
Vrije Universiteit Brussel – Belgium
Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes – France
and

Sodifrance
2005

Characterization and Detection of Concerns in
Java Code

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange)

By: Harmin Parra Rueda

Promoter: Prof. Theo D’Hondt (Vrije Universiteit Brussel)
Co-Promoters: Hervé Albin–Amiot (Ecole des Mines de Nantes)

Erwan Breton (Sodifrance)

 ii

Abstract

Many software systems are subject to continual revisions and expansions as
new requirements are discovered, bugs are found, or migrations to new
technologies need to take place in order to improve software quality.

Many program evolution tasks involve the manipulation of source code in
order to isolate and change the implementation of different concerns. However,
such concerns may be scattered over the whole code because they cannot be
easily modularized, they can be the result of inadequate design, the result of
unanticipated changes, or they can be the result of a lack of expressiveness in
the technology available to the original developer.

Before performing a modification to a software system, code relating to
concerns has to be carefully identified. Finding and understanding concerns
scattered in source code is a difficult task that takes a large proportion of the
total effort required to perform software maintenance and evolution.

This thesis presents a model to characterize concerns, aimed to detect and to
display an abstract view of concerns related code, easing the software
comprehension and maintenance process.

A prototype was developed in order to validate the proposed models and some
case studies are presented.

 iii

Contents

Abstract ii

Contents iii

List of Tables v

List of Figures vi

1 Introduction ...1

2 Motivation: An Example of Program Maintenance Involving

Scattered Concerns ...4

3 State of the Art ..8

3.1 Non-automatic aspect mining tools .. 8
3.1.1 Sample code..8
3.1.2 Query–based search tools...10

3.1.2.1 Aspect Browser .. 10
3.1.2.2 AMT... 12
3.1.2.3 The Eclipse Framework .. 15
3.1.2.4 PRISM.. 18
3.1.2.5 CME ... 22

3.1.3 Exploratory tools ...26
3.1.3.1 JQuery.. 27
3.1.3.2 FEAT.. 32

3.1.4 Comparison of non-automatic aspect mining tools........................38
3.2 Automatic aspect mining tools .. 41

3.2.1 Clone code detection ...41
3.2.2 Fan-in analysis..41
3.2.3 Formal concept analysis..43
3.2.4 Execution trace analysis..44
3.2.5 Formal concept of execution traces ...46
3.2.6 Comparison of automatic aspect mining tools................................46

 iv

4 Thesis Contribution ...48
4.1 Limitations of existing tools ... 48

4.1.1 False aspect candidates ...48
4.1.2 Undetected aspects ..48
4.1.3 Concern characterization constructs in multiple concern

operations..48
4.1.4 No detection of concern instances...49
4.1.5 No abstraction of detected concerns ...49
4.1.6 The user still needs to analyze the source code...............................50

4.2 Thesis objectives... 50
4.2.1 A new concern characterization construct: Method

Invocation Sequence ..51
4.2.2 Abstract view of concern instances...51

5 Design considerations ...52

5.1 Characterization of Concerns... 52
5.2 Source code representation .. 54
5.3 Concern instance.. 54

6 Validation...59

6.1 First case study: persistence ... 59
6.2 Second study case: web sharing information .. 66
6.3 Limitations.. 69

7 Discussion..74

7.1 Type usage and Method invocations.. 74
7.2 Fields.. 74
7.3 Java artifact relationships ... 75
7.4 Method declarations and Aspect advices .. 76

8 Future Work...78

9 Conclusions ...80

Bibliography 82

Appendix A Glossary of Terms 87

 v

List of Tables

Table 3.1: The Eclipse Java Search option. ... 16
Table 3.2: Comparison between the CME AspectJ Compatible Search and the

Eclipse Search Engine. ..24
Table 3.3: JQuery predefined top-level queries... 28
Table 3.4: JQuery predefined queries. .. 29
Table 3.5: TyRuBa unary predicates. .. 30
Table 3.6: TyRuBa binary predicates. ... 31
Table 3.7: Some relationships in FEAT. .. 35
Table 3.8: FEAT supported queries. .. 37
Table 3.9: Comparison of non-automatic aspect mining tools.............................. 39
Table 3.10: Comparison of automatic tools.. 47
Table 7.1 : Java artifact relationships. ... 75

 vi

List of Figures

Figure 3.1: Aspect Browser screen shot. ... 13
Figure 3.2: AMT screen shot... 13
Figure 3.3: Eclipse screen shot. .. 17
Figure 3.4: Eclipse screen shot. .. 17
Figure 3.5: PRISM screen shot.. 20
Figure 3.6: PRISM screen shot.. 21
Figure 3.7: CME screen shot. .. 25
Figure 3.8: JQuery screenshot. ... 33
Figure 3.9: JQuery screen shot. .. 34
Figure 3.10: FEAT screen shot.. 38
Figure 3.11: Various polymorphic method calls. .. 42
Figure 3.12: Fan-in values for code in figure 3.11. .. 42
Figure 5.1: Characterization of concerns. ... 55
Figure 5.2 : A simplified concern characterization instance.................................. 56
Figure 5.3: The source code representation. .. 57
Figure 5.4 : The concern instance representation. ... 58
Figure 6.1: Persistence – one query and one update instance. 63
Figure 6.2: Persistence – one connection and one closing instance. 64
Figure 6.3: Persistence – two update instances. .. 66
Figure 6.4: Persistence – two connection, two update and two closing

instances. ..67
Figure 6.5: Web Sharing Information – one session, two writing and two

reading instances. ...70
Figure 6.6: The assignment problem... 72
Figure 6.7: The conditional statement problem... 72
Figure 6.8: The control flow problem. .. 73
Figure 7.1: Levels of source code granularity obtained through artifact

relationships with FEAT..77

 1

1 Introduction

Corporate and commercial software systems keep changing and evolving.
Software systems are subject to modifications as new requirements and bugs
are discovered, and when a software migration is required to adapt a system
into a new technology to improve software quality.

One of the primary goals of software engineering is to improve software quality
and to facilitate maintenance and evolution by seeking technologies and
methodologies that reduce software complexity, improve comprehensibility,
promotes reusability and facilitate evolution [1].

One way to reduce complexity and improve comprehensibility can be attain
trough decomposition of software systems into meaningful and manageable
computation units called modules [2], and through composition of such units to
make them work together.

The major advantages of modular programming are:

1) The ability to write one module with little (or none) knowledge of the code in
another module.

2) The possibility to replace or to make dramatic changes to one module
without changing other modules.

3) The improvement of the comprehensibility by making possible to study the
system one module at a time.

Our ability to achieve the goals of software engineering depends fundamentally
on our ability to keep separated all concerns. In the present thesis dissertation,
we will use the terms “aspect” and “concern” indistinctly. We use the term
“aspect” or “concern” to refer to any technical consideration a developer might
have about the implementation of a system. Some examples of concerns
include[32]: persistence, logging, caching, security, authentication, transactions,
error handling, synchronization, debugging, assertions, metrics and web
sharing information.

 2

The modularization of concerns is helpful during software maintenance and
evolution because developers do not have to deal with the entire program each
time they want to make a change. They can focus on just the modules that
implement the concern that needs to be changed.

Before performing a modification to a software system, developers must
explore the system’s source code to find and understand the code portion
relevant to the change task. Software maintenance and evolution often becomes
a challenging task to developers who are required to deal with large software
systems, understand the source code, and to understand the structure and
behavior of specific concerns.

Nevertheless, not all concerns are easily modularized and, on the contrary,
might be scattered (spread) across many modules. Another inconvenient is the
tangling of concerns, which are concerns that need to interact and cooperate
with each other. The scattering and tangling of concerns in source code is the
consequence of four principal causes [3]:

1) Inadequate design: a software system design can fails to create modules
hiding implementation details associated with a concern.

2) Programming Language Limitations: Some times, even a well done software
system design and implementation make it impossible to separate every
concern with only the basic construct of a programming language.

 Sometimes it is possible to overcome such limitation through the use of design
patterns. For example, the Visitor design pattern [4] is a solution to separate
structure from behavior in a hierarchical object collection. Design patterns can
help address a small set of well-identified problems, but they cannot help to
address the majority of modular decomposition problems.

Another proposed solution is provided by the Aspect-Oriented Programming
paradigm [1, 5, 6, 7], which is an extension to Object-Oriented programming
languages aimed to modularize scattered concerns in separate modules.
Nevertheless it cannot help to address all possible causes of concern scattering,
especially when two or more concerns are tangled and cannot be separated
because they need to interact together.

3) Unanticipated changes: another cause of scattered and tangled concerns is
the emerging of new requirements that did not exist during the development of
a system, but needs to be considered for the evolution of the system.

 3

4) The last principal reason for scattering and tangling of concerns is code
decay, which refers to the fact that due to repeated maintenance, the time
pressure and the difficulty to understand the whole program’s source code,
software modifications may violate design constrains and may introduce
coupling between modules, generating further scattering and tangling of
concerns in source code.

Before performing a modification to a software system, code relating to
concerns has to be carefully identified. Due to the scattered nature of concerns,
searching for them in existing code is a non-trivial task.

An example of scattered concerns is provided by the analysis of the Tomcat [42]
source code undertook by the Palo Alto Research Center (PARC) [6]. Tomcat is
an open source web server that implements the Java Servlet and the Java Server
Page (JSP) specification. The objective of the analysis was to investigate how
concerns were employed by Tomcat.

The study discovered some well modularized concerns like the XML parsing
and the URL pattern matching. On the other hand, the Logging concern were
scattered across several classes. Other scattered concerns were Session
expiration and Session tracking.

Some problems and limitations posed by scattered concerns are:
• They produce redundant code.
• They are difficult to reason about.
• They are difficult to find.
• They are difficult to maintain.

Scattered and tangled concerns pose a challenge to developers who need to find
the code involved across several classes without any help from Object-Oriented
tools.

This thesis dissertation proposes a concern characterization aimed to detect
scattered concerns in source code.

 4

2 Motivation: An Example of
Program Maintenance Involving
Scattered Concerns

The need for maintaining and improving software and information systems has
risen dramatically over the past decade [11, 12]. Corporate software systems are
challenging because they are critical to the operation of companies, they contain
important corporate knowledge and business rules, they represent a large
investment and, as time pass by, their technology and architecture become
obsolete.

Notwithstanding, around 50% to 62% of the time spent on software
maintenance, is devoted to understanding the system being maintained [9].
This is due mainly because mission-critical systems might have been
maintained for many years by different programmers, because supporting
documentation may not be current, or because of the presence of scattered
concerns throughout the code.

For instance, let’s consider a case of software maintenance to change the
persistence mechanism of a given system. Suppose that we have a system that
use the Java JDBC API to do persistence and that we want to switch to
Hibernate.

JDBC [14] is the built-in Java [15] API that allows users to execute common SQL
statements within java programs. SQL is a standard language for accessing and
manipulating data from database systems, and JDBC is the de-facto API for java
applications to perform such SQL calls against a database. However, JDBC and
SQL are not object-oriented. Even small projects might require a lot of SQL
code, very few people are good to writing SQL code, writing JDBC/SQL code is
tedious and error-prone (example: JDBC Statement and ResultSet objects
should be closed manually. If they are not closed, we get a cursor leak). In
addition, developers have to switch from the Object-Oriented language, to the
“row” and “table” language to retrieve and manipulate data from databases.

 5

On the other hand, Hibernate [16] is an Object-Relational mapping framework
that allows transparent persistence for java objects against relational databases.
It generates stub classes that carry out, behind the scene, the persistence object
operations, and it offers the Hibernate Query Language (HQL), which is a
language similar to SQL that allows developers to retrieve objects instead of
rows and tables.

As an example, consider that we have the following Person class:

public class Person {

 private String id;
 private String name;
 private int age;
 private float weight;
}

And that we have the corresponding PERSON table:

PERSON
PK id
 name
 age
 weight

Now, we are going to compare how to retrieve an object of type Person with id
= “12345” using JDBC and Hibernate.

