
Vrije Universiteit Brussel - Belgium
Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes - France

2001

V
R

IJ
E

UNIVERSITEIT BRUSS
E

L

S
C

IE
N

TIA
VINCERE TENEB

R
A

S

ECOLE DES MINES DE NANTES

ARCom (Another Reusable Component Model)

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange)

By: Gustavo J. Bobeff

Promotor: Prof. Theo D’Hondt (Vrije Universiteit Brussel - Belgium)
Co-Promotor: Mourad Oussalah (University of Nantes - IRIN - France)

Co-Promotor: Annya Romanczuk-Réquilé (Ecole des Mines de Nantes - France)

2

3

I would like to thank and dedicate this work

to Carla and Santiago because they are my spiritual support to do these
things, and the most important beings in my life.

to my father, Cristo, because from him I inherit a progressive behavior.

to my family and friends for be there, specially to Andres Farias because
he has known to help me when I needed it, and also to Sinagi.

to my advisors, Annya Romanczuk and Mourad Oussalah, because
they have been patients with me and good guiders, thanks.

to Gustavo Rossi because he put his trust in me.

to all the new friends who made pleasant our stay, Sofie Goredis, Patri-
cio Salinas Caro, Victor Hugo Arroyo, Kristof De Vos, Marc Ségura-
Devillecaise, David Würth and Liang Peng.

4

Abstract

Component-based software development has proven effectiveness for systems im-
plementation in well-understood application domains, but is still insufficient for
the creation of reusable and changeable software architectures. Applications build
on components that prevent the dilution of design decisions seems to be a suitable
solution. The aim of this thesis is the definition of a reusable component model
where the design decisions can be kept through any composition mechanism. The
component design used for our model, named ARCoM(Another Reusable Com-
ponent Model) was conceived for software design, but always keeping a mapping
with the implementation artifacts in object-oriented programming, that is, classes
and relationships.

Key words: Component-based Software Development, Software Reuse,
Software Composition, Object-oriented Design, Reuse Design.

Contents

1 Introduction 10

2 Wearing Concrete Shoes 13

2.1 Software Reuse . 13

2.1.1 Definitions . 13

2.2 Software Components . 15

2.2.1 Definitions . 15

2.2.2 Properties . 16

2.2.3 Reuse Mechanisms . 17

2.3 Summary . 17

3 Designing Components 19

3.1 Design For Reuse . 19

3.1.1 Identification . 20

3.1.2 Representation . 21

3.1.3 Organization . 21

3.2 Design By Reuse . 22

3.2.1 Searching . 24

3.2.2 Adaptation . 24

2

CONTENTS 3

3.2.3 Composition . 25

3.3 Design Roles . 26

3.4 Describing Component Models . 26

3.4.1 JavaBeans . 26

3.4.2 COM . 27

3.4.3 CCM . 28

3.4.4 IBROW3 . 30

3.4.5 Design Components . 32

3.5 Proposed Component Model . 32

3.6 Summary . 33

4 Reusing Design 35

4.1 Introduction . 35

4.2 ARCoM components . 36

4.2.1 Identification . 37

4.2.2 Representation . 38

4.2.3 Organization . 45

4.2.4 Searching . 48

4.2.5 Adaptation . 48

4.2.6 Composition . 49

4.3 Composition . 49

4.3.1 Evaluating a reuse rule . 49

4.3.2 Attributes after composition 50

4.3.3 Graph connection . 52

4.3.4 Composition’s commitment 53

4 CONTENTS

4.3.5 Customizable evaluation 53

4.4 An Example . 53

4.5 Comparison . 56

4.6 Summary . 56

5 Supporting ARCoM Components 59

5.1 Meta Model . 59

5.2 Implementation schema . 59

5.2.1 Component Producer Manager - CPM 60

5.2.2 Component Consumer Manager - CCM 62

5.2.3 Code generation . 63

5.3 Summary . 63

6 Future Works 65

6.1 Model . 65

6.1.1 Model Formalization . 65

6.1.2 Separations of Concerns 65

6.1.3 Organization . 66

6.2 Implementation . 66

6.2.1 Extending Constraint Language 66

6.2.2 Graphical Notation . 66

7 Conclusions 67

A Implementation Issues 69

A.1 ARCoM components in XML files 69

A.2 Application . 70

CONTENTS 5

A.2.1 Producer tool . 70

A.2.2 UML Editor . 71

A.2.3 Constraint Editor . 72

A.2.4 Repository Manager . 72

A.2.5 Consumer tool . 74

A.2.6 Software Libraries . 75

A.2.7 System Requirements . 78

B XML files 79

B.1 XML schema file for the ARCoM components 79

B.1.1 Header part . 79

B.1.2 Body part . 80

B.1.3 User’s datatypes part . 80

B.2 Repository schema . 93

B.3 Bookmark schema . 93

C Concrete Example 95

C.1 Problem . 95

C.2 Solution . 96

List of Figures

3.1 The java.awt.image package. 22

3.2 Design patterns map. 23

3.3 Engineering Approaches for designing components. 26

3.4 COM objects in a containment setting. 29

3.5 COM objects in an aggregation setting. 29

3.6 IBROW3’s scenario. 31

4.1 Composing design component. 36

4.2 Strategy pattern. 38

4.3 Strategy’s sequence diagram. 43

4.4 Nature of a reuse rule . 44

4.5 Shareability in a reuse rule . 45

4.6 Shareability’s example. 46

4.7 Transitiveness of a reuse rule. 46

4.8 Reuse Rule’s evaluation. 51

4.9 Design pattern: bridge. 54

5.1 ARCoM’s MOF-based diagram. 60

5.2 ARCoM’s tool family. 61

6

LIST OF FIGURES 7

A.1 ARCoM-Producer’s user-interface. 70

A.2 UML Editor’s user-interface. 71

A.3 Constraint Editor’s user-interface. 73

A.4 Repository Manager’s user-interface. 74

A.5 ARCoM consumer’s user-interface. 75

C.1 Recurrent Events Example: TemporalExpression 97

C.2 Adapting the TemporalExpression component. 97

C.3 Collections of temporal expression. 100

C.4 Solution appearance in the ARCoM Consumer tool. 100

C.5 Final solution’s class diagram. 100

List of Tables

3.1 Design pattern’s space . 24

4.1 ARCom’s Representation. 47

4.2 Imitating inheritance and composition by ruse rules 50

4.3 Bridge pattern’s representation. 57

A.1 Adaptations in ARCoM components. 73

A.2 ARCoM’s exclusive packages. 76

A.3 ARCoM’s bean information class. 77

B.1 XML schema file (header). 81

B.2 XML schema file (body). 82

B.3 ARCoMNameSpaceType type’s definition. 83

B.4 GraphType type’s definition. 83

B.5 ClassifierType type’s definition. 84

B.6 AttributeType type’s definition. 85

B.7 OperationType type’s definition. 86

B.8 GeneralizationType type’s definition. 87

B.9 AssociationType type’s definition. 87

B.10 AssociationEndType type’s definition. 88

8

LIST OF TABLES 9

B.11 IdentifierType type’s definition. 88

B.12 MultiplicityType type’s definition. 89

B.13 InvariantType type’s definition. 89

B.14 FileType type’s definition. 89

B.15 UMLDiagramType type’s definition. 90

B.16 ReuseRuleType type’s definition. 91

B.17 CodeGenerationRuleType type’s definition. 92

B.18 AdaptationType type’s definition. 92

B.19 Repository’s XML schema file. 93

B.20 Bookmark’s XML schema file. 94

C.1 Temporal expressions. 96

C.2 Strategy in an ARCoM’s XML file. 98

C.3 Reuse rules in TemporalExpression. 99

Chapter 1

Introduction

Constructing software by glutting code from different sources, and coding from
scratch others, has been a technique highly used since much time ago. For in-
stance, an application could be built by coping functions or modules already
implemented in other systems. But, software development from applying this
method does not guarantee a system’s life for a lengthy period of time, since some
software quality factors can be damaging (e.g.maintainability). Due to reusing
software blocks became an usual strategy in system development, systemic and
formal model appeared in order to provide a solid framework for software reusing.

A reused block has been named in many ways, and generally the label de-
pends on the environment where the reusing takes place. For instance, a UNIX’s
user thinks in terms of reusing when he executes a piped command, that is, a chain
of commands where every element into it takes the input form the precedent one
and generates output for the antecedent element. In this example, the set of in-
structions organized in the command represents the reused block. But the current
name comes form the electronic circuite industry, where the electronic devices are
built by assembling components from which is known their requirements to work
and their utility provided.

Component design implies decisions like, for example, the degree of al-
lowance available for the user to adapt its internal structure, or reuse as it is.
Those design alternatives are know as white-box and black-box components re-
spectively. The successful models have shared features respecting the structures
used to represent the components and goals for standardizing to a unique model,
as well. The nature of the component’s idea satisfies, in many aspects, the ob-
ject oriented paradigm, that is, encapsulation of common functionality, behavioral
declaration (interface definition) and representation techniques. Hence many ex-
istent component models are object-oriented since they based its representation

10

11

on the artifacts defined into the paradigm. Nowadays it is possible to access to
this emerging technology just by using a component models, namely, Component
Object Model (COM), JavaBeans or CORBA. The heterogenous models evidence
that a maturing process must happen for getting a slightly unified understanding
as it took place in object-oriented paradigm.

So far it seems to be a nice story because to undertake a component-based
software development is possible by assembly prefabricated building block, and
aside from other capabilities, they could be adapted to fit in a new situation,
keeping a certain degree of independency from its original developing environ-
ment [KS98]. But the some differences raise when we try to get a definition for
component composition. To avoid any conflict, component composition can be
defined as the process by means reusable components are put together to solve
a particular problem. Chapter 2 covers elements that should be present in any
discission on component-based development.

To clarify the scenario where software reusing is taken into account, it turns
out suitable to distinguish two roles apart from those already considered for the
classical software development, namely, the producer and the consumer. They
are the roles that deal with the reusable component development and component-
based development respectively. Chapter 3 describes the engineering approaches
that we apply for drawing the model suggested.

When an analysis is required, and we use, for example, a top-down approach,
we start from a high abstraction level for describing the current problem and be-
gin to decompose the current problem based on outstanding aspects. During the
analysis the focus turns on searching solutions for these subproblems, that may
be solved by using components. But the main problem in component-based soft-
ware (the same is endured by other systems independently from the development
technique used), is the disability of preserving information about the resulting
software architecture. Successful software architectures usually arise from a con-
tinuous reassessment of design alternatives and redistribution of responsibilities
among system components. To achieve this in a component-based environment,
deep insight into the components’ design is required [KS98].

Components as part of a puzzle should provide not only information about
their structure and behavior but also makes a contribution to the fulfilling and
meaning of the resulting component. It should be useful to know which set of these
pieces form a particular image, which of them belong to more than one identifiable
image, etc. We change from implementation solution, software component level,
to design solution providing, design component level [KS98].

The aim of this thesis is the definition of a reusable component model where

12 CHAPTER 1. INTRODUCTION

the design decisions can be kept through any composition mechanism. The com-
ponent design used for our model, named ARCoM(Another Reusable Component
Model) was conceived for software design, but always keeping a mapping with the
implementation artifacts in object-oriented programming, that is, classes and re-
lationships. Chapter 4 depicts the fundamentals of ARCoM components applying
the conceptual framework introduced in Chapter 3.

In order to provide a technical support for the model defined in this work,
we have designed a tool family that makes possible to manipulate ARCoM com-
ponents. A brief description about the responsibilities of family’s members is
introduced in Chapter 5.

Finally, implementation issues related to the prototype’s implementation,
the file formats used to store component’s descriptions, and an example in details,
are introduced in Appendix A, B and C respectively.

Chapter 2

Wearing Concrete Shoes

To define a robust starting point of our discussion we analyze the central con-
cepts, software reusing and software components. In this section we collect many
definitions for both ideas and break down them to extract their main intentions.

2.1 Software Reuse

2.1.1 Definitions

The following list enumerates several definitions software reuse:

• For Freeman [Fre83] reuse is the use of any information which a
developer may need in the software creation process.

• For Tracz [Tra95] reuse is the use of software that was designed
for reuse.

• For Braun [CJ94] reuse is the use of existing software components
in a new context, either elsewhere in the same system or in another
system.

• For Krueger [Kru92] software reuse is the process of creating soft-
ware systems from existing software rather than building them
from scratch.

• For Peterson [Pet91] reuse can be defined as application of existing
solution to the problems of system development, and reuse stands

13

14 CHAPTER 2. WEARING CONCRETE SHOES

for reuse-as-is and reuse-with-modify which are sometimes called
utilization or exploitation.

• Jacobson [JGJ97] states that reuse is the further use or repeated
use of an artefact, where an artifact is designed for use outside of
its original context to create new systems.

• Johnson [Joh91] defines software reuse as the process of incorpo-
rating into a new product any of the following: previously tested
code, previously develop requirements specification, or previously
tested plans, data, and procedures.

• In [ABvdSB94] Aksit said that the application code must be reused
separately from its real-time specifications. This promotes the
reuse of both, application code and real-time specification.

The aforementioned definitions focuss on several aspects, that is, assets,
approaches, intentions and benefits. Although they come from different origins,
they share many attribute. The list below describe what software reuse is, by
using the aspects named previously:

Assets : One thing considered to be reuse can be either an abstract asset (e.g.
information, solution description, plans, etc.) or a concrete asset (e.g. ex-
isting software, code, procedures). From many points of view, all of these
terms agree with the component concept (see section 2.2), even when the
abstraction degree is significative.

Approach : The reuse of life cycle objects, primarily code, is often done in an
informal and haphazard way. Thus reuse process can be faced using mainly
two strategies [Szy98], the first one is called opportunistic reuse which does
not imply a specific software engineering process, and the second one is
called systemic reuse, which includes specific software engineering process
that we will explain in section 3.

Intentions : Some synonyms were used to express the meaning of software
reusing [Hem93], commonality (reusability of languages for many people),
portability (reusability of a program of software tool on many computers),
modularity (reusability of software components in large applications), main-
tainability (reusability of the unchanged part of a program when a small
change has been made), evolution (reusability of a system as it evolves in
response to changing needs).

Benefits : Software reuse has a positive impact on software quality (error fixes
accumulates from reuse to reuse), as well as on software cost (maintenance

2.2. SOFTWARE COMPONENTS 15

cost, time to market, training cost, etc, have to saved) , and productivity
(less code has to be written).

