
Vrije Universiteit Brussel – Belgium 
Faculty of Sciences 

In Collaboration with Ecole des Mines de Nantes – France 
2005 

 
 

 
 
 

IPSComp: Intelligent Portal for Searching 
Components 

 
 
 
 

A Thesis submitted in partial fulfillment of the requirements 
for the degree of Master of Science in Computer Science 
(Thesis research conducted in the EMOOSE exchange) 

 
 
 

By: Javier Aguirre 
 
 
 
 

Promoter: Prof. Theo D’Hondt (Vrije Universiteit Brussel) 
Co-Promoters: Annya Réquilé (Ecole des Mines de Nantes)





Abstract 
 
The software development industry is seeing as an inaccurate science, always dealing with low product 
quality and over run in time, cost and effort factors. Component Based Software Development (CBSD) has 
emerged as an approach aiming to improve a number of drawbacks found in the software development 
industry. The main idea is the reuse of well-tested software elements that will be assembly together in 
order to develop larger systems. This approach will bring as a consequence the reduction in time 
development, a more stable final product and a reduction in time, effort, cost and testing process. Despite 
the goal CBSD is aiming, software industry has not been able to accomplish such objectives. 
 
The purpose of this research is to present means to provide users with the appropriate tools to describe 
components, in order to be able to share them among a wide consumer’s community. On top of such 
component description, tools to discover and search for components can be implemented. The set of 
users in this case can be identified as different actors, such as software developers, software architects, 
software producers and systems integrators, among others. 
 
In this context, my research focuses on two main parts: the first one is related to component ontology, and 
the second on code and design transformation for the integration of software component repositories. 

 i



 ii



Acknowledgements 
 
I would like to thank my advisor Professor Annya Réquilé for her advice and guidance in the past five 
months. I would also like to acknowledge the assistance of Professor Mourad Oussalah and Gustavo 
Bobeff for their valuable comments during the research. A special word of thanks is due to all the 
professors who were responsible for such a good academic experience. 
 
Special thanks to my EMOOSE mates: Richa, Jorge, Daniel and Harmin for their friendship and 
collaboration. A note of thanks to Sylvie Poizac who was always there for us. 
 
Thanks to my parents and family for their love and support. 

 iii



 iv 



Contents 
 
 
 
1 Introduction ........................................................................................................................................... 1 
2 State of the Art ...................................................................................................................................... 3 

2.1 Ontology Manager Systems......................................................................................................... 4 
2.1.1 ONTOMANAGER .................................................................................................................... 4 
2.1.2 SymOntoX................................................................................................................................ 5 
2.1.3 Building Domain Ontology Based on Web Data and Generic Ontology.................................. 6 
2.1.4 PLIB ......................................................................................................................................... 7 

2.2 Component Retrieval Schemes ................................................................................................... 8 
2.2.1 Keywords Technique ............................................................................................................. 11 

2.2.1.1 INSEAS – Keyword – Faceted – Browsing................................................................... 11 
2.2.2 Faceted Technique ................................................................................................................ 12 

2.2.2.1 InterLegis Project based on Odyssey Search Engine - Faceted .................................. 12 
2.2.2.2 ADIPS Framework - Faceted - Browsing ...................................................................... 13 

2.2.3 Signature Matching Technique.............................................................................................. 14 
2.2.3.1 AGORA - Signature Matching....................................................................................... 14 
2.2.3.2 COMPONENTEXCHANGE - Signature Matching ........................................................ 15 

2.2.4 Behavioral Matching Technique ............................................................................................ 16 
2.2.4.1 Behavior sampling - Behavioral Matching..................................................................... 16 

2.2.5 Semantic-Based Technique................................................................................................... 17 
2.2.5.1 Towards a Semantic-based Approach for Software Reusable Component Classification 
and Retrieval - Semantic-based ..................................................................................................... 17 
2.2.5.2 A Semantic-Based Approach to Component Retrieval - Semantic-based ................... 18 

2.2.6 Browsing Technique .............................................................................................................. 19 
2.2.6.1 CompoNex – Browsing ................................................................................................. 19 

2.2.7 Users Web Mining Technique................................................................................................ 20 
2.2.7.1 RASCAL - Users Web Mining ....................................................................................... 20 

2.3 Model Driven Architecture - MDA .............................................................................................. 20 
3 The eCots Association ........................................................................................................................ 23 
4 Contribution......................................................................................................................................... 25 

4.1 Component Ontology for IPSComp Specification...................................................................... 25 
4.1.1 XCM Component Ontology.................................................................................................... 26 
4.1.2 Component Ontology for IPSComp Specification.................................................................. 27 

4.1.2.1 Domain.......................................................................................................................... 27 
4.1.2.2 Price .............................................................................................................................. 28 
4.1.2.3 Quality Attributes........................................................................................................... 28 
4.1.2.4 License.......................................................................................................................... 31 
4.1.2.5 Publisher Description .................................................................................................... 31 
4.1.2.6 Specialization Scenarios ............................................................................................... 31 

4.2 Component Ontology for IPSComp Design ............................................................................... 33 
4.3 Component Ontology for IPSComp Implementation.................................................................. 37 

4.3.1 Java Code Implementation .................................................................................................... 37 
4.3.2 IPSComp Java Code Generation from a XML file ................................................................. 39 
4.3.3 IPSComp Ontology Implementation PLIB ............................................................................. 40 

4.4 Integrating Software Component Repositories .......................................................................... 42 
5 Conclusions ........................................................................................................................................ 63 
6 Future Work ........................................................................................................................................ 67 
Appendix A - IPSComp Ontology UML Class Diagram............................................................................... 69 
Appendix B - IPSComp Ontology component Package UML Class Diagram............................................. 71 
Appendix C - IPSComp Ontology qualityAttribute Package UML Class Diagram ...................................... 73 
Appendix D - IPSComp Ontology metric Package UML Class Diagram .................................................... 75 

 v



Appendix E - IPSComp Ontology xmlParser Package UML Class Diagram .............................................. 77 
Appendix F - IPSComp XML Meta-Model - XSD Schema .......................................................................... 79 
Appendix G - IPSComp Component Description – XML Example.............................................................. 87 
References .................................................................................................................................................. 93 
 

 vi 



List of Figures 
 
 
 

Figure 3-1 IPSComp System Architecture [48] ........................................................................................... 24 
Figure 4-1 Contribution to the IPSComp Project ......................................................................................... 25 
Figure 4-2 XCM Hierarchical Component Structure [51]............................................................................. 27 
Figure 4-3 IPSComp Hierarchical Component Structure ............................................................................ 32 
Figure 4-4 IPSComp Component Ontology UML Class.............................................................................. 34 
Figure 4-5 IPSComp Metric Concept UML Class Diagram ......................................................................... 35 
Figure 4-6 IPSComp Quality Attribute Concept UML Class Diagram ......................................................... 36 
Figure 4-7 Visitor Pattern with Reflection to load a XML file – UML Class Diagram................................... 40 
Figure 4-8 PLIB Editor IPSComp Ontology – Screen Shot ......................................................................... 42 
Figure 4-9 Elements for Software Component Repository Integration ....................................................... 44 
Figure 4-10 Elements Examples for Software Component Repository Integration..................................... 45 
Figure 4-11 Vendor Respository {2} – Vendor Component Description {4} Example................................. 46 
Figure 4-12 http://www.componentsource.com Vendor Component Description Meta-Model ................... 48 
Figure 4-13 http://devcatalog.com Vendor Component Description Meta-Model ....................................... 49 
Figure 4-14 http://www.ecots.org Vendor Component Description Meta-Model......................................... 50 
Figure 4-15 Essence Component Description Meta-Model ........................................................................ 51 
Figure 4-16 Component Repositories Domain Layers ................................................................................ 55 
Figure 4-17 Obtaining a Component Description Image in the IPSComp Ontology................................... 56 
Figure 4-18 Structure of an Enterprise Bean JAR [67]................................................................................ 57 
Figure 5-1 IPSComp System Architecture [48] ........................................................................................... 65 
Figure 5-2 IPSComp System Architecture Analyzed .................................................................................. 66 

 

 vii



 viii



List of Tables 
 
 
 

Table 2-1 Summary of Component Retrieval Schemes.............................................................................. 10 
Table 2-2 InterLegis Component Description [39]....................................................................................... 13 
Table 4-1 Quality Model for COTS components [52] .................................................................................. 29 
Table 4-2 Implementation of the IValue interface..................................................................................... 38 
Table 4-3 Abstract Class Metric .................................................................................................................. 38 
Table 4-4 Concrete Metric Class................................................................................................................. 38 
Table 4-5 Abstract Class QualityAttribute ......................................................................................... 39 
Table 4-6 Concrete Quality Attribute Class ................................................................................................. 39 
Table 4-7 Collections in the Component Ontology...................................................................................... 41 
Table 4-8 IPSComp Java Implementation Example Item {7} ...................................................................... 45 
Table 4-9 IPSComp XML Meta-Model - XSD Schema Example {12}......................................................... 46 
Table 4-10 IPSComp Component Description – XML Example {13} .......................................................... 47 
Table 4-11 Example Scenario Model Transformation Using the IPSComp Transformation API - Steps 1, 2 
and 3............................................................................................................................................................ 54 
Table 4-12 Example Scenario Model Transformation Using the IPSComp Transformation API – Step 4. 54 
 

 ix



 x 



 
1 Introduction 
 
The extensive use of Internet has brought as a consequence an overload in the web content. Internet has 
become a huge storage device on which we can find any sort of information. But because of the amount of 
resources being published on the World Wide Web, users have been experiencing a lack of accuracy 
when searching for specific topics. Researchers and industry have identified this drawback, and are 
moving forward to solve it.  
 
Two approaches addressed to help users to find relevant items have emerged. The first one asks the user 
to explicitly register information of what he likes and what he dislikes. The recommender system then 
suggests items that are similar to the one the user likes and rejects those that are alike from the ones the 
user does not like. This is called content-dependent approach, because the system must rate what a 
similar item is. The second approach classifies the users in profiles; in such profiles are included users 
with similar characteristics (age, sex, tastes, educational background, etc). For users within the same 
profile there is a high probability they will like and dislike the same things, so recommendations are made 
based on such profiles, it is called collaborative filtering. Additionally, the content-based and collaborative 
filtering approaches have been combined to obtain better results. These approaches and the combination 
of them work relatively well to find or suggest users about simple matters such as movies, books, 
shopping, etc. As a matter of fact there have been lots of suggested algorithms in order to redefine the 
pages ranking and to gather the user preferences. 
 
The amount of information is not the only problem faced at the moment, but also the wide variety and 
complexity of content. In other words on World Wide Web it is possible to find a wide variety of items 
starting from static content up to complete applications. It is necessary to come up with a solution that will 
allow classifying any source of information or content, in order to be able to provide users with means to 
take advantage of the published resources. The aim of this study is to offer a complete software 
component description, as well as the base to implement a retrieval tool for such components. 
Furthermore, it is not possible to leave aside the fact that there are already developed software 
components as well as repositories which classify them; it is necessary to find means to integrate the 
elements found in those existing repositories. 
 
Additionally this research is included as a first step in the definition of the functional architecture of a larger 
project. The Intelligent Portal for Searching Components, called IPSComp project, aims at developing an 
open information portal for commercial off-the-shelf (COTS) components (software and non software 
components), in which we deal with information about products, and possibly between their users, or 
between users and producers. The IPSComp project is in the specification phase. 
 
The idea of building software systems from pre-fabricated software components that could be exchanged 
in software component markets has been around at least since 1968 expressed by McIlroy in [72]. His 
basic proposal is to be able to combine components from different vendors to create applications. The 
composition is made up from plug-and-play-like reuse of black box components, which enables software 
component markets. 
 
It is important to remark that at this moment there are several definitions of what a software component is, 
there is still no general consensus about precisely what constitutes a software component. As a matter of 
fact it is worth it to provide a software component definition that allows enclosing the concepts that will be 
handled in the present job. As stated in [17]: "A component consists of different (software) artefacts. It is 
reusable, self-contained and marketable, provides services through well-defined interfaces, hides its 
implementation and can be deployed in configurations unknown at the time of development. A business 
component is a component that implements a certain set of services out of a given business domain. In 
order to be operable, components need a basic infrastructure, e.g. Enterprise Java Beans (EJB) or .NET".  
 
This definition is according to the objective of the IPSComp project, which is intended to become a 

 1



component’s market place. The fact that a component is reusable and self-contained shows that the 
component is independent; it can be used without other components present. But it is also feasible to 
combine with other components or into a system by the set of well defined interfaces. This component 
definition supports the black box approach, which is necessary in the IPSComp project scope where the 
software components will be marketable and used by customers in different implementations at later 
times. The business components definition fits into the IPSComp project items to be handle by the system, 
as well as the platforms there named. 
 
To achieve the use components based on the given definition, it is necessary to standardize the 
component description. The interface and behavior of a component has to be described in a precise way. 
Specification becomes a key point in the composition of business components, since the specification 
might be the only source of information available for a composer who combines business components 
from different vendors to an application system.  
 
With the improvements in software components development, a set of platforms have emerged, J2EE 
.NET, CORBA. All these platforms have means to connect components based on a syntactic description, 
which is determined by the interfaces each component provides or requires. But it is possible to observe a 
lack of semantic as well as behavioral description, which should provide the component's characteristics 
that will encourage and facilitates its reuse. As a consequence, one of the problems Component Based 
Software Development is facing regarding reuse of components is that finding the right component is a 
complex task. Despite this fact the software component development has not decreased.  
 
As a matter of fact we can not even state that this is a new issue because in the literature we can find 
papers dated from 1995 [3] which are proposing methods for COTS selection. In [3] the authors identify as 
main issues in COTS selection the following points: 
• Lack of a defined, systematic, and repeatable process in the COTS selection. 
• There can be a potential disregard of the application requirements. 
• There is a misuse of data consolidation methods in decision making for the COTS selection. 
 
The hard-to-identify mismatches are largely due to the fact that the capability of the components are not 
clearly described or understood through their interfaces. Most commercially available software 
components are delivered in binary form. It is necessary to rely on the components' interface description 
to understand their exact capability. Even with the components' development documentation available, 
people would certainly prefer or can only afford to explore their interface descriptions rather than digesting 
their development details. 
 
Despite the fact that this is an old issue, nowadays it is still an open topic of research. It has not been 
possible to overcome this issue because it deals with a vast number of possible candidates quite a lot of 
already developed software components and also with a set of unstructured information trying to describe 
them, which is in addition difficult to analyze. As such there is not a clear perception of what a Software 
Component is able to provide. 
 
It is necessary to overcome those issues in order to take advantage of the component-based software 
development objectives, create a marketable place for software components and be able to incorporate 
already developed components. 
 
In chapter 2 the State of the Art is presented, in this chapter is possible to find information regarding some 
techniques used to handle component’s description, retrieval and model transformation. In chapter 3 a 
brief introduction to the IPSComp project initiated by the eCots association is presented. Chapter 4 
describes the contribution given to the domain under research as well as the prototype developed. The 
complete code is found in the annexed document “IPSComp: Intelligeng Portal for Searching Components 
Prototype Source Code”. Chapter 5 states the conclusions, to close in Chapter 6 with the future work. 

 2 



 
2 State of the Art 
 
To overcome the issues present in the component selection process the authors in [3] propose the OTSO 
(Of The Shelf Option) method which supports the search, evaluation and selection of reusable software 
and provides specific techniques for defining the evaluation criteria, comparing costs and benefits of the 
different alternatives [10]. The method states that in order to evaluate software components it is necessary 
to define the evaluation criteria which can be categorized in four areas: Functional requirements, product 
quality characteristics, strategic concerns, and domain architecture compatibility. The aspects to be 
evaluated on each category can be defined by the (Goal-Question-Metric model) GQM which will also 
provide a well-defined template for documenting the evaluation goals. The objective pursue is the 
decomposition criteria into a set of concrete, measurable, observable or testable evaluation criteria. Then 
the method relies on the use of the Analytic Hierarchy Process (AHP) for consolidating the evaluation data 
for decision-making purposes. As stated by the authors each COTS selection process differs from each 
other, and they are providing a method for considering a set of elements to be taken into account when 
selecting components. But it is up to the evaluation team to define the goals and to find out the 
components that will fulfill the requirements pursued. As such they are not classifying components, but at 
least they are giving a group of parameters to consider. By formalizing this criteria definition process, it is 
possible to reuse the OTS software selection experiences better, leading to a more efficient and reliable 
selection process. 
 
We can infer from the OTSO method that we need a complete component specification in order to be able 
to perform a deep analysis that will drive us to software reuse. Several researches are being performed in 
the field of components semantic description, and they are based on the utilization of an ontology.  
 
As stated by T. Gruber "An ontology is an explicit specification of a conceptualization" [49]. What is 
important is what an ontology is for. Gruber’s team has been designing ontologies for the purpose of 
enabling knowledge sharing and reuse. In that context, an ontology is a specification used for making 
ontological commitments. An ontological commitment is an agreement to use a vocabulary (i.e., ask 
queries and make assertions) in a way that is consistent (but not complete) with respect to the theory 
specified by an ontology. Gruber’s team builds agents that commit to ontologies. They design ontologies 
so they can share knowledge with and among these agents. 
 
A number of other knowledge representations (taxonomies, thesauri and controlled vocabulary) are often 
described as being ontologies. While this is strictly true according the broadest definition of an ontology, 
the scope and power of ontologies is fully realized when they express a richer set of relationships between 
concepts. Those terms will briefly describe:1  
• Controlled Vocabulary. Is the list of a set of terms that in order to be included in the vocabulary must 

be approved by the vocabulary authority. Each term must be unambiguously defined. A controlled 
vocabulary follows two rules: (i) If the same term is commonly used to mean different concepts in 
different contexts, then its name is explicitly qualified to resolve this ambiguity. (ii) If multiple terms are 
used to mean the same thing, one of the terms is identified as the preferred term in the controlled 
vocabulary and the other terms are listed as synonyms or aliases. 

• Taxonomy. It is a collection of controlled vocabulary organized in a hierarchical structure. There may 
be different type of relationships in the taxonomy (e.g., whole-part, genus-species, type-instance, etc). 
Some taxonomies allow poly-hierarchy, in such a case a term can have multiple parents. This means 
that if a term appears in multiple places in a taxonomy, then it is the same term. 

• Thesaurus. It is a networked collection of controlled vocabulary terms. This means that a thesaurus 
uses associative relationships in addition to parent-child relationships. The expressiveness of the 

                                                 
1 Based on the article “What is the difference between a vocabulary, a taxonomy, a thesaurus, an ontology, and a 
meta-model?” written by Johannes Ernst, NetMesh Inc CEO. 
(http://www.metamodel.com/article.php?story=20030115211223271). 
 

 3



associative relationships in a thesaurus varies and can be as simple as “related to term” as in term A 
is related to term B. 

• Ontology. It is a controlled vocabulary expressed in an ontology representation language. The 
language has a grammar for using vocabulary terms to express something meaningful within a 
specified domain of interest. The grammar contains formal constraints (e.g., specifies what it means to 
be a well-formed statement, assertion, query, etc.) on how a term in the ontology’s controlled 
vocabulary can be used together. On the other hand the ontology allows the definition of richer and 
more descriptive relationships between concepts (e.g. is-targeted-for, is-regulated-by, affects, is-
expressed-in, etc). 

• Meta-model. It is an explicit model of the constructs and rules needed to build specific models within a 
domain of interest. It can be seen from three perspectives: (i) as a set of building blocks and rules 
used to build models. (ii) As a model of a domain of interest. (iii) As an instance of another model. A 
valid meta-model is an ontology, but not all ontologies are modeled explicitly as meta-models. The 
perspective (ii) allows comparing Meta-models to ontologies. 

 
After taking a look to the previous definition, it is important to point out that it is possible to define 
relationships between the different concepts. As a matter of fact a Controlled vocabulary can be part of an 
Ontology, a Taxonomy can be part-of an Ontology, and a Thesaurus can be a part of a Ontology. Finally, 
if you create an ontology, which is a set of terms naming concepts (classes) and relations, and you use 
that vocabulary to create a set of data (instances of the classes, and assertions that the instances are 
related to each other according to the specific relations in the vocabulary), and you think of the set of data 
you create as the model of your domain, then the ontology is the meta-model and the set of data created 
is the model. Consequently to enclose this set of definitions, this can be classified as a taxonomy. 
 

2.1 Ontology Manager Systems 
 
The process to create an ontology is not a simple one. It has to go throughout a set of evolution and 
refinement, and it has to be performed by a specialist in the target field. Even if we are able to define a 
quite good ontology, this approach must be able to evolve with the domain evolution, and to adapt to new 
requirements, specifications and context. As a matter of fact some effort has been addressed in order to 
develop Ontology Management Systems. Among these approaches we can find PLIB [30], 
ONTOMANAGER [12], ONTOSHARE [14]. Those will be briefly described to get an idea of what they 
provide. It is important to point out that certain systems will provide a dual function, on the one hand it will 
handle the ontology, and on the other it will provide means to apply such ontology on a particular set of 
items. 
 

2.1.1 ONTOMANAGER 
 
The evolution of the ontology will be according to the users’ needs. In order to gather the user needs a 
special log is being recorded in the web servers. Each user’s activity or event is recorded, specific 
information such as the type of interaction (query, browse, read, etcetera), date, time, user identity. The 
dependency between events is represented using the “previous event” relation. This analysis is applicable 
in ontology-based information portals, in which the ontology supports the process of indexing content of an 
information resource. 
 
OntoManager consists of three components: the Data Integration Module, the Visualization Module and 
the Analysis Module [12]. 
 
The Data Integration Module performs three main tasks.  
• Collect Data from different servers if it is a distributed system and creates a central ontology log, 

because all distributed logs are supported by the same domain ontology there will not be 

 4 



heterogeneity problem.  
• Pre – Process Data by terms of: (i) Data Abstraction because the log will record words but not 

concepts, for example if any user is looking for more details regarding the “ABC” project in the log we 
will find “ABC”, but not the ontology concept project. So the “ABC” occurrences must be replaced with 
the project ontology concept. (ii) Extracting Links: It is important to find out the frequency of browsing 
relations between to concepts by analyzing successive events (previous event information recorded in 
the log). Because of the amount of information that can be store the log is being transferred into OLAP 
cubes, which enables the analysis of the information.  

• Organize logs in a way that enables a fast and efficient access. 
 
The Visualization Module combines the integrated ontology usage data with the ontology itself. It enables 
presentation of the same information in different ways: Graph-based representation of the ontology where 
the nodes represent the concepts in the ontology and links correspond to the direct hierarchy; table-based 
representation; bar-based representation (Pareto diagram). For instance the graph representation allows 
performing queries on the OLAP cubes, to see the usage of the ontology concepts, among other things. 
 
The Analysis Module makes suggestions to the ontology manager on how to improve the ontology. This 
improvement should be guided by the users’ needs. The module performs two tasks: 
• Ontology Evolution which supports the process of modifying and updated the ontology. Besides it 

allows undoing changes made to the ontology. 
• When adding new concepts to an already existing ontology, some instances of it are not classified. 

OntoCrawler provides semantic capabilities for identifying and extracting new instances whereby 
existing knowledge about concepts, relations and instances can be used as background knowledge 
for the crawling process.  

 

2.1.2 SymOntoX 
 
SymOntoX (Symbolic Ontology XML-based management system) aims to provide identification of 
business concepts. As a matter of fact it offers some native modeling options called meta-concepts, such 
as Business Process, Business Object and Business Actor, which help enterprise experts to better 
categorize and identify concepts. The ontology model in SymOntoX is referred as OPAL (Object, Process, 
and Actor modelling Language) [24].  
 
A meta-concept has a double nature (i) it defines a template that is used to model a concept in the 
ontology; (ii) it partition the ontology in a natural and intuitive way. [24]. The entities of the OPAL are 
defined as: 
Actor_Kind: Models any relevant entity of the domain that is able to activate or perform a process (e.g., 
Tourist, Travel Agency). 
Process_Kind: Models the activity that is performed by an actor to achieve a given goal (e.g., making a 
reservation). 
Object_Kind: Models a passive entity, on which a process operates (e.g., hotel, flight), typically to modify 
its state. 
 
The system also defines a set of meta-concepts in order to facilitate the process of enriching the ontology. 
Among these meta-concepts we find: 
Goal_kind a desired state of the affairs that an Actor seeks to reach (e.g., Go_vacation); 
State_Kind a characteristic pattern of values that instance variables of an entity can assume (e.g., 
Flight_full); 
Rule_Kind an expression that is aimed at restraining the possible values of an instance of a concept 
(constraint rule) or that allows to derive (production rule) new information (e.g., Ticket purchase 30 days 
before departure); 
Information_Element_Kind atomic attribute (e.g., Flight_number, Nr_of_rooms); 
Information_Component_Kind a cluster of attributes pertaining to the information structure of a domain 

 5



concept (e.g., Flight_info, Hotel_address); 
Action_Kind a process component, i.e., an activity that is further decomposable (e.g., Room_Requesting); 
Elementary_Action_Kind a process component (activity) that is not further decomposable (e.g., 
Cancel_reservation). 
 
Then SymOntoX is able to define ontological relations in order to structure the knowledge and to achieve 
reasoning. These relations are: 
 
Specialization: a binary relation that denotes the IsA refinement between concepts. Generalization is the 
inverse relation. 
 
Decomposition: connects a composite entity with its parts. PartOf is the inverse relation. 
 
Predication: the relation that allows an Information Element or Component to be associated to primary 
concepts. The concept that plays the role of an attribute must be either an Information Element or an 
Information Component. 
 
Relatedness: this notion represents a generic domain relation between two concepts. It is generally 
refined into a specific domain relation, associating a specific label to it. E.g., rel(hotel, station) is refined 
into: near(hotel, station). 
 
Similarity: the binary relation that allows a similarity degree between two concepts to be expressed. The 
similarity degree must belong to the interval [0.4, 1]. 
 
On the other hand the system defines three kinds of users: User who can read the ontology; Super User 
with read and write rights; Ontology Master is responsible for the ontology content, it has to validate the 
concepts proposed by the super users. 
 
The SymOntoX system also enhances: Querying Capabilities that allows users to retrieve concepts, but it 
is important to point out that the query is performed by filling out guided forms. References annotation, 
ontology export to RDF, and there will be provided and import export utility to OWL. 
 
SymOntoX has a three-tier architecture: 
User Interface: It runs on a thin client, which is a web browser, and is developed using JSP. 
Server Side: it manages the communication with the clients through HTTP by using Java Servlet 
technology and the SymOntoX application logic. 
Storage tier: It is composed by a database containing the concepts (ontology content), a log database 
containing the history of the activities performed by users, a factual database containing the sample 
instances and a database for administrative purposes, which handles users and existing ontologies. 
 

2.1.3 Building Domain Ontology Based on Web Data and Generic Ontology 
 
This tool does not have a specific name. It aims to the construction of Domain Ontologies by first 
extracting a topic three and then evolving it into a domain ontology. The authors state that web pages are 
semi-structured, and by applying a wrapper technique the web pages are filtered out the HTML tags and 
useless information such as advertisement. Then the conjunctions, adverb, exclamations are eliminated. 
Each word is weighted it in the page. The words are also filtered by weight. The data in the web pages are 
represented as points. 
 
Afterwards a Hierarchical Agglomerative Clustering (HAC) algorithm is applied, which produces a 
hierarchical grouping of the data featured as points. The algorithm starts with all points in the same 
cluster, and then per iteration it merges the two clusters that are most similar. In [4] the distance between 
two points is calculated by the Euclidean distance and the similarity between two clusters is determined by 

 6 



single-link. A node from the binary tree can also be characterized as a data point. 
 
Later to identify topics in the binary tree, the variance node is calculated. A smaller variance value of the 
node indicates a higher intra-node similarity, in which the words are syntactically similar. Then the points 
of inflection are identified. A node is point of inflection is the variance of this node is smaller than that of its 
parent node and that of all its children nodes. This means that the data in the children nodes are about the 
same topic, while the parent nodes cover more general issues. 
 
The topic tree is then analyzed in order to: 
Figure out the concept that the topic implies. The topic has been chosen by the word with the highest 
weight, but the word might not reflect the topic 
Clarify the semantic meaning of the hierarchical structure. 
Extract possible concepts expressed by the words within a topic and building relations between them. 
 
Finally they match the concepts found with a generic ontology, specifically HowNet. In HowNet word about 
the same subject have similar sememes (The meaning expressed by a morpheme, which is a minimal 
meaningful language unit) definitions. Central topics of the concepts will be formed by the common 
sememes of the words. The relations between concepts can be deduced from their sememes definitions.  
 

