore, each class object has an instance variable methodDict,
that points to a dictionary mapping selectors onto compiled methods. The
compiled methods themselves are also represented as objects of the class
CompiledMethod. One of the methods of CompiledMethod class, named val-
ueWithReceiver:arguments:, is for executing the method in the context of an
object with a set of parameters. Method wrappers are installed by replacing
the CompiledMethod object for a certain selector in the method dictionary
with an instance of a method wrapper. The MethodWrapper class extends
the CompiledMethod class with an instance variable clientMethod, keeping a
reference to the old CompiledMethod instance that it replaced. Furthermore
it overrides the behavior of valueWithReceiver:arguments: with the following
code:

MethodWrapper>>valueWithReceiver: anObject
arguments: anArrayOfObjects

"This is the general case where you want both a
before and after method, but if you want just a
before method, you might want to override this
method for optimization."

self beforeMethod.
^ [self clientMethod valueWithReceiver: anObject

arguments: anArrayOfObjects]
ensure: [self afterMethod]

The overridden method does three things:

A.2 Implementation Issues 97

1. first executes some beforeMethod that should be executed before the
method it replaced

2. it calls the old method that it replaced

3. eventually it calls some behavior that should be executed after the
original method.

Method wrappers are used by extending the MethodWrapper class and over-
ride the beforeMethod and afterMethod methods.

A.2.3 Changing the Notion of Self

As discussed in section 4.2.4 we sometimes want to change the notion of self
depending on the composite aspect object it is put. Messages that are send
to “self” can be identified when m is a message so that msender = mreceiver.
To detect such messages we can use method wrappers we explained in the
previous section. When an object is added to a composite aspect object,
where we want to bind its “self” to the composite aspect object. For this
we have introduced a self-redirector. A self-redirector is a method wrapper
with the specific purpose of intercepting messages that were sent to self and
redirect them to another objects. All the messages that were not sent from
within the object to “self” should be executed normally. The class Self-
Redirector inherits from the class MwMethodWrapper and has three instance
variables:

1. recipient:
reference to the object where the messages send to self should be redi-
rected to. In our case this will be the composite aspect object.

2. object:
method wrappers are wrapped around classes and not around objects.
We want to redirect the self of one specific object to another object and
not that of a set of classes. The object instance variable determines
the object where the redirector should be applied to.

SelfRedirector>>valueWithReceiver: anObject
arguments: anArrayOfObjects

| client |
"get the sender of the message"
client := thisContext sender client.
"check to see if the sender of the message"
"equals the receiver of the message and"
"that the method wrapper is active"
(client = anObject and: [self object = anObject]

and: self active)

98 Implementation

ifTrue: [
"redirect the call to the composite aspect object"
^self recipient perform: self selector

withArguments: anArrayOfObjects
]
ifFalse: [

"execute the method this is wrapped around"
^self clientMethod valueWithReceiver: anObject

arguments: anArrayOfObjects
]

A.2.4 Adapting a Composite Aspect Object

Until now, when the composite aspect object had to be adapted at run-
time we have always described that this was implemented with a dynamic
weaver. This weaver is invoked at certain points in the execution. To avoid
that the invocation of the dynamic weaver gets tangled in the code of the
base program we can make use of the method wrappers or put the dynamic
weaver as a part-object in the composite aspect object that is constructed at
compile-time. For example, in section 6.2.5 we had to adapt the composite
aspect object when the message comeFullyUpOnReload: was sent to an object
of the class Book installed. For this we can install a method wrapper that
adapts the composite aspect object.

A.3 Design

This section discusses the design of the composite aspect object model and
its implementation in Smalltalk.

A.3.1 Class Diagram

Figure A.1 shows the class diagram of the CompositeAspect class. Each
composite aspect object has a reference to a strategy and to a collection
of part-objects that can be activated to handle a message. The strategy
has to be a subclass of the ActivationScheme class that provides some basic
functionality. The strategy is used to determine what part-object and what
method that needs to be activated to handle a certain message that was sent
to a composite aspect object. When a part is added with its self bound to
the composite aspect object, then a reference is kept to the metaclass that
is responsible for redirecting the self of that part.

A.4 Conclusion 99

+doesNotUnderstand:()
+add:part:()
+partNamed:()
+strategy:()
+strategy()

CompositeAspect

+beforeSelector:withArguments:context:()
+baseSelector:withArguments:context:()
+afterSelector:withArguments:context:()
+catch:withSelector:withArguments:context:()
+add:part:()
+addRules:()
+processSelector:withArguments:context:()

LMPStrategy

Object -cao

1

-strategy

1

+processSelector:withArguments:context:()
+add:part:()
+partNamed:()

ActivationScheme

1

-part

*

+valueWithReceiver:arguments:()

«metaclass»
SelfRedirector

-wrapper*

-recipient1

*

-object1

Figure A.1: UML Class Diagram of the Composite Aspect Object Imple-
mentation in Smalltalk

A.3.2 Processing a Message

In this section we discuss how the objects collaborate to process a message
that is sent to the composite aspect object. For this we take the example
of the secured objects that we discussed in section 6.3. We have some data
encapsulated in an object that can be accessed by the selector showData. We
secure the data object using the composite aspect object model by weaving
both a logging and authentication aspect into the object. Figure A.2 shows
the sequence diagram what happens if an object client sends the message
showData to the composite aspect object1.

