
ARCHITECTURAL DESCRIPTION OF
OBJECT ORIENTED FRAMEWORKS

Gabriela B. Arevalo

Thesis Advisor: Isabelle Borne
(Ecole des Mines de Nantes)

August 2000





AA bb ss tt rr aa cc tt

Nowadays, the existing formalisms to represent software architectures (such as box and
line drawings) fail in providing a clear semantics and only give an intuitive picture of the system as
a whole, which is  not enough as a valuable description. More specifically,  the framework
architectures should show the overall design and the specification of the points of variability of the
framework, making easier the reuse of the architecture, integration with other frameworks and a
reference to measure the changes in subsequent versions of the frameworks. Starting from several
frameworks, we propose, as a first step, to study and compare the various levels and expressive
power of two formal approaches, such as architectural patterns and Wright –an architectural
description language. Next we study the possible complementarity of these approaches, and also
evaluate the flexibility of the descriptions in order to be able to take evolution aspects into account.
The final objective is  to propose a complete description of a framework based on the previous
results.





AA cc kk nn oo ww ll ee dd gg ee mm ee nn tt ss

After all this year, I've got quite a list of people who contributed in some way to this thesis,
for which I would like to express thanks.

To Isabelle Borne, my thesis advisor, who gave me guidance and support throughout the
entire thesis process. Thank you !

To Gustavo Rossi, who involved me in this international program. He also helped me
through many problems, and his opinions helped shape this work. Thank you !

To Annya and Janick, who worked very hard to provide me a good environment to study
and to live in Nantes. Thank you !

To Remi Douence, who shared with me all his knowledge about softwares architectures.
Thank you !

To Xavier Alvarez, who helped me with his fruitful discussions to focus the goals of this
thesis. Thank you !

A mis compañeros del LIFIA : Mauricio, Fernando y Ramiro por ayudarme al principio de
esta tesis cuando mis conocimientos sobre frameworks era basico y ellos respondieron con mucha
paciencia a todas mis preguntas. Thank you !

A mis amigos en Nantes : Sinagi, Andres, Gabriel y Xavier por convertirse en mi familia
durante mi estadia en Nantes. Thank you !

A mis « hermanos postizos » : Guillermo, Anabella, Alejandra y Cristian (en Argentina) y
Alejandro y Analia (en Alemania) por bancarme en los buenos y en los malos momentos. Sus
mails, cartas, postales y la bandera argentina que recibi de regalo hicieron que no sintiera la
distancia fisica con ellos y que el cariño que les tengo crezca dia a dia. Thank you !

A mis mejores amigas Karina y Nora por su cariño y quienes estuvieron siempre presentes
con su corazon al lado mio. Thank you !

 A mis hermanos Dario, Patricia, Cynthia, Virna y Victor por sus chistes, sus anecdotas y
su alegria que transmitieron por e-mail haciendome sentir como si yo estuviera entre ellos en mi
casa. Thank you !

Especialmente a Papá y Mamá por apoyarme en este nuevo proyecto de mi vida y
alentarme diariamente para que no bajara los brazos ante las adversidades tan sencillas como la
de estar lejos fisicamente de mi casa y de Argentina. Sin esa fuerza y ese amor inconmensurable
que transmiten en el dia a dia, esta experiencia hubiera sido imposible. A ellos les dedico mi
trabajo.

Gabriela Arévalo

August 2000





Table of Contents

Chapter 1: Introduction................................................................................... 13
1.1 Motivation.........................................................................................................13
1.2 Current Research .............................................................................................14

1.2.1 Documenting Frameworks using Patterns [Joh92].....................................14
1.2.2 Design Patterns, Contracts, and Motifs in Concert [LK94]..........................15
1.2.3 More than design patterns [Ric98].............................................................16

1.3 Architectural Description Language as an alternative formal approach ..............17
1.4 Related Work ...................................................................................................17
1.5 Approaches and Contribution ...........................................................................18
1.6 Organization of the Thesis ................................................................................19

Chapter 2: Software Architectures and Approaches of Description .......... 21
2.1 Definitions of Software Architecture ..................................................................21
2.2 Architectural Patterns .......................................................................................22
2.3 Architectural Styles...........................................................................................24

2.3.1 Practical Benefits of Architectural Styles ...................................................26
2.4 Architectural Styles and Patterns ......................................................................26
2.5 Significance of Software Architecture to Software Engineering..........................27
2.6 Architecture Description Languages (ADLs): General features ..........................27

2.6.1 Architectural Elements and Its Properties..................................................28
2.6.2 Wright: An Architectural Description Language..........................................30

2.6.2.1 Structure...............................................................................................30
2.6.2.2 Style .....................................................................................................32
2.6.2.3 Behaviour: Definition of interaction protocols .........................................33
2.6.2.4 Validation of Descriptions......................................................................35
2.6.2.5 Properties .............................................................................................36

2.7 Summary .........................................................................................................36
Chapter 3: Object Oriented Frameworks....................................................... 37

3.1 Definition..........................................................................................................37
3.2 Differences with other concepts ........................................................................37
3.3 Characterization of Frameworks by different dimensions...................................38
3.4 Application Frameworks: Specific Features.......................................................39
3.5 Components and Frameworks ..........................................................................40
3.6 Keys of Frameworks.........................................................................................41

3.6.1 : Analysis, Design and Code Reuse ..........................................................41
3.6.2 Hotspots and Frozen Spots.......................................................................41

3.7 Analysis: Goals, Benefits and Weaknesses.......................................................42
3.7.1 Goals........................................................................................................42
3.7.2 Benefits ....................................................................................................42
3.7.3 Weaknesses.............................................................................................43

3.8 Summary .........................................................................................................43
Chapter 4: Architectural Description of  Frameworks : First Problems ..... 45

4.1 Software Architecture: Level of Abstraction.......................................................45
4.2 Architectural Description: Conceptual Model .....................................................46
4.3 Architectural Components = Software Components ? .......................................48
4.4 Connectors.......................................................................................................49
4.5 Internal State of the Components......................................................................50

4.5.1 Wright and Abstract Machines B ...............................................................50
4.5.2 Interaction of the Abstract Machine B with the environment .......................51



4.5.3 Connection between a Wright Component and an Abstract Machine B ......52
4.5.4 Description of the interaction between a Wright component and an Abstract
Machine B ................................................................................................................53

4.5.4.1 Resolution of non-determinism in the connector B .................................55
4.6 Summary..........................................................................................................56

Chapter 5: Architectural Description OF Object Oriented Frameworks: An
Approach 57

5.1 Introduction.......................................................................................................57
5.2 MAPPINGS: Definition and Assumptions...........................................................59

5.2.1 Mapping for Classes .................................................................................59
5.2.2 Mapping for Relationships between Classes..............................................60
5.2.3 Format for Components and Connectors ...................................................61
5.2.4 Mapping for the Messages ........................................................................61
5.2.5 Mapping for Classes' Creation...................................................................62
5.2.6 Mapping for Conditional Statements ..........................................................63

5.3 Object oriented Architectural Description -  First Case: Design and Code ..........64
5.3.1 Example: Measurements System Framework [Bos00] ...............................64

5.3.1.1 Architecture of the System.....................................................................65
5.3.1.2 Minimal details about the design............................................................65

5.3.2 First Approach: Use of Predefined Styles ..................................................66
5.3.3 Second Approach: Use of Steps................................................................67

5.4 Architectural Description – Second Case: Architectural Patterns + Wright
Description ...................................................................................................................73

5.4.1 Example: A Generic Coordination Abstraction for Managing Shared
Resources [CTN97] ..................................................................................................73
5.4.2 Requirements ...........................................................................................74
5.4.3 Solution ....................................................................................................74
5.4.4 Approach: Use of Steps ............................................................................75

5.5 Summary..........................................................................................................82
Chapter 6: Architectural Description Aspects: Discussion ......................... 84

