
Vrije Universiteit Brussel - Belgium
Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes - France
and

LIFIA-UNLP - Argentina

1999
V

R
IJ

E
UNIVERSITEIT BRUSS

E
L

S
C

IE
N

TIA
VINCERE TENEB

R
A

S

Patterns and frameworks

for framework documentation

A Thesis submitted in partial ful�llment of the requirements

for the degree of Master of Science in Computer Science

(Thesis research conducted in the EMOOSE exchange

project funded by the European Community)

By: Ilse Dierickx

Promotor: Prof. Theo D'Hondt (Vrije Universiteit Brussel)

Co-Promotor: Gustavo Rossi (LIFIA)

Abstract

The last decade, the object-oriented paradigm has become of great impor-

tance and one of the growing topics in this �eld, is certainly framework tech-

nology. A framework makes it possible to develop applications belonging to

the same application domain in less time, because frameworks represent a

general design for these applications. So, an application engineer only needs

to be concerned about the variations of the application under construction.

When an application engineer builds a new application using a framework,

he needs a thorough understanding of that framework. In the framework

understanding process, good documentation is of undeniable importance.

In this dissertation we propose a new strategy to document frameworks.

During the lifetime of a framework, a lot of di�erent people come into contact

with it. These people have their own documentation requirements, which

leads to di�erent documentation techniques and patterns. We propose a

framework (DocFramework) that combines the existing documentation tech-

niques to form a generic documentation structure. On top of this documen-

tation structure we de�ne di�erent views for each type of framework user.

These views will be expressed as hypermedia topologies and con�gurations

which guides the framework user through the framework documentation or

understanding process following a certain navigational path. Another ad-

vantage is that the DocFramework will be used by all framework users during

the entire lifecycle of the framework and this way all documentation can be

found in one place. We are convinced that the proposed documentation

technique will lead to a better framework understanding, which results in

better- developed applications.

1

Acknowledgements

First of all, I wish to thank my advisor Dr. Gustavo Rossi for guiding me

through this interesting research process. I also would like to thank him for

his hospitality and his support during my stay in Argentina.

I would like to thank Mauricio Sansano for the fruitful discussions we had

and for proof-reading my thesis.

I owe a lot of thanks to all the people from Li�a, they gave me a fun place

to work. A special thanks goes to Gabriela for all the things she did for

us. Especially in the beginning when my non-existing knowledge of Spanish

was a barrier to get around in Argentina. Guillermo and Anabella: thanks

for being there, for being my friends, for cheering me up in the times I was

missing my family a little bit too much.

Next, I would like to thank my proofreaders at the VUB. They read several

parts of my thesis and gave some comments on it over e-mail. Thanks to

Christian Daems, Bart Wouters, and Marina De Vos. Also thanks to Dr.

Koen De Hondt from MediaGeniX.

My stay in Argentina would not have been the same without my roommate

Isabel. It's great to have a terri�c companion, like Isabel, with you when

you are so far away from home. Together with her I did lots of pleasant stu�,

2

but she was also there to support me when things became more di�cult,

when time was running out.

I also would like to thank the people that I have left behind at home. Luck-

ily, there exists e-mail, which reduces the distance between my family and

me a little bit. I would like to thank them for the encouraging e- mails

during this sometimes di�cult period. I am extremely thankful to my par-

ents, because they supported me when I decided to continue studying for

one more year.

I would like to thank all the people that were involved in the setting up of

this career. I think they did a splendid job. Thanks to Dr. Carine Lucas

and Wolfgang De Meuter from the VUB in Belgium, and of course Annya

Romanczuk from EMN in France. Besides this, I also need to thank Annya

for the support we got from her during our stay in France.

I also owe a lot of thanks to Prof Dr. Theo D'hondt. Not only because he

was a good teacher for me during the past four years at the VUB, but also

because he made it possible for me to follow this master program.

I would like to end this acknowledgement by thanking all my fellow students

with whom I spent an incredible time in Nantes. I learned a lot of this mas-

ter and not only in the classroom !

Ilse Dierickx

Augustus 1999

CONTENTS

1 Introduction 9

1.1 Intention . 9

1.2 Structure of the Dissertation 12

2 Frameworks 13

2.1 De�nition . 13

2.2 Characteristics . 15

2.2.1 Hot spots & Frozen spots: 18

2.2.2 Hollywood Principle (\Don't call us, we call you") . . 18

2.3 Framework Life Cycle . 19

2.3.1 Framework Development 20

2.3.2 Framework Instantiation 21

2.3.3 Framework Maintenance and Evolution 22

2.4 Di�erent Kinds of Frameworks 23

2.5 Advantages and Disadvantages 24

2.5.1 Advantages . 24

2.5.2 Disadvantages . 25

2.6 Related Techniques . 25

2.6.1 Design Patterns . 25

2.6.2 Class Libraries . 26

2.7 Summary . 26

3 Framework Documentation 27

3

CONTENTS 4

3.1 Introduction . 27

3.2 Why is Framework Documentation Important? 27

3.3 Using Object-Oriented Frameworks 29

3.3.1 Ways to Use a Framework 29

3.3.2 Framework Users . 30

3.4 What Needs to be Documented? 31

3.5 Current Documentation Techniques 32

3.5.1 Cookbook . 32

3.5.2 Design Patterns . 34

3.5.3 Exemplars . 35

3.5.4 Interaction Contracts 36

3.5.5 Reuse Contracts . 37

3.5.6 Examples . 39

3.5.7 Evaluation . 40

3.6 Summary . 43

4 OONavigator Framework 45

4.1 Description of the Architecture 45

4.2 OOHDM: A Design Methodology for Hypermedia Applications 48

4.2.1 Conceptual Design . 48

4.2.2 Navigational Design 48

4.2.3 Abstract Interface Design 49

4.2.4 Implementation . 50

4.3 Gained Functionality with OONavigator 50

5 The Documentation Framework 51

5.1 Preliminaries . 51

5.2 Framework Architecture . 52

5.2.1 Overview of the 3-layered Framework 52

5.2.2 Second Layer: Composed Techniques 54

5.2.3 First Layer: Basic Techniques 59

5.2.4 Third layer: Navigational Views 63

6 Characteristics and Evaluation of DocFramework 67

6.1 Users of the DocFramework 67

6.2 Instantiating the DocFramework 68

6.3 Extending the DocFramework 69

CONTENTS 5

6.3.1 Variations of Navigational Views 69

6.3.2 Variations of Documentation Techniques 69

6.4 Bene�ts . 69

6.4.1 Bene�ts for Framework Documenter 69

6.4.2 Bene�ts for Documentation Reader 70

6.5 Disadvantages . 71

7 Future work 72

7.1 Implementation of a Prototype 72

7.2 Support for Reverse Engineering 72

7.2.1 Classi�cation Browser 73

7.2.2 Other tools . 73

7.3 Compare Documentation Techniques 74

7.4 Documentation Patterns for Framework Documentation . . . 74

8 Conclusion 75

8.1 Motivation . 75

8.2 Summary . 76

Index 81

LIST OF FIGURES

2.1 Class Diagram Shopping Framework 15

2.2 Implementation of the ShopKeeper Class 16

2.3 Implementation of the Client Class 16

2.4 Implementation of the SmallShopKeeper Class 17

2.5 Implementation of the SupermarketShopKeeper Class 17

2.6 Implemention of the CreditClient Class 17

2.7 Change of control (Hollywood principle) 19

2.8 Traditional versus Framework-based Application Development

[Mat96] . 20

2.9 The General Framework Development Process [Mat96] 21

2.10 A schema of white and black box frameworks 23

3.1 Paying Goods Collaboration Contract 39

3.2 Paying by credit card Reuse Contract 40

5.1 Three layered architecture of DocFramework 54

5.2 Wrappers on basic techniques 56

5.3 Interaction Diagram Wrapper 57

5.4 Model of composed techniques 57

5.5 Exemplar composed of wrappers 57

5.6 Creating tool for Interaction Diagrams 58

5.7 Interaction Diagram Model 59

5.8 Relation with the target framework 62

6

LIST OF FIGURES 7

5.9 Relation with the target framework and DocumentationOb-

serverManager . 63

LIST OF TABLES

3.1 Di�erent audiences require di�erent level of detail 41

3.2 Main characteristics of each technique 42

3.3 Appropriate documentation techniques for each type of user . 44

8

CHAPTER 1

Introduction

1.1 Intention

When a company decides to build or buy a software product, then this

company expects to receive a product of high quality and it also wants the

software product delivered as soon as possible and against the lowest possible

price. This demanding task forced the software developers to look out for

new developing techniques that made it possible to develop applications

much faster. Research showed that software reuse is an approach, that

is able to deliver the gains in productivity and quality that the software

industry needs [MMM95].

In the beginning, only objects and classes were reused, but also design

patterns, class libraries and object- oriented frameworks can be reused. The

�rst attempts to reuse were mainly focused on reuse of code. However,

reuse of design would be more bene�cial in economical terms, since design

is more di�cult to create and re-create than programming code. This leads

us the state-of-the-art in object-oriented reusable assets, i.e. object-oriented

frameworks.

Object-Oriented Frameworks

Object-oriented frameworks make it possible to reuse large and abstract de-

signs. An object-oriented framework is a reusable design for an application,

in a particular domain, represented by a set of abstract classes and the way

they collaborate. Thus, a framework outlines the main architecture for an

application to be built in a speci�c domain. A framework then implies reuse

of both code and design. A framework particularly emphasises those parts

9

CHAPTER 1. INTRODUCTION 10

of the application domain that will remain stable and the relationships and

interactions among those parts. The framework will also point out those

parts that are likely to be customised for the actual application under de-

velopment.

Usually a framework application engineer will customise these parts to

achieve the desired behaviour of the application under construction. The

framework application engineer must be informed by the framework devel-

oper about which parts he has to customise and how these parts interact

with the other parts of the framework. Thus, to be able to use a framework,

the framework application engineer needs a thorough understanding of the

framework's structure. In the understanding process of the framework, doc-

umentation plays an undeniable role. Without good documentation the

framework will not be used correctly or will even not be used at all.

Importance of Framework Documentation

Framework documentation is not only important to make framework design

understandable; other reasons are:

� Frameworks are not fully functional applications. The framework de-

veloper designed the framework in such a way that the application

engineer only has to �ll in the functionality that is typical for the ap-

plication under development. The framework developer has an idea

of how the framework must be reused and he should document his

expectations to the reuser to make it possible for him to reuse the

framework.

� A framework embodies an abstract design. A framework captures all

the application domain knowledge that a framework developer gained.

Since a framework is the result of many design iterations, the real

world concepts have often been lost in the design. Without appropriate

explanation of this design, the framework application engineer would

have to learn the application domain all over again.

� Frameworks evolve: A framework application engineer needs to have

documentation on how it evolved from one version to another, so that

he can update his application to the latest version. The framework

engineer also needs to know how the framework evolved over time.

� Framework development is expensive, but this cost can be justi�ed if

the framework is used a lot. Framework documentation can be used

to promote the framework.

� Documentation is used to reduce the learning curve of the framework.

CHAPTER 1. INTRODUCTION 11

Framework Documentation Requirements

During the lifetime of a framework a lot of di�erent users come into contact

with it. The di�erent audiences have their own documentation requirements.

Not all users need to have the same level of detail and they do not have the

same level of expertise. Framework documentation should take these di�er-

ences into account and give the appropriate support to the user, considering

his required level of detail and his experience.

Existing framework documentation techniques do not address this prob-

lem su�ciently. For example, cookbooks describe the framework in an infor-

mal way, which is su�cient for a user who needs to know only the purpose

of the framework, but it lacks design information for the advanced user who

wants to use the framework in unanticipated ways. Thus, a new documen-

tation strategy is necessary.

Our approach

In this work we present a new approach for framework documentation. It is

an approach that gives the di�erent types of users the documentation that

�ts the user requirements. We identi�ed the di�erent needs of the users and

determined which existing documentation approaches would be appropriate

to assist them. Since none of the existing approaches can cover all the needs

of the user, we propose to combine forces and de�ne, for each user type, a

set of techniques that he can use. We present the desired information to

the user in a hypermedia way. This allows the user to access the requested

information (and its related information) in a fast way.

To achieve this, we propose a framework (DocFramework) that stores

the documentation made using existing techniques in a repository and that

gives di�erent navigational views for each type of framework user. A naviga-

tional view de�nes how the information can be accessed and how the parts

are linked to each other. In this way we can de�ne a navigational path that

guides a user through the framework understanding process. The DocFrame-

work is based on another framework, called OONavigator. OONavigator

makes it possible to add hypermedia functionality to an object-oriented ap-

plication without polluting the application model. In our case we can allow

browsing between documentation techniques or documentation items, with-

out these techniques being aware of the navigation.

While comparing existing documentation techniques we discovered that

some of them are composed of several more basic techniques. The basic

techniques can appear in several other complicated techniques in the same

form or in a slightly alternated form. We promote reuse of documentation

by putting these basic techniques in a separate layer and allow references

to them by de�ning the composed techniques as wrappers [GHJV95] on the

CHAPTER 1. INTRODUCTION 12

basic techniques.

1.2 Structure of the Dissertation

This dissertation is structured in the following chapters: Frameworks, Frame-

work Documentation, OONavigator Framework, The Documentation Frame-

work, Evaluation and Characteristics of the DocFramework, Future Work

and Conclusions.

Chapter two, Frameworks, gives some background information on frame-

works. Some de�nitions of frameworks will be given and we will discuss

some important characteristics of frameworks. The development, instan-

tiation, maintenance and evolution of frameworks are described next. An

overview of the di�erent kinds of frameworks is given, which is followed by

the enumeration of some advantages and disadvantages of frameworks. We

conclude this chapter by comparing frameworks against related techniques

such as design patterns or class libraries.

Chapter three will be about framework documentation. First some rea-

sons for the importance of framework documentation are mentioned. Next,

we will discuss how frameworks are used and who the framework users are

and what they expect from framework documentation. We will also discuss

what aspects of the framework need to be documented. The chapter closes

with an overview of several existing techniques and we will compare them

based on several issues.

Since the framework that we will present in this work is based on an-

other framework, called OONavigator, we will spend chapter four on the

explanation of this framework. We will also discuss OOHDM, which is a

design methodology for developing hypermedia applications.

In chapter �ve, The Documentation Framework, we will present our

approach to framework documentation. Next we will clarify the architecture

of the DocFramework.

The characteristics of the presented DocFramework are discussed in

chapter six and we will also evaluate our solution and argue about its ad-

vantages and disadvantages.

In chapter seven, Future Work, we present some research topics that are

related to the work done in this dissertation. We will talk about possible

ways to extend the framework. We will also consider how reverse engi-

neering tools can be linked to our repository. A speculation about possible

documentation patterns for framework documentation closes this chapter.

In chapter eight, Conclusions, will give an overview of the research that

was performed during this thesis.

CHAPTER 2

Frameworks

After several years of software development it became clear that a lot of

applications in the same domain are very similar to each other. They di�er

in some details, but the general structure and design of the program stay the

same. As an example we take the programs used in the domain of shopping.