Software reuse proposes benefits in development phases but to achieve or to
maximize them is needed a systemic approach, however. A careful specification
of what a component is, also guaranties take advantage from this activity. In the
next section we debate about component definitions.

2.2 Software Components

2.2.1 Definitions

The vagueness to define the component definitions have been taken as the criteria
to order the above list:

• From Booch[Boo87] a reusable software component is a logically cohesive,
loosely coupled module that denotes a single abstraction.

• In [JCJO92] Jacobson et al, components are already implemented units that
we use to enhance the programming languages constructs. These are used
during programming and correspond to the components in the building in-
dustry.

• Reusable software components, in[Gro97], are self-contained, clearly iden-
tifiable pieces that describe and/or perform specific functions, have clear
interfaces, appropriated documentations, and a defined reuse status.

• Meyer[Mey99] defines widely a software component as a program element
with the following two properties:i) it may be used by other program ele-
ments, or clients, and ii) the clients and their authors do not need to be
known to the component’s authors.

• Szyperski in [Szy98] defines software component as a unit of composition
with contractually specified interfaces and explicit context dependencies
only. A software component can be deployed independently and is subject
to composition by third parties.

• Software components are defined as prefabricated, pretested, self-contained,
reusable software modules - bundles of data and procedures - that perform
specific functions, for Sametinger in [Sam97].

16 CHAPTER 2. WEARING CONCRETE SHOES

2.2.2 Properties

By filtering the previous definitions may be thought over a set of generic properties
to describe a component, namely, modularity, reuse abstraction and independence.

Modularity : A modular aspect can be considered since a component is seen
as a unit that performs a defined function, in many cases, depending on
the reusing abstraction (see Reuse Abstraction below). Encapsulation does
not seem a suitable term because it reveals a quite restrictive viewpoint on
the accessibility to the internal structure of the components, and not always
that is true. Another way for the component specification can be through
the use of interfaces. In this scenario a client of a software component hangs
on the component specification, but not on its implementation. The use of
interface specification is the common mechanism to define the component’s
bound. Components include data which represent their states and functions
for processing these data, feature that fulfills an object definition in object
technology.

Reuse Abstraction : A software component is associated to an abstraction
which rules the accessibility degree to the internals when the component is
reused.

• Black-box: The client can not see beyond the interface. In this cases
reusing has to relay only in the interface specification, for example, ap-
plication programming interfaces (APIs). Part of the implementation
is revealed as component specification.

• White-box: The implementation is fully available. Allows interfer-
ence and implies reusing software fragments. Most class libraries and
frameworks are delivered in source forms and application developers
study the classes’ implementation to understand what a subclass can
or has to do.

• Glass-box: It can be seen like a limited white-box approach since it
allows inspection of the implementation but not interference.

• Grey-box: Reveals a controlled part of its implementation.

Independence : If a building block is intended to be considered as a component,
should be possible to deploy it independently. The component must be able
of working where the current context differ from the original one.

Like every software product, software components have to accomplish a
development life cycle, and how Cheesman and Daniels state in their book [CD00],
our view of them can change during these stages, namely, requirements, design
and provisioning, assembly, deployment, and runtime.

2.3. SUMMARY 17

2.2.3 Reuse Mechanisms

After a good definition of a component, we have to state how they can be reused,
therefore we need to provide the reuse mechanisms. Terms like composition, in-
terconnection, interaction, communication and interoperation are closely related.
Although, in the literature, they have different semantics, they are often used
interchangeably. Just to reduce the misunderstanding and clarify the narrative,
we will consider just composition and interoperation with different meaning.

Niestraz and Dami in [ND95] define component composition as the pro-
cess of constructing applications by interconnecting software components through
well-defined ways to interact and communicate provided by themselves, that is,
composition rules.

Composition rules provides the mechanisms that enables prefabricated things
to be reused by rearranging them in ever new composites[Szy98].

The ability of software components to communicate and cooperate despite
in language, interface and execution platform is called interoperatibity. Succesfull
composition of components does not necessarily imply their successful interop-
eration. Two components may simply pass control or send a message to each
other. They can also be involved in more complicated form of interoperation, e.g.,
sharing data or using some component for data access[Sam97].

2.3 Summary

Usually many models that deal with component’s description take as starting
point fundamental principles that underpin object technologies. However, there
are newer approaches, like Schneider and Nierstrasz in [SN99], which make a critic
on object orientation respecting with its capability for expressing the architecture.

Until here we have a good idea about the software reuse usefulness, but
the doubt may be when in the developing process is suitable to introduce reusing
considerations?. The answer is when requirement are available. If we apply a
top-down approach not always initial user requirements are adequate and consis-
tent with his desires, and system architectures achieved using this technique are
specifically adjusted to the initial set of requirements. Thus involved components
will suffer the same drawbacks which is in sharp contrast to the idea of building a
system from truly reusable components. In the other hand, bottom-up approach
starts using reusable components but it becomes impractical for the impossibility
of taking the requirements into account early. Consequently a mixture of this pop-

18 CHAPTER 2. WEARING CONCRETE SHOES

ular techniques is convenient when reusing components turns part of development
goals.

One thing can be stated with certainty: components are for composition.
Therefore components should be understood to be reused. Components have to
be designed upon the idea that they will be, reused in different context conditions,
and because of that should provide a set of mechanisms which rule the manner
of reusing them. In the next section we define a conceptual framework where
we enumerate the aspects should be considered to describe a reusable component
model.

Chapter 3

Designing Components

Analyzing what software reuse and software component are we may resume that a
modular approach is desired rather than a monolithic one. Also, if already exists
a solution (well-proven, tested, etc) for the problem in hand then it is better to
use that one instead of building another from scratch. It results in reduction of
many costs associated with software development (e.g. design solutions, quality
testing, coding, etc.). Modularity and reusability intersects in a another concept,
reusable components.

Reusable component design involves two engineering approaches, design for
reuse, which considers aspects related with component conception (i.e. identifica-
tion, representation, organization) and design by reuse, which deals with mecha-
nisms to make available the components, either in their original or adapted shape
(i.e. searching, adaptation, composition). Considerations about those approaches,
for reuse and by reuse, have been described in this chapter.

3.1 Design For Reuse

When we attempt to design a component to be reused it is necessary to pro-
vide a framework for addressing the isolation of the fundamental structure of the
component, and the structures to support the proper reuse, that means, we need
to establish the identification, representation and organization of the component
model.

19

20 CHAPTER 3. DESIGNING COMPONENTS

3.1.1 Identification

Component identification let us to get a well understanding of the situation for
which the component can be a suitable solution to solve either the whole or part
of the problem. The identification can be expressed through the specification of
the life cycle, granularity, orientation and range of the component:

• Life cycle: Life cycle determine the development phase where the compo-
nent is applicable in, that is, analysis, design, and implementation compo-
nents. Most of the existing component models have proven their successful-
ness and usefulness through their wide use in many applications, but they
are mainly components fulfilling implementation level requirements. There
are small number of approaches in higher development stages, for example,
component specification in design level.

• Granularity: Partitioning the software design in components is a subtle
process that has a large impact on the success of the resulting components.
The granularity unit applied to identify the units that form a system, which
is strongly associated with the life cycle phase in consideration. In [Szy98]
Szyperski enumerates several criteria for isolating blocks in a system, which
eventually can be considered as a component. Traditional units are proce-
dural libraries, classes, and modules. The rules governing the partitioning
vary from case to case, hence it is important to understand the implication
of the granularity of a particular partition.

• Product and process orientation: From certain point of view component-
based solution models might be seems as product-oriented one, it means that
as result of its use we will get a final product loosing any trace about partial
steps. On the other hand, in a process-oriented model the different trans-
formations applied to the original solution belong to the final solution, the
resulting component definition is compound by the original component defi-
nition plus the delta representing the adaptations. In general, in the domain
of problem-solving method (PSM), component models meet the process ori-
ented idea since they start with an abstract solution, and then a set of
configuration and adaptation rules allows use it to solve a specific problem
domain [BPM+98]. To conclude, a trade-off between both orientations could
be a suitable strategy because traceability of adaptation makes possible to
keep in control evolution issues.

• Range of components: We may classify components according to their
specificity. Thus they might be labelled either generic, domain or applica-
tions component. The specificity relates the applicability of a component
to different domains. For example, considering a components that let us to

3.1. DESIGN FOR REUSE 21

choose a particular color from a color palette, the range can be bounded for
user interface domain and particularly graphical applications. On the other
hand, if we have a component that given a grammar specification it let us
language parsing, the range for this component seems to be less narrow than
the previous example.

3.1.2 Representation

Following its representation a component requires a proper representation. Inde-
pendently of life cycle, the component should provide all the needed information
for understanding the functionality encapsulated into it, even when we consider
components as white-boxes (see section 2.2.2). For instance, in many component
models interface specification are used to provide this information. An inter-
face description[KBV00] consists of a signature part, describing the operations
provided and used by a components, and based on that, a behavior part, de-
scribing the component’s dynamic behavior with respect to its interfaces. The
meaning of the interfaces as well as the semantic content can vary, for example,
when describing a CORBA component only a specification written in an interface
definition language is provided. In Eiffel[Mey94] component description add to
ordinary interface specification the semantic for reusing component by features’s
contracts (using Eiffel’s vocabulary) which include pre-conditions, invariants and
post-conditions. Examples for description techniques are graphical notations like
class diagrams and state transitions graphs for modelling languages like those
included in UML1, as well as textual notations like provided for IDL2.

3.1.3 Organization

Components as software artifacts need to be stored in such a way that they can be
integrated in a system environment to really accomplish their objective. Providing
component implies design a place from where any consumer may get components
for reuse them, not only local but also remotely. The design of this repository
should satisfy the following properties[Mey97]:

• Easy of use: when a client decides to use reuse one component should be
able to get it quickly. Searching spaces for components have to be structured
in such a way that the user might not spend time searching in wrong places.

1Unified Modeling Language
2Interface Definition Language

22 CHAPTER 3. DESIGNING COMPONENTS

Figure 3.1: The java.awt.image package.

• Documentation: The documentation must be accurate and well-organized,
so that a user may quickly find the relevant information about a specific
component.

• Extensibility: The structure design must leave few open doors to allow
for its own evolution. It become a problem when we need to preserve the
compatibility with existing applications. Version support of the components
should be provided aside from the container service.

For instance, a library may be considered as the underlying structure to sup-
port a repository, in fact, most of the component models use it. And advantage
of this well-known mechanism is the possibility to use any searching algorithm
available to traverse a tree (see section 3.2). Figure 3.1 shows a java package
that represents a hierarchical structure for java classes. Although the library, un-
derstood as a tree-based structure, fit for component organization in most cases,
should be specified an alternative for components that requires the manipulation
of relationships among them more complex, for instance, a lattice-based (e.g. se-
mantic networks). To illustrate an example of lattices, we can use the relationships
proposed by Gamma et al.[GHJV94] to connect design patterns (see figure 3.2)and
together with the table 3.1 are two way to access to the same component space.
Since components can exist at all scales[KS98], is desired that a component-based
application be ready for use as a new component, whatever be the organization.

3.2 Design By Reuse

Since a component has been designed for reusing, it should be available for that
purpose. Here we describe aspects related with the component availability.

3.2. DESIGN BY REUSE 23

Figure 3.2: Design patterns map.

24 CHAPTER 3. DESIGNING COMPONENTS

Purpose

Creational Structural Behavioral
Scope Class Factory

Method(107)
Adapter(139) Interpreter(243)

Template
Method(325)

Object Abstract Fac-
tory(87)

Adapter(139) Chain of Responsi-
bility(223)

Builder(97) Bridge(151) Command(233)
Prototype(117) Composite(163) Iterator(257)
Singleton(127) Decorator(175) Mediator(273)

Facade(185) Memento(283)
Proxy(207) Flyweight(195)

Observer(293)
State(305)
Strategy(315)
Visitor(331)

Table 3.1: Design pattern’s space proposed by Gamma et al. in [GHJV94].

3.2.1 Searching

Given a problem a solution is intended, then the action to obtain a solution from
a repository involves the criteria for searching the most suitable. It is not possible
to apply a reusable component that is not easily reachable. The searching process
could be affected by the features used to describe the component. Component rep-
resentation includes basically the elements used for indexing, therefore the success
in finding the right component will depend on the proper understanding of the
user about the facilities provided by the components. Finally, the organization
selected to support the component reuse determines the strategy (algorithm) ap-
plied for searching them. Table 3.1 shows the classification made by Gamma et
al.[GHJV94] for indexing patterns.

3.2.2 Adaptation

Component may be understood as an entity that involves generic properties, then
we need to adapt it to a particular domain. Adaptation is the activity of ac-
commodation a component to fit into certain requirements[KS98]. But, what will

3.2. DESIGN BY REUSE 25

we really adapt?, it means changes therefore the component model should man-
age this aspect to control the effects produced by those changes. Many existing
models contemplate adaptation as the fine tuning performed after a component
’instantiation’, that means, you can change a copy of the selected component.

Renaming, creation, deletion and change of elements (e.g. classes, methods,
or attributes) allow to satisfy subtleties of a particular domains. Concretely, we
can consider as examples of adaptation mechanisms to:

• Abstract Method: Through abstract methods we can define partially the
behavior of objects represented by this class. A concrete content for this
method need to be specified in order to reuse the component to solve the
current domain problem.

• Method overriding: Although a method has been coded for a particular
objective, it is possible to rewrite it for another purpose.

• Renaming attributes: The name given for the attribute in the compo-
nent specification can be a little generic, therefore it may be appropriated
adapt these names to the domain specific vocabulary. This increases the
expressiveness of the component solution.

• Inheritance exception: It is not a common facility provided for object-
oriented languages, but it should be useful to decide which elements of the
inheritable part of the component specification can be cut off (discarded)
from the resulting component.

This is not a closed list of possible adaptation. The alternatives will not depend
on the underlying programming languages supporting the model, but the rules
stated in the model’s fundamentals.

3.2.3 Composition

Composition may be defined as the activity that lets us to combine components.
The composition of component is performed by using well-defined reuse mecha-
nism that state exactly how a component can be reused in order to build another
one. The term ’assembly’ can be used as synonymous of composition.

26 CHAPTER 3. DESIGNING COMPONENTS

Figure 3.3: Engineering Approaches for designing components.

3.3 Design Roles

Meyer[Mey94] distinguish two users categories or engineering roles that meet to
the aforementioned, reuse consumer and reuse producer(see figure 3.3). Although
they are not disjoint, is wanted to stimulate to consumers move a little closer to
the producers’ side providing a framework where they can be guided to accomplish
that. We must keep in mind the existence of them when a component model is
built because they may introduce distinct viewpoint in the design. It may sound
an evident appreciation, but sometimes the differences affect the basics of the
models.