1) JDBC solution:

1 import java.sql.*;

2 Class.forName("aDatabaseDriver");
3 Connection conn = DriverManager.getConnection.("aDatabaseUrl",
 "aUsername", "aPassword");

4 Statement st = conn.createStatement();
5 ResultSet rs = st.executeQuery("SELECT name, age, weight
 FROM PERSON WHERE id = '12345'");
6 rs.next(); //get the first row of the query

7 String name = rs.getString("name"); //The name column
8 int age = rs.getInt("age"); //The age column
9 float weight = rs.getFloat("weight"); //The weight column

10 Person p = new Person("12345", name, age, weight);

 6

11 rs.close();
12 st.close();
13 conn.close();

2) Hibernate Solution:

With Hibernate, it is necessary to define xml documents to provide the
Hibernate configuration and a mapping configuration for each class. The
Hibernate xml configuration file sets the properties that Hibernate uses to
connect to the database and it looks like this:

<hibernate-configuration>
 <session-factory>
 <property name="hibernate.connection.driver_class">
 aDatabaseDriver</property>
 <property name="hibernate.connection.url">
 aDatabaseUrl</property>
 <property name="hibernate.connection.username">

 aUsername</property>
 <property name="hibernate.connection.password">

 aPassword</property>
 <property name="hibernate.dialect">
 org.hibernate.dialect.MySQLDialect</property>
 </session-factory>
</hibernate-configuration>

The first four lines are the same parameters used by the JDBC API to get a
connection to the database. The last property defines the SQL dialect used when
converting the Hibernate Query Language (HQL) into SQL.

The mapping xml documents define how the classes’ fields are mapped to table
columns in the database. For our example, this file looks like this:

<hibernate-mapping>
 <class name="Person" table="PERSON">
 <id name="id" type="string" unsaved-value="null" >
 <column name="ID" sql-type="char(32)" not-null="true"/>
 </id>
 <property name="name" column="name" type="string"/>
 <property name="age" column="age" type="int"/>
 <property name="weight" column="weight" type="float"/>
 </class>
</hibernate-mapping>

This xml file describes how class fields are mapped into tables. It specifies the
name of the class field, the name of the column it is mapped to and the types of
the fields. The id element block describes the primary key used by the
persistence Person class (for a complete tutorial on Hibernate, please go to
http://www.hibernate.org).

 7

Finally, the java code to retrieve an object of type Person with id = “12345” will
be:

1 import org.hibernate.*;

2 Session session = SessionFactory.openSession();
3 Person p = session.load(Person.class, "12345");

In both examples, the java code highlighted in yellow color, represent the code
implementing the opening of a database connection/session (we can call it the
connection operation), and the code highlighted in green represent the code
implementing the database query (we can call it the query operation).

The Hibernate related code is shorter and simpler than the JDBC related and,
therefore, a migration from JDBC to Hibernate may be highly desired since it
may improves software quality, maintainability, comprehensibility, and
reducing software complexity.

Nonetheless, in large Object-Oriented systems, the persistence might not be
well modularized and may be scattered across several classes. Hence, the
detection of the persistence related code could be a difficult task.

 8

3 State of the Art

In this chapter we are going to describe the existing aspect mining tools for
detection of concerns. We are going to consider a small example in order to
illustrate exactly how they work and to discuss their advantages and
limitations.

In the present thesis dissertation, we will use the terms “aspect” and “concern”
indistinctly to refer to a technical consideration a developer may have about the
implementation of a system.

There are two kinds of aspect mining tools: the non-automatic ones that require
a seed from the user, and the automatic ones which do not. A seed is an input
describing how an aspect may look like.

3.1 Non-automatic aspect mining tools

These aspect mining tools can be categorized as being either query-based or
exploratory [49]. Both require a seed and depend on the user’s understanding of
the software to be analyzed. In order to evaluate these tools for detection of
concerns, we are going to consider a sample code.

3.1.1 Sample code

Let’s consider a class called Person with a method called queryAndUpdate, which
makes a connection to a database, performs a query and an update, and lastly,
closes the connection to the database.

public class Person {

 private String id, name;
 private int age;
 private float weight;

 public void queryAndUpdate(){
 try {
 /*Connection to the database*/
 Class.forName("aDatabaseDriver");

 9

 Connection conn = DriverManager.getConnection("aDatabaseUrl",
 "aUsername", "aPassword");

 /*an update*/
 Statement st1 = conn.createStatement();

st1.executeUpdate("UPDATE ...);
 st1.close();

 /*a query*/
 Statement st2 = conn.createStatement();
 ResultSet rs = st2.executeQuery("SELECT ...);

 rs.next();
 this.name = rs.getString("name"); //The name column
 this.age = rs.getInt("age"); //The age column
 this.weight = rs.getFloat("weight"); //The weight column
 rs.close();
 st2.close();

 /*closing of the connection*/
 conn.close();
 } catch (Exception e) { }
 }
}

We are going to consider 4 operations:

1) Connection operation, defined by the following method invocations:

java.lang.Class.forName

java.sql.DriverManager.getConnection

2) Query operation, defined by:

java.sql.Connection.createStatement

java.sql.ResultSet.close

java.sql.ResultSet.getFloat

java.sql.ResultSet.getInt

java.sql.ResultSet.getString

java.sql.ResultSet.next

java.sql.Statement.close

java.sql.Statement.executeQuery

3) Update operation, defined by:

java.sql.Connection.createStatement

java.sql.Statement.close

java.sql.Statement.executeUpdate

 10

4) Closing operation, defined by:

java.sql.Connection.close

It should be noted that some method invocations can be shared by two or more
operations. In our example, the java.sql.Connection.createStatement and the
java.sql.Statement.close methods are shared by the Query and the Update
operations.

3.1.2 Query–based search tools

These kinds of tools receive a query as an input. The kind of analysis performed
by these tools may include the search of text patterns, type usage, method
invocations or predefined queries. Query–based tools are required to receive an
input from the user, which can be either a regular expression or a string.

3.1.2.1 Aspect Browser

Overview

Aspect Browser [17, 18] is one of the first aspect mining approaches. Its main
functionality is to search of textual-pattern matching using a like-Unix grep
language and highlights matching text with a specific color. It extracts
fragments of identifier names from source code according to a programmer-
specified naming convention.

The results are reported as a list of aspect candidates. An aspect in Aspect
Browser is defined as a pair of a regular expression and a color. This
functionally is strongly dependant on the naming convention used in the source
code, and assumes that implemented crosscutting concerns have a signature
which can be identified by a textual regular convention.

When an aspect candidate is found, the matching text is highlighted in the
source code, and the tool will indicate the match-count.

In addition, Aspect Browser provides a view in which each file is represented as
vertical strips, where a row of pixels in the strip represents a line of code.
Whenever a line of code is highlighted to indicate an aspect candidate, the
corresponding row pixel of the files vertical strip representation is also
highlighted with the same color, which makes easy to see how an aspect is

 11

scattered. If more than one aspect appears in the same line of code, the view
will display a red line indicating that there is an “aspect collision”.

Aspect Browser has two more functionalities. The first one finds redundancies
in the code, the second one reports any line that appears more than once. It is an
effective approach to identify code written with copy-paste, which is a common
technique used by software developers.

Evaluation

This tool does not perform any type analysis, so it was necessary to define our
text patterns as the method names implementing the concerns (example:
“close”). This is very inconvenient, since we want to distinguish invocations to
the close method on objects of types Connection, Statement and ResultSet.
Moreover, if there were a close method defined in another class, those method
invocations would also be added to the result. Equally, if there were variables
named close, or if such word were present in code comments, such occurrences
would also be added to the result.

In the case of static method invocations, we were able to type both the type and
the method name in the search input (example: “Class.forName” and
“DriverManager.getConnection”).

The tool automatically designates a color for each search and the corresponding
source code will also be highlighted with that color. It is possible to enable and
disables the colors by the user.

The tool allows users to create concern data structures called groups, and to add
textual-regular expressions to them. It is possible to enable and disable the color
of a single aspect candidate or a whole group of aspect candidates. Particularly,
we were able to create groups called “Connection”, “Query”, “Update” and
“Closing”.

Regarding the case of the close method (defined in types:
java.sql.Connection, java.sql.Statement and java.sql.ResultSet, and used
in operations: Query, Update and Closing), the tool detected all method
invocations, without performing any type distinction, and it only allowed us to
add the results to only one group.

It is not possible to execute duplicate queries or to share one query result with
more groups (i.e.: it is not possible to add the close method to the Query,
Update and Closing operations; or the createStatement method in both Query
and Update operations).

 12

The tool identified two types of redundancies: redundant lines of codes and
common identifiers. The common identifiers detected with this example include
the following text occurrences: age, name, rs, weight, id, close, a and
conn. The tool is also able to identify redundant lines of code but, because our
sample class is too short, it didn’t identify any.

The textual-pattern matching is heavily dependent on the programmer coding
convention. It works well only if consistent naming conventions for types,
methods, variables and classes are carefully followed. Conversely, this method
will not work if naming conventions are not strictly followed.

Limitations

Does not perform type analysis, so in the case of method names, it does not
distinguish the method declaring class/interface. If there were another type
declaring also a method called close, Aspect Browser will include it, generating
distracting results to the user. In addition, it does not allow the addition of a
textual-pattern search result to more than one group.

Since this tool only performs textual-pattern searches, it does not distinguish
between a package name, a type name, a variable name, a method name, or a
code comment. The user needs to spend time to analyze and to filter the results.

Figure 3.1 offers a screen shot of the Aspect Browser tool.

3.1.2.2 AMT

Overview

The Aspect Mining Tool (AMT) [20, 21, 22] is a multi-modal analysis framework
that combines text-based and type-based analysis.

The text-based analysis technique of AMT, similar to Aspect Browser, works
best if consistent naming conventions for types, methods, variables and classes
are carefully followed. However, it is not helpful if naming conventions are not
followed, or are followed only partially.

Moreover, the results using this technique can be distracting because if the
majority of the code adheres to naming conventions while the rest does not, the
developer might be convinced with the results of the query and might forget to
question himself/herself for possible lines of code that might not follow the

 13

naming conventions. Unfortunately, legacy code might not follow naming
conventions.

Figure 3.1: Aspect Browser screen shot.

Figure 3.2: AMT screen shot.

 14

The type-based analysis searches for instantiations and usages of types. The
naming convention for objects and variables become irrelevant for this
technique.

The type-based analysis has its limitations also, since it search for object
references of the same type regardless their functionality. For instance, if we
were to analyze the code implementing the GUI of a java application and we
were to do a type-based analysis on objects of type JButton, the tools will
identify all instantiations of the JButton class regardless their functionality
(example: color settings, font settings, file browsing, etc.).

The tool also represents java files as a collection of horizontal strips, were each
strip represents one line of code. The tool allows users to choose a color for each
query result, and it will display that color in the matching line strip of the java
file representation. If a line matches more than one search criteria, it will be
separated into different colors. Unfortunately, the results are not linked to the
source code.

The tool is quite old and requires Java 1.3. Moreover, it uses a modified version
of the AspectJ [33] compiler, and the CLASSPATH variable should be carefully
setup if AspectJ is already installed.

Evaluation

The type-based analysis works pretty well. We were able to do type-based
search for java.sql.DriverManager, java.sql.Connection, java.sql.ResultSet
and so on. It found all the instantiations and usages of such types. The type-
based analysis works with objects and variables, but not with method
invocation. That is, it does not analyze the declaring type, and arguments of
method invocations.

The text-based analysis search for occurrences of a text, and does not support
the use of wildcards (i.e. the “*” character). Since the type-based analysis does
not work with method invocations, we had to detect them using text matching,
as with Aspect Browser (example: to detect invocations of the method
java.sql.ResultSet.getString(), we have to search the text “getString”,
“getString(“, or “.getString(“).