The programs in this domain are used to support the activities that go on

in a shop, like for example logging the goods that come in and go out or

billing the client for the bought goods. Basically all these activities are the

same for each type of shop, however an application used in a supermarket

will contain some other functionality that is not applicable to small shops,

e.g. other paying possibilities (credit card).

Software developers want to take advantage of the similarities between

programs because developing a new application for every new company is

very expensive and is time demanding. So developers searched for a way

to reuse the design and code that is similar for all companies. Frameworks

were found to be a solution. Frameworks allow reuse just like regular object

oriented techniques, but with frameworks it is possible to reuse large and

abstract designs.

But what exactly are frameworks? How can we develop them? Use

them? Maintain them? In the following sections we will give a brief overview

of the most important framework characteristics.

2.1 De�nition

When we try to �nd an exact de�nition for a framework in the literature,

then we have to conclude that no generally accepted de�nition exists. The

13

CHAPTER 2. FRAMEWORKS 14

most widely used de�nitions are:

A framework is a set of classes that embodies an abstract design

for solutions to a family of related problems. [JF88]

This de�nition tells us that a framework consists out of a set of classes.

These classes make up the abstract design of a set of programs that all are

located in the same problem domain. For example the \shopping" frame-

work is an abstract design for all future programs used by di�erent kinds of

shops. For a lot of problem domains we can create several frameworks, e.g.

user interfaces, medical applications, etc.

Another de�nition would be:

A framework is a reusable design of all or part of a system that

is represented by a set of abstract classes and the way their in-

stances interact. [JR91]

In this de�nition we get to know another very important property of

frameworks, i.e. that the framework also de�nes the ow of control among

the classes. It de�nes how the instances of the classes will interact with

each other to perform the responsibilities of the framework. Or, in other

words a framework contains besides static information (classes and relations

among them) also dynamic information (interaction among the instances of

the classes).

A last de�nition that we want to give is the following:

A framework helps developers provide solutions for problem do-

mains and better maintain those solutions. It provides a well-

designed and thought out infrastructure so that when new pieces

are created they can be substituted with minimal impact on the

other pieces in the framework. (Nelson, IEEE Computer, 1994,

[Inc])

While the previous de�nitions described how a framework consists out

of interacting objects, this de�nition talks about how the framework should

be used. A framework can be seen as a skeleton that prede�nes part of the

structure and behaviour of future applications built using the skeleton. A

developer has to provide new pieces, e.g. de�nitions of a new function or a

new class, to complete the skeleton. The action of providing new pieces is

often called \framework instantiation" and the places in the skeleton where

to put the new pieces are often called \hot spots" (see section 2.2.1).

CHAPTER 2. FRAMEWORKS 15

2.2 Characteristics

Briey summarised we can say that a framework is an architectural design

used to cover a family of applications in a given domain and that it typically

consists out of abstract as well as concrete classes. The abstract classes en-

code the design of a set of classes and thus embody domain knowledge by

making the commonalities between their subclasses explicit. An abstract

class is a class that contains a number of abstract methods, i.e. methods

without implementation. Template methods are methods that rely on ab-

stract methods or other template methods in their implementation. Finally,

there are concrete methods, which have a full implementation that does not

rely on abstract methods. We can say that the template methods are the key

to reuse. They describe the core behaviour of the class, i.e. the behaviour

that is reusable for most of the applications. The abstract methods must

be overridden to provide some application speci�c functionality, while the

concrete methods just provide some directly reusable functionality.

For example a \shopping" framework is an abstract design for applica-

tions used in a shop. These applications must represent all the tasks that

have to be done in a shop, e.g. store and sell groceries, paying, etc. The

framework will have classes that represent the groceries, the shopkeeper, the

client, etc (�gure 2.1).

Figure 2.1: Class Diagram Shopping Framework

It de�nes at the same time how these classes will work together or in

terms of the \shopping" framework, how the prices of the groceries are read

and added by the shopkeeper and how the client pays for the groceries.

The ow of control is �xed by the framework (using template methods),

but how it is implemented depends on the requirements of the application

CHAPTER 2. FRAMEWORKS 16

at hand. For example an application based on the \shopping" framework

that will be used in a supermarket is di�erent from the application for a

small shop. In a supermarket the prices of the products will be read using

a scanner, while in a small shop, the shopkeeper will type the prices on the

cash register. In the example the ow of control is de�ned by the template

method \payingGoods", i.e. this method decides when to call the abstract

methods \readPrice" and \payClient" (�gure 2.2, and 2.3). Instantiators

Figure 2.2: Implementation of the ShopKeeper Class

Figure 2.3: Implementation of the Client Class

of the framework just need to override these abstract methods to make either

an application for a small shop or for a supermarket (�gure 2.4, 2.5 and 2.6).

CHAPTER 2. FRAMEWORKS 17

Figure 2.4: Implementation of the SmallShopKeeper Class

Figure 2.5: Implementation of the SupermarketShopKeeper Class

Figure 2.6: Implemention of the CreditClient Class

In this section we will refer to some important characteristics of frame-

works.

CHAPTER 2. FRAMEWORKS 18

2.2.1 Hot spots & Frozen spots:

The functions in the framework design that need to be customised to change

the behaviour of the framework are called \hot spots". Providing a new

implementation for such a function makes it possible to add variation to

the applications that are based upon the framework. The other functions

in the framework are called \frozen spots" or kernel. They represent the

static parts of the framework. These functions de�ne the ow of control in

the application. They will call the hot spots at the right time.

In terms of abstract, template and concrete methods we can say that

the template and concrete methods are the frozen spots, while the abstract

methods are the hot spots. The behaviour of template methods is inherited

by the subclasses of the framework classes. These methods will call at least

one template or abstract method that is implemented in the same class or in

another class of the framework. The framework developer encodes some of

his domain knowledge in the template methods. He knows which steps must

be taken to perform one of the framework responsibilities and he transmits

this knowledge by calling other methods (abstract as well as concrete) in

the template method.

In the \shopping" framework we call the function \payingGoods"1 a

frozen spot because it de�nes the ow of control of the application and is

the same for each instance of the framework. The functions \readPrices"2

and \payClient"3, which are called by \payingGoods" are hot spots because

for each instance the way the task is performed can be di�erent and so

another implementation of the functions is necessary. Look at �gures 2.2 to

2.6 to see how these methods are implemented.

2.2.2 Hollywood Principle (\Don't call us, we call you")

Framework-oriented programming requires a new way of thinking. In pro-

cedural programs, where a class library is used, it is the program itself that

calls functions in the library. The developer of the programmakes calls to the

library whenever he wants to reuse some code provided in the class library.

The ow of control stays mainly in the application and jumps sometimes

to the library and returns immediately after a library method is executed

(see �gure 2.7). In contrast with library based programs the ow of con-

1A function that will be called when a customer wants to pay for his goods. This func-
tion must contain functionality to read prices as well as some functionality that represents
the paying behaviour of customers.

2This function represents the task of the shopkeeper to read the prices on the goods.
The prices can be read by a scanner and are transmitted to the cash-register or they are
simply typed by the shopkeeper.

3This function represents the paying activity of the customer. He can pay cash or by
credit card.

CHAPTER 2. FRAMEWORKS 19

Figure 2.7: Change of control (Hollywood principle)

trol in framework-based programs can go in both directions (see �gure 2.7).

The framework can also call methods that are provided in the application.

An application developer calls a framework whenever he would like to reuse

some behaviour that is provided by the framework. The framework takes

over the ow of control and decides which methods (framework as well as

application methods) to call next.

The change of control is made possible because of the extensive use of

dynamic binding, i.e. messages with the same name can be sent to instan-

tiations of di�erent classes and a di�erent method is invoked, depending on

the receivers class. The framework involves besides concrete classes also ab-

stract classes. These abstract classes need to be subclassed in order to make

a concrete application. Because dynamic binding exists in object oriented

languages, a template method does not need to know the concrete subclass

that concretises the abstract method to which a call is made. A concrete

subclass of an abstract class understands all messages that can be send to

the abstract class, so the abstract class can be replaced by the concrete one.

In the \shopping" framework, this reverse of control can be seen in the

function \payingGoods". This function determines when the other two func-

tions will be called.

2.3 Framework Life Cycle

Working with frameworks includes several phases. These phases are the de-

velopment phase performed by framework engineers and the instantiation

phase performed by application engineers. Like every software product a

framework needs maintenance and sometimes the developers of the frame-

work decide to make a new version of it to remove some errors or add some

more abstractions.

First we go deeper in on the issue of developing frameworks, later we

will take a look at the other ones.

CHAPTER 2. FRAMEWORKS 20

2.3.1 Framework Development

Framework development di�ers from that of standard applications. A stan-

dalone application solves problems for one project, while a framework wants

to be a solution for several projects in the same domain (�gure 2.8).

Figure 2.8: Traditional versus Framework-based Application Development

[Mat96]

In [CHSV97] they said the following about framework development : Frame-

work development requires an extensive domain analysis prior to framework

design and that the ultimate goal of framework development is to build -

through a small number of iterations - a software architecture that can be

turned into a customised application by simply �lling in the \hot spots".

The framework development process can be seen as a sequence of steps

that must be taken whenever a new framework needs to be developed. These

steps were outlined by Mattson ([Mat96]) using a schema depicted in �gure

2.9.

� The �rst step in the development process is an exhaustive analysis

of the problem domain. This is performed systematically or through

development of one or a few applications in the domain and then some

key abstractions are identi�ed.

� The �rst version of the framework is developed utilising the key ab-

stractions found.

CHAPTER 2. FRAMEWORKS 21

� One or possibly a few applications are developed based on the frame-

work. This is the testing activity of the framework. Testing a frame-

work to see if it is reusable is the same activity as developing an ap-

plication based on the framework.

� Problems when using the framework in the development of the appli-

cations are captured and solved in the next version of the framework.

� After repeating this cycle a number of times the framework has reached

an acceptable maturity level and can be released for multi-user reuse

in the organisation.

Figure 2.9: The General Framework Development Process [Mat96]

2.3.2 Framework Instantiation

The following phase is the framework instantiation phase and is in fact

the process of completing the static variations of a given framework. The

application engineer, who is responsible for this phase, needs to know the

speci�c properties of the application under development to be able to �ll

in the hot spots of the framework. An application engineer needs to be an

expert in the application domain to be able to ful�l his4 task. Depending

on the type of framework (white or black box cf. 2.4) other techniques must

4In the remainder of this document, wherever \he" and \his" are used, respectively
\he or she" and \his or her" are intended.

CHAPTER 2. FRAMEWORKS 22

be used to customise the framework behaviour. More about these di�erent

types of frameworks in the section 2.4.

2.3.3 Framework Maintenance and Evolution

In [CHSV97] they make the observation that a co-operation between appli-

cation and framework engineers should exist. A framework is not �nished

when the framework developer delivers it to the application engineer. First

because a business evolves over time, so the framework has to evolve as well.

Second, the framework developer learns from the application engineer how

his framework has been instantiated. With this information the developer

can decide to make the framework better and more reusable by introducing

new abstractions.

Software evolution and maintenance activities are divided into the fol-

lowing categories: [Mat96]

� Corrective maintenance: �xing failures to meet system require-

ments.

� Perfective maintenance: improving the performance of the system,

maintainability and ease the use in ways that do not violate the re-

quirements.

� Adaptive maintenance: evolving the system to meet changing needs.

When perfective maintenance is performed the requirements of the sys-

tem are not changed, so this maintenance can be done without a�ecting the

applications that are build upon the framework. Refactorings are a well

known technique to perform this type of maintenance. Refactorings restruc-

ture operations with preservation of its behaviour and without introducing

any defects in the program.

When a framework evolves, it is important that the applications built

on these frameworks upgrade to that new version. If they do not upgrade,

a proliferation of framework versions occurs. Consequently, there will exist

di�erent sets of applications that use each their version of the framework. All

framework versions still need to be maintained by the framework developers,

which results in an undesired increase of maintenance e�ort. To avoid this

from happening it should be made easy for the framework user to switch to

the new version. Minimising the impact of the changes or documenting the

evolution can help to achieve this goal.

CHAPTER 2. FRAMEWORKS 23

2.4 Di�erent Kinds of Frameworks

Frameworks can be classi�ed by their scope or by the way they have to be

customised [FS97b]

The �rst classi�cation of frameworks is by scope. Depending on the

domain for which the framework is created, it is possible to distinguish

three groups of frameworks: system infrastructure frameworks, middleware

integration frameworks or enterprise application frameworks. For more in-

formation about this classi�cation we refer to [FS97b].

Another, more important, classi�cation of frameworks is based on the

way an application engineer has to customise or instantiate the framework

behaviour. White-box and black-box frameworks are the two groups in

which frameworks can be classi�ed. So if a framework engineer wants to

customise a white-box framework, he has to subclass a base class of the

framework (see [JF88]). In doing this it must abide by the internal con-

ventions of its superclasses. Figure 2.10 shows schematically that white-box

frameworks must be customised by subclassing some classes at �xed points

in the framework.

An application engineer needs to understand the internal structure of a

white-box framework to be able to instantiate it. He needs to know how the

methods and classes in the framework depend on each other to �nd out how

he can modify the behaviour of the framework. This kind of framework can

be di�cult to use because it requires a deep understanding of the frameworks

design and code, what is almost the same as learning how it is constructed.

Figure 2.10: A schema of white and black box frameworks

A black-box framework can be customised just by composing new ob-

jects together. Each component has a well-de�ned interface that makes it

possible to compose them. Black-box frameworks are easier to understand

because application engineers only have to learn the external interface of

the framework. On the other hand, the number of possible combinations of

components is determined by the framework architecture. The framework

is less exible with respect to unforeseen changes. A framework developer

CHAPTER 2. FRAMEWORKS 24

provides a set of components with the basic variations (look at �gure 2.10),

but users that want to do something slightly di�erent can run into a lot of

di�culties.

If we look at the evolution of a framework then we see that it starts

as a white-box framework and turns into a black-box framework after it is

reused several times, i.e. after the design of the system is better understood.

We can conclude that a framework becomes more reusable as the relation-

ships between its parts are de�ned in terms of a protocol, instead of using

inheritance. ([JF88])

2.5 Advantages and Disadvantages

Frameworks represent an abstract design that can be easily and quickly

extended to develop new applications. But frameworks also have some dis-

advantages like they are more di�cult to understand. We give here some

advantages and disadvantages of using frameworks.

2.5.1 Advantages

One of the most important advantages of frameworks is that they can sig-

ni�cantly increase software quality and reduce development e�ort. A reason

for this increase of quality can be identi�ed in the fact that volatile im-

plementation details are encapsulated behind stable interfaces. It is easier

to localise the impact of design and implementation changes, so it is also

easier to understand and maintain existing software. The actual develop-

ment of the framework is rather expensive, therefore this must be seen as

an investment from which the future applications, that are build on it, can

bene�t. The development of these applications will be less expensive then it

would have been if they were developed from scratch. The good thing about

frameworks is that they, besides enabling of code reuse, promote reuse of

generic design, i.e. applications can be developed much faster than before.