3.4 Describing Component Models

We will use the framework defined in this chapter to describe the existing com-
ponent models.

3.4.1 JavaBeans

JavaBeans is a portable, platform-independent software component model written
in Java. It enables developers to write reusable components. Basically, beans

3.4. DESCRIBING COMPONENT MODELS 27

are Java classes that can be manipulated in a visual builder tool and composed
together into applications[DeS97].

• Identification: Beans are expected to support mainly small to medium-
sized controls, similar to OLE3 controls. Hence JavaBeans are used to solve
implementation issues, and the granularity corresponds to the size of the
controls above, for example, simple text editors, drawing editor, button
constructor, etc..

• Representation: Basically a JavaBeans could be represented by events
and properties. A property is a attribute that can affect a bean’s appearance
and behavior. Beans can be announced as potential source or target of
specific types of events

• Organization: Since the JavaBeans follows the same implementation sup-
port than Java, the component are organized similarly. They can be stored
by any packaging mechanism available for Java implementations, that is
namespaces determined by packages, and Java ARchive(JAR) files.

• Searching: Basically to find a JavaBeans we need to locate the correspond-
ing package where it is store. The searching could be facilitated using an
assembling tool.

• Adaptation: A JavaBeans can be customized by settings its properties.
Properties may be used by scripting environments, can be acceded by calling
getter and setter methods, or can be acceded using properties sheets at
assembly time or runtime.

• Composition: The composition of JavaBeans is based basically in an
event-based communication where the event populated by a JavaBeans are
the means of composition with other component. Also the attribute manip-
ulation could be a method to integrate components.

3.4.2 COM

COM (Component Object Model) is the Microsoft’s foundation on which all com-
ponents software on its platform is based.

• Identification: Since COM is defined as a binary standard, and does not
even specify what a component or an object is, its associated life cycle’phase

3Object Linking and Embedding

28 CHAPTER 3. DESIGNING COMPONENTS

is undoubted the implementation one. The granularity results mainly dif-
ficult to define in this case because a COM object just define a standard
to follow by any application in the aforementioned planform to become in
a component to be reused. For the same reason is impossible to bound the
competent range that COM can represent.

• Representation: The fundamental entity that represent a component is an
interface. Internally, this interface represents a pointer to a set of operations
available to be dispatched. Those operations could be implemented for any
number of classes, and the schema becomes more confuse when a COM
component is free to contain implementations for any number of interfaces.
A COM component is not necessarily a traditional class and a COM object
is not necessarily a traditional object.

• Organization: Logical organization in COM involves a categorization in
order to support efficient manipulation of a set of interfaces. A COM com-
ponent can be member of any number of categories and categories are not
related among themselves. Physically a COM component belong to a class
type which are organized in libraries. Every element in this scenario was as-
signed an identifier, interface (IID), category (CATID), and class (CLSID).

• Searching: A client needs to instantiate a component, the to pick up the
right component it has to specify the class of the component to a library.
The library executes the procedure to instantiate the selected component.
Also it is possible to use the system registry available in this platform.

• Adaptation: A COM interface cannot be adapted in any way. To support
versioning in COM is possible just defining another interface.

• Composition:The Microsoft’s component model, COM, does not support
any form of implementation inheritance which does not mean lack of support
for reuse them. COM support two forms of object relationship to enable
object be reused, containment and aggregation. Containment is the simple
object composition technique where an object holds an exclusive reference
to another. The former, also called outer object, conceptually contains the
latter, the inner object(see Figure 3.4). On the other hand, the Figure
3.5 illustrates when the inner and the outer object establish an aggregation
relationship maintaining mutual references.

3.4.3 CCM

The Object Management Group(OMG) defined CORBA(Common Object Re-
quest Broker Architecture) to achieve intraoperatively in the market for objects.

3.4. DESCRIBING COMPONENT MODELS 29

Figure 3.4: COM objects in a containment setting.

Figure 3.5: COM objects in an aggregation setting.

30 CHAPTER 3. DESIGNING COMPONENTS

CCM (CORBA Component Model) extends the object model defined in CORBA.

• Identification: Since CORBA component is based in CORBA specification
we may say this component address implementation issues.

• Representation: To express a CORBA component, the IDL (Interface
Definition Language) is used. Among the main features of this languages are
platform-independency and implementation language independency, aside
object-oriented. Since the CCM component extends the CORBA object
model, a component could be seen as a meta-type in CORBA, that extends
a meta-type ’interface’[Rui00].

• Organization: Once interfaces are expressed in IDL, they can be compiled
and deposited in an interface repository. A repository is supported by an
ORB (Object Request Broker), which permits the component communica-
tion.

• Searching: The searching services is given by ORB repositories.

• Adaptation: The component adaptation could be done by component con-
figurations. Developers can programm the configuration that permits assign
values to the components attributes. Those attribute’s values could be de-
fined constrained.

• Composition: CCM defines the receptacles concepts, which determines
union points between components. A receptacle could be seen as require-
ment exposed by a component that should be satisfied by another one. An-
other way to integrate components is by using events. The events establish a
producer-consumer an relationship but not directly as is done by receptacles.

3.4.4 IBROW3

IBROW3 (Intelligent Brokering Service for Knowledge-Component Reuse on the
World Wide Web) is an European project to develop an intelligent brokering
service that enables third party knowledge-component reuse through the World-
Wide Web [BPM+98]. Figure 3.6 shows the IBROW3 scenario.

• Identification: The knowledge components for reuse are problem-solving
methods (PSMs) to solve a reasoning problem, such as the design of a tech-
nical product.

3.4. DESCRIBING COMPONENT MODELS 31

Figure 3.6: IBROW3’s scenario.

• Representation: For describing component IBROW3 applies a PSM-description
language for adequately capturing relevant characteristics, Universal Problem-
solving Method description Language (UPML). This language is indepen-
dent of specific implementations of PSMs, as it is a meta-description defining
the broker’s view of the PSMs. The formal underpinning of the language are
Abstract Data Types, but to exchange the problem-solving methods with
other groups a wrapper has to be built. This model defines a KIF4 wrapper.

• Organization: IBROW3 proposes the decomposition of the problem in
different, but related, issues. The intelligent broker handles requests for
reasoners from various customers. Based on these requests, it accesses dif-
ferent libraries available on the Web and searches them for candidate PSMs,
which are adapted and integrated into a knowledge system for the customer.

• Searching: For selecting PSMs from a library, the broker reasons about
characteristics of PSMs, for example about their competence, their require-
ments, cost of executing a PSM (in terms of execution time or required
interaction with a human), its cooperation style (LIFO, LILO), empirical
facts of the PSM (how often has it been selected and used successfully), etc.

• Adaptation: Since PSMs are generic components, the problem solver has
to be adapted to the particular domain knowledge of a customer to obtain
a proper knowledge system.

• Composition: The broker may need to combine different PSMs that to-
gether solve the defined problem. To do this it decomposes the task into
subtasks and then looks for PSMs to realize these subtasks, etc. Once the

4Knowledge Interchange Format

32 CHAPTER 3. DESIGNING COMPONENTS

relevant PSMs are found, the same knowledge can then be used to compose
the problem solver.

3.4.5 Design Components

Design components is a research work supported by SPOOL (Spreading Desirable
Properties into the Design of Object-Oriented, Large-Scale Software Systems)
project [KS98].

• Identification: This work introduces the design component idea, that is
the reification of design pattern in software artifacts.

• Representation: The constituents of a design component are similar to
those used by Gamma et al. in [GHJV94] to describe design patterns, that
is component name and classification, intent, synonyms, motivation, appli-
cability, structure, source code, executable code, etc..

• Organization: The components are organized in repositories, from where
a client can take a component either local en remotely.

• Searching: The components are available via its identifiers, name, classifi-
cation, intent, etc.

• Adaptation: This model permits instantiate component to be customized
to meet the specific requirements. The customizations are classified in four
dimensions: Scope, Revision, Specificity and Concreteness.

• Composition: The composition in this model is achieved by assembling
design component.

3.5 Proposed Component Model

In this section we describe the features the model that attempts to solve some
anomalies in the existing component model.

• Identification: Most of the models described in section 3.4 are model that
address implementation level requirements. Implementation-oriented mod-
els just provide a means for reusing software by mechanism to assemble
components, but they fail when an architectural description is need from
the resulting system. We propose to go up in the development level to

3.6. SUMMARY 33

define a component model for expressing design decision., preserving the
underlying architecture.

• Representation: The component’s representation would express in a generic
way the intention of the solution proposed by the component.

• Organization: The organization should provide a means to understand in
advance for which problem the component is a proper solution, therefore we
have to define a good classification structure to achieve this purpose.

• Searching: The searching method is defined based on the proposed orga-
nization.

• Adaptation: The adaptation’s schema should define the allowance in the
changes that the members of the component could suffer.

• Composition: The component description should provide the mechanisms
to reuse the components.

3.6 Summary

This chapter defines a conceptual framework to describe and compare reusable
component models determining their identification, representation, organization,
searching, adaptation, and composition. The fist three cases are components that
face component models addressing implementation level requirement. Basically
they provide a platform to achieve a component-based development based on the
reusability of existing micro-applications, and in many cases more opportunistic-
oriented than systemic approach. Unlike COM, CMM and JavaBeans, three well-
know models in the component market, the later cases, IBROW3 and SPOOL’s
model are research works that define another approach, component-based problem
solving instead of component-based implementation.

Implementation-oriented models just provide a means for reusing software
by mechanism to assemble components, but they fail when an architectural de-
scription is need from the resulting system. The lack of this information about
design decisions attempt against evolutionary aspects existing in any software de-
velopment process. Any change in a component-based implementation needs from
a deep knowledge about the underlying structure within it.

In the next chapter we define a reusable component model based on the
consideration about the proposed model.

34 CHAPTER 3. DESIGNING COMPONENTS

Chapter 4

Reusing Design

From the description made in the chapter 3 about the most the component models
we have concluded they suffer some anomalies. One of those is the lacks of elements
to express the resulting design structure of the application. One approach the
address this problem is the design component’s approach [KS98] that we will use
as stating point to define our model.

4.1 Introduction

Our model is founded in the component conception established by Keller et
al[KS98]. They state that design patterns can be seen as components since:

...design patterns package software engineering expertise with domain
knowledge into conceptual building blocks upon which more complex
and flexible software design can be built.

The aim of our work is contribute with a model able to express the meaning
of the design solution provided by a design pattern or any structure that includes
a design solution. Let see the spirit of our model illustrated in the figure 4.1.
There, it is shown the outlook of components and how they can be reused to form
more elaborated design entities. The schema shows three components, c 1, c 2
and c 3 which are composed by predefined mechanisms, namely rule c 11 and
rule c 22. In the example, those relationships express the following situations:

A: component c 2 reuses component c 1 applying the rule rule c 11
and

35

36 CHAPTER 4. REUSING DESIGN

Figure 4.1: Composing design component.

B: component c 3 reuses component c 2 applying the rule rule c 22

Basically what the rule rule c 11 defines is how the elements forming the solution
in c 1 are involved in this particular reuse process.

Besides to control the unwanted effects in the component reuse,
the underlying intention of the model suggested is to supply to the
components, information about the composition in which they are in-
cluded.

Figure 4.1 shows another important feature, the dot line encompassing c 1
and c 2 constitute the boundaries of the resulting component, labelledA, from the
composition, the same matter is applied to the component B. Both components
share the same structure that the components, therefore they could contain reuse
rules, like rule a1, and rule a2.

4.2 ARCoM components

In this section we will describe the proposal, named ARCoM (Another Reusable
Component Model) model, using the engineering approaches suggested in chapter

4.2. ARCOM COMPONENTS 37

3. Basically we try to pursue the followings:

• To use the object-oriented basis to found our model.

• The resulting model should provide to the components information about
the composition in which they are involved.

• To preserve design matters through eventual reusing.

4.2.1 Identification

In this section we make the identification of ARCoM components by means the
specification of the life cycle, granularity, orientation, and range (see section 3.1.1).

Life cycle : The content of our components are design solutions, therefore the
life cycle phase where they may be applied is where design decisions are
required. That means, ARCoM components undertake descriptions for the
design phase in a development process.

Granularity : How it was stated previously, defining granularity is not an easy
assignment. In our case, we deal with two different granularity cases: pro-
ducer’s and consumer’s granularity (see section 3.3), which imply a real
difference. For a consumer the smaller unit to use for constructing an ap-
plication will be the solution suggested by the component, so in this case
his viewpoint agrees with the component’s viewpoint. That sounds obvious
since he is the end-user of our system, even when this kind of user is able to
observe the implemented solution. But, it does not happen the same with
the producer, in this case the granularity is focused in the elements used
to build the components, that is, classes and relationships. This issue is
entirely described in section 4.2.2.

Product or process orientation : Given that the result of every operation
between components is an expression of the resulting component, ARCoM
model is a product-oriented one.

Range of components : Design patterns describe general design problem that
can be applied in a particular context by its customization, therefore an AR-
CoM component could be classified as generic-ranged component, even when
the output from customization(adaptation) and integration(composition) be
a domain or application component (see sections 4.2.5 and 4.2.6, respec-
tively).

38 CHAPTER 4. REUSING DESIGN

Figure 4.2: Strategy pattern - A) Structure and B) Example.

4.2.2 Representation

Basically, in ARCoM, components are conceived as a set of properties and reuse
rules. The properties give the solution’s meaning, and the reuse rules describe the
mechanisms that indeed permit to reuse them. To exemplify the constituents of
the component’s representation we will use the Strategy pattern shown in figure
4.2.

Properties

The properties that set up the representation of the components are:

Indexing : The following two attributes determine a first approach of the loca-
tion where the component may be stored.

• Name: The component needs to be identified, then a name is assigned.
It constitutes the first approach to figure out the solution embedded
into the component.

• Purpose: It is used as a first level of classification. For example, cre-
ational, behavioral and structural suggested by Gamma et al [GHJV94].

4.2. ARCOM COMPONENTS 39

Both attributes are used in the component organization when the repository
is designed (see section 4.2.3). In the example, Indexing part results in:

Indexing = {

Name = Strategy

Purpose = Behavioral }

Graph : Given a solution, the graph denoted G, that represents the design solu-
tion, can be expressed as a set compound by N, the set of nodes (classes),
and L, the set of links (relationships) among the elements of N.