2.1.4 PLIB 
 
The result of this project is to create an ontology manager which provides user means to define and 
evolve an ontology. It is based in three basic concepts:  
• On any domain there is a specific vocabulary that belongs to the domain and is able to express well 

define properties which allow person to person communication (context explicit ontology). 
• Human beings are continually evolving the concepts and practices so it is necessary to have a tool to 

allow users to create its own ontology as a specialization of a shared ontology. 
• It is necessary to provide human and/or computer understanding of data meaning. 
As a result of that they have created a new data base model called Ontology-Based Database (OBDB), 
where each database contains an ontology. 
 
It is remarkable to point out that in [30] the author distinguishes two kinds of ontologies, one of them is 
document oriented called linguistic ontology (LO) and the other structured-data-oriented called concept 
ontology (CO). A linguistic ontology is focused in the meaning of the words for specifics Universe of 
Discourse (UoD) in a particular language. On the other hand concept ontology is addressed to represent 
the categories of objects and of objects properties that are in some part of the word. The concept ontology 
needs only to describe those primitive concepts that can not be derived from other concepts. It can also 
be property oriented, in the sense that the concepts must be kept minimal and specialized by means of 
properties, for example instead of defining the concept "10-HP engine", "25-HP engine", "50-HP engine", 
"100-HP engine", you should define only two concepts that will handle all the meanings a class "engine" 
and an integer-valued property "power in HP". As a result only those classes which can not be 
represented by restricting existing classes by means of properties values need to belong to a property-
oriented concept ontology. 
 
The author defines a single PLIB ontology as a 6-tuple where:  
"O = <C; P; IsA; PropCont;ClassCont; ValCont>, where: (1) C is the set of classes used to describe the 
concepts of a given domain; (2) P is the set of properties used to describe the instances of C. P is 
partitioned into Pval (characteristics properties), Pfonc (context dependent properties) and Pcont (context 
parameters). When pЄP is a physical measure, its definition includes its measure unit; (3) IsA : C → C is a 
partial function, the semantic of which is subsumption; (4) PropCont : P → C associates to each property 
the higher class where it is meaningful (the property is said to be visible for this class); (5) ClassCont : C 
→ 2p associates which each class all the properties that are applicable to every instances of this class 
(rigid properties); (6) ValCont : Pfonc → 2pcont associates to each context dependent properties the context 

 7



parameters of which its value depends. Axioms specify that: (1) IsA defines a single hierarchy, (2) visible 
and applicable properties are both inherited, and (3) only visible property may become applicable." [29] 
 
If we want to define an ontology which is mapped to another ontology, the formal definition is Om = <O, M> 
where O is a single PLIB ontology and M = {mi} is a mapping object with four attributes: 
"m =< domain; range; import; map >, where: (1) domain Є C defines the class that is mapped onto an 
external class by a case-of relationship; (2) range Є GUI С contents {string} is the globally unique identifier 
of the external class onto which the m.domain class is mapped; (3) import Є 2p is a set of properties 
visible or applicable in the m.range class that are imported in ClassCont(m.domain); (4) map С {(p, id) | p 
belongs to P ^ id belongs to GUI С {string}} defines the mapping of properties defined in the m.domain 
class with equivalent properties visible or applicable in the m.range class. The latter are identified by their 
GUIs." 
 
As a conclusion, having in mind that the ontologies should react to all changes in the modeled domain, if 
the underlying ontology supporting a specific domain, is not up-to-date or the annotation of knowledge 
resources is inconsistent, redundant or incomplete, then the reliability, accuracy and effectiveness of the 
system decrease significantly [12] [5]. Ontology manager systems should provide the means not only to 
create but also to evolve an ontology. 
 

2.2 Component Retrieval Schemes 
 
There are several factors that impact the search and retrieval process for software components such as 
the scope of the repository, query representation, asset representation, storage structure, navigation 
scheme, size of the repository. Different techniques are used to accomplish component retrieval. In [42] 
the authors have identified 5 different component retrieval schemes from a repository. I have added two 
new categories to that classification. The new categories are called users web mining and browsing. 
 
• Keyword Search. It is based in an indexing technology. The keywords provided to perform the search 

are compared to software documentation and items descriptions. This approach is simple to 
implement and the indexing task can be an automatic process. But it is limited by a lack of semantic 
information between the query, the set of keywords describing each item and the relation among 
items [41]. As a consequence keyword based searching is not efficient and it will have as result either 
too many or too few hits. If the result set contains too many hits, the number of non-relevant hits is 
likely to be very high. If the result set contains too few hits, items relevant to the search can be left out 
of it basically by the lack of semantics. Furthermore this approach does not take into account 
additional information such as relationships among objects for instance synonymous names between 
different concepts that might be applied. 

 
• Faceted Classification. It provides a classification for the items it is willing with. The idea is that this 

classification must be build by domain experts. Some keywords will describe the components, and 
such keywords will be placed in the classification schema. The classification schema is used as a 
standard descriptor for the software components. In order to solve ambiguities a thesaurus is derived 
for each facet to make sure the keyword matched can only be within the facet context. This technique 
is useful for objects that can clearly fit into such categories, but it losses quality for objects whose 
classification is not explicit, or objects that can belong to different classifications regarding specific 
conditions. Besides it is a labor intensive approach to maintain the classification and description. It 
requires a domain analyst in order to define the facet. 

 
• Signature Matching. It is based in the type and number of arguments defined for the different 

methods. The idea is that the search is defined in terms of the method’s parameters and return type. It 
has as drawbacks that the requester must have a deep technical knowledge on the software 
component he is looking for, and the search can retrieve a lot of items not related with the one the 
user is expecting to retrieve. Two methods can have exactly the same signature and accomplish 

 8 



completely different task. For instance, the signature for the strcpy and strcat in the C language, even 
though the signature is the same the result accomplished is totally different. Furthermore this 
technique does not take into account the domain or the search context information. 

 
• Behavioral Matching. It takes into account the functional behavior of the objects. In this technique 

objects are provided with input vectors and the output vectors. The input vector represents the state of 
the system before the execution; the output vector represents the state of the system afterwards. The 
object method is executed and the output vector is generated for each object. By comparing the 
generated vector to the expected outputs the objects that show certain behavior are retrieved. 

 
• Semantic-Based Method. This approach employs domain ontologies. The queries provided by the 

users are expressed in natural language. The components have a description also expressed in 
natural language. A semantic analysis algorithm is applied to the user’s query as well as to the 
component description. This semantic analysis uses the different domain ontologies. The query 
semantic analysis is matched against the component description semantic analysis to perform the 
retrieval process. It is important to point out that for this approach the Ontology construction is time 
demanding and requires a domain specialist in order to accomplish it. Furthermore, the ontology has 
to evolve along with the domain. 

 
• Browsing. The items belonging to the sample to be searched must be classified or categorized. The 

system provides at least one interface, which allows traversing the classification. The interface might 
offer different visualization schemas (trees, tables, etcetera).  

 
• Users Web Mining. Some search systems are built up by continuously monitoring the user’s behavior, 

in order to learn from them and later on apply such knowledge at the moment of present 
recommendations. This technology is comparable with the Collaborative Filtering technique. They do 
not use any kind of ontology to accomplish its task. The idea is that base on the users’ behavior and 
items monitoring tools, the system is able to create user profiles, which will be used at the moment of 
providing recommendations. 

 
Table 2-1 shows a comparative table between the different component retrieval schemes, which has been 
taken from [42], but augmented with some retrieval schemas and with a column to include some 
examples. 
 

Retrieval 
Scheme 

Underlying Approach Comments Example 

Keyword 
Search 

Search for the occurrence 
of string patterns specified 
by the user in component 
attributes and 
descriptions. 

• May result in too many or too 
few items retrieved because 
only keywords are used for 
searching 

• May result in many unrelated 
items 

• It is not precise; it has a lack of 
semantic. 

• It is simple and can be 
accomplished in an automatic 
way 

http://ww.componentsource.com
http://devcatalog.com
http://www.devonestop.com/
INSEAS[8] 

Faceted 
classification 

Classify components 
based on facets 
(taxonomies) such as 
function the software 
performs, medium used, 
type of system, functional 
area, etc. 

• Components must fit the 
classification scheme 

• Some components may 
overlap categories 

• Difficulty in managing the 
classification scheme when 
domain knowledge evolves 

• Only guided search – no 
augmentation 

ONTOLOGER [5] 
ONOTOSHARE [14] 
LawBot [9] 
INSEAS [8] 
InterLegis [23] 
ADIPS [13] 

 9

http://ww.componentsource.com/
http://devcatalog.com/
http://www.devonestop.com/


Retrieval 
Scheme 

Underlying Approach Comments Example 

Signature 
Matching 

Matching of function types 
and argument types to the 
query specified by the 
user. Signature matching 
could be one at the 
function level or module 
level (set of functions). 

• Difficult to map user 
requirements to function and 
module signatures 

• Signature match does not 
guarantee expected behavior 
of component 

• Multiple components may have 
similar signatures 

• Limited support for query 
relaxation 

Agora[11] 
COMPONENTEXCHANGE [35] 

Behavioral 
Matching 

Execute each library 
component with random 
input vectors and 
generate output vectors. 
Compare expected output 
to actual output and select 
components. 

• May have low recall 
• Difficult to use when 

components have complex 
behaviors or involve side 
effects 

• Difficult to express required 
behaviors 

• No support for query 
augmentation 

Hall R. J. [50] 
Behavior sampling [55] 

Semantic-
Based 
Method 

User requirements 
expressed as simple 
imperative or nominal 
sentences. NLP used for 
generating initial queries 
and augmented with 
domain information. 
Components selected 
based on closeness 
measure (query frame vis-
à-vis component frame) 

• Domain model provides 
context information 

• Ontology ensures use of 
appropriate terms 

• Query augmentation to 
improve recall and precision 

• Natural (flexible) way for the 
user to specify requirements 
for components 

Yao et al [41] 
Sugumaran et al [42] 

Browsing Based on components 
classification it shows 
different ways to navigate 
through out the elements 
composing the repository 

• All the items must be classified 
following a standard taxonomy, 
ontology,  or classification 
scheme 

• An item may not be well 
classified or not fixed in a 
specific category. 

INSEAS [8] 
CompoNex [15] 
ADIPS [13] 

Users Web 
Mining 

The system monitors 
user’s behaviors and 
traversals to learn about 
their preferences. It 
Classifies users by 
common characteristics, 
in different users profiles 
in order to make 
recommendations. It is 
based in collaborative 
filtering techniques. 

• User behavior provides context 
information 

• Accuracy depends on the 
users profiles classification 

• The system is continuously 
updating information 
automatically 

• Not based in an ontology  

LEOPARD [40] 
RASCAL [20] 
SUGGEST [2] 

Table 2-1 Summary of Component Retrieval Schemes 
 
In the following sections there is a brief description of some of the systems applying the techniques 
described in the previous paragraphs; this gives an idea of how they work. It is important to mark out that 
some of them combine several techniques. That is the reason why next to the system name the most 
relevant techniques applied are specified.  

 10 



2.2.1 Keywords Technique 
 

2.2.1.1 INSEAS – Keyword – Faceted – Browsing 
 
INSEAS stands for Intelligent Search Agent System. The system is based in XML and agent 
Technologies. Component Agent and User Agent convert the inputs into XML documents, which are 
stored in the repository for later retrieval.  
 
The User Interface Agent is responsible to provide a convenient and efficient search environment. It 
represents the interfaces for the different search methods, and shows a reasonable number of results. 
The user can weight to extend similar words, perform combined searches, and give priorities to certain 
facets. The user can demand the help of an agent, so the user interface agent shows him specific 
questions provided by the intelligent search helper agent. 
 
Component providers utilize the Component Agent in order to store components in the INSEAS repository. 
The component Agent represents the component information in an XML based format. INSEAS supports 
CORBA, JavaBeans, and COM/ActiveX components [8]. 
 
The Component Search Agent executes four different search methods: keyword search, facet-based 
search, browsing search and interactive search with a helper agent. The Component Search Agent is 
composed by 4 independent agents: 
 
• Keyword Search Agent: Taken the words provided by the user, it retrieves similar words based on the 

relevance and relationships between concepts. If the result set is big the agent provides to the user 
methods to reduce it. The threshold of the result set is determined by the user’s behavior. 

• Facet-based Search Agent: The agent provides a set of facets that the user need to input. The user 
does not have to fill out all the fields. The agent also observes the fuzzy concept relationship matrices 
for each tag. Weights between concepts (words) and relevance between concepts in tags and 
component description documents are used for the retrieving process. 

• Browsing Search Agent: The search is performed in the classified category tree by experts. It can 
search by domain, implementation language, system type, operating system, among others. It is 
possible to apply the other agents on the query result set if the user wants to. 

• Intelligent Search Helper Agent: Regarding different factors such as user’s preference, user’s 
environment, user’s level, domain-related knowledge, search goal, and the search results at each 
step, the agent decides the order of the questions about the facets to conduct the search. This 
process is based in a rule-based reasoning technology. 

 
The User Agent: It manages and stores the user information in the repository, and collaborates in the 
component search using the repository. It helps users to provide information regarding currents project’s 
domain, experience, environment, and etcetera. 
 
The Repository stores information about software components, users, and the knowledge and rules. The 
users and components information is stored in XML. 
 
• Expert Knowledge and Rules repository:  

o Fuzzy Concept Network Matrices, which stores the relevance and relationship matrices for 
word concepts and for tag concepts.  

o The Rules and Expert Knowledge. Uses the rules for intelligent search, results representation, 
and user interface representation. It takes into account the user information tags, component 
information tags and user behavior tags. 

• User Information repository: stores information such as user’s id, current project domain, user’s role, 
development experience, domain experience, dominant language, system type, operating system, 
satisfaction degree of resulting components, search process, user preferences. 

 11



• Component Information Repository: The information in this repository is managed by the Component 
Agent. The data such, as functionality, environment, interfaces, service level, component type, is 
stored as XML format.  

• Case Repository: It sores information such as user query, user search steps, search time and 
satisfaction degree, which is used to perform system upgrade, component classification upgrade, and 
user preferences upgrade. It also uses an XML format. 

 
The System Management Agent: It uses the case information about user behaviors for the system 
upgrade. The user’s feedback changes the component information of service level, categorization, and 
weights of the fuzzy relation matrix in order to improve the system performance. 
 
INSEAS takes advantage of XML in order to give a semantic meaning to the actors involved. It defines 
three XML DTDs: Component Information DTD, User Information DTD and Search Case DTD. 
 
XML Specification for Component Information: It is composed by several concepts such as functionality, 
environment (operating system, language, system, etcetera), service level (performance, limitations, 
database usage), it includes component type, size, domain, understanding level, price, and user’s 
feedback. 
 
XML Specification for User Information: It stores user id, project domain, development experience, 
language, system, operating system, user’s role, preference, and degree of search satisfaction. 
 
XML Specification for Case Information of Search Process: It holds the information of the relationship 
between user inputs, results, search time, user selection, and user’s satisfaction level. For the searches it 
stores the user id, user characteristics (project domain, expertise, among others), the keywords used, the 
date, the number and ids of selected components, the number and ids of non selected components by the 
user. 
 
INSEAS uses the fuzzy similar relationship, the fuzzy generalization and specialization relationship. To 
model the extended fuzzy concept network it uses the relation matrices and relevance matrices. The 
System Management Agent makes a relation matrix and a relevance matrix for the total tag group. 
Furthermore many matrices exist in the repository, for the component classification, the repository has 
generalization relation and specialization relation matrices for word concepts. 
 

2.2.2 Faceted Technique 
 

2.2.2.1 InterLegis Project based on Odyssey Search Engine - Faceted 
 
In [23] the authors state that component based software reuse is affected because components are 
distributed and heterogeneous, and there is not a domain ontology by which the users can refer to the 
components they are willing to use. On the other hand, the multi-database or Heterogeneous and 
Distributed Database System (HDDS) are related with distribution, heterogeneity (and ontology). They 
propose to apply HDDS technology to achieve software component retrieval. The legacy database will be 
replaced for the components repository. The use of mediators will represent and integrate domain 
information repositories (distributed and/or heterogeneous). The metadata stored in the mediators 
describes the components repositories, presenting their domain, semantics and components architecture.  
 
By extending the Odyssey Search Engine it allows the publication of components in the internet using 
comPublish, and by associating each component to a specific domain based on ontologies and XML. The 
system allows publishing, describing, storing and retrieving software components.  
 
A mediator is created for each domain. The GOA server stores metadata and components locally. In the 

 12 



mediation layer, each mediator represents an ontology domain. The ontology provides identification of 
components and the mediator helps in the mapping to the component repository. Each domain Ontology 
will define Ontology terms, for instance “a proposal” can be an Ontology term in the legislative domain, or 
“a regulation” could be an Ontology Term in the judiciary domain. The mediator layer will also enable the 
application to define relationships between ontology terms in different domains, so we could state 
synonymous among ontology terms, which belong to distinct domains. This relationship will help to 
outperform the search methods. 
 
Components are described through XML, and it will contain relevant domain information. It will also define 
the type of component it is. For instance in the code observed in Table 2-2, the specified component 
belongs to the Legislative domain, it is use in the analysis phase, it is a Use Case, and its implementation 
language is UML. 
 
<component> 
<domain> Legislative </domain> 
<phase> analysis </phase> 
<type> use case </type> 
<language> UML </language> 
<author> Robson Pinheiro </author> 
... 
</component> 
 
Table 2-2 InterLegis Component Description [39] 
 
The overall architecture for the system described in [39] is as follows: 
 
Search Agent: The user interacts with the interface to define a query that is handled by the Search Agent. 
This will send the query in the Web Search Engine, which is based on Google results, but it will also send 
a message to the ComPublish. The message contains the application domain so the ComPublish will use 
the appropriate mediators, the user profile and the component features to retrieve a set of components. 
 
Machine Learning Module: It is responsible to gather user information to create user profiles. It will be 
monitoring the users, and it will update the user profile based on the web pages the user visits, the 
number of occurrences that the words appear in the different pages. It will have a list of user stereotypes 
that will help to limit the search results. 
 
Filtering Agent and Collaborative Agent: This two agents work together. Once the web search engine, and 
the ComPublish return the set of components found by a specific query the Filtering Agent and the 
Collaborative agent will organize and rate the results based on the information stored in the Hot Links and 
User Profile (that has been gathered by the Machine Learning Module). Once this task is done the rated 
query results will be presented to the user. 
 

2.2.2.2 ADIPS Framework - Faceted - Browsing 
 
The framework has three main components: agent virtual machine, ADIPS Repository and design support 
environment. Software components are stored in the repository as agent-based components called 
repository agents. A repository agent works in the agent virtual machine. ADIPS repository designs a 
multi-agent system working in an agent virtual machine automatically using the repository agents 
according to a specification given by an interface agent in an agent virtual machine.  
 
Repository agents are created by component programmers using a design support interface. Repository 
agents carry out the application design, which has design knowledge concerning agent-based 
components. The repository agent has knowledge on design specification of the component including a 

 13



functional specification an interface specification, cooperation protocols [13]. 
 
On the other hand the repository agent has the following two capabilities: (i) Recognition of requirement: if 
the agent is reusable for the requirement specification, it replies to the message with functions and 
performance which can be applied. (ii) Retrieving components: carried out by the repository agent. 
 
In order to create new agent-based components the programmer analyzes component specifications 
designed by an application system designer. Then he creates repository agents to fulfill the specification. 
Agent-based components can recognize a specification and retrieve other components. The programmer 
can reuse existing components, modify them and store them as new ones.  
 
When a specification is sent to the repository as a message, all the agents which manage the component 
in the repository check each specification and requirement in automatically. Furthermore, the agent which 
manages other agents decomposes the specification to new specification. This will enable it to retrieve the 
component without exact match between the specifications described by the application designer and the 
sub-module specification. This is done throughout an interface, which receives the host, repository and 
specification. The specification is written in a text area, and in [13] they do not describe such specification. 
Components that perform the task of sub-module specification will reply to the message with a 
specification that is presented to the designer in a new window. This allow the application designer decide 
if there is a lack of components to fulfill its needs.  
 
All the components have an attribute for classification called category. The framework allows browsing 
components by category, and shows the components’ specification. Using this tool the user is able to 
modify the agent-based component specification. 
 

2.2.3 Signature Matching Technique 
 

2.2.3.1 AGORA - Signature Matching 
 
This search engine automatically generates and indexes a worldwide database of software products, 
classified by component model (JavaBean, ActiveX, and etcetera). The system implements the Internet 
JavaBeans agent as a meta-search engine on top of the Alta Vista Internet service. This decision was 
based in the fact that the search for applet:class can locate HTML pages containing applet tags where the 
code parameter is equal to a specified Java applet class.  
 
In order to index the components found they rely on the JavaBeans Introspector class, by which they 
gather information into five fields regarding associated with the document. In [11] we can find the 
description of the fields: 
 
• Component: In this case it will be assigned the string “JavaBean”. 
• Name: Contains the fully qualified name of the class or interface represented by the JavaBean. It will 

empower searches by name. 
• Property: It is a list of properties descriptors, obtained from the JavaBean’s info. Agora processes the 

properties descriptor to get the property name, type and the names of the methods to read and write 
the property. It is possible to index the property descriptor, which describes a property that acts like an 
array and has an indexed read and/or indexed write method to access specific array elements. 

• Event: An event set descriptor describes a group of events that a JavaBean fires. The system 
retrieves the name, the add listener method, and the remove listener method for each event set and 
adds them to the tokens associated with the event field. The list of target methods within the target 
listener interface is retrieved, and the method names are added to the event field. 

• Method: Method descriptor describes a particular method that a JavaBean supports for external 
access from other components. 

 14 



 
To reduce redundant information Agora maintains exclusion tables with a list of properties, event sets, and 
methods common to all JavaBeans. 
 
In [11] they also explain the CORBA agent. This agent communicates with CORBA naming services, to 
get objects, and on the object it reads the interface. To index the CORBA interface information six field 
values associated with the document are stored: 
 
• Component: It always stores the value “CORBA”. 
• Name: It holds the interface name. Because the interface information is stored in a separately 

interface repository, from times to times Agora might not be able to connect to it. So the information 
will be gathered directly from the interface by calling the CORBA describe_interface() call which has 
the interface name, its operations and its attributes.  

• Operations: It has the interface operations. Operation description records contain the name of the 
operation as well as parameters and exceptions. 

• Attributes: It has the interface attributes. 
• Parameters: It contains the operation’s parameters.  
• Exceptions: It contains the operation’s exceptions. 
 
To perform the search AGORA offers a set of keywords, depending on the component platform the user is 
interested in. For instance for JavaBeans there is the word method: method-Name, it will retrieve all the 
methods with the specific name. 
 

2.2.3.2 COMPONENTEXCHANGE - Signature Matching 
 
It is an E-Exchange for software components. The components are described using a Component 
Description Markup Language (CDML) based on XML. The component’s characteristics are partitioned in 
four categories: syntactic, behavioral, synchronization and quality. 
 
Syntactic Aspects of a component is also known as the interface signature. It shows the component 
functionality. A language that can be used to describe this aspect is CORBA IDL. 
 
Behavioral Specifications define the outcome operations. It can be described using non-formal languages. 
It comprises non-functional properties (quality attributes), which can be Quality-of-Services (QoS) 
properties such as performance, reliability, availability and global attributes of a component such as 
portability, adaptability. It is possible to use the QoS Modeling Language (QML) to represent various QoS 
properties. 
 
CMDL describes components in different aspects. In [35] aspects can be seen as horizontal slices of a 
system’s functional and non-functional properties. Different aspects can be grouped in different aspect 
categories: Syntactic aspects, Functional aspects, non-functional aspects, and Licensing and Commerce 
aspects. 
 
• Syntactic Aspects: It is similar to the one provided in the CORBA Component Model. It specifies the 

following: 
• Provided Interfaces: The services that the component exposes to the client. It has an interface 

name, a set of methods and a set of attributes. The methods are specified by a method name, the 
type of the returned value, the parameters and the exception thrown by the method. A name and 
its data type specify an attribute. 

 
• Required Interfaces: Are the services needed by the component in order to provide its 

functionality.  
 

 15



 
• Events: It is the set of events that the component either generates or responds to. An event is 

specified by name and direction (out if the event is generated, in if the component receives the 
event from another component). 

 
• Functional Aspects: set of properties represented by a name a value pair. 
 
• Non Functional Aspects: it uses QML to define them. Non functional aspects are specified by 

contracts, which are specified by constraints along multiple dimensions. A constrain consists of a 
name, operator and value. The name refers to the name of the dimension, or a property of dimension. 
Dimension properties allow for more complex characterizations of constraints. They can be used for 
characterizing measured values over some time period. 

 
• Licensing and Commerce Aspects: it defines the scope and use of a specific software component. 
 
The system is architecture is implemented as a Fat Butterfly Model. On each wing of the butterfly we have 
a module, one for Components Integrators, the other for Components Vendors. The component integrator 
module provides a Query Interface, meanwhile the Component Vendor Module provides a Publish 
Interface. 
 
The Component Description Repository, The License and the Matchmakers compose the central part of 
the system. For the searching process only those components that satisfy all the specified constrains in 
the query are retrieved. The user’s query is organized in a set of aspect categories. The matchmaking 
process is performed by multiple matchmaker components. Each matchmaker is specialized in a particular 
aspect category. The matchmaker component compares the client queries and component specifications 
with respect to its aspect category. There is a dispatcher component that splits the client query into 
multiple sub-queries, which are sent to their respective matchmakers. Finally the dispatcher determines 
the final result by computing the intersection of the results return by individual matchmakers. The query is 
typed using the interface provided by the system but from the example given in [35] it can be inferred that 
the user needs a deep knowledge of the components, because it is looking for a component with an exact 
method name. If the interface does not provide any help for that it will become a quite complicated task. 
They do not show any details on the interface so it is not possible to describe it any deeper. 
 

2.2.4 Behavioral Matching Technique 
 

2.2.4.1 Behavior sampling - Behavioral Matching 
 
The base of this approach is that software components have a functional behavior that can be executed 
on given inputs to produce certain outputs [55]. The idea behind Behavior Sampling’s is as follows: the 
system generates random input vectors and the user computes the desired outputs. The system then 
executes each of the library components on the selected inputs, comparing the computed output with the 
expected output. All components correct on all samples are then presented to the user. The key 
advantage of this approach is that the semantics of components and queries are captured precisely and 
canonically by extensional input/output behavior. 
 
This technique was improved in [50] Generalized-behavior based retrieval. It allows retrieving not only the 
complete component but also a sub-component. In order to test a decided behavior, the user must 
construct a model to use. It introduces a step in the process but eliminates side effects, because the 
system executes the behavior in the model. The authors state that this is design to provide reuse in the 
large, so the construction of the model is worth it and it will bring benefits.  
 

 16 



2.2.5 Semantic-Based Technique 
 

2.2.5.1 Towards a Semantic-based Approach for Software Reusable Component Classification and 
Retrieval - Semantic-based 

 
The paper describes an application that will be developed in order to improve searching and retrieving in 
large software component repositories, and also in the World Wide Web. In [41] the authors express that 
the system will have two main tasks: 
 
• It will improve the search capabilities of software reuse libraries through annotating software 

components and packages in these libraries with a semantic description of the services provided by 
the software. [41]. This will be accomplished using the following techniques: natural languages 
processing on queries, reuse metrics to evaluate reusability, semantic service description, and domain 
knowledge base applied for whole process for semantic description and retrieval. 

• It will also improve searching for software on the World Wide Web through the use of program 
understanding. 

 
The system will be composed by a set of subsystems which will be oriented to accomplish specific tasks, 
the subsystems are: 
 
• Intelligent, natural language-based user interface. The user’s queries expressed in natural language 

will be transformed in a conceptual graph semantic representation within a knowledge base, and also 
translated into semantic web based representation. DAM+OIL ontologies are employed to support 
domain knowledge for the semantic web based representation. 

• Analysis and annotation tool, which by means of program understanding it identifies and describes the 
functionality of the software components using semantic representation. The semantic representation 
will be in a conceptual graph knowledge base, and will also be translated into a semantic web 
representation, supported by DAML+OIL ontologies. 

• Semantic matchmaker that compares a user query in a conceptual graph with component service 
description in conceptual graphs. It is based on a domain knowledge base. 

• Intelligent Internet search, which automatically will search and download software components from 
the Internet based on the user requests. They will be annotated by the analysis and annotation tool. 

• Software components repository. It will use UDDI as its infrastructure, and WSDL and DAML-S as 
service description languages. Components in the repository will be annotated with WSDL/RDF 
service descriptions. 

 
The system will wok as follows: On the user’s queries expressed in a natural language a natural language 
processing technology will be applied to analyze such a query based on semantics. The query will be 
translated into conceptual graphs, then into WSDL/RDF.  
 
A program understanding tool will be applied to analyze downloaded software packages. The software 
services and features will also be translated into conceptual graphs and WSDL/RDF. 
 