6.1 Analogy between Architectural Style and Framework Architecture.....................84
6.2 Levels of Description.........................................................................................87
6.3 Level of Components ........................................................................................88
6.4 The Potential of the Connectors ........................................................................88
6.5 Increment of Connectors and Components .......................................................89
6.6 Management of Errors ......................................................................................89
6.7 Lack of Expressiveness in Structural Features ..................................................89
6.8 Lack of Expressiveness of Timing .....................................................................89
6.9 Dynamic Binding and Creation/Destruction of Components ...............................89
6.10 Detection of Errors with the Wright Checking Tool .............................................90
6.11 Use and Discovering of  Patterns in the Architectural Description ......................90
6.12 Properties of Cohesion and Coupling in the Architectural Description ................91
6.13 Architectural Views ...........................................................................................92
6.14 Complementaries with other Techniques...........................................................93
6.15 Summary..........................................................................................................94

Chapter 7: Evolution of Frameworks ............................................................. 95
7.1 General Overview of the Levels of Abstraction ..................................................95
7.2 Aspects of Evolution .........................................................................................96

7.2.1 Internal reorganization...............................................................................96
7.2.2 Changing functionality ...............................................................................98



7.2.3 Extending functionality ..............................................................................99
7.2.4 Reducing functionality...............................................................................99

7.3 Analysis ......................................................................................................... 100
7.4 Summary ....................................................................................................... 100

Chapter 8: Conclusions and Future Research.............................................101
8.1 Context .......................................................................................................... 101
8.2 Conclusions ................................................................................................... 102
8.3 Future Research............................................................................................. 103





List of Figures

Figure 2.1: Architectural Styles in graphic notation ...........................................................24
Figure 2.2: Multi-Phase Architectural Style [PW92]...........................................................25
Figure 2.3: Hierarchical Structure.....................................................................................31
Figure 4.1: Conceptual Modelling of Software Architectures [Now99]................................47
Figure 4.2: Component or Connector ? [SG99].................................................................49
Figure 4.3: Specification in B of Text_Filter ......................................................................51
Figure 4.4: Ports Component and B .................................................................................51
Figure 4.5: An Abstract Machine B with its interface .........................................................52
Figure 4.6: Two possible connections between a Wright component and an Abstract

Machine B................................................................................................................52
Figure 5.1: Composite Pattern..........................................................................................58
Figure 5.2: Graphical Relationships between classes .......................................................58
Figure 5.3: Class Model for a Book and the Mapping with Connectors and Components...60
Figure 5.4: Class Model for a Truck and Representation with Components and

Connectors ..............................................................................................................61
Figure 5.5: Architecture of the Measurement System Frameworks ...................................65
Figure 5.6: Master / Slave Pattern ....................................................................................67
Figure 5.7: Class Model for the Shared Resource Access Policy ......................................75
Figure 5.8: Example of Application of Layers Architectural Pattern ...................................76
Figure 5.9: The developed algorithms seen graphically ....................................................81
Figure 6.1: Growth of the Architectural Description in X-Y axis .........................................87
Figure 7.1: Software Evolution at Three Levels of Abstraction ..........................................96





1.1 Motivation

An object oriented framework is a kind of reusable software architecture comprising both
design and code. More specifically, [Mat96] defines an object oriented framework as a generative
architecture for maximum reuse represented as a collective set of abstract and concrete classes,
encapsulating potential behaviour for subclassed specializations.

One critical issue for users and implementors of a framework is the documentation that
explains what the framework provides and what is required to instantiate it correctly for some
application. Typically, a framework is specified using a combination of informal and semi-formal
documentation. On the informal side are guidelines and high-level descriptions of usage scenarios,
tips and examples [SG99]. If an object oriented methodology such as UML [UML] was used to
document the framework, there are class and collaboration diagrams as a description artefacts.
These approaches tend to be informal and idiosyncratic, consisting of box-and-line diagrams that
convey the essential system structure, together wil the prose that explains the meaning of the
symbols [MKMG96]. On the semi-formal side one usually finds a description of an application
programmer's interface (API) that explains what kinds of services are provided by the framework.
APIs are formal to the extent that they provide precise descriptions of those services -usually as a
set of signatures, possibly annotated with informal pre and post-conditions [SG99].

Such documentation is clearly necessary. However, by itself it leaves many important
questions unanswered -for component developers, system integrators, framework implementors,
and proposers of new frameworks. For example, the framework API may specify  the names and
parameters of services provided by the infrastructure. However, it may not be clear what are the
restrictions (if any) on the ordering of invocations of those services. Usage scenarios may help, but
they only provide examples of selected interactions, requiring the reader to infer the general rule.
Moreover, it may not be clear what facilities must be provided by the parts added to the framework,
and which are optional. [SG99].

As with most forms of informal system documentation and specification, the situation could
be greatly improved if one had a precise description as a formal specification of the framework.
However, a number of critical issues arise immediately. What aspects of the framework should be
modeled ? How should that model be structured to best expose the architectural design ? How
should one model the parts of the framework to maintain traceability to the original documentation,
and yet still improve clarity ? How should one distinguish optional from required behaviour ?
[SG99] For object oriented frameworks what aspects of the object-oriented design should be
exposed in the formal model ? . The model show answer questions as the following ones: Which
new classes must be provided for the framework ? What classes should be used from the
framework ? Which operations must be called and which operations are often called in the
framework ?  What classes must be subclassed ? Which operations must be overriden and which
operations are often overriden? [Mat96].

CChhaapptteerr   11::     II nn tt rr oo dd uu cc tt ii oo nn



   14                               Object Oriented Architectural Description of Frameworks

About describing framework architectures, [Joh92] denotes that "nobody understands a
framework until they have used it". There are several reasons to have an architectural
description of a framework based on high-level interfaces and interactions, and
characterizing their semantics in terms of protocols:

⇒  'Selling' the framework: Prospective users of the framework want a general
understanding of the framework in order to decide if it is appropriate for their needs. This
kind of description should show the overall design and the points of variability of the
framework. [Ric98].

⇒  Reuse of architecture: Transmitting a language-independent view of the architecture
allows the high-level design of the framework to be reused in implementing it in other
languages, or in modifying it for use in other domains. [Ric98]

⇒  Integration of frameworks: In order to facilitate the construction of systems from
several existing frameworks, the architectural assumptions of each framework should be
made explicit. [GAO95] [MB00]

⇒  Evolution and re-engineering: Having an architectural description of a framework gives
us a reference against which one can measure the changes in subsequent versions of
the framework. In the same way, the ability to describe the architecture of an application
allows us to form hypothesis about the architecture which can be tested in the process of
reverse engineering. [MN97]

This thesis aims to propose a complete description of a framework using the following
formal approaches: architectural patterns and Wright [All97] -an architectural description
language.  The steps to fulfill this objective consist of studying and comparing the various levels
and expressive power of approaches, also studying the possible complementarity and flexibility of
these approaches in order to be able to take evolution aspects into account.

1.2 Current Research

There are no well-established rules for describing framework. Thus, different approaches
have been proposed focusing mostly on informal techniques.  We will enumerate some of them,
where the ideas are similar to our approach:  the use of several artifacts of domain analysis and
object oriented design to give different views of a framework's architecture.

1.2.1 Documenting Frameworks using Patterns [Joh92]

This approach deals with the frameworks description using pattern language. A pattern
language is a set of patterns, where each of them describes how to solve a particular kind of
problem. The main idea is to start from a very large scale and going into further details from pattern
to pattern. The approach is based on the fact that the framework users want to know as little as
possible about the framework. Thus, patterns have to go through all functionality of the framework
from a general presentation to more precise features and then progressively to describe which the
hotspots  and the collaboration contracts are. This approach fulfills its three purposes of  the
description of:

•  the purpose of the framework: It must be the first thing that the documentation
describes. If the framework turns out to be inappropriate then the reader does not have
to continue reading. The first pattern describes its application domain. It acts as a entry
catalog for the framework and a road map regarding the rest of patterns

•  how to use the framework: The patterns give a kind of cookbook, giving detailed
instructions for using the frameworks.

•  the detailed design of the framework: This information not only includes the different
classes in the framework but also the way that the instances of these classes



Chapter 1: Introduction                                                                                                 15

collaborate. The ideas is to treat the set of patterns as a directed graph, using the
references from one pattern to another as the edges, and to place design information as
far from the first pattern as was feasible.