It was not possible to create concern data structures in order to store different
query results.

 15

Lastly, the line strips for the java file of our example were displayed with the
corresponding colors specified in the search, but we were not able to see the
corresponding source code for each search result.

Limitations

The AMT tool works best if naming conventions for types, methods, variables
and classes are followed. The code that does not follow such naming
conventions is not detected.

The type-based analysis does not work with method invocations. The tool
doesn’t find out the signatures of method invocations, they have to be detected
with textual searches, and in this case, the same limitations of Aspect Browser
apply to AMT. Furthermore, it is not possible to create a concern data structure
in order to store different query results.

Finally, the tool is quite old and the results are not linked to the source code,
making the tool almost useless.

Figure 3.2 presents a screen shot of the AMT tool.

3.1.2.3 The Eclipse Framework

Overview

The Eclipse framework [22] is not an aspect mining tool, but it comes with a
pretty mature search engine that can be useful for detecting concerns in source
code. It comes with two major search options, the first one is called File Search;
the second, more complex, is called Java Search.

The File Search option comes with two sub-options. The first one is able to find
text pattern-matching and can receive as input any text, including the following
wildcards:

• “*”, which denotes any string.
• ”?”, which denotes any character, and
• “\”, which makes possible the search of escape characters (\n, \t, \r, \\, \s,
etc.).

The second sub-option allows the search of Perl-like regular expressions [34, 35]
(expressions like: [a-zA-Z], [^0-9], “ba+”, “gr(a|e)y“, etc.). In both options, the
user can enable or disable the case sensitive constraint.

 16

The Java Search option allows user to search java code artifacts (constituent java
source code elements). Table 3.1 summaries the queries available under the Java
Search option.

Element Queries

Declarations
References

Type

Implementators (for interfaces and abstract classes)
Declarations (definition) Constructor
References (invocations)
Declaration (definitions) Method
References (invocations)
Declaration
References (both read and write access)
Read access

Field

Write access
Declarations (package clauses) Package
References (import clauses)

Table 3.1: The Eclipse Java Search option.

In all the above options, the user can use the “*” and the “?” wildcards (not
“\”). It is also possible to enable and disable the case sensitive constraint.

Another strength of the Eclipse search engine is that it performs super-type
matching1 on:

a) Types when it searches for types.
b) The declaring-type and on each argument of a method signature when it
searches for methods.

Evaluation

In our example, the Eclipse search engine successfully found all method
invocations for the method names given as an input
(java.sql.Connection.createStatement, java.sql.Statement.executeQuery,
java.sql.Statement.executeUpdate, java.sql.ResultSet.getString, etc.). It is
also possible to search just by the method name, but in that case, the tool will
not perform any type analysis.

1 Go to appendix A for a definition.

 17

Figure 3.3: Eclipse screen shot.

Figure 3.4: Eclipse screen shot.

 18

The search was equally successful in the search of static method invocations
(java.lang.Class.forName and java.sql.DriverManager.getConnection). In
addition, the tool was able to do the searches with either the short name or the
full qualified name of method classes (example: java.lang.Class.forName and
Class.forName).

The search engine is also able to apply pattern-matching method signatures
(examples: java.sql.ResultSet.getInt(*), java.sql.ResultSet.getInt(?),
java.sql.ResultSet.getInt(String), etc.).

The result of the search is displayed in a tree view. The top level nodes
represent the project packages. In the next level nodes represent the classes and
the third level nodes represent the classes’ method declarations where a match
is found. The results are linked to the source code, so when a user does double
click on one of the nodes, the Eclipse framework will display the corresponding
line of code.

Limitations

The Eclipse search engine is just that, a search engine. It does not allow users to
create concern data structures and to add query results to them. Moreover, it
only allows one search at a time. Two screen shots of the Eclipse Framework
can be found in figures 3.3 and 3.4.

3.1.2.4 PRISM

Overview

The PRISM tool [23, 24] supports java code and partially supports C# code.
Aspects are defined as method invocations and the user is allowed to input
pattern-matching expressions to describe the method invocation signatures. In
addition, it supports the “*” wildcard, which denotes any string, and “(..)”
which denotes any number and type of arguments.

Some examples of valid inputs are:

className.methodName(..)

className.methodName

className.*

className.*(..)

*.methodName(..)

className.methodName(type1, type2, ..)

 19

Nevertheless, it is not possible to describe arguments types as pattern-matching
expressions. The user has to enter the complete arguments’ type names.

It is possible to characterize class and method names with the following
pattern-matching expressions:

fragmentName*

*fragmentName

fragmentName

Some invalid pattern-matching expressions are:

className

className.methodName()

className.methodName(*)

PRISM displays its results in a tree view. The top level nodes represent classes
and the next level nodes represent the lines of code where each pattern-
matching is found. The results are also linked to the source code, so it is
possible to jump to the corresponding source code with a double click on a tree
node.

The tool allows the creation of groups of pattern-matching expressions. In
addition, it offers a ranking view which reports the most frequently used types
across method invocations.

Evaluation

In our example, we were able to create data structures for our operations
(Connection, Query, Update and Closing) and we were able to characterize our
operations as a collection of method-name pattern-matching expressions. For
instance, the Update operation was defined as the following collection of
expressions:

java.sql.Connection.createStatement(..)

java.sql.Statement.executeUpdate(..)

java.sql.Statement.close(..)

The tool also allowed us to add an expression in more than one operation. For
instance, the Connection.createStatement and Statement.close methods,
which are shared by the Query and Update operations, were added to both of
them. Nevertheless, the tool associates their method invocations simultaneously

 20

Figure 3.5: PRISM screen shot.

 21

Figure 3.6: PRISM screen shot.

 22

to both operations. It cannot distinguish when such method invocations are
used to perform one or the other operation.

Limitations

In the case of methods invocations that are shared by more than one operation,
the tool is unable to distinguish to which operation a specific method
invocation is used to.

It does not perform a super-type matching on the method’s declaring-type and
on each of its arguments. For example: suppose we have the following type
definitions:

interface superinterface
{
 public void methodA();
}

class subtype implements superinterface
{
 public void methodA() { /*some code*/ }
}

The expression superinterface.methodA(..) is unable to detect the method
invocation in:

subtype sub = new subtype();
sub.methodA();

The expression superinterface.methodA(..) is unable to detect the method
invocation in:

subtype sub = new subtype();
sub.methodA();

Figures 3.5 and 3.6 offer some screenshots of the PRISM tool.

3.1.2.5 CME

Overview

The Concern Manipulation Environment (CME) [36] is an Eclipse open-source
project aimed to support the identification, extraction and composition of
concerns. It is based on the premise that concerns can be encapsulated and that
they should be treated as first-class entities [38, 39]. The CME allows developers
to identify concerns in existing software, regardless whether they are implicit
(scattered in the code) or if are already encapsulated with AspectJ [33].

 23

In CME, concerns are modeled as elements and their relationships. Elements
can be classes, interfaces, fields, methods, advices or pointcuts. However, the
extraction and composition of concerns is not yet implemented.

CME provides a query capability [40] to help in the identification of concerns in
existing software. The results of a query can be used to define a new query or to
enlarge an existing one. The definition can be extentional, where actual elements
found are added to the concern, or intensional, where the concern’s content are
defined by the query itself, and so the concern’s elements are updated as the
underlying software changes.

Since queries play a prominent role in the identification (detection) and the
weaving (composition) of concerns, CME has adopted a uniform, shared query
language. CME has also embedded some AspectJ pointcut–style queries in
order to make this tool natural for AspectJ developers.

Pointcuts in AspectJ and related Aspect Oriented technologies are queries over
runtime events where advice can be applied, such as object creation, method
call or execution, or field access.

Queries are used to describe points of interest in software. The CMD offers
three categories of searches: the AspectJ Compatible Search, the Artifact Search and
the Concern Model Search.

The AspectJ Compatible Search category allows users to execute queries using an
AspectJ-style language in order to make queries familiar to AspectJ developers.
Table 3.2 offers a contrast between this search category and the Eclipse Search
Engine.

Both tools receive a name characterization for the queries. The differences are
present in the query against fields, in which CME may also receive a
characterization of the field type. The search against types is also different in
both tools. CME searches for static initializations and references in try-catch
block, whereas the Eclipse Search engine searches for type declarations and
references. Another feature in CME is that queries for methods may also
include the returning type.

Element CME AspectJ Compatible

Search
Eclipse equivalent query

Calls Declarations Method
Execution References

 24

Calls Declarations Constructors
Execution References
Get Reads Fields
Set Writes
Static Initialization n/a Types
Try-Catch Handling n/a

n/a: not available.

Table 3.2: Comparison between the CME AspectJ Compatible Search and the
Eclipse Search Engine.

The Artifact Search category allows users to find artifacts (source code
constituent parts), regardless whether they belong to a java type definition (in a
.java file) or to an aspect definition (in a .aj file). The searchable elements or
artifacts are:

• Type
o Aspect
o Class
o Interface

• Member
o Field
o Operation

 Advice
 Method

o Pointcut
• Project
• Package

Lastly, the Concern Model Search category allows users to query relationships
among artifacts. Relationships are composed by a source, a target and a name.
The source and the target could be any artifact, and the name of the relationship
may be dependsOn, extends, implements, invokes and refersTo.

The allowed wildcards in CME are:
• “*”, which denotes any string.
• “..”, which denotes any package, or anything when describing method
parameters.
• “+” which includes all subtypes in the query.

 25

Figure 3.7: CME screen shot.

 26

The tool can also include the logical operators “||” and “!”, and queries may
include modifiers (private, public, protected, final, static, etc.) and AspectJ
keywords like within and withincode.

Lastly, some examples of the CME AspectJ pointcut-style queries are:

Searching for Query to use
All public or protected methods.
returning a String.

(public || protected) method
String *(..)

All fields of type int. field int *

All calls to any method named "foo",
from classes or aspects matching p.C*.

call(* foo(..)) && within(p.C*)

All calls to any foo method occurring
within any bar method.

call(* foo(..)) && withincode(*
bar(..))

Evaluation

We were able to create data structures for the Connection, Query, Update and
Closing operations.

As with PRISM, we defined each operation as method invocations to the
methods of interest for each operation. To do that, we made calls queries to the
method signatures we were interested.

A screenshot of CME can be found in figure 3.7.

Limitations

As with PRISM, the java.sql.Connection.createSatement and
java.sql.Statement.close method calls are added to both Query and Update
operations. The tool cannot determine to which operation the method
invocation actually belongs. This produce distracting results and the user needs
to expend time in analyzing not only the results, but also the source code, in
order to determine to which operation each method call belongs.

3.1.3 Exploratory tools

Exploratory tools incorporate semantic information to navigate source code.
They focus on providing intelligent exploratory capabilities, with the user
controlling much of the function, in order to lead the user to the discovery of an

 27

aspect. These tools give the user ways to navigate more quickly and
intelligently around source code.

3.1.3.1 JQuery

Overview

JQuery [25, 26] is an exploratory tool that allows users to do hierarchical code
browsing and query searches. It extends an earlier prototype called QJBrowser
[27] and its query language is built on top of TyRuBa [28], which is an
expressive logic programming language similar to Prolog[29].

JQuery provides a generic mechanism for constructing tree views from queries
or code navigation based on particular kinds of relationships. Additionally, the
tool allows users to incrementally extend these tree views using additional
queries. JQuery performs an initial source code parsing to build a logic database
of program information. Users can type queries, or select from a set of
predefined queries, which JQuery will execute and then will construct a tree
view from the query results. The tree views can be incrementally extended with
further queries.

JQuery offers predefined top-level queries that serve as starting points for
explorations. To support continued exploration, a JQuery tree can be
incrementally refined by the developer. At each node in the tree the developer
may wish to explore further and may choose to extend the current view with a
new subtree. The subtree shows the results of a selected query that finds code
units connected to the selected unit through some relationship of interest. Table
3.3 shows the JQuery predefined top-level queries.