Finally a semantic matchmaker will match the user query conceptual graph to the component conceptual 
graphs, and then WSDL/RDF representation of the user query and the component are matched. 
 
WSDL is used to describe web services in terms of interfaces information, public methods, data type, 
information for messages, binding information for transport protocol, and address information for locating 
the service. In this sense WSDL is applicable in a software component description domain. But WSDL has 
a lack of semantic description, which will be enhanced using Semantic Web ontologies to annotate WSDL 
description. 
 

 17



2.2.5.2 A Semantic-Based Approach to Component Retrieval - Semantic-based 
 
The System proposed in [42] uses a natural language interface to provide component retrieval, which 
utilizes the domain knowledge embedded in ontologies and the domain model. The process to retrieve a 
component has three main steps: 
 
• Initial Query Generation. The user specifies the requirements for the component using natural 

language. Using a heuristic-based approach keywords and concepts are identified. The query is 
specified simple imperative or nominal sentences. An imperative sentence consists of a verb phrase 
with an embedded noun phrase and possibly some prepositional phrases. For instance “Give me 
details about the biding process”. 

 
• Query Refinement. Keywords and Concepts from the user’s query are mapped to the domain 

ontology. Related terms based on the context are also identified for expansion. The context of the 
retrieval is established through the domain model. When no matching terms are found in the domain 
model, the system checks the ontology for synonyms and uses those synonymous to search the 
domain model.  

 
• Component Retrieval and Feedback. The functional requirements specified by the user are 

decomposed into specific processes and actions using the domain model. Those are then compared 
to the object’s methods. The user establishes a threshold value, and the objects which percentage of 
actions supported is greater than the threshold are retrieved. The reuse repository contains 
components with methods capable of providing some features. It is necessary to match the 
functionality required with the functionalities supported by the component. Components are described 
using simple imperative sentences. When parsing the user’s query a frame query is created. 
Component description is also parsed. For retrieving components, the query frame is matched against 
the component frame. The query frame contains the features that must be satisfied. The frame 
structure consists of terms and synonymous, which are inferred from the query and the ontology. The 
conceptual distance is calculated based on the number of terms in both frames that matches or is 
related to.  

 
The success of the system depends on how the repository is managed, contents indexed and the level of 
detail components is described. 
 
The system architecture consists of a web-based interface to a domain model, an ontology and a reuse 
repository. It is implemented with server-client architecture. The client is comprised of a web browser 
interface. In the server side we find the query interface module, query refinement module and repository. 
 
The query interface module has three components, which are responsible for capturing the users’ query 
requirements, generating the preliminary database query and displaying the results in an appropriate 
format. 
 
The query refinement module makes use of the domain specific information contained in the ontology and 
in the domain model to enhance the initial query. Simple natural language processing techniques 
translates the user’s query from natural language into a structured query language. 
 
The domain model is organized into objectiveness, processes, actions, actors, and components. This 
classification has been empirically validated in a sales domain application development. The rest of the 
domain-specific knowledge is found in the ontology. The ontology is composed by the set of terms, 
information about terms, and relations among terms. 
 
 
 

 18 



2.2.6 Browsing Technique 
 

2.2.6.1 CompoNex – Browsing 
 
This approach came out after performing a market maturity study of the software component field. The 
outcome of the study reflected the means to facilitate the exchange of components between sellers and 
buyers. Nowadays there is not precise information regarding components, and they must be treated as 
experimental goods, whose characteristics (usability, compatibility, performance, etc) cannot be assessed 
until after buying [15]. The testing process should be use to validate the component characteristics rather 
than to determine them. There should exist and appropriate and automatically verifiable component 
specifications, this will differ from a test version, because it will explicitly describe component 
characteristics. 
 
It proposes a component classification based in a thematic grouping into several pages [16]: 
 
• White pages: provide general and commercial information about components. It is expressed in 

natural language. But it proposes the use of taxonomy during specification. It will store general 
information such as component name, unique identifier, version, description, producer, administrative 
contacts, and dependencies to other components. As far as the commercial information is regarding it 
holds conditions of purchase, distribution channel (distribution form, price, accepted payments, scope 
of supply), and license agreement. 

• Yellow pages: specify the domain that a component belongs to. It also contains information about the 
underlying architecture and technology of the component. The framework provides different 
taxonomies for the domain the component belongs to such as UNSPSC, NAICS, and Microsoft GEO. 
It also provides a taxonomy which list implementation technologies (EJB, COM, .NET, XML Web 
Services, etcetera). 

• Blue pages: summarize domain-related information about the component functionality. It describes a 
domain lexicon. It provides three concepts: objects (entities), operations (tasks) and processes. It is 
possible to relate concepts by abstraction or composition. Typical abstractions are the is-synonym-to 
(is-identical-to), is-specialization-of, and is-generalization-of, which are use to relate concepts to each 
other. Compositions are used to combine concepts. Typical compositions are order relationships, the 
is-part-of, and consist-of. Concept definitions give an impression of what a component or an interface-
method does. 

• Green pages: provide the provided and required interfaces specification. It uses OMG IDL. It supports 
for each interface specification of invariant, pre-conditions and post-conditions by means of OCL 
(Object Constraint Language), which is extended with temporal logic to provide flow information, 
regarding the predetermined order on which methods should be invoked. 

• Grey pages: provide components quality attributes description either to the component or to the 
interface methods. The idea is to describe quality components regarding the ISO 9126 quality model, 
which comprises usability, maintainability, functionality, reliability, and efficiency of a component 
implementation. It should be specified using QML, but after using the system this module it is not 
being validated, so it accepts any test in the description. 

 
The component specification languages and different levels to be specified are explained in detail in [36], 
which is a Standardized Specification of Business Components. 
 
Further references to this project are targeting this approach to describe the Web Services specification in 
order to provide means to describe and retrieve web services. It shows compatibility with UDDI, as stated 
in [33] it can be used as a wrapper to UDDI but taking advantages of the complete service description 
provided by the thematic grouping and component specification into pages. 
 

 19



2.2.7 Users Web Mining Technique 
 

2.2.7.1 RASCAL - Users Web Mining 
 
It is a recommender agent system for software components. It has 2 main objectives firstly it is interested 
in recommending software components that the user is searching for. Secondly, it is intended to 
recommend components that the system believes a user actually requires but is unaware of such 
components existence or the need for such components [20]. In the system the user, which will mainly be 
a developer is considered a java class and the components employed by a class are items. Specifically 
the components referred to are java methods. 
 
The system runs in the background to monitor and update the user’s usage history. The rate method use 
for RASCAL is implicit; it means the user does not have to explicit rate the component. It is implicit 
because it automatically deduces the user vote for an item by monitoring how often the user has used 
such component and usage histories of components are automatically collected and stored in a user-
preference database. Then the recommendation will be based upon such rate and a collaborative filter 
technique, which states that the users can be grouped together in a set of users alike. So for a specific 
user it is highly probable that he will use the components used for the users belonging to the same set. 
 
The architecture of the system is composed by three main elements: the code repository, the usage 
history collector and the recommender agent. 
 
Code Repository: As new components are developed they must be stored somewhere. "The repository is 
effectively a user preference database, a user is a java class and the components employed by a class 
are items." [20]. 
 
Usage History Collector: It will automatically mine the code repository to extract usage histories for all 
classes. This will need to be done once initially for each class and subsequently anytime a class is added 
to the repository. The information is extracted using the Byte-code Engineering Library (BCEL). 
Component usage histories for all the users are then transformed into a user-item preference database. 
By the moment the paper was written the database contained a user-item preference matrix for all users. 
It also contained information for each individual user a list of components based on their actual usage 
order. 
 
Recommender Agent: The tasks performed by the agent are: monitors the current user and updates the 
user preference; attempts to create the set of users similar to the active one by searching the user-item 
matrix produced by the usage history collector; finally recommends a set of ordered components to the 
current user. 
 
As a conclusion on the different retrieval schemas it is possible to say that each one of them have their 
strengths and drawbacks. The combination of the different schemas has shown an improvement in the 
retrieval process. Nevertheless research in this topic is still being carried out nowadays. The retrieval 
process is highly related to the description of the resources being retrieved, and software components do 
not have a specific notation to describe them. The retrieval scheme is tailored to the specific repository 
where the search takes place. 
 

2.3 Model Driven Architecture - MDA 
 
MDA stands for Model Driven Architecture. It is a trademark of the Object Management Group (OMG). As 
stated in the MDA specification web site [64]: “The MDA is a new way of developing applications and 
writing specifications, based on a platform-independent model (PIM) of the application or specification's 

 20 



business functionality and behavior. A complete MDA specification consists of a definitive platform-
independent base model, plus one or more platform-specific models (PSM) and sets of interface 
definitions, each describing how the base model is implemented on a different middleware platform. A 
complete MDA application consists of a definitive PIM, plus one or more PSMs and complete 
implementations, one on each platform that the application developer decides to support.” 
 
As inferred from the MDA specification, it is based in models. Some people define a model as a visual 
representation of a system. But on the other hand, many people refer to a set of IDL interfaces as a 
“CORBA object model.” Besides, an UML can be rendered into an XML document using the OMG’s XMI 
DTD for UML, such representation is not a visual artifact. Thus, a more precise definition is needed. In [71] 
the following definition is given: “A model is a formal specification of the function, structure and/or behavior 
of a system”. 
 
This definition has the following underlying concepts: “A specification is said to be formal when it is based 
on some well defined language that has well defined meaning associated with each of its constructs” [71]. 
As a matter of fact if a specification is not formal in this sense, is not a model. Consequently a diagram 
with boxes and lines and arrows that does not have behind it a definition of the meaning of a box and the 
meaning of a line and of an arrow is not a model, it is just an informal diagram. Under this model definition 
the subsequent are models examples “Source code is a model that has the salient characteristic that it 
can be executed by a machine. A set of IDL interfaces is a model that can be used with any CORBA 
implementation and that specifies the signature of operations and attributes of which the interfaces are 
composed. A UML-based specification is a model whose properties can be expressed visually or via an 
XML document” [71]. 
 
A PIM is a model of a software system that does not incorporate any implementation choice. It stands for 
Platform Independent Model. PIMs describe the system independently of the chosen implementation 
technology. On the other hand a PSM is a model of a software system that incorporates choices for 
certain implementation technology/technologies. It stands for Platform Specific Model. PSMs describe the 
system taking into account the chosen implementation technology. 
 
The aim of this approach is to let software development process concentrate in the specific domain it is 
trying to model. At the higher design level, the design process should only care about the software 
functionality. There must be a clear separation between the required functionality and the middleware 
platform on which such functionality is going to be implemented. In the MDA, middleware-specific models 
and implementations are secondary artifacts. A specification's PIM is the primary artifact. It defines one or 
more PSMs and sets of interface definition, each specifying how the base model is implemented on a 
different middleware platform. It separates the fundamental logic behind a specification from the specifics 
of the particular middleware that implements it. 
 
MDA is on the use of models in software development [70]. In order to accomplish that goal from an 
abstract model of the system a more concrete model should be generated. From that model in turn an 
even more concrete model can be generated until finally the source code is produced. Source code is 
considered to be the most concrete representation/model of the software system. Key to this process is 
that each generation step will be automated as far as possible. The ultimate MDA goal is to generate 
automatically a complete software system from a model with as less human work in the process as 
possible. 
 
A Model transformation is the process of converting one model to another model of the same system.  
Transformations can use different mixtures of manual and automatic transformation. There are 4 different 
transformation approaches: manual transformation, transforming a PIM that is prepared using a profile, 
transformation using patterns and markings, and automatic transformation [70]: 
 
• Manual transformation. When the design decision to make the transformation from PIM to PSM are 

made during the process of developing a design that conforms to engineering requirements on the 
implementation. The decisions are considered in the context of a specific implementation design.  

 21



 
The MDA adds value in two ways: there is an explicit distinction between a PIM and the transformed 
PSM, the transformation is recorded. 

 
• Transforming a PIM that is prepared using a profile. The PIM and the PSM are expressed using UML 

profiles. The transformation may involve marking the PIM using marks provided with the platform 
specific profile.  
 
The UML 2 profile extension mechanism may include the specification of operations; then 
transformation rules may be specified using operations, enabling the specification of a transformation 
by a UML profile. 

 
• Transformation using patterns and markings. This applies a pattern to the transformation. In order to 

apply the pattern elements from the PIM are marked. Those marked elements are transformed 
according to the pattern to produce the PSM. For instance a class marked in the PIM with a role from 
the pattern, once the transformation is applied can produce in the PSM the original class with some 
extra attributes and operations, new classes corresponding to other roles in the pattern and 
associations between those classes.  

 
• Automatic transformation. In some cases it is not necessary to provide to add marks or use data from 

additional profiles in order to be able to generate code. The decisions are implemented in tools, 
development processes, templates, program libraries and code generators. The PIM contains all the 
information necessary to produce computer program code. 

 
As a conclusion on The Model-Driven Architecture (MDA), it basically defines an approach to modeling. In 
the modeling process it separates the specification of system functionalities from the specification of its 
implementation on a specific technology platform.  The MDA promotes an approach where the same 
model specifying system functionality can be realized on multiple platforms through auxiliary mapping 
standards, or through point mappings to specific platforms. 
 
Summary and Conclusions 
 
After describing the different schemes used to retrieve components, it can be inferred that each one of 
them can help to resolve different type of queries. For instance, faceted and classification using natural 
language will provide means to retrieve components based on external information provided as natural 
human language. As a consequence it can be also used by non technical users. On the other hand a 
scheme like signature matching provides a more deeply technical description and as such it can be 
thought more oriented to technical users. Anyways, researches are combining different schemes in order 
to take advantage of their strengths and diminish their weakness.  
 
Components retrieval schemes based on classified components have been evolving in the classification 
techniques, from simple faceted to ontology-based classification. Ontologies appear as a helping element 
in the classification and modeling of complex relationships. Ontology manager systems have been 
developed to create and manage ontologies. For my research I propose the use of an ontology to describe 
software components. 
 
The use of classification schemas has brought a proliferation of models because there is not a common 
description model for software components. That model is still an open issue. There is not a definitive 
answer to questions like: what kind of information will characterize a software component? Should this 
information be based on properties of software components? Can software components be generalized? 
How quality information will be assessed?  
 
Then, what can be done to tackle down the proliferation of models? In this research I propose as an 
answer to this question an integration of software component repositories. 
 

 22 



3 The eCots Association 
 
eCots is the name for an inter-industrial association founded in January 2004 by Thales, EDF R&D and 
Bull. The association has specified a project to create an Intelligent Portal for Searching Components 
called IPSComp. The IPSComp project is in the specification phase and it will become a proposal in a 
European Integrated Project. The project aims at developing an open information portal for commercial of-
the-shelf (COTS) software and non software components, in which we deal with information about 
products, and possible between their users, or between users and producers. As expected from any 
industrial project, the main aim is economical: the project is addressed to provide its users with a 
maximum of quality-controlled information at the lowest possible price. 
 
This research is included as a first step for the definition of the functional architecture of the IPSComp 
project. The objective of this project is to use the potential offered by Internet portals to federate the 
community of users of commercial off-the-shelf software components. Thus giving them means of 
obtaining the information they need from COTS component producers, facilitating access to such 
information and supplementing it by pooling – through cooperative generation of content – the information 
on use that it possesses, by setting up a dedicated thematic portal, freely accessible on Internet. 
 
In [48] the authors have identified a set of elements that will need further discussion in order to achieve 
the project’s aim. Among other questions they formulate for instance, what kind of information will 
characterize a COTS product? Should this information be based on properties of COTS products? Are 
there many COTS products sharing similar properties? Can they be generalized? How quality of 
information will be assessed? 
 
The paper also identifies some key elements that have been group into three categories: management, 
development and knowledge base. The interactions between them are depicted in Figure 3-1. The key 
elements are: 
 
• Management: 

• Procedure to specify how the portal should be used. 
• Legal issues on the use of the portal. 
• Quality assessment procedures and measurements for software deliverables, ontology 

specifications, third-party information, and software and ontology development procedures and 
methodologies. 

• COTS versioning management, software configuration management, procedures for ontology and 
portal evolution. 

• Standard information to be supplied by vendors and/or private organizations. 
 
• Development 

• Recommender system (personalization and support). 
• Software specifications. 
• Ontology specifications. 
• Multilingual definitions for GUI and ontology specifications. 

 
• Knowledge-based Support 

• Taxonomy and classification. 
• Global ontologies (COTS and domain-oriented). 
• COTS component ontologies (COTS quality attributes, COTS implementations, etc). 
• Domain-oriented ontologies (I&C, E-business, Health Care, etc). 

 

 23



Development

COTS Ontologies and 
Taxonomies 
(COTS Quality Attributes, 
COTS Classification…) 

Ontology Standards 
(RDF, OWL …) 

Domain-specific Ontologies 
and Taxonomies 
(I&C, Health Care,  
E-Business…) 

Knowledge-
Based support

COTS Component 
Information 

R
e
c
o
m
m
e
n
d
e
r 
 
S
y
s
t
e
m 

PORTAL 

Management

 
Figure 3-1 IPSComp System Architecture [48] 
 
The end user will have access to the system through a web browser. The knowledge-Based support which 
is the base of the system has three layers.  The Ontology Standards layer will hold the set of tools used to 
define the ontologies included in the system. For instance, Web Ontology Language (OWL)2 can be used 
to explicitly formally describe an ontology3. The other two layers correspond to ontologies. One of them is 
the ontology that supports the set of items include in the system in this particular case software 
components. The other layer also contains ontologies. Software products are in contact with a wide range 
of domains. This layer provides ontologies for those domains. For instance, there can be an ontology for 
the health care domain, for the e-business domain, for the telecommunications domain, components in 
other domains, etc. 
 
Taking advantage of the knowledge-based module, supported by the different ontologies, the portal will 
also provide a Recommender System, which will be in charge of helping users in the identification and 
retrieval of software components that they may be interested in. 
 
My contribution to the IPSComp is explained in the next chapter. 

                                                 
2 Web Ontology Language (OWL) is a revision of the DAML+OIL web ontology language. It has more facilities for 
expressing meaning and semantics than XML, RDF, and RDF-S, and thus OWL goes beyond these languages in its 
ability to represent machine interpretable content on the Web. (http://www.w3.org/TR/owl-features). An ontology 
language is required for the Semantic Web vision in which information is given explicit meaning, making it easier for 
machines to automatically process and integrate information available on the Web 
 
3 Accordingly to W3C an ontology is the representation of the meaning of terms in vocabularies and the relationships 
between those terms (http://www.w3.org/TR/owl-features). 
 

 24 

http://www.w3.org/TR/owl-features
http://www.w3.org/TR/owl-features


 
4 Contribution 
 
My contribution on the IPSComp project is to create the component ontology specification for IPSComp 
(Section 4.1. Item {2} in Figure 4-1), produce the component ontology design for IPSComp (Section 4.2. 
Item {2} in Figure 4-1), implement the component ontology for IPSComp (Section 4.3. Item {1} in Figure 
4-1) and provide a component repository integration (Section 4.4. Item {3} in Figure 4-1). The previous 
points aim to provide the means to achieve a qualified Recommender System for the IPSComp project 
(Item {4} in Figure 4-1). My contribution in the system architecture is red highlighted in Figure 4-1. 
 

Development

{2} COTS Ontologies and 
Taxonomies 
(IPSComp ontology) 

{1} Ontology Standards 
(PLIB Specific.)  

Domain-specific Ontologies 
and Taxonomies 
(I&C, Health Care,  
E-Business…) 

Knowledge-
Based support

{3} COTS Comp. 
Inf. Model Transf. 

R
e
c
o
m
m
e
n
d
e
r 
 
S
y
s
t
e
m 

PORTAL 

Management

{4} 

 
Figure 4-1 Contribution to the IPSComp Project 
 

4.1 Component Ontology for IPSComp Specification 
 
Ontologies are emerging as a key solution to allow different applications to exchange and to reason about 
information in the system. Ontologies provide a mechanism to represent and store domain specific 
knowledge. An ontology usually refers to a set of concepts or terms that can describe some area of 
knowledge or build a representation of it. Ontologies provide a set of well defined, structured and agreed 
terms in order to disambiguate communication exchange between applications (software agents, 
programs, etc). An ontology based component retrieval method should be able to exploit the additional 
knowledge embedded in domain ontologies to augment or revise a user’s initial query. This use of 
ontologies to take into account the semantics of the application domain should result in greater query 
flexibility, augmentation and user satisfaction. 
 

 25



4.1.1 XCM Component Ontology 
 
The aim of this component Ontology presented in [28] is to provide (i) a standard for the definition of 
components that unifies the differences between different models (ii) a standard interface for component 
searching. For each component it defines 2 dimensions: features that are composed by the set of 
properties, methods and events; and design which describes how a component is constructed by using 
existing components. As a result XCM is able to hold information for each component regarding: 
 
• General Information: i.e. component name, version, package, language, component model, domain, 

operating system, and publisher. 
• Features: The set of features describes how the component interacts with other components. It is 

composed by properties, methods and events. 
• Property: Is the named attribute of the component. It is described by: 

• Syntax: pType: is the domain type; access: it can be readWrite, readOnly, writeOnly; Style: it 
can be simple, indexed, bound, constraint. 

• Specification: pName: is the property name; desc: holds the property description. 
• Introspection: writeMethod: is the method name to set the property value; readMethod: is the 

method name to get the property value. 
• Method: It holds the interfaces, provided (behavior that can be triggered to other objects) required 

(from the other components to complete its functionality). It is described by: 
• Syntax: returnType: the return domain type; paraType: ordered list of the parameters domain 

type; status: can be provided or required. 
• Specification: mName: the method name; desc: a textual description; pre: the pre-condition; 

post: the post-condition. 
• Event: It is the message used by a component to communicate with other. It is classified as 

published (a component publishes to its recipients to notify something has happened and an 
action must be taken) or consumed (an event that a component subscribes to in others 
components). It is described by: 
• Syntax: eType: the event type; delivery: the event delivery (unicast or multicast); status: 

published or consumed. 
• Introspection: addListenerMethod: method name that registers one or more listener 

components based on the event; removeListenerMethod: method name that removes listener 
components from the event; listenerType: the type of the listener component, represented by 
the listener interface, that are allow to register for the event; listenerMethods: set of one or 
more listener methods that the listener components registering for the event must implement. 
Each listener method is specified by: mName (the method name), returnType (the type of 
value returned from the method) and paraType (ordered list of parameter type required for the 
method). 

• Design: it describes how to construct a composite component connecting pre-existing components. 
• Underlying Component: It is a component use to build up components It is described by: 

• Syntax: comp: the component domain type. 
• Specification: cid: the component instance level; desc: the component instance description; 

role: can be master, client or support. 
• Connection Oriented Composition: It describes how components are connected using events or 

pipe and filtering mechanisms. Components can be classified either as Event Components (that 
fire events) or Listener Components (that listen for events and subsequently trigger specified 
methods in a well-defined manner). This connection is described by: 
• Syntax: Event: the fired event. 
• Specification: rid eCompInstance: the label of an event source component; rid lCompInstance: 

the set of labels of event listener components; eAction: the event action defined under a fired 
event listener interface; lcomposition: the composition of methods: inv (the composition 
invariant), pre (the composition pre-condition), post (the composition post-condition). 

• Aggregation based Composition: It describes aggregation of components into higher level 

 26 



components. For the aggregation components can be classified as Container Component (that 
provide the containment for the containee components) or Containee Component (that is 
aggregated into a container component in the specified position). It is described by: 
• Specification: container: the label of the container component; containee: the label of a 

containee component; location: the location where the containee component is positioned in a 
container component. 

 
Figure 4-2 taken from [51] represents the XCM hierarchical component structure. Here a component is 
defined via (i) general information, (ii) features that contains the component’s set of properties, methods 
and events; (iii) design that encapsulates how a composite component is constructed from other 
components either by connection-oriented and/or aggregation-based compositions. This hierarchical 
structure can be represented as an XML document, while the general structure of the description model - 
the XCM concepts - can be described as an XML schema, as proposed in [28]. 
 

 
Component 

General 
Information 

Feature
 

Design

Property Method Event 

Underlying 
Component

Connection-oriented 
Composition

Aggregation-based 
Composition

 
Figure 4-2 XCM Hierarchical Component Structure [51] 
 
The XCM ontology provides a component ontology which gathers the information that is relevant for the 
IPSComp project component ontology. As a matter of fact the XCM ontology is taken as a base to create 
the component ontology for IPSComp. 
 

4.1.2 Component Ontology for IPSComp Specification 
 
In order to create the Component Ontology for the IPSComp project I took as a base the XCM ontology 
and modified some concepts. Moreover I added to the Component Ontology for the IPSComp project 
quality attributes, the license concept, the price concept and the publisher description concept. The 
modifications applied to the XMC ontology to create the IPSComp ontology as well as the adding to it are 
described in the following sections. 
 

4.1.2.1 Domain 
 
The General Information in the XCM ontology contains the domain concept, but it is represented as a 
String. This concept was change to become a multi value field. The aim behind this change is to avoid the 
problem presented in the faceted-based search scheme with the items that can not fit into one specific 
category or classification. As a matter of fact a component can be related or belong to different domains. 
 

 27



4.1.2.2 Price 
 
The price concept has been added to it. It will help to develop the marketing area of the IPSComp project. 
This concept has been added to the General Information description. It is remarkable to point out that the 
same component can have different prices depending on characteristics such as the number of licenses, 
or even the functionality provided by the component.  
 

4.1.2.3 Quality Attributes 
 
I added to the IPSComp ontology a set of quality attributes. This is important to extend the component 
description. A software component in the IPSComp project scope will most probably be a black box 
software artifact (as stated in the component definition given in the introduction). Besides, the software 
components will be marketable and used by customers in different implementations at later times. The set 
of quality attributes will help in the identification and retrieval of software components. 
 
In [52], the authors identify that most of the software engineering community has been mainly focused on 
the functional aspects of components. As a consequence the quality and extra-functional attributes have 
been left aside. Nevertheless, it is worth it to pay attention to these factors because they can become a 
key point in any commercial evaluation. 
 
There are four main issues when considering quality and extra-functional attributes of software 
components. 
 
• There are several proposed classifications regarding component’s quality attributes. But there is not a 

general consensus on the quality attributes that should be considered. 
• There is a lack of information about quality attributes among the different component’s providers and 

vendors. 
• There is an absence of metrics that could help evaluating quality attributes objectively.  
• Finally the international standards provide very general quality models and guidelines, which are 

difficult to apply to certain domains such as Component Based Software Development (CBSD) and 
Components Off-The-Shelf (COTS). 

 
To overcome these issues Bertoa et al [52] propose a quality model for CBSD based on ISO 9126. The 
international standard ISO 9126 provide definitions and classifications of the quality characteristics of 
software products. In ISO 9126 a quality characteristic is a set of properties of a software product by which 
its quality can be described and evaluated. An attribute is a quality property to which a metric can be 
assigned. A metric is a procedure for examining a component to produce a single data. The quality model 
proposed by the authors defines a set of quality attributes and their associated metrics for the effective 
evaluation of COTS components. This approach is tailored to software components.  
 
Three considerations have been taken into account by Bertoa et al [52] in order to produce the quality 
model:  
• The moment at which a characteristic can be observed or measured, either at runtime (e.g. 

performance) or during the product life cycle (e.g. maintainability).  
• The target users of the model are software developers and software designers. 
• A component is considered as a black box software artifact, so even though the targets for this 

classification are software developers and software designers, the idea is that the specific 
implementation is hidden and can not be modified by them (This is according with the component 
definition the IPSComp project has taken). 

 
Basically three types of transformations were applied by Bertoa et al [52] to the original ISO 9126 to be 
tailored to software components. First of all, the Portability characteristic and the Fault Tolerance, Stability 
and Analyzability sub-characteristic disappeared. Second, two new sub-characteristics appeared 

 28 



Compatibility and Complexity. Third, The Usability characteristics and the Learnability, Understandability 
and Operability sub-characteristics changed their meaning. The quality model characteristics for the 
modified ISO 9126 are briefly explained: 
 
• Functionality: It tries to express the components ability to provide the required services. Its definition 

has not been changed. On the other hand the sub-characteristic Compatibility was added to the 
model, to indicate if former versions of the component are compatible with its current version. 

• Reliability: It keeps the original meaning. The maturity sub-characteristic is used to measure the 
number of commercial versions and the time intervals between them. Furthermore, recoverability 
measures if the component is able to recover from failure and how it does it. 

• Usability: This characteristic has completely changed its definition. The reason behind it is that the 
component’s end users are developers and application designers rather than regular end users. This 
characteristic measures the component’s ability to be used by the application developer during the 
construction of a software product. The Complexity sub-characteristic when integrating and using the 
component within a software product or system has been added. 