The use of examples in this approach makes frameworks more concrete, makes it easier
to understand the flow of control, and helps the reader to determine whether he or she
understands the rest of documentation.

Summarizing up, patterns are an informal technique aimed primarily at describing how to
use a framework, not describing its algorithms, patterns of collaboration or shared invariant. They
just describe specific points of the framework supported by examples.

1.2.2 Design Patterns, Contracts, and Motifs in Concert [LK94]

This approach develops a multi-layered model for framework reuse which comprises reuse
objects at different levels of abstraction and varying degrees of encapsulation, most notably,
microarchitectures. It integrates design patterns, contracts, and motifs as techniques for the
representation and documentation of microarchitectures and frameworks. It also suggests a design
guided by the design of the underlying framework and possibly of its subframeworks and that a
mixed top-down/bottom-up approach be taken.

[GHJV95] detected that there were redundant design structures into the framework and
introduced the concept of microarchitectures as a set of classes and its interactions. As
frameworks codify design knowledge of a particular domain, microarchitectures codify knowledge
in terms of the behavior of object collaborations. Microarchitectures comprise both the design and
code of the classes involved and the interactions and control flow among them. These structures
are of course known by the framework designers, but unfortunately by very few others.  Design
patterns are a mechanism to express how component interrelate as well as high-level
representation technique for properly capturing and expressing design experience and intent to
ultimately facilitate design reuse. They can be described in an informal, template-based manner.
But the design patterns describe the framework design at a very high level. To ease the derivation
of concrete designs from them, a contract - a construct for specifying interactions among groups of
objects - is used as an intermediate representation between a microarchitecture and its
corresponding design patterns. Contracts used to describe frameworks provide the application
designer with:

•  A vocabulary with which to describe the application;
•  Through conformance declarations, the identification of the application-specific classes,

variables, methods, and hooks for customization, all necessary for identifying,
maintaining and implementing a behavioral composition;

•  Knowledge of, and a better understanding of, individual microarchitectures present in the
underlying framework, thus improving the understanding of the overall framework;

•  Guidance when refactoring affects participants in a contract. Contracts should not be
taken as a means to understand the functionality of classes and methods.

More oriented to novice users, the motifs show how to use the framework. Each of them
describes a situation which must be replicated in order to use the framework. A set of motifs
describe the underlying class framework and an example application.

To put all the techniques together, this approach covers a documentation with:
•  The purpose of and how to use the underlying framework;
•  The purpose of  and how to reuse the application examples;
•  The design of the framework

Motifs are responsible for describing the first two items, whereas design patterns and
contracts address the last item. Thus motifs complement design documentation doing it so
informally without detailing algorithms or object collaborations. Instead they often refer to design
patterns and/or contracts. To support documentation from lower level of a framework, each class
(and even if it is possible, also the individual methods) should have references to motifs, design
patterns, and/or contracts it is involved in.



   16                               Object Oriented Architectural Description of Frameworks

With this proposal, they discover that design patterns, contracts, and motifs, along with the
corresponding code components, classes and methods, must cross reference each other
whenever appropriate.

1.2.3 More than design patterns [Ric98]

This approach  analyzes the insufficiency of design patterns to get an architectural
description of a framework. Considering the selling issue, design patterns do not describe what we
can do with the framework, how we can tailor the framework to create a variety of applications.
Taking into account reuse issue, reusing a framework implies understanding the domain-specific
architecture that the framework offers, knowing how it models the problem domain, and what  the
model components of the system and their relationships . Indeed the granularity of design patterns
is generally very fine and is not always suited to the granularity of the main components of a
framework. For example, behavioral patterns ([GHJV95]) are more architectural in the sense that
they describe a relationship between entities which could be seen as an infrastructure for a
complete application, rather than a  relationship which is based solely on inheritance. About the
integration of frameworks, design patterns do not give us the context in which the framework is
expected to be used . Finally about the evolution issue, it is possible to observe a change of design
patterns without having a real evolution of the architecture. Thus design patterns are not a good
gauge for following the evolution of a framework.

The main problems are incompleteness, because design patterns can not document all the
design decisions emanating from the requirements, and its fine granularity, because design
patterns overly describe the system, without revealing a more global view of the system.

[Ric98] believes that unlikely one notation or method can be used to express all aspects of
an application's architecture. To cope with this, she proposes a variety of complementary forms of
documentation to understand the what - the context: what is the application domain, what are its
main elements and their interrelationships, what problems must be tackled in building the
framework architecture - and the how - the solution: how the framework designers have chosen to
tackle these problems.

•  Application domain model: as a result of a domain analysis, it is necessary to identify
domain concepts and making the relationships between them explicit.

•  Design space for the domain: each problem in the domain can be solved using a variety
of approaches. In a design space each problem represents an axis along which are
possible or recommended solutions [DMNS97]. Understanding the design space allows
us to situate the particular framework as a point in this space

•  Examples: they illustrate what kinds of applications can be created using the framework.
They show the variability in the framework.

•  Architectural patterns: they present us with a metaphor - client/server, pipe/filter, etc -
for architectural view, or a large part of one. Such metaphors can succinctly describe
components, the relationships between them, and at the same time provide us with
familiar scenarios for their behavior.

•  Scenarios: They are instances of use-cases. They show how several components (i.e.
granularity greater than classes) interact to assure one variation of the system's
functionality.

These forms of description aim to give an understanding of the system at a coarse
granularity and can complement more detailed forms of documentation such as design pattern and
class hierarchies.



Chapter 1: Introduction                                                                                                 17

1.3 Architectural Description Language as an alternative formal
approach

All the proposed approaches are focused on informal techniques. In spite that they can be
efficient enough to communicate design decisions, they have limitations to represent the real
semantics of different parts of a framework. [AAG93] explains that the imprecision produced by
box-line drawings makes it difficult to attach unambiguous meanings to the descriptions. It may be
difficult to know when an implementation agress with the more abstract description. It is virtually
impossible to reason formally about the descriptions. It is difficult to compare two different
descriptions even for the same interpretation.

Thinking in terms of giving meaning to the descriptions of software systems, Architectural
Description Languages (ADLs) have been proposed to support architecture-based development,
formal modelling notations and analysis and development tools that operate on architectural
specifications [MT97].  ADL must be able to communicate the architectural structures involved
within a system to all stakeholders. The level of granularity, or abstraction, must be flexible enough
to allow descriptions in sufficient detail or abstraction dependent on the users of the architectural
description [All97].

The benefits of an architectural analysis are enhanced by precise semantics. Elimination of
ambiguity is paramount in any architectural description to accurately describe a system. This
requirement
must be balanced with the competing goals of allowing informal descriptions [Bro00].

This dissertation works with Wright ADL [All97] to infer a possible architectural description
of some object oriented frameworks, whose design and use documentation is composed of a set of
informal artifacts or the code itself. We do not claim that the described techniques in the previous
section are incomplete. In fact our approach searches to be an union of complementary
methodologies (Wright ADL  [All97] and architectural patterns) and also represent a complement
with the rest of techniques to give a semantic description, and avoiding as much as possible the
ambiguity of box-line drawings in the documentation.

1.4 Related Work

The particular combination in the use of formal languages to describe an object oriented
framework is only shown in [SG99]. In this work, they develop a specification of Sun's Enterprise
Java-Beans. Firstly, they show formal architectural models based on protocols clarifying the intent
of an integration framework, as well as exposing critical properties of it. Secondly, they describe
techniques to create the model, and structure it to support traceability, tractability, and automated
analysis. This work is a good approximation on ways to provide formal architectural models of
object oriented frameworks.

Another related area is research on the analysis of architectural standards. In  [AGI98] they
looked at the high level architecture (HLA) for distributed simulation. HLA defines an integration
standard for multi-vendor distributed simulations. They demonstrated  that Wright could be used to
model this framework and eliminate potential flaws in the HLA design.

Another area is work on protocol specification and analysis. There has been considerable
research on ways to specify protocols using a variety of formalisms, including I/O Automata [LT89],
SMV  [CES85], SDL  [Hol90] and Petri Nets  [Pet77]. Most protocol analysis assumes one is
starting with a complete description of the protocol. The problem is then to analyze that protocol for
various properties. In contrast, in architectural modelling of systems , protocols are typically implicit
in the APIs described in the framework documentation. Discovering what that the protocols are,
and how they determine the behaviour of the system is itself a key challenge.