Another advantage is that framework based applications can be faster

implemented because frameworks are written in a particular programming

language ([Joh97]). The algorithms and the data structure of the program

can be automatically reused by every instantiation of the framework. The

implementation of the framework only needs to be extended with the code

for the variations. However using a particular programming language to

de�ne a framework is also a disadvantage because the framework is then

restricted to be used only in that speci�c programming language.

Applications that are built using a framework are cheaper to maintain

than independent applications with duplicate code. Maintaining applica-

tions implies that one needs to understand the applications code and has to

CHAPTER 2. FRAMEWORKS 25

change it where necessary. Understanding a framework is a one-time e�ort

and results in the understanding of all applications that are built using the

framework. Changes to the frameworks code immediately results in adapted

applications. The more applications that use a framework, the bigger the

savings.

2.5.2 Disadvantages

If a company decides to develop or use a framework, then they have to

take into account that the development of a framework is expensive and

that it takes some time before they can bene�t from it. The development

of a framework is expensive because a thorough domain analysis must be

done before a prototypical framework can be built. This prototype must

be used and adapted to make it more abstract and reusable. So building a

framework is a long-term investment and it is important that one looks at

the cost bene�t ratio before starting to build one.

A framework requires a lot of time to learn it. It is necessary for the

users and new developers to understand the abstract design that was written

by the developers of it. Good documentation can reduce this learning curve

and is of great importance in the use of frameworks.

The design of a framework is implemented in a particular programming

language. This property restricts the use of the framework to that language.

Although with some e�ort the design can be reused and implemented in

some other language.

2.6 Related Techniques

In the previous sections we explained how to develop and use frameworks.

We showed some advantages and disadvantages. But we also want to com-

pare frameworks to some other existing reuse techniques (design patterns

and class libraries). [Joh97]

2.6.1 Design Patterns

Patterns reuse design information, i.e. they tell how a problem needs to

be solved, they give a solution and a context in which the solution works

[FS97b]. An advantage of patterns is that they install a certain vocabulary

among software developers.

Most of the time the proposed solution is one that is used several times to

solve that problem in other cases, it stood the test of time. We could say that

patterns are similar to frameworks because frameworks are also implemented

several times. Another similarity is that an application that implements a

CHAPTER 2. FRAMEWORKS 26

framework has to follow the prede�ned design by the framework just like

the design proposed by a pattern has to be followed.

Besides the similarities there are also some di�erences between frame-

works and design patterns. Unlike design patterns a framework also gives a

solution implemented in some programming language. This makes patterns

more abstract solutions than frameworks. A framework uses patterns to

implement the abstract design, so patterns are smaller than frameworks.

2.6.2 Class Libraries

Another similar technique to reuse design is a class library. A class library

contains a set of components that can be reused in isolation [Joh97]. To use

one of these components, only that class needs to be learned. Opposite to

this the whole set of classes of a framework be learned all together before

they can be used. The reason for the extensive learning process lies in the

fact that the classes in a framework implement a higher level of design, they

implement how the classes work together.

An application engineer who uses a class library is in charge of calling the

methods in the library. When using a framework, the application engineer

has to provide some methods that will be called by the framework, i.e. the

framework is in charge of calling methods.

2.7 Summary

In this chapter we gave some answers to the questions: \What are frame-

works?", \How to use them?" and \How to maintain them?" We gave

some de�nitions of frameworks and discussed some of their characteristics.

Also in this chapter we clari�ed what the di�erent phases in the life-cycle

of a framework are. We saw that frameworks are very interesting to use

but also have some disadvantages. One important disadvantage was the

learning curve of the framework. In the following chapter we will point to a

technique that can reduce the e�ort of learning a framework, i.e. framework

documentation. We will see that framework documentation is necessary for

several reasons.

CHAPTER 3

Framework Documentation

3.1 Introduction

The previous chapter gave an overview of some general characteristics of

frameworks. In that overview we did not add a discussion on documenting

frameworks, because we would like to give it some special attention in the

following sections, considering the importance of it during the remainder of

this dissertation.

First of all, we point out why framework documentation is so important

during the entire lifetime of the framework and to whom this documentation

is addressed. Next an overview of some existing documentation techniques

is given. These techniques will become important when we introduce our

proposed framework.

3.2 Why is Framework Documentation Important?

The design of standard software products needs to be documented and this

is not di�erent for frameworks; in addition we acknowledge that the doc-

umentation of frameworks is of key importance in its use. Without good

documentation the framework will not be used correctly or will even not be

used at all. We will continue with explaining why framework documentation

is so important.

Understanding a framework makes reuse possible: Documenta-

tion of applications is necessary because it allows to reuse and maintain the

applications. Before a developer can reuse or maintain an application, he

needs to understand the design of it, i.e. he needs to know why the origi-

27

CHAPTER 3. FRAMEWORK DOCUMENTATION 28

nal developer chose to implement or design the application like he did. For

instance, aspects like the interactions between instances of the framework

classes certainly need to be documented since this information is important

in understanding how it works. Without this information, the framework

user needs to dig into the code, which takes a lot of time and which is even

not possible when the uncompiled code is not available to the reuser. We can

conclude that a framework needs to be documented as a whole: documenting

the framework classes separately is not su�cient.

Make framework-based application development more attrac-

tive over developing from scratch: There are two major parties (ap-

plication developer and framework developer) involved in using frameworks:

they both have their reasons why using frameworks should be documented

well. We will �rst discuss the motivation of an application developer.

Frameworks are introduced because the framework already contains the gen-

eral design of a type of application that an application developer wants to

build. Consequently, he gains time that he would have spent in developing

from scratch. However, a disadvantage of frameworks is that application

developers need some time to learn them. Good documentation can make

the gain of time higher than the loss of time, consequently the application

developers are more attracted to framework-based application development

instead of starting from scratch.

Framework developers, the other party, want good framework documenta-

tion since the development of a framework is very expensive. This huge

cost is justi�ed by the fact that the framework will be reused to build other

applications. If a lot of applications can be build using the framework,

then money is saved that otherwise would be spend in building the appli-

cations from scratch. Thus, a framework developer wins by promoting his

framework. Framework documentation can help a lot with this promoting

activity.

Frameworks are not fully functional applications: Unlike stan-

dard applications, a framework is not a fully functional application. It needs

to be customised by an application engineer. The framework developer de-

signed the framework in such a way that the application engineer only has to

�ll in the functionality that is typical for the application under development.

The framework developer has an idea of how the framework must be reused

and he should document his expectations to the reuser to make it possible

for him to reuse the framework. Expectations such as which methods he

needs to write, what the methods need to do and where these methods must

be plugged in.

Abstract Design: The nature of a framework makes its understanding

not very easy. The de�nitions in section 2.1 illustrate that a framework

developer writes a framework for a particular application domain, so he can

CHAPTER 3. FRAMEWORK DOCUMENTATION 29

capture all his knowledge of the application domain in the framework. The

more a framework is reused, the more feedback the framework developer

gained from reusers, and this allows him to make the design more abstract,

i.e. more reusable. Consequently, a framework is a very abstract design in

which most of the real world concepts are lost. Framework documentation is

necessary here to explain the abstract design, without this documentation a

reuser is forced to learn the whole application domain and that is just what

he wanted to avoid using the framework.

Frameworks evolve: Documentation is not only necessary to under-

stand a framework and to learn how to use a framework, but it is also

important that reusers of a framework are kept up to date with the evolu-

tion of the framework. When application developers took the time to learn

the framework, which was time demanding in the beginning, then they want

to continue using it for a certain time. Therefore frameworks need to have

documentation on how they evolved from one version to another, so that

the reuser can update his application to the latest version.

3.3 Using Object-Oriented Frameworks

In the following section we will discuss about the di�erent ways to use a

framework and the di�erent types of framework users. This will make it

easier to argue about their requirements for framework documentation.

3.3.1 Ways to Use a Framework

Not all framework users use the framework in the same way. Each of them

requires a di�erent amount of knowledge about the framework and a di�erent

level of skill in using it. At this point framework documentation can become

handy to provide the necessary information. Taligent [Inc] de�nes three

main ways in which frameworks can be used.

� As is: A framework user will use the framework as it is delivered,

without modifying or adding something. The framework is treated as

a black-box, i.e. the user only needs to put together some components

to build an application. In other words, the framework developer

delivered together with the framework a library of components that

can be used to built an application.

� Complete: The framework user adds components to the framework

by �lling in parts left open by the framework developers (hot-spots).

Completing the framework is necessary if it does not come with a full

set of library components.

CHAPTER 3. FRAMEWORK DOCUMENTATION 30

� Customise: The framework user replaces part of the framework with

custom code. Modifying the framework in such a way requires a de-

tailed knowledge of how the framework operates.

3.3.2 Framework Users

Besides the di�erent ways a framework can be used, it is also possible that

people with di�erent goals will use the framework. In [FHLS98], four di�er-

ent types of users are distinguished.

� Users who have to decide what framework to use: The user

who selects the framework, that will be used to create new applica-

tions, needs to have a clear view of the requirements that need to be

ful�lled by the future applications. Once he has all the requirements,

he has to browse framework libraries to �nd the framework that is

the best choice considering his requirements. If no good framework is

found, then he can propose to build a framework from scratch.

To select the appropriate framework the user needs to know the con-

text, the intended use, the features and also the limitations of that

framework.

� Regular user: Many users will use a framework in the way that it was

meant to be used. There are two ways to do this: the �rst possibility

is that they can built an application by putting components, that

were delivered together with the framework, together. The second

possibility is that they create their own components to work with

the framework. These components follow strict the intentions of the

framework developer. They customise the hot-spots like the framework

developer has intended it.

Consequently, a regular user needs to know only enough about the

framework to enable him to e�ectively use it, and typically do not

require detailed knowledge of the framework. He only needs to know

how he can customise the framework and not why he has to do it that

way.

� Advanced user: Some users will want to use the framework in unex-

pected ways; ways that the framework developers never anticipated or

planned for. They will use the framework in the same way as regular

users, i.e. they will also implement a component to customise a hot-

spot in the framework. However, the advanced user will customise the

hot-spot in a way that was not expected by the framework developer.

For instance, an extra function call is added to extend the functional-

ity of the framework. While doing this the obligations and constraints

of the design are respected.

CHAPTER 3. FRAMEWORK DOCUMENTATION 31

For this kind of customising behaviour, the advanced user needs an

in-depth knowledge of the framework. He needs to know where he has

to change the implementation of the framework to alter its behaviour.

� Framework developer: A framework can evolve by adding function-

ality or �xing errors; specialised frameworks can be derived by adding

specialised classes, or the framework can be generalised to accommo-

date a wider domain.

The framework developers, who perform these activities, need to know

all the details of the design and implementation of the framework and

must keep in mind how changes will a�ect applications that were al-

ready developed using the framework.

These di�erent types of users each have their own special activities for

which they need a di�erent amount and a di�erent kind of knowledge. When

documenting a framework one should take into account the di�erences be-

tween these types of framework users.

3.4 What Needs to be Documented?

In the previous section we discussed who needs framework documentation

and what their speci�c task is. In this section we will elaborate on what

needs to be included in the documentation. Later we will describe di�erent

levels in the documentation, with di�erent contents according to di�erent

types of users.

According to [Mat96] the following information has to be included into

the documentation for understanding and using classes in a class library:

� Structural information: a description of the class, that includes

things such as its name, its superclass if any, information about at-

tributes and operations

� Descriptions: a description in natural language of each class, de-

scribing the purpose of the class and the abstraction it represents.

� Usage: a description that tells if the class is intended to be instanti-

ated in a particular way, or not instantiated at all.

� Terminology: the terminology introduced regarding the concept the

class captures.

� Con�guration: a description of how classes are related to each other,

and intended to be instantiated in certain con�gurations.

� Assertions: semantic constraints stating preconditions and postcon-

ditions for operations and class invariants.

CHAPTER 3. FRAMEWORK DOCUMENTATION 32

� Operations: for each operation include some structural documenta-

tion such as parameters, results of operations and the corresponding

types.

The list of items displayed above are the aspects that need to be included

in the documentation of class libraries. This is equally true for frameworks,

but in addition to these aspects, the framework documentation must be

described on di�erent levels of abstraction since it must address the needs

of developers with varying levels of experience. The aspects introduced

above are not enough to document a framework. They describe each class

of the framework in isolation, while in frameworks it is also important how

these classes collaborate with each other. Therefore we need in addition to

this some specialised documentation. Johnson gives in [Joh92] three types

of documentation needed for frameworks:

� The purpose of the framework: a description of the framework

domain, the requirements it is meant to ful�l, and any limitations it

has.

� How to use the framework: A description of the way the frame-

work builder intended the framework to be used. It captures the frame-

work developer's knowledge of how the framework can be used.

� The design of the framework: A description of the structure and

behaviour of the framework.

The three types of documentation show that framework documentation

should include more than a detailed design description of the framework

using for instance \class diagrams". While the detailed description is neces-

sary for the advanced users of the framework, regular users will have to do

too much e�ort to learn information that they do not need to know. They

just need to know what the framework is used for and how it can be used,

to accomplish their task.

3.5 Current Documentation Techniques

Here an overview of some existing techniques to document frameworks is

given. For each technique a short description is supplied. An evaluation

follows this overview and compares the techniques based on di�erent criteria.

3.5.1 Cookbook

Cookbooks guide reusers step by step for building new applications start-

ing from the framework. A cookbook contains recipes that describe in an

CHAPTER 3. FRAMEWORK DOCUMENTATION 33

informal way, through natural language, how to use a framework and they

usually do not explain the internal design and implementation details of

the framework. The �rst recipe in the cookbook acts as an overview of the

cookbook with cross-references to the remaining recipes. Each recipe can

cross-reference to some other related recipes.

One of the �rst well-known frameworks, i.e. Model-View-Controller, was

already documented by a \Cookbook for Model-View-Controller" [KP98].

A similar approach to cookbooks and recipes was presented in [Joh92]

using an informal pattern language to document a framework in natural

language. The documentation of the framework is organised in a set of

patterns, sometimes called a \pattern language". Each pattern describes

a problem that occurs over and over again in the problem domain of the

framework, and then describes how to solve that problem. Each pattern has

the same format. First they give a description of the problem and a detailed

discussion of the di�erent ways to solve the problem, with examples and

pointers to other parts of the framework. The pattern ends with a summary

of the solution, followed by pointers to other patterns. Considering the fact

that patterns describe a problem and how to solve it, they can be seen as

the recipes of a cookbook. The pattern language in [Joh92] gives also an

organisation to the cookbook, the patterns are organised in such a way that

the patterns for the most frequent forms of reuse are represented early, and

where concepts and details are delayed as long as possible.

In [LK], to avoid confusion with design patterns, call the patterns that

Johnson introduced motifs. In their work they use a template for a motif

description that has a name and intent, a description of the reuse situation,

the steps involved in customisation, and cross references to other motifs,

design patterns, and contracts. The design patterns provide information

about the internal architecture, and the contracts provide a description of

the collaborations relevant to the motif.