A.4 Conclusion

In this chapter we showed the feasibility of the composite aspect object
model by discussing the implementation and its design of the composite
aspect object in Smalltalk.

1The sequence diagram does not show all the interactions that are necessary to handle
the message as it would make the sequence diagram less understandable

100 Implementation

client CAO LMPStrategy

showData()

doesNotUnderstand:()

processSelector:withArguments:context:()

beforeSelector:withArguments:context:()

Auth

authenticate()

baseSelector:withArguments:context:()

DataObject

showData()

data()

afterSelector:withArguments:context:()

data()

data()

Log

true()

log:()

()

Figure A.2: UML Sequence Diagram for handling the message showData

Bibliography

[AT98] M. Aksit and B. Tekinerdogan. Solving the modeling problems of
object-oriented languages by composing multiple aspects using
composition filters. In ECOOP98 Proceedings, 1998.

[ATB00] M. Aksit, B. Tekinerdogan, and Lodewijk Bergmans. The six
concerns for separation of concerns. In ECOOP2000 Proceedings,
2000.

[BA01] Lodewijk Bergmans and Mehmet Aksits. Composing crosscut-
ting concerns using composition filters. Communications of the
ACM, 44(10):51–57, 2001.

[BCK98] Len Bass, Paul Clements, and Rick Kazman. Software Architec-
ture in Practice. Addison-Wesley, 1998.

[BFJR98] John Brant, Brian Foote, Ralph E. Johnson, and Donald
Roberts. Wrappers to the rescue. Lecture Notes in Computer
Science, 1445:396–??, 1998.

[BMD00] J. Brichau, W. Meuter, and K. De Volder. Jumping aspects. In
ECOOP2000 - Workshop on Advanced Separation of Concerns,
2000.

[BMD02] J. Brichau, K. Mens, and K. De Volder. Building composable
aspect-specifc languages with logic metaprogramming. Submit-
ted to the GSCE/SAIG 2002 Conference., 2002.

[Boa00] IEEE Standards Board. Ieee standards board. recommended
practice for architectural description of software-intensive sys-
tems, ieee std 1471-2000. IEEE Standards, September 2000.

[Bol99] K. Bollert. On weaving aspects. In Aspect-Oriented Program-
ming Workshop at ECOOP99, 1999.

[DD99] K. De Volder and T. D’Hondt. Aspect-oriented logic meta pro-
gramming. Lecture Notes in Computer Science, 1616:250–272,
1999.

102 BIBLIOGRAPHY

[Dec02] Diego Gomez Deck. Remote smalltalk. Available from
http://minnow.cc.gatech.edu/squeak/2288, March 2002.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice-
Hall, Englewood Cliffs, New Jersey, 1976.

[EFB01] Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-oriented
programming: Introduction. Communications of the ACM,
44(10):29–32, 2001.

[FBLL02] Robert E. Filman, Stuart Barrett, Diana D. Lee, and Ted Lin-
den. Inserting ilities by controlling communications. Communi-
cations of the ACM, 45(1):116–122, 2002.

[Fla94] Peter Flach. Simply Logical: Intelligent Reasoning by Example.
John Wiley, 1994.

[FS97] Martin Fowler and Kendall Scott. UML Distilled: Applying the
Standard Object Modeling Language. Addison Wesley Longman,
Inc., 1997.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison Wesley, Massachusetts, 1994.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: The Language
and Its Implementation. Addison-Wesley, 1983.

[HO93] William Harrison and Harold Ossher. Subject-oriented pro-
gramming (A critique of pure objects). In Proceedings of the
OOPSLA ’93 Conference on Object-oriented Programming Sys-
tems, Languages and Applications, pages 411–28. IEEE Comput.
Soc, Los Alamitos, CA, USA, October 1993.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin.
Aspect-oriented programming. In Mehmet Akşit and Satoshi
Matsuoka, editors, ECOOP ’97 — Object-Oriented Program-
ming 11th European Conference, Jyväskylä, Finland, volume
1241, pages 220–242. Springer-Verlag, New York, NY, 1997.

[Kru95] Philippe B. Kruchten. The 4 + 1 view model of architecture.
IEEE Software, 12(6):42–50, November 1995.

[LK97] Cristina Videira Lopes and Gregor Kiczales. D: A language
framework for distributed programming. Technical Report
SPL97-010, P9710047, Xerox Palo Alto Research Center, Palo
Alto , CA , USA, February 1997.

BIBLIOGRAPHY 103

[LLM99] Karl Lieberherr, David Lorenz, and Mira Mezini. Programming
with Aspectual Components. Technical Report NU-CCS-99-01,
College of Computer Science, Northeastern University, Boston,
MA, March 1999.