G = {N,L},

where

N = {ni/ni is a class},

L ={(ni, nj, rj)/ni, nj ∈ N, rj ∈ R},

R ={rj/rj is a relationship between the elements

in N involved in the solution}(for example: inheritance,

composition, aggregation instantiation)

In the example, Graph attribute results in:

Graph = {

N = {Strategy, Context, ConcreteStrategyA,

ConcreteStrategyB, ConcreteStrategyC}

L = {(Strategy,Context,aggregation),

(Strategy,ConcreteStrategyA,inheritance),

(Strategy,ConcreteStrategyB,inheritance),

(Strategy,ConcreteStrategyC,inheritance)}

}

Fundamental Properties : These properties concern to the structure
that must remain invariant through any reuse performed on the
components. To schematize this idea we take the strategy pattern[GHJV94]
that can be described more abstractly than the description given to the client
user. Figure 4.2 shows two structures for the pattern suggested. From the

40 CHAPTER 4. REUSING DESIGN

difference between pictures (A) and (B) it is possible to infer that does
not matter the number of the ConcreteStrategy classes. Only the minimal
set, that is, one Strategy class (abstract root), one Concrete class (con-
crete child), Context class, an inheritance relationship and an aggregation
relationship, is basically the structure associated to a strategy pattern. The
invariants stated in the fundamental properties can be classified in graph,
node and link invariants.

Graph Invariants: It is the set of invariants that state which features at
graph level should be kept invariant during the eventual reuses performed
on the component. Hence they are a set of nodes and relationships:

GI = {NGI ,LGI},

where

NGI = {ni/ni ∈ NGI},

LGI = {(ni, nj, rj)/ (ni, nj, rj) ∈ LGI},

NGI ⊆ N ∧ LGI ⊆ L

In the example, Graph Invariant attribute results in:

GI = {

NGI = {Strategy, ConcreteStrategyA, Context}

LGI = {(Strategy, ConcreteStrategyA, inheritance),

(Context,Strategy,aggregation)}

}

Node Invariants: It is the set of invariants that state which features at
node level should be kept invariant during the eventual reuses performed on
the component. Hence they are a set of expression that define constraints
on eventual adaptations on the node’s definition:

NI = {(ni, exp)/ni ∈ NGI ,

exp is a constraint on ni}

Link’s Invariants: It is the set of invariants that state which features at
link level should be kept invariant during the eventual reuses performed on
the component. Hence they are a set of expression that define constraints
on eventual adaptations on the link’s definition:

LI = {(li, exp)/li ∈ LGI ,

exp is a constraint on li}

4.2. ARCOM COMPONENTS 41

Both, node and link invariants are associated to the support used to express
then, class and relationships. Section 4.2.5 defines how the graph’s elements
can be adapted.

Macro Invariant Functions: We define two functions to expose the idea
that could be possible to associate under a high level concept a set of con-
straints that may impact on more than one member on the graph and,
perhaps, on more than one the aforementioned set of them. Those func-
tion take as arguments the graph invariant elements and the nodes that are
considered with special features.

• Context Node: This operator implies that only the nodes specified
as context ones could be target of other links (relationship ends) except
those that already it has.

CN (GI,X)−→NI

where

X = {xi/xi ∈ NGI},

NI= (it generates a new NI).

In the example, we could use this function to set the context class:

X = {Strategy},

CN (GI,X) = NI ∪ {(Context, association=false),

(ConcreteStrategy, association=false)}

The impact is produced at node level invariants since what the function
CN should do is to constraint the relationship alternatives of the nodes
in NGI , except for the elements in X. It returns a new set of NI.

• Root Node: This operator implies that only the nodes specified as
root ones could be specialized, that is, be involved in a inheritance
relationship as parent node.

RN (GI,T)−→I

where

T = {xi/xi ∈ NGI},

I= {NI,LI }.

In the example, we could use this function to set a Root class:

X = {ConcreteStrategy},

RN (GI,X) = {

42 CHAPTER 4. REUSING DESIGN

NI = (NI ∪ {(Context, root=false)}),

LI = (LI ∪ {(Inheritance, multiplicity=1)}

})

The impact is at node and link level invariants since what the function
RN should do is to constraint the inheritance alternatives of the nodes
in NGI , except for the elements in X, and to limit the child number for
the inheritance already defined in GI.

In this example is more proper define Strategy class as a root node but
we choose ConcreteStrategy to build a more representative exempli-
fication.

Macro invariants do not belong to the component’s representation strictly,
they are presented here to introduce the idea that like we generate a set
of constraints from a function we could rejoin constraint to express some
features of our design.

Specific Properties : Including information about the problem for which the
component could be a suitable solution that permits improving the under-
standing of the pattern’s solution. Specific properties involve the idea used
by Gamma et al. in [GHJV94] to describe a design pattern. Hence, ARCoM
includes as part of the specific properties the followings:

• Applicability: It is a text that describes in detail the situations in
which the component can be applied for solving the problem.

• Class Diagram: The graphical representation defined in UML to com-
municate the structural information.

• Sequence Diagram: The graphical representation defined in UML to
communicate the behavioral information.

Respecting to UML diagrams aforementioned, they are just a initial ap-
proach since the other diagrams that deal with other aspects of the mod-
elling could be added in later version of ARCoM. In the example, the specific
properties result in:

Specifics = {

Applicability = Use the Strategy pattern when:

• many related classes differ only in their behavior. Strategies provide a
way to configure a class with one of many behaviors.

4.2. ARCOM COMPONENTS 43

Figure 4.3: Strategy’s sequence diagram.

• you need different variants of an algorithm. For example, you might
define algorithms reflecting different space/time trade-offs. Strategies
can be used when these variants are implemented as a class hierarchy
of algorithms.

• an algorithm uses data that clients shouldn’t know about. Use the
Strategy pattern to avoid exposing complex, algorithm-specific data
structures.

• a class defines many behaviors, and these appear as multiple condi-
tional statements in its operations. Instead of many conditionals, move
related conditional branches into their own Strategy class.

Class Diagram = (see figure 4.2)

Sequence Diagram (see figure 4.3)}

Reuse Rules

A reuse rule defines the effects produced when a given component is reused. It
states the manner in which the component properties flow from a component that
is reused, named server-S, towards a component, named client-C. In ARCoM, the
reuse rule is defined by the following attributes:

Name : To identify a reuse rule.

Nature : The nature of a reuse rule defines the stiffness of the established rela-
tionship between the client and server component. The nature is regulated
by two attributes, dependence and predominance. Figure 4.4 illustrates these
variants.

44 CHAPTER 4. REUSING DESIGN

Figure 4.4: Nature of a reuse rule: Dependence or Predominant.

• Dependence: A dependent relationship implies the client’s lifetime
depends on the server’s lifetime, for example an inheritance relationship
may be understood as a dependent one between a child member (client)
and the parent member (server).

• Predominance: A predominant relationship implies the server’s life-
time depends on the client’s lifetime, for example an composition re-
lationship may be set as a predominant one between the part (client)
and the whole (server) member.

Propagation : The reuse rules allow to customize the manner in which the
fundamental properties are propagated in a reuse situation. A reuse rule
bases its propagation on two attributes, Scope and Flood :

• Scope: According to the desired effect, the scope can be complete or
partial. In the former case the entire graph flows from the server to
the client component. In the latter case only a subgroup of the graph
is transferred to the client component.

• Flood: It itemizes the graph’s elements that are transferred when a
partial propagation is chosen. Otherwise all the elements are propa-
gated.

Method : During the rules’ definition it is necessary to set up the method for
transferring the elements form the server to the client component. If it is
not needed to preserve a binding with the server component, that is, there
is a weak relationship stated in the selected rule, the elements are copied,
otherwise the client keeps a reference to the propagated server’s elements.

Shareability : This attribute defines the number of possible reuses that a server
component can support. It can be boundless if there is not any restriction on

4.2. ARCOM COMPONENTS 45

Figure 4.5: Shareability of a reuse rule: a) Shareability not allowed, b)Only al-
lowed for two client components, and c) Allowed for any number of client.

this aspect. Figure 4.5 shows the utility of the shareability. This attribute
can be understood as the multiplicity assigned to the component. Figure 4.6
attempt to depict an example where the shareability should be taken into
account. Let suppose that a component that deals with the system security
needs to be restricted in order to make sure the manipulation of the overall
system security. One way could be to limit the possible reuses to only once.

Transitiveness : When a server component is reused, the definition of the client
component is based on its fundamental properties. Transitiveness states
whether exist, or not, a restriction on subsequent reuses. Figure 4.7 illus-
trates how the transitiveness works. This attribute permits imitate the idea
of visibility used in class modelling to restrict the propagation by client
component.

4.2.3 Organization

In ARCoM, we distinguish between a logical and a physical organization.

46 CHAPTER 4. REUSING DESIGN

Figure 4.6: Shareability’s example.

Figure 4.7: Transitiveness of a reuse rule: a)Allowed, b) Not allowed.

4.2. ARCOM COMPONENTS 47

Component

Indexing = {
Name = String

Purpose = String }

Graph = {
N = {n1, n2, ..., np}
L = {(ni, rj, nk), ni, nk ∈ N, r ∈ R}}

Fundamentals = {
Graph Invariants (GI) = {

NGI = {ni/ni ∈ NGI ⊆ N }
LGI = {(ni, nj, rj)/ (ni, nj, rj) ∈ LGI ⊆ L}}

Node Invariants (NI) = {(ni, exp)/ni ∈ NGI ,
exp is a constraint on ni}
Link Invariants (LI) = {(li, exp)/li ∈ LGI ,
exp is a constraint on li}

Specifics = {
Applicability = String

Class Diagram = String

Sequence Diagram = String }

Reuse Rules = {
Rule = {

Name = String

Nature = {
Dependence = (true | false)
Predominant = (true | false) }

Propagation = {
Scope = (complete | partial)
Flood = {ci, ci ∈ C}}

Method = (copy | reference)
Shareability = (boundless | Integer)
Transitiveness = (true | false)}

Table 4.1: ARCom’s Representation.

48 CHAPTER 4. REUSING DESIGN

Logical Organization : This aspect deals with the way in which the compo-
nents will be organized in order to facilitate the component picking for the
eventual consumers. To organize logically the components, ARCoM uses
the name and purpose attributes. We should consider for later versions a
Related Component attribute to improve the logical organization.

Physical Organization : Physically, the components are organized in name
spaces. The smaller space is the component. That is, the elements that con-
stitutes an ARCoM component are associated to a namespace. This address-
ing method permits to trace the elements involved in the reuse processes.
Finally, all of the ARCoM components has to be published in directories,
which are the data structures manipulated in the component’s repositories.

4.2.4 Searching

Given that the organization proposed in ARCoM involves a logical and physical
aspects the component searching obeys the same schema. Logically, we can look
for a component through its name and purpose. After a component has been
published by its producer in a directory, it is a responsibility of the repository
manager (see section 5.2.2) to search the right component in the proper directory.

4.2.5 Adaptation

The classes involved in the solution proposed by the component could be not
concrete enough to fulfil the real problem. The adaptations, on the component’s
representation, are governed by the expression assigned to the attribute Invari-
ants, that is, all the changes can be performed except when they attempt to violate
the constraints imposed by the invariants. The adaptation that we may perform
on the graph are classified in three categories, graph, node and link adaptations:

• Graph Adaptations: We could add, delete, modify nodes and links.

• Node Adaptations: Since nodes are represented by classes, we could add,
delete, modify attributes or operation in these classes.

• Link Adaptation: If the links are represented by a class we could add,
delete, modify attributes or operations in these classes. This separation
would permit to map the model in any object-oriented language.

4.3. COMPOSITION 49

4.2.6 Composition

In ARCoM, the component composition is done by reusing. That is, we will have
a composition between components when a client reuses a server one. Given that
the reuse rules are used to control the flow between the components involved in
the composition, it is important to know how they are evaluated. The entire
composition process is explained in section 4.3.

4.3 Composition

Component composition in ARCoM is restricted to one condition, the expression
representing the resulting component, form a composition, will be structured in
the ARCoM’s way, that is it will have fundamental and specific properties, and
reuse rules when necessary.

4.3.1 Evaluating a reuse rule

ARCoM’s specification includes the definition of an algorithm to be applied in the
reuse rules’s evaluation. We will analyze the attribute’s intervention, one by one,
to figure out its real function during the evaluation:

• Method: How aforementioned the two values possible to be assigned to
this attribute are: by copy and by reference. By default, ARCoM considers
that the transfer way will be done by copy.

• Nature: The reusing nature is defined by two attributes, Dependence and
Predominance. If some of those characteristics is true implies that the
method will be set up to ’by reference’, since both determine a stronger
relationship.

• Propagation: So far we have only decided the method but not the range
of elements in the graph, on which we will apply this method. For this
selection we use scope and flood.

• Shareability and Transitiveness: The shareability and transitiveness is
checked for every element that is included in the propagation. That is, if
the element it is an original one of the server component, the shareability is
only checked. But if the server is not the owner of the element we also need
to check the transitiveness of them.

50 CHAPTER 4. REUSING DESIGN

Inheritance Composition

Rule = {
Name = ”inheritance”
Nature = {
Dependence = true
Predominant = false }
Propagation = {
Scope = complete
Flood = all }
Shareability = boundless
Transitiveness = true}

Rule = {
Name = ”composition”
Nature = {
Dependence = true
Predominant = false }
Propagation = {
Scope = partial
Flood = {className}}
Shareability = boundless
Transitiveness = true}

Aggregation Instantiation

Rule = {
Name = ”aggregation”
Nature = {
Dependence = false
Predominant = false }
Propagation = {
Scope = partial
Flood = {someContextClass} }
Shareability = boundless
Transitiveness = true}

Rule = {
Name = ”instantiation”
Nature = {
Dependence = false
Predominant = false }
Propagation = {
Scope = complete
Flood = all }
Shareability = boundless
Transitiveness = true}

Table 4.2: Imitating inheritance and composition by ruse rules

Table 4.8 shows flowchart describing the evaluation process defined in ARCoM.
This chart clarify the semantic assigned to the rule’s evaluation. By using at-
tributes and evaluation we could model well-known in object-oriented mechanisms
to connect objects, for example, inheritance, associations, etc. Table 4.2 shows
four reuse rules that model inheritance, composition, aggregation and instantia-
tion, like they are understood in object-oriented programming. For example, in
the Inheritance rule, the Nature is defined as Dependent since every child will
depend on the parent component, and the propagation is set to a complete scope
since the father’s definition flows entirely to the child’s one.