A di�erence between a cookbook and the pattern language of Johnson

is that a cookbook gives a step-wise guidance to solve a problem, while the

patterns only give an informal description. Another di�erence is that the

pattern language gives an order in which to browse the di�erent patterns.

Evaluation

Amajor weakness of a cookbook approach is that it describes the normal way

to use the framework, but lacks to means of knowing how the framework

will be used in the future. A cookbook cannot describe every use of the

framework, especially not the use that was not foreseen by the developers.

Therefore the cookbook approach is not appropriate for users that want to

go beyond the normal use of the framework, but it is quali�ed for addressing

the purpose of the framework and presenting some examples.

CHAPTER 3. FRAMEWORK DOCUMENTATION 34

3.5.2 Design Patterns

In general, design patterns try to record experience in designing object-

oriented software in a form such that people can e�ectively reuse it. A pat-

tern presents a solution (a description of objects and classes that participate

in the design, and their responsibilities and collaborations) to a commonly

occurring design problem and besides that it also gives a name to the design

construct that solved it [GHJV95]. As a side e�ect, we can say that design

patterns form a vocabulary that can be shared among teams which allows

them to refer without confusion to a particular design construct.

Each design pattern, in general, has four essential elements:

� a name

� a problem description

� a description of the solution

� a discussion of the consequences

These four elements are described through informal textual notations, di-

agrams (using notations such as OMT, UML), and programming language

samples.

In addition to providing a solution for a design problem, design patterns

are also useful in the context of describing parts of a framework design. The

description of the design pattern includes both the classes and the collabo-

rations between the classes, which is crucial to understand the framework.

Besides that, patterns describe the design on a higher level of granularity.

A framework can be viewed as interwoven patterns instead of a collection of

low level classes.

Another important reason to use design patterns in documentation is

that they give a description of the problem it solves and the context in which

it is used. This information makes it easier to understand why certain design

decisions were made.

Evaluation

Considering the fact that design patterns are an informal description of the

design, makes design patterns not appropriate to use as the only documenta-

tion of the design. Design patterns are mostly used to describe the purpose

of a framework and to let application programmers use a framework without

having to understand in detail how it works. They give design information

but no usage information.

CHAPTER 3. FRAMEWORK DOCUMENTATION 35

3.5.3 Exemplars

An exemplar is an executable visual model consisting of instances of concrete

classes together with explicit representation of their collaborations. For each

abstract class in the framework, at least one of its concrete subclasses must

be instantiated in the exemplar [GM95]. The explicit representation of the

collaboration among classes makes it possible to view these collaborations

and, more important, to interactively explore the relationships between the

instances of the classes with a visual tool. The interconnections between the

main classes of the framework will be better understood when following this

way of working.

Exemplars help application developers in adapting the framework to

their own needs. To be able to do that, they must know where to make the

necessary changes, they must know how classes and methods depend on each

other. An exemplar is provided by a framework developer and application

developers can use the exemplar by following several steps (a sort of recipe):

1. Representation: Framework developers provide an exemplar, mak-

ing explicit the architecture of a framework. An exemplar consists of

one or more instances of at least one concrete class for each abstract

class in the framework.

2. Exploration: A visual tool lets the reuser interactively browse the

exemplar in order to understand the responsibilities and relationships

of the objects. The visual tool not only shows the structural relation-

ships of the objects, but it also shows the collaborative relationships

via observing message passing among these objects. The reuser can

actually see how the framework executes in a limited way, which facil-

itates the understanding of the framework.

3. Selection: After the framework user has gained an understanding

of the framework through exploring the exemplar, the user can select

objects from the exemplar that need to be replaced or modi�ed to �t

the requirements of the application being built.

4. Finding alternatives: The tool allows the user to explore the inheri-

tance hierarchy for a selected object. It displays the abstract class and

the framework library classes derived from the class that corresponds

to the object and the user can select the one that is needed for the

application. By restricting the search to the inheritance hierarchy of

the selected object, the tool cuts down on the number of classes the

user has to search through.

5. Adaptation: If no appropriate replacement class exists within the

framework, then a new one has to be created. The replacement can,

CHAPTER 3. FRAMEWORK DOCUMENTATION 36

for example be a subclass of the existing abstract class corresponding

to the object selected, or it can be a composition of more than one

existing class.

An object of the replacement class can then be inserted into the exemplar

model, and can be executed to see if it has the desired behaviour. Framework

users repeat this process for every object they wish to replace and can, in

part, prototype the application by selectively replacing objects.

The exploration tool gives several views on the framework using di�erent

types of diagrams. Each step has its own diagram to show the necessary in-

formation. In the �rst step the tool shows an \Object Model View" to show

the static relationships among the objects. This Object Model View is very

similar to a UML object diagram. Also in the �rst step the user can browse

the responsibilities of each object. The tool uses for this an \Object Prop-

erty Viewer". Again we �nd some similarities with another documentation

technique, i.e. CRC cards. CRC cards give the name of a class together with

the responsibilities it has in the design. In the second step the reuser can

have a look at messaging interactions. A diagram, called \Event Scenario

Diagram", shows these interactions. This diagram is comparable to an \in-

teraction diagram" in UML. In the fourth step one has to �nd alternatives

for an object in the Object Model View. Exemplars propose to browse the

hierarchy of that object, to be able to do this one �rst has to lookup the

class of the object in the property view and then locate the class in a class

diagram to see the hierarchy. This class diagram is very alike to the \class

diagrams" that exist in UML.

Evaluation

The exemplar technique is a good way to show how the framework works

and it aids the user with examples on how the framework should be used,

should be instantiated.

3.5.4 Interaction Contracts

A contract is a speci�cation of obligations and collaborations [Hol92]. In-

teraction contracts describe object interactions, i.e., a group of objects that

interact via message passing to accomplish some system task. Interaction

contracts aim at providing an explicit formal textual representation of object

interactions. Each contract consists of the following parts:

� Contractual obligations: The obligations de�ne what each partic-

ipant must support. The obligations include both type obligations

(variables and interfaces) and causal obligations. The causal obli-

CHAPTER 3. FRAMEWORK DOCUMENTATION 37

gations consist of sequences of actions that must be performed and

conditions that must be met.

� Invariants: The contract also speci�es any conditions that must al-

ways be kept true by the contract, and how to satisfy the invariant

when it becomes false.

� Instantiation: Preconditions from the �nal part of the contract which

must be satis�ed by the participants before the contract can be estab-

lished.

Evaluation

These contracts show the users of the framework how the objects of the

framework collaborate to achieve the goal of the framework. A contract

writes down how the objects interact and which methods are important to

achieve that behaviour. Thus, interaction contracts are appropriate to give

detailed design descriptions.

3.5.5 Reuse Contracts

Reuse contracts have been developed to provide a way to document soft-

ware, software reuse and software evolution and to provide support for

change propagation [Luc97]. Documenting evolution is an important is-

sue in reusing components because reusers need some support when they

decide to update to the new version of the component. Upgrading to a new

version of the component is not without risk: the behaviour of the evolved

component can be changed or assumptions that could be made before do

not hold anymore. It is important that the reuser can detect conicts and

therefore the assumptions, made during component development, should be

documented. Reuse contracts are exactly developed to aid in that task.

The reuse contract model has two main concepts: collaboration and reuse

contracts. A collaboration contract describes the collaboration between par-

ticipants, i.e. software entities that have an interface and that invoke each

other's operations. A collaboration contract consists of two parts: the static

structure and the interaction structure. The static structure shows the par-

ticipants of the contract and how they are related or acquainted to each

other. The interaction structure shows the messages sent between the par-

ticipants. The interaction structure also shows which method invoked the

message-send, this makes it possible to see which methods rely on which

other methods. Doing so, collaboration contracts make the implicit assump-

tions of the developers explicit. A more formal de�nition of collaboration

contracts is:

CHAPTER 3. FRAMEWORK DOCUMENTATION 38

A collaboration contract consists of a name and a set of

participants. Each participant has a unique name within the

collaboration contract, an interface holding methods and an

acquaintance clause holding acquaintance relationships. A

method has a method signature, an annotation abstract or

concrete, and a specialisation clause. A specialisation clause

is a set of method invocations, associating an acquaintance

name with a method signature. An acquaintance relationship

is an association between an acquaintance name and a partici-

pant name. [DH98]

The second aspect of the reuse contract model is the reuse contract.

Reuse contracts are used to document how a part of the system is reused.

In general, a reuse contract is a contract between a provider and a reuser. It

comprises a provider clause, that states what is actually provided, a reuser

clause, that states what is actually reused, and a contract type, that states

how the contents of the provider clause is reused.

The provider clause contains a collaboration contract that states what is

provided and the reuser clause describes the changes that were made to the

provider clause. The contract type associated describes how the provider

clause is reused. Several contract types exist, each de�ning a di�erent kind

of reuse. A contract type expresses how the provided component is modi-

�ed. Possible contract types include extension, cancellation, re�nement and

coarsening. The contract type imposes obligations, permissions and pro-

hibitions on the reuser. For example, the extension contract type requires

reusers to add new elements to the provider, but prohibits overriding of ex-

isting elements. These contract types are the basis for detecting conicts

when components evolve.

Collaboration contracts give an overview of how the methods of the

classes in the framework relate to each other. But more important, reuse

contracts show how a system should be reused or how a system has evolved.

They can aid the framework developer in estimating how much e�ort is

needed to perform a planned change. Besides that they also give a good

insight into the e�ect of the changes. A proposed change can be modelled

in a reuser clause and the framework developer can then apply it on the

already existing design, modelled in the provider clause. It can see if some

conict occur through conict detection.

Here we present a collaboration contract for a part of the mini \shopping

framework". In �gure 3.1 a collaboration contract shows how the methods

in the framework depend on each other. The static structure presents the

relations among the participants. We can see in the dynamic structure that

the method \payingGoods" of the participant \ShopKeeper" calls several

methods of the other participants. It makes a call to the method payClient

CHAPTER 3. FRAMEWORK DOCUMENTATION 39

of the Client participant or it sends the message \readPrice" to itself.

Figure 3.1: Paying Goods Collaboration Contract

The collaboration contract in �gure 3.1 showed the relationships between

the participants. In �gure 3.2, we show how to adapt the framework to allow

a client to pay by using a credit card. Therefore the method \receiveCred-

itCard" must be added to the participant \ShopKeeper". This method will

do whatever is necessary to accept a credit card. This extension of the

participant is depicted in the �rst reuser clause with contract type \partic-

ipant extension". The other reuser clause of type \Participant Re�nement"

documents that a method call is added.

Evaluation

Reuse contracts are appropriate to be used in the design description of a

framework. They explain how methods are related to each other. Regular

and advanced users can use reuse contracts when they need some design info.

But reuse contracts also can help framework developers and maintainers

when they want to document the changes they made to the framework.

3.5.6 Examples

Examples provide another means of learning the framework and complement

all of the other types of documentation. The examples can be complete

CHAPTER 3. FRAMEWORK DOCUMENTATION 40

Figure 3.2: Paying by credit card Reuse Contract

applications developed from the framework, or smaller examples to demon-

strate how a particular hot-spot can be used, or how a given design pattern

works. The examples are valuable because they make an abstract frame-

work concrete and easier to understand. They provide a speci�c problem

and show how the framework can be used to solve that problem. Examples

are also valuable to framework evolvers to see if the provided examples of

framework instantiation are still valid for the changed framework. How-

ever, examples cannot cover every possible use of the framework and so the

other forms of purpose, intent and design documentation are still necessary

(Johnson, OOPLSA 92 Conference proceedings, 1992[Inc]).

3.5.7 Evaluation

In the previous sections we gave a description of some existing documenta-

tion techniques. In this section an evaluation is made of these techniques.

They are compared against each other based on di�erent criteria. First, we

summarise the di�erent users and their need for a di�erent level of detail

in the description, after that a table shows the main characteristics of the

techniques and at what level of detail they describe the framework. We con-

clude with a table that gives for each type of user one or more techniques

that are the most appropriate to support him in his tasks.

CHAPTER 3. FRAMEWORK DOCUMENTATION 41

Di�erent types of users need a di�erent level of detail:

Like we mentioned before, a framework has a long life cycle and there are

several types of users (section 3.3.2) that come into contact with the frame-

work. Each of these users has a di�erent task to accomplish. Di�erent tasks

can possibly require di�erent skills of the users and can call for a di�erent

level of detail in the documentation (section 3.4). Not every user needs to

have the same detailed description of the framework.

For example, a user, who has to select a framework, does not need to

know more about the framework than its purpose.

This is in contradiction with the advanced framework user. He also needs to

know the purpose of the framework to provide him with some background

information of the framework. However, in addition to this information, he

needs to know the regular use cases of the framework, so he can see how

the framework can be used without adaptations. And �nally, the advanced

user needs to have a detailed description of the framework design, so he can

detect how he can alter the behaviour of the framework.

Purpose Use Design

Has to choose Yes No No

Regular Yes Yes No

Advanced Yes Yes Yes

Developer No No Yes

Table 3.1: Di�erent audiences require di�erent level of detail

In table 3.1, we give an overview of the user types and their required

level of detail in the framework description.

Characteristics of documentation techniques:

In table 3.2, an overview is given of the main characteristics of the docu-

mentation techniques. The third column of the table shows at what level of

detail the technique describes the framework.

For example, cookbooks give a stepwise guidance in using and learning

the framework. This technique describes the purpose and the use of the

framework, but it does not give su�cient information about the design of

it.

Di�erent types of users, di�erent techniques used:

Since the di�erent types of users reuse the framework in a di�erent way

(see section 3.3.2), they need to need to know other information about the

framework. Documentation techniques can provide this information to the

CHAPTER 3. FRAMEWORK DOCUMENTATION 42

Characteristics Level of detail

Cookbook Stepwise guidance in purpose

solving problems use

Design Patterns Names design constructs purpose

Higher level of design

design description

Exemplars Viewing framework behaviour use

by completing the design

framework template

Interaction Contracts Formal descriptions design

of interactions

Reuse Contracts Document collaborations use

Document evolution design

Support in change propagation

Examples Describe possible purpose

run-time behaviour use

design

Table 3.2: Main characteristics of each technique

framework users. However, there is no documentation technique that can

ful�l all the requirements of the user. We will give an overview the users

and explain which techniques they need and how the techniques are used.

� User who chooses the framework: Since this user needs to select

an appropriate framework, he needs to have an overview of all the

frameworks he can select from. A textual description of the framework

together with some examples can cover the requirements of this user.

� Regular user of black-box framework: The regular user needs to

know the di�erent hot-spots and what the available subclasses (in the

component library) are. Using a cookbook with some examples will

help the user in his task. Each recipe of the cookbook describes a hot-

spot. With the Exemplars technique, the user can browse an example

application and choose another subclass for the hot- spot. Now, the

Exemplar, with the changed subclass, shows the altered behaviour of

the application. The user can decide if it is the behaviour he wants or

can continue browsing subclasses.