• Efficiency: It keeps the original definition, which distinguishes between Time Behavior and Resource 
Behavior. Some people call this characteristic performance. 

• Maintainability: It describes the characteristic of a software product to be modified. Even though on a 
black box component it is not possible to make modifications, the developer must adapt it, configure it, 
and tested to include it in a final application. As a consequence the Changeability and testability are 
sub-characteristic defined. 

• Portability: This characteristic was eliminated, because for software components the ability of a 
product to be transferred from one environment to another must be intrinsic. 

 
The Table 4-1 extracted from [52] shows the quality attributes defined for software components and also a 
complete description of them can be found there. 
 

Characteristics Sub-Characteristic - Runtime  Sub-Characteristic – Life Cycle 
Functionality Accuracy 

Security 
Suitability 
Interoperability 
Compliance 
Compatibility 

Reliability Recoverability Maturity 
Usability  Learnability 

Understandability 
Operability 
Complexity 

Efficiency Time behavior 
Resource behavior 

 

Maintainability  Changeability 
Testability 

Table 4-1 Quality Model for COTS components [52] 
 
In order to measure these characteristics the authors also propose specific metrics. Each quality attribute 
will have a specific metric associated to it. Those metrics are: 
• Presence: It identifies whether an attribute is present or not in a component. It is measured by a 

Boolean indicating if the attribute is present and a String, which states how the characteristic is 
implemented. 

• Time: It measures time intervals. It uses an integer indicating the absolute value and a String 
indicating the units. 

• Level: It is used to indicate the intensity in which an attribute is present it is described by an integer in 
a scale from 0 (very low), 1 (low), 2 (medium), 3(high) and 4 (very high). 

• Ratio: It is used to describe percentages (0 – 100). 
• Indexes: Are defined as derived measures calculated from basics attributes. For instance, the 

Complexity Ratio compares the number of configurable of the component with the number of its 

 29



provided interfaces.  
 
This section describes the quality attributes and the proposed metrics for quality attributes taken from [52]. 
I think the quality attributes are necessary to complete the IPSComp component ontology as stated at the 
beginning of this section. I took this research because it is based on a standard ISO 9126, it is tailored to 
software components and it proposes the metrics for the quality attributes. Nevertheless, concerning to 
the quality attributes these are some issues I want to point out: 
 
• The characteristic Functionality, sub-characteristic Suitability tries to measure how well the component 

fits the user requirements. It is obtained by dividing the number of user required interfaces by the total 
number of interfaces provided by the component. As this attribute is directly related with the end user 
needs, the component provider can not measure it. So it is up to the end user to provide this metric. 
But this attribute will be dependent not only on the component but also on the application on which the 
component is being used, and even worst, on the developer needs. There is not a standard, so an 
application designer might be looking for a component that performs a wide set of interfaces. It is a 
matter of how the application designer defines the set of services he wants to obtain from a 
component. As a consequence even though the quality attribute is clear and the operation to be 
performed in order to obtain the value is also clear and easy to perform, the value depends on the 
user requirements for the specific application. 

• For the characteristic Usability, sub-characteristic Learnability, which tries to measure the time and 
effort needed to master tasks such as usage, configuration, parameterization, or administration of the 
component. This measures is provided by the component provider but should be validated by the end 
user. This is a really subjective metric, because it depends on the knowledge and skills from the user 
who is working with the component. 

 
As a consequence some metrics can become really subjective values, so I think it is necessary to monitor 
them in order to determine the accuracy of its value. 
 
As far as metrics are concern, in [52] each type of metric is defined by certain attributes, for instance 
Presence is measured by a Boolean indicating if the attribute is present and a String, which states how the 
characteristic is implemented; meanwhile Time uses an integer indicating the elapsed time and a String 
indicating the units. The Presence metric does not have units, the Time metric does not have the feature 
as the Presence metric does.  
 
In order to generalize the metric concept for the IPSComp component Ontology, I change the definition of 
the metric to be represented by three attributes:  
 
• Feature which stores the metric name or characteristic to be measured. It might store a relevant value 

for the metric, for instance in a presence metric the feature stores how a particular attribute is 
incorporated by the component. In the security case it could have a value “SSL” which means that the 
security for the component is implemented using SSL certificates. It can be seen as a qualitative 
value. 

• Value which is the amount of the feature being measured. This can be a number, a Boolean, a Scale 
system, etc. It can be seen as a quantitative value. For instance if the metric is a time, it can be a 
number representing the amount of elapsed time. 

• Unit which is the unit used in the metric. 
 
The idea behind these three attributes defining a metric is that new metrics can be incorporated to the 
IPSComp component ontology. Furthermore it provides a context to define concepts to include in the 
ontological analysis of the component description. For instance the feature defined by the metric can be 
included in as an ontological concept that can be related to other concepts. On the other hand, the unit 
concept will fit in the context of a taxonomy to be able to perform comparisons. This standardization 
facilitates the creation of a grammar for the metrics. 
 

 30 



Besides I made the following changes to the Time and the Number metrics: 
 
• Time: It will be measured by a Float instead of an integer. This value represents the elapsed time 

absolute value. 
• Number: In [52] they present the integer metric for some quality attributes, which is only a number. I 

represent this concept with the number metric, but it is important to remark that this metric has the 
other 2 attributes addressed to provide context to the metric. Actually the time metric is a 
specialization of this metric, that has been defined independently and I kept this definition because I 
consider time is a specific domain, which it is worth it to be handle apart. 

 
Finally, after those remarks about quality attributes and changes to the metrics I added the quality model 
IPSComp component description. In the scope of the whole project it is necessary to arrive to some 
standards, which will be adopted for the different actors involved in the project. This quality model has 
been created from the ISO 9126 standard, tailored for software components what makes it a good starting 
point to achieve a well accepted norm. Furthermore, the quality model does not define only quality 
attributes, but also the metric applied to each one of them. On the other hand, the aim behind assigning 
quality attributes for a software component is to provide a set of extra-functional attributes for it.  These set 
of properties must help in the retrieval and evaluation of software components. 
 

4.1.2.4 License 
 
Because the IPSComp project belongs to a commercial initiative, there is information that should be 
included in the IPSComp ontology in order to facilitate the commercialization of components, and to 
reduce legal issues. The concept license is added to the component ontology, it will provide a name and 
the description of the license. A component can have several licenses associated to it. “A software license 
is a type of proprietary or gratuitous license as well as a memorandum of contract between a producer 
and a user of computer software — sometimes called an End User License Agreement (EULA) — that 
specifies the perimeters of the permission granted by the owner to the user”4. 
 

4.1.2.5 Publisher Description 
 
The information stored by this concept is addressed to provide software providers’ information. The 
component producer can be described, in order to gather more information that can help users in the 
retrieval process, but in gender in a marketable place as the IPSComp project is intended to be this 
information offers additional value to customers, helping identifying producers. 
 

4.1.2.6 Specialization Scenarios 
 
Component specialization is a technique presented in [38]. The idea is to give to the component producer, 
who has access to the details of the implementation, the means to identify helpful specialization 
opportunities and to publish them as part of the component interface. These are seen as specialization 
scenarios.  
 
The objective of a component producer is to provide software components applicable to the widest 
possible range of context, having in mind that maximizing reuse, minimizes use. By analyzing the code the 
producer can offer to the consumer, specialization scenarios in order to provide more efficient alternatives 
to the generic version of the component. The scenarios are only written in terms of services specified in 
the port interfaces, because it is the only information available at assembly time.  These specialization 
scenarios are defined providing an extra annotation to the method’s signature in order to indicate whether 
                                                 
4 This definition has been taken from http://en.wikipedia.org/wiki/Software_license  

 31

http://en.wikipedia.org/wiki/Software_license


the return type and parameters are considered static or dynamic. A complete description of the research 
can be found in [38]. This notation on the interfaces has been included in the component ontology for 
IPSComp. 
 
The inclusion of this element in the component description pretends to join the IPSComp project to a PhD 
research [38]. It is addressed to a specific component repository, which differs from the commercial 
standard. It has been included to show that tailoring the proposed ontology will not have an impact over 
the model transformations that I will be explaining further down in the document. It will only add a set of 
methods to the proposed API. It shows the flexibility to include different component types into the 
component description. Further studies should be performed in order to include different information until 
the component description standard is reached. 
 
After creating the IPSComp ontology description taking as a base the XCM ontology, modifying it and 
adding concepts it is worth to show the result in the hierarchical component structure to highlight the 
differences between the IPSComp ontology and the XCM ontology. Now a component is defined not only 
by General Information, Feature and Design, but it has been added the Non-Functional Characteristics as 
shown in Figure 4-3 with the green colored element. The other changes are perceivable at General 
Information level where the domain concept (Section 4.1.2.1) was modified, the domain price (Section 
4.1.2.2), license (section 4.1.2.4) and the publisher description (section 4.1.2.5) were added to the 
IPSComp ontology. It is shown in Figure 4-3 with the green diagonal lines. Finally at the method level the 
Specialization Scenarios were added. It is depicted in Figure 4-3 with the green vertical lines. 
 
 

 
Component 

General 
Information 

Feature
 

Design

Property Method Event 

Underlying 
Component

Connection-oriented 
Composition

Aggregation-based 
Composition

Non-Functional 
Characteristics 

 
Figure 4-3 IPSComp Hierarchical Component Structure 
 
The IPSComp ontology provides means to describe software component in a syntactic, semantic and 
behavioral way. For instance, the syntactic definition can be seen in the methods signature representation. 
The methods represent the set of interfaces the software component offers. The signature of a component 
interface is a syntactic description. It is necessary to add constraints regarding their use. It can be 
achieved by a semantic description. The IPSComp ontology description is able to hold the method’s pre-
condition and post-condition, this allows defining some semantic information. As far as the behavioral 
description is concerned the idea is to store this information in natural language in the description fields 
that belongs to the concepts (Method, Property, Component) in the IPSComp ontology. Additionally some 
of the non-functional characteristics (quality attributes) can store behavioral information (e.g. response 
time can be seen as a behavioral characteristic). 
 

 32 



4.2 Component Ontology for IPSComp Design 
 
The following UML class diagram5 represents the component description ontology for IPSComp detailed in 
the previous section. Because the complete model does not fit properly in the page I have selected some 
classes that will allow illustrating the main ideas, the complete UML class diagram can be found in 
Appendix A - IPSComp Ontology UML Class Diagram. 
 
Figure 4-4 models the IPSComp component ontology. A component has general information and a list of 
quality attributes, which are normal associations. Besides the Component have aggregation associations 
with the Method class, which represents the component’s interfaces; the Property class, which represents 
the component’s state; and the events, which are used to model how a component communicates with 
other components.  
 
On the other hand IPSComp ontology also handles the component’s design (Figure 4-3). It has 2 classes 
to accomplish this task. Each class represents the way a component can be composed by other 
components. These classes are the AggregationBased and ConnectionOriented (Figure 4-4). 
 

                                                 
5 The UML class diagrams were depicted using ‘Poseidon for UML’ (http://www.gentleware.com/index.php). 

 33

http://www.gentleware.com/index.php


 

component 

Type
(from component )

-typeName:String

GeneralInfo 
-version : String 
-packageName : String 
-language : String 
-componentModel : String 
-domain :String 

Post 
(from component ) 
-post : String 

Property 
(from component ) 

<< ReadOnly , ReadWrite , WriteOnly >>-access:
<< Bound , Constraint , Indexed , Simple >>-style:
-pName:String
-desc:String
-writeMehtod:String
-readMethod:String

1pType+

1

Method 
(from component )

<< Provided , Required >>-status : 
-mName :String 
-desc : String 

1 
1 

1 

returnType +

1 

1 

paraType +
* 

AggregationBase

-location:List

Event
(from component)

- eType :String 
<< Multicast , Unicast >>-delivery:
<< Consumed , Published >>-status:EventStatus
- addListenerMethod:String
- removeListenerMethod:String
- listenerType :String

ConnectionOriented 
(from component ) 

-eAction : String 

Invariant 
(from component ) 

- invariant : String 

1 
1 

Pre 
(from component )

-pre :String 

1 
1 1 

event + 
1 

qualityAttribute

QualityAttribute
(from qualityAttribute)

-qualityAttribute:QuealityAttributeISO9126
-measurableAt:MeasureAt
-subCharacteristic:SubCharacteristicISO9126 
-metric:Metric

Scenario 
(from component )

-name : String 
-returnType : String 
-paraType : List 

IPSComp Ontology Component Concept 

Publisher 
-name :String 
-email :String 
-webSite : String 
-phone :String 
-Id : String 

OperatingSystem

-operatingSystem:String

Component

-id:int
-name:String
-desc:String
<< Client , Master , Support >>-role:Role[*]
-comp:String

1 eCompInstance +

1 

1 

1 

1 lCompInstance +

1..* 
1

UnderlyingComponent+
*

1
1

1

*

1

1

1..*

*

* 1 

1 
1 

1

1 

1

1 

listenerMethods +
* 
1 * 1 

1 
1 

1
Cointains + 

1
container

*ContainedIn+1..*
Containee

 
Figure 4-4 IPSComp Component Ontology UML Class  
 
In order to model the Metric concept with the three attributes as explained in section 4.1.2.3 I took the 
following fact into consideration: The value attribute might have different data types among different 
metrics, for instance for a presence metric it is stored as a Boolean data type, meanwhile in a time metric 
it is a float data type. 
 
To handle that behavior and also looking forward to be able to provide a tool for grammatical metric 
comparison an interface IValue has been created. This interface defines two abstract methods to 
manage values (one to get the value the other to set the value). A concrete class to deal with a specific 
data type has an attribute, which data type is equal to the specific data type the class is willing to handle 

 34 



and must implement the IValue interface. 
 
Having explained the IValue concept, let’s consider the Metric concept. In order to model metrics an 
abstract class Metric has been created. The three attributes defining a Metric class feature, value 
and unit are of type IValue. This abstract class provides three methods one to handle the setting of 
each attribute from a String. It takes advantage that all the class attributes implement the IValue 
interface. The UML Class diagram supporting this model is show in Figure 4-5. There is a Metric class 
Factory MetricFactory responsible for creating the concrete Metric classes. 
 
 

metric 

IntValue 
(from metric ) 

- value : int 

StringValue 
(from metric ) 

- value : String 

FloatValue 
(from metric ) 

- value : float 

BooleanValue
(from metric )

-value :boolean

Time
(from metric )

<< create >> + Time ():Time

Presence 
(from metric ) 

<< create >> + Presence ( ) : Presence 

<< interface >>
IValue

(from metric )

+ setValue ( value:String ):void
+ getStringValue ():String

Ratio 
(from metric ) 

<< create >> + Ratio ( ) : Ratio 

Number 
(from metric ) 

<< create >>+Number ( ) : Number 

Metric
(from metric )

- value :IValue
- unit :IValue
- feature:IValue

+ setValue(value:String):void
+ setUnit(unit :String):void
+ setFeature (feature :String ):void

IPSComp Ontology Metric Concept 

Level
(from metric )

<< create >>+Level():Level

MetricFactory
(from metric ) 

+ getMetric ( metric : String ) : Metric 

 
Figure 4-5 IPSComp Metric Concept UML Class Diagram 
 
Turning now to the quality attribute in order to model it, an abstract class QualityAttribute has been 
created. This class has 4 attributes. Three of them correspond to the ISO 9126 classification, they store 
the quality attribute characteristic, sub-characteristic and the instance at which the quality attributes can 
be measured (Runtime or Life Cycle), which were explained in section 4.1.2.3. The forth attribute is of type 
Metric; it represents the metric that can be applied to a quality attribute. 
 

 35



To model a concrete quality attribute it is necessary to create a new class that extends the 
QualityAttribute abstract class. Figure 4-6 depicts the UML class diagram that models the quality 
concept for the IPSComp ontology. In the picture only a few quality attributes are shown, but all of them 
work in the same way. Some classes have been added to model list of values using the enumeration 
pattern. These classes will hold values for the quality attributes characteristics, sub-characteristics, and 
measure moment, among others. A factory class is also modeled in order to create concrete quality 
attribute classes.  
 
 

qualityAttribute 

QualityAttribute
(from qualityAttribute)

-qualityAttribute : QuealityAttributeISO9126
-measurableAt : MeasureAt
-subCharacteristic :SubCharacteristicISO9126
-metric: Metric

Presicion 
(from qualityAttribute ) 

ComputationalAccuracy 
(from qualityAttribute )

Serializable
(from qualityAttribute )

Persistent
(from qualityAttribute)

ResponseTime 
(from qualityAttribute ) 

Throughput 
(from qualityAttribute )

Capacity 
(from qualityAttribute ) 

Memory
(from qualityAttribute )

Disk
(from qualityAttribute)

DataEncription 
(from qualityAttribute ) 

Auditability
(from qualityAttribute)

ErrorHandling
(from qualityAttribute)

Transactional
(from qualityAttribute )

Controllability
(from qualityAttribute )

metric

<< interface >> 
IValue 

(from metric )
+ setValue ( value :String ) :void 
+ getStringValue (): String 

Metric 
(from metric )

-value :IValue 
-unit : IValue 
-feature :IValue 
+setValue ( value : String ):void
+setUnit (unit : String ):void 
+setFeature ( feature :String):void

IPSComp Ontology Quality Attribute Concept 

enumeration

MeasureAt
(from enumeration )

QuealityAttributeISO9126 
(from enumeration )

SubCharacteristicISO9126
(from enumeration )

QualityAttributeFactoryClass 
(from qualityAttribute ) 

+ getQualityAttribute (className :String ) : QualityAttribute 

 
Figure 4-6 IPSComp Quality Attribute Concept UML Class Diagram 
 
The UML class diagrams presented in this section model the IPSComp ontology. The complete UML class 

 36 



diagram can be found in Appendix A - IPSComp Ontology UML Class Diagram. 
 

4.3 Component Ontology for IPSComp Implementation 
 
In this section three main subjects are explained. First of all, based on the UML model for the IPSComp 
ontology presented in the previous section, I implemented the java code for it (Section 4.3.1). Second I 
implemented a Java code generation from a XML file to load component ontology into the java 
implementation (Section 4.3.2). Finally, based on the component ontology for IPSComp Ontology design 
presented in the previous section I implemented IPSComp ontology in PLIB [30] which is an ontology 
manager system based on PLIB specification as explained in section 2.1.4.  
 

4.3.1 Java Code Implementation 
 
The complete UML class diagram (Shown in Appendix A - IPSComp Ontology UML Class Diagram) that 
models the IPSComp ontology was implemented in Java. Based on the IPSComp ontology design 
presented in section 4.2 the considerations I took for the implementation are explained in this section. 
 
Regarding the metric concept and I stated that it is defined by three attributes: feature, value and unit (see 
section 4.1.2.3). Furthermore, I noted that each attribute might have different data types among different 
metrics, for instance for a Presence metric the value attribute is as a Boolean data type, meanwhile in a 
Time metric the value attribute is a float data type. 
 
As shown in Figure 4-5 model I implemented the IValue interface to handle different data types for the 
metric attributes. This interface defines two abstract methods to manage values.  
 
• public abstract void setValue (String value). In the classes that implement the 

IValue interface, this method must set the String that receives as parameter as the value for a 
specific data type or object (float, Integer, String, etc). 

• public abstract String getStringValue (). In the classes that implement the IValue 
interface, this method must return the value as a String data type. 

 
To implement a concrete class to deal with a specific data type has an attribute, which data type is equal 
to the specific data type the class is willing to handle and must implement the IValue interface. As shown 
in Table 4-2, the class FloatValue handles the float data type. It has an attribute of type float and 
the implementation or the methods defined in the IValue interface. The public void 
setValue(String value) method assigns to the value attribute the float representation of the 
String that receives as parameter. Meanwhile the public String getStringValue() returns the 
String representation of the value attribute which is a float. 
 
public class FloatValue implements IValue { 
 private float value; 
 
 public void setValue(String value) { 
  Float aFloat; 
  aFloat = Float.valueOf(value); 
  this.value = aFloat.floatValue(); 
 } 
 
 public String getStringValue() { 
  return String.valueOf(this.value); 
 } 

 37



} 
Table 4-2 Implementation of the IValue interface 
 
Afterwards, each concrete class implementing a particular data type should also provide methods to 
compare values. Each class must be independent and should be responsible of knowing how to be 
compared. The implementation of such behavior will provide the means to create the metric grammar. 
 
After I implemented the IValue interface, I implemented the Metric concept. In order to implement 
metrics I created an abstract class Metric. The three attributes defining a Metric class feature, 
value and unit are of type IValue. This abstract class provides three methods one to handle the 
setting of each attribute from a String (as shown in the snipped code in Table 4-3). It takes advantage 
that all the class attributes implement the IValue interface. 
 
Public abstract class Metric { 
 protected IValue value; 
 protected IValue unit; 
 protected IValue feature; 
 
 public void setFeature (String feature){ 
  this.feature.setValue(feature); 
 } 
 public void setUnit (String unit){ 
  this.unit.setValue(unit); 
 } 
 public void setValue (String value){ 
  this.value.setValue(value); 
 } 
} 
Table 4-3 Abstract Class Metric 
 
The class that implements a concrete metric must extend the Abstract Metric class. In the 
constructor of the concrete class the specific value type for the metric attributes, which is a class, 
implementing the IValue interface must be specified. For instance, to implement the Time metric the 
feature attribute must be a StringValue class, the value attribute must be a FloatValue and the 
unit attribute must be a FloatValue, as observed in Table 4-4. 
 
Public class Time extends Metric { 
 public Time() { 
  this.feature = new StringValue(); 
  this.value = new FloatValue(); 
  this.unit = new StringValue(); 
 } 
} 
Table 4-4 Concrete Metric Class 
 
Additionally I added to the metric concept implementation a Factory Pattern combined with an 
Enumeration Pattern. The Enumeration holds the different metrics names defined for the component 
domain (presence, level, time, ratio, number, which are explained in section 4.1.2.3). The 
MetricFactory class receives a metric name and returns an instance of the concrete class representing 
the desired metric. 
 
Turning now to the quality attribute implementation, I created an abstract class QualityAttribute. This 
class has 4 attributes (Table 4-5). Three of them correspond to the ISO 9126 classification, they store the 
quality attribute characteristic, sub-characteristic and the instance at which the quality attributes can be 

 38 



measured (Runtime or Life Cycle). The forth attribute is of type Metric; it represents the metric that can 
be applied to the quality attribute. 
 
Public abstract class QualityAttribute { 
 protected QualityAttributeISO9126 qualityAttribute; 
 protected MeasureAt measurableAt; 
 protected SubCharacteristicISO9126 subCharacteristic; 
 protected Metric metric; 
 . 
 . 
} 
Table 4-5 Abstract Class QualityAttribute 
 
In order to implement a concrete quality attribute it is necessary to create a new class that extends the 
abstract class QualityAttribute. In the constructor of the concrete class the specific Metric has to be 
initialized as shown in Table 4-6, were the Auditability quality attribute uses a Presence metric to be 
measured. 
 
Public class Auditability extends QualityAttribute { 
 public Auditability() { 
  this.qualityAttribute = QualityAttributeISO9126.FUNCTIONALITY; 
  this.subCharacteristic = SubCharacteristicISO9126.SECURITY; 
  this.metric = new Presence(); 
  this.determineMeasurableAt(); 
 } 
} 
Table 4-6 Concrete Quality Attribute Class 
 
I added some classes to the implementation to define list of values following the enumerate pattern. These 
classes will hold values for the quality attributes characteristics, sub-characteristics, and measure 
moment, among others. A factory class pattern is implemented in order to create concrete quality attribute 
classes. A concrete class for each quality attribute must be implemented, but the structure is simple it has 
a constructor that initializes its ISO 9126 classification as well as the concrete metric that has be defined 
to handle the quality attribute measure.  
 
I have provided the Java implementation for the IPSComp ontology. This implementation can be extended 
to include a grammar for the quality attributes as well as include new quality attributes when needed. It is 
necessary to monitor the IPSComp ontology to incorporate changes as the domain evolves. 
 

4.3.2 IPSComp Java Code Generation from a XML file 
 
The IPSComp ontology has a XML representation. In order to load a component which is an instance of 
this ontology represented by an XML file I am using the JDOM6 parser. I implemented the module 
responsible for loading a component description into the Java implementation ontology model with a 
visitor pattern. This pattern allows creating different visitors depending on the task that must be performed 
on the element that belongs to the collection. I had into account two extra considerations: 
 
• The visitor pattern is able to act in a specific way according to the element it is visiting. But for this 

case when the JDOM parser traverses the XML file all the nodes are of the same type, so base on the 
XML tag that is being visited a class will be created. This class will represent an explicit XML tag. To 
implement this class instantiation process I implemented a factory pattern. It works as follows a Java 

                                                 
6 JDOM http://www.jdom.org  

 39

http://www.jdom.org/


class has been created for each XML tag it is worth it to process. The XMLFactory class receives the 
XML tag name and according to it, it creates a class that handles the component description 
instantiations retrieving the right values from the xml file.  
 

• To allow easy modification in the XML file, and also to handle different XML files the visitor pattern is 
implemented using reflection. The class MethodFinder provides means to handle the reflection in 
order to bind to the correct visit method at run time. 

 
A part of the UML representation of the model is shown in Figure 4-7. This figure only depicts one specific 
visitor and shows only some of the classes implemented a few XML tags, but the whole idea can be 
inferred from there because the mechanism behind the other tags is exactly the same. 
 
 

XML File Load 

xmlParser 
<< interface >>

IXMLTag
(from xmlParser )

+ accept ( visitor :IVisitor ):void

<< interface >>
IVisitor

(from xmlParser )

+visit (xmlTag:IXMLTag ):void

JDomLoadParserTraversal
(from xmlParser ) 

+process (xmlFile : java.io.File ):void

MethodFinder 
(from xmlParser ) 

+ getPolymorphicMethod (xmlTag :IXMLTag ,visitor : IVisitor):java.lang.reflect.Method

XMLTagFactory 
(from xmlParser )

+getXMLTag (tag :String,element :org.jdom.Element ):BaseXMLTag

BaseXMLTag
(from xmlParser )

- tag :String
- element:org.jdom.Element

+ accept (visitor:IVisitor ):void

XMLGeneralInfoTag 
(from xmlParser )

+ loadModel (component : Component ):void 

<< interface >> 
IANotherXMLTag 
(from xmlParser ) 

+ loadModel (component : ) : void 

XMLScenarioTag 
(from xmlParser )

+ loadModel (component : , scenario :): void 

VisitorLoadModel 
(from xmlParser )

-component :Component 
-method:Method
-property :Property
-event:
-price:Price
-scenario:Scenario
-qualityAttribute :
-metric:Metric

+visit(xmlTag:XMLGeneralInfoTag ) : void 
+visit(xmlTag:XMLScenarioTag ): void 

 
Figure 4-7 Visitor Pattern with Reflection to load a XML file – UML Class Diagram 
 

4.3.3 IPSComp Ontology Implementation PLIB 
 
Once the IPSComp ontology has been defined, it has been included into PLIB. The idea behind this point 
was to test the inclusion of the IPSComp ontology into an ontology manager system, and to join the 
ontology manager system with the Java implementation. PLIB provides a Java API to interact with the 
ontologies defined in it. There was not a specific reason to use PLIB, actually it was available, but later in 
the project we realized that it was not completely tested so we could introduce the IPSComp ontology in 
PLIB but could no finalize the test. This section describes the details of the test.  
 
The data model used to describe ontologies in PLIB is an OO data model known as the PLIB data model. 

 40 



Thus, and in order to comply with the 6-tuple ontology based definition (Section 2.1.4), the first step is to 
define a set of classes (C) all gathered in a classification hierarchy. For that purpose (and according to the 
underlying PLIB data model) PLIBEditor makes possible to describe each class on the basis of four 
classes’ categories: 
 
- Item: It enables the modeling of any type of entity of the application domain that corresponds to an 
autonomous and stand-alone abstraction as a class. It is a super type intended to be sub-typed to define 
the nature of the objects. Nevertheless, it is not defined as ABSTRACT to enable its instantiation to model 
the classes that are super-classes of two classes corresponding to two different kinds of objects (e.g., 
components and materials). 
- Component: It captures the dictionary description of a class of items that represent, at some level of 
abstraction, parts or components. A property of which the data type is defined by a component_class 
stands for the aggregation relationship. 
- Material: It captures the dictionary description of a class of materials. Materials are used to define 
properties of parts or components. Materials are associated with an idea of amount, they may not be 
counted. A property of which the data type is defined by a material_class captures that some (part of a) 
product is made of, or contains, some material. 
- Feature: It captures the dictionary description of items that represent one aspect of another item and that 
are themselves associated with properties. 
 
All these definitions come from ISO13584-42 and ISO13584-24. In the next ISO13584 release, it is 
expected that all this stuff will be simplified and only one category will remain items. PLIB tools will be 
updated consequently. 
 