   18                               Object Oriented Architectural Description of Frameworks

Considering that the comparison between different architectural description languages can
be made using benchmark problems, [AG96] proposes AEGIS Weapons System as a candidate
problem. In this work, they show that while (architecturally speaking) the constructed system was
relatively simple –less than a dozen architectural components- during the course of construction, it
raised a surprisingly number of thorny architectural problems for the system implementors and
integrators. Using Wright ADL [All97], they show that an architectural formalism helps to expose
and solve some of the architectural problems.

With a different viewpoint and closer to the approach of this dissertation, [Men00] proposes
a logic-meta programming to develop an expressive architectural model, algorithm and prototype
tool for automatically checking conformance of the implementation of a software system to one of
more architectural views. This approach is confined to static conformance checking only because
the reasoning is about the static structure of a software implementation, and does not take run-time
information into account.

1.5 Approaches and Contribution

This dissertation is concerned to get an architectural description about object oriented
frameworks, whose documentation is based on informal techniques or the documentation is the
code itself, using the Wright ADL  [All97] as the main tool and architectural patterns as a
complementary one. To fulfill this requirement, the following steps are made:

⇒  Firstly, all the features related to the concepts of software architectures, ADLs and
formal approaches of description are studied. Thus, we get a complete context of the
elements that we apply and use in the frameworks.

⇒  Secondly, main features of building/using an object oriented framework are also studied.
We need to know how the frameworks are thought and how they evolve, in this way, we
obtain the elements and the relationships that are represented (if possible) with the
formal approaches of description. We also study documentation made with design
and/or code itself of real frameworks.

⇒  The third step is the mapping from the information about the frameworks to an
architectural description. If possible, we map also to an architectural pattern to see if this
mapping can give us more information about the studied frameworks. Thus, we define a
set of rules that an architect can follow to infer a possible architectural description. To do
this last step the developed approach will consider some ideas presented in [LK94] . In
this approach, they identify different levels of reuse and abstraction in a framework. Our
approach considers different levels of abstraction to get an architectural description of
the different parts of a framework and successively refinements from general to specific
aspects to be very close to the implementation

⇒  The fourth step consists of analyzing the results from the third step to know what
properties we could get using formal approaches of description applied on frameworks.
We also consider if the formal approaches can be a complement to more known informal
techniques of description

⇒  The fifth step is the study of evolution impacts on an architectural description of an
object oriented framework considering the developed approach.

The contributions of this dissertation are:
⇒  The definition of rules to define a mapping from informal documentation of frameworks

to an architectural description. Thus, firstly, the path from documentation and/or code to
an architectural description of a framework is reduced to a recipe. Secondly the mapping
allows us identify microarchitectures and architectural components and connectors
related to the framework. Finally, we obtain a generic software architecture that captures
the family of applications resulting from the framework instantiation.



Chapter 1: Introduction                                                                                                 19

⇒  The analysis of how efficient an ADL is to 'capture' the ambiguities caused by informal
techniques.

⇒  The focus on a formal approach only can be a 'wrong' step in the idea of avoiding
ambiguous descriptions

⇒  The proof that an ADL can be a complement to other informal and formal techniques.
Thus, we get a uniform model of frameworks description that allows the users of the
framework understand the abstract design of the underlying framework as well as the
internal structure of its classes, in order to adapt and extend them.

⇒  The analysis of the evolution impacts of frameworks in the architectural descriptions.

1.6 Organization of the Thesis

This dissertation is organized in the following way: Chapter 2 describes the main features
and formal approaches of description of software architectures. Chapter 3 describes general
features about frameworks. Chapter 4 presents a previous analysis of problems found during the
process of searching common points between software architectures and object oriented
frameworks. Based on this analysis, Chapter 5 presents the developed mapping with the
algorithms and two cases studies with their results. Chapter 6 shows a discussion of some
important aspects of the developed approach and a  discussion related to the results obtained in
the previous chapter. Chapter 7 shows the evolution impacts of frameworks in resulting formal
description. Finally, Chapter 8 presents the conclusions and future work.



   20                               Object Oriented Architectural Description of Frameworks



During last ten years software architecture has begun to emerge as an important field of
study for software engineering practitioners and researchers. This emergence is evidenced by a
large body of work in areas such as domain specific architectures, architectural description
languages, formal underpinnings for architectural design, and architectural design environments.
To understand what aspects and what tools are being addressed, this chapter intends to give the
reader a complete overview of this discipline.

We start clarifying the definition of software architectures to keep one of them that it is
considered in the rest of this dissertation. Afterwards, we define and present the most known
classical architectural patterns and styles, and we show their features and the context where they
are applied. These conditions are important for this dissertation because we intend to identify them
in the studied object oriented  frameworks. Finally we show the main characteristics and properties
of ADLs to describe software architectures and we also present Wright ADL (our work tool)
analyzing which features of an ‘ideal’ ADL the language fullfils and which not.

2.1 Definitions of Software Architecture

The main problem in the field of software architecture is the lack of a clear definition of
what an architecture is. Let's see the different approaches found in the literature. [GS92] considers
that sofware architecture is emerging as a significant and different design level. According to
[LC98] software architecture may then be basically defined as a description of the structural and
dynamic properties of a system at a high level of abstraction.

But the software architecture is also concerned with issues such as the global control
structure of a system, its main design elements and the way they share functionalities, the way
design elements communicate (protocols for communication, synchronization, data access), the
physical distribution of design elements, scaling and performance.  Following this approach, one of
the earliest definitions can be found in [PW92], where the software architecture is modeled with
elements, form and rationale. Elements are either processing elements (e.g. procedures, filters),
data elements (e.g. set of global variables), or connecting elements (e.g. procedure calls,
messages). A form is defined by the constraints on the elements and the rationale captures the
motivation for the choice of elements, form and architectural style. There is a more restrictive
definition of software architecture given in [GS92], which only involves computational components
and a description of interaction between these components which respectively correspond to
processing elements and connecting elements and some part of  form as defined in [GS92]. A
more practical definition is the following : an abstract system specification consisting primarily of
functional components described in terms of their behaviours and interfaces and interactions
between components [HR94]. A fourth definition is extracted from [GP95] and synthesizes the
previous ones : a  software architecture is the structure of the components of a program/system,
their interrelationships (often called connectors [SG96]), and principles and guidelines governing
their design and evolution over time.

Clearly, from all the definitions given previously, a fact is software architecture focuses on
raising the level of abstraction at which developers can reason about their systems. A system's
architecture provides a model of the system that suppresses implementation detail and increases

CChhaapptteerr   22::     SSooff ttwwaarree   AArrcchhii tteeccttuurreess   aanndd
AApppprrooaacchheess   ooff   DDeessccrr iipptt iioonn



   22                               Object Oriented Architectural Description of Frameworks

the independence of system components, allowing many issues to be localized. Then the
architecture can concentrate on the analyses and decisions that are most crucial to the system
structure [All97].

An important remark is that a feature that distinguishes of software architecture from other
views of the system is the explicit modelling of connectors. While components are the
computational entities, connectors mediate and govern interactions among components. In this
way connectors separate computation from communication, minimise component
interdependencies and facilitate system understanding, analysis and evolution [MT97].

This dissertation considers the concepts of components and connectors explicilty to
represent a framework architecture. The proposed approach works on different levels of
abstraction refining the components and connectors, allowing refinement views of a possible
software architecture and identifying  architectural patterns or styles and proposing new ones (if
necessary) which represent the family of applications that can be obtained instantiating the
framework.

2.2 Architectural Patterns

In this section we introduce some architectural patterns and some general features. As we
said previously, we propose to identify their existence in the frameworks. To do this, it is necessary
to know the context where they can be applied. We will not discuss in detail about each of them.
Detailed information can be found in [BMR+96].

Architectural patterns express fundamental structural organization schemas for software
systems. They provide a set of predefined subsystems, specify their responsibilities, and include
rules and guidelines for organizing the relationships between them.