Abstract Classes Displays a tree containing all abstract classes.

Abstract Method Browser Displays a tree containing all abstract
methods.

Bookmarks Displays a tree containing all the user defined
bookmarks.

Class Creation Displays a tree with all lines of code creating
classes’ instances through the new operator.

Compiler Errors Displays a tree with all compilations errors.
Compiler Warnings Displays a tree with all compilations

warnings.
InstanceOf Testing Displays a tree with all lines of code using the

instanceof keyword.

 28

Interface Implementation Displays a tree with all interfaces
implementations.

Java Structure Browser Almost the same as the Eclipse Package
Explorer view. It displays a tree with all
packages, .java and .class files, classes,
interfaces, fields and methods.

Method Browser Displays a tree with all methods.
Package Browser Displays a tree containing all packages, classes

and interfaces.
Tasks Displays a tree containing all the user defined

tasks.

Table 3.3: JQuery predefined top-level queries.

In the exploration process, developers can expand a tree node with the help of a
contextual menu offered by the tool. The contextual menu is specific for each
type of node and contains a list of all the ways in which the tree can be
extended at that node. An important difference between JQuery and the CME
tool is that queries in CME need to be typed by the user, whereas queries in
JQuery are offered in contextual menus, easing the navigation of code. Table 3.4
shows the predefined queries offered for each type of node.

Node Category Relationships

Top-level classes
Top-level interfaces

Package

All top-level types
Initializers
Fields
Constructors

Members

Methods
Inherited methods
Inherited fields
Supertypes
Subtypes
Implemented interfaces
Superclasses

Class

Inheritance

Subclasses

 29

Creates
Incoming calls

Calls

Outgoing calls
Signature
Modifiers
Arguments
Returns

Signature

throws
Reads fields
Writes fields

Field accesses

Reads/Writes fields
Method hierarchy
Inherited by
Override

Method

Inheritance

Overridden by
Read by
Written by
Read/Written by

Fields

Type of field

Table 3.4: JQuery predefined queries.

Users are also allowed to expand a tree node by doing queries using a logic
language built on top of TyRuBa [28].

TyRuBa Language Overview

 Type Hierarchy

JQuery has the following TyRuBa type hierarchy:

• Element

o Package
o CU (Compilation Unit)
o Field
o Type

 Primitive
 RetType (interface or class)

 30

o Block
 Initializer
 Callable
• Method
• Constructor

o Marker
• Bookmark
• warning
• Error
• Task

 Core Predicates

Unary predicates:

Predicate Description
cu cu(?X) means: "?X is a Compilation Unit (.class or .java file)"
package package(?X) means: "?X is a package"
class class(?X) means: "?X is a class"
interface interface(?X) means: "?X is an interface"
method method(?X) means: "?X is a method"
constructor constructor(?X) means: "?X is a constructor"
initializer initializer(?X) means: "?X is an initializer"
field field(?X) means: "?X is a field"
bookmark bookmark(?X) means: "?X is a bookmark"
warning warning(?X) means: "?X is a compiler warning"
error error(?X) means: "?X is a compiler error"
task task(?X) means: "?X is a task"

Table 3.5: TyRuBa unary predicates.

Binary predicates:

Predicate

Name
Argument

Types Description

priority Task,
String

priority(?T,?P) means: "Task ?T has priority ?P"

 31

name Element,
String

name(?E,?S) means: "Element ?E has name ?S"

child Element,
Element

child(?Sup,?Sub) means: "Element ?Sup has a child
?Sub"

extends RefType,
RefType

extends(?C1,?C2) means: "Class (or Interface) ?C1
extends Class (or Interface) ?C2"

implements RefType,
RefType

implements(?C,?I) means: "Class ?C implements
Interface ?I"

throws Callable,
RefType

Throws(?C,?T) means: "Callable ?C throws ?T"

type Field,
Type

type(?F,?T) means: "Field ?F is of type ?T"

modifier Element,
String

modifier(?E,?S) means: "Element ?E has modifier (i.e
public, private, static, etc) ?S"

arg Callable,
Type

arg(?C,?T) means: "Callable ?C has an argument of
type ?T"

returns Callable,
Type

returns(?C,?T) means: "Callable ?C returns Type ?T"

signature Callable,
String

signature(?C,?S) means: "Callable ?C has signature
?S"

Table 3.6: TyRuBa binary predicates.

Some sample queries are:
• class(?C), method(?C, ?M), name(?M, main). Returns all classes that have

a method called main.
• class(?C), field(?C, ?F), name(?F, id). Returns all classes that have an

attribute called id.
• class(?C), implements(?C, ?I), name(?I, persistent). Returns all

classes that implements the interface called persistent.

Evaluation

It is necessary to indicate to the JQuery tool which files to parse. In our
evaluation, we selected our own project and the java.lang.Class,
java.sql.Connection, java.sql.ResultSet and java.sql.Statement classes
from the rt.jar file of the Java Runtime Environment System Library.

 32

After that, we could expand each class node by querying their methods, and
then, from each method of interest, we expanded the method nodes by
querying their incoming calls. The results of the queries are the lines of code
that makes such methods calls.

The tool does not allow users to characterize aspects and to create concerns data
structures, but it allows the creation of trees of navigation. In our example,
those trees are the incoming calls for the methods that we are interested in.

Limitations

JQuery is a tool that is related to, but not explicitly built for aspect mining. It
allows user to quickly and intelligently browse the source code, and it provides
considerable help in developing an understanding of how a program works.

The user needs to be familiar with the Eclipse Framework capabilities in order
to perform queries in built-in java classes.

It is not possible to create concerns data structures and to associate a query
result to them. Some screenshots are shown in figures 3.8 and 3.9.

3.1.3.2 FEAT

Overview

The Feature Exploration and Analysis Tool (FEAT) [30, 31, 41] introduces the
concept of Concern Graph. A Concern Graph abstracts the implementation
details of a concern by storing the key structure implementing a concern. By
storing structure, a Concern Graph documents explicitly the relationships
between different elements of the concern. More precisely, a Concern Graph is a
subset of a structural program model built by FEAT.

The program model represents the declaration and uses of various program
elements of class-based object-oriented languages. Formally, a program is
expressed as a graph P = (V, E), where V is the set of vertices, and E is the set of
labeled, directed edges.

A vertex in P can be one of three types.

• Class vertex I represents a global class or interface, without its members.
• Field vertex (F) represents a field member of a class.
• Method vertex (M) represents a method member of a class.

 33

Figure 3.8: JQuery screenshot.

 34

Figure 3.9: JQuery screen shot.

 35

An edge in P can be one of six types, depending on the type of vertices it
connects: (M, M), (M, F), (M, C), (C, C), (C, M), and (C, F). Edges are labeled
with the semantic relationships they represent.

Some examples of edges that connect vertices of P are:

Name Type Description
(calls, m1, m2) (M, M) The body of m1 contains a call that

can bind (dynamically or statically)
to m2.

(reads, m, f) (M, F) The body of method m contains an
instruction that reads a value from
field f.

(writes, m, f) (M, F) The body of method m contains an
instruction that writes a value to
field f.

(checks, m, c) (M, C) The body of method m checks the
class of an object, or casts an object,
to c.

(creates, m, c) (M, C) The body of method m creates an
object of class c.

(declares, c, {f|m}) (C, F|M) Class c declares method m or
declares field f.

(superclass, c1, c2) (C, C) Class c2 is the superclass of c1.

Table 3.7: Some relationships in FEAT.

For example, if a class called Multiplier has a method called product(int,
int), there will be an edge from Multiplier to product(int, int) called
declares.

In FEAT, an aspect is defined as a subset of the graph P documenting the
implementation of a concern in P, and it is stored in a structure called Concern
Graph.

FEAT allows users to search the source code by performing queries of relations
between different elements (such as fields and methods), and to keep track of
elements and relations that are of interest. These elements and relations are
saved in a Concern Graph.

 36

A Concern Graph is display by FEAT as trees. The root of each tree is a class
that contributes to the implementation of a concern. FEAT provides a set of
queries to enable users to access vertices of the program model that are related
to the vertices in the Concern Graph. A user can navigate the program model in
both the direct and reverse directions of the edges emanating from the vertices.

There are two categories of queries in FEAT:
• Fan-in: returns all the vertices in the program model that depend on the

selected class, field or method node.
• Fan-out: returns all the outgoings edges for the selected node. Fields do not

have outgoing edges.

A complete list of queries supported by FEAT can be found in table 3.8.

Element Query Category Relation

Checked by
Created by
Extended by
i-extended by
Implemented by
Transitively extended by
Transitively implemented by

Fan-in

Referenced by
Declaring
Extending
i-extending
Implementing
Transitively extending

Class/Interface

Fan-out

Transitively implementing
Called by
Overridden by

Fan-in

Referenced by
Checking
Creating
Having p-types

method

Fan-out

Having r-types

 37

Accessing
Calling
Overriding
Using
Accessed by Fan-in
Referenced by

Field

Fan-out -----

Table 3.8: FEAT supported queries.

Evaluation

We were able to create a Concern Graph for each operation (i.e.: Connection,
query, Update and Closing).

Just like the JQuery tool, with FEAT we had to use the Eclipse Search Engine in
order to get the type-declaration reference of the java.lang.Class,
java.sql.DriverManager, java.sql.Connection, java.sql.Statement and
java.sql.ResultSet types.

Once got those references, we performed a fan-out/declaring query, and we
added the appropriate methods to each Concern Graph. It was possible to add
an element (in this case a method) to more than one Concern Graph.

Additionally, for each method in each Concern Graph, we perform a fan-
in/called-by query to find out all invocations to our methods of interest. The
result yielded the queryAndUpdate()method declared in the class Person, and
we added that relation to our concerns. Since the method
Person.queryAndUpdate() is calling all the methods of our concerns, it was
added to all the Concern Graphs.

Finally, the FEAT tool is able to compare two Concern Graphs at a time, and
discover any “collision” between them. Figure 3.9 displays the comparison
between the Query and the Update Concern Graphs.

The methods java.sql.Connection.createStatement() and
java.sql.Statement.close() are present in both Concern Graphs. This is what
we call an aspect collision, and FEAT flagged those elements with a red
diamond.

A screen shot of the FEAT tool is presented in figure 3.10.

 38

Limitations

Similar to PRISM, FEAT is unable to distinguish whether a
java.sql.Connection.createStatement() and a java.sql.Statement.close()
method invocation is used to perform a Query or an Update operation.

The user also needs to be familiar with the Eclipse Framework capabilities in
order to include built-in java classes in the exploration task.

Figure 3.10: FEAT screen shot.

3.1.4 Comparison of non-automatic aspect mining tools

Table 3.9 makes a comparison of non-automatic aspect mining tools.

 39

Search capabilities

Text
pattern

Type
usage

Method
invocation

Other Super-type
matching

Allowed
wildcards

Browsing
Capabilities

Aspect
Browser

√

X

X

n/a

“*”

n/a

AMT

√

√

X

X

none

n/a

Eclipse

√

√

√

• Java artifacts1
• Relationships3

√

“*”,“?”, “\”

Java artifacts

PRISM

X

X

√

X

“*”, “..”

n/a

CME

X

√

√

• Java artifacts
• AspectJ artifacts2
• Relationships

√

“*”, “..”, “+”

n/a

JQuery

n/a

n/a

n/a

n/a

n/a

• Java artifacts
• Relationships

FEAT

n/a

n/a

n/a

n/a

n/a

• Java artifacts
• Relationships

n/a: not applicable.
1 Java artifacts: type, method and field.
2 Aspectj artifacts: aspect, pointcut and advice.
3 Relationships: declares, declared by, calls, called by, reads, read by, etc.

Table 3.9: Comparison of non-automatic aspect mining tools.