In PLIB Editor, these categories appear explicitly through category containers. For the component 
ontology description, it was necessary only to focus on the "items" category, and then deploy a 
classification hierarchy under this particular category from the UML class diagram that defines the 
IPSComp ontology. 
 
While introducing the ontology in PLIB it was necessary to define lists. This fact will be illustrated with an 
example. The component IPSComp ontology has a class Type that represents the user defined data types 
and primitive data types (Table 4-7). 
  
On the other hand the class Method models an interface belonging to a component. This method has as 
internal collaborators (attributes) a return type, a method name and a list of parameters. These attributes 
will represent the method signature (Table 4-7). 
 
The attribute parametersType is a list of instances of the Type class. PLIB Editor handles this property 
data type as aggregate data types. Unfortunately the aggregate type definition has not been tested very 
intensively, but at the minimum, it is possible to find all the instances required for describing an aggregate 
structure in the physical file. 
 
Class Type { 
   String dataTypeName; 
} 
 
Class Method{ 
   Type returnType; 
   String methodName; 
   ArrayList parametersType; 
} 
Table 4-7 Collections in the Component Ontology 
 
Figure 4-8 shows the inclusion of the IPSComp ontology in PLIB, and it illustrates the example explained 
in the previous paragraphs. The Left panel shows the concepts included in the ontology. The specific 

 41



example is related with the Method concept (It is red highlighted in the picture). The list of properties for 
the method includes a paraType which is the list of parameters (It is green highlighted in the picture). It 
shows it is a list, and the element type the list contains is another concept in the ontology, the Type 
concept (It is yellow highlighted in the picture). 
 

 
Figure 4-8 PLIB Editor IPSComp Ontology – Screen Shot 
 
Once the IPSComp ontology has been included the next step is to describe instances of the given 
ontology. PLIB Editor is currently being improved (not sure that the aggregate data type is supported at 
the content level). As soon as a new stable release (maybe with some restrictions) will be available, this 
can be tested. 
 
Concluding, it was possible to include the IPSComp ontology into an ontology management tool in this 
case PLIB it indicates that the ontology can be handle by the system. Because it was not possible to 
instantiate an instance of the IPSComp ontology, the test regarding the connection through its Java API 
with the Java implementation could not be performed. Nevertheless, PLIB allows the integration of already 
defined ontologies; the idea is that in such system the related domain ontologies should be specified in 
order to accomplish the IPSComp specification goals that pursues to relate the component ontology with 
other domain ontologies to create a market place for software components. 
 

4.4 Integrating Software Component Repositories 
 
It is important to highlight that nowadays there are some component repositories already developed 
available through the web, and in the IPSComp project scope it will be really helpful to find means to 
incorporate or interact with those existing repositories and not only develop and post new components in 
our IPSComp platform. This issue will be undertaken with a Model Driven Architecture (MDA) perspective. 
Before going into the detail of the software component repositories integration, it is necessary to provide 

 42 



some terminology that is used throughout the chapter. 
 
• Component Repository: It is a repository that stores software components. In such repository each 

software component has a description associated to it. There are Vendor Repositories (Item {2} Figure 
4-9) and an IPSComp Repository (Item {1} Figure 4-9). All of them are compliant in the definition. 

• IPSComp Component Description (Item {3} Figure 4-9): It is the textual description of a component 
in the IPSComp repository. The IPSComp Component Description is compliant to the IPSComp 
ontology described in section 4.1. 

• Vendor Component Description (Item {4} Figure 4-9): It is the textual description that a vendor 
provides for any component included in the vendor repository. 

• IPSComp Component Description Meta-Model (Item {5} Figure 4-9): It is the UML model 
representing the IPSComp ontology. 

• Essence Component Description (Item {17} Figure 4-9): It is the textual component description for a 
component essence description. 

• Vendor Component Description Meta-Model (Item {6} Figure 4-9): It is the UML model for the 
Vendor Component Description. 

• Essence Component Description Meta-Model (Item {15} Figure 4-9): It is the UML model for the 
Essence Component Description. 

• IPSComp Java Implementation (Item {7} Figure 4-9): It is the Java program that implements the 
representation of an IPSComp compliant component description based on the IPSComp Component 
Description Meta-Model. 

• Vendor Java Implementation (Item {8} Figure 4-9): It is the java program that implements the 
representation of a compliant Vendor Component Description Meta-Model. 

• Essence Java Implementation (Item {16} Figure 4-9): It is the java program that implements the 
representation of a compliant Essence Component Description Meta-Model. 

• IPSComp Transformation API (Item {9} Figure 4-9): It is the java implementation that provides the 
means (methods) to create and populate an IPSComp Component Description compliant to the 
IPSComp ontology. It is a jar file that a vendor has to import in the Vendor Framework in order to 
integrate with the IPSComp Framework. 

• Vendor Framework (Item {10} Figure 4-9): It is the java program that implements the representation 
of the Vendor Component Description Meta-Model adding the IPSComp Transformation API. 

• IPSComp Framework (Item {11} Figure 4-9): It is the java program that implements the 
representation of the IPSComp Component Description Meta-Model adding the IPSComp 
Transformation API. 

• IPSComp XML Model (Item {12} Figure 4-9): It is the .xsd file which defines the XML schema 
Definition for the IPSComp Ontology. 

• IPSComp XML Component Description (Item {13} Figure 4-9): It is an instance7 of IPSComp XML 
Meta-Model. This means that the IPSComp XML Component Description is an xml file that conforms 
to the Scheme defined by the IPSComp XML Component Description. 

• IPSComp xml file parser (Item {14} Figure 4-9): It is the executable java program that allows 
transforming an IPSComp XML Component Description into an IPSComp Java Implementation in the 
IPSComp Framework (Section 4.3.2). 

 
Additionally in Figure 4-9 there are three different colored arrows, the colors means: 
Blue: From the element at the origin it is possible to instantiate an element at the end. 
Red: From the element at the origin it is possible implement (code generation) an element at the end. 
Green: It is possible to apply a model transformation from the origin to the end. 
 
Finally, the picture is divided in two layers; the base level has concrete information of the components 
stored in different repositories. The elements in that layer represent a real component description. It holds 

                                                 
7 According to the W3 Org the purpose of a schema is to define a class of XML documents, and so the term "instance 
document" is often used to describe an XML document that conforms to a particular schema [74]. 

 43



the model. On the other hand the upper level contains the Meta-Models, which are the models for the 
models present in the information layer. 
 
 

{5} {12} {15} {6} 

M
E
T
A
I
N
F
O
R
M
A
T
I
O
N 

{11} {9} 

I
N
F
O
R
M
A
T
I
O
N 

 

{7} {8} {13} 

IPS 
Component  

UML Model of  
N components 

UML Model of  
N components 

UML Model of  
N components 

{16} 

{14} 

{1} 
{3} 

{2} 
{4} 

{17} Essence Component Description {11} IPS Comp Framework {5} IPS Comp Description Meta-Model 
 {12} IPS Comp XML Meta-Model {6} Vendor Component Desc. Meta-Model 

{16} Essence Java Implementation {10} Vendor Framework {4} Vendor Component Description 

{15} Essence Component Desc.  Meta-Model {9} IPS Comp Transformation API {3} IPS Comp Description 
{14} IPS Comp XML File Parser {8} Vendor Java Implementation {2} Vendor Repositories 

{13} IPS Comp XML Component Desc. {7} IPS Comp Java Implementation {1} IPS Component Repository 

{17} 

{10} {9} 

Model Transformation 

Instantiation 
Code generation 

 
Figure 4-9 Elements for Software Component Repository Integration 
 
The terminology defined in the previous paragraphs and depicted in Figure 4-9 is going to be used 
throughout the chapter. I will provide a specific example of some elements intended to clarify the 
explanation. In Figure 4-10 there are text boxes containing a number and a description. The number is the 
same number used in Figure 4-9 for the element, the description is a concrete example. For instance, 
items {5} (Appendix A - IPSComp Ontology UML Class Diagram), {6} (Figure 4-12 Figure 4-13 Figure 
4-14) and {15} (Figure 4-15) are UML diagrams representing the Meta-Models. Item {2} is web Vendor 
Repository and item {4} is a Vendor Component Description in a commercial web site (Figure 4-11). Item 
{12} is the .xsd file schema that defines the Meta-Model (Table 4-9 or Appendix F - IPSComp XML Meta-
Model - XSD Schema). Item {13} is an xml file instance of the xsd schema (Table 4-10 or Appendix G - 
IPSComp Component Description – XML Example). 

 44 



 
Figure 4-10 Elements Examples for Software Component Repository Integration 

{5} UML model 
Appendix A 

M
E
T
A
I
N
F
O
R
M
A
T
I
O
N 

I
N
F
O
R
M
A
T
I
O
N 

http://www.componentsource.com
 

{2} Figure 4-11 

{17} Essence Component Description {11} IPS Comp Framework {5} IPS Comp Description Meta-Model 
 {12} IPS Comp XML Meta-Model {6} Vendor Component Desc. Meta-Model 

{16} Essence Java Implementation {10} Vendor Framework {4} Vendor Component Description 

{15} Essence Component Desc.  Meta-Model {9} IPS Comp Transformation API {3} IPS Comp Description 
{14} IPS Comp XML File Parser {8} Vendor Java Implementation {2} Vendor Repositories 

{13} IPS Comp XML Component Desc. {7} IPS Comp Java Implementation {1} IPS Component Repository 

{4} Figure 4-11 

{8} Eclipse java 
project 

{13} XML file Table 
4-10 

{14} Eclipse java 
project 

{7} Eclipse java 
project Table 
4-8 

{11} Eclipse java 
project 

{6} UML model 
Figure 4-12 Figure 
4-13 Figure 4-14 

{15}  UML 
model Figure 
4-15 

{12}  .xsd file 
Table 4-9 

{10} Eclipse java 
project 

 
public class Component { 
 private String id; 
 private String name; 
 private String desc; 
 private GeneralInfo generalInfo; 
 private Role role; 
 private String comp; 
 private List properties; 
 private List events; 
 private List methods; 
 private List qualityAttributes; 
 public Component(String id, String name, String desc, Role role, 
   String comp, GeneralInfo generalInfo) { 
      ………… 
} 
Table 4-8 IPSComp Java Implementation Example Item {7} 
 

 45

http://www.componentsource.com/


 
Figure 4-11 Vendor Respository {2} – Vendor Component Description {4} Example 
 
 <xs:element name="componentSpecification"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="id"/> 
    <xs:element ref="name"/> 
    <xs:element ref="generalInfo"/> 
    <xs:element ref="features"/> 
    <xs:element ref="design"/> 
    <xs:element ref="qualityAttributes"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 ... 
 ... 
 ... 
Table 4-9 IPSComp XML Meta-Model - XSD Schema Example {12} 
 
<componentSpecification xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="C:\EMOOSE\IPSComp.xsd"> 
 <id>111111</id> 
 <name>javax.composite.SliderFieldPanel</name> 
 <generalInfo> 

 46 



  <version>Jaaava</version> 
  <package>javax.composite </package> 
  <language>Java </language> 
  <model>JavaBean</model> 
  <domain>Interface</domain> 
  <domain>MVC</domain> 
  <os>Windows</os> 
  <os>Linux </os> 
 ... 
 ... 
 ... 
Table 4-10 IPSComp Component Description – XML Example {13} 
 
As stated in the MDA specification web site [64]: “The MDA is a new way of developing applications and 
writing specifications, based on a platform-independent model (PIM) of the application or specification's 
business functionality and behavior. A complete MDA specification consists of a definitive platform-
independent base model, plus one or more platform-specific models (PSM) and sets of interface 
definitions, each describing how the base model is implemented on a different middleware platform. A 
complete MDA application consists of a definitive PIM, plus one or more PSMs and complete 
implementations, one on each platform that the application developer decides to support.” 
 
The aim pursued by using the MDA view is to be able to accomplish transformation from one or more 
selected existing Vendor Java Implementations into our IPSComp Java Implementation which is IPSComp 
ontology compliant. The Vendor Component Description Meta-Model describes existing components from 
Vendor Repositories. The IPSComp Component Description Meta Model is our component description 
ontology presented in section 4.2. 
 
A Walkthrough the Research Process: 
 
First of all, in order to apply the MDA transformation it is necessary to obtain the different meta-models. 
The IPSComp ontology has an UML class diagram representation (section 4.2), the IPSComp Component 
Description Meta-Model. Then it is necessary to find out Vendor Component Description Meta-Models. I 
accomplished such a task by browsing the web. A couple of web sites, which sell software components 
(Vendor Repositories), were selected. These web sites neither provide the Vendor Component 
Description Meta-Model nor the UML model. I created a Vendor Component Description Meta-Model 
that supports the component description in different web sites (Vendor Repositories). This task was 
performed for three Vendor Repositories: http://www.componentsource.com Figure 4-12, 
http://devcatalog.com Figure 4-13 and http://www.ecots.org Figure 4-14.  Those figures depict the UML 
class diagram Vendor Component Description Meta-Model for Vendor Repositories. This is an inferred 
Vendor Component Description Meta-Model, but it leads to follow the idea behind the contribution. 
 

 47

http://www.componentsource.com/
http://devcatalog.com/
http://www.ecots.org/


 

enumeration 

The enumeration packager contains the list of values
used by the model. Commercial name of 

different programming 
languages and IDEs 

programmingLanguage
(from enumeration)

-programmingLanguage:String

i.e. 32Bits

Architecture
(from enumeration )

-architecture:String

OperatingSystem
(from enumeration )

-operatingSystem : String

componentType
(from enumeration ) 

- componentType : String 
It holds the components
underlying architecture
EJB, CORBA, :NET

ProductType
(from enumeration ) 
- productType : String 

It can be Tool or Component

Platform 
(from enumeration )

- platform : String 

component 

Documentation 
(from component ) 
- type : String 
- file : byte 

Note
(from component )

- author : String
- comment:String
- date : Date

AssetValue 
(from component)

- manMonthResearchDevelopment : float 
- manMothSkillFactor : int 
- linesCode : double 

License
(from component ) 
-name:String
-Description:String 

Component
(from component )

-id:int
-name:String
-primaryCategory:Category
-abstract:String
-language:String
-downloads:int
-keywords:List
-componentType:componentType
-architecture:Architecture
-operatingSystem:List
-builtUsing:List
-platform:List
-diskSpace:float
-diskSpaceMeasure:String
-memory:float
-memoryMeasure:String

Publisher
(from component )

- name : String
- email : String
- webSite : String
- phone : String
- id : String 
- description:String

Review
(from component )

Price
(from component ) 
- price : float 
- currency : String 
- description : String 
- conditions : String 

Microsoft, IBM, 
oracle, Borland,
etc

Category
(from enumeration)

-category:String

Categories to classify 
components: Data Validation,
File Handling, Credid Card
Validation, etc 

* 

* 

http://www.componentsource.com 

1..*

1..* 

 
Figure 4-12 http://www.componentsource.com Vendor Component Description Meta-Model 
 

 48 

http://www.componentsource.com/


 

enumeration 

component 
Component

(from component)

-id:int
-title:String
-description:String
-technicalDetail:String
-version:String
-type:Type
-requirements:String
-downloadLink:String
-downloadSize:String
-downloadType:downloadType
-price:float

Publisher 
(from component)

- name : String 
- webSite : String 
- id : String 
- description : String

Classification 
(from component) 

- category : Category 
- subCategory : SubCategory 
- language : Language 
- technology : Technology 

ScreenShot
(from component) 
- screenShot : byte 

Comment 
(from component)

- author : String 
- comment : String
- date : Date 

Category
(from enumeration)

- category : String

subCategory
(from enumeration) 
-category:Category 
-subCategory:String 

Language
(from enumeration) 
- language : String 

Technology
(from enumeration)

-language:Language
-technology:String

Contains the list of values 
used by the model. GUI, databases,

 web, etc.

NET/C#, Java, C/C++
Delphi, etc 

EJB, JSP, ASP, 
COM/DCOM, etc 

1..*

* 
Replies+
*

Type 
(from enumeration) 
- type : String 

The site classifies 
the software artifacts
Component and 
Application 

0..1 

downloadType
(from enumeration)

- downloadType : StringTrial, Demo, Full

http://devcatalog.com 

The subCategory is
related to a Category

 
Figure 4-13 http://devcatalog.com Vendor Component Description Meta-Model 
 

 49

http://devcatalog.com/


 

enumeration 

component 
Component

(from component )

-id : int 
-name :String
-overview : String
-url : String[] 
-cotsFamily : List
-deliveryMode:List
-operatingSystem:List
-marketIntroductionYear:int
-version : String
-frecuencyReleases:String
-partners : List
-size : String 
-totalUsers : int

Producer 
(from component )

-contact : String 
-incorporationYear : int 
-organizationType :OrganizationType
-swDomain :List 
-employees : int 
-sales : double 
-overview : List 

Project 
(from component )
-id : int 
-name :String 
-description : String 
-URL : String 

Documentation
(from component )

-description:String
-URL:String*

Tool 
(from component )
-id : int 
-name :String 
-description : String 
-URL : String 

License 
(from component ) 
- type : String[] 
- Description :String 

OperatingSystem 
(from enumeration ) 

-operatingSystem : String 

OrganizationType 
(from enumeration )

- organizationType : String

SoftwareClassification 
(from enumeration )

-softwareClassification:String 

deliveryMode 
(from enumeration ) 
-deliveryMode : String 

LicenseType
(from enumeration )

-licenseType:String

Contains the list of values 
used by the model. COTS Editors, COTS Service 

Provider, University, etc.

Internet, Security, Sytem, 
Data Management, 
Multimedia, 
Office/Business, etc

Packaged Application, 
Hosted Application, etc

Open Source License, OSI Approved License, 
Apache Software License, Partly open-source, 
Proprietary License, etc 

1..*

http://www.ecots.org 

Organization
(from component )

-id:int
-name:String
-description:String
-URL:String

1..*

Customer 
(from component )

MailingList

-responsable:String

Forum

-name:String

UserClub

AditionalTool + 
*

referenceCustomer +

* 

1..*

*

 
Figure 4-14 http://www.ecots.org Vendor Component Description Meta-Model 
 
Secondly, once the Vendor Repositories were searched and the different Vendor Component Description 
Meta-Model created, it was necessary to compare those meta-models between them and with the 
IPSComp Component Description Meta-Model in order to identify commonalties and differences. Actually 
the aim behind this task was to come up with an intermediate model. Such a model will contain those 
elements that are essential for a component description (Essence Component Description Meta-Model), in 
the domain chosen, which is the commercial web sites for component repositories. These commercial web 
sites selling software components produce a components market. 
 
The Vendor Repositories selected provide more or less the same sort of information for the components 
stored in them. On the first hand they have a set of software components and a set of producers. For the 
producers they display the name, contact information (web site, email) and a brief producer description. 
As far as the software component is concerned, the component has a name, a textual description, some 
technical specification regarding the architecture on which it is built up, the programming language, the 

 50 

http://www.ecots.org/


operating system, a classification based on a set of keywords, a producer, a price, some of them have 
license information. Based on that information those web sites promote the description and marketing of 
the goods offered by them, software components. 
 
These Vendor Repositories also provide the same means for searching. The most common techniques 
these Vendor Repositories provide for searching are keyword-based and browsing (explained in section 
2.2). They might have an ontology, a taxonomy or a controlled vocabulary to classify components. Another 
characteristic found (explicitly documented in http://www.componentsource.com) is that the search is not 
case sensitive, but on the other hand it will present different results if the words included in the search are 
in singular or plural. After the comparison between the different Vendor Component Description Meta-
Models and the IPSComp Component Description Meta-Model the Essence Component Description Meta-
Model created is also modeled as an UML class diagram, and shown in Figure 4-15. 
 
 

enumeration 

component 

Component
(from component)

- id : int 
- name : String 
- description : String
- version : String
- programmingLanguage:programmingLanguage
- Language : List
- componentModel:ComponentModel
- keywords : List
- requirements:String
- operatingSystems:List
- domain : List 
- classification:List

Publisher
(from component)

- name : String 
- email : String 
- webSite : String
- phone : String 
- id : String 
- description : String

Price 
(from component ) 
- price : float 
- currency : String 
- description : String 

License 
(from component ) 
- name : String 
- Description : String 

OperatingSystem
(from enumeration)

- operatingSystem:String

Language
(from enumeration)

-language:String

programmingLanguage
(from enumeration)

- programmingLanguage:String

ComponentModel 
(from enumeration ) 

- componentModel : String 

Contains the list of values 
used by the model. 

It represents natural
languages: English, 
French, Spanish, etc.

Commercial name of
different programming
languages and IDEs

It holds the components
underlying architecture
EJB, CORBA, :NET

* 

1..* 

Essence Component Description Meta-Model

 
Figure 4-15 Essence Component Description Meta-Model 
 
Taking into account the MDA description it is possible to state that so far there are five models. Three of 

 51

http://www.componentsource.com/


them correspond to each one of the three Vendor Component Description Meta-Models. The fourth one is 
the IPSComp Component Description Meta-Model. The fifth one is the Essence Component Description 
Meta-Model that was created by comparing the other four models. The idea is to be able to translate a 
Vendor Java Implementation (Item {8} Figure 4-9) into the IPSComp Java Implementation (Item {7} Figure 
4-9). The first thing that has come out from the analysis is that there is information which should be 
included in the IPSComp ontology such as license, price and publisher description.  Refer to section 4.1.2 
to see in detail what we have added to the IPSComp Ontology. 
 
On the other hand, having a look at the meta-models, most of the fields have been represented as string 
data types. Basically the idea is that the transformation will behave like a mapping, in which the attributes 
of one meta-model will be translated to the attributes of the Essence meta-model. This can be achieved by 
an API. The IPSComp Transformation API provides a method to create an Essence Java Implementation. 
Then by means of the methods included in the IPSComp Transformation API the user must populate the 
component description. Because not all the fields present in the Vendor Component Description are in the 
Essence Component Description some fields will be left out outside.  
 
I have implemented a prototype as part of the research, the IPSComp Prototype. The IPSComp prototype 
includes the IPSComp Framework and the Vendor Framework for the Vendor Repository 
http://www.componentsource.com. In the IPSComp prototype the IPSComp Framework has a class 
GenericRepository that represents a Component Repository. In the real project implementation this 
most probably would be implemented in a database. The GenericRepository class implements the 
singleton pattern to simulate the back end storage device. In the IPSComp prototype this class provides 
the IPSCopmp Transformation API methods to create or retrieve an Essence Java Implementation. It will 
manage a component id; it will be composed from the id the component has in the Vendor Repository plus 
the Vendor Repository name. The Essence Java Implementation is implemented in the IPSComp 
Transformation API by the GenericComponent class. 
 
Scenario Model Transformation using the IPSComp Transformation API.  
 
Actor: Software component repositories integrator. This scenario allows the actor to perform a 
transformation from a Vendor Java Implementation to an IPSCompt Java Implementation. To accomplish 
a complete transformation the actor must execute five steps, explained in this section: 
• Step 1: Create the Essence Java Implementation. 
• Step 2: Populate the information in the Essence Java Implementation. 
• Step 3: Create the IPSComp Java Implementation. 
• Step 4: Add information from the Vendor Java Implementation to the IPSComp Java Implementation. 
• Step 5: Add information to the IPSComp Java Implementation from a component developed in a 

specific platform (EJB, .NET, CORBA). 
 
A software component repositories integrator can perform a transformation from a Vendor Java 
Implementation to an IPSCOMP Java Implementation using the IPSComp Transformation API. Table 4-11 
shows an example of how the actor accomplishes steps 1, 2 and 3. 
 
First the software component repositories integrator implements a method, in the sniped code the method 
transformToComponentEsscence. The method receives a Vendor Java Implementation 
(ComponentSource) as parameter and it returns an Essence Java Implementation 
(GenericComponent), which is the result of the transformation from a Vendor Java Implementation to an 
Essence Java Implementation. 

 
To generate the transformation to the Essence Java Implementation the repository integrator in lines 1 
through 5 defines some variables. The software component repositories integrator has to retrieve the 
repository (line 5). Then in line 6 it creates an Essence Java Implementation (Step 1). In order to perform 
the transformation depending on the model representation some values might require some processing. In 
lines 7 to 21 the actor performs step 2. For instance, from lines 7 to 9 the id in the Vendor Repository is 

 52 

http://www.componentsource.com/


stored as int, so it has to be converted to String by the software component repositories integrator. 
From lines 14 to 19 it is shown how to handle collections, in this specific case the software component 
repositories integrator traverses the list by using the Iterator class and retrieving the value, the 
IPSComp Transformation API provides methods to include values in the different lists. Lines 20 and 21 
show how to handle a Publisher class. This class supports the publisher IPSComp ontology concept in 
the IPSComp Transformation API. The IPSComp Transformation API provides setter methods to fill out 
the Essence Java Implementation. Then line 22 returns the created Essence Java Implementation. As it 
can be inferred from the example, each repository integrator must know how to handle its own repository, 
and the IPSComp Transformation API provides methods to perform the transformation. 
 
Then to accomplish step 3 the Software component repositories integrator can call the static method 
transformModelToComponentOntology implemented in the class 
ModelTransformationGeneric included in the IPSComp Transformation API, which receives an 
Essence Java Implementation (GenericComponent) and returns an instance of the IPSComp Java 
Implementation, as shown in lines 23 to 25. 
 
public static GenericComponent transformToComponentEssence  
          (ComponentSource sourceComponent){ 
1.   GenericRepository genericRepository; 
2.   GenericComponent genericComponent; 
3.   componentSource.Publisher originalPublisher; 
4.   genericComponent.Publisher publisher; 
     . 
     . 
  
5.   genericRepository = GenericRepository.getGenericRepository 
   . 

         ("http://www.componentsource.com"); 
6.   genericComponent = genericRepository.createGenericComponent(); 
7.   IntegerValue = new Integer(sourceComponent.getId()); 
8.   Value = integerValue.toString(); 
9.   genericComponent.setId(value); 
10.  genericComponent.setComponentModel(sourceComponent.getComponentType()); 
 
11.  genericComponent.setName(sourceComponent.getName()); 
12.  genericComponent.setDescription(sourceComponent.getComponentAbstract()); 
13.  genericComponent.addKeyword(sourceComponent.getArchitecture()); 
14.  AList = sourceComponent.getBuiltUsing(); 
15.  Iterator = aList.iterator(); 
16.  While (iterator.hasNext()){ 
17.     value = (String)iterator.next(); 
18.     genericComponent.addKeyword(value); 
19.  } 
20.  publisher = genericRepository.createPublisher(value,  
    originalPublisher.getName(),  
    originalPublisher.getEmail(),  
    originalPublisher.getWebSite(),  
    originalPublisher.getPhone(),  
    originalPublisher.getDescription()); 
21.  genericComponent.setPublisher(publisher); 
     . 
     . 
     . 
22.  return genericComponent; 
} 
 

 53



pub
23. GenericComponent genericComponent =  

lic static void main(String[] args){ 

        transformToComponentEssence (aExternalComponent); 
24. Component = ModelTransformationGeneric.transformModelToComponentOntology 
        (genericComponent); 
25.} 
Table 4-11 Example Scenario Model Transformation Using the IPSComp Transformation API - 
Steps 1, 2 and 3. 
 
As it can be inferred from the previous paragraphs, in the transformation from the different vendor Java 
implementations to the IPSComp Java Implementation there is a first transformation to the Essence Java 
Implementation and then from the Essence Java Implementation to the IPSComp Java Implementation 
(IPSComp Ontology compliant). But from step 1 to Step 3 the transformation can be seen as a dimension 
in the component’s description domain. The fact that supports such statement is that with the Vendor 
Component Description Meta-Model, it can only be achieved a superficial component specification. It is 
superficial in the sense that there is not a complete technical description. The description can be seen in a 
Marketing level dimension. Those meta-models present concepts such as price, licenses, producers’ 
information, component name, component description (in natural language), component architecture, etc. 
 
As a consequence, up to here, the transformation is made in the “marketing” dimension. It will provide a 
first image from a Vendor Java Implementation into an IPSComp Java Implementation by traversing by 
the Essence Java Implementation. 
 
Once the IPSComp Java Implementation has been obtained by performing step 1 through 3, there could 
be fields that have not been translated from the Vendor Component Description. Adding those fields could 
lead towards a more complete and accurate component image in the IPSComp Repository. The IPSComp 
Transformation API provides methods to populate the IPSComp Component Description. 
 
To clarify the point exposed in the previous paragraph it is easier to take a specific example developed in 
the IPSComp prototype. The Vendor Component Description for the Vendor Repository 
http://www.componentsource.com has fields, which describe two component prerequisites: Disk space 
required and Memory required. These characteristics have been included in the IPSComp ontology as 
quality attributes. So once the transformation has been applied (see Table 4-11 Example Scenario Model 
Transformation Using the IPSComp Transformation API - Steps 1, 2 and 3.), it will be useful to add the 
prerequisite information. The software component repositories integrator accomplishes this using the 
IPSComp Transformation API as shown in Table 4-12 (Step 4). 
 