Architectural patterns represent the highest-level patterns in the  pattern system presented
in [BMR+96]. They help you to specify the fundamental structure of an application. Every
development activity that follows is governed by this structure -for example, the detailed design of
subsystems, the communication and collaboration between different parts of the system, and its
later extension. Each Architectural Pattern helps you to achieve a specific global system property,
such as the adaptability of the user interface. Patterns that help to support similar properties can
be grouped into categories.  [BMR+96] proposes four categories:

•  From mud to structure: patterns in this category help you to avoid a 'sea' of
components or objects.  In particular, they support a controlled decomposition of an
overall system task into cooperating subtasks.

o  Layers pattern helps to structure applications that can be decomposed into
groups of subtasks in which each group of subtasks is at a particular level of
abstraction.

o  Pipes and Filters pattern provides a structure for systems that process a
stream of data. Each processing step is encapsulated in a filter component.
Data is passed through pipes between adjacent filters. Recombining filters
allows you to build families of related systems.

o  Blackboard pattern is useful for problems for which no deterministic solution
strategies are known. In Blackboard several specialized subsystems assemble
their knowledge to build a possibly partial or approximate solution.

•  Distributed Systems: The Broker pattern provides a complete infrastructure for
distributed applications. The Microkernel and Pipes and Filters patterns only consider
distribution as a secondary concern.

o  Pipes and Filters pattern: This pattern is more often used for structuring the
functional core of an application than for distribution.

o Microkernel pattern applies to software systems that must be able to adapt to
changing system requirements. It separates a minimal functional core from



Chapter 2: Software Architecture and Approaches of Description                               23

extended functionality and customer-specific parts. The microkernel also
serves as a socket for plugging in these extensions and coordinating their
collaboration. Microkernel systems employ a Client-Server architecture in
which clients and servers run on top of the microkernel component. The main
benefit of such systems, however, is in design for adaptation and change.

o  Broker pattern can be used to structure distributed software systems with
decoupled components that interact by remote service invocations. A broker
component is responsible for coordinating communication, such as forwarding
requests, as well as for transmitting results and exceptions.

•  Interactive Systems: Model-View-Controller and Presentation-Abstraction-Control
patterns. Both patterns support the structuring of software systems that feature human-
computer interaction.

o  Model-View-Controller pattern divides an interactive application into three
components. The model contains  the core functionality and data. Views
display information to the user. Controllers handle user input. Views and
controllers together comprise the user interface. A change-propagation
mechanism ensures consistency between the user interface and the model.

o  Presentation-Abstraction-Control pattern defines a structure for interactive
software systems in the form of a hierarchy of cooperating agents. Every agent
is responsible for a specific aspect of the applications's functionality and
consists of three components: presentation, abstraction, and control. This
subdivision separates the human-computer interaction aspects of the agent
from its functional core and its communication with other agents.

•  Adaptable Systems: Reflection and Microkernel patterns strongly support extension of
applications and their adaptation to evolving technology and changing functional
requirements.

o Microkernel pattern applies to software systems that must be able to adapt to
changing system requirements. It separates a minimal functional core from
extended functionality and customer-specific parts. The microkernel also
serves as a socket for plugging in such extensions and coordinating their
collaboration.

o Reflection pattern provides a mechanism for changing structure and behavior
of software systems dynamically. It supports the modification of fundamental
aspects, such as type structures and function call mechanisms. In this pattern,
an application is split into two parts. A meta level provides information about
selected system properties and makes the software self-aware. A base level
includes the application logic. Its implementation builds on the meta level.
Changes to information kept in the meta level affect subsequent base-level
behavior.

In the approach presented in this dissertation, the architectural patterns will be considered
in the top level of the description. As we said previously, we will work in different levels of
abstraction and description, refining each level. The architectural patterns are useful in the topmost
level because  they give an global overview of an architecture that has to be specified and refined.
[BMR+96] says that the selection of an architectural pattern should be driven by the general
properties of an application at hand. But most software systems, however, cannot be structured
according to a single architectural pattern. They must support several system requirements that
can only be addressed by different architectural patterns. For example, you have to design both for
flexibility of component distribution in a heterogeneous computer network and for adaptability of
their user interfaces. You can combine Broker and Model-View-Controller patterns. The Broker
pattern provides the infrastructure for the distribution of components, while the model of the MVC
pattern plays the role of a server in the Broker infrastructure. Similarly, controllers take the roles of
clients, and views combine the roles of clients and servers, as clients of the model and servers of
the controllers. In the approach developed in this dissertation, we are inferring a framework
architecture based on design and code, and in fact we map  possible architectural patterns which



   24                               Object Oriented Architectural Description of Frameworks

fits better to our proposed architecture. But not all the cases will allow us to map to them because
the selection of an architectural pattern, or a combination of several, is only the first step when
designing the architecture of a system. And our approach is more oriented to use design decisions
that already have been taken, and if they did not assume any architectural pattern, it  will be a
difficult task to detect and infer them.

2.3 Architectural Styles

While a software architecture is defined by a layout of architectural elements, an
architectural style consists of a set of shared assumptions and constraints across a family of
software architectures [GCBA95]. The interest of a particular style is related to its ability to
encapsulate important classes of design decisions and to emphasize important constraints on
architectural elements.

Several architectural styles have already been identified. We cite the most known and their
features. We will not give any details except their architectural elements and their invariants . All
the details can be obtained from [SG96], [PW92]. We also omit advantages and disadvantages of
each style, because they will be explained when applying in the inferred architectures during this
dissertation. To have a more graphical idea of the styles, the Figure 2.1 shows some of them:

Figure 2.1: Architectural Styles in graphic notation

•  Pipes and Filters: Each component (filters) has a set of inputs and a set of outputs. A
component reads streams of data on its inputs and produces streams of data on its
outputs, delivering a complete instance of the result in a standard order (through pipes).
This is usually accomplished  by applying a local transformation to the input streams and
computing incrementally so output begins before input is consumed. The invariants are
that the filters must be independent entities, they should not share state with other filters;
and  do not know the identity of their upstream and downstream filters.

•  Data Abstraction and Object-Oriented Organization: data representations and their
associated primitive operations are encapsulated in an abstract type or object. The
components are the objects called as manager because they are responsible for
preserving the integrity of a resource (representation).  Objects interact through function
and procedure invocations. Their invariants are that an object is responsible for
preserving the integrity of its representation (usually by maintaining some invariant over
it); and the representation is hidden from other objects.

•  Event-based, Implicit Invocation: the componens in this style are modules whose
interfaces provide both a collection of procedures and a set of events. Procedures may



Chapter 2: Software Architecture and Approaches of Description                               25

be called in the usual way. But in addition, a component can register some of its
procedures with events of the system. This will cause these procedures to be invoked
when those events are announced at run time. Thus the connectors in an implicit
invocation system include traditional procedure call as well as bindings between event
announcements and procedure calls. The invariant: The announcers of events do not
know which components will be affected by those events. Thus components can not
make assumptions about order of processing, or even about what processing, will occur
as a result of their events.

•  Layered Systems: A layered system is organized hierarchically, each layer providing
service to the layer above it and serving as a client to the layer below. In some layered
systems inner layers are hidden from all except the adjacent outer layer, except for
certain functions carefully selected for export.  The connectors are defined by the
protocols that determine how the layers will interact. Topological constraints include
limiting interactions to adjacent layers.

•  Repositories: In this style there are two quite distinct kinds of components: a central
data structure represents the current state, and a collection of independent components
operate on the central data store. Interactions between the repository and its external
components can vary significantly between systems. The choice of control discipline
leads to major subcategories. If the types of transactions in an input stream of
transactions trigger selection of processes to execute, the repository can be a traditional
database. If the current state of the central data structure is the main trigger of selecting
processes to execute, the repository can be a blackboard.

•  Table Driven Interpreters: In an interpreter organization a virtual machine is produced
in software. An interpreter includes the pseudo-program being interpreted and the
interpretation engine itself. The pseudo-program includes the program itself and the
interpreter's analog of its execution state (activation record). The interpretation engine
includes both the definition of the interpreter and the current state of its execution. Thus
an interpreter generally has four components: an interpretation engine to do the work, a
memory that contains the pseudo-code to be interpreted, a representation of the control
state of the interpretation engine, and a representation of the current state of the
program being simulated.