4.3.2 Attributes after composition

In this section we explain the attribute’s values resulting form the algorithm ex-
plained above. We define an expression for the attributes in the fundamentals.
Either specifics and reuse rules in the new component have to be defined manually

4.3. COMPOSITION 51

Figure 4.8: Reuse Rule’s evaluation (by default).

52 CHAPTER 4. REUSING DESIGN

by the user, that is, name, purpose, class diagram, etc. The ruse rules only have
to be defined in the case that the new component need to be reused later.

Given two components, P and Q, both of them expressed in the ARCoM’s
way, where Rj is a reuse rule defined in Q. We will define the resulting description
for the ”composition of P and Q by using Rj”, denoted P≺Rj

Q, which is equivalent
to say that the component P reuses the component Q by applying the reuse rule
Rj.

• Graph: The set of classes for the resulting component, denoted NP≺Rj
Q,

will contain the elements in NP , classes defined in P, and just the elements
in NQ, classes defined in Q, that are specified by the attribute Flood in Rj.
That is

NP≺Rj
Q = NP ∪ (NQ ∩ FloodRj

).

The set of relationship for the resulting component, that we denote LP≺Rj
Q,

will contain the elements in LP , relationships defined in P, and just the
elements in LQ, relationships defined in Q, whose nodes are included in
NP≺Rj

Q.

That is

LP≺Rj
Q = LP ∪ {(ni, ri, nk) ∈ LQ ∧ ni, nk ∈ NP≺Rj

Q}

• Graph Invariants: This set, GIP≺Rj
Q, will contain the graph invariants

from component P, denoted GIP , and Q, denoted GIQ, but only those related
to the elements in NP≺Rj

Q.

IP≺Rj
Q = GIP ∪ {(ni,nj,li) ∈ LGI ∧ LGI ⊆ GIQ ∧

(ni,nj) ∈ NP≺Rj
Q}

• Node and Link Invariants: Idem Graph Invariants described above.

4.3.3 Graph connection

Given that the propagated elements from one component to another also produce
the propagation of the invariants that should be preserved in the new component,
the connection of the graphs, will be perfomed based on the restriction given for
those constraints. That means the client component could relate a server graph
element to a client element via any relationship that does not generate any conflict

4.4. AN EXAMPLE 53

in the state defined by the invariants. If one node could no be inherited no any
other element can be child of it, for instance

4.3.4 Composition’s commitment

If a deeper analysis is done on the Nature, Shareability and Transitiveness at-
tributes we can resume that they provide a means to proclaim the engagement
between the components. For instance, the Nature of a reuse rule represents a first
approach for a commitment between the component involved. That means, none
of them ignores the fact that is part of a composition. The same analysis may be
applied to the other two rule’s attributes, that is, Shareability and Transitiveness.
Those attributes have an active participation during the evaluation of the flow
effects produced for applying a rule.

4.3.5 Customizable evaluation

As aforementioned, ARCoM supplies a predefined evaluation method of a reuse
rule. Figure 4.8 shows a flowchart with steps performed to evaluate a reuse rule.
What the picture shows is one way to evaluate the attribute’s configuration, that
means, given a component we could change the evaluation in order to give to the
reuse rule the desired meaning. In other words, the effect of a reuse rule could be
changed not only through the attribute’s value (like a set of flags that can be set
according to the flow suggested in the figure), but also by ’overriding’ the existing
evaluation method.

4.4 An Example

Let suppose that we take the design pattern named bridge, to exemplify the model
(see figure 4.9). The result of applying our model to describe this pattern is shown
in the table 4.3.

The indexing attributes, Name and Purpose, fit the same classification used
in [GHJV94].

The class graph considers the classes and the relationships included the
pattern’s definition. From the UML model depicted in figure 4.9 we can define:

Graph = {

54 CHAPTER 4. REUSING DESIGN

Figure 4.9: Design pattern: bridge.

N = {Abstraction, RefinedAbstraction,

Implementor, ConcreteImplementationA, ConcreteImplementationB}

L = {(Abstraction,RefinedAbstraction,inheritance),

(Implementor,ConcreteImplementationA,inheritance),

(Implementor,ConcreteImplementationB,inheritance),

(Abstraction,Implementor,aggregation)}

}

In the Fundamental properties we start to decide how the component will
be reused in the future. Then the invariants are:

GI = {

NGI = {Abstraction, RefinedAbstraction,

Implementor, ConcreteImplementationA}

LGI = {(Abstraction,RefinedAbstraction,inheritance),

(Implementor,ConcreteImplementationA,inheritance),

4.4. AN EXAMPLE 55

(Abstraction,Implementor,aggregation)}

}

We could use the invariants functions, for example we may define Abstraction
as a Context class, and Implementor as Root class:

CN (GI,Abstraction) = NI ∪ {(Implementor, association=false),

(RefinedAbstraction, association=false),

(ConcreteImplementorA, association=false)}

RN (GI,Implementor) = {

NI = (NI ∪ {(ConcreteImplementorA, root=false)}),

LI = (LI ∪ {(Abstraction,RefinedAbstraction,(Inheritance),

multiplicity=1)})

}

The Specific properties involve information that enhances the component
understanding, therefore the model includes textual explanations about the ap-
plicability of the component, UML diagrams, like Class and Sequence diagrams,
as well.

For this example we define only two reuse rules, implementation-inheritance
and aggregation-comprise, but obviously it is not a closed list. The number of
rules is limited for the all possible combinations of the attribute’s values.

Firstly, the implementation-inheritance rule is defined as a dependency na-
ture mechanism since a client component(child) that reuse this server compo-
nent(parent) will depends on its lifetime. Nothing happens with the server com-
ponent if a client dies, then that relationship is not predominant. By implementing
the classical inheritance definition, all the features flow from the parent compo-
nent to the child component in a complete way. That issue is addressed by Scope
and Flood attributes with complete and all values respectively. They are been
bound to boundless and true values respectively. The assembling between com-
ponents could be made either by Abstraction since it is the unique element in
Context Classes attribute.

56 CHAPTER 4. REUSING DESIGN

And finally, the aggregation-comprise rule differs, from the previous one, in
the nature, it is weaker since both attributes were bound to false values. Appendix
C includes a concrete example.

4.5 Comparison

ARCoM model differs from the Keller et al. [KS98] that it approach permits ex-
press more generic design solutions. But, perhaps the most important distinction
is the ARCoM model allows to express composition information. When a compo-
nent is part of a bigger solution knows about the mechanism applied to be reused,
and aside the component’s elements propagation, it includes attributes that enrich
the composition process, for instance Shareability and Transitiveness. Finally, the
ruse rules are based on well-known concept, copied form object-oriented paradigm,
for example inheritance, associations, etc.

4.6 Summary

ARCoM states that a component may be represented by a set of attributes that
describe the picture of the design solution intended, these attributes are divided
in four groups, Graph, Fundamentals, Specifics and Reuse rules. There is an
standard way to evaluate the rules, that could be redefined as wished. The reuse
rules may be, metaphorically speaking, compared to a electronic table where the
switches are connected by following a determined configuration. Then we can
change the behavior of the table, not only altering the switch position but also
modifying the connection behind. The relation between switches is the semantic
defined for the evaluation of the attributes conforming a rule (see figure 4.8).
We could consider ARCoM components as grey-box oriented since they could be
intersected but restricted by the defined invariants.

4.6. SUMMARY 57

Component

Indexing = {
Name = ”bridge”

Purpose = ”behaviorial” }

Fundamentals = {
Graph = {

... see above
}

Specifics = {
Applicability = ”Use the Bridge pattern when:

- you want to avoid a permanent binding between an abstraction
and its implementation. This might be the case, for example, when
the implementation must be selected or switched at run-time.
...”

Class Diagram = class diagram file reference

Sequence Diagram = sequence diagram file reference}

Reuse Rules = {
Rule = {

Name = ”implementation-inheritance”

Nature = {
Dependence = true
Predominant = false }

Propagation = {
Scope = complete
Flood = all }

Shareability = boundless
Transitiveness = true}

Rule = {
Name = ”aggregation-comprise”

Nature = {
Dependence = false
Predominant = false }

Propagation = {
Scope = complete
Flood = all }

Shareability = boundless
Transitiveness = true}

Table 4.3: Bridge pattern’s representation.

58 CHAPTER 4. REUSING DESIGN

Chapter 5

Supporting ARCoM Components

To support components produced under ARCoM’s specifications, there are some
tools that might be supplied to give a guarantee that those component will be
ARCoM-complaints. In this section we describe, firstly, our model using MOF1

to get a complete idea about it, and secondly, we propose a family of tools that
allows, to both user profiles consumer and producer, achieve the manipulation
of ARCoM components. Appendix A includes a description in details about the
prototype’s implementation.

5.1 Meta Model

Figure 5.1 shows the meta model of ARCoM specifications. In this diagram we
may distinguish the structure for the design components defined in ARCoM, that
is, FundamentalProperty, SpecificProperty and ReuseRule. Another feature in-
cluded in the model’s diagram is the NameSpace concept used in the component
composition.

5.2 Implementation schema

To manipulate ARCoM components we design a schema where a family of tool
deals with all of the activities that conforms the engineering approaches defined
in chapter 3. Figure 5.2 shows this schema.

1Meta Object Facility

59

60 CHAPTER 5. SUPPORTING ARCOM COMPONENTS

Figure 5.1: ARCoM’s MOF-based diagram.

According to the producer and consumer viewpoints (see section 3.3), the
family of tools is divided in two groups: Component Producer Manager (CPM)
that permits to the producer generates a component, and Component Consumer
Manager (CCM) that deals with the component reuse. They make use of three
other more specific tools, UML Editor, Constraint Manager, and Repository Man-
ager, which provide a means to specify the content of the representation sug-
gested for ARCoM (see figure 4.1). In the following two sections we will describe
the functions the tools should cover for supporting the component management.
Implementation issues are depicted in Apendix A.

5.2.1 Component Producer Manager - CPM

As stated before the user that interacts with the CPM is the producer. The CPM
permits obtain the component representation, that is a ARCoM-compliant one,
therefore this tool provides an interface from where the user determine the values
for the attributes. The schema considers the usage of the UML Editor to generate
the model from we will extract, by using this graphical interface, the information
concerned with the fundamentals properties (i.e. class graph), and the Constraint
Manager for the specification and checking the invariant expressions. And finally,
once the representation is specified enterally we desire store the component in a

5.2. IMPLEMENTATION SCHEMA 61

Figure 5.2: ARCoM’s tool family.

62 CHAPTER 5. SUPPORTING ARCOM COMPONENTS

place where it is available for the consumers, the repository.

• An UML Editor for drawing models: The UML Editor let to the
user not only define the UML-based diagrams comprised in the ARCoM
components, but also to use the graphical interface to determine the elements
for the Class Graph, Context Class, etc.

• Constraint manager for Invariants: Fundamental properties are at-
tributes for which it is needed a well-formed expression that will be used
for later checking, for this kind of attributes this tool should provide the
mechanism to analyze those expressions. In those cases, since the invariants
will be written in Object Constraint Language [WK98], a parser for this
language will be used (see section A).

• A Repository to broadcast a component: As the main output, the
CPM generates a component’s file the according to the ARCoM’s repre-
sentation. To conclude the circuit, the component has to be published to
be reused by a consumer user. The place where the components will be
stores is name repository, and basically provides a directory service, that is,
an index through which a component can be looked up. The index criteria
proposed states the utilization of the Purpose attribute as the fist level of
classification and the Name attribute as the second one.

5.2.2 Component Consumer Manager - CCM

The user profile that fits with the CCM ’s functions is the producer one.

• Picking up components: The CCM supplies the required functions for
reusing the components that the consumer picks up from the repository. At
this moment the CCM applies a searching strategy according to the indexing
one.

• An UML Editor for design by reuse: The editor offers an interface
to generate a design solution by reusing the components through the avail-
able reuse rules. But the most important function is that associated to the
triggering of the reuse rule selected in the composition.

• Constraint Manager: Ensuring consistent invariants: The Constraint
Manager has a great responsibility when a component composition is pro-
duced. Mainly, it has to check that the resulting set of invariants remains
in a consistent state, that is, none contradiction appear among them. An-
other job is the calculation of the set of invariants based on the propagation
effects.

5.3. SUMMARY 63

5.2.3 Code generation

ARCoM component’s representation involves information about the classes in-
cluded in the component enough to obtain the corresponding expression in some
object-oriented language. Therefore we need to define the transformation rules
similar to any design tool that manipulate XMI files to express a model, for in-
stance.

5.3 Summary

We define the family needed to work with ARCoM components based on the user
roles (see section 3.3), producer and consumer. This division permits clarify the
scenario where the component could live.

Although in the schema to support ARCoM components we made some
consideration about graphical user interfaces, it should be advantageous design
the manipulation libraries independently of the interface used to facilitate the
component manipulation (see section A.2.6).

64 CHAPTER 5. SUPPORTING ARCOM COMPONENTS

Chapter 6

Future Works

6.1 Model

6.1.1 Model Formalization

Although we tried a formal definition for the fundamental properties, particularly
for the result from component composition, this formal approach it is just that,
the beginning. We could need a more robust formal description of our model not
only to prevent ambiguous concepts, but also to provide the necessary framework
to demonstrate some useful properties. For example, we might need to know
whether our model behaves like the types in object-oriented programming, that
is, to check substitutivity between components, or to get the relationship between
the sequentiality of the reuse rules.

6.1.2 Separations of Concerns

Since ARCoM model can be seem as a pattern-oriented programming approach,
the patterns could be categorized in such a way that each of those category ad-
dresses a specific concern, namely, propagation, transportation, and synchroniza-
tion patterns[HL95], for instance.

65

66 CHAPTER 6. FUTURE WORKS

6.1.3 Organization

The current version of ARCoM introduces a component’s organization rather poor
that fails when a non abstract pattern need to be located in the structure. For
example, the modelling of an editor can be understood as a concretization of the
observer pattern[GHJV94], and although this editor component has an observer
conception, this classification schema is not enough for some specific case. It
should be considered, as an improvement in our model, to introduce a similar
concept as the semantic network [ASC98], which are broadly used in Artificial
Intelligence. Semantic networks would provide the necessary support to express
relationships among components more semantically reach than that provided by
a tree.

6.2 Implementation

6.2.1 Extending Constraint Language

Although the OCL provide a well-proven support for constraint specification, for
example at meta-level, some invariants concerned with the meaning of the pattern
are not simple to express. For that reason, we consider an extension in the corre-
sponding grammar specification to introduce structures to achieve more natural
expression.