/** After analyzing the information the user can use the component 
qualityAttribute package included in the IPSComp Transformation API to introduce 

lity attributes in the IPSComp Java Implementation.**/ qua
1. QualityAttribute qualityAttribute; 
2. String value; 
3. QualityAttribute = QualityAttributeFactoryClass.getQualityAttribute 
         (ComponentQualityAttribute.DISKUTILIZATION.toString()); 
4. value = String.valueOf(componentSource.getDiskSpace()); 
5. qualityAttribute.getMetric().setValue(value); 
6. qualityAttribute.getMetric().setUnit(componentSource.getDiskSpaceMeasure()); 
7. qualityAttribute.getMetric().setFeature("Disk Space"); 
8. component.addQualityAttribute(qualityAttribute); 
Table 4-12 Example Scenario Model Transformation Using the IPSComp Transformation API – Step 
4. 
 
In the snipped code shown in Table 4-12 line 1 defines a QualityAttribute class instance which will 
store quality attribute description to be added to the IPSComp Java Implementation. In line 3 a Factory 
pattern is used to instantiate the object for a specific Quality Attribute, in this case a DISKUTILIZATION. 

 54 

http://www.componentsource.com/


In order to ensure that only defined quality attributes are assigned, an enumeration pattern is used in the 
IPSComp prototype. Lines 4 through 7 fill out the metric values.  Only a person that knows the Vendor 
Component Description Meta-Model will know how to read values, but it will also need to become familiar 
with the IPSComp ontology. Finally in line 8 the new quality attribute is added to the IPSCopm Java 
Implementation. 
 
It can be inferred from the previous example (Table 4-12) that the software component repositories 
integrator will be able to complete the IPSComp Java Implementation after the model transformation has 
taken place. This will allow accomplishing a more precise and complete “image” of the component 
description in the IPSComp Repository. 
 
Before explaining step 5, it is necessary to look into more detail to the Component Repositories that I am 
modeling (Figure 4-16). Those repositories (Components Repositories layer) contain components 
implemented in a specific platform, which can be for instance EJBs, .NET, CORBA, etc. Each component 
has a description associated to it (A component in a Repository layer). There is a model that represents 
each one of the components present in the repository (Component Description Model layer). It is possible 
to create a meta-model for that model. This meta-model is expressed in UML and it corresponds to the 
UML class diagrams for the different Vendor Component Description Meta-Model (Component Description 
Meta-Model layer). As it has been stated after analyzing some of the meta-models, they provide a 
description in the marketing dimension. 
 

Component 
description Component 

EJB, .NET, 
CORBA, etc 

A Component in 
a repository 

A Component in a 
repository consists of a 
software components in a 
specific architecture (EJB, 
.NET, CORBA, etc) and the 
description associated to 
the component (This 
relation is represented by 
the arrow).  

Components 
Repositories C

C
C

C
C

C

Component 
Description 
Meta-Model 

Component 
Description 
Model 

 
Figure 4-16 Component Repositories Domain Layers 
 
 
The next step is going further down in the domain, and start taking specific component architectures. 

 55



Based on the architecture generate a more complete image of the component description in the IPSComp 
Repository. Once the marketing dimension transformation has been applied (up to step 4), the IPSComp 
Transformation API provides means to accomplish the transformation in the second identified dimension, 
the technical description. The idea is to take any specific component architecture (J2EE, .NET, CORBA, 
etc) and continue with the transformation (step 5). As shown in Figure 4-17 the outer rounded rectangle 
represents the set of Vendor Repositories. Then after applying the transformation up to step 2, a 
representation in the Essence Component Description is obtained. It is important to point out that for each 
Vendor Repository the transformation is unique, so that is why the IPSComp Transformation API is 
provided, in this way different Vendor Repositories may use the API to accomplish the transformation. The 
external repositories have a set of components developed in different specific architectures. So applying 
step 5, it produces a more complete image of the Vendor Java Implementation in the IPSComp ontology. 
The outcome of this process is represented in the inner rectangle. 
 

Vendor 
Repository 

A Transf. A 

Transf. n 

Transf. B 

IPSComp 
Ontology 

EJB

CORBA .NET

Component Essence

Vendor 
Repository 

B 

Vendor 
Repository 

n 

 
Figure 4-17 Obtaining a Component Description Image in the IPSComp Ontology 
 
In the IPSComp prototype a specific component architecture transformation has been implemented for 
EJBs. The Enterprise JavaBeans specification is one of the several Java APIs in the Java 2 Platform, 
Enterprise Edition. The specification details how an application server provides server-side objects known 
as Enterprise JavaBeans, or EJBs. Enterprise JavaBeans (EJB) technology is the server-side component 
architecture for the Java 2 Platform. Components (JavaBeans) are reusable software programs that you 
can develop and assemble easily to create sophisticated applications [67]. 
 
J2EE components are packaged separately. Each component, its related files, and a deployment 
descriptor are assembled into a module. A deployment descriptor is an XML document that describes a 
component's deployment settings. For instance an enterprise bean module deployment descriptor 
declares transaction attributes and security authorizations for an enterprise bean. Each EJB JAR file 
contains a deployment descriptor, the enterprise bean files, and related files (Figure 4-18). 
 
To sum up, in order to develop an enterprise bean, it is necessary to provide the following files: 
• Deployment descriptor: An XML file that specifies information about the bean such as its persistence 

 56 



type and transaction attributes. The descriptor is packed in the JAR file under the META-INF/ folder 
and it is called ejb-jar.xml.  

• Interfaces: The remote and home interfaces are required for remote access. For local access, the 
local and local home interfaces are required. Message-driven beans do not use these interfaces. The 
remote interfaces expose the services provided by the EJB component. The home interfaces handle 
the EJB component life cycle. 

• Enterprise bean class: Implements the methods defined in the interfaces. 
• Helper classes: Other classes needed by the enterprise bean class, such as exception and utility 

classes. 
 

 

Assembly
Root 

META-INF

 
 

ejb-jar.xml 

 
 

MANIFEST.MF 
 

 
Sun-cmp-

mappings.xml 

 
 

All .class files for this 
EJB module 

 
Figure 4-18 Structure of an Enterprise Bean JAR [67] 
 
In order to apply the transformation for the J2EE architecture it is necessary to perform tasks on the JAR 
file that contains the EJB component. As defined in the J2EE specification a single JAR file might contain 
more than one EJB component. There is not a rule of thumb to define what component or set of 
components should be included in a single JAR file. As a matter of fact is up to the component provider 
and application assembler to take such decision. There exist some reasons to include several EJB 
components in one JAR file, for instance, if a set of EJB components share the same security parameters 
it is easier to handle just one descriptor to accomplish such behavior. 
 
Because of the fact stated in the previous paragraph it is necessary to take the JAR file and extract the 
ejb-jar.xml file, which is the component descriptor. Then this file has to be processed to find out the tags 
that are necessary to load the EJB description into the IPSComp ontology. To implement the processing 
of the ejb-jar.xml file it has been taken the same approach used to load the IPSComp Ontology from the 
xml file. It uses a visitor pattern combined with Java reflection and the Factory pattern as explained in 
section 4.3.2. 
 
The ejb-jar.xml file stores information that can be mapped to the IPSComp ontology. Even though there is 
a standard this descriptor file might have differences between different application servers. The standard 
deployment descriptor should include the following structural information for each Enterprise Bean: 
The Enterprise Bean's name 
The Enterprise Bean's class 
The Enterprise Bean's home interface 
The Enterprise Bean's remote interface 

 57



The Enterprise Bean's type 
A re-entrancy indication for the Entity Bean 
The Session Bean's state management type 
The Session Bean's transaction demarcation type 
The Entity Bean's persistence management 
The Entity Bean's primary key class 
Container-managed fields 
Environment entries 
The bean's EJB references 
Resource manager connection factory references 
Transaction attributes. 
 
This information is used in the J2EE architecture in order to be able to deploy the EJB, and put them to 
work within the platform. On the other hand there are different J2EE specification versions, for instance, 
EJB applications that conform to the 2.0 specification, to the 3.0 specification, etc. The tags that provide 
useful information for the IPSComp ontology are: 
 
• <description> It is used to provide text describing the parent element.  The description element 

should include any information that the enterprise bean ejb-jar file producer wants to provide to the 
consumer of the enterprise bean ejb-jar file (i.e., to the Deployer). It is used in: cmp-field, cmr-field, 
container-transaction, ejb-jar, ejb-local-ref, ejb-ref, ejb-relation, ejb-relationship-role, entity, env-entry, 
exclude-list, message-driven, method, method-permission, query, relationship-role-source, 
relationships, resource-env-ref, resource-ref, run-as, security-identity, security-role, security-role-ref, 
session. 
 
In the IPSComp ontology, the description tag defined in the parents: <ejb-jar>, <session>, 
<entity> and <message-driven> is important. The <description> within the <ejb-jar> tag 
holds description for the whole descriptor. If this descriptor defines only one EJB, this might contain 
the EJB component description. The <description> within the <session>, <entity> and 
<message-driven> tags has the explanation for a particular EJB component. This will be added to 
the component description in the IPSComp ontology, which will be addressed to increase the 
behavioral component description. 
 

• <ejb-name> It specifies an enterprise bean's name. This name is assigned by the ejb-jar file 
producer to name the enterprise bean in the ejb-jar file's deployment descriptor. The name must be 
unique among the names of the enterprise beans in the same ejb-jar file. It is used in: entity, session, 
message-driven, method, relationship-role-source. 
 
For the IPSComp ontology this field will be used to compare with the name attribute for each 
component described.  
 

• <remote> It contains the fully-qualified name of the enterprise bean's remote interface. Used in: ejb-
ref, entity, session. 
 
The interface referenced in this tag contains all the methods that form the components provided 
services. So the file stored in this tag must be processed to extract the methods and map them to the 
methods in the IPSComp ontology. 
 

• <local> It contains the fully-qualified name of the enterprise bean's local interface. Used in: ejb-
local-ref, entity, session. 
 
The interface referenced in this tag contains all the methods that form the components provided 
services. But this tag is used when the EJB is local, which means it will run in the same Java Virtual 
Machine (JVM). So the file stored in this tag must be processed to extract the methods and map them 

 58 



to the methods in the IPSComp ontology. 
 

• <home> It contains the fully-qualified name of the enterprise bean's home interface. It is used in: ejb-
ref, entity, session. 
 
A bean's home interface specifies methods that allow the client to create, remove, and find objects of 
the same type. The home interface may also provide definitions for home business methods for entity 
beans. Home business methods are methods that are not specific to a particular bean instance. While 
the developer writes the home interface, the container creates the implementation for client 
interaction. In essence, the home interface provides bean management and life cycle methods. 
 

• <local-home> It contains the fully-qualified name of the enterprise bean's local home interface. It is 
used in: ejb-local-ref, entity, session. The interface defined in this tag is analogous to the interface 
defined in the <home> tag but it is used when the EJB is local. 
 

• <ejb-class> It contains the fully-qualified name of the enterprise bean's class. Used in: entity, 
message-driven, session. For the session and entity beans this class implements the components 
provided services.  
 
For the IPSComp ontology, this means that the class specified in this tag contains the EJB’s 
properties. 
 

• <ejb-ref> It is used for the declaration of a reference to an enterprise bean’s home. It lists all other 
enterprise Java beans this bean uses. Used in: entity, message-driven, and session. 
 
It will represent a connection between Enterprise Java Beans. It means that the EJB where the 
reference is defined calls a service from the referenced component. It will be included as an 
underlying component of type support in the IPSComp ontology. 
 

• <ejb-local-ref> element is used for the declaration of a reference to an enterprise bean’s local 
home. Used in: entity, session, message-driven. 
 
It will be handled like the <ejb-ref> tag. It is the equivalent for local beans. 
 

• <security-role> It contains the definition of a security role. The definition consists of an optional 
description of the security role, and the security role name. Used in: assembly-descriptor 
 
In the IPSComp ontology it will be mapped to the non-functional characteristic Controllability, which is 
a security quality attribute. This attribute indicates how the component is able to control the access to 
its provided services. 
 

• <persistence-type> It specifies an entity bean’s persistence management type. It can have as 
possible values Bean or Container. Used in: entity. 
 
The persistence will be mapped to the quality attribute Persitent which indicates whether a component 
can store its state in a persistent manner for later recovery. A Presence metric is used to measure this 
attribute. For the Session and the Message-Driven beans it has false as value. 
 

The IPSComp Transformation API provides a static method method loadEJB (Component, String 
componentName, File jarFile, String tmpPath) which loads information from an EJB jar file 
(Step 5 in scenario Model Transformation using the IPSComp Transformation API). It takes as 
parameters an instance of an IPSComp Java Implementation, an String with the component name as it 
is referenced in the ejb-jar.xml file, if it is an empty string it takes the component name stored in the 

 59



component, a File which is the jar file containing the EJB and a String which is a path where temporal 
files are created to be processed. The information loaded from the ejb-jar.xml file and must process to be 
added to the IPSComp Java Implementation. As explained above some tags have java files names that 
define either an interface or a java class. The way to process such tags is to retrieve the specific class file 
from the JAR containing the EJB and to gather the precise information for each case. For instance the 
<remote> tag contains the class name representing the EJB component provided interface. It is 
necessary to add the .class extension to this file name, extracted from the JAR file and from this file, which 
is an interface extract all the public methods. This information is stored in the Methods feature of 
IPSComp Java Implementation, this provides the method name, return type and parameters list. For the 
method’s return type and parameters list, the data type is the data that will be stored in the IPSComp Java 
Implementation. Besides, because this is the EJB provided interface the method has status “Provided” in 
the IPSComp Java Implementation. If the interface is a subclass of any other interface, it is also necessary 
to perform the same process for all the hierarchical structure. The same process must be performed in the 
<home> tag extracted from the ejb-jar.xml file. The difference between these 2 interfaces is that the 
remote represents distributed EJB components meanwhile the home represents services provided by 
local components, those that run in the same JVM. In order to hold this information, in the IPSComp Java 
Implementation, the method feature has a class representing the method pre condition, so in this class 
either the value “Remote EJB service” or “Local EJB service” will be stored. 
 
The first idea to retrieve the component properties was to take the <ejb-class> tag. Form this tag has 
the java file name that implements the EJB is obtained, the .class file extension added to it, and the Java 
class file corresponding to that file name is extracted from the JAR file and analyzed. The component’s 
properties correspond to the class’ attributes. This approach is against the idea behind EJB components, 
in which the only point of contact is throughout its interfaces. 
 
Taking into account the EJB specification, the component’s interfaces might specify getter and setter 
methods. In [73] the authors define the term virtual field. They assign the name virtual fields to the bean 
fields. They use this term because it is not required that there is actually a field in the defined in the bean. 
The getter and setter method names just imply the name of a field, similar to JavaBean properties. 
 
Taken the virtual field definition by convention the write method name for each property is composed by 
the property name, capitalizing its first letter and preceding it with the word “set”. It is a void method, and 
receives as parameter an instance of the same data type as the property that is setting. On the other 
hand, the method name to read the property composed by the property name, capitalizing its first letter 
and preceding it with the word “get”. The return data type is the same as the property that is reading and it 
does not have parameters. If these methods are found in the interface file the information is also stored in 
the property description in the IPSComp Java Implementation. Furthermore, an EJB property can be 
classified as Read Only, Write Only, or Read Write. This classification is based on the set of getters and 
setters methods defined for each property. For instance, if a property has only a set method it is defined 
as Write Only, if it has only a get method it is defined as Read Only and if it has both method it is a Read 
Write property. 
 
There are some other tags for which it is not necessary to extract additional files from the ejb jar file. The 
information is gathered directly from the ejb-jar.xml file and added to the IPSComp Java Implementation. 
They will be described in the following paragraphs.  
 
The <ejb-ref> and the <ejb-local-ref> tags list other EJBs a bean uses. It means that the EJB 
where the reference is defined calls a service from the referenced component. This will be mapped to the 
IPSComp Java Implementation as an underlying component of type support. That tag has inner tags from 
where it is possible to obtain: <description> is an optional tag and allows the bean provider to supply 
some information about the referenced bean's use. <ejb-ref-name> is the environment name the bean 
should use to create the referenced bean using JNDI. <ejb-ref-type> should be Session or Entity, 
depending on the referenced bean type. 
 

 60 



From the <security-role> tag the security role name <role-name> is going to be extracted. With 
that value a Controllability quality attribute will be added to the IPSComp Java Implementation. The 
Controllability attribute indicates how the component is able to control the access to its provided services. 
It has a Presence metric, so the feature will hold the keyword Security-role and the role name as defined 
in the ejb.jar.xml file and the value is set to true. 
 
The <persistence-type> allows creating a Persistent quality attribute which indicates whether a 
component can store its state in a persistent manner for later recovery. A Presence metric is used to 
measure this attribute. For the Session and the Message-Driven beans it has false as value. For the 
entity bean it has true as value, and the feature can be either Bean or Container depending entity bean’s 
persistence management type. 
 
As a conclusion for section 4.4, it has been shown the path followed to accomplish a transformation from a 
Vendor Java Implementation to an IPSComp Java Implementation. First it was necessary to come up with 
the models that participate in the transformation, those models where created after analyzing some 
Components Repositories on the web. Second by comparing those models with the IPSComp Component 
Description Meta-Model the Essence Component Description Meta-Model was generated. The 
comparison between models drove me to the identification of two dimension in the component description 
domain, market dimension, mostly used in commercial web sites and technical dimension. Besides the 
Essence Component Description Meta-Model, and the traversing of the transformation by the Essence 
Java Implementation is addressed to allow monitoring the transformation, in order to evolve the ontology, 
trying to arrive to a standard in software component description. To perform the transformation the Java 
Transformation API is provided. 
 
Finally, the scenario to accomplish a Model Transformation using the IPSComp Transformation API is as 
follows:  
 
Actor: Software component repositories integrator.  
Purpose: Perform a transformation from a Vendor Java Implementation to an IPSCompt Java 
Implementation. 
• Step 1: Create the Essence Java Implementation. 
• Step 2: Populate the information in the Essence Java Implementation. 
• Step 3: Create the IPSComp Java Implementation. 
• Step 4: Add information from the Vendor Java Implementation to the IPSComp Java Implementation. 
• Step 5: Add information to the IPSComp Java Implementation from a component developed in a 

specific platform (EJB, .NET, CORBA). 

 61



 62 



 
5 Conclusions 
 
The present investigation is aiming to be the starting point to achieve a scalable proper functional 
architecture for the IPSComp project. The task performed during the last couple of months were oriented 
to tackle down some issues, or come up with ideas that can be implemented in the final project. At the end 
of this section there are 2 figures, one shows the proposed architecture, the other has some parts of it 
highlighted with red color and numbered. Those red colored elements represent portion of the system on 
which some kind of work has been done. 
 
This research has presented a component ontology that is proposed to describe components in a precise 
manner (item {2} in Figure 5-2) as well as to facilitate the component search and retrieval process. During 
the definition of IPSComp ontology two dimensions that different users might be interested in, have been 
identified: marketing and technical dimension. These dimensions are related to the type of user that 
interacts with the system. For instance a component-based application developer might be interested in 
the technical description; meanwhile a benchmark analyst would concentrate in the subject of interest 
(price, size, provider-in the marketing area; performance, interfaces, security-in the technical area). The 
objective of this research was not to find the final word as far as component description is concerned, 
actually this topic is still an open issue. As a consequence IPSComp ontology must be able to evolve 
along with the software component domain. But the importance of this approach is to try to find an 
ontology description that can be conceived as a component essence description, which must be validated 
by different actors involved in the process. 
 
Being aware of the facts that the IPSComp ontology is not a final version, and that there are several 
component repositories already developed, MDA provides means to handle these two factors. As a matter 
of fact, I find that MDA provides a common layer of concepts that can be applied at different domains, and 
also to different levels of abstraction. MDA transformation allows us to handle the evolution of the 
component description until the field under research reaches an agreement or standard that will fulfill the 
needs in the sense of component description software domain (items {3} {4} in Figure 5-2). 
 
The component description evolution can be handled by model transformations. For the present research, 
the first transformation, the one that has been addressed as the transformation in the marketing level has 
been implemented in both senses. In section 4.4 it was shown how a component integrator could create 
an image of its components description in the IPSComp ontology. But this transformation has also been 
implemented the other way around. As a matter of fact components described in the IPSComp ontology 
can be transformed to the Essence Java Implementation, and the repository integrator could populate 
Vendor Java Implementation based on IPSComp Java Implementation and Essence Java Implementation. 
This will provide the means to incorporate Essence Java Implementation components to the Vendor 
Repositories. Once this has been done, those components will benefit from the features implemented in 
Vendor Repositories, such as component classification and retrieval. In order to accomplish that the 
IPSComp prototype counts with the means to translate IPSComp Java Implementation into the Essence 
Java Implementation. Once this has been done the repository integrator can use the means in the 
Essence Java Implementation to read data from it. It is also an API. In the same manner, the IPSComp 
Java Implementation has an API to read data from it. The transformation from the IPSComp Java 
Implementation to Vendor Repositories must be understood as a mean to migrate the IPSComp 
Repository if some other approach is taken as standard. This allows sending the components described in 
the system to the model in the standard one.  
 
It is important to point out that this model transformation from the IPSComp Java Implementation to 
Vendor Java Implementation is not included in the IPSComp project requirements. Actually, the site must 
provide means to keep information under certain security levels, in order to guarantee that the information 
will not be used in a harmful way by different competitors. Anyway the aim of this facility to allow migration 
towards other repository if any other standard is taken and this facility should be excluded in the 
deployment phase. 

 63



 
Furthermore, the model transformation facility is provided by means of an API, the IPSComp 
Transformation API. The reason to choose this approach is that as the component description is still an 
open issue, there is a high risk that the description changes with time, which means that either the 
IPSComp Component Description Meta-Model or Vendor Component Description Meta-Model changes. 
The IPSComp Transformation API can be changed accordingly. But there is not control over the changes 
performed in Vendor Component Description Meta-Model. With the IPSComp Transformation API, 
repository integrators can adapt the changes to the transformation or incorporate the changes carried out 
in the ontology IPSComp Component Description Meta-Model. 
 
Even though not final, it is the aim of this research to contribute to the component description that industry 
and academy is trying to reach. As it can be inferred from the IPSComp ontology here proposed in order 
to describe a component there is a wide set of information that must be provided. As a matter of fact, the 
component subscription to the system is a highly time demanding process. The developer must provide all 
the required information to guarantee the correct component description. This process can become 
tedious and there is not guarantee that users will be willing to go through it. For instance, in order to 
register a component in the Componex web site (http://www.componex.biz) (Vendor Repository), it is 
necessary to fill out a 10-page formulary. As a matter of fact, in [15] the author states that he does not 
know if a component producer will be willing to fill out all that information. In fact up to date only 6 
components have been registered and those are examples. That was also one of the reasons to include 
the repository integration analysis in this research. As such we can take advantage of the existing 
repositories. Furthermore, also aiming to decrease this factor the IPSComp Transformation API provides a 
method to include EJBs from a jar file. Anyway in order to accomplish a more accurate description, it is 
mandatory to provide that information either in the Component Description Meta-Model or as explained in 
section 4.4 in the ejb-jar.xml for the specific EJBs case. 
 
Because the software component is an existing artifact, it is necessary to identify which components are 
useful when assembling systems. In order to describe existing components a standardized specification is 
needed. If there is little incentive or pressure to agree on open standards a set of proprietary descriptions 
will be created, that is a reality today. In this research IPSComp ontology has been proposed, by taking an 
existing one called XCM [28] as base, and adding the quality attributes to provide non-functional 
description to the components (item {3} in Figure 5-2). The quality attributes have been tailored to 
components from the ISO 9126 norm [52]. It is a good starting point to take a standard as a base. 
 
It is important to remark that the component provider must provide most quality attribute values, but it is 
necessary to have a feedback from the component end user in order to validate them. This feedback will 
allow obtaining more reliable information. This feedback is also important because even though the quality 
attribute is concrete, and the mechanism to calculate its value is clear it can have a subjective point of 
view. For instance to measure level of complexity to parameterize a component it will depend directly of 
the skills of the person using the component, accordingly a wider sample will be helpful to calculate a 
more accurate value. 
 
Moving on to the Ontology implementation, (item {1} in Figure 5-2) once the IPSComp ontology was 
defined it was included in PLIB. Some issues concerning to the tool did not allow to create instances of the 
ontology. Anyway, PLIB provides a Java API, which will allow handling the ontology elements from an 
external application. The aim of this point was to communicate the system with the ontology manager to 
manipulate the ontology and to perform transformation on different ontologies. 
 
Furthermore the ontology manager system that has to be integrated to the IPSCompo project must be a 
robust one. The IPSComp project will have several ontologies, one of them is the one describing software 
components the IPSComp ontology, but software development industry is dealing, or in contact with a 
variety of domains. As a consequence for each domain a specific ontology must be included in the system 
(item Domain-specific Ontologies and Taxonomies not red highlighted in Figure 5-2). The domain ontology 
is a task that should be performed by a domain specialist. This ontology must evolve with the domain. As 
such this will be a time demanding task, which qualified people should perform. 

 64 

http://www.componex.biz/


 
On the other hand, identification of software components is a complex task. It has to deal with two main 
issues unstructured information to describe components and also with an impressive number of possible 
candidates. To overcome the former the IPSComp ontology is aiming to standardize the component 
description. The number of candidates can not be diminished, but once the standardization has been 
done, we provide means to integrate component repositories in such a way that they will be described with 
the IPSComp ontology, it is possible to create an image of the component description in our repository, 
such description is IPSComp ontology compatible and as such they can share the set of tools that will be 
implemented in the project such as the recommender system. 
 
Different retrieval schemes have been proposed throughout the years to retrieve software components 
(item {4} in Figure 5-2). Those different schemes for software retrieval process are being combined and 
implemented in some commercial sites as well as in research projects. As result of the combination of 
such techniques, researchers have shown an improvement in the retrieving process. For instance, once of 
the drawbacks of Signature Matching-based technique is that the result set can have components which 
do not accomplish the desired behavior, even though the signature matches exactly, take into account the 
strcpy and the strcat functions in the C language, the signature is the same but the task they perform is 
completely different. Preceding this technique with a semantic-based approach it is possible to limit the 
sample on which the signature matching is going to be performed [42]. Such techniques are applied on a 
specific model representation. If it is possible to perform a model transformation towards such model the 
source model instances will benefit from the features provided in the target repository. The IPSComp 
ontology holds the concepts necessary to implement a search tools based on different searching 
techniques. 
 

Development

COTS Ontologies and 
Taxonomies 
(COTS Quality Attributes, 
COTS Classification…) 

Ontology Standards 
(RDF, OWL …) 

Domain-specific Ontologies 
and Taxonomies 
(I&C, Health Care,  
E-Business…) 

Knowledge-
Based support

COTS Component 
Information 

R
e
c
o
m
m
e
n
d
e
r 
 
S
y
s
t
e
m 

PORTAL 

Management

 
Figure 5-1 IPSComp System Architecture [48] 
 

 65



Development

{2} COTS Ontologies and 
Taxonomies 
(IPSComp ontology) 

{1} Ontology Standards 
(PLIB Specific.)  

Domain-specific Ontologies 
and Taxonomies 
(I&C, Health Care,  
E-Business…) 

Knowledge-
Based support

{3} COTS Comp. 
Inf. Model Transf. 

R
e
c
o
m
m
e
n
d
e
r 
 
S
y
s
t
e
m 

PORTAL 

Management

{4} 

 
Figure 5-2 IPSComp System Architecture Analyzed 

 66 



 
6 Future Work 
 
The present research has shown some considerations that must be taken into account for the IPSComp 
project functional architecture. These considerations must be implemented and validated. Some fields will 
definitely need further research in order to accomplish a complete solution which will satisfy the 
requirements from the different users involved in the project.  
 
It is necessary to arrive to a standardized component description. To accomplish this it is essential to start 
monitoring the model transformation, annotating how the ontology evolves, what concepts are being used 
and adjusting the IPSComp Component Description Meta-Model as well as the IPSComp Transformation 
API to support this information. 
 
The IPSComp ontology has provided Non-Functional description by means of quality attributes, which 
have been implemented with 2 main characteristics that look for further research. The former is the 
IValue interface to measure different data types. It should be extended with a grammar to compare its 
values. This will enable the components search based on non-functional characteristics. The second 
characteristic is the feature concept, it provides context to the quality attribute. This must be 
complemented with an external ontology, related to the domain at which the quality attribute belongs to. 
As a consequence an ontology for each quality attribute should be created by an expert in the domain. 
 