� Regular user of white-box framework: In contradiction with the

previous user, this user needs to implement his own subclass to cus-

tomise the hot-spot following the steps expected by the developer.

Again a cookbook with references to examples and interaction or reuse

contracts should cover the requirements of this user. Each recipe in the

CHAPTER 3. FRAMEWORK DOCUMENTATION 43

cookbook describes a hot-spot. The recipe should describe each step

that should be taken in the customisation process. Things like which

classes should be subclassed and which methods should be overridden.

In this description, links to reuse contracts and interaction contracts

are valuable, since they explain the interaction between the objects.

In the Exemplar technique the user can browse the interaction, which

can give him a better understanding. The Exemplar also allows him

to view a prototype of his solution.

� Advanced user: The advanced user uses the framework in unex-

pected ways, but still respects the constraints and obligations of the

hot-spot. A cookbook with recipes describing the constraints and obli-

gations of each hot-spot is necessary. A recipe uses design patterns,

interaction contracts, reuse contracts to clarify these restrictions. Ex-

emplars provide him with an easy way to understand the interactions

among the objects.

� Framework Developer: The framework developer requires informa-

tion about the intent and the rationale behind the choice of the hot-

spots. A cookbook can provide recipes for each hot-spot describing the

intent. Design patterns, interaction contracts and reuse contracts will

describe in a more formal way. Reuse contracts will also document

how the framework evolves and what the impact is on the existing

applications. Examples are also necessary since they can help the de-

veloper in checking if no unexpected changes occurred at other places

of the framework.

Table 3.3 summarises for each type of user what techniques are the most

appropriate for him.

3.6 Summary

In this chapter we gave an answer to the questions why we need special

documentation for frameworks. An overview of the di�erent ways to use a

framework and the di�erent users of the framework was given. A big part

of this chapter was a discussion of several existing techniques to document

frameworks.

In the following chapter we will propose a new approach towards docu-

menting of frameworks.

CHAPTER 3. FRAMEWORK DOCUMENTATION 44

Documentation Technique

User who chooses Textual description

Cookbooks

Examples

Regular user * as is Textual description

Cookbooks

Motifs/Patterns

Examples

Exemplars

Regular user * complete Textual description

Cookbooks

Examples

Exemplars

Motifs/Patterns

Reuse Contracts

Advanced user Textual description

Cookbook

Exemplars

Design Patterns

Motifs/Patterns

Interaction contracts

Reuse Contracts

Developer Cookbook

Examples

Design Patterns

Interaction contracts

Reuse Contracts

Table 3.3: Appropriate documentation techniques for each type of user

CHAPTER 4

OONavigator Framework

4.1 Description of the Architecture

In this section we introduce the OONavigator framework. OONavigator is

a framework for extending object-oriented applications with hypermedia1

functionality. We will use this framework to de�ne navigational views for

each type of framework user and to add some navigational features to the

framework documentation. First we will explain what we mean by navi-

gational views. Navigational views are used in a hypermedia application

to de�ne the way in which a user is exploring the hypermedia and this in

order to avoid redundant information and to prevent the user from getting

lost in the hyperspace. Inside a navigational view it is possible to create

di�erent navigational contexts, which are de�ned as sets of nodes and the

links between these nodes. A navigational context groups nodes and links

that satisfy the same property. Navigational contexts allow users to have

a smaller space to browse, i.e. it gives the user only the information he is

interested in.

Use

The OONavigator framework can be used in two di�erent ways. One pos-

sibility is that it is used to add some navigational behaviour to an object-

1A hypermedia is a special version of a hypertext, which is a collection of documents

(or \nodes") containing cross-references or \links" which, with the aid of an interactive
browser program, allow the reader to move easily from one document to another. Hyper-
media simply extends the notion of the text in hypertext by including visual information,

sound, animation, and other forms of data.

45

CHAPTER 4. OONAVIGATOR FRAMEWORK 46

oriented application and the other one is to de�ne a hypermedia application

with the semantics of an OO model (see [GR]). In our case we will use the

framework to add navigational behaviour to an OO application.

Design

The OONavigator framework is designed in such a way that a separation

of the navigational features from the application model is possible. All

navigational features are de�ned on a separate layer on top of the base model

of the application. In this way the framework allows extending applications

with hypermedia functionality through a direct mapping of objects to nodes

and links, thus viewing objects as nodes and accessing related ones by link

traversal. The application remains unaware of navigation, allowing making

reusable, maintainable and less complex extensions.

The framework architecture is build out of 3 layers. These layers are:

1. Object level: This level consists of the classes of the application

domain that will provide the data to be shown, the relations among

data, and the behaviour that will be extracted by the hypermedia

level.

2. Hypermedia level: In this level the hypermedia framework com-

ponents are de�ned. The designer will be able to instantiate these

components in order to de�ne a navigational view over the �rst level.

3. Visual level: In this level, the visual appearance of the nodes is

speci�ed. It is possible to de�ne several graphical representations for

the same node.

We will explain more in detail the Hypermedia Level Architecture: we

will explain what nodes and links are, what can be understood under access

structures and �nally we will say something about navigational views, node

views and representations.

� Nodes and Links: Like we mentioned before, the OONavigator de-

sign is developed in such a way that the base model of a hypermedia

application, built using OONavigator, is unaware of the navigational

features that are de�ned on top of it. In the hypermedia level of the

framework we will de�ne some nodes and links that will give a view

of the �rst level, i.e. the application model. Nodes and links are de-

�ned as empty templates that only know how to be navigated, but

that require to be \plugged" with an application object in order to be

instantiated. Every node that is derived from the object model is said

to \depend on" or \observe" the correspondent object to which it is

plugged. Interface events, which will be de�ned on top of these nodes

CHAPTER 4. OONAVIGATOR FRAMEWORK 47

and links, that the node does not understand as link activation, are

directly delegated to the object that is plugged to the node. In this

way all application behaviour is preserved. It is even possible to map

a node to several objects in the object model. This would be preferred

when one or more objects depend on another and they are not relevant

enough to be isolated in a node.

The hypermedia level also contains a special node, i.e. a hypernode.

This node does not need a subject in the object model level. It is used

for hypermedia purposes only. For example to hold an image, movie,

etc.

The other important class in the hypermedia level of the OONavigator

is the Link class. This class represents the association between two or

more nodes. Links are accessed through anchors contained in nodes or

in access structures, and arrive at link- endpoints. The link-endpoints

resolve the target to which should be navigated.

� Access structures: With the de�nition of access structures the OONa-

vigator framework tackles the problem of information overhead that a

hypermedia may produce. They present three di�erent types of access

structures: Indexes, Guided-tours and Iconic structures. Each access

structure has a set of target nodes, a set of selectors and a logic pred-

icate on the target nodes to allow the de�nition of conditional access

structures.

� Navigational Views, Node Views and Representations: The

OONavigator implements a way to have di�erent navigational views

in the hypermedia for distinct roles or pro�les. They associate di�erent

node views to a node for each identi�ed role or pro�le. This provides

di�erent navigation alternatives when for example di�erent outcoming

links have been de�ned in each navigational view.

Besides the di�erent views of the node it is also possible to de�ne some

representations inside each node view and this in order to change the

appearance of the media of the same piece of information. For example

should a comment be available as text or as an audio �le to which the

user can listen?

So we can say that each node view de�nes the set of data to be dis-

played under a given navigational view, and each representation inside

the node view will de�ne how to display that data.

Summary

To build a hypermedia application using OONavigator, one should �rst de-

�ne an object model of the application without hypermedia functionality.

CHAPTER 4. OONAVIGATOR FRAMEWORK 48

On top of this object model some nodes and links should be de�ned to

make the objects in the model navigable. Nodes and links can be seen as

wrappers of these objects. For each of the nodes several node views can be

de�ned, which allows to alternate the outlook of the node according to the

navigational view in which it is seen.

4.2 OOHDM: A Design Methodology for Hyper-

media Applications

In the previous section we discussed the framework to add navigational fea-

tures to an object-oriented application without polluting the base model.

Here in this section we present a methodology that aids developers in build-

ing such an application. There are two important aspects in these applica-

tions: the navigational and interface structure.

The Object-Oriented Hypermedia Design Method (OOHDM) [SR98] is a

model-based approach for building hypermedia applications. This approach

separates the design process into four di�erent activities namely conceptual

design, navigational design, abstract interface design and implementation.

During each activity a set of object-oriented models describing particular

design concerns are built or enriched from previous interactions. We will

give here a short overview of the di�erent activities.

4.2.1 Conceptual Design

In this step a conceptual model of the application domain is built using

well-known object-oriented modelling principles. Conceptual classes may be

built using aggregation and generalization/specialization hierarchies. There

is no concern for the types of users and tasks, only for the application domain

semantics. The result of this activity is a conceptual schema built out of

sub-systems, classes and relationships.

4.2.2 Navigational Design

Navigation design is expressed in two schemas:

� the navigational class schema

� the navigational context schema

A navigational model is built as a view over a conceptual model, thus allow-

ing the construction of di�erent models according to di�erent users pro�les.

Each navigational model provides a subjective view of the conceptual model.

CHAPTER 4. OONAVIGATOR FRAMEWORK 49

We describe the navigational structure of a hypermedia application by de�n-

ing navigational classes, which reect the chosen view over the application

domain. A navigational class schema describes all navigable objects us-

ing navigational classes. There are prede�ned types of navigational classes:

nodes, links and access structures. Nodes are characterised by a set of at-

tributes holding perceivable information and anchors for links outgoing from

that node. Links reect relationships intended to be explored by the �nal

user and are also de�ned as views on relationships in the conceptual model.

The navigational structure is de�ned in terms of navigational contexts,

which are induced from navigation classes such as Nodes and Links. A

navigational context is a set of nodes, links, context classes and other navi-

gational contexts. It may be de�ned intentionally or extensionally, by either

de�ning a property that all nodes and links in the context posses, or by

enumerating its members.

A context can be de�ned in six basic ways:

1. Class derived contexts: instances of a node class ful�lling a certain

condition.

2. Link derived contexts: as the set of all targets of a Link when a

link is 1-to-n.

3. Composite derived: a context made out of all parts of a composite

node.

4. Arbitrary: those navigational contexts built opportunistically by

picking di�erent nodes (perhaps from di�erent classes). Arbitrary

Contexts are quite useful when we want to provide the reader with

a guided tour on some information items.

A Navigation context schema presents the relations between navigational

contexts that were de�ned for an particular application.

Context classes complement the de�nition of a navigational class (a

node) indicating which information is shown and which anchors are avail-

able when accessing the object in a particular context. This mechanism

achieves a layering e�ect whereby the information in a node can be further

customised depending on the context in which the node is being looked at.

Navigation within a context is achieved by extending the navigational class

with a context class.

4.2.3 Abstract Interface Design

The abstract interface model is built by de�ning perceptible objects in terms

of interface classes. Interface classes are de�ned as aggregations of primi-

tives classes (such as text �elds and buttons) and recursively of interface

CHAPTER 4. OONAVIGATOR FRAMEWORK 50

classes. Interface objects map to navigational objects, providing a percepti-

ble appearance. Interface behaviour is declared by specifying how to handle

external and user-generated events and how communication takes place be-

tween interface and navigational objects.

4.2.4 Implementation

To obtain a running implementation, the designer has to map the naviga-

tional and abstract interface models into concrete objects available in the

chosen implementation environment.

4.3 Gained Functionality with OONavigator

In this section we give an overview of the functionality that we receive by

using OONavigator.

� Navigating among related items of interest

� De�ning di�erent navigational view for di�erent users pro�le, provid-

ing each user with the information that suits their needs

� Enhancing the graphical user interface with the possibility to de�ne

anchors for links over any type of data.

� Enabling rapid and easy access to the desired information by way of

indexes and backtracking

� Guiding in the search for information that �ts the user pro�le with

guided tours

� Adding annotations and bookmarks

� Providing history lists

CHAPTER 5

The Documentation Framework

5.1 Preliminaries

The previous chapter taught us that several di�erent types of users use a

framework. All these users have their requirements of the documentation.

These requirements are related with the tasks that these users have to per-

form. To be able to perform a task, some information about the framework

is needed. The kind of information can change according to the type of the

task. For example, a framework selector needs to compare di�erent frame-

works to select the most appropriate framework that �ts the requirements

of the future applications. To be able to decide this, he needs to know at

least the purpose of all the frameworks. Another example is the regular

user. His task is to instantiate the framework in ways that were foreseen

by the developer. Therefore he needs to understand the framework. This

understanding starts with understanding the purpose of the framework and

continues with a detailed description of all the customisable points in the

framework.

For each type of information that is requested, some documentation

techniques were already proposed. All of them have their advantages and

disadvantages. Cookbooks, for example, provide too informal usage infor-

mation, but this can be completed with some practical information deliv-

ered by techniques like Exemplars. Thus, we propose to combine forces and

provide a framework documentation that consists out of di�erent documen-

tation techniques. In addition we also want to de�ne di�erent views on the

documentation according to the user type. Consequently, every user will get

only the information he needs to accomplish his task.

51

CHAPTER 5. THE DOCUMENTATION FRAMEWORK 52

Researching the domain of framework documentation leads us to the fol-

lowing requirements for the representation of the framework documentation:

1. Provide links between related documentation items.

2. Provide di�erent framework user views of the documentation.

3. Put available documentation at one place.

4. Reuse documentation

5. Provide link with target framework (the framework for which we are

providing the documentation)

Having the requirements in mind, it seems that a hypermedia applica-

tion would be ideal to read the framework documentation. Hypermedia

applications provide easy access to information and its related information.

We chose to develop a hypermedia application using the OONavigator

framework (see chapter 4). This framework allows separating hypermedia

features from the items to be browsed. Thus, our documentation will be

unaware of the fact that it is being navigated.

Using OONavigator we also can satisfy the requirement to have several

views of the framework documentation. OONavigator provides the function-

ality to de�ne di�erent views of the items being navigated. In these views

it is also possible to de�ne some guided tours; these guided tours can steer

the user in his search for information.

We propose to store all framework documentation in a generic way using

a repository. For each technique a model is de�ned to store the documenta-

tion. Some techniques are composed of more basic techniques. These basic

techniques can also be reused as a component of another technique. Thus,

we enable reuse of documentation.

5.2 Framework Architecture

In this section we explain in more detail the architecture of the DocFrame-

work. We start with a general overview of the architecture and introduce

the three layers of the framework. In the following sections, these layers will

be explained in more detail.

5.2.1 Overview of the 3-layered Framework

In the preliminaries we identi�ed some requirements to present framework

documentation. The solution that we proposed, was to create a hyperme-

dia application on top of a documentation repository. In this section we

CHAPTER 5. THE DOCUMENTATION FRAMEWORK 53

present a framework that shows the abstract design of such a hypermedia

application.

Navigational Layer One way to create this hypermedia application is

by using the OONavigator like we described in chapter 4. This framework

provides a clean separation between the navigational features, that we want

to de�ne on top of the documentation and the documentation itself. Doing

this way our models of the documentation techniques will be unaware of the

fact that they are navigated. Until now we can say that we have two layers:

the navigational layer and the documentation repository layer.