 40

 Allows creation
of concern data

structures

Allowed characterization
constructs

Allows repeated
constructs in

different concerns

Extra analysis performed Users need to
explicitely

include built-
in class files

Aspect
Browser

√

Text pattern

X

• Aspects match count
• Most common identifiers
• Redundant lines of code

n/a

AMT

X

• Type usage
• Text pattern

n/a

X

X

Eclipse

X

n/a

n/a

Match count

n/a

PRISM

√

Method invocations

√

Ranking of type usage

X

CME

√

• Java artifacts
• AspectJ artifacts
• Relationships
• AspectJ-like queries

√

X

X

JQuery

X

n/a

n/a

X

√

FEAT

√

• Java artifacts
• Relationships

√

Collision between two
concern definitions

√

n/a: not applicable.
Table 3.9: Comparison of non-automatic aspect mining tools. (continuation)

 41

3.2 Automatic aspect mining tools

These tools do not require any input from the user and are intended to identify
aspect candidates automatically.

3.2.1 Clone code detection

Overview

The objective for clone code detection is to factor out copy-paste-adapt code. It
relies on the assumption that crosscutting code is typically duplicated over the
entire application, and could be identified using clone detection algorithms.

Several clone detection techniques have been proposed:
• Text-based techniques [55, 56] perform little or no transformation to the
‘raw’ source code before attempting to detect identical or similar (sequences of)
lines of code. Typically, white space and comments are ignored.
• Token-based techniques [57, 58] apply a lexical analysis (tokenization) to the
source code, and subsequently use the tokens as a basis for clone detection.
• AST-based techniques [59] use parsers to first obtain a syntactical
representation of the source code, typically an abstract syntax tree (AST). The
clone detection algorithms then search for similar subtrees in this AST.
• PDG-based approaches [60, 61] go one step further in obtaining a source
code representation of high abstraction. Program dependence graphs (PDGs)
contain information of semantical nature, such as control and data flow of the
program.

Limitations

These techniques usually suffer from long execution times.

3.2.2 Fan-in analysis

Overview

The fan-in analysis [62] search for methods that are called from many different
places (and hence have a high fan-in) and whose functionality is needed across
different methods, classes and packages.

 42

This method relies on the observation that scattered and crosscutting
functionality that largely affects the code modularity is likely to generate high
fan-in values for key methods implementing this functionality. Some examples
include: logging, tracing, pre and post-condition checks and exception
handling.

A fan-in of a method m is defined as the number of distinct method bodies that
can invoke m. Because of polymorphism, one method call can affect the fan-in
of several other methods. An example is shown in figure 3.11. Three different
calls to polymorphic method m are contained in class D. The resulting sets of
callers and corresponding fan-in values are shown in Figure 3.12. Observe that
the call in f2 to B’s m contributes to the fan-in of m in B’s supertypes (A) as well
as its subclasses (C1 and C2).

interface A {
 public void m();
}
class B implements A {
 public void m() {};
}
class C1 extends B {
 public void m() {};
}
class C2 extends B {
 public void m() { super.m();}
}
class D {
 void f1(A a) { a.m(); }
 void f2(B b) { b.m(); }
 void f3(C1 c) { c.m(); }
}
Figure 3.11: Various polymorphic

method calls.

Method Caller set Fan-in
A.m D.f1, D.f2,

D.f3
3

B.m D.f1, D.f2,
D.f3, C2.m

4
C1.m D.f1, D.f2,

D.f3
3

C2.m D.f1, D.f2 2

Figure 3.12: Fan-in values for code in
figure 3.11.

The fan-in analysis follows three consecutives steps:

Step1: Automatic computation of the fan-in metric for all methods in the source
code.
Step2: Filtering the results:
• Restrict the set of methods to those having a fan-in above a certain threshold
(for example 10).
• Filter getters and setters.
• Filter utility methods, like toString(), collection manipulation methods, etc.
Step 3: Manual analysis of the remaining set of methods.

 43

Limitations

This technique may produce false positives (returned aspect candidates that are
not crosscutting concerns). It may also miss some aspect candidates with low
fan-in.

3.2.3 Formal concept analysis

Overview

Instead of being an aspect mining technique, formal concept analysis [63, 64]
can be considered a software mining technique aimed to improve program
understanding and maintenance. This technique identify meaningful grouping
of elements that have common properties in a structure called formal concept.

A prototype called DelfSTof was implemented in Smalltalk. As elements, this
prototype uses classes and methods; as properties, it uses the substrings
appearing in their names. As a result, formal concepts will group classes and
methods with similar names. The choice for these properties was motivated for
the naming conventions that programmers usually employ.

The DelfSTof prototype is able to find:

• Polymorphic methods: methods that have exactly the same name, but do not
belong necessarily to the same class hierarchy, since Smalltalk is dynamically
typed, and it allows any class to be substituted for another one, as long as it
defines the required method.

Polymorphic methods present in different class hierarchies are interesting to
detect. This situation can be due to a case of a bad design, a case of bad naming,
or a case of crosscutting behavior.

• Delegating method: methods that delegate responsibility by calling a
method with the same name. The presence of many such delegating methods in
a single class may indicate that the class is implementing the decorator design
pattern [4].

• Code duplication: methods spread over different classes that not only have
similar name, but a similar implementation as well. This case may indicate a
crosscutting behavior.

 44

• Design patterns: many design patterns use certain naming convention. For
example, the Visitor design pattern [4] uses the convention that the Visitor
class contains methods having the substring Visit in their names.

• Relevant domain concepts: frequently occurring properties (substrings in
classes and method names) give a good idea of the important concepts in the
application or problem domain.

Limitations

The formal concept analysis is not an aspect mining technique as such, although
it improves program understanding and maintenance. The DelfSTof prototype
is highly dependent on naming conventions. By considering substrings of class
and method names, some elements (classes and methods) that actually belong
together are divided over different formal concepts, simply because they do not
share the same exact substring in their name.

The aspect mining contribution of this tool is the detection of polymorphic
methods across class hierarchies, and methods spread over classes with similar
names that could have similar implementation and could indicate a case of
crosscutting behavior.

3.2.4 Execution trace analysis

Overview

This was the first aspect mining tool that detects crosscutting concerns based on
dynamic analysis. The analysis uses program traces that are generated during
program execution. These traces are then investigated for recurring execution
patterns [8].

A program trace is a sequence of method invocation entries and exits. Aspect
candidates are recurring execution relations. This technique distinguishes the
following execution relations:

• Outside-Execution Relations

o Outside-Before-Execution Relations:
Method execution u before method execution v: u(); v();

o Outside-After-Execution Relations:
Method execution u after method execution v: v(); u();

 45

• Inside-Execution Relations
o Inside-First-Execution Relations:

Method execution u first inside method execution v:
v(){
 u();
 ...
}

o Inside-Last-Execution Relations:
Method execution u last inside method execution v:
v(){
 ...
 u();
}

Recurring executions relations are considered aspect candidates. For example,
in the following event trace:

a(){
 d();
 ...
}
...
b(){
 d();
 ...
}
...
c(){
 d();
 ...
}

There is a recurring inside-first-execution relation between the method d() and
methods a(), b() and c(), so d() is considered an aspect candidate.

Limitations

While static analysis does not need any program execution, it is complete and
input-insensitive. On the other hand, the dynamic analysis needs the execution
of the program and is input-sensitive, and thus, a complete dynamic analysis is
not applicable as it is impossible to execute all possible paths. Besides, it would
slow down the software execution during the examination.

Moreover, Java API method executions do not appear in the program traces if
the classes itself are not present as source code.

Furthermore, abstract and interface method traces are lost because of dynamic
bindings at run-time. This fact can also produce false aspect candidates.

 46

3.2.5 Formal concept of execution traces

Overview

This is another tool that performs dynamic code analysis, and it attempt to let
requirements (use-cases) guide aspect identification by applying formal concept
analysis to execution traces [65]. The relation between executed methods and
use-cases is subject to concept analysis.

This technique is based on the assumption that a crosscutting functionality is
implemented by code fragments spread across several classes.

The concept analysis will produce two categories of concepts:
• Use-specific concepts that groups methods that contribute to only one
specific use case.
• Use-generic concepts that groups methods that contribute to more than one
use-case.

The first case alone is not sufficient to identify crosscutting concerns, since it is
possible that a given functionality might be decomposed into sub-
functionalities assigned to distinct modules. The second case detects classes that
contain methods that contribute to different functionalities. Such classes are
considered aspect candidates.

Limitations

This technique not only requires the execution of the program being analyzed,
but also requires users to define the use-cases for the main functionality. Users
need to have a good understanding of the program functionalities in order to
define the use-cases.

As with the execution traces analysis technique, this technique is input-sensitive
and does not deal with code that is not executed, nor does it traces Java API
methods for subsequence analysis.

3.2.6 Comparison of automatic aspect mining tools

Table 3.10 makes a comparison of automatic aspect mining tools. These tools
actually use a hidden concern characterization.

 47

Technique Hidden concern characterization Analysis
includes
Java API

code
Code clone detection Clone code. Source code can be

represented as:
• Text.
• Lexical tokens.
• AST nodes.
• PDG nodes.

√

Fan-in analysis Method invocations with a high
fan-in.

√

Formal concept1 Groups of classes and methods with
similar names.

X

Execution trace analysis Method invocations having a
recurring execution pattern.
The execution patterns are:
• Outside-Before.
• Outside-After.
• Inside-First.
• Inside-Last.

X

Formal concept of
execution traces

Classes having methods that
contributes to more than one use-
case.

X

1 The DelfSTof prototype.

Table 3.10: Comparison of automatic tools.

 48

4 Thesis Contribution

4.1 Limitations of existing tools

From the analysis made in the preceding chapter, we can point out some
limitations of the existing aspect mining tools.

4.1.1 False aspect candidates

The automatic tools may produce false aspect candidates (returned aspect
candidates that are not crosscutting concerns). The user needs to analyze the
results in order to filter out false aspect candidates.

4.1.2 Undetected aspects

The automatic tools usually use a hidden concern characterization. Aspects that
do not conform to such hidden characterization are not detected.

4.1.3 Concern characterization constructs in multiple
concern operations

The non-automatic tools add a detected characterization construct to all the
concern operations whose definition contains such construct without applying
any kind of filter.

Let’s get back to the Update and the Query operations discussed in section 3.1.
These two operations have the following method invocations in common:

java.sql.Connection.createStatement

java.sql.Statement.close

The PRISM, CME and the FEAT tool add all such method invocations to both
operations. They cannot filter which of those method invocations are actually
implementing a Query and which ones an Update operation.

 49

This situation creates distracting results to the user, since createsStatement
invocations implementing a Query, are added to the Update concern operation,
and vice-versa.

The user needs to expend time analyzing the source code in order to filter the
results.

4.1.4 No detection of concern instances

By concern instance we mean the occurrence of a concern operation. Let’s
consider the following example:

1 Connection conn = ...
2 ...
3 Statement st1 = conn.createStatement();
4 st1.executeUpdate(“an sql statement”);
5 st1.close();
6 ...
7 Statement st2 = conn.createStatement();
8 st2.executeUpdate(“another sql statement”);
9 st2.close();

In this example we have two occurrences of the Update operation, so we say
that we have two concern instances. The first instance is located from lines 3 to
5; the second one is located from lines 7 to 9.

None of the tools is able to identify concern instances. They can detect the
method invocations that form part of the update operation characterization, but
they cannot detect how many concern instances are present.

Again, the user has to analyze the source code in order to find out concern
instances.

4.1.5 No abstraction of detected concerns

The tools don’t offer an abstract view of detected concern operations. The
results that they produce are just the link to the source code of the detected
constructs that form part of the characterization of concern operations.

The user needs to analyze the source code in order to extract operation
properties, and operation relationships.

 50

By property we mean information that is of interest for the user. Some examples
are:
• For database connections: the database url, the username and the password.
• For caching and web sharing information: the key and the value of the data.
• For assertions: the boolean condition being tested.