•  There are numerous other architectural styles. Some are widespread and others are
specific to particular domains. Examples: Distributed Processes, Main
Program/Subroutine Organtizations, State Transition Systems, Process Control
Systems, Multi-Phase Architectural Pattern (Figure 2).

 Example: Multiple-Phase Architectural Style [PW92]  
 
The multi -phase architectural style consists of processing elements and data elements that are 
exchanged between processing elements. If the multi -phase architectural style is organized 
sequentially, it  also uses following connecting elements. This style can be used to describe a 
compiler. In this case,  
 
Processing elements: lexer, parser, semantor, optimizer, code generator.  
Data elements: characters, tokens, phrases, correlated phrases, annotated phras es, object code.  
Connecting elements: procedure calls and parameters.  

 
The restrictions are: the optimizer and the annotated phrases must be found together, but they are 
only preferred elements and not mandatory; and the lexer is constrained to accept a s equence of 
characters C, to produce a sequence of tokens T, and to preserve the ordering correspondence 
between characters and tokens:  

Lexer:C ! T, where T preserves C. 
 

Figure 2.2: Multi-Phase Architectural Style [PW92]



   26                               Object Oriented Architectural Description of Frameworks

Observing the features of the different architectural styles, we can enumerate the basic
properties they have:

⇒  They provide a vocabulary of design elements -component and connector types such as
pipes, filters, clients, servers, parsers, databases, etc. [Gar95].

⇒  They define a set of configuration rules -or topological constraints -that determine the
permitted compositions of those elements. For example, the rules might specify that a
client-server organization must be an n-to-n relationship, or define a specific
compositional pattern such as a pipelined decomposition of a compiler [Gar95].

⇒  They define a semantic interpretation, whereby compositions of design elements,
suitably constrained by the configuration rules, have well-defined meanings [Gar95].

⇒  They define analyses that can be performed on systems built in that style. For example,
a deadlock for client-server message passing [RJFC94].

Generally speaking, an architectural style expresses a particular kind of fundamental
structure for a software system together with an associated method that specifies how to construct
it. An architectural style also comprises information about when to use the architecture it describes,
its invariants and specializations, as well as the consequences of its application.

We have cited 'pure' architectural styles. It is important to understand the individual nature
of each of these styles, most systems typically involve some combination of several styles. There
are different  ways in which architectural styles can be combined [Gar95]:

⇒  Through hierarchy: A component of a system organized in one architectural style may
have an internal structure that is developed a completely different style. For example, in
an UNIX pipeline the individual components may be represented internally using another
pipe and filter system.

⇒  To allow a single component to use a mixture of architectural connectors. For example,
a component might access a repository through part of its interface, but interact through
pipes with other components in a system, and accept control information through
another part of its interface. In fact, UNIX pipe and filter systems do this, the file system
playing the role of the repository and initialization switches playing the role of control.

⇒  To completely elaborate one level of architectural description in a completely different
architectural style.

2.3.1 Practical Benefits of Architectural Styles

The principled use of architectural styles has a number of practical benefits [Gar95].
⇒  it promotes design reuse: routine solutions with well-understood properties can be

reapplied to new problems with confidence.
⇒  It can lead to significant code reuse: often the invariant aspects of an architectural style

lend themselves to shared implementations.
⇒  It is easier for others to understand a system's organization if conventionalized

structures are used. For example, characterization of a system as a layered organization
immediately conveys a strong image of the kinds of pieces which collaborates through
services in different levels of the system.

⇒  Constraining the design space, an architectural style often allows specialized, style-
specific analyses. For example, it is possible to analyze pipe-filter systems for
schedulability, throughput, latency, and deadlock-freedom

2.4 Architectural Styles and Patterns

Architectural styles are very similar to the architectural patterns presented in [BMR+96]. In
fact, every architectural style can be described as an architectural pattern. For example, the Multi-



Chapter 2: Software Architecture and Approaches of Description                               27

phase architectural style [PW92] corresponds to the Pipes and Filters pattern [BMR+96]. On the
other hand, architectural styles differ from patterns in several important respects:

Architectural styles only describe the overall structural framework for applications. Patterns
for software architecture, however, exist in various ranges of scale, beginning  with patterns for
defining the basic structures of an application (architectural patterns) and ending with patterns that
describe how to implement a particular design issue in a given programming language (idioms)
[BMR+96].

Architectural styles are independent of each other, but a pattern depends on the smaller
patterns it contains, on the patterns with which it interacts, and on the larger patterns in which it is
contained [Ale76]

Patterns are more problem-oriented than architectural styles. Architectural styles
expresses design techniques from a viewpoint that is independent of an actual design situation. A
pattern expresses a very specific recurring design problem and presents a solution to it, all from
the viewpoint of the context in which the problem arises [BMR+96].

2 . 5  Significance of Software Architecture to Software
Engineering

A principled use of software architecture can have a positive impact on at least four
aspects of software development:

•  Understanding: Software Architecture simplifies our ability to comprehend large systems
by presenting them at a level of abstraction in which all the system can be understood
[GS92] [PW92]. Moreover, architectural description exposes the high level constraints on
system design as well as the rationale for making specific architectural choices [GP94].

•  Reuse: Architectural description support reuse at multiple levels. While most current
work on reuse focuses on component libraries, architectural design supports, in addition,
both reuse of large components (such as subsystems), and also the complementary
need for reusable frameworks into which components can be integrated [GP94].

•  Evolution: Software architecture can expose the dimensions along which a system is
expected to evolve. By making explicit what are the "load-bearing walls" of a system,
system maintainers can better understand the ramifications of changes, and thereby
more accurately estimate costs of modifications [PW92].

•  Analysis: Architectural description provides new opportunities for analysis [PW92],
including high-level forms of system consistency checking [AG94], conformance to an
architectural style [AAG93], and domain-specific analysis for architectures that conform
to specific styles [GP94].

2.6 Architecture Description Languages (ADLs): General
features

In this dissertation, we use Wright ADL [All97] to propose an architectural description of a
framework. Firstly, we discuss general features about  ADL, and after we describe briefly the
elements and ways of working with Wright ADL [All97].

 This field seems to be another item in the list of unclear definitions. Nobody agrees in the
research community on what is an ADL, what aspects of an architecture should be modeled in an
ADL, and which ADL fits for a particular problem.



   28                               Object Oriented Architectural Description of Frameworks

 ADLs have been proposed as the answer to support architecture-based development,
formal modelling notations and analysis and development tools that operate on architectural
specifications.

An ADL is a language that provides features for modeling a software system's conceptual
architecture. A number of ADLs have been proposed for modeling architectures both within a
particular domain and as general-purpose architecture modeling languages, for example, Aesop
[GAO94],  MetaH [Ves96], LILEANNA [Tra93], ArTek [TLPD95], C2 [ MORT96, MTW96], Rapide
[LKA+96,LV95], Wright [All97], UniCon [SDK+95], Darwin [MDEK95, MK96], and SADL [MQR95].

ADLs provide a concrete syntax and a conceptual framework for characterizing
architectures [GMW97]. The building blocks of an architectural description are : components,
connectors, and architectural configurations (or topologies). An ADL must provide the means for
their explicit specification. An ADL typically subsume a formal semantic theory. That theory is part
of an ADL's underlying framework for characterizing architectures ; it influences the ADL's
suitability  for modeling particular kinds of systems (e.g. highly concurrent systems) or particular
aspects of a given system (e.g., static properties).

2.6.1 Architectural Elements and Its Properties

ADLs must provide components, connectors and architectural configurations. [MT97] have
developed a framework for classifying and comparing ADLs. In this work, they enumerate  several
aspects of both components and connectors that are desirable, but not essential : interfaces (for
the connectors) and types, semantics, constraints, and evolution (both). Desirable features of
configurations are understandibility, heterogeneity, compositionality, constraints, refinement and
traceability, scalability, evolution and dynamism.

Let's see all the elements and properties in general terms and after we determine which
properties are fulfilled by Wright ADL [All97].