Documentation Repository Layer The documentation repository layer

can also be divided into two layers. The reason to do this is because we want

to reuse documentation. First, similarities of techniques will be extracted

and put in a separate layer. Another way to reuse documentation is to store

the components of composed techniques into a separate layer. This makes

it possible for other techniques to also use this basic information. Thus,

we have two layers in the Documentation Repository Layer. We will go in

further detail in the following sections.

Three layers Thus, in fact the proposed framework (DocFramework) con-

sists out of 3 layers (shown in �gure 5.1). The top layer provides the naviga-

tional behaviour and the two underlying layers represent the object models

of the documentation techniques (spread over the two layers like discussed

above). We call the �rst layer the Basic Techniques Layer, the second one

is called the Composed Techniques Layer and the last layer is called the

Navigational Layer.

Instantiating the DocFramework This framework has to be instan-

tiated to become a hypermedia application for browsing in the framework

documentation. According to the layers, the DocFramework instantiator

has to decide �rst what documentation techniques will be used to document

his framework (TargetFramework). The object models of these techniques

will be located on the second layer, with possible references to models of

more basic techniques on the �rst layer. After that he has to specify the

desired navigation between the di�erent techniques and in which views these

techniques will be accessible.

Default Instantiation of DocFramework In the following sections we

discuss in more detail the design of each layer and we will also show how

we designed our default instantiation of the DocFramework. This default

instantiation of the DocFramework should be implemented and delivered

CHAPTER 5. THE DOCUMENTATION FRAMEWORK 54

Figure 5.1: Three layered architecture of DocFramework

together with the implementation of the DocFramework. This allows users

(framework documenters) of the DocFramework to save time. Normally,

the framework documenter would have to go through the whole instanti-

ation process of choosing documentation techniques and de�ning naviga-

tional behaviour for it. By providing the framework documenter with a

default implementation allows him to act himself as user of the hyperme-

dia application. He will have a navigational view that allows him to create

documentation using the techniques of the second layer. Only framework

documenters that require more functionality (e.g. another navigational be-

haviour, more documentation techniques, etc.) have to make changes to the

default instantiation. A cookbook (or some other framework documenta-

tion) should describe how he can adapt the default instance or de�ne a new

instance from scratch.

5.2.2 Second Layer: Composed Techniques

Since in our layered structure (see �gure 5.1) the Basic Techniques Layer

(�rst layer) and the Navigational Layer (third layer) depend on the Com-

posed Techniques Layer (second layer), we start our description of the dif-

ferent layers with the last mentioned.

CHAPTER 5. THE DOCUMENTATION FRAMEWORK 55

Problem

For the default implementation of the framework we had to decide which

techniques will be used to document the TargetFramework. We chose for the

following documentation techniques: Exemplars (see section 3.5.3, [GM95]),

CRC-cards [WBWW90], UML [Rat], Reuse Contracts [Luc97] , etc. While

comparing these documentation techniques we discovered two things.

First, the Exemplars technique is a technique composed out of several basic

techniques: Object Model Diagram, Object Property Diagram, Event Sce-

nario Diagram and Class Diagram.

Second, we found that the UML Interaction Diagram represents the same

information in about the same way as the Event Scenario Diagram of the

Exemplars technique. They both document the interaction pattern of some

objects and show it on a diagram with two dimensions: the vertical dimen-

sion represents time, the horizontal dimension represents di�erent objects.

Normally time proceeds down the page.

A good solution, to improve reuse of documentation, would be to represent

the Exemplar as a composed technique and to make its basic techniques

available for future reference without being coupled to the Exemplar. It

would also be good to extract the similar information out of the Event Sce-

nario Diagram (Exemplars) and the Interaction Diagram (UML). Doing so,

the information shown in the diagrams only needs to be stored once in the

repository. Information speci�c for a particular documentation technique

should be stored outside this object. In the following paragraph we give an

abstract description of a solution to this reuse problem.

Abstract Description

Like we mentioned in the introduction we will have a repository of all the

documentation. We divided this repository into two layers because of the

following reasons:

� Extraction of similarities: At the documentation repository we

will have all the documentation techniques that will be available to

the framework users. While comparing these techniques we discovered

that a lot of documentation techniques are in some way similar to each

other (e.g. Interaction Diagrams (UML) and Event Scenario Diagrams

(Exemplars)). We suggest to extract the similarities of these documen-

tation techniques and to put that representation in a new layer (Basic

Techniques Layer). In the layer on top (Composed Techniques Layer),

techniques will be described as wrappers of items in the underlying

layer.

� Composed techniques: We also learned that some techniques are

composed out of several other more basic techniques (e.g. Exemplars).

CHAPTER 5. THE DOCUMENTATION FRAMEWORK 56

In the two-layer structure, the Composed Techniques Layer describes

how the composed techniques are constructed out of the basic ones

represented in the Basic Techniques Layer.

Design

We will present here the architecture of the documentation technique mod-

els accordingly to the separation discussed above. In the �rst place we

need wrappers [GHJV95] on the BasicTechniques. These wrappers will add

documentation technique speci�c information or behaviour on top of the

BasicTechnique. The architecture of these wrappers is shown in �gure 5.2.

Figure 5.2: Wrappers on basic techniques

For each documentation technique approach we have to de�ne a wrapper

on top of a basic technique. We can de�ne several wrappers for the same

basic technique, because the basic technique can be reused by several dif-

ferent documentation techniques. The information that is di�erent for both

documentation techniques should be saved in the wrapper for that particu-

lar documentation technique. Figure 5.3 shows a possible extension of the

framework with the documentation technique called Interaction Diagram for

UML. Like mentioned before we can extract an Interaction Diagram basic

technique out of this model. In �gure 5.3 we see that InteractionDiagram

is a subclass of BasicTechnique and that we de�ned two wrappers to enable

reuse of this object in both the UML approach and the Exemplar approach.

The wrapper design we discussed before, is to create a speci�c represen-

tation for each basic technique, besides this we also need a representation

to group these wrappers into composed techniques. Figure 5.4 shows how

composed techniques are composed out of BasicTechWrappers. Each time

we add a composed technique to our framework we need to subclass the class

ComposedTechnique and add some BasicTechWrappers to it. This is shown

in �gure 5.5. The composed technique Exemplar has composition relations

with four wrappers.

CHAPTER 5. THE DOCUMENTATION FRAMEWORK 57

Figure 5.3: Interaction Diagram Wrapper

Figure 5.4: Model of composed techniques

Figure 5.5: Exemplar composed of wrappers

Documentation Creating Tools

Until now we presented how documentation technique models can be added

to the framework. These models of the techniques will be instantiated using

CHAPTER 5. THE DOCUMENTATION FRAMEWORK 58

creating tools. A creating tool for Event Scenario Diagrams in the Exem-

plars approach creates a new instance of the class Exemplar and also of the

IDExemplarWrapper. The creating tool allows incremental development of

the Event Scenario Diagram. This means that step by step objects and

method invocations are added to the Event Scenario Diagram. These re-

quests are forwarded to the instance of the IDExemplarWrapper, which was

created for this event scenario diagram. It is the IDExemplarWrapper who

has to decide where the created documentation should be stored. This ob-

ject knows which information is typical for Exemplars and will store the

information in the wrapper, the other information is stored in an instance

of InteractionDiagram. A possible creating tool1 is shown in �gure 5.6.

Some adaptations must be made to make the tool fully operational with the

DocFramework.

Figure 5.6: Creating tool for Interaction Diagrams

Relation with �rst layer

Like we mentioned in this section we have a relation between the �rst and

the second layer of our DocFramework. We can summarise it as followed: for

each technique that is composed of other techniques, we create a model of

the technique on the Composed Techniques Layer. This model describes the

components of the composed technique and all the components are them-

selves wrappers of basic techniques that are independent of a documentation

1This tool was created by Luis Matricardi and Marcos Godoy of the LIFIA lab

CHAPTER 5. THE DOCUMENTATION FRAMEWORK 59

approach.

Relation with third layer

The models that we created in the Composed Techniques Layer will be made

available for browsing in the Navigational Layer of the DocFramework.

5.2.3 First Layer: Basic Techniques

Meta models

The �rst layer of our architecture contains the models of the basic tech-

niques. A model of the basic technique describes the di�erent concepts that

are available in the technique and how they are related to each other. For

example, the model for interaction diagrams shown in �gure 5.7 describes

how an interaction diagram should be represented. Each interaction dia-

Figure 5.7: Interaction Diagram Model

gram knows its name and has a description of the special situation it is

representing. An interaction diagram is also composed by a collection of

instances that are involved in the interaction pattern that is presented using

the interaction diagram. An instance plays a role in the interaction dia-

gram. It knows two kinds of messages: the ones it sends to other instances

(outgoingMessages) and the ones it receives from other instances (incom-

mingMessages). A Message represents a message sent by an instance (the

sender) and received by another instance (the receiver). The Message has

a selector and a description. The selector is the name of the message. It

also knows its arguments and the answered value, and has a reference to

the moment when the message was sent. This latter is necessary to allow

ordering the di�erent messages in the interaction diagram.

Thus, we have for each basic technique a meta model that explains how

the technique should be represented. Instances of the classes in the model

will be made when documentation is created using a creating tool of the

Composed Techniques Layer. In the previous section we discussed that the

creating tool instantiates a wrapper (according to the approach used). This

CHAPTER 5. THE DOCUMENTATION FRAMEWORK 60

wrapper will create also an instance of the subject it is wrapping. For exam-

ple, the IDExemplarWrapper will create an instance of InteractionDiagram.

All actions, such as \add an object" or \add a method invocation", that are

valid for all possible approaches of interaction diagram will be forwarded

to the InteractionDiagram of the Basic Techniques Layer. So, when a new

object is added to the interaction diagram, then a message is sent to the

subject of the wrapper, i.e. InteractionDiagram. This message sent results

in creating a new instance of the Instance class in meta model of interaction

diagram.

Reuse of Basic Techniques

A reason why we decided to extract similarities out of documentation tech-

niques was to make it possible to reuse this information for several Com-

posed Techniques. This results in saving space in the repository, but more

important it saves the framework documenter in creating documentation.

The desired functionality is that the framework documenter is prevented

from creating documentation that was already created before or that can

be extracted from existing documentation. For instance, the documenter

wants to create an interaction diagram describing the interaction pattern

of the object A, B and C. It is possible that this interaction pattern is

already described in the repository using an instance of InteractionDiagram

Class. This does not absolutely imply that the documenter already made

an interaction diagram including these objects. It is more likely that he

used another documentation approach (for example Exemplars) that also

described this interaction. Since we chose to represent the similarities of the

di�erent approaches on another layer, an instance of a basic technique class

(here InteractionDiagram) can already exist.

To bene�t from this property, the documenter should �rst give the main

properties of the documentation he wants to create using a particular tech-

nique, so a search can be performed among all stored basic documentation

items. As a result a small overview of several documentation items is shown

in the way the basic information should be displayed according to the tech-

nique the documenter wants to use. Out of this list, he has to choose the

documentation item that he intended to create or he has to create the doc-

umentation item from scratch, since none of them described the situation

that was intended.

A fast way to implement this functionality is to use the possibilities of

the navigational layer. In this layer we will de�ne several views on the doc-

umentation for each user. Also a view for the framework documenter should

exist. In this view he should be able to browse all available basic technique

instances and it should be possible to show them according to all di�erent

documentation approaches. For example, the basic technique class Interac-

CHAPTER 5. THE DOCUMENTATION FRAMEWORK 61

tionDiagram can be shown as part of interaction diagrams of UML or as

part of the Exemplars approach.

It should also be possible to make some queries on the hypermedia applica-

tion. We can use a query language (OOHQL [RDG+]) to select only those

basic documentation items that ful�l some properties. The result of this

query is a navigational context in which the user can browse. So, before the

documenter starts with the creation of an interaction diagram of UML, he

de�nes a query asking for all InteractionDiagram classes containing class A,

B and C. He can then browse the result to see if one of the documentation

items describes the same situation that the documenter meant to document.

Relation with TargetFramework

A framework documenter writes documentation for classes, methods or other

items of the framework. A link between the DocFramework and the Target-

Framework is desired because of several reasons:

1. Automatic Extraction of Documentation: If the DocFramework

has a link to the TargetFramework we can make some extraction tools

that can extract interesting documentation. This is of great impor-

tance for a documenter, since he wants to document very fast. Another

advantage is also that the documentation will be correct according to

the code.

2. Understanding purposes: In some documentation techniques, a

link to the source code is necessary to increase the understanding of

the framework.

3. Keep documentation up-to-date: Changes in the TargetFrame-

work are propagated to the documentation. Because of this link we

have the possibility to notify the documentation that it is not cor-

rect anymore. Or we can update the documentation automatically

according to the changes.

The �rst two relationships are obvious and not hard to accomplish.

The third relationship is less obvious. We would like to have an \update-

relationship" but we do not want to hard couple the DocFramework and

the TargetFramework. The documentation of a certain item in the frame-

work should observe that item and should take some action when the item

changes. This is a typical observer relationship. In the implementation we

should �nd a way to implement the subject observer relationship with-

out having to inform the TargetFramework classes about the fact that they

are being observed. They cannot send an update message to the observers

when they change. Figure 5.8 depicts this observer relationship between the

TargetFramework and the DocFramework.

CHAPTER 5. THE DOCUMENTATION FRAMEWORK 62

Figure 5.8: Relation with the target framework

We suggest that whenever documentation is created for a certain part

of the framework, this should be registered in an object called Documen-

tationObserverManager. This object contains a table with two entries (see

�gure 5.8). The �rst entry is the item of the source code being documented

and the second entry is a reference to the instance of the basic technique

class that documents that item. The only problem that we see is that

the TargetFramework should send an update to inform the DocFramework

about the change. Since the TargetFramework can not know about the

DocFramework we suggest to solve this problem on a meta level. We will

make the development environment aware of the link between DocFrame-

work and TargetFramework. The development environment should send a

signal to the DocumenationObserverManager every time an item of the Tar-

getFramework is edited. The update strategy is �nd �rst the item of the

TargetFramework in the �rst column of the table. And second, inform the

associated basic technique instance about the change. It is the basic tech-

nique class that takes care of the appropriate action. Possible actions are:

show the documentation in another colour to make clear that something

changed, or extract the new information out of the source code.

We saw in the refactoring browser2 this kind of functionality. It is possi-

ble to open several Smalltalk browsers on the same method. If the developer

changes a method in one browser and switches then to another browser, then

the changed method is displayed in another colour.

2Refactoring Browser was created by John Brant and Don Roberts. The Refactor-
ing Browser is an advanced browser for VisualWorks, VisualWorks/ENVY, and IBM
Smalltalk. It includes all the features of the standard browsers plus several enhancements.