In existing tools, the user is presented with the lines of code where the
characterization constructs appear in code. Again, the user needs to analyze the
results in order to extract information that may be of interest for him/her.

Additionally, we can have relationships between operations. For example, in
persistence, the connection precedes queries, updates and closings, so these
operations are related by the precedence relationship.

If we were to parse a source code using 2 connections and several queries and
updates, the user will need to analyze the results and the source code, to figure
out to which connection each query, update and closing is related to.

4.1.6 The user still needs to analyze the source code

The fact that the existing aspect mining tools produce false aspect candidates,
do not detect concern instances, do not offer an abstract view of detected
concerns, and do not filter the detected characterization constructs, forces the
user to analyze the source code and to filter the results.

4.2 Thesis objectives

Summing up, the existing approaches for characterization and detection of
concerns in source code, fail to produce accurate results and to produce an
abstract view of detected concerns.

Users are faced with inaccurate and distracting results. Users need to filter the
results and still need to study the code in order to have a good understanding
of the concerns they wants to detect. Users need to discover properties and
relationships by themselves.

The objective of this thesis dissertation is the proposal of:

1. A concern characterization construct aimed to detect concern instances.
2. A concern characterization model aimed to offer an abstract view of

detected concern instances.

 51

4.2.1 A new concern characterization construct: Method
Invocation Sequence

In the Object-Oriented programming paradigm [7], programs are essentially
defined as a set of objects collaborating with each other by sending messages.
According to this definition, the two most important thinks in Object-Oriented
programs are objects and messages. Moreover, Object-Oriented programs
always encapsulate the logic business in methods.

Based on this reasoning, this thesis dissertation is proposing a new concern
characterization construct aimed to improve the method invocation construct.
The proposed construct is called method invocation sequence and represents a
description of how method invocations are linked. A method link refers to the
data flow between two method invocations.

Let’s consider the following code:

 Statement st1 = conn.createStatement();
 st1.executeUpdate(“an sql statement”);

The return object of the first method invocation is also the invoked object of the
second one. The notion of “method link” expresses the fact that the invoked
object of the second invocation comes from the return object of the first
invocation. It describes the data-flow between two method invocations.

By identifying method invocation sequences, we expect to associate a given
method invocation to the right concern operation, solving the problem
mentioned in section 4.1.3.

We will validate whether this new concern characterization construct can detect
concern operation instances, and by this means, taking away from users the
burden of analyzing the source code and filtering the results by themselves.

4.2.2 Abstract view of concern instances

We are also proposing a concern instance representation in order to present a
user-friendly view of detected concern instances. Our representation will
include operation properties (information that is of interest for the user) and
operation relationships (example: precedence).

 52

5 Design considerations

A prototype was implemented as a plug-in for Eclipse in order to validate our
proposals. In this chapter we want to describe some design considerations of
our prototype

5.1 Characterization of Concerns

The characterization of concerns will be the input of our prototype. In order to
detect concern instances and to produce an abstract view of them, a new
concern characterization is necessary. The characterization of concerns
proposed in this dissertation is shown in figure 5.1.

In this characterization, a concern is defined as a set of operations. An operation
may have associated several concern operation instance implementations. An
implementation has a technology context associated to it, and it is described by
concern characterization constructs.

A concern characterization construct represents a description of how an
operation concern is implemented. This model includes the existing
characterization constructs:
• Text matching
• Type usage
• Source code artifacts
• Source code artifact relationships
• Method invocations

This thesis dissertation is proposing a new characterization construct: the
method invocation sequence. This new characterization construct is aimed to
detect concern instances and therefore, will be the concern characterization
constructor considered in our prototype. We will validate whether a concern
instance implementation can be detected by this new characterization construct.

A method invocation sequence is defined as a set of method invocations, which
in turn has two attributes. The attribute “obligatory” determines whether the
presence of a method invocation in a concern instance is obligatory or optional.

 53

The attribute “principal” is used to indicate that each detected invocation have
to be placed in a different concern instance. In chapter 7 “Validation” we will
see the utility of this attribute.

Additionally, a method invocation sequence contains a set of method links,
which describes the data flow within the sequence. In order to define a method
link, it is necessary to decompose a method invocation in its constituent parts:
the returned value, the invoked object, and its parameters. We will use the term
Method Data to refer to any of such constituent parts. A method link is defined
as a link between two method data of two different method invocations.

Furthermore, an operation may have properties associated to it, and may be a
participant in a relationship with another operation, where each operation is
playing a specific role. A property value can be bound to a method data, and
finally, an operation relationship is defined by a method link between two
method invocations of two different operations.

In order to make this representation clearer, we will consider a small and
hypothetical example. Let’s consider a simplified persistence java code using
the JDBC.

 //Connection to the database
 Class.forName("a database driver");
 Connection conn = DriverManager.getConnection(...);

 //more code

 //an update
 Statement st2 = conn.createStatement();
 st2.executeUpdate("UPDATE ... FORM Person WHERE ...");
 st2.close();

 //more code

Figure 5.2 illustrates a very simplified instantiation the corresponding concern
characterization. The boxes represent objects instead of classes. In this example,
the SQL Statement property value is bound to the first parameter of the
executeUpdate() method invocation. The precedence relationship between the
Connection and the Query operation is defined by the method link between the
DriverManager.getConnection() and the createStatement() method
invocations.

 54

5.2 Source code representation

We need to build a program model in order to be able to detect our new
concern characterization construct in the source code. The source code
representation used in this dissertation is shown in figure 5.3.

Our source code representation includes the declaration and the references of
class fields and local method variables. This is necessary since we are interested
in data flow analysis in order to detect method invocation sequences.

The model also includes the method invocations that are inside of method
declarations, and for each invocation we include its corresponding method
data.

A method data can be either an atomic data or a complex data. An atomic data
is either a field/variable reference, or a literal (string literal, number, liberal,
boolean literal, character literal or null literal). A complex data is an expression
that depends on more than one atomic data.

5.3 Concern instance

The concern instances will be the output of our prototype. A concern instance
representation, aimed to display a user-friendly view of detected concern
instances, is shown in figure 5.4.

A concern instance belongs to a concern operation. It has an associated code
source that is represented as a method invocation sequence. A concern instance
may also have properties associated to it. A property has a name and value
associated to it, which in turn is a method data of one method invocation of the
method invocation sequence associated to the source code of the concern
instance.

Finally, a concern instance may participate in several relationships with other
concern instances. A relationship is represented by two concern instances, each
one playing a role.

 55

Figure 5.1: Characterization of concerns.

 56

Figure 5.2 : A simplified concern characterization instance.

 57

Figure 5.3: The source code representation.

 58

Figure 5.4 : The concern instance representation.

 59

6 Validation

To investigate whether the method invocation sequence construct is useful to
detect concern instances, and to investigate whether our concern
characterization model provides an abstract view of detected instances, we
conducted two case studies. The first case study deals with persistence and the
second case study with web sharing information.

6.1 First case study: persistence

Persistence, the storage and retrieval of application data from secondary storage
media, is often used as a classical example of a crosscutting concern [42]. We
will consider several examples of persistence with JDBC [14].

Our persistence concern was defined as:

Concern: Persistence

Operation: Connection

• Properties: database url, username and password.
• Method invocations:

Obligatory Principal Method
false false Class.forName

true true DriverManager.getConnection

• Property bindings:

Property Method Data Method
database url parameter1 DriverManager.getConnection

username parameter2 DriverManager.getConnection

password parameter3 DriverManager.getConnection

 60

Operation: Query

• Properties: SQL Statement
• Method invocations:

Obligatory Principal Method
true false Connection.createStatement

false false ResultSet.*

true false Statement.close

true true Statement.executeQuery

• Method links:

Data Method Data Method
object Statement.executeQuery return Connection.createStatement

object ResultSet.* return Statement.executeQuery

object Statement.close return Statement.executeQuery

• Property bindings:

Property Data Method
SQL statement parameter1 Statement.executeQuery

Operation: Update

• Properties: SQL statement
• Method invocations:

Obligatory Principal Method
true false Connection.createStatement

true false Statement.close

true true Statement.executeUpdate

• Method links:

Data Method Data Method
object Statement.executeUpdate return Connection.createStatement

object Statement.close return Statement.executeQuery

 61

• Property bindings:

Property Data Method
SQL statement parameter1 Statement.executeUpdate

Operation: closing

• Method invocations

Obligatory Principal Method
true false java.sql.Connection.close

Operation relationships:

Name: precedence
Operation1: Connection Operation2: Query
Role1: precedent Role2: subsequent
Method Link
Data Method Data Method
return DriverManager.getConnection object Connection.createStatement

Name: precedence
Operation1: Connection Operation2: Update
Role1: precedent Role2: subsequent
Method Link
Data Method Data Method
return DriverManager.getConnection object Connection.createStatement

Name: precedence
Operation1: Connection Operation2: Closing
Role1: precedent Role2: subsequent
Method Link
Data Method Data Method
return DriverManager.getConnection object Connection.close

 62

Example 1

 //Connection to the database
 Class.forName("a database driver");
 Connection conn = DriverManager.getConnection("a database url",
 "a username", "a password");

 //a query
 Statement st1 = conn.createStatement();
 ResultSet rs = st1.executeQuery("SELECT name, age, weight FROM

PERSON WHERE id = " + id);
 rs.next();
 this.name = rs.getString("name"); //The name column
 this.age = rs.getInt("age"); //The age column
 this.weight = rs.getFloat("weight"); //The weight column
 rs.close();
 st1.close();

 //an update
 Statement st2 = conn.createStatement();
 st2.executeUpdate("an update");
 st2.close();

 //closing of the connection
 conn.close();

The methods Connection.createStatement and Statement.close are shared by
both the Query and the Update operations, but our approach successfully
filtered such method invocations and added them to the right operation
instance.

Our prototype detected the concern instances and also detected their
corresponding property values. For each detected property values, it displays
the literals, fields and variables it depends on. For instance, for the query
operation instance, it informs that the SQL statement property value depends on
the string literal "SELECT name, age, weight FROM PERSON WHERE id = ", and
on a variable named id.

The prototype also detected operation relationships. For instance, for the query
operation instance, it detected the precedent relationship with the connection
operation. For the connection instance, it detected three precedent relationships:
one with the query, one with the update and one with the close instance.

Figure 6.1 offers a screen shot of the detected query and update instances, and
figure 6.2 presents a screen shot of the connection and closing instances.

 63

Figure 6.1: Persistence – one query and one update instance.

 64

Figure 6.2: Persistence – one connection and one closing instance.

 65

Example 2

//two updates
Statement st2 = conn.createStatement();
st2.executeUpdate("an update");
st2.executeUpdate("another update");
st2.close();

Our prototype successfully detected two update instances. In our concern
characterization, we set the principal attribute of the Statement.executeUpdate
method invocation to be true, so each detected invocation is placed in a separate
instance. The methods Connection.createStatement and Statement.close are
shared by both instances. Figure 6.3 offers a screen shot with this example.

Example 3

//Connection to the database
Class.forName("database driver");
Connection conn1 = DriverManager.getConnection(...);
Connection conn2 = DriverManager.getConnection(...);

//an update using conn1
Statement st1 = conn1.createStatement();
st1.executeUpdate("an update");
st1.close();

//an update using conn2
Statement st2 = conn2.createStatement();
st2.executeUpdate("an update");
st2.close();

//closing of the connections
conn1.close();
conn2.close();

In this example we have two connection, two update and two closing instances.
The first query and the first closing instances have a precedent relationship
with the first connection instance. Similarly, the second query and the second
closing are related with the second connection instance.

Our prototype successfully identified each instance, and identified the
relationships between those instances. Figure 6.4 shows that the second update
instance is linked to the second connection instance by the precedence
relationship.

 66

Figure 6.3: Persistence – two update instances.

6.2 Second study case: web sharing
information

Web components, like most objects, usually work with other objects to
accomplish their tasks [44]. There are several ways they can do this. They can
use private helper objects (for example, JavaBeans [45] components), they can
share objects that are attributes of a public scope, they can use a database, and
they can invoke other web resources.