6.2.2 Graphical Notation

Finally, we will need to define a graphical expression for ARCoM components to
differ them from another graphical meanings. In terms of UML we need to use
the stereotype mechanism to achieve a graphical solution UML-compliant.

Chapter 7

Conclusions

This thesis describes a model and the corresponding supporting tool in order to
design the reuse in component-based systems. The resulting tools is considered as
a methodological guide since it obey to the engineering approaches described for
component design. On the one hand, design for reuse address the identification,
representation and organization of components. On the other hand, design for
reuse deals with searching, adaptation and composition components.

The prototype allows to show the interest and the feasibility of such ap-
proach. Our result is presented as a kind of methodological design approach orga-
nized in three steps: Component Producer Management, Component Consumer
Management and Code Generation. ARCoM is also exposed as a representation
model to design components and composition in three parts: fundamental and
specific properties, and reuse rules. Basically a the properties could be seen as
the structure and the rules as the behavior of the component when it is reused.

The suggested model does not consider its application in a reverse engineer-
ing context, that is, there is not a support a pattern matching in order to obtain
the underlying architecture of a given application.

67

68 CHAPTER 7. CONCLUSIONS

Appendix A

Implementation Issues

A.1 ARCoM components in XML files

The selection of the most suitable file format for storing a ARCoM component was
not a complex task. There are many attributes for which XML1[W3C00] seems
to provide the best solution, namely simpleness, flexibility, extensibility, meta-
model neutral, programming language neutral, API streamable, textual, human
readable. But perhaps the most useful feature of this tagged format, designed for
information interchange, is the ability to separate data and metadata, represen-
tation and content.

Particularly, for our work the ARCoM’s specifications should be understood,
in terms of XML technology, as the grammar to which a ARCoM component has
to fulfil in order to be considered a compliant one. For all those reasons we use the
XML technology, particularly the related to the schemas,2[W3C01] to implement
the component representation.

For our work we define two schemas files, to store components and repos-
itory management information, respectively. In the former case the structure in
the schema satisfies mainly the ARCoM’s representation depicted in table 4.1.
Few inclusions have been made not only to enrich the component information
(e.g. publication, subscriptions), but also to solve implementation issues (e.g.
namespaces manipulation). In the Appendix B we explain in detail those files.

1eXtensible Markup Language
2Another alterative to determine the data structure is to use a DTD (Data Type Definition)

instead of schema files.

69

70 APPENDIX A. IMPLEMENTATION ISSUES

Figure A.1: ARCoM-Producer’s user-interface.

A.2 Application

In this section we describe a prototype of the tool family to support the manip-
ulation of ARCoM component, taking as a guide the schema proposed in section
5.2.

A.2.1 Producer tool

From this application it is possible to build a ARCoM component for reused.
Figure A.1 shows a snapshot of the ARCoM-Producer tool.

Through this interface we can browse the many repositories available where
the component are published, and therefore be eventually picked-up to be reused.
There are remote and local repositories. The local one works as a temporal reposi-
tory where the local producer user store the component not available for be reused
yet. Basically, form this application is possible to:

A.2. APPLICATION 71

Figure A.2: UML Editor’s user-interface.

• Browse the repositories on which the user has the privileges to do this.

• Build a component from the scratch. If the producer need to reuse a com-
ponent to build another one should use the ARCoM-Consumer tool (see
section A.2.5).

• Define reuse rules for component from composition.

The output of this tool is a XML file (see Appendix B)

To specify some attributes, the ARCoM-Producer tool uses the UML Editor,
Constraint Editor and Repository Manager.

A.2.2 UML Editor

This application not only provide a means to draw UML diagrams but also to
specify a value for the attributes that involve a reference to members of the class
graph. Figure A.2 shows the UML Editor used in the prototype.

We use a tool, named ArgoUML (see below section A.2.6), as the UML
Editor. We apply the tag [BRJ98] facilities provided by the UML’s specification

72 APPENDIX A. IMPLEMENTATION ISSUES

to indicate which of the class diagram’s members belong to the Graph, Context
Class, Dominant Class, etc.. Then, this editor permits:

• To create the UML diagrams associated to the ARCoM representation.

• To specify the elements involved in the fundamentals.

• To provide the graphical interface for the composition process in theARCoM-
Consumer tool (see section A.2.5).

Once determined the tagged elements, the ARCoM-Producer makes the
parsing of the XMI3[Kum00] files, generated by the editor, to extract the in-
formation.

A.2.3 Constraint Editor

To determine the attributes that imply constraints, namely Graph, Node and
Links Invariants, we use a Constraint Editor. Figure A.3 shows the user interface
of this editor.Table A.1 enumerates the adaptation the elements in the solution
may suffer.

Because of the selected constraint language, all the constraint that we can
determine in the graph’s elements can be translated in constraint on the classes
(nodes). That because we introduce the link’s information inside the classes. In
order to provide traceability, the adaptations produced in a component will be
logged preserving references to the original elements.

A.2.4 Repository Manager

The ARCoM-Repository Manager services to both user roles. The producer can
organize the repository, and the consumer localize a particular component to
reuse. Figure A.4 shows the user interface implemented for the prototype. Among
the services provided by this tools are:

• To browse the directories of components accessed from the repositories.

• To publish components through the directories in repositories.

3Metadata Interchange Format

A.2. APPLICATION 73

Figure A.3: Constraint Editor’s user-interface.

Graph’s Element Adaptation Comments

Rename Change the class’s identifier.
General Modify Structure Add attributes.

Modify Behavior Add operations.
Add (Similar to Modify Structure)
Rename Change the attribute’s identifier.

Attribute Modify Change attribute’s type.
Delete Delete an attribute.
Add (Similar to Modify Behavior)

Class Operation Rename Change operation’s identifier.
Modify input Change parameters.
Modify output Change output’s type.
Delete Delete operation.
Add It means that the class can be as-

sociated.
Association Rename Change association’s role.

Modify multiplicity Change association’s multiplicity.
Modify end Change association’s type.

Specialization Add Add a new subclass.
Modify Change specialization’s multiplic-

ity.

Table A.1: Adaptations in ARCoM components.

74 APPENDIX A. IMPLEMENTATION ISSUES

Figure A.4: Repository Manager’s user-interface.

• To constraint the reuse of a component when the reuse rule states this
limitation.

• To generates statistic information about the reuse of component.

A.2.5 Consumer tool

The reuse of an ARCoM component can be achieved by using the ARCoM-
Consumer tool. The consumer uses this application to select a component from
the repositories and then he might decide to publish it by using the ARCoM-
Producer tool (see section A.2.1). Figure A.5 shows the implementation of a user
interface for that tool.

A.2. APPLICATION 75

Figure A.5: ARCoM consumer’s user-interface.

A.2.6 Software Libraries

The implementation’s design provides for packages that permit to manipulate AR-
CoM components without depending on the user interface applications described
above.

Existing Packages

Some services that have been provided by some packages use some existing appli-
cations, namely:

• Tigris-ArgoUML4 v0.8.1a: We used this tool to provide a graphical in-
terface to the user to generate the UML diagram considered part of the
ARCoM model.

• Apache-Xerces5 v1.4.2: This general purpose XML parser is used:

– To manipulate the XML files involved in the application (see Ap-
pendix B), for example, generate, and modify the XML generated,
check whether a file is ARCoM-compliant or not, etc.

4http://argouml.tigris.org/
5http://xml.apache.org

76 APPENDIX A. IMPLEMENTATION ISSUES

Name Comments Some classes

arcom.component Includes the classes to rep-
resent the component’s rep-
resentation.

Component, Fundamentals,
Specifics, Reuserule, AR-
CoMBeanInfo, etc.

arcom.repository Includes the classes that
implement the repository’s
manipulation.

Repository, Directory,
Server, RepositoryUI(see
figure A.4), etc..

arcom.invariants Includes the classes to ma-
nipulate invariants.

Invariant, InvariantUI (see
figure A.3))

arcom.producer Includes the classes imple-
menting the producer’s user
interface shown in figure
A.1.

ProducerUI.

arcom.consumer Includes the classes im-
plementing the consumer’s
user interface shown in fig-
ure A.5 .

ConsumerUI.

Table A.2: Packages implemented exclusively for ARCoM’s prototype.

– To process the XMI files, that is class diagram obtained from the UML
editor aforementioned, in order to calculate the attributes specified by
means a class diagram (see section A.2.2).

• IBM-OCL Parser6 v0.3: This application was integrated to the proto-
type to manipulate OCL expressions involved in the ARCoM component’s
description.

Implemented Packages

Table A.2 enumerate the packages implemented to manipulate ARCoM compo-
nents exclusively.

Table A.3 shows part of the ARCoM bean implementation. This permits to
use a ARCoM component in any IDE.

6http://www-4.ibm.com/software/ad/library/standards/ocl.html

A.2. APPLICATION 77

public class ARCoMBeanInfo extends SimpleBeanInfo {
...

public PropertyDescriptor[] getPropertyDescriptors() {
try {

PropertyDescriptor fundamentals =
new PropertyDescriptor(”fundamentals”, FundamentalsBean);
PropertyDescriptor specifics =
new PropertyDescriptor(”specifics”, SpecificsBean);
PropertyDescriptor reuserules =
new PropertyDescriptor(”reuserules”, ReuserulesBean);
PropertyDescriptor label =
new PropertyDescriptor(”label”, beanClass);
fundamentals.setBound(true);
specifics.setBound(true);
reuserules.setBound(true);
...
label.setBound(true);
PropertyDescriptor rv[] =
{fundamentals, specifics, reuserules,... label};
return rv;
} catch (IntrospectionException e) {
throw new Error(e.toString());
}

}}
}

Table A.3: ARCoM’s bean information class.

78 APPENDIX A. IMPLEMENTATION ISSUES

A.2.7 System Requirements

To use ARCoM-Producer or ARCoM-Consumer applications JDK 1.2 or later is
required. For ARCoM-Repository Manager as server mode was needed to have
installed an http server.

Appendix B

XML files

This section includes a description, in details, of the XML files generated to sup-
port the administration of the ARCoM components. They are the XML schema
files [W3C00, W3C01] that describe the data structure representing the informa-
tion about the components. Although the model only use two schemas, we will
explain an auxiliary one used by the prototype to preserve the information about
the repositories, a repository’s bookmark file.

B.1 XML schema file for the ARCoM compo-

nents

To achieve a better undertanding on the structure of this file its content is divided
in three parts: header, body and user’s datatypes parts.

B.1.1 Header part

The information sections comprised in this part of the file are:

• General data about the component (e.g. creational date, etc.).

• Indexing data to allows the right location of the component in the eventual
repository assigned.

• Subscription data that enumerates the many components that support the
current component definition (see section B.1.3).

79

80 APPENDIX B. XML FILES

• Publication data that permits the consumer application to check the com-
ponent’s availability to be reused.

• Author data that provides owner’s references.

Table B.1 shows the complete definition of this part.

B.1.2 Body part

The content of this part obeys mainly to the structure defined in section 4.1. Addi-
tionally to the fundamentals, specifics, reuse rules parts, we include an implementation-
oriented part to preserve the adaptations made on the original components after
a reuse process. Table B.2 shows the complete definition of this part.

B.1.3 User’s datatypes part

If we pay attention to the previous definitions (section B.1 and B.2) we find type
references that are user defined ones. A detailed definition of them is depicted in
this section.

ARCoMNameSpaceType

In table B.1, the expression <xs:schema xmlns:xs = ’http://www.w3.org/2001/
XMLSchema’> means that the prefixed (xs) data types are associated to this
namespace, which is the defualt one for the XML files[W3C01]. The same concept
is applied for the ARCoM’s repositories, the place where a component can be
published to be reused. To associate the different graph’s elements to the right
component is used a namespace reference, in this case an ARCoM component
is a namespace. It makes sense when the element symbolizes a reference of an
element belonging to another component. If it is not a reference, that is a copy or
an original element, the namespace points to the current component. Table B.3
shows the ARCoMNameSpacetype definition included in the schema file.

GraphType

This type makes reference to three user-defined types in order to build the graph
idea stated by the model, that is, ClassifierType (see table B.5) to represent the

B.1. XML SCHEMA FILE FOR THE ARCOM COMPONENTS 81

<!—- BEGIN HEADER PART —->

<!– Indexing and general data –>
<xs:attribute name=”name” type=”xs:string”/>
<xs:attribute name=”purpose” type=”xs:string”/>
<xs:attribute name=”prefix” type=”xs:string”/>
<xs:attribute name=”creationDate” type=”xs:date”/>
<xs:attribute name=”schemaVersion” type=”xs:string”/>
<xs:sequence>
<!– Publication data –>

<xs:element name=”publication” minOccurs=”0” maxOccurs=”unbounded”>
<xs:complexType>
<xs:attribute name=”id” type=”xs:integer”/>
<xs:attribute name=”lastModificationDate” type=”xs:date”/>
<xs:sequence>
<xs:element name=”nameSpace” type=”ARCoMNameSpaceType”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<!– Subscription data –>

<xs:element name=”subscription” minOccurs=”0” maxOccurs=”unbounded”>
<xs:complexType>
<xs:attribute name=”prefix” type=”xs:string”/>
<xs:sequence>
<xs:element name=”nameSpace” type=”ARCoMNameSpaceType”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<!– Author data –>

<xs:element name=”author”>
<xs:complexType>
<xs:attribute name=”name” type=”xs:string”/>
<xs:attribute name=”email” type=”xs:uriReference”/>

</xs:complexType>
</xs:element>

<!—- END HEADER PART —->

Table B.1: XML schema file (header).

82 APPENDIX B. XML FILES

<!—- BEGIN BODY PART —->

<!– Fundamentals part –>

<xs:element name=”fundamentals”>
<xs:complexType>
<xs:sequence>
<xs:element name=”graph” type=”GraphType”/>
<xs:element name=”contextClass” type=”IdentifierType”
minOccurs=”0” maxOccurs=”unbounded”/>
<xs:element name=”dominantClass” type=”IdentifierType”
minOccurs=”0” maxOccurs=”unbounded”/>
<xs:element name=”invariants” type=”InvariantType”
minOccurs=”0”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<!– Specifics part –>

<xs:element name=”specifics”>
<xs:complexType>
<xs:attribute name=”applicability” type=”xs:string”/>
<xs:sequence>
<xs:element name=”umlDiagram” type=”UMLDiagramType”
minOccurs=”1” maxOccurs=”unbounded”/>
<xs:element name=”codeGenerator” type=”CodeGenerationRuleType”
minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<!– Reuse Rules part –>

<xs:element name=”reuserules”>
<xs:complexType>
<xs:sequence>
<xs:element name=”rule” type=”ReuseRuleType” minOccurs=”0”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<!– Adaptation log –>

<xs:element name=”adaptations”>
<xs:complexType>
<xs:sequence>
<xs:element name=”adaptation”
type=”AdaptationType” minOccurs=”0”/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>(from header)
<!—- END BODY PART —->

Table B.2: XML schema file (body).