1. Components : unit of computation or data store. Therefore, components are loci of
computation and state [SDK+95]. A component in an architecture may be as small as a single
procedure(e.g. MetaH procedures) or as large as an entire application (e.g. hierarchical
components in C2 and Rapide or macros in MetaH). It may require its own data and/or
execution space, or it may share them with other components.

•  Interface : a component's interface is a set of interaction points between  it and the
external world. An interface specifies the services (messages, operations, and variables)
a component provides.

•  Types: ADLs can support reuse by modeling abstract components as types and
instantiating them multiple times in an architectural specification.

•  Semantics: Modelling of component semantics enables analysis, constraint
enforcement, and mapping of architectures across levels of abstracion.

•  Constraints: Properties or assertions must be specified to ensure adherence to intended
component uses, enforce usage boundaries, and establish intra-component
dependencies.

•  Evolution: As components evolve, ADLs should support component evolution through
subtyping and refinement.

2. Connectors  are architectural building blocks used to model interactions among components
and rules that govern those interactions. Unlike components might not correspond to
compilation units in implemented systems.

•  Interfaces : In order  to enable proper connectivity of components and their
communication in an architecture, a connector should export as its interface those
services it expects. Therefore, a connector's interface is a set of interaction points
between it and the components attached to it. It enables reasoning about the well-
formedness of a configuration.



Chapter 2: Software Architecture and Approaches of Description                               29

•  Types: As architecture-level communication is often expressed with complex protocols,
ADLs should model connectors as types to abstract away these protocols and make
them reusable.

•  Semantics: Architectural descriptions should provide connector protocol and transaction
semantics to perform analyses of component interactions, consistent refinements across
levels of abstraction, and enforcement of interconnection  and communication
constraints.

•  Constraints: Connector constraints must be specified to ensure adherence to interaction
protocols, establish intra-connector dependencies, and enforce usage boundaries.

•  Evolution: Component interactions are governed by complex and changing protocol.
Maximizing connector reuse is achieved by modifying or refining existing connectors,
ADLs can support connector evolution with subtyping and refinement.

3. Configurations : Architectural configurations, or topologies, are connected graphs of
components and connectors that describe architectural structure. This information is needed to
determine whether : appropriate components are connected, their interfaces match,
connectors enable proper communication, and their combined semantics result in desired
behavior. In concert with models of components and connectors, descriptions of configurations
enable assessment of concurrent and distributed aspects of an architecture, e.g. potential for
deadlocks and starvation, performance, etc. Configurations also enable analyses for
adherence to design heuristics and style constraints.

•  Understandable Specifications: ADLs must model structural information with simple and
understandable syntax, where system structure is clear from a configuration specification
alone.

•  (Hierarchically) Compositionality: Architectures may be required to describe software
systems at different levels of detail, where complex behaviours are either explicitly
represented or abstracted away into single components and connectors. An ADL may
also need to support situations in which an entire architecture becomes a single
component in another, larger architecture.

•  Hetereogeneity: A goal of architectures is to facilitate development of large systems,
with components and connectors of varying granularity, implemented by different
developers, and in different programming languages. ADLs should provide facilities for
architectural specification and development with heterogeneous components and
connectors.

•  Constraints: Constraints that depict dependencies among components and connectors
in a configuration are as important as those specific to individual components and
connectors. Many global constraints are derived from or directly dependent upon local
constraints.

•  Refinement and Traceability: ADL must enable correct and consistent refinement of
architectures to executable systems and traceability of changes across levels of
refinement.

•  Scalability: Architectures are intended to support large-scale systems. ADLs must
support specification and development of systems that may grow in size.

•  Evolution: Architectures evolve to reflect evolution of a single software system; they also
evolve into families of related systems. ADLs need to augment evolution support at the
level of components and connectors with features for incremental development and
support for system families. Incrementality of an architectural configuration can be
viewed from two different perspectives. One is its ability to accommodate addition of new
components, and the another one is the ADL's support for incomplete architectural
descriptions. Another aspect of evolution is support for application families.

•  Dynamism: Configurations exhibit dynamism by allowing replication, insertion, removal,
and reconnection of architectural elements or subarchitectures during execution.



   30                               Object Oriented Architectural Description of Frameworks

2.6.2 Wright: An Architectural Description Language

2.6.2.1 Structure

Wright is a formal language for describing software architecture. As with most ADLs,
Wright describes the architecture of a system as a graph of components and connectors.
Components represent the main centers of computation, while connectors represent the
interactions between components. While all architecture description languages allow the
specification of new component types, unlike many languages, Wright also supports the explicit
specification of new architectural connector types [All97].

To illustrate,let’s have a look at a configuration to describe a client-server system:

Configuration Simple Example
Component Server =

Port provide = [provide protocol]
Computation = [Server computation]

Component Client =
Port request = [request protocol]
Computation = [Client protocol]

Connector C-S-Connector =
Role Client = [Client protocol]
Role Server = [Server Protocol]
Glue = [Glue Protocol]

Instances
s : Server
c : Client
cs : C-S-Connector

Attachments
s.provide as cs.server
c.request as cs.client

end SimpleExample

. This example shows three basic elements of a Wright system description : component
(Server and client) and connector (C-S-Connector) type declaration , instance declarations, and
attachments. The instance declarations and attachments together define a particular system
configuration. Let’s see briefly some details about each element in the structure of a configuration
1. In Wright the description of a component has two important parts, the interface and the

computation. A component interface consists of a number of ports. Each port defines a point of
interaction through which the component may interact with its environment.

2. A connector represents an interaction among a collection of  components. For example, a pipe
represents a sequential flow of data between two filters. A Wright description of a connector
consists of a set of roles and the glue. Each role defines the allowable behavior of one
participant in the interaction. A pipe has two roles, the source of data and the recipient. The
glue defines how the roles will interact with each other.

3. The description of the components and connectors are considered as types that represent the
properties of these artefacts. Thus “Client” is a type of component, while there may be many
instances of a client in a given system. Wright requires that each instance be explicitly and
uniquely named and provides the instances declarations to distinguish the different instances
of each component and connector type that appear in the configuration.

4. Once the instances have been declared, a configuration is completed by describing the
attachments . The attachments define the topology of the configuration, by showing which
components participate in which interactions. This is done by associating a component’s port
with a connector’s role. For example, the attachment declaration s.provide as cs.server



Chapter 2: Software Architecture and Approaches of Description                               31

indicates that the component s will play the role of server in the interaction cs. It will find this
role through the port provide.

5. The attachments declarations bring together each of the elements of an architectural
description. The component carries out a Computation, part of which is a particular interaction,
specified by a Port. That port is attached to a Role, which indicates what rules the port must
follow in order to be a legal participant in the interaction specified by the connector. If each of
the components, as represented by their respective ports, obeys the rules imposed by the
roles, then the connector Glue defines how the Computations are combined to form a single,
larger computation.

Wright supports also hierarchical descriptions. In particular, the computation of a
component (or the glue of a connector) can be represented either directly by a behaviour
specification or by an architectural description itself. In the latter case, the component
serves as abstraction boundary for a nested architectural subsystem, which is described
as a configuration in the same way as it was made previously. However, for a component
the nested architectural description has an associated set of bindings, which define how
the unattached port names on the inside are associated with the port name of the
enclosing component. The figure 2.3 illustrates the use of hierarchy using the previous
example and the hierarchical specification in Wright looks like that:

Configuration HierServer
Connector CSConn
Component ClientType
Component ServerType

Port Service …
Computation

Configuration SecureData
Component Coordinator
Instances
   C: Coordinator
   Security : SecurityManager
Attachments
   C.Secure as S1.Client
   Security.Service as S1.Service
End SecureData
Bindings
    C.Combined = Service
End Bindings

Instances
…
Attachments
…

end HierServer

 Client Server 

Majordomo 

Security 

Database

Figure 2.3: Hierarchical Structure



   32                               Object Oriented Architectural Description of Frameworks

2.6.2.2 Style

Wright can be used to define architectural styles. A style defines a set properties that are
shared by the configurations that are members of the style. These properties can include a
common vocabulary and restrictions on the ways this vocabulary can be used in configurations.

In Wright, common vocabulary is introduced by declaring a set of component and
connector types, using the declaration constructs introduced previously for instance descriptions.