The IPSComp ontology will provide the information needed to be able to implement a component retrieval 
tool. As a matter of fact Tansalarak et al. [51] present a description of the components retrieval tool 
created on top of the XCM ontology. Either by extending this search tool including the new features the 
IPSComp ontology has or creating a new retrieval scheme, combining several schemes, a search tool can 
be implemented. It is not just a matter of providing the search tool but evaluating it. For instance, lets 
suppose that the work done in [51] is extended by including a grammar to retrieve components by quality 
attributes. It is not a matter of retrieving less total number of hits from the search but to be more accurate 
with respect to the user needs. 
 
The architecture should be complemented with Users Web Mining techniques. This allows monitoring 
components, users and queries. The impact produced by the lack of standards can be diminished by the 
gathering of information. Besides, feedback from end users relating metric values and components in 
gender are necessary to improve the architecture, as well as the IPSComp ontology. 
 
At the implementation level, it provides means to include EJBs into the IPSComp ontology; this has been 
implemented for EJB version 2.1, it is necessary to include different EJBs versions as well as components 
developed in other architectures such as .NET, CORBA, etc. 
 
On the other hand, Web Services are intended to provide a standardized mechanism to describe, locate, 
and communicate with online applications. In order to offer a service description it uses Web Service 
Description Language (WSDL). WSDL usually describes interface information for publicly available 
methods, data type information for messages, binding information for transport protocols, and address 
information for locating services. If we take a look at the way WSDL describes a Web Service, it can be 
compared to the way IDL specifies a software component. As a matter of fact, both IDL and WSDL do not 
support any sort of semantic description. Taking advantage of this commonality some researches are 
being addressed to provide semantic meaning to components and web services at the same time [15, 42]. 
This will help in the description and discovery of web services as well as components because the same 
approaches can be taken in both domains.  

 67



 

 68 



Appendix A - IPSComp Ontology UML Class Diagram 
 
 

xml Parser

XMLTagF actory
(from xml Parser)

+ getXM LTag ( tag : String , element : org.jdom.El ement):BaseXMLT ag

JDomLoad ParserTraversal
(from xml Parser ) 

+ process ( xmlFile : java.io.Fil e):void

BaseXMLTag
(from xml Parser)

-tag:String
-element:org.jdom.El ement

+accept(visitor:IVisitor):void

MethodFind er 
(from xml Parser ) 

+getPol ymor phicM ethod (xmlT ag : IXMLTag , visitor : IVisitor ): java.lang.refl ect .Method

<< inter face >>
IXMLT ag

(from xml Parser)

+accept(visitor:IVisitor):void

XMLGeneralInfoT ag
(from xml Parser )

+loadModel(component:Component):void

VisitorLo adMod el 
(from xml Parser )

-component:Component 
-method:Method
-property:Property
-event:Event
-price:Price
-scenario:Scenario
-qualityAttri bute:QualityAttribute 
-metric:Metric

+visit(xmlT ag:XMLGeneralInfoTag ): void 
+visit(xmlT ag:XMLScenarioT ag ) : void 

<< inter face>> 
IVisitor

(from xmlParser )
+visit(xmlT ag:IXMLTag ) : void 

XMLScenar ioT ag
(from xml Parser)

+loadModel(component:Component,scenario:Scenario):void

<< inter face >>
IANotherXMLTag
(from xml Parser)

+loadModel(component:Component):void

   

qualityAttri bute

Capacit y
(from qualityAttri bute)

Presicio n
(from qualityAttri bute)

Computation alAccuracy
(from qualityAttri bute)

Throughput
(from qualityAttri bute)

Respo nseTime
(from qualityAttri bute)

Serializable 
(from qualityAttri bute ) 

Persistent 
(from qualityAttri bute)

Disk 
(from qualityAttri bute)

Controllabil it y
(from qualityAttri bute)

Memory 
(from qualityAttri bute)

Qualit yAttrib uteF actoryClass
(from qualityAttri bute)

+getQualityAttribute ( classN ame:String):QualityAttribute

ErrorH and ling 
(from qualityAttri bute ) 

Aud itabilit y 
(from qualityAttri bute ) 

Transaction al
(from qualityAttri bute)

DataEncription
(from qualityAttri bute)

QualityAttrib ute
(from qualityAttri bute)

-qualityAttri bute:QuealityAttributeISO9126
-measurabl eAt:MeasureAt
-subC harac teristic:SubChar acteristicISO9126
-metric:Metric

component 

Method 
(from component ) 

<< Provi ded , Required >> -status : Status 
- mName : String 
- desc : String 

Price
(from component)

-price:float
-currency:String
-descripti on:String

License
(from component)

-name:String
-descripti on:String

metric 

Presence 
(from metric )

<< create >> +Presence () : Presence 

IntValue 
(from metric ) 

-value : int 
FloatValu e

(from metric )

-value:float

MetricFactory
(from metric)

+getMetric(metric:String):Metric

Ratio
(from metric )

<< create >>+Ratio():Ratio

Metric 
(from metric ) 

-value : IValue 
-unit : IValue 
-feature : IValue 
+ setVal ue (value : String ) : void 
+ setU nit ( unit : String ) : void 
+ setF eatur e (feature : String ) : void 

Number
(from metric )

<< create >>+Number():Number

<< inter face >> 
IValu e 

(from metric ) 
+ setValue ( value : String ) : void 
+ getStri ngValue () : String 

Time 
(from metric ) 

- attri bute_1 : int 
<< create >> + Time ( ) : Time 

BooleanValu e 
(from metric ) 

- value : boolean 
Level 

(from metric ) 
<< create >> + Level ( ) : Level 

String Value 
(from metric )

- value : String 

Component 
(from component)

-id : int 
-name : String 
-desc : String 
<< Client , Master , Support >>- role : Role [ * ] 
-comp : String 

Gen eralInfo
(from component)

- version : String 
- packag eName : String
- language : String 
- componentM odel:String
- domain : List 

Publisher
(from component)

- name : String 
- email : String 
- webSite : String
- phone : String 
- id : String 
- descripti on : String

Prop ert y 
(from component)

<< ReadOnl y , ReadWrite , WriteOnl y>>-access:Access
<< Bound , Cons trai nt , Indexed , Simple >>-style:Styl e
-pName : String 
-desc : String 
-writeMehtod : String 
-readMethod : String 

Event
(from component )

-eT ype : String 
<< Multicast , Unicas t >> - deli ver y : Deli ver y 
<< Consumed , Published >> - status : EventStatus 
-addListenerMethod : String 
-removeLis tenerMethod : String 
-listenerT ype : String 

Underl yingComponent + 
* 

Aggreg ationB ase 
(from component ) 
-location : List 

ConnectionOriented 
(from component ) 

- eAction : String 

Invariant 
(from component ) 
- invari ant : String 

* Contai nedIn +
1..* 

Contai nee 

Pre 
(from component ) 
- pre : String 

Post 
(from component )
- pos t : String 

eCompInstance + 
lCompIns tance + 

1..* 

event + 

Operating Syst em 
(from component ) 

- operatingSystem : String 1..* 
* 

T ype 
(from component)

- typeName : String

pType+ 

*

Cointains+ 
contai ner

Scen ario 
(from component ) 
- name : String 
- retur nT ype : String 
- par aT ype : List 

IPSC omp Ontol ogy 
enumer ati on

The enumer ation package contains 
the list of  val ues i mpl emented by 
enumer ati on patter ns. All the 
classes have a Final attribute name 
String. A method to String which 
retur ns the String val ue

St yle 
(from enumer ati on ) Deliv ery

(from enumer ati on)

Role 
(from enumer ati on ) 

EventSt atus
(from enumer ati on)

SubCharacteristicISO9126 
(from enumer ati on ) 

Quealit yAttribut eISO9126
(from enumer ati on)

MeasureAt
(from enumer ati on)

Access 
(from enumer ati on ) Status

(from enumer ati on)

par aT ype + 
* 

retur nT ype +

* 
listenerMethods + * 

*

*

*

 

 69



 70 



 
Appendix B - IPSComp Ontology component Package UML Class 
Diagram 
 
 

qualityAttribute 
QualityAttribute

(from qualityAttribute )

-qualityAttribute : QuealityAttributeISO9126 
-measurableAt : MeasureAt
-subCharacteristic : SubCharacteristic ISO9126
-metric :Metric 

component 

Method
(from component )

<< Provided , Required >> - status : Status 
- mName : String 
- desc: String 

Price
(from component )

-price :f loat
-currency:String
-description :String

License
(from component )

-name :String
-description :String

Component
(from component ) 

- id : int 
- name : String 
- desc : String 
<< Client , Master , Support >> - role : Role [*]
- comp : String 

GeneralInfo
(from component )

-version:String
-packageName :String
-language :String
-componentModel :String
-domain :List

Publisher
(from component )

-name:String
-email:String
-webSite:String
-phone :String
-id:String
-description :String

Property

(from component )

<< ReadOnly , ReadWrite , WriteOnly >>-access:Access

<< Bound , Constraint , Indexed , Simple >>-style:Style
-pName :String
-desc:String
-writeMehtod :String
-readMethod :String

Event
(from component )

- eType : String 
<< Multicast , Unicast >> - delivery : Delivery
<< Consumed , Published >> - status :EventStatus
- addListenerMethod : String 
- removeListenerMethod : String 
- listenerType : String 

UnderlyingComponent+
*

AggregationBase
(from component ) 
- location : List 

ConnectionOriented
(from component ) 

- eAction: String 

Invariant
(from component ) 
- invariant : String 

* ContainedIn + 
1..* 

Containee 

Pre
(from component ) 
- pre : String 

Post
(from component ) 
- post : String 

eCompInstance + 
lCompInstance + 

1..* 

event + 

OperatingSystem
(from component )

- operatingSystem :String

1..*

*

Type
(from component )

-typeName :String

pType+

*

Cointains + 
container 

Scenario

(from component ) 
- name : String 
- returnType : String 
- paraType : List 

IPSComp component Package 

enumeration

The enumeration pac kage contains 
the list of values implemented by 
enumeration patterns. All the 
classes have a Final attribute name 
String. A method to String w hich 
returns the String value 

Style
(from enumeration )

Delivery
(from enumeration )

Role 
(from enumeration )

EventStatus
(from enumeration )

SubCharacteristicISO9126 
(from enumeration ) 

QuealityAttributeISO9126 
(from enumeration )

MeasureAt
(from enumeration )

Access
(from enumeration )

Status
(from enumeration )

paraType+

*

returnType+

* 

listenerMethods + * 

*

*

*

 

 71



 72 



 
Appendix C - IPSComp Ontology qualityAttribute Package UML Class 
Diagram  
 
 

qualityAttribute 

Capacity 
(from qualityAttribute ) 

Presicion 
(from qualityAttribute ) 

ComputationalAccuracy 
(from qualityAttribute) 

Throughput
(from qualityAttribute)

ResponseTime 
(from qualityAttribute) 

Serializable
(from qualityAttribute)

Persistent 
(from qualityAttribute)

Disk
(from qualityAttribute)

Controllability
(from qualityAttribute)

Memory 
(from qualityAttribute) 

QualityAttributeFactoryClass
(from qualityAttribute)

+getQualityAttribute ( className : String ) :QualityAttribute

ErrorHandling
(from qualityAttribute)

Auditability
(from qualityAttribute)

Transactional
(from qualityAttribute)

DataEncription 
(from qualityAttribute)

QualityAttribute
(from qualityAttribute)

-qualityAttribute : QuealityAttributeISO9126
-measurableAt : MeasureAt 
-subCharacteristic: SubCharacteristicISO9126
-metric:Metric 

IPSComp qaulityAttribute Package 

enumeration 

The enumeration package contains 
the list of values implemented by 
enumeration patterns. All the 
classes have a Final attribute name 
String. A method to String which 
returns the String value 

Style
(from enumeration)

Delivery 
(from enumeration ) 

Role
(from enumeration)

EventStatus
(from enumeration)

SubCharacteristicISO9126
(from enumeration)

QuealityAttributeISO9126
(from enumeration)

MeasureAt
(from enumeration)

Access
(from enumeration)

Status 
(from enumeration ) 

 

 73



  

 74 



Appendix D - IPSComp Ontology metric Package UML Class Diagram 
 
 

metric

Presence 
(from metric ) 

<<create >> +Presence ( ):Presence 

IntValue 
(from metric ) 

- value :int 

FloatValue 
(from metric)

-value : float 

MetricFactory
(from metric)

+ getMetric ( metric: String):Metric

Ratio 
(from metric)

<< create >> + Ratio ():Ratio

Metric
(from metric)

-value:IValue
-unit:IValue
-feature:IValue

+setValue(value:String):void
+setUnit(unit:String):void
+setFeature(feature:String):void

Number
(from metric)

<< create >> + Number():Number

<< interface>>
IValue

(from metric)

+setValue(value:String):void
+getStringValue():String

Time 
(from metric)

- attribute_1 :int 
<< create >>+ Time():Time

BooleanValue
(from metric)

-value:boolean

Level
(from metric)

<<create >>+Level():Level

StringValue 
(from metric )

- value :String 

IPSComp mtric Package 

enumeration 

The enumeration package contains 
the list of values implemented by 
enumeration patterns. All the 
classes have a Final attribute name 
String. A method to String which 
returns the String value 

Style
(from enumeration)

Delivery 
(from enumeration ) 

Role
(from enumeration)

EventStatus
(from enumeration)

SubCharacteristicISO9126
(from enumeration)

QuealityAttributeISO9126
(from enumeration)

MeasureAt 
(from enumeration)

Access
(from enumeration)

Status 
(from enumeration ) 

 

 75



 76 



Appendix E - IPSComp Ontology xmlParser Package UML Class 
Diagram 
 
 

 

xmlParser 
XMLTagFactory 
(from xmlParser) 

+getXMLTag(tag:String,element : org.jdom.Element ):BaseXMLTag

JDomLoadParserTraversal 
(from xmlParser) 

+process(xmlFile:java.io.File ):void 

BaseXMLTag 
(from xmlParser)

-tag : String 
-element :org.jdom.Element

+accept ( visitor : IVisitor):void

MethodFinder
(from xmlParser)

+getPolymorphicMethod(xmlTag:IXMLTag,visitor:IVisitor):java.lang.reflect.Method 

<< interface >> 
IXMLTag 

(from xmlParser) 
+ accept (visitor :IVisitor ) : void

XMLGeneralInfoTag 
(from xmlParser ) 

+ loadModel ( component :) : void 

VisitorLoadModel
(from xmlParser)

-component:Component
-method:Method
-property:Property
-event:Event
-price:Price
-scenario:Scenario
-qualityAttribute:QualityAttribute
-metric:Metric

+visit(xmlTag:XMLGeneralInfoTag):void
+visit(xmlTag:XMLScenarioTag):void

<< interface>>
IVisitor

(from xmlParser)

+visit(xmlTag:IXMLTag):void

XMLScenarioTag 
(from xmlParser) 

+ loadModel ( component : , scenario :): void 

<< interface >> 
IANotherXMLTag 
(from xmlParser)

+ loadModel (component : ): void 

  

IPSComp xmlParser Package 

 

 77



 78 



 
Appendix F - IPSComp XML Meta-Model - XSD Schema 
 
<?xml version="1.0" encoding="UTF-8"?> 
<!-- edited with XML Spy v4.2 U (http://www.xmlspy.com) by Administrator (Administrator) --> 
<!--W3C Schema generated by XML Spy v4.2 U (http://www.xmlspy.com)--> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"> 
 <xs:element name="componentSpecification"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="id"/> 
    <xs:element ref="name"/> 
    <xs:element ref="generalInfo"/> 
    <xs:element ref="features"/> 
    <xs:element ref="design"/> 
    <xs:element ref="qualityAttributes"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="generalInfo"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="version"/> 
    <xs:element ref="package"/> 
    <xs:element ref="language"/> 
    <xs:element ref="model"/> 
    <xs:element ref="domain" maxOccurs="unbounded"/> 
    <xs:element ref="os" maxOccurs="unbounded"/> 
    <xs:element ref="prices"/> 
    <xs:element ref="publisher"/> 
    <xs:element ref="license"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="methods"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="method" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="method"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="mName"/> 
    <xs:element ref="desc"/> 
    <xs:element ref="pre"/> 
    <xs:element ref="post"/> 
    <xs:element ref="returnType"/> 
    <xs:element ref="paraType" maxOccurs="unbounded"/> 
    <xs:element ref="scenarios"/> 
   </xs:sequence> 
   <xs:attribute name="status" use="required"> 
    <xs:simpleType> 
     <xs:restriction base="xs:string"> 
      <xs:enumeration value="Provided"/> 
      <xs:enumeration value="Required"/> 
     </xs:restriction> 
    </xs:simpleType> 
   </xs:attribute> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="properties"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="property" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 

 79



 </xs:element> 
 <xs:element name="property"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="pName"/> 
    <xs:element ref="pType"/> 
    <xs:element ref="readMethod"/> 
    <xs:element ref="writeMethod" minOccurs="0"/> 
   </xs:sequence> 
   <xs:attribute name="access" use="required"> 
    <xs:simpleType> 
     <xs:restriction base="xs:NMTOKEN"> 
      <xs:enumeration value="ReadOnly"/> 
      <xs:enumeration value="ReadWrite"/> 
      <xs:enumeration value="WriteOnly"/> 
     </xs:restriction> 
    </xs:simpleType> 
   </xs:attribute> 
   <xs:attribute name="style" use="required"> 
    <xs:simpleType> 
     <xs:restriction base="xs:NMTOKEN"> 
      <xs:enumeration value="Bound"/> 
      <xs:enumeration value="Simple"/> 
     </xs:restriction> 
    </xs:simpleType> 
   </xs:attribute> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="DataEncription"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="characteristic"/> 
    <xs:element ref="lifeCycle"/> 
    <xs:element ref="subCharacteristic"/> 
    <xs:element ref="metric"/> 
   </xs:sequence> 
   <xs:attribute name="metric" type="xs:string" use="required"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="DiskUtilization"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="characteristic"/> 
    <xs:element ref="lifeCycle"/> 
    <xs:element ref="subCharacteristic"/> 
    <xs:element ref="metric"/> 
   </xs:sequence> 
   <xs:attribute name="metric" type="xs:string" use="required"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="addListenerMethod" type="xs:string"/> 
 <xs:element name="amount" type="xs:decimal"/> 
 <xs:element name="cComposition"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="container"/> 
    <xs:element ref="containees"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="cCompositions"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="cComposition" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="callMethod" type="xs:string"/> 
 <xs:element name="characteristic"> 
  <xs:simpleType> 

 80 



   <xs:restriction base="xs:string"> 
    <xs:enumeration value="Efficiency"/> 
    <xs:enumeration value="Functionality"/> 
    <xs:enumeration value="Reliability"/> 
    <xs:enumeration value="Maintainability"/> 
    <xs:enumeration value="Usability"/> 
   </xs:restriction> 
  </xs:simpleType> 
 </xs:element> 
 <xs:element name="cid" type="xs:string"/> 
 <xs:element name="comp" type="xs:string"/> 
 <xs:element name="compInstance"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="comp"/> 
    <xs:element ref="cid"/> 
   </xs:sequence> 
   <xs:attribute name="role" use="required"> 
    <xs:simpleType> 
     <xs:restriction base="xs:NMTOKEN"> 
      <xs:enumeration value="Client"/> 
      <xs:enumeration value="Master"/> 
      <xs:enumeration value="Support"/> 
     </xs:restriction> 
    </xs:simpleType> 
   </xs:attribute> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="compInstances"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="compInstance" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="compositions"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="eCompositions"/> 
    <xs:element ref="cCompositions"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="constraint"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="inv"/> 
    <xs:element ref="pre"/> 
    <xs:element ref="post"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="containee"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="rid"/> 
    <xs:element ref="location" minOccurs="0"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="containees"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="containee" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="container"> 
  <xs:complexType> 
   <xs:sequence> 

 81



    <xs:element ref="rid"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="currency" type="xs:string"/> 
 <xs:element name="desc" type="xs:string"/> 
 <xs:element name="description" type="xs:string"/> 
 <xs:element name="design"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="compInstances"/> 
    <xs:element ref="compositions"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="domain"> 
  <xs:simpleType> 
   <xs:restriction base="xs:string"> 
    <xs:enumeration value="Interface"/> 
    <xs:enumeration value="MVC"/> 
   </xs:restriction> 
  </xs:simpleType> 
 </xs:element> 
 <xs:element name="eAction" type="xs:string"/> 
 <xs:element name="eCompInstance"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="rid"/> 
    <xs:element ref="event"/> 
    <xs:element ref="eAction"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="eCompInstances"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="eCompInstance"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="eComposition"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="constraint"/> 
    <xs:element ref="eCompInstances"/> 
    <xs:element ref="lCompositions"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="eCompositions"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="eComposition" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="eType" type="xs:string"/> 
 <xs:element name="email" type="xs:string"/> 
 <xs:element name="event"> 
  <xs:complexType mixed="true"> 
   <xs:choice minOccurs="0" maxOccurs="unbounded"> 
    <xs:element ref="eType"/> 
    <xs:element ref="addListenerMethod"/> 
    <xs:element ref="removeListenerMethod"/> 
    <xs:element ref="listenerMethods"/> 
   </xs:choice> 
   <xs:attribute name="delivery"> 
    <xs:simpleType> 
     <xs:restriction base="xs:NMTOKEN"> 
      <xs:enumeration value="MultiCast"/> 

 82 



      <xs:enumeration value="UniCast"/> 
     </xs:restriction> 
    </xs:simpleType> 
   </xs:attribute> 
   <xs:attribute name="status"> 
    <xs:simpleType> 
     <xs:restriction base="xs:NMTOKEN"> 
      <xs:enumeration value="Consumed"/> 
      <xs:enumeration value="publish"/> 
     </xs:restriction> 
    </xs:simpleType> 
   </xs:attribute> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="events"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="event" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="feature" type="xs:string"/> 
 <xs:element name="features"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="methods"/> 
    <xs:element ref="properties"/> 
    <xs:element ref="events"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="id" type="xs:string"/> 
 <xs:element name="inv" type="xs:boolean"/> 
 <xs:element name="lCompInstance"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="rid"/> 
    <xs:element ref="callMethod"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="lCompositions"> 
  <xs:complexType> 
   <xs:choice maxOccurs="unbounded"> 
    <xs:element ref="lCompInstance"/> 
    <xs:element ref="op"/> 
   </xs:choice> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="language" type="xs:string"/> 
 <xs:element name="license"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="name"/> 
    <xs:element ref="description"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="lifeCycle"> 
  <xs:simpleType> 
   <xs:restriction base="xs:string"> 
    <xs:enumeration value="Runtime"/> 
    <xs:enumeration value="Life Cycle"/> 
   </xs:restriction> 
  </xs:simpleType> 
 </xs:element> 
 <xs:element name="listenerMethod"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="mName"/> 

 83



    <xs:element ref="returnType"/> 
    <xs:element ref="paraType" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="listenerMethods"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="listenerMethod" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="location" type="xs:string"/> 
 <xs:element name="mName" type="xs:string"/> 
 <xs:element name="metric"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="value"/> 
    <xs:element ref="feature"/> 
    <xs:element ref="unit"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="model" type="xs:string"/> 
 <xs:element name="name" type="xs:string"/> 
 <xs:element name="op"> 
  <xs:complexType> 
   <xs:attribute name="type" type="xs:string" use="required"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="os" type="xs:string"/> 
 <xs:element name="pName" type="xs:string"/> 
 <xs:element name="pType" type="xs:string"/> 
 <xs:element name="package" type="xs:string"/> 
 <xs:element name="paraType" type="xs:string"/> 
 <xs:element name="phone" type="xs:string"/> 
 <xs:element name="post" type="xs:string"/> 
 <xs:element name="pre" type="xs:string"/> 
 <xs:element name="price"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="amount"/> 
    <xs:element ref="currency"/> 
    <xs:element ref="description"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="prices"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="price" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="publisher"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="id"/> 
    <xs:element ref="name"/> 
    <xs:element ref="email"/> 
    <xs:element ref="webSite"/> 
    <xs:element ref="phone"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="qualityAttributes"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="DataEncription"/> 
    <xs:element ref="DiskUtilization"/> 

 84 



   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="readMethod" type="xs:string"/> 
 <xs:element name="removeListenerMethod" type="xs:string"/> 
 <xs:element name="returnType" type="xs:string"/> 
 <xs:element name="rid" type="xs:string"/> 
 <xs:element name="scenario"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="scenarioReturnType"/> 
    <xs:element ref="scenarioParaType" maxOccurs="unbounded"/> 
   </xs:sequence> 
   <xs:attribute name="sName" type="xs:string" use="required"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="scenarioParaType"> 
  <xs:simpleType> 
   <xs:restriction base="xs:string"> 
    <xs:enumeration value="Dynamic"/> 
    <xs:enumeration value="Kill"/> 
    <xs:enumeration value="Static"/> 
   </xs:restriction> 
  </xs:simpleType> 
 </xs:element> 
 <xs:element name="scenarioReturnType" type="xs:string"/> 
 <xs:element name="scenarios"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="scenario" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="subCharacteristic"> 
  <xs:simpleType> 
   <xs:restriction base="xs:string"> 
    <xs:enumeration value="Accuracy"/> 
    <xs:enumeration value="Suitability"/> 
    <xs:enumeration value="Security"/> 
    <xs:enumeration value="Interoperability"/> 
    <xs:enumeration value="Compliance"/> 
    <xs:enumeration value="Compatibility"/> 
    <xs:enumeration value="Recoverability"/> 
    <xs:enumeration value="Maturity"/> 
    <xs:enumeration value="Learnability"/> 
    <xs:enumeration value="Understandability"/> 
    <xs:enumeration value="Operability"/> 
    <xs:enumeration value="Complexity"/> 
    <xs:enumeration value="Time Behavior"/> 
    <xs:enumeration value="Resource Behavior"/> 
    <xs:enumeration value="Changeability"/> 
    <xs:enumeration value="Testability"/> 
   </xs:restriction> 
  </xs:simpleType> 
 </xs:element> 
 <xs:element name="unit" type="xs:string"/> 
 <xs:element name="value" type="xs:string"/> 
 <xs:element name="version" type="xs:string"/> 
 <xs:element name="webSite" type="xs:anyURI"/> 
 <xs:element name="writeMethod" type="xs:string"/> 
</xs:schema> 

 85



 86 



Appendix G - IPSComp Component Description – XML Example 
 
<?xml version="1.0" encoding="UTF-8"?> 
<!-- edited with XML Spy v4.2 U (http://www.xmlspy.com) by Administrator (Administrator) --> 
<componentSpecification xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="C:\Documents and Settings\Administrator\My Documents\EMOOSE\MSc 
Thesis\Development\IPSComp.xsd"> 
 <id>543</id> 
 <name>javax.composite.SliderFieldPanel</name> 
 <generalInfo> 
  <version>Java</version> 
  <package>javax.composite </package> 
  <language>Java </language> 
  <model>JavaBean</model> 
  <domain>Interface</domain> 
  <domain>MVC</domain> 
  <os>Windows</os> 
  <os>Linux</os> 
  <prices> 
   <price> 
    <amount>43.26</amount> 
    <currency>Euros</currency> 
    <description>This component does not have any 
discounts</description> 
   </price> 
   <price> 
    <amount>33.99</amount> 
    <currency>Euros</currency> 
    <description>This price is only for partners</description> 
   </price> 
  </prices> 
  <publisher> 
   <id>SunId</id> 
   <name>Sun Microsystems </name> 
   <email>sun@sun.com</email> 
   <webSite>http://www.sun.com</webSite> 
   <phone>(1) 737 883 2694</phone> 
  </publisher> 
  <license> 
   <name>OpenSource</name> 
   <description>This is an open source software ... </description> 
  </license> 
 </generalInfo> 
 <features> 
  <methods> 
   <method status="Provided"> 
    <mName>addInt</mName> 
    <desc>This is is provided interface to add two ints</desc> 
    <pre>true</pre> 
    <post>true</post> 
    <returnType>int</returnType> 
    <paraType>int</paraType> 
    <paraType>int</paraType> 
    <scenarios> 
     <scenario sName="First scenario"> 
      <scenarioReturnType>Dynamic</scenarioReturnType> 
      <scenarioParaType>Dynamic</scenarioParaType> 
      <scenarioParaType>Dynamic</scenarioParaType> 
      <scenarioParaType>Kill</scenarioParaType> 
      <scenarioParaType>Kill</scenarioParaType> 
     </scenario> 
     <scenario sName="Second scenario"> 
      <scenarioReturnType>Dynamic</scenarioReturnType> 
      <scenarioParaType>Dynamic</scenarioParaType> 
      <scenarioParaType>Dynamic</scenarioParaType> 
      <scenarioParaType>Static</scenarioParaType> 
      <scenarioParaType>Kill</scenarioParaType> 
     </scenario> 
    </scenarios> 