B.1. XML SCHEMA FILE FOR THE ARCOM COMPONENTS 83

<xs:complexType name=”ARCoMNameSpaceType”>
<xs:attribute name=”location”type=”xs:uriReference”/>
<xs:attribute name=”directoryName” type=”xs:string”/>

</xs:complexType>

Table B.3: ARCoMNameSpaceType type’s definition.

<xs:complexType name=”GraphType”>
<xs:sequence>
<xs:element name=”C”>
<xs:complexType>
<xs:sequence>
<xs:element name=”classifier” type=”ClassifierType”
minOccurs=”1” maxOccurs=”unbounded”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=”L”>
<xs:complexType>
<xs:sequence>
<xs:element name=”generalization” type=”GeneralizationType”
minOccurs=”0” maxOccurs=”unbounded”/>
<xs:element name=”association” type=”AssociationType”
minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>

Table B.4: GraphType type’s definition.

C set, and GeneralizationType, AssociationType, RealizationType (see tables
B.8, B.10, respectively) to represent the L set. For this version we consider as
the possible relationships among classes, inheritance and the different kind of
associations. Table B.4 shows the complete definition.

ClassifierType

The attribute structure of this type was, mainly, copied form the classifier defini-
tion for XMI[Gro99]. It uses AttributeType and OperationType (shown in tables
B.18 and B.7, respectively) to define the class structure. Table B.5 shows the
complete definition.

84 APPENDIX B. XML FILES

<xs:complexType name=”ClassifierType”>
<xs:attribute name=”name” type=”xs:string”/>
<xs:attribute name=”type” default=”Class”>
<xs:simpleType>
<xs:restriction base = ”xs:string”>
<xs:enumeration value=”Class”/>
<xs:enumeration value=”Interface”/>
<xs:enumeration value=”Datatype”/>
<xs:enumeration value=”Signal”/>
<xs:enumeration value=”Component”/>
<xs:enumeration value=”Node”/>
<xs:enumeration value=”Use case”/>
<xs:enumeration value=”Subsystem”/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name=”visibility” default=”public”>
<xs:simpleType>
<xs:restriction base = ”xs:string”>
<xs:enumeration value=”public”/>
<xs:enumeration value=”protected”/>
<xs:enumeration value=”private”/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name=”isAbstract” type=”xs:boolean”/>
<xs:attribute name=”isRoot” type=”xs:boolean”/>
<xs:attribute name=”isLeaf” type=”xs:boolean”/>
<xs:attribute name=”isPolymorphic” type=”xs:boolean”/>
<xs:attribute name=”multiplicity” type=”xs:integer”/>
<xs:sequence>
<xs:element name=”identifier” type=”xs:IdentifierType”>
<xs:element name=”features”>
<xs:complexType>
<xs:sequence>
<xs:element name=”attribute” type=”AttributeType”
minOccurs=”0” maxOccurs=”unbounded”/>
<xs:element name=”operation” type=”OperationType”
minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>

Table B.5: ClassifierType type’s definition.

B.1. XML SCHEMA FILE FOR THE ARCOM COMPONENTS 85

<xs:complexType name=”AttributeType”>
<xs:attribute name=”prefixNameSpace” type=”xs:string”/>
<xs:attribute name=”idInNameSpace” type=”xs:integer”/>
<xs:attribute name=”name” type=”xs:string”/>
<xs:attribute name=”visibility” type=”xs:string”/>
<xs:attribute name=”multiplicity” type=”xs:string”/>
<xs:attribute name=”type” type=”xs:string”/>
<xs:attribute name=”initValue” type=”xs:string”/>
<xs:attribute name=”adaptation” type=”xs:string”/>
<xs:attribute name=”property” default=”none”>
<xs:simpleType>
<xs:restriction base = ”xs:string”>
<xs:enumeration value=”none”/>
<xs:enumeration value=”changeable”/>
<xs:enumeration value=”addOnly”/>
<xs:enumeration value=”forzen”/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:sequence>
<xs:element name=”identifier” type=”xs:IdentifierType”>

</xs:sequence>
</xs:complexType>

Table B.6: AttributeType type’s definition.

AttributeType and OperationType

Like ClassifierType, their structure was, mainly, copied form the feature definition
for XMI[Gro99]. They are identified to implement a tracing process for the adap-
tation generated (see table A.1). Tables B.6 and B.7 show the complete definition,
respectively.

GeneralizationType and AssociationType

They express the two possible relationship established among the classifier in-
cluded in the solution. Like ClassifierType, their structure was, mainly, copied
form the Assosiations and Generalizable definition for XMI[Gro99]. They are
identified to implement a tracing process for the adaptation generated (see table
A.1). Tables B.8 and B.9 show the complete definition, respectively.

86 APPENDIX B. XML FILES

<xs:complexType name=”OperationType”>
<xs:attribute name=”name” type=”xs:string”/>
<xs:attribute name=”visibility” type=”xs:string” use=”optional”/>
<xs:attribute name=”returnType” type=”xs:string”/>
<xs:attribute name=”adaptation” type=”xs:string”/>
<xs:attribute name=”property” use=”optional”>
<xs:simpleType>
<xs:restriction base = ”xs:string”>
<xs:enumeration value=”leaf”/>
<xs:enumeration value=”isQuery”/>
<xs:enumeration value=”sequencial”/>
<xs:enumeration value=”guarded”/>
<xs:enumeration value=”concurrent”/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:sequence>
<xs:element name=”identifier” type=”xs:IdentifierType”>
<xs:element name=”parameter” minOccurs=”0” maxOccurs=”unbounded”>
<xs:complexType>
<xs:sequence>
<xs:element name=”identifier” type=”xs:IdentifierType”>

</xs:sequence>
<xs:attribute name=”name” type=”xs:string”/>
<xs:attribute name=”adaptation” type=”xs:string”/>
<xs:attribute name=”direction” use=”optional”>
<xs:simpleType>
<xs:restriction base = ”xs:string”>
<xs:enumeration value=”in”/>
<xs:enumeration value=”out”/>
<xs:enumeration value=”inout”/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name=”type” type=”xs:string”/>
<xs:attribute name=”defaultType” type=”xs:string” use=”optional”/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

Table B.7: OperationType type’s definition.

B.1. XML SCHEMA FILE FOR THE ARCOM COMPONENTS 87

<xs:complexType name=”GeneralizationType”>
<xs:attribute name=”name” type=”xs:string”/>
<xs:attribute name=”adaptation” type=”xs:string”/>
<xs:sequence>
<xs:element name=”identifier” type=”xs:IdentifierType”>
<xs:element name=”parent” type=”IdentifierType”/>
<xs:element name=”child” type=”IdentifierType”/>

</xs:sequence>
</xs:complexType>

Table B.8: GeneralizationType type’s definition.

<xs:complexType name=”AssociationType”>
<xs:attribute name=”name” type=”xs:string”/>
<xs:sequence>
<xs:element name=”identifier” type=”xs:IdentifierType”>
<xs:element name=”end” type=”EndType” minOccurs=”2” maxOccurs=”2”/>

</xs:sequence>
</xs:complexType>

Table B.9: AssociationType type’s definition.

AssociationEndType

It permits the treatment of the end of every association separately. Like Classi-
fierType, its structure was, mainly, copied form the AssosiationEnd definition for
XMI[Gro99]. Table B.10 shows the complete definition.

IdentifierType

Since the elements involved in the representation belong to a nameSpace (see
table B.1.3), we use the IdentifierType to implement this addressing system. An
identifier is compound by two attributes:

• prefixNameSpace: It is a reference to a nameSpace listed in the Subscrip-
tion part (see table B.1). For the element defined in current component this
attribute has the same value than that assigned to the prefix attribute (see
Indexing and General data part in table B.1).

• idInNameSpace: It is a identifier of an element in the nameSpace specified
in the previous attribute.

Table B.11 shows the complete definition.

88 APPENDIX B. XML FILES

<xs:complexType name=”AssociationEndType”>
<xs:attribute name=”name” type=”xs:string”/>
<xs:attribute name=”isNavegable” type=”xs:boolean”/>
<xs:attribute name=”type”>
<xs:simpleType>
<xs:restriction base = ”xs:string”>
<xs:enumeration value=”Aggregation”/>
<xs:enumeration value=”Composition”/>
<xs:enumeration value=”none”/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:sequence>
<xs:element name=”multiplicity” type=”MultiplicityType”/>
<xs:element name=”associated” type=”IdentifierType”/>

</xs:sequence>
</xs:complexType>

Table B.10: AssociationEndType type’s definition.

<xs:complexType name=”IdentifierType”>
<xs:attribute name=”prefixNameSpace” type=”xs:string”/>
<xs:attribute name=”idInNameSpace” type=”xs:integer”/>

</xs:complexType>

Table B.11: IdentifierType type’s definition.

B.1. XML SCHEMA FILE FOR THE ARCOM COMPONENTS 89

<xs:complexType name=”MultiplicityType”>
<xs:attribute name=”lower” type=”xs:nonNegativeInteger”/>
<xs:attribute name=”upper” type=”xs:string”/>

</xs:complexType>

Table B.12: MultiplicityType type’s definition.

<xs:complexType name=”InvariantType”>
<xs:sequence>
<xs:element name=”identifier” type=”IdentifierType”/>
<xs:element name=”expresion” type=”xs:string”/>

</xs:sequence>
</xs:complexType>

Table B.13: InvariantType type’s definition.

MultiplicityType

It is used by ClassifierType and AssociationEndType to specify their multiplicity.
Table B.12 shows the complete definition.

InvariantType

The attributes that imply invariants specifications, that is, Adaptation Invariants
and Structural Invariants, use this definition. Table B.13 shows the complete
definition.

FileType

The information about the files related to the component representation is de-
termined by this type. It is used for the UML diagrams generated by the UML
Editor. Table B.14 shows the complete definition.

<xs:complexType name=”FileType”>
<xs:attribute name=”name” type=”xs:string”/>
<xs:attribute name=”location” type=”xs:string”/>

</xs:complexType>

Table B.14: FileType type’s definition.

90 APPENDIX B. XML FILES

<xs:complexType name=”UMLDiagramType”>
<xs:attribute name=”name” type=”xs:string”/>
<xs:attribute name=”type”>
<xs:simpleType>
<xs:restriction base = ”xs:string”>
<xs:enumeration value=”Class”/>
<xs:enumeration value=”Sequence”/>
<xs:enumeration value=”Usa Case”/>
<xs:enumeration value=”State”/>
<xs:enumeration value=”Activity”/>
<xs:enumeration value=”Deployment”/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:sequence>
<xs:element name=”file” type=”FileType”/>

</xs:sequence>
</xs:complexType>

Table B.15: UMLDiagramType type’s definition.

UMLDiagramType

Although this version of the model only takes into account two UML diagram,
Class and Sequence, as part of the specifics, we define this generic type to allow
futures extensions. Table B.14 shows the complete definition.

ReuseRuleType

Defines the reuse rule’s structure. Table B.16 shows the complete definition.

CodeGenerationRuleType

To specify the rules for code generation we define this generic type. In order to
improve this facility, a more elaborated analysis should be done to redefine this
element. Table B.17 shows the complete definition.

AdaptationType

This type was defined to log the eventual adaptations on the components. Table
B.18 shows the complete definition.

B.1. XML SCHEMA FILE FOR THE ARCOM COMPONENTS 91

<xs:complexType name=”ReuseRuleType”>
<xs:attribute name=”name” type=”xs:string”/>
<xs:attribute name=”dependence” type=”xs:boolean”/>
<xs:attribute name=”predominance” type=”xs:boolean”/>
<xs:attribute name=”shareability” type=”xs:string”/>
<xs:attribute name=”transitiveness” type=”xs:boolean”/>
<xs:attribute name=”method”/>
<xs:simpleType>
<xs:restriction base = ”xs:string”>
<xs:enumeration value=”Copy”/>
<xs:enumeration value=”Reference”/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:sequence>
<xs:element name=”identifier” type=”xs:IdentifierType”>
<xs:element name=”propagation”>
<xs:complexType>
<xs:attribute name=”range”/>
<xs:simpleType>
<xs:restriction base = ”xs:string”>
<xs:enumeration value=”Complete”/>
<xs:enumeration value=”Partial”/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:sequence>
<xs:element name=”graphElementFlood” type=”IdentifierType”
minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=”connector”>
<xs:complexType>
<xs:attribute name=”relationship” type=”xs:string”/>
<xs:sequence>
<xs:element name=”graphElement” type=”IdentifierType”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=”adaptationConstraint” type=”InvariantType”/>

</xs:sequence>
</xs:complexType>

Table B.16: ReuseRuleType type’s definition.

92 APPENDIX B. XML FILES

<xs:complexType name=”CodeGenerationRuleType”>
<xs:attribute name=”language” type=”xs:string”/>
<xs:sequence>
<xs:element name=”expression” type=”xs:string”/>

</xs:sequence>
</xs:complexType>

Table B.17: CodeGenerationRuleType type’s definition.

<xs:complexType name=”AdaptationType”>
<xs:attribute name=”operation”>
<xs:simpleType>
<xs:restriction base = ”xs:string”>
<xs:enumeration value=”Add”/>
<xs:enumeration value=”Rename”/>
<xs:enumeration value=”Modify”/>
<xs:enumeration value=”Delete”/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name=”value” type=”xs:string”/>
<xs:complexType>
<xs:sequence>
<xs:element name=”identifier” type=”IdentifierType”/>

</xs:sequence>
</xs:complexType>

</xs:complexType>

Table B.18: AdaptationType type’s definition.