 67

Figure 6.4: Persistence – two connection, two update and two closing instances.

We will consider an example using the Java Servlet [46] technology, in which
web components share information via objects that are maintained as attributes
of four scope objects: web context, session, request and page.

In our example, we are going to use a session scope object, where shared
information is maintained as attributes of the session scope object. Attributes
are represented as a key/value pair.

We have identified three operations: Session retrieval, Writing and Reading.
The Writing and the Reading operations are linked to the Session retrieval
operation through a precedence relationship, and the Writing and the Reading
operations are linked through the producer-consumer relationship.

The web sharing information concern was defined as:

Concern: Web sharing information

Operation: Session retreival
• Method Invocations:

Obligatory Principal Method
true true HttpServletRequest.getSession

 68

Operation: Writing

• Properties: key and value.
• Method invocations:

Obligatory Principal Method
true true HttpSession. setAttribute

• Property bindings:

Property Data Method
key parameter1 HttpSession. setAttribute

value parameter2 HttpSession. setAttribute

Operation: Reading

• Properties: key.
• Method invocations:

Obligatory Principal Method
true true HttpSession. getAttribute

• Property bindings:

Property Data Method
key parameter1 HttpSession. getAttribute

Operation relationships:

Name: precedence
Operation1: Session retrieval Operation2: Writing
Role1: precedent Role2: subsequent
Method Link
Data Method Data Method
return HttpServletRequest.getSession object HttpSession. setAttribute

 69

Name: precedence
Operation1: Session retrieval Operation2: Reading
Role1: precedent Role2: subsequent
Method Link
Data Method Data Method
return HttpServletRequest.getSession object HttpSession. getAttribute

Name: consumer-producer
Operation1: Writing Operation2: Reading
Role1: producer Role2: consumer
Method Link
Data Method Data Method
parameter1 HttpSession.

setAttribute
parameter1 HttpSession.

getAttribute

Example 4

Person carlos = new Person("Carlos"), juan = new Person("Juan");

//Session retrieval
HttpSession session = request.getSession(false);

//writing of attributes
session.setAttribute("boss", carlos);
session.setAttribute("employee", juan);

//some code

//reading of attributes
Person boss = (Person)session.getAttribute("boss");
Person employee = (Person)session.getAttribute("employee");

Our prototype successfully found one session, two writing and two reading
instances. Moreover, for the session instance it detected four precedence
relationships, and for each writing and reading instance, it detected one
precedence and one producer-consumer relationship. Figure 6.5 offers a screen
shot with this example.

6.3 Limitations

Our prototype has some limitations due to the source code representation used
for its implementation. We present some examples that illustrate such
limitations.

 70

Figure 6.5: Web Sharing Information – one session, two writing and two
reading instances.

Example 5

//first update
Statement st2 = conn.createStatement();
st2.executeUpdate("an update");
st2.close();

//second update
st2 = conn.createStatement();
st2.executeUpdate("another update");
st2.close();

This example shows two update instances. The first one begins with the first
assignation of the st2 variable, and the second instance begins with the second
assignation of st2.

Our prototype places each executeUpdate invocation in a separate concern
instance, but it also places the two createStatement and the two close
invocations to both of them.

This situation could be solved if assignments are added to the source code
representation, so the first instance could be found between the first and the

 71

second assignment of the st2 variable, and the second instance could be found
after the second assignment. Figure 6.6 shows a screen shot of this example.

Example 6

//two updates
Statement st2 = conn.createStatement();
if(...)
 st2.executeUpdate("an update");
else
 st2.executeUpdate("another update");
st2.close();

This code has a conditional statement that will execute only one of two possible
database updates. It is important to note that only one update will be executed,
so both executeUpdate invocations can be added to the same concern instance.

Our source code representation does not include conditional statements, and
our prototype places each executeUpdate invocation in a separate concern
instance. Figure 6.7 shows a screen shot of this example.

Example 7

public void connection(){
 Connection conn = DriverManager.getConnection(...);
 update(conn);
 conn.close();
}

public void update(Connection conn){
 Statement st2 = conn.createStatement();
 st2.executeUpdate("an update");
 st2.close();
}

In this example, a database update in the update(Connection) method is taking
place using a database connection created in the connection() method.

Our prototype identified the connection the closing and the update instances. It
also identified the precedence relationship between the connection and the
closing instances, but it was unable to identify the precedence relationship
between the update and the connection instance.

In the source code parsing process, our prototype takes each method
declaration as a unit of analysis. That means that each method declaration is
analyzed separately, and the parsing process will yield the concern instances
and the concern relationships found within each method declaration.

 72

Currently, our prototype does not perform analysis control flow, and is unable
to detect relationships between concern instances found in different method
declarations.

Figure 6.8 shows a screen shot of this example. Both concerns are detected, but
no relationship is detected between these two instances.

Figure 6.6: The assignment problem.

Figure 6.7: The conditional statement problem.

 73

Figure 6.8: The control flow problem.

 74

7 Discussion

In this chapter, we summarize our views on the different techniques for
characterization of concerns that we found in the state of the art of existing
aspect mining tools.

7.1 Type usage and Method invocations

The type usage was one of the first for concern characterization techniques, and
was introduced by AMT [20]. As its name suggest, the type usage technique
identifies the usages of instance objects of certain type. This includes
declarations, assignations and method invocations on objects.

The method invocation is a straightforward technique to characterize and detect
scattered concerns in source code. This technique is incorporated in the majority
of the existing aspect mining tools.

Object-Oriented programs [7] are essentially defined as a set of objects
collaborating with each other by sending messages. These two techniques are
aimed to characterize and detect the essential elements of Object-Oriented
programs: objects and messages passing.

7.2 Fields

One possible reason for considering fields as a characterization constructor
could be the detection of read and write access of public fields. Nevertheless, it
is generally consider a bad programming practice to have public fields in
classes.

Notwithstanding, this technique can be simulated with the method invocation
technique. It will suffice to add getter and setter methods, and to replace each
field read access with a getter invocation, and each field write access with a
setter invocation. In this way, the field read access can be simulated by
detecting the getter method invocations and the write field access by detecting
the setter method invocations.

 75

7.3 Java artifact relationships

A Java artifact is defined as a constituent element in a .java file. The Java
artifacts considered by FEAT and CME are: type declaration, method
declaration and field. These two tools are also able to identify bidirectional
relationships between those artifacts.

Some java artifact relationships are shown in table 7.1. The inverse relationships
are displayed in parenthesis.

Source Artifact Relationships Target artifact

created by (creates)
declares (declared by)

Method Type

declares (declared by) Field
reads (read by) Method
writes (written by)

Field

Method calls (called by) Method

Table 7.1 : Java artifact relationships.

We have already talked about field read and writes access. Method calls are
method invocations, and a type creation is the invocation of its constructor.

In this thesis dissertation we consider that the artifact relationships offers
different levels of source code granularity for detected artifacts.

Let’s consider the following code:

public class Person {

 public void queryAndUpdate(){
 /*Connection to the database*/
 Class.forName(...);
 Connection conn = DriverManager.getConnection(...);
 /*more code*/
 }
}

And let’s consider the DriverManager.getConnection() method as an artifact.
With the FEAT tool, we add the called by relationship, and we get the lines
where such method is invoked. Additionally, since the source and the target of
the called by relationship are methods, you will also get the method declarations
who are invoking the getConnection() method. Furthermore, with the declared

 76

by relationship between methods and types, you will get the type declarations
who have method declarations that are invoking the getConnection() method.

Figure 7.1 shows a screen shot of this example, in which the line of code of the
getConnection() invocation, the enclosing queryAndUpdate() method
declaration, and the enclosing Person type declaration are detected.

In brief, for each detected artifact, you can have three levels of source code
granularity:
1. The lines of code where the artifact is found.
2. The enclosing method declarations of those lines of code.
3. The enclosing type definitions of those method declarations.

7.4 Method declarations and Aspect advices

AspectJ [47] is an aspect-oriented extension to the Java programming language
that enables the clean modularization of crosscutting concerns. In aspectJ, a well
modularized crosscutting concern is implemented in a unit called aspect.

An aspect is a unit composed of pointcuts, advice and ordinary Java member
declarations. An advice is a method-like constructs used to define additional
behavior when its associated pointcut is reached during the program execution.
Pointcuts are a means of referring to collections of join points and certain values
at those join points; Join points are well-defined points in the execution of the
program (i.e.: method call, method execution, constructor call, constructor
execution, field get, field set, object pre-initialization, object initialization, class
initialization, exception handler execution and advice execution) [48].

Aspects are already modularized concerns, and a method declaration as a
concern characterization construct, can also be seen as a modularized concern.
The execution of a concern modularized in a method can be found by detecting
the invocations of such method; the execution of a concern modularized in an
aspect advice takes places when the program execution reaches the joint points
defined in the corresponding aspect pointcut.

 77

Figure 7.1: Levels of source code granularity obtained through artifact relationships with FEAT.

 78

8 Future Work

By asking users to provide a concern characterization and by having a source
code representation, we want to provide the basis for an automatic software
refactoring and migration tool.

In order to support source code manipulation, we used the eclipse JDT plug-in
for the implementation of our prototype. The JDT plug-in [54] provides the
infrastructure for compiling and manipulating java source code.

The JDT plug-in is provided with a parser that allows users to obtain a source
code representation called abstract syntax tree (AST). An AST node represents a
java source code construct such as a name, type, expression, statement or
declaration.

The source code representation used by our prototype is a subset of the abstract
syntax tree that only considers the class declaration, field declaration, variable
declaration, method declaration, simple name, and method invocation AST
nodes.

In addition, the detected concern instances, which represent the detected
method invocation sequences, keep the references to the corresponding method
invocation AST nodes.

Some of the flaws detected in our tool during its evaluation (section 6.3) can be
solved be including the assignment AST node and flow control related AST
node statements (If-else, switch) in our source code representation.

By having the JDT plug-in facility for manipulating java source code, we
propose an upgrade of our prototype in order to have two kind of automatic
software manipulation tools.

The first proposed tool is an automatic refactoring tool to migrate detected
concerns instances from OOP to AOP. Some interesting techniques can be
found in [50, 51, 52, 53].

 79

Nevertheless, there are cases where detected concerns related code is difficult, if
not impossible, to be extracted to AOP code. This is especially true when the
related code makes references to local and temporary variables [50, 51, 52].

To tackle this case, we are also proposing an automatic migration tool aimed to
change the implementation of detected concerns without extracting them to
AOP code. This can be accomplished with the JDT plug-in, which offers a
mature API for creation and manipulation of AST source code representations.

 80

9 Conclusions

Several aspect mining tools have been proposed in order to identify scattered
code throughout a software system. These tools can be categorized as being
automatic or non-automatic.

Non-automatic tools are either query–based or exploratory [49]. Query–based
tools require a seed by the user and they may search for text patterns, type
usage, method invocations, Java artifacts and artifact relationships. Exploratory
tools allow users to navigate quickly and intelligently around the code, in order
to lead the user to the discovery of scattered concerns in source code.

These tools require a seed from users. Query–based tools require the
formulation of a query that will return meaningful results, and exploratory
tools need a starting point to allow users the source code navigation.

The formulation of a seed is a non–trivial task that requires the user to have a
good understanding of the source code. Users need to have an idea of how
concerns are implemented in order to start the search query or navigation of the
source code.

On the other hand, automatic tools do not require any seed. However, they use
a hidden concern characterization construct.

Several constructs have been also proposed to characterized concerns. These
constructs include text patterns, type usage, method invocations, Java artifacts
and artifact relationships.

Despite the fact that several aspect mining tools and techniques have been
proposed, they still fail to produce accurate results.

This thesis dissertation has proposed a new concern characterization construct
called method invocation sequence, which is an extension of the method
invocation construct that includes information about method linkage (data-flow
between method invocations). This construct effectively detects concern
instances (concern operation occurrences).