 87



   </method> 
   <method status="Provided"> 
    <mName>multiplyInt</mName> 
    <desc>This is is provided interface to multiply two ints</desc> 
    <pre>true</pre> 
    <post>true</post> 
    <returnType>int</returnType> 
    <paraType>int</paraType> 
    <paraType>int</paraType> 
    <scenarios> 
     <scenario sName="Third scenario"> 
      <scenarioReturnType>Dynamic</scenarioReturnType> 
      <scenarioParaType>Dynamic</scenarioParaType> 
      <scenarioParaType>Dynamic</scenarioParaType> 
      <scenarioParaType>Static</scenarioParaType> 
      <scenarioParaType>Static</scenarioParaType> 
     </scenario> 
     <scenario sName="Forth scenario"> 
      <scenarioReturnType>Dynamic</scenarioReturnType> 
      <scenarioParaType>Dynamic</scenarioParaType> 
      <scenarioParaType>Dynamic</scenarioParaType> 
      <scenarioParaType>Kill</scenarioParaType> 
      <scenarioParaType>Static</scenarioParaType> 
     </scenario> 
    </scenarios> 
   </method> 
  </methods> 
  <properties> 
   <property access="ReadWrite" style="Simple"> 
    <pName>minimumValue </pName> 
    <pType>int </pType> 
    <readMethod>getMinimum </readMethod> 
    <writeMethod>setMinimum </writeMethod> 
   </property> 
   <property access="ReadWrite" style="Bound"> 
    <pName>currentValue </pName> 
    <pType>int </pType> 
    <readMethod>getCurrentValue </readMethod> 
    <writeMethod>setCurrentValue </writeMethod> 
   </property> 
   <property access="ReadWrite" style="Simple"> 
    <pName>fieldWidth </pName> 
    <pType>int </pType> 
    <readMethod>getFieldWidth </readMethod> 
    <writeMethod>setFieldWidth </writeMethod> 
   </property> 
   <property access="WriteOnly" style="Simple"> 
    <pName>minimumSize </pName> 
    <pType>int </pType> 
    <readMethod>getMinimumSize</readMethod> 
   </property> 
   <property access="ReadOnly" style="Simple"> 
    <pName>preferredSize </pName> 
    <pType>int </pType> 
    <readMethod>getPreferredSize </readMethod> 
   </property> 
  </properties> 
  <events> 
   <event delivery="MultiCast" status="publish"> 
    <eType>java.Beans.PropertyChangeEvent </eType> 
   </event> 
   <event delivery="UniCast" status="publish"> 
    <eType>event1</eType> 
    <addListenerMethod>addListener1</addListenerMethod> 
    <removeListenerMethod>removeListener1</removeListenerMethod> 
    <listenerMethods> 
     <listenerMethod> 
      <mName>listenerMethod11</mName> 
      <returnType>int</returnType> 
      <paraType>int</paraType> 

 88 



      <paraType>int</paraType> 
     </listenerMethod> 
     <listenerMethod> 
      <mName>listenerMethod12</mName> 
      <returnType>float</returnType> 
      <paraType>float</paraType> 
      <paraType>float</paraType> 
     </listenerMethod> 
    </listenerMethods> 
   </event> 
   <event delivery="MultiCast" status="Consumed"> 
    <eType>event2</eType> 
    <addListenerMethod>addListener2</addListenerMethod> 
    <removeListenerMethod>removeListener2</removeListenerMethod> 
    <listenerMethods> 
     <listenerMethod> 
      <mName>listenerMethod21</mName> 
      <returnType>String</returnType> 
      <paraType>double</paraType> 
      <paraType>char</paraType> 
     </listenerMethod> 
     <listenerMethod> 
      <mName>listenerMethod22</mName> 
      <returnType>Object</returnType> 
      <paraType>List</paraType> 
      <paraType>List</paraType> 
     </listenerMethod> 
    </listenerMethods> 
   </event> 
  </events> 
 </features> 
 <design> 
  <compInstances> 
   <compInstance role="Master"> 
    <comp>javax.swing.JPanel </comp> 
    <cid>panel</cid> 
   </compInstance> 
   <compInstance role="Support"> 
    <comp> java.awt.BorderLayout </comp> 
    <cid>border</cid> 
   </compInstance> 
   <compInstance role="Client"> 
    <comp> javax.swing.JSlider </comp> 
    <cid> slider</cid> 
   </compInstance> 
   <compInstance role="Client"> 
    <comp> javax.swing.JTextField </comp> 
    <cid>field</cid> 
   </compInstance> 
   <compInstance role="Client"> 
    <comp> javax.awt.BoxContainer </comp> 
    <cid> boxContainer</cid> 
   </compInstance> 
  </compInstances> 
  <compositions> 
   <eCompositions> 
    <eComposition> 
     <constraint> 
      <inv>true</inv> 
      <pre>true</pre> 
      <post>true</post> 
     </constraint> 
     <eCompInstances> 
      <eCompInstance> 
       <rid>slider</rid> 
       <event>change</event> 
       <eAction> stateChanged </eAction> 
      </eCompInstance> 
     </eCompInstances> 
     <lCompositions> 

 89



      <lCompInstance> 
       <rid>slider</rid> 
       <callMethod> getValue </callMethod> 
      </lCompInstance> 
      <op type="|"/> 
      <lCompInstance> 
       <rid> filed </rid> 
       <callMethod> setText </callMethod> 
      </lCompInstance> 
     </lCompositions> 
    </eComposition> 
    <eComposition> 
     <constraint> 
      <inv>true</inv> 
      <pre>true</pre> 
      <post>true</post> 
     </constraint> 
     <eCompInstances> 
      <eCompInstance> 
       <rid>field</rid> 
       <event>action</event> 
       <eAction>actionPerformed</eAction> 
      </eCompInstance> 
     </eCompInstances> 
     <lCompositions> 
      <lCompInstance> 
       <rid>field</rid> 
       <callMethod>getText</callMethod> 
      </lCompInstance> 
      <op type="|"/> 
      <lCompInstance> 
       <rid>slider</rid> 
       <callMethod>setValue</callMethod> 
      </lCompInstance> 
     </lCompositions> 
    </eComposition> 
   </eCompositions> 
   <cCompositions> 
    <cComposition> 
     <container> 
      <rid>panel</rid> 
     </container> 
     <containees> 
      <containee> 
       <rid>boxContainer </rid> 
      </containee> 
     </containees> 
    </cComposition> 
    <cComposition> 
     <container> 
      <rid>boxContainer</rid> 
     </container> 
     <containees> 
      <containee> 
       <rid>slider</rid> 
      </containee> 
      <containee> 
       <rid>field </rid> 
      </containee> 
     </containees> 
    </cComposition> 
    <cComposition> 
     <container> 
      <rid>frame</rid> 
     </container> 
     <containees> 
      <containee> 
       <rid>sliderField </rid> 
       <location>BorderLayout.SOUTH </location> 
      </containee> 

 90 



      <containee> 
       <rid>logo</rid> 
       <location>BorderLayout.CENTER </location> 
      </containee> 
     </containees> 
    </cComposition> 
   </cCompositions> 
  </compositions> 
 </design> 
 <qualityAttributes> 
  <DataEncription metric="Presence"> 
   <characteristic>Functionality</characteristic> 
   <lifeCycle>Runtime</lifeCycle> 
   <subCharacteristic>Security</subCharacteristic> 
   <metric> 
    <value>true</value> 
    <feature>SSL ceritificate</feature> 
    <unit/> 
   </metric> 
  </DataEncription> 
  <DiskUtilization metric="Number"> 
   <characteristic>Efficiency</characteristic> 
   <lifeCycle>Runtime</lifeCycle> 
   <subCharacteristic>Resource Behavior</subCharacteristic> 
   <metric> 
    <value>10</value> 
    <feature/> 
    <unit>MB</unit> 
   </metric> 
  </DiskUtilization> 
 </qualityAttributes> 
</componentSpecification> 

 91



  
 

 92 



References 
 
[1] Rui S. Moreira, Gordon S. Blair, Eurico Carrapatoso. A Reflective Component-Based & Architecture 

Aware Framework to Manage Architecture Composition. Third International Symposium on Distributed 
Objects and Applications (DOA'01). September 17 - 20, 2001. Rome, Italy. p. 0187. 

[2] Ranieri Baraglia, Fabrizio Silvestri. An Online Recommender System for Large Web Sites. Web 
Intelligence, IEEE/WIC/ACM International Conference on (WI'04). September 20 - 24, 2004. Beijing, 
China. p. 199-205. 

[3] J. Kontio. A case study in applying a systematic method for COTS selection. 18th International 
Conference on Software Engineering (ICSE'96). March 25 - 29, 1996. Berlin, GERMANY. p. 201. 

[4] Jie Yang, Lei Wang, Song Zhang, Xin Sui, Ning Zhang, Zhuoqun Xu. Building Domain Ontology 
Based on Web Data and Generic Ontology. Web Intelligence, IEEE/WIC/ACM International 
Conference on (WI'04). September 20 - 24, 2004. Beijing, China. p. 686-689. 

[5] Nead Stojanovic, Jorge Gonzalez, Ljiljana Stojanovic. ONTOLOGER: a system for usage-driven 
management of ontology-based information portals. International Conference On Knowledge Capture 
archive. Proceedings of the international conference on Knowledge capture. 2003.  Sanibel Island, FL, 
USA    October 23 - 25, 2003. Pages: 172 - 179. Year of Publication: 2003. ISBN:1-58113-583-1. 

[6] Jean-Christophe Mielnik, Bernard Lang, Stéphane Laurier. eCots Platform: An Inter-industrial Initiative 
for COTS-Related Information Sharing. Proceedings of the Second International Conference on 
COTS-Based Software Systems. Pages: 157 - 167. Year of Publication: 2003. ISBN:3-540-00562-5. 

[7] Fabrizio Silvestri, Diego Puppin, Domenico Laforenza, Salvatore Orlando. A Search Architecture for 
Grid Software Components. Web Intelligence, IEEE/WIC/ACM International Conference on (WI'04). 
September 20 - 24, 2004. Beijing, China. p. 495-498. 

[8] Seoyoung Park, Chisu Wu. Intelligent Search Agent for Software Components. Sixth Asia Pacific 
Software Engineering Conference. December 07 - 10, 1999. Takamatsu, Japan. p. 154. 

[9] Sandip Debnath, Sandip Sen, Brent Blackstock. LawBot: A Multiagent Assistant for Legal Research. 
Internet Computing online IEEE. November/December 2000 (Vol. 4, No. 6). p. 32-37. 

[10] Jyrki Kontio, Gianluigi Caldiera and Victor R. Basili. Defining Factors, Goals and Criteria for Reusable 
Component Evaluation. Presented at the CASCON ’96 conference, Toronto, Canada, November 12-
14, 1996. 

[11] Robert C. Seacord, Scott A. Hissam, Kurt C. Wallnau. Agora: A Search Engine for Software 
Components. Internet Computing online IEEE. November/December 1998 (Vol. 2, No. 6). p. 62-70. 

[12] L. Stojanovic, N. Stojanovic, J. Gonzalez, R. Studer. The OntoManager - a system for the usage-
based ontology management. Proceeding, ODBASE 2003, 3-7 November 2003, Catania, Sicily (Italy). 

[13] Hideki Hara, Shigeru Fujita, Kenji Sugawara, Chiba Institute of Technology. Reusable Software 
Components Based on an Agent Model. Seventh International Conference on Parallel and Distributed 
Systems: Workshops (ICPADS'00 Workshops). July 04 - 07, 2000. Iwate, Japan. p. 447. 

[14] John Davies, A. Duke, and York Sure (2003). OntoShare - A Knowledge Management Environment 
for Virtual Communities of Practice. Proceedings of the 2nd International Conference on Knowledge 
Capture (K-CAP2003), 23-26 October 2003, Florida, USA. Edited by . ACM Press. 

[15] Czarnecki, K., Dittmar, T., Franczyk, B., Hoffmann, R., Kühnhauser, W., Langhammer, F., Lenz, B., 
Müller-Schloer, C., Unland, R., Weber, M., Weissenbach, H., Westerhausen, J. CompoNex: A 
Marketplace for Trading Software Components in Immature Markets.  Proceedings Net.ObjectDays 
2003. Overhage, S., Thomas, P. (2003). Transit (ISBN 3-9808628-2-8), p. 145-163. 

[16] Sven Overhage. Towards a Standardized Specification Framework for Component Development, 
Discovery, and Configuration. WCOP 2003. Eighth International Workshop on Component-Oriented 
Programming. Monday, July 21, 2003 At ECOOP 2003, Darmstadt, Germany (July 21-25, 2003). 

[17] Johannes Maria ZAHA, Alexander KEIBLINGER, Klaus TUROWSKI. Component Market Specification 
Demand and Standardized Specification Of Business Components. 1st International workshop 
Component Based Business Information Systems Engineering September 2nd, 2003 - Geneva, 
Switzerland. 

[18] Vishnu Kotrajaras. Towards an Agent-Searchable Software Component Using CafeOBJ Specification 
and Semantic Web. Workshop on Formal Aspects of Component Software (FACS 03). Pisa, Italy, 8-9 
September 2003. 

 93



[19] World Wide Web Consortium Issues RDF and OWL Recommendations. Semantic Web emerges as 
commercial-grade infrastructure for sharing data on the Web. http://www.w3.org/2004/01/sws-
pressrelease.html.en. 

[20] F. McCarey, N. Kushmerick. RASCAL: A Recommender Agent for SoftwComponents in an Agile 
Environment. Proceedings of the 15th Artificial Intelligence and Cognitive Science Conference, 
Castlebar, Ireland, Se2004. 

[21] Juan P. Carvallo, Xavier Franch, Carme Quer, Marco Torchiano. Characterization of a Taxonomy for 
Business Applications and the Relatioships Among Them. 3rd International Conference on COTS-
Based Software Systems. ICCBSS 2004. 1-4 February 2004. 

[22] C. Brewster and K. O’Hara. Knowledge Representation with Ontologies: The Present and Future. 
IEEE Intelligent Systems, 19(2):72 - 81, may 2004. 

[23] R. Braga, M. Mattoso, and C. Werner. The use of mediation and ontology technologies for software 
component information retrieval. In Proceedings of the 2001 Symposium on Software Reusability: 
putting software reuse in context, pages 19-28. ACM, 2001. 

[24] M. Missikoff and F. Taglino. SymOntoX: A Web-Ontology Tool for eBusiness Domain. In Proceedings 
of the Fourth International Conference on Web Information Systems Engineering (WISE’03), pages 
343-346. IEEE, 2003. 

[25] A. Rector. Modularisation of Domain Ontologies Implemented in Description Logics and related 
formalisms including OWL. In Proc. of Knowledge Capture (KCAP’03), pages 121-128. ACM, 2003. 

[26] C. Pahl. Ontology-based Description and Reasoning for Component-based Development on the Web. 
In Proceedings of SAVCBS’03-ESEC/FSE’03 Workshop. ACM, 2003. Septiembre 1-2, 2003. Helsinki, 
Finland. 

[27] M. Tallis, N. Goldman, and R. Balzer. The Briefing Associate: A Role for COTS Applications in the 
Semantic Web. In Proceedings of the Semantic Web Working Symposium (SWWS), 2001. 

[28] N. Tansalarak and K. Claypool. XCM: A Component Ontology. In OOPSLA’04 Workshop - Ontologies 
as Software Engineering Artifacts. 24-28 October 2004, Vancouver, British Columbia, Canada. 

[29] Guy Pierra. The PLIB Ontology-based approach to data integration. 18th IFIP World Computer 
Congress (WCC\'2004). 2004. 

[30] Guy Pierra. Context-explication in conceptual ontologies: PLIB ontologies and their use for industrial 
data. Technical report : Research Report LISI/ENSMA 04-001. 2004. 

[31] Guy Pierra and Hondjack Dehainsala and Yamine Ait Ameur and Ladjel Bellatreche. Base de 
données à base ontologique :principe et mise en ouvre. Journal Ingénierie des systèmes 
d'information. 2005. 

[32] Nicola Guarino, Claudio Masolo, Guido Vetere. OntoSeek: Content-Based Access to the Web. IEEE 
Intelligent Systems. Volume 14, Issue 3 (May 1999). Pages: 70 - 80. Year of Publication: 1999. ISSN: 
1094-7167. 

[33] Overhage, S., Thomas, P. WS-Specification: Specifying Web Services Using UDDI Improvements. In: 
Chaudri, A. B., Jeckle, M., Rahm, E., Unland, R. (eds.):  Web, Web Services, and Database Systems. 
Lecture Notes in Computer Science (LNCS 2593), Springer, Berlin (2003): 100-118. 

[34] Kokkinaki, A.I., N. Karakapilides, R. Dekker, and C. Pappis. A web-based recommender system for 
End-of-use ict products. In Proceedings of the Second IFIP Conference on E-commerce, E-business, 
E-government, October 2002. 

[35] S. Varadarajan, A. Kumar, D. Gupta, and P. Jalote. ComponentXchange: An E-Exchange for Software 
Components. In Poster Proceedings of the Tenth International World Wide Web Conference (WWW 
10), 2001 

[36] Peter FETTKE, Peter LOOS. A Proposal for Specifying Business Components. 1st International 
workshop "Component Based Business Information Systems Engineering". September 2nd, 2003 - 
Geneva, Switzerland. 

[37] Naiyana Tansalarak and Kajal T. Claypool. CoCo: Composition Model and Composition Model 
Implementation. Technical Report 2004-006, Department of Computer Science, University of 
Massachusetts - Lowell, June 2004. http://www.cs.uml.edu/techrpts/reports.jsp. 

[38] Bobeff G. Noyè Jacques. Component Specialization. PEP M'04 August 24-26m 2004. Verona, Italy. 
[39] R. de Souza, M. Costa, R. Bragga, C. Werner, M. Mattoso. Software Components Reuse Through 

Web Search and Retrieval. Computer Science Department, Federal University of Rio de Janeiro, 
Brazil. Department of Computer Science – CTU/UFJF. 

 94 

http://www.w3.org/2004/01/sws-pressrelease.html.en
http://www.w3.org/2004/01/sws-pressrelease.html.en
http://www.cs.uml.edu/techrpts/reports.jsp


[40] O. Constant, A. Réquilé, B. Yap. Deriving Action-Based Semantics from Learning Repositories. 
Proceeding of the First International Conference on Information Technology & Applications.(ICITA 
2002). November 25-28 2002. BATHURST, AUSTRALIA.  IEEE, ISBN: 1-86467-114-9 - Track 2: T in 
Multimedioa; Computer Networking; and Database Interface. 

[41] Haining Yao, Letha Etzkorn. Towards A Semantic-based Approach for Software Reusable Component 
Classification and Retrieval. ACM Southeast Regional Conference Proceedings of the 42nd annual 
Southeast regional conference. Huntsville, Alabama. Session: Software engineering #1. Pages: 110 - 
115. Year of Publication: 2004. ISBN:1-58113-870-9. Publisher ACM Press. New York, NY, USA. 

[42] Sugumaran, Vijayan; Storey, Veda C. A Semantic-Based Approach to Component Retrieval. The 
DATA BASE for Advances in Information Systems – Summer 2003, Vol. 34, No. 3, p. 8-24. 

[43] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, Katia P. Sycara. Importing the Semantic 
Web in UDDI. Lecture Notes In Computer Science; Vol. 2512 archive. Revised Papers from the 
International Workshop on Web Services, E-Business, and the Semantic Web. Pages: 225 - 236. 
Year of Publication: 2002. ISBN:3-540-00198-0. Publisher Springer-Verlag   London, UK. 

[44] Sivashanmugam, K.; Verma, K.; Sheth, A.; Miller, J. Adding Semantics to Web Services Standards. 
The 2003 International Conference on Web Services (ICWS'03), June 2003. 

[45] Stefan Decker, Prasenjit Mitra, Sergey Melnik. Framework for the Semantic Web: An RDF Tutorial. 
Internet Computing online. November/December 2000 (Vol. 4, No. 6). p 68-73. 

[46] Michael Klein, Birgitta Konig-Ries. Combining Query and Preference An Approach to Fully Automatize 
Dynamic Service Binding. Proceedings of the IEEE International Conference on Web Services 
(ICWS’04). June 06 - 09, 2004. San Diego, California. Publication Date: June 2004. p. 788. 

[47] Gerald C. Gannod, Sushant Bhatia. Facilitating Automated Search for Web Services. IEEE 
International Conference on Web Services (ICWS'04). June 06 - 09, 2004. San Diego, California. 
Publication Date: June 2004. p. 761. 

[48] Annya Réquilé-Romanczuk, Alejandra Cechich, Anne Dourgnon-Hanoune. Towards a Knowledge-
Based Framework for COTS Component Identification. 27th International Conference on Software 
Engineering ICSE’05-MPEC’05. May 21st, 2005, St. Louis, Missouri, USA. 

[49] T.R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition, 
5:199-220, 1993. 

[50] Hall, R.J. Generalized Behavior-Based Retrieval. Proceedings of the Fifteenth International 
Conference on Software Engineering, Baltimore, MD, May 1993. p. 371 - 380. 

[51] Naiyana Tansalarak and Kajal Claypool. Finding a Needle in the Haystack: A Technique for Ranking 
Matches between Components. Eighth International SIGSOFT Symposium on Component-based 
Software Engineering (CBSE 2005): Software Components at Work. St. Louis, Missouri. May 14-15 
2005.  

[52] Bertoa, M. F., Vallecillo, A. Quality Attributes for COTS Components. In: Proceedings of the 6th 
ECOOP Workshop on Quan-titative Approaches in Object-Oriented Software Engineering (QAOOSE 
2002). June 11th, 2002. Málaga Spain. 

[53] Joaquina Martín-Albo, Manuel F. Bertoa, Coral Calero, Antonio Vallecillo, Alejandra Cechich, Mario 
Piattini. CQM: A Software Component Metric Classification Model. 7th ECOOP Workshop on 
Quantitative Approaches in Object-Oriented Software Engineering (QAOOSE'2003). Darmstadt, 
Germany. Tuesday, July 22nd, 2003. 

[54] Luis Iribarne, Carina Alves, Jaelson Castro, and Antonio Vallecillo. A non-functional approach for 
cotscomponents trading. In Proc. of WER 2001, Buenos Aires, Argentina, 2001. 

[55] A. Podgurski & L. Pierce. Behavior sampling: a technique for automated retrieval of reusable 
components. In Proc. 14th International Conference on Software Engineering, 349-360. New York, 
N.Y.: The Association for Computing Machinery, Inc. 1992. 

[56] Michael Soden, Hajo Eichler, Joachim Hoessler. Inside MDA: Mapping MOF2.0 Models to 
Components. First European Workshop on Model Driven Architecture with Emphasis on Industrial 
Application. March 17-18, 2004. University of Twente, Enschede, The Netherlands. 

[57] Daniel Exertier, Benoit Langlois, Xavier Le Roux. PIM Definition and Description. First European 
Workshop on Model Driven Architecture with Emphasis on Industrial Application. March 17-18, 2004. 
University of Twente, Enschede, The Netherlands. 

[58] Uche Ogbuji. XML, The Model Driven Architecture, and RDF. XML Europe 2002. Down to Business: 
Getting serious about XML. 23, 24 May 2002. Bacelona, Spain. 

 95



[59] Ivan Kurtev, Klaas van den Berg. Model driven architecture based XML processing. Proceedings of 
the 2003 ACM symposium on Document engineering. Grenoble, France. SESSION: Document based 
architecture & applications. Pages: 246 - 248. Year of Publication: 2003. ISBN:1-58113-724-9. 

[60] A Proposal for an MDA Foundation Model. An ORMSC White Paper. V00-02. ormsc/05-04-01. 
[61] Tewfik Ziadi, Bruno Traverson, Jean-Marc Jézéquel. From a UML Platform Independent Component 

Model to Platform Specific Component Models. Workshop in Software Model Engineering. Tuesday 
October 1st 2002. Dresden, Germany. 

[62] Jack Greenfield. UML Profile For EJB.  Java Specification Request JSR-000026 UML/EJB(TM) 
Mapping Specification 1.0 Public Review Draft. Rational Software Corporation. 
http://jcp.org/jsr/detail/26.jsp. 

[63] PIM to PSM mapping techniques. First European Workshop on Model Driven Architecture with 
Emphasis on Industrial Application. March 17-18, 2004. University of Twente, Enschede, The 
Netherlands. MASTER-2003-D5.1-V1.0-PUBLIC. December 2003. 

[64] http://www.omg.org/mda 
[65] Richard Monson-Haefel. Enterprise JavaBeans, Second Edition.  March 2000. ISBN: 1-56592-869-5. 
[66] Chuck McManis.  Take a look inside Java classes. Learn to deduce properties of a Java class from 

inside a Java program. Java Indepth. http://www.javaworld.com/javaworld/jw-08-1997/jw-08-
indepth.html. 

[67] http://java.sun.com,  http://java.sun.com/products/ejb, http://java.sun.com/j2ee/1.4/docs/tutorial/doc. 
[68] Enterprise JavaBeansTM Specification, Version 2.1. Sun Microsystems. Version 2.1, Final Release. 

November 12, 2003. 
[69] Bézivin Jean. From Object Composition to Model Transformation with the MDA. Proceedings of the 

39th International Conference and Exhibition on Technology of Object-Oriented Languages and 
Systems (TOOLS39). Page: 350. Year of Publication: 2001. ISSN:1530-2067. Publisher IEEE 
Computer Society   Washington, DC, USA. 

[70] Joaquin Miller, Jishnu Mukerji. MDA Guide Version 1.0.1. Copyright © 2003 OMG. Document 
Number: omg/2003-06-01. 12th June 2003. 

[71] Architecture Board MDA Drafting Team. Model Driven Architecture A Technical Perspective. Draft 
21st February 2001. Document Number ab/2001-02-04. 

[72] M. D. Mcllroy, Mass-produced software components. In Software Engineering Concepts and 
Techniques, NATO Conference on Software Engineering, 1969. 

[73] Weaver James, Kevin Muckar, Crume James, Phillips Ron. Beginning J2EE 1.4. Wrox Press Ltd. 
2003. United States. ISBN 1-86100-833-3. 

[74] XML Schema Part 0: Primer Second Edition. W3C Recommendation 28 October 2004. 
http://www.w3.org/TR/xmlschema-0/#Intro. 

 96 

http://jcp.org/jsr/detail/26.jsp
http://www.omg.org/mda
http://www.javaworld.com/javaworld/jw-08-1997/jw-08-indepth.html
http://www.javaworld.com/javaworld/jw-08-1997/jw-08-indepth.html
http://java.sun.com/products/ejb
http://java.sun.com/products/ejb
http://java.sun.com/j2ee/1.4/docs/tutorial/doc

	Introduction
	State of the Art
	Ontology Manager Systems
	ONTOMANAGER
	SymOntoX
	Building Domain Ontology Based on Web Data and Generic Ontol
	PLIB

	Component Retrieval Schemes
	Keywords Technique
	INSEAS – Keyword – Faceted – Browsing

	Faceted Technique
	InterLegis Project based on Odyssey Search Engine - Faceted
	ADIPS Framework - Faceted - Browsing

	Signature Matching Technique
	AGORA - Signature Matching
	COMPONENTEXCHANGE - Signature Matching

	Behavioral Matching Technique
	Behavior sampling - Behavioral Matching

	Semantic-Based Technique
	Towards a Semantic-based Approach for Software Reusable Comp
	A Semantic-Based Approach to Component Retrieval - Semantic-

	Browsing Technique
	CompoNex – Browsing

	Users Web Mining Technique
	RASCAL - Users Web Mining


	Model Driven Architecture - MDA

	The eCots Association
	Contribution
	Component Ontology for IPSComp Specification
	XCM Component Ontology
	Component Ontology for IPSComp Specification
	Domain
	Price
	Quality Attributes
	License
	Publisher Description
	Specialization Scenarios


	Component Ontology for IPSComp Design
	Component Ontology for IPSComp Implementation
	Java Code Implementation
	IPSComp Java Code Generation from a XML file
	IPSComp Ontology Implementation PLIB

	Integrating Software Component Repositories

	Conclusions
	Future Work
	Appendix A - IPSComp Ontology UML Class Diagram
	Appendix B - IPSComp Ontology component Package UML Class Di
	Appendix C - IPSComp Ontology qualityAttribute Package UML C
	Appendix D - IPSComp Ontology metric Package UML Class Diagr
	Appendix E - IPSComp Ontology xmlParser Package UML Class Di
	Appendix F - IPSComp XML Meta-Model - XSD Schema
	Appendix G - IPSComp Component Description – XML Example
	References