B.2. REPOSITORY SCHEMA 93

<?xmlversion=”1.0”encoding=”UTF-8”?>
<xs:schema xmlns:xs=’http://www.w3.org/2001/XMLSchema’>
<arcom:schema xmlns:xs=’arcom component.xsd’>
<xs:element name=”component” type=”ARCoMRepositoryType”
minOccurs=”0” maxOccurs=”unbounded”/>
<!– ARCoM Component Entry –>
<xs:complexType name=”ARCoMRepositoryType”>
<xs:attribute name=”id” type=”xs:integer”/>
<xs:attribute name=”name” type=”xs:string”/>
<xs:attribute name=”purpose” type=”xs:string”/>
<xs:attribute name=”isPublic” type=”xs:boolean”/>
<xs:attribute name=”isEnable” type=”xs:boolean”/>
<xs:attribute name=”publishedDate” type=”xs:date”/>
<xs:sequence>
<xs:element name=”fileVersion” type=”arcom:FileType”>
<xs:element name=”versionList”>
<xs:complexType>
<xs:elememnt name=”id” type=”xs:integer” minOccurs=”0”
maxOccurs=”unbounded”/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:schema>

Table B.19: Repository’s XML schema file.

B.2 Repository schema

ARCoMNameSpace type provides the needed structure to represent a directory
address. They can be located by specifying a location, which is a machine address
plus a protocol, a directory, which is place in the machine, and finally a filename
which contents the information about the published components. Despite the
extra effort that a distribute management implies, the distributed manipulation
of the component references permits spread the component solution beyond its
building environment. Table B.19 shows the XML schema file representing the
data structure of the repositories.

B.3 Bookmark schema

This schema file is used by the Repository Manager (see section A.2.4) to conserve
a reference to the repository’s location. It is a bookmark file. Table B.20 shows
the complete definition.

94 APPENDIX B. XML FILES

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema xmlns:xs=’http://www.w3.org/2001/XMLSchema’>
<arcom:schema xmlns:xs=’arcom component.xsd’>
<xs:element name=”repository” type=”ARCoMBookmarkType”
minOccurs=”0” maxOccurs=”unbounded”/>
<!– ARCoM Repository Entry –>
<xs:complexType name=”ARCoMRepositoryType”>
<xs:attribute name=”alias” type=”xs:integer”/>
<xs:attribute name=”type” type=”xs:string”/>
<xs:attribute name=”lastAccessDateTime” type=”xs:timePeriod”/>
<xs:attribute name=”passRequired” type=”xs:boolean”/>
<xs:sequence>
<xs:element name=”location” type=”arcom:ARCoMNameSpaceType”>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:schema>

Table B.20: Bookmark’s XML schema file.

Appendix C

Concrete Example

In this section we develop a solution for a concrete problem by using ARCoM’s
specifications.

C.1 Problem

Martin Fowler[Fow98] describes a problem, called ’Recurring Events for Calen-
dars ’. This problem implies, in few words, the necessity to manipulate expres-
sions that represent recurrent events in a calendar. The requirements consider
the temporal expressions listed in table C.1. The possible combinations of tem-
poral expressions include set operations, like intersection, union and difference.
The resulting set of recurrent events from the mentioned operations should be
considered also a temporal expression.

Additionally the problem’s description requires to be able to make some
queries to the calendar:

• Given an event and a date range would be useful to know how many occur-
rences of event appear during the date range.

• Another should be to get the next occurrence of an event given an initial
date.

• And finally to determine whether an event would occur on a given date

According to these requirements we will describe a suggested solution in
terms of ARCoM components.

95

96 APPENDIX C. CONCRETE EXAMPLE

Name Problem Solution

Day Every Month You need to represent state-
ments of the form 2nd Mon-
day of the Month.

Use a day every month tem-
poral expression with a day
of the week and a count.

Range Every Year You need to represent state-
ments of the form 14 March
till 12 October

Use a range every year tem-
poral expression with a day
and month at the start and
end.

Set Expression You need to represent com-
binations of temporal ex-
pressions.

Define set combinations for
union, intersection and dif-
ference.

Table C.1: Temporal expressions.

C.2 Solution

Let see a resumed description oriented to fit with a well-known design pattern.
Fowler[Fow98] describes a problem where we need to manipulate similar abstrac-
tions in different ways depending on the internal structure of every abstraction.
The set of queries that every abstraction has to be able to answer is the same
for the whole set of temporal expression, in this case. Each temporal expression
implements its own strategy to solve those queries. Concretely we will use strat-
egy pattern to solve this problem. Hence we pick an ARCoM component that
expresses this design solution. Figure C.1 illustrates the original pattern that is
being reused by using the instantiation rule for the TemporalExpression compo-
nent. Table C.2 shows the pattern XML file where are defined the reuse rules.

TemporalExpression component needs to be adapted to fit the requirements
of the particular problem. Figure C.2 shows the class diagram associated to the
component, after adaptations. These alterations will not be restricted because
none Invariant and Adaptation Constraint was defined.

Following the procedure to become the resulting component in reusable one,
the corresponding reuse rules have to be specified. Table C.3 shows the reuse rule
defined for TemporalExpression, therefore it can be now reused by any component.

So far we have built a component that meets part of the requirements in
the Fowler’s problems. We defined only the simpler temporal expression, but to
provide a complete solution it is necessary to include the modelling of the combined
temporal expression, that is, Intersection and Union.

C.2. SOLUTION 97

Figure C.1: TemporalExpression component by the instantiation of the Strategy
component.

Figure C.2: Adapting the TemporalExpression component.

98 APPENDIX C. CONCRETE EXAMPLE

<?xml version=”1.0” encoding=”UTF-8”?>
<component xmlns:xs=’http://www.w3.org/2001/XMLSchema’
xs:noNamespacesSchemaLocation=’personal.xsd’ name=”Strategy”
purpose=”Behavioral” prefix =”str” creationDate =”2001/07/25” schemaVersion =”0.1”>
<publication id =”1” lastModificationDate =”2001/08/15”>
<nameSpace location =”http://emn.fr/arcom” directoryName =”gangoffour.xml”/>

</publication>

<!– Subscription data empty –>
<author name =”Gustavo BOBEFF” email =”gbobeff@emn.fr”/>
<fundamentals>
<graph>

<C>

<classifier name=”Strategy” type=”Class” visibility=”public”
isAbstract=”true” isRoot=”false” isLeaf=”false” isPolymorphic=”true”>
<identifier prefixNameSpace=”str” idInNameSpace=”1”/>
<features>
<operation name=”AlgorithInterface” visibility=”public” returnType=”void”
<identifier prefixNameSpace=”str” idInNameSpace=”2”/>

</operation>

</features>
</classifier>
<classifier name=”ConcreteStrategy” type=”Class” visibility=”public”
isAbstract=”false” isRoot=”false” isLeaf=”false” isPolymorphic=”true”>
<identifier prefixNameSpace=”str” idInNameSpace=”3”/>

</classifier>
</C>

<L>

<generalization name=”xs:string” adaptation=”xs:string”>
<identifier prefixNameSpace=”str” idInNameSpace=”5”/>
<parent prefixNameSpace=”str” idInNameSpace=”1”/>
<child prefixNameSpace=”str” idInNameSpace=”3”/>

</generalization>

</L>

</graph>

<contextClass prefixNameSpace=”str” idInNameSpace=”1”/>
<dominantClass prefixNameSpace=”str” idInNameSpace=”1”/>

</fundamentals>
<specifics applicability=”xs:string”>
<umlDiagram name=”xs:string” type=”xs:string”>
<file name=”xs:string” location=”xs:string”/>

</umlDiagram>

<codeGenerator language=”xs:string”>
<rule>
<value></value>

</rule>
</codeGenerator>

</specifics>
<reuserules>
<rule name=”inheritance” dependence=”true” predominance=”false”
shareability=”true” transitiveness=”true” method=”reference”>
<identifier prefixNameSpace=”str” idInNameSpace=”6”/>
<propagation range=”complete”></propagation>

<connector relationship=”xs:string”>
<graphElement prefixNameSpace=”str” idInNameSpace=”1”/>

</connector>
<adaptationInvariants><adaptationInvariants>

</rule>
<rule name=”instantiation” dependence=”false” predominance=”false”
shareability=”true” transitiveness=”true” method=”copy”>
<identifier prefixNameSpace=”str” idInNameSpace=”7”/>
<propagation range=”complete”></propagation>

<adaptationInvariants></adaptationInvariants>
</rule>

</reuserules>
</component>

Table C.2: Strategy in an ARCoM’s XML file.

C.2. SOLUTION 99

<reuserules>
...
<rule name=”inheritance” dependence=”true” predominance=”false”
shareability=”true” transitiveness=”true” method=”reference”>
<identifier prefixNameSpace=”str” idInNameSpace=”7”/>
<propagation range=”complete”></propagation>

<connector relationship=”inheritance”>
<graphElement prefixNameSpace=”str” idInNameSpace=”1”>
</connector>
<adaptationInvariants></adaptationInvariants>
</rule>
...
<rule name=”composition” dependence=”true” predominance=”false”
shareability=”true” transitiveness=”true” method=”reference”>
<identifier prefixNameSpace=”str” idInNameSpace=”8”/>
<propagation range=”complete”></propagation>

<connector relationship=”composition”>
<graphElement prefixNameSpace=”str” idInNameSpace=”1”>
</connector>
<adaptationInvariants></adaptationInvariants>
</rule>
</reuserules>

Table C.3: Reuse rules in TemporalExpression.

Based on the solution suggested by Fowler[Fow98], those last cases obey
to the same solution developed for DayInMonth and RangeEveryDay. They are
treated as collection of temporal expression that implies its own strategies to
answer the questions. Figure C.3 shows the resulting component.

But that is not the end. We need to satisfy two requirements. Firstly the fact
that the type of the elements in the collection is temporal expression. Secondly, a
collection is a temporal expression. A solution can be achieved if the CollectioTE
component reuse TemporalExpression component twice, one by inheritance and
the second by association(composition), respectively. Figure C.4 illustrate the
solution for the recurrent event problem, in ARCoM composition notation.

The internal structure is illustrated by the class diagram in figure C.5.

100 APPENDIX C. CONCRETE EXAMPLE

Figure C.3: Collections of temporal expression.

Figure C.4: Solution appearance in the ARCoM Consumer tool.

Figure C.5: Final solution’s class diagram.

Bibliography

[ABvdSB94] Mehmet Aksit, Jan Bosch, William van der Sterren, and Lodewijk
Bergmans. Real-time specification inheritance anomalies and real-
time filters. In M. Tokoro and R. Pareschi, editors, Proceedings
ECOOP’94, pages 386–407, Bologna, Italy, 1994. Springer-Verlag.

[ASC98] Anastasia Analyti, Nicolas Spyratos, and Panos Constantopoulos.
On the semantics of a semantic network. Fundamenta Informaticae,
36(2-3):109–144, 1998.

[Boo87] G. Booch. Software components with ada, 1987.

[BPM+98] V. Benjamins, E. Plaza, E. Motta, D. Fensel, R. Studer, B. Wielinga,
G. Schreiber, Z. Zdrahal, and S. Decker. Ibrow3: An intelligent
brokering service for knowledge-component reuse on the world-wide
web, 1998.

[BRJ98] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modelling
Language User Guide. Object Technology Series. Addison-Wesley,
1998.

[CD00] John Cheesman and John Daniels. UML Components. A Simple
Process for Specifying Components-Based Software. Addison-Wesley,
2000.

[CJ94] B. Christine and Marciniak John J. Encyclopedia of software engi-
neering, 1994.

[DeS97] Alden DeSoto. Using the beans development kit 1.0. Tutorial,
September 1997.

[Fow98] Martin Fowler. Recurring events for calendars. Technical report,
February 1998.

[Fre83] P. Freeman. Reusable software engineering: Concepts and research
directions, 1983.

101

102 BIBLIOGRAPHY

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Massachusetts, 1994.

[Gro97] M. Group. Meta group homepage, 1997.

[Gro99] Object Managment Group. Xmi specification. Technical report,
February 1999.

[Hem93] T. Hemmann. Reuse approaches in software engineering and knowl-
edge engineering: A comparison, 1993.

[HL95] Walter Hürsch and Cristina Videira Lopes. Separation of concerns.
Technical Report NU-CCS-95-03, Boston, Massachusetts, 24 1995.

[JCJO92] Ivar Jacobsen, Magnus Christerson, Patrik Jonsson, and G. G. Over-
gaard. Object-Oriented Software Engineering. Addison-Wesley, 1992.

[JGJ97] I. Jacobson, M. Griss, and P. Jonsson. Software reuse: Architecture,
process and organization for business success, 1997.

[Joh91] L. Johnson. Harris: Sharing and reuse of requirements knowledge;
proc, 1991.

[KBV00] M. Sihling K. Bergner, A. Rausch and A. Vilbig. Putting the parts
together - concepts, description techniques, and development process
for componentware, 2000.

[Kru92] Charles W. Krueger. Software reuse. ACM Computing Surveys,
24(2):131–183, June 1992.

[KS98] Rudolf K.Keller and Reinhard Schauer. Design components : To-
wards software composition at the design level. In International
Conference on Software Engineering, 1998.

[Kum00] S. Illango Kumaran. Xmi: The specification for component’s meta-
data interchange. Technical report, May 2000.

[Mey94] Bertrand Meyer. Reusable Software: The Base Object-Oriented
Component Libraries. Prentice Hall, Englewood Cliffs, 1994.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction. Prentice
Hall Professional Technical Reference, 1997.

[Mey99] Bertrand Meyer. Rules for component builders. Technical report,
1999.

BIBLIOGRAPHY 103

[ND95] Oscar Nierstrasz and Laurent Dami. Component-oriented software
technology. In Oscar Nierstrasz and Dennis Tsichritzis, editors,
Object-Oriented Software Composition, pages 3–28. Prentice Hall,
1995.

[Pet91] A. Peterson. Coming to terms with software reuse terminology: a
model-based approach, 1991.

[Rui00] Diego Sevilla Ruiz. Corba & components. Tutorial, Noviembre 2000.

[Sam97] Johannes Sametinger. Software Engineering with Reusable Compo-
nents. Springer-Verlag, 1997.

[SN99] J. Schneider and O. Nierstrasz. Scripts and glue, 1999.

[Szy98] Clemens Szyperski. Component Software: Beyond Object-Oriented
Programming. ACM Press and Addison-Wesley, New York, N.Y.,
1998.

[Tra95] Will Tracz. Confessions of a Used-Program Salesman: Institution-
alizing Software Reuse. Addison Wesley, Reading, MA, 1995.

[W3C00] World Wide Web Consortium W3C. Extensible markup language
(xml)1.0 (second edition). Recommendations, February 2000.

[W3C01] World Wide Web Consortium W3C. Xml schema part 0: Primer.
Recommendations, May 2001.

[WK98] J. Warmer and A. Kleppe. The Object Constraint Language. Object
Technology Series. Addison-Wesley, 1998.