 81

Moreover, a new concern characterization has been proposed in order to
provide an abstract view of detected concern instances, which includes
operation properties and operation relationships.

To validate our proposals, we implemented a prototype, and although some
limitations were discovered during the validation, they can be solved by
improving the source code representation used by the prototype.

 82

Bibliography

[1] P. Tarr, H. Ossher, W. Harrison and S. M. Sutton. N Degrees of Separation:
Multi-Dimensional Separation of Concerns. Proceedings, International Conference
on Software Engineering, 1999, pp. 107-119.

[2] David L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12) : 1053–1058, December 1972.

[3] Martin P. Robillard. Representing Concerns in Source Code. Ph.D. Thesis.
Department of Computer Science, University of British Columbia. November
2003.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns—Elements of Reusable Object-Oriented Software. Professional Computing
Series. Addison – Wesley Longman, Inc., Reading, MA, USA, 1995.

[5] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean – Marc Loingtier, and John Irwin. Aspect-oriented programming. In
Proceedings of the 11th European Conference on Object-oriented Programming,
volume 1241 of Lecture Notes in Computer Science, pages 220–242. Springer-
Verlag, Heidelberg, Germany, June 1997.

[6] http://www.parc.com/research/csl/projects/aspectj/default.html

[7] T. Korson and J. McGregor, Understanding Object-Oriented: A Unifying
Paradigm, Communications of the ACM, Vol. 33, No. 9, 1990.

[8] S. Breu and J. Krinke, Aspect mining using event traces, In IEEE International
Conference on Automated Software Engineering, IEEE Press, 2004

[9] R. K. Fjeldstad and W. T. Hamlen. Application Program Maintenance Study:
Report to Our Respondents. Proceedings GUIDE 48, Philadelphia, PA, April 1983.

[10] Swanson, E.B. The Dimension of Maintenance. Proc. 2nd Int. Conf. on Software
Eng., Oct. 1976, pp. 492~197.

 83

[11] V. Rajlich. Comprehension and Evolution of Legacy Software. 19th International
Conference on Software Engineering. May 17 – 23, 1997. Boston, Massachusetts.
P. 669.

[12] H.A. Müller. Reverse Engineering Strategies for Software Migration. Sixth
European Software Engineering Conference and ACM Foundations of Software
Engineering (ESEC/FSE-97), Zürich, Switzerland, September 22-25, 1997.

[13] A. Taivalsaari, R. Trauter, E. Casais. Workshop on object-oriented legacy
systems and software evolution. OOPS Messenger 6(4): 180-185 (1995).

[14] http://java.sun.com/docs/books/tutorial/jdbc/

[15] http://java.sun.com/

[16] http://www.hibernate.org/

[17] Griswold, W. G., Kato, Y. and Yuan, J. J. Aspect Browser: Tool Support for
Managing Dispersed Aspects. Position paper for the First Workshop on Multi-
Dimensional Separation of Concerns in Object-oriented Systems (OOPSLA '99).

[18] http://www-cse.ucsd.edu/users/wgg/Software/AB/

[19] J. Hannemann and G. Kiczales. Overcoming the Prevalent Decomposition of
Legacy Code. Workshop on Advanced Separation of Concerns at the
International Conference on Software Engineering (ICSE). Toronto, 2001.

[20] http://www.cs.ubc.ca/~jan/amt/

[21] http://www.eecg.utoronto.ca/~czhang/amtex/

[22] http://www.eclipse.org

[23] C. Zhang and H.-A. Jacobsen. A Prism for Research in Software Modularization
Through Aspect Mining. Technical Communication, Middleware Systems
Research Group, University of Toronto, September 2003.

[24] http://www.eecg.toronto.edu/~czhang/prism/

[25] Doug Janzen and Kris De Volder. Navigating and querying code without
getting lost. Proceedings of the Conference on Aspect-Oriented Software
Development. ACM Press, New York, NY, USA, March 2003.

 84

[26] http://jquery.cs.ubc.ca/

[27] Rajeswari Rajagopalan and Kris De Volder, QJBrowser: A Query-Based
Browser Model, submitted to ICSE.

[28] http://tyruba.sourceforge.net/

[29] P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard. Springer-
Verlag, New York, 1996.

[30] Martin P. Robillard and Gail C. Murphy. Concern Graphs: Finding and
Describing Concerns Using Structural Program Dependencies. In Proceedings of the
24th international conference on Software engineering (ICSE), pages 406–416.
ACM Press, 2002.

[31] http://www.cs.ubc.ca/labs/spl/projects/feat/

[32] https://dynaop.dev.java.net/nonav/release/1.0-beta/manual/index.html

[33] http://www.eclipse.org/aspectj/

[34] http://www.english.uga.edu/humcomp/perl/regex2a.html

[35] http://www.regular-expressions.info/

[36] http://www.eclipse.org/cme

[37] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W.G.
Griswold. An Overview of AspectJ. In Proc. 15th European Conference on Object-
Oriented Programming, June 2001.

[38] W. Harrison, H. Ossher, S.M. Sutton, Jr. and P. Tarr. Concern Modeling in the
Concern Manipulation Environment. IBM Research Report RC23344, IBM Thomas
J. Watson Research Center, Yorktown Heights, NY, September 2004.

[39] W. Harrison, H. Ossher and P. Tarr. Concepts for Describing Composition of
Software Artifacts. IBM Research Report RC23345, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, September 2004.

[40] P. Tarr, W. Harrison, and H. Ossher, Pervasive Query Support in the Concern
Manipulation Environment. IBM Research Report RC23343, IBM Thomas J.
Watson Research Center, Yorktown Heights, NY, September 2004.

 85

[41] Martin P. Robillard and Gail C. Murphy. Evolving Descriptions of Scattered
Concerns. Technical Report SOCS-TR-2005.1, McGill University, Canada,
January 2005.

[42] http://jakarta.apache.org/tomcat/

[43] A. Rashid and R. Chitchyan, Persistence as an Aspect. 2nd International
Conference on Aspect-Oriented Software Development. ACM, 2003.

[44] http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Servlets5.html

[45] http://java.sun.com/products/javabeans/

[46] http://java.sun.com/products/servlet/

[47] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of AspectJ. In ECOOP ’01: Proceedings of the 15th
European Conference on Object-Oriented Programming, Springer-Verlag, 2001.

[48] R. Laddad, AspectJ in Action: Practical Aspect-Oriented Programming,
Manning Publications Co.

[49] D. Shepherd, L. Pollock, and E. Gibson, Design and Evaluation of an
Automated Aspect Mining Tool, International Conference on Software Engineering
Research and Practice, June 2004.

[50] S. Hanenberg, C. Oberschulte, and R. Unland. Refactoring of aspect-oriented
software. In Proceedings of the 4th Annual International Conference on Object-
Oriented and Internet-based Technologies, Concepts, and Applications for a
Networked World (Net.ObjectDays), September 2003.

[51] D. Binkley, M. Ceccato, M. Harman, P. Tonella. Automated Pointcut
Extraction Proceedings of the workshop on Linking Aspect Technology and
Evolution workshop, Chicago, Illinois 23 March 2005.

[52] D. Binkley, M. Ceccato, M. Harman, F. Ricca and P. Tonella, Automated
Refactoring of Object Oriented Code into Aspects, Proc. of ICSM2005, International
Conference on Software Maintenance , Budapest, Hungary, 2005.

[53] M. Fowler. Refactoring: Improving the design of existing code. Addison-Wesley
Publishing Company, Reading, MA, 1999.

[54] http://www.eclipse.org/jdt

 86

[55] J.H. Johnson. Identifying redundancy in source code using fingerprints. In
Proceedings of the IBM Centre for Advanced Studies Conference, 1993.

[56] S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for
detecting duplicated code. In Proceedings of the International Conference on
Software Maintenance (ICSM’99), September 1999.

[57] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multilinguistic token-
based code clone detection system for large scale source code. IEEE Transactions on
Software Engineering, July 2002.

[58] B.S. Baker. On finding duplication and near-duplication in large software
systems. In Second Working Conference on Reverse Engineering (WCRE’95),
Los Alamitos, California, IEEE Computer Society Press, 1995.

[59] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection
using abstract syntax trees. In Proceedings of the International Conference on
Software Maintenance (ICSM’98), IEEE Computer Society Press, 1998.

[60] R. Komondoor and S. Horwitz. Using slicing to identify duplication in source
code. In Proceedings of the 8th International Symposium on Static Analysis,
Springer-Verlag, 2001.

[61] J. Krinke. Identifying similar code with program dependence graphs. In
Proceedings of the Eight Working Conference On Reverse Engineering
(WCRE’01), IEEE Computer Society Press, October 2001.

[62] M. Marin, A. Deursen, and L. Moonen. Identifying aspects using fan-in
analysis. In Proc. of the 11th IEEEWorking Conference on Reverse Engineering
(WCRE 2004), Delft, IEEE Computer Society, November 2004.

[63] K. Mens and T. Tourwe. Delving source-code with formal concept analysis.
Elsevier Journal on Computer Languages, Systems & Structures, 2005. To be
published.

[64] T. Tourwe and K. Mens. Mining aspectual views using formal concept analysis.
In Proc. of the Fourth IEEE International Workshop on Source Code Analysis
and Manipulation (SCAM 2004). IEEE Computer Society, September 2004.

[65] P. Tonella and M. Ceccato. Aspect mining through the formal concept analysis
of execution traces. In Proc. of the 11th IEEE Working Conference on Reverse
Engineering (WCRE 2004), IEEE Computer Society, November 2004.

 87

Appendix A

Glossary of terms

Term Definition
Artifact relationship A relationship between two artifacts. One

plays the role of source, and the other plays
the role of the target. They are usually
bidirectional. Some examples: declares, calls,
called by, reads, written by.

Aspect A technical consideration a developer might
have about the implementation of a system.

AspectJ artifact A constituent element of an .aj file: an aspect,
an advice or a pointcut declaration.

Characterization construct An artifact used to define a concern operation.
It can be a method invocation, a type usage, a
text pattern, a Java element (type, field,
method) or a relationship between elements
(calls, called by, reads, writes …).

Concern Same as an aspect.
Concern characterization The definition or description of a concern,

usually in terms of type usages and/or method
invocations.

Concern collision There is a collision between two concerns if
they share at least one characterization
construct in their characterization.

Concern instance A portion of code containing the
implementation of one concern operation
occurrence.

Concern operation instance Same as a concern instance.
Concern property Information related to an operation that is of

interest.
Declaring type The declaring type of a method is the class

where it is defined.
Java artifact A constituent element of a .java file: type

declaration, field, method declaration.

 88

Method data The data involved in a method invocation: the
receiver, the invoked object and the
arguments.

Method declaration The implementation of a method.
Method invocation linkage Two method invocations are linked if they

share at least one data.
For example, in this code
b = a.method1();
c = b.method2();
The invoked object of method2 is linked to the
return value of method1.

Qualified name The complete name for types and methods.
The qualified name of types contains the name
of its package.
The qualified name of methods contains the
qualified name of its declaring type, the name
of the method, and the qualified name of each
parameter.

Regular expression A string describing the name of a type or a
method. It may contain wildcards as “*” (any
string), “?” (any character) or “\” (for escape
characters like \n, \t, \r, \\, \s, etc).

Super-type A type T1 is super-type of type T2 if one of the
following conditions is fulfill:
• T1 is the super-class of T2.
• T1 belongs to the set of implemented

interfaces of T2.
• T1 is a super-type of the super-class of T2

(should it has one).
• T1 is a super-type of any of the

implementing interfaces of T2 (should it has
any).

Super-type matching The process to determine whether a regular
expression describes the qualified name of a
type or any of its super-types.

Type A class, an interface or a primitive type.
Type declaration The code implementing a type.
Type usage References of objects of certain type.