[LOO01] Karl Lieberherr, Doug Orleans, and Johan Ovlinger. Aspect-
oriented programming with adaptive methods. Communications
of the ACM, 44(10):39–41, 2001.

[Mae87] Pattie Maes. Computational reflection. Technical Report, Intel-
ligence Laboratory, Vrije Universiteit Brussel, 87(2), 1987.

[ML98] Mira Mezini and Karl J. Lieberherr. Adaptive plug-and-play
components for evolutionary software development. In Confer-
ence on Object-Oriented, pages 97–116, 1998.

[OT99] Harold Ossher and Peri Tarr. Multi-dimensional separa-
tion of concerns in hyperspace. Technical Report RC
21452(96717)16APR99, IBM Thomas J. Watson Research Cen-
ter, Yorktown Heights, NY., 1999.

[OT01] Harold Ossher and Peri Tarr. Using multidimensional separation
of concerns to (re)shape evolving software. Communications of
the ACM, 44(10):43–50, 2001.

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems
into modules. Communications of the ACM, 15(12):1053–1058,
1972.

[PSDF01] Renaud Pawlak, Lionel Seinturier, Laurence Duchien, and
Gérard Florin. JAC: A flexible solution for aspect-oriented pro-
gramming in Java. Lecture Notes in Computer Science, 2192:1–
??, 2001.

[PTC00] A. Diaz Pace, F. Trilnik, and M. Campo. How to handle in-
teracting concerns? In ASOC2000, Advanced Techniques for
Separation of Concerns, OOPSLA2000, 2000.

[Pul00] E. Pulvermller. Aspect composition applying the design by con-
tract principle. In Generative and Component-Based Software
Engineering (GCSE), 2000.

[Roy90] Peter Lodewijk Van Roy. Can logic programming execute as
fast as imperative programming? Technical Report CSD-90-
600, Universit Catholique de Louvain, Belgium, 1990.

[RV97] B. Robben and P. Verbaeten. Aspects should not die. In Po-
sition paper at the ECOOP ’97 workshop on Aspect-Oriented
Programming, 1997.

104 BIBLIOGRAPHY

[Str97] Bjarne Stroustrup. The C++ Programming Language: Third
Edition. Addison-Wesley, 1997.

[Sul01] Gregory T. Sullivan. Aspect-oriented programming using reflec-
tion and metaobject protocols. Communications of the ACM,
44(10):95–97, 2001.

[Wuy98] Roel Wuyts. Declarative reasoning about the structure of object-
oriented systems. In Proceedings TOOLS USA ’98, pages 112–
124, 1998.

	The Thesis
	Introduction
	Thesis Statement
	Outline of the Dissertation

	Techniques for Separation of Concerns
	Introduction
	Concerns
	Tangled Code and Crosscutting Code

	Achieving Separation of Concerns
	Inheritance
	Design Patterns
	Reflection

	Aspect-Oriented Software Development
	Issues in Aspect-Oriented Programming Languages
	AspectJ
	Aspectual Components
	Composition Filters
	Multidimensional Separation of Concerns
	Java Aspect Components

	Comparison
	Summary

	Composition Issues
	Introduction
	Composition Issues
	When Activated
	How Activated
	Choosing Aspects
	Compatibility
	Order
	Dependencies

	Evaluation of Existing Composition Tools
	AspectJ
	Composition Filters
	Aspectual Components
	Multi-Dimensional Separation of Concerns
	Java Aspect Components

	Proposed Solution
	Conclusion

	Composite Aspect Objects
	Introduction
	The Model
	Composite Aspect Objects
	Aspects
	Weaving
	The Notion of Self
	Adapting the Composite Aspect Object at Run-Time

	Conclusion

	Composing the Composite Aspect Object using Logic Metaprogramming
	Introduction
	What is Declarative Metaprogramming
	Logic Metaprogramming
	Logic Programming
	SOUL

	Aspect-Oriented Logic Metaprogramming
	TyRuBa
	Aspect Specific Languages

	Logic Activation Scheme
	Aspect Modules
	Aspect Configuration Module
	Order Module
	Aspect Activation Module

	Run-time Reasoning Library
	Typing
	Collaborators
	Control Flow

	Composite Aspect Object Reasoning Rules
	Solving Composition Issues
	Activation
	Choosing an Aspect
	Compatibility
	Order
	Dependencies

	Performance Issues
	Conclusion

	Examples
	Introduction
	Distributed Library
	Core Classes
	Aspects
	Implementation Details
	Part-Object Classes
	Book-Objects

	Secured Objects
	Part-Objects
	Aspect Modules
	Compatibility Rules
	Order Module
	Aspect Activation Module

	Conclusion

	Conclusion
	Technical Contributions
	Future Work
	Efficiency
	Language Extensions
	Validation
	Modelling Techniques and Process
	Language Dependence
	Selecting Objects for Adaptation
	Dynamic Unweaving

	Implementation
	Introduction
	Implementation Issues
	Reifying Messages at Run-Time in Smalltalk
	Method Wrappers
	Changing the Notion of Self
	Adapting a Composite Aspect Object

	Design
	Class Diagram
	Processing a Message

	Conclusion