CHAPTER 5. THE DOCUMENTATION FRAMEWORK 63

Figure 5.9: Relation with the target framework and DocumentationOb-

serverManager

5.2.4 Third layer: Navigational Views

In this layer we will give an example of the navigational views that must be

de�ned on top of the documentation repository. To do so we will use the

OONavigator framework presented in chapter 4. The di�erent navigational

views will be de�ned using the methodology OOHDM.

OONavigator makes it possible to add navigational features to an object-

oriented base model. In our solution, this base model is the same as the

Composed Techniques Layer of our DocFramework. On top of these classes

we have to de�ne navigation.

We will de�ne in this section the navigational view of the regular user

of a white-box framework (discussed in section 3.5.7). We will de�ne a

navigational space for this user where he gets the information he needs

by following links between documentation items the framework documenter

provided for him.

CHAPTER 5. THE DOCUMENTATION FRAMEWORK 64

Navigational View for white-box framework user:

A white-box framework user is a user that needs to subclass a framework

class to customise a hot-spot in ways the developer expects it. In section

3.5.7 we already discussed which tools where most appropriate to assist this

user in his task. We can summarise that a cookbook with recipes describing

hot-spots is the basis for this documentation. From each recipe the user

should be able to browse to examples, interaction contracts, reuse contracts

and exemplars. We refer again to section 3.5.7 for the reason why these

techniques are appropriate.

In the methodology OOHDM there are four activities to design a hyper-

media application. We will only consider the �rst two activities: conceptual

model design and navigational design. The abstract interface design and

implementation are left as future work.

� Conceptual model design: In this phase one should design the

base model of the hypermedia application without any reference to

users or user pro�les. The conceptual model of the hypermedia ap-

plication is already designed: the Composed Techniques Layer of the

DocFramework. We have de�ned on this layer the documentation tech-

niques that this user wants to use: cookbooks, recipes, reuse contracts,

interaction contracts and exemplars. On top of these classes we will

de�ne navigation. An example can be seen in �gure 5.5

� Navigational design: In this phase, we de�ne a navigational class

schema on top of the conceptual model. This class schema consists of

navigational classes for each conceptual class that has to be navigable.

Navigational class schema

An overview of all the navigational classes that need to be de�ned

in the navigational class schema is given below. These navigational

classes are de�ned on top of the conceptual model. For example the

navigational class Recipe de�nes navigation for the Recipe wrapper of

the Composed Techniques Layer of DocFramework.

{ Cookbook

{ Recipe

{ Reuse Contract

{ Interaction Contract

{ Exemplar

{ Examples

Navigational Class for Recipe:

In the navigational class of a recipe we de�ne which attributes of the

CHAPTER 5. THE DOCUMENTATION FRAMEWORK 65

recipe should be visible in the hypermedia application. We also de�ne

some anchors that allow to go to related information. Consequently

this navigational class will contain the following items:

{ Name of the recipe

{ Description of the recipe

{ Anchor to related examples

{ Anchor to related reuse contracts

{ Anchor to related interaction contracts

{ Anchor to related exemplars

Navigational Class for Reuse Contracts:

The navigational class of reuse contracts should make the diagram of

reuse contracts visible. From a reuse contract we should be able to

browse to the source code of a class described in the diagram.

{ Name

{ Diagram

{ Anchor to source code

{ Anchor to related recipe

Navigational Context Schema for this user view:

In this schema we have to give an overview of all the navigational

contexts that exist in this view, together with that we also need to

de�ne how these contexts are related to each other. How we can go

from one context to another, if possible at all. Some of the navigational

contexts that need to be de�ned are:

{ Guided tour: This is a navigational context of type arbitrary.

Here some nodes and links are put together. They do not have

a special relationship. For this user view we de�ne �rst the node

cookbook, the navigational context \all reuse contracts", \all ex-

emplars".

{ Cookbook: This navigational context is of type composite de-

rived. This means that all components of this cookbook form a

navigational context. User can browse sequentially. Using this

we can de�ne that when clicked on cookbook, we will go to the

�rst recipe of the cookbook and we will have anchors to go to the

next recipe of the cookbook.

{ Related reuse contracts navigational context: This is a context

de�ned by all instances of a node class that ful�ls a certain con-

dition. We can go to this navigational context from a recipe. All

reuse contracts displayed in this context must all have this recipe

as their related recipe.

CHAPTER 5. THE DOCUMENTATION FRAMEWORK 66

{ All reuse contracts: This navigational context is accessible from

the guided tour. The user can browse all reuse contracts without

any restriction. In this context, he will have some links to a

related recipe. This recipe gives him then a description of the

hot-spot described.

Context Class for Reuse contract in context of \Related reuse con-

tracts"

If a reuse contract is accessed via the link provided in a recipe we only

allow the user to browse to other related reuse contracts and back to

the recipe. Therefore we need to de�ne a context class on top of the

navigational class which will add these context links.

Context Class for Reuse contract in context of \All reuse contracts"

If we access the reuse contract via a the link in the guided tour to

see all reuse contracts, then we will allow to user to go sequentially

through the whole list. It is also possible to change from context and

to go to the related recipe. These links are also de�ned in another

context class. This means that we have one navigational class for

the reuse contract, but we have several context classes on top of that

navigational class to add some extra context speci�c behaviour.

Remarks

In this section we gave a textual description of the models that should be

created using OOHDM. We did not discuss the complete design of the nav-

igational layer either, because of the space limitations.

The navigational space of the Regular user of a white-box framework

exists of nodes representing the available documentation techniques. We

provide a guided tour for the user to guide him through the documenta-

tion. The cookbook with recipes gives links to other related documentation.

When the user is browsing documentation starting from a recipe, he is lim-

ited to see only those documentation items that are related to the selected

recipe. Besides a guided tour, we also o�er the user to see all documentation

items made by a particular documentation technique. From that view; he

can browse to related items made by the same technique or he can get some

more information by browsing to the recipe that is related to that documen-

tation item. Doing so, the user is kept from getting to much information at

once.

CHAPTER 6

Characteristics and Evaluation of

DocFramework

In this chapter we will discuss the characteristics of the DocFramework.

Who are the users of the framework? How can we extend the framework?

How can we instantiate it? After we answered all these questions, an eval-

uation of the framework is given. We argue why somebody should use our

DocFramework for documenting his framework. What are the bene�ts for

both the framework documenter and the user who reads the provided doc-

umentation?

6.1 Users of the DocFramework

In fact there are two groups of people that can bene�t form using the

DocFramework. The �rst group of people, the framework documenters,

are those persons that need to instantiate the DocFramework to become the

hypermedia application that will provide the documentation of their frame-

work to the other group of people, the future users of their framework.

The future users of the documented framework do not have immediate con-

tact with the DocFramework. They only use an instance of the DocFrame-

work. These users will use the hypermedia application to browse through

the provided documentation.

67

CHAPTER 6. CHARACTERISTICSAND EVALUATION OF DOCFRAMEWORK68

6.2 Instantiating the DocFramework

In the previous chapter 5, we discussed the architecture of the DocFrame-

work. It demonstrated the abstract design of the di�erent layers of the

framework. This framework still needs to be instantiated to be able to use

it. Below we will describe the di�erent steps that should be taken to go

from the abstract DocFramework to a usable application that lets people

read framework documentation.

1. Decide on documentation techniques to use: The �rst thing

the DocFramework user needs to do is decide which documentation

techniques will be used to describe his framework.

2. Compare and analyse chosen documentation techniques: The

next thing the DocFramework user needs to do is to analyse the tech-

niques. Are the techniques composed of more basic techniques? He

also needs to compare the techniques. Maybe it is possible to extract

some similarities out of a group of selected techniques.

3. Create meta models for the basic techniques: From the previous

step the DocFramework user gained some extra knowledge about the

documentation techniques. He identi�ed some basic techniques. For

these basic techniques it is possible to write down a meta model, i.e. to

write down an object model that represents the structure of the basic

technique. The main class of this meta model should be a subclass of

the abstract class BasicTechnique (section 5.2.2). With main class of

the meta model we mean the class that represents the basic technique

as a whole. For example the InteractionDiagram class in the example

5.7.

4. Create wrappers and composed techniques: Besides the similar-

ities of techniques, the DocFramework user has also discovered some

composed techniques. First, he needs to de�ne wrappers on basic tech-

niques found in the previous step to be able to store di�erences from

approach to approach. Therefore he needs to make a subclass of the

BasicTechWrapper class (see �gure 5.3). He also needs to de�ne a

subclass of ComposedTechnique that will store all the wrappers of the

techniques that compose the composed technique (see �gure 5.5).

5. Identify di�erent users: The almost �nal step in the instantiation

of the DocFramework is the de�nition of the di�erent navigational

views for each user type. The user of the DocFramework needs to use

OOHDM to accomplish this task.

Now the DocFramework user has created a hypermedia application that

he can use himself to create the documentation using creating tools of tech-

CHAPTER 6. CHARACTERISTICSAND EVALUATION OF DOCFRAMEWORK69

niques situated at the second level of the DocFramework.

The hypermedia application can be delivered to the users of the target frame-

work.

We realise that instantiating the DocFramework from scratch is an ex-

haustive task, it is therefore that we present a default implementation of

the DocFramework. The users who want to use other documentation tech-

niques or want to de�ne new user navigational views has to do it himself by

subclassing the right classes.

6.3 Extending the DocFramework

This work showed a possible instantiation of the DocFramework. We are

convinced that the framework can be and should be extended. There are

two possible ways to extend the framework. First of all new navigational

views for other user types should be de�ned, second, research should be done

to �nd some documentation techniques that can provide special assistance

to a certain user type.

6.3.1 Variations of Navigational Views

In this work we presented a navigational view for a regular framework user.

We already mentioned some other users of the framework, such as advanced

framework user. In fact, if these users do not require special documentation

techniques, than creating a new navigational view is just a matter of using

OOHDM to de�ne another navigational view on top of the already existing

repository.

6.3.2 Variations of Documentation Techniques

Research should be done to �nd other documentation techniques that can

assist the framework user in a new way and make its task a lot easier.

6.4 Bene�ts

We can identify bene�ts from using the DocFramework for two groups of

people, the ones that make the documentation and the ones that read the

documentation.

6.4.1 Bene�ts for Framework Documenter

� Reuse of basic documentation: The reuse of basic documenta-

tion makes documenting a framework faster, because the framework

CHAPTER 6. CHARACTERISTICSAND EVALUATION OF DOCFRAMEWORK70

developer can before he writes the documentation �rst check if the

requested documentation item already exists.

� Up-to-date documentation: Because of the link between the target

and the DocFramework, the framework developer will get information

about where the documentation became inconsistent after he changed

something in the target framework.

� Motivated to document framework: Using the DocFramework

to document the framework can work motivating for the documenter.

This because he knows that the documentation he creates will be pre-

sented in a good way; in a way such that the probability that the

reader will read the documentation is much higher than when the doc-

umentation is presented in several manuals.

6.4.2 Bene�ts for Documentation Reader

� User speci�c: A great advantage of the DocFramework is that the

documentation can be organised in a way that is the most appropriate

for the user type. This means that the user does not loose time with

reading documentation that is of no importance considering the task

he has to perform.

� Easy access to information: Since all documentation is organised

in a hypermedia application it is very easy to �nd related information

to the information that is currently being looked at. When viewing a

cookbook that describes in natural language which methods to over-

ride to customise a hot-spot, a link to a collaboration contract can

show this in a graphical way. The user gets a more complete docu-

mentation. Before the development of the DocFramework, both these

documentation techniques already existed, but to use them in com-

bination demanded some e�ort from the documentation reader. He

needed to open several tools to view the documentation, or he had to

take several manuals and put them next to each other to get the same

result we got with a link traversal.

� Up-to-date documentation: Because of the link to the target frame-

work it is possible to get feedback from changes that occurred in the

target framework. So the documentation will stay up to date. Or

some assistance is provided to keep the documentation up to date.

The documentation should be updated automatically if possible, if

not, the documentation should display a warning. So the user always

knows if he is working with the correct documentation. He will not do

any useless e�ort in understanding the wrong documentation.

CHAPTER 6. CHARACTERISTICSAND EVALUATION OF DOCFRAMEWORK71

6.5 Disadvantages

The long instantiation process of the DocFramework to create a hyperme-

dia application can be seen as a disadvantage of using the DocFramework.

The framework documenter has to decide which documentation techniques

he will use, he has to create appropriate models for them (separated over

the two layers). After this, he also has to create for each user type that

will use his framework a navigational view. Until now, only the naviga-

tional structure among documentation items is de�ned. The documentation

items created by the di�erent documentation techniques still need to be cre-

ated. So, now he can start with the creation of reuse contracts, cookbooks,

etc. We can reduce this e�ort by providing a default instantiation of the

DocFramework. This means that the documenter can immediately start

with the creation of the documentation items. The navigation among the

items is already de�ned.

CHAPTER 7

Future work

During this research, several ideas came across our minds. Not all of them

could be given the attention that they deserve. Hereafter we will discuss

some of these ideas as part of the future work.

7.1 Implementation of a Prototype

In this dissertation we presented the abstract design of the DocFramework.

We described how the di�erent layers are organised. But this is still the-

ory, a prototype of this architecture should be implemented to validate our

design. Already some e�ort has been done on the implementation of the

base level of the DocFramework. Some meta models of the basic techniques

have been implemented. We choose to implement the DocFramework in

Smalltalk, since our design is based on the OONavigator framework, which

is implemented in Smalltalk.

7.2 Support for Reverse Engineering

Normally, a framework developer or the framework documenter should doc-

ument the framework under construction. He is the most appropriate per-

son to document the framework since he made the design decisions. The

DocFramework can assist him in this task, therefore he just needs to instan-

tiate the DocFramework and link it with his framework. Using the creating

tools linked to the DocFramework repository he can start documenting his

design decisions.

Having the documentation provided together with the framework would

72

CHAPTER 7. FUTURE WORK 73

be the ideal, but in practice documentation is not always available or is

not up-to-date. Therefore the code of a framework needs to be reverse

engineered to recover its design. The recovered design artefacts should be

stored for future reference. It should be possible for other developers to

bene�t from the e�ort that was performed by the reverse engineer. A lot

of research is going on in this area and some tools where created to assist a

reverse engineer.

Future research is necessary to make it possible to couple these reverse-

engineering tools to the DocFramework. This makes it possible for the

reverse engineer to store the recovered design artefacts in the repository

of the DocFramework. Therefore the DocFramework needs to be extended

with the model of the recovered artefacts and they must be included in some

navigational views de�ned on the Navigational Layer. Depending on the

reverse engineering tool we can extract di�erent information. For example

we can use a tool to extract interaction diagrams or reuse contracts out of

source code.

7.2.1 Classi�cation Browser

The Classi�cation Browser [DH98] is based on a general model to organise

software entities, called the software classi�cation model. Software entities

can be grouped in user-de�ned ways. The Classi�cation Browser makes it

possible to browse interaction structures and to classify classes, methods,

acquaintance relationships and method invocations.

The Classi�cation Browser supports the incremental reverse engineering

of collaboration contracts: participants in a desired collaboration contract

are collected in a classi�cation, this is followed by the classi�cation of meth-

ods and acquaintances in those participants. It is equally possible to recover

reuse contracts. This is based on the recovery of an initial and a derived

collaboration contract. Then the missing reuser clause that represents the

adaptation from the initial to the derived collaboration contracts is calcu-

lated.

Further research is necessary to �nd out if it is possible to store the

software classi�cation model in the repository of the DocFramework. Con-

sequently the extracted collaboration contracts will become available for

browsing.

7.2.2 Other tools

Several other tools are developed to perform reverse engineering. [Die99]

gives an overview of some tools. Not all of them are implemented in Smalltalk,

but the idea stays the same. As long as the tools store their recovered data

into a model, we can add this model to the DocFramework repository.

CHAPTER 7. FUTURE WORK 74

7.3 Compare Documentation Techniques

In the DocFramework, we made a separation between composed techniques

and basic techniques. The basic techniques represent similarities that ex-

ist between documentation techniques. For example, the Event Scenario

Diagram of the Exemplars technique and the Interaction Diagram of UML

both describe the interaction pattern between objects. The representation

of this information is extracted out of the two documentation approaches.

They both refer to this extracted information if they have to represent in

the interaction pattern in some diagram.

Further research should be performed to �nd out if more documenta-

tion techniques exist that are not similar in the �rst place, but are in fact.

This would enable us to reuse even more documentation. For example, col-

laboration contracts describe also the interaction between objects, but still

there are some di�erences. For example collaboration contracts describe

participants while interaction diagrams instances of classes. In collabora-

tion contracts the sequence of the method invocations is not of importance.

7.4 Documentation Patterns for Framework Doc-

umentation

While performing the domain research for creating the DocFramework, we

found some recurring strategies in framework documentation. For example,

the documentation of a white-box framework should contain, among other

documentation, an explanation of the framework at code-level. Without this

explanation, the user of a white-box framework will not use the framework

correctly.

What we propose here as future work is to detect more of these re-

curring \design decisions" in the framework documentation. We want to

capture these design decisions in a �xed format of a pattern. We want to

create documentation patterns to assist in creating the documentation of

a framework. The documentation patterns will have a format similar to

the format of the design patterns described in [GHJV95]. These patterns

describe the context in which the pattern should be used, a motivation, a

solution and some consequences. In this way framework documenters can

pro�t from the experience gained by others in documenting frameworks.

To achieve this goal, more research should be performed. The inuence

of some framework properties on the documentation should be identi�ed.

Therefore we should examine di�erent types of frameworks; di�erent types

of framework users, frameworks of di�erent sizes, etc.

CHAPTER 8

Conclusion

In this section we will repeat our initial goal we wanted to reach, we will

explain how we reached that goal and draw our conclusions from the results.

8.1 Motivation

Currently, object oriented frameworks are very popular to describe large

and abstract designs. These designs are very hard to learn by the reusers of

the framework. Among several other reasons, framework documentation is

of vital importance to lower the learning curve of the framework.

Already some research was performed in the area of framework documen-

tation. Most of the techniques used to document frameworks only document

parts of the framework or only document some aspects of the framework.

For example, interaction diagrams document the interaction pattern of some

instances, but they do not say anything about the purpose of the framework.

All of this information is of importance for a complete understanding of the

framework.

Another issue that was neglected in framework documentation is that sev-

eral di�erent types of users work with a framework. Each of these users have

their own requirements of the documentation according to the way they use

the framework and their level of expertise.

So, the goal of this dissertation was to develop a new approach for frame-

work documentation. We choose to develop a framework (DocFramework) to

assist in framework documentation. Applications built using this DocFrame-

work are hypermedia applications that give support for di�erent types of

users and also provide links between the di�erent documentation techniques.

75

CHAPTER 8. CONCLUSION 76

These links make it possible to cover all aspects of the framework with the

appropriate documentation.

8.2 Summary

To achieve this goal we had a long way to go. We will describe here how we

reached that goal.

Since we decided to develop a framework to achieve our goal we had

to do a thorough analysis of the domain for which we want to create the

framework, i.e. the domain of frameworks and framework documentation.

First, we collected lots of information about frameworks. In chapter

2, we reported about this research. We gave an overview of the following

topics: the hot-spots, the life cycle of frameworks, the di�erent kinds of

frameworks, advantages and disadvantages of using frameworks and some

related techniques

Also for the domain of framework documentation we accumulated lots of

information. We learned why framework documentation is so important and

to whom framework documentation should be addressed. We also studied

several already existing documentation techniques. These techniques were

compared based on several aspects. We can conclude out of this research that

di�erent types of users need a di�erent level of detail in the description of

a framework. Besides that we acknowledged the fact that some techniques

are similar to each other. For example Event Sequence diagrams of the

Exemplar approach and Interaction Diagrams of UML both document the

interaction pattern of a set of instances. A report of this research is reected

in chapter 3.

Having this information in mind we started to develop our DocFrame-

work. We decided to store all documentation in a repository according to

a model of the technique used to create the documentation. We made a

separation between basic and composed techniques. Basic techniques are

techniques that represent the extracted similarities of several techniques.

For each of these basic techniques a wrapper is de�ned to store the remain-

ing information that was di�erent for these techniques. The other kind of

techniques is composed techniques, which can be by formed by putting to-

gether wrappers of the basic techniques. This design of the documentation

repository allows us to reuse basic information.

On top of the models that were de�ned for these techniques we created

using OONavigator and OOHDM some navigational views for each type of

user. For each user type a guided tour was de�ned that made the user pos-

sible to go from one documentation item to another to receive the requested

information.

The result of this dissertation is the development of a framework for

CHAPTER 8. CONCLUSION 77

framework documentation. We are convinced that both the framework doc-

umenter and the reader of the framework documentation will bene�t from

this new approach to framework documentation.

We are certain that this work is not the end of the research we started.

An implementation of the DocFramework should validate our design. Fur-

ther research is necessary to determine in which degree existing documen-

tation techniques are similar to each other, this to increase the reuse of

primitive information even more.

Another interesting research direction we started here is the detection of doc-

umentation patterns. These patterns should help framework documenters in

creating good framework documentation for cases in which our DocFrame-

work can not be used.

BIBLIOGRAPHY

[BD97] Greg Butler and Pierre Denommee. Documenting frameworks.

Position paper for 8th Workshop on Software Reuse (WISR-8),

Columbus, Ohio, March 1997.

[BD98] G. Butler and P. Denommee. to appear in Object-Oriented Ap-

plication Frameworks (M. Fayad, D. Schmidt, and R. John-

son), chapter Documenting frameworks to assist application

developers. John Wiley and Sons, New York, 1998.

[BGK+97] Dirk B�aumer, Guido Gryczan, Rolf Knoll, Carola Linienthal,

Dirk Riehle, and Heinz Z�ullighoven. Framwork development

for large systems. Communications of the ACM, 40(10):53{59,

October 1997.

[BKM] Greg Butler, Rudolf K. Keller, and Hafedh Mili. A framework

for framework documentation. To appear in ACM Computing

Surveys, special symposium issue on Object-Oriented Appli-

cation Frameworks.

[BMA97] Davide Brugali, Giusee Menga, and Amund Aarsten. The

framework life span. Communications of the ACM, 40(10):65{

68, October 1997.

[BMMB96] Jan Bosch, Peter Molin, Michael Mattsson, and PerOlof

Bengtsson. Object-oriented frameworks. Problems & Expe-

riences, 1996.

[CHSV97] Wim Codenie, Koen De Hondt, Patrick Steyaert, and Ar-

lette Vercammen. From custom applications to domain-speci�c

78

BIBLIOGRAPHY 79

framworks. Communications of the ACM, 40(10):71{77, Octo-

ber 1997.

[dFdLAC99] Marcus Felipe M.C. da Fontoura, Carlos Jos�e P. de Lucena,

Paulo S.C. Alencar, and Donald D. Cowan. On expressiveness:

Representing frameworks at design level. To be submitted to

TAPOS, February 1999.

[DH98] Koen De Hondt. A Novel Approach to Architectural Recov-

ery in Evolving Object-Oriented Systems. PhD thesis, Vrije

Universiteit Brussel, december 1998.

[Die99] Ilse Dierickx. Capita selecta: Program understanding tech-

niques. Capita Selecta, EMOOSE, march 1999.

[DMN97] Serge Demeyer, Theo Dirk Meijlar, and Oscar Nierstrasz. De-

sign guidelines for \tailorable" frameworks. Communications

of the ACM, 40(10):60{64, October 1997.

[FHLS98] Garry Froehlich, H. James Hoover, Ling Liu, and Paul G.

Sorenson. CRC Handbook of Object Technology, chapter Using

object-oriented frameworks. CRC Press, 1998.

[FS97a] Mohamed E. Fayad and Douglas C. Schmidt. Lessons learned

building reusable OO frameworks for distributed software.

Communications of the ACM, 40(10):85{87, October 1997.

[FS97b] Mohamed E. Fayad and Douglas C. Schmidt. Object-oriented

application frameworks (special issue introduction). Commu-

nications of the ACM, 40(10):39{42, October 1997.

[GAL97] Adele Goldberg, Steven T. Abell, and David Leibs. The Learn-

ingWorks development and delivery frameworks. Communica-

tions of the ACM, 40(10):78{81, October 1997.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-

sides. Desgn Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, 1995.

[GM95] Dipayan Gangopadhyay and Subrata Mitra. Understanding

frameworks by exploration of exemplars. In Proceedings of 7th

International Workshop on CASE, 1995.

[GR] Alejandra Garrido and Gustavo Rossi. A famework for extend-

ing object-oriented applications with hypermedia functionality.

Technical report, LIFIA.

BIBLIOGRAPHY 80

[Hol92] Ian M. Holland. Specifying reusable components with con-

stracts. In Lecture Notes in Computer Science 615, pages 287{

308. Springer-Verlag, 1992. ECOOP'92.

[Inc] Taligent Inc. White paper: Building object-oriented frame-

works. http://www.taligent.com.

[JF88] R. E. Johnson and B. Foote. Designing Reusable Classes. Jour-

nal of Object-Oriented Programming, 1(2):22{35, June/July

1988.

[Joh92] Ralph E. Johnson. Documenting frameworks using patterns.

ACM SIGPLAN Notices, 27(10):63{76, October 1992. OOP-

SLA '92 Proceedings, Andreas Paepcke (editor).

[Joh97] Ralph E. Johnson. Frameworks = (components + patterns).

Communications of the ACM, 40(10):39{42, October 1997.

[JR91] Ralph E. Johnson and Vincent F. Russo. Reusing object-

oriented designs. Technical Report UIUC DCS 91-1696, Uni-

versity of Illinois, May 1991.

[Kot98] Je�rey Kotula. Using patterns to create component documen-

tation. IEEE Software, 15(2):84{92, March/April 1998.

[KP98] G.E. Krasner and S.T. Pope. A cookbook for using the model-

view-controller user interface paradigm in smalltalk-80. Jour-

nal of Object-Oriented programming, 1(3), 1998.

[LK] Richard Lajoie and Rudolf K. Keller. Design and reuse in

object-oriented frameworks: Patterns, contracts, and motifs

in concert.

[Luc97] Carine Lucas. Documenting Reuse and Evolution with Reuse

Contracts. PhD thesis, Vrije Universiteit Brussel, 1997.

[Mat96] Michael Mattson. Object-oriented frameworks: A survey of

methodological issues. Licentiate thesis, 1996.

[MMM95] H. Mili, F. Mili, and A. Mili. Reusing software:issues and re-

search directions. IEEE Transactions on Software Engineering,

21(6), June 1995.

[PLV97] Edward J. Posnak, R. Greg Lavender, and Harrick M. Vin. An

adaptive framework for developing multemedia software com-

ponents. Communications of the ACM, 40(10):43{47, October

1997.

BIBLIOGRAPHY 81

[Rat] Rational. Uml notation guide version 1.1, september 1997.

http://www.rational.com/UML.

[RDG+] Gustavo Rossi, Alicia Diaz, Silvia Gordillo, Mauricio Sansano,

and Federico Arambarri. Querying hypermedia applications in

an object-oriented framework.

[RG98] Dirk Riehle and Thomas Gross. Role model based framework

design and integration. ACM SIGPLAN Notices, 33(10):117{

133, October 1998.

[Sch97] Hans Albrecht Schmid. Systematic framework design. Com-

munications of the ACM, 40(10):48{51, October 1997.

[SR98] Daniel Schwabe and Gustavo Rossi. An object oriented ap-

proach to web-based application design. Theory and Practice

on Object Systems. Wiley and Sons, October 1998. To appear.

[WBWW90] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener.

Designing Object-Oriented Software. Prentice Hall, 1990.

INDEX

Basic Techniques Layer, 50, 56

Class Library, 15, 23

Classi�cation Browser, 70

Collaboration Contracts, 70, 71

Composed Techniques Layer, 50,

51

Design Patterns, 22

DocFramework, 48

Basic Techniques Layer, 50, 56

Bene�ts, 66

Characteristics, 64

Composed Techniques Layer,

50, 51

Default Instantiation, 50

Documentation Repository Layer,

50

Extending, 66

Instantiation, 50, 65

Navigational Layer, 50, 60

Users, 64

Documentation Creating Tools, 54

Documentation Framework, 48

Documentation Patterns, 71

Documentation Repository Layer,

50

Dont call us, we call you, 15

Framework Documentation, 24, 38

Collaboration Contract, 34

Cookbook, 29, 38

Design Patterns, 31

Examples, 36

Exemplars, 32

Interaction Contracts, 33

Motifs, 30

Reuse Contracts, 34

Framework Users, 27, 28, 38

Frameworks, 10

Advantages, 21

Application Engineer, 16, 18,

23

Black-box Framework, 18, 20,

21

Characteristics, 12

Classi�cation, 20

Customisation of, 20

De�nition, 10

Design, 29, 38

Development, 16, 17, 22

Disadvantages, 22

Framework Engineer, 16

Instantiation, 18

Learning Curve, 22, 23

Purpose, 29, 38

Use, 29, 38

Users, 27

White-box Framework, 18, 20,

21

Frozen spots, 15

82

INDEX 83

Hollywood Principle, 15

Hot spots, 15, 18

Hypermedia, 42

Link, 42

Node, 42

Hypermedia Functionality, 42

Meta models, 56

Navigational Context, 42

Navigational Layer, 50, 60

Navigational View, 42, 44

OOHDM, 45

anchors, 46

Conceptual Design, 45

Navigation Context Schema, 46

Navigational Class Schema, 45

Navigational Context, 46

Navigational Context Schema,

45

Nodes, 46

OOHQL, 58

OONavigator, 42, 43, 49

Acces Structures, 44

Guided-tours, 44

Iconic structures, 44

Index, 44

Link, 43, 44

Links, 43

Node Views, 44

Nodes, 43

Representations, 44

Reuse Contracts, 70

Reverse Engineering, 69

TargetFramework, 52

Using Frameworks, 26

as is, 26

complete, 26

customise, 27