For example, a client-server style would include a declaration of connector type Client.
Then when a configuration is declared in the client-server style, Clients are automatically available
for use.

Interfaces Types: in addition to declaring complete component and connector types, a style’s
properties may constrain only part of a component or a connector. For example, in the pipe-filter
style all components are filters, which use only dataflow for input and output. This commonality of
filters needs to be stated, while the computation itself will differ between different filters. An
interface type declarations looks like the following one:

Interface Type DataInput = [read data repeatedly, closing the port at or before end-of-data]
Interface Type DataOutput = [write data repeteadly, closing the port to signal end-of-data].

Interfaces types can then be used either as the port of a component or as the role of a
connector. In the latter case, the interface represents a constraint on the port interfaces that may
be used in the role.

Parameterization: This ADL allows any part of the description of a type to be replaced with a
placeholder, which is then filled with a parameter when the type is instantiated. So the type of a
port or role, a computation, the name of an interface are all parameterizable. For example, in the
Unix pipe-filter style, all components have one input, named Stdin, and two outputs, named Stdout
and Stderr. The interface to all Unix filters is the same. But the computation performed by each
Unix filter is different. We can describe the Unix filter as a parameterized component type, as
follows:

Component Unix-filter (C: Computation)
Port Stdin = DataInput
Port Stdout = DataOutput
Port Stderr = DataOutput
Computation = C

We can then use this description to describe any number of Unix filters :

Upper : Unix-filter ([pass output, translating to uppercase])
Lower: Unix-filter ([pass output, translating to lowercase])
LaTex: Unix-filter ([translate input in .tex form to .dvi form; error messages are sent to Stderr])

Another way of parameterizing a type description is by number. Suppose, for example, that
a particular class of filter system uses many filters that split their input among a number of outputs.
For example,

Component SplitFilter (nout: 1..)
     Port Input = DataInput
     Port Output1..nout  = DataOutput
    Computation = [read from Input repeatedly, writing to Output1, Output2 , etc. in succession]

The number parameter can be used to control the number of particular kinds of ports or
roles that can appear. A port or role description that can have multiple copies is indicated by



Chapter 2: Software Architecture and Approaches of Description                               33

specifying a range of integers as a subscript to its name. In this example, there can be more than
one Output port, depending on the value of the nout parameter.

Constraints: A Wright style description may declare properties that must be obeyed by any
configuration in the style. For example, the Wright definition of the pipe-filter style would indicate
that all the connectors must be pipes as follows: ∀ c: Connectors • Type(c) = Pipe.

In addition, the style would require that all components in the system use only DataInput
and DataOutput ports:

∀ c: Components; p: Port |  p _ Ports(c) • Type(c) = DataInput v  Type(c) = DataOutput

Each of the constraints declared by a style represents a predicate that must be satisfied by
any configuration declared to be a member of the style. The notation for constraints is based on
first order predicate logic. The constraints refer to the following sets and operators:

•  Components: the set of components in the configuration.
•  Connectors: the set of connectors in the configuration.
•  Attachments: the set of attachments in the configuration. Each attachment is

represented as a pair of pairs ((comp, port), (conn,role)).
•  Name(e) : the name of event e, where e is a component, connector, port, or role.
•  Type(e): the type of element e.
•  Ports(e): the set of ports on component e.
•  Computation(c): the computation of component c.
•  Roles(c): the set of roles of connector c.
•  Glue(c): the glue of connector c

In addition, any type has been declared as part of the style’s vocabulary may be referred to
by name. As we saw in the example above, the pipe-filter style introduces Pipe, Data Input, and
DataOutput, and the constraints of the style refer to these types by name. Let’s see then the
complete example.

Style Pipe-Filter
Connector Pipe
Role Source [deliver data repeatedly, signalling termination by close]
Role Sink [read data repeatedly, closing at or before end of data]
Glue [Sink will receive data in same order delivered by Source]

Interface Type DataInput = [read data repeatedly, closing the port at or before end-of-data]
Interface Type DataOutput = [write data repeteadly, closing the port to signal end-of-data].
Constraints

∀ c: Connectors • Type(c) = Pipe ^
∀ c: Components; p: Port |  p _ Ports(c) • Type(c) = DataInput v  Type(c) = DataOutput

2.6.2.3 Behaviour: Definition of interaction protocols

Each part of a Wright description –port, role, computation and glue- is defined using a
variant of CSP [Hoa85]. Each such specification defines a pattern of events (called a process)
using operators for sequencing (“_” and “;”), choice (“_” and “_”), and parallel composition (”||”).

Let’s see briefly the main details about CSP
•  Processes and Events : A process describes an entity that can engage in

communication events. Events may be primitive or they can have associated data as e?x
and e!x, representing input and output of data, respectively.

•  Prefixing : A process that engages in event e and then becames process P is denoted
e _ P

•  Sequencing : (« sequential composition »)  A process that behaves like P until P
terminates (§) and then behaves like Q, is denoted P;Q



   34                               Object Oriented Architectural Description of Frameworks

•  Interrupting : A process that behaves like P until the occurrence of the first event in Q, is
denoted P_ Q.

•  Alternative : (« external choice ») A process that can behave like P and Q, where the
choice is made by the environment, is denoted P  Q. (« Environment» refers to the
other processes that interact with the process.)

•  Decision : (« internal choice ») A process that can behave like P or Q, where the choice
is made (non-deterministically) by the process itself, is denoted P _ Q.

•  Named Processes : Process names can be associated with a (possibly recursive)
process expression. Processes may also be subscripted to represent internal state.

•  Parallel Composition : Processes can be composed using the || operator. Parallel
processes may interact by jointly (synchronously) engaging in events that lie within the
intersection of their alphabets. Conversely, if an event e is in the alphabet of processes
P1 and P2, then P1 can only engage in the event if P1 can also do so. That is, the
process P1 || P2 is one whose behavior is permitted by both P1 and P2.

Wright extends CSP in three minor synthatic ways:
•  it distinguishes between initiating an event and observing an event.
•  it uses the symbol § to denote the successfully-terminating procces.  (In CSP this is

usually written « SKIP »).
•  It uses a quantification operator: <op> x:S • P(x). This operator constructs a new

process based on the process expresion P(s), and the set S, combining its parts by the
operator <op>. For example, _ i : {1,2,3} • Pi = P1 _ P2 _ P3: i.e., a choice among one of
three processes, P1, P2, P3. Similarly, .x:S • P(x) is a process that consists of some
unspecified sequencing of the processes:

;x:S • P(x) = _ x:S • (P(x); (;x:S\{x} • P(y)).

Thus, we can define the protocols  for our example. A simple client role might be defined
by the CSP process:

Role Client = (request  _ result?x _ Client) _ §

This specification defines a participant in an interaction that repeatedly makes a request
and receives a result, or chooses to terminate successfully.

It is also possible to define interfaces types and to use them in the interaction protocol of
the role, glue, port and computation. For example,

Interface Type ClientPullT = open  _ Operate _ §

where Operate = request  _  result?x _  Operate _ close _  § 

This spefication defines the behaviour of a participant in an interaction that repeatedly
opens a connection and makes a request and wait for the answer or chooses to terminate
successfully.

Interface Type ServerPushT = open _  Operate _ §

where Operate = request _ xresult!  _  Operate _ close _  § 

This spefication defines the behaviour of a participant in an interaction that waits for the
opening of a connection and a request and  sends a result or wait for a closing event to terminate
successfully

Thus, the specification of the connector is given by the following structure:

Connector C-S-Connector



Chapter 2: Software Architecture and Approaches of Description                               35

Role Client = ClientPullT
Role Server = ServerPushT

Glue = Client.open _  openServer.  _  Glue

_ Client.close _  closeServer.  _  Glue

 _ Client.request _  requestServer.  _  Glue

 _ Server.result ?x _  xresultClient !.  _  Glue

The connector waits for the occurrence of the events in the client-side (in the first three
cases) and notifies the server-side of this ocurrence. In the last case, when the server sends a
value, the client is notified of this event.

This small example intends to be illustrative to understand the notation which will be used
in the rest of this dissertation. A more detailed of the use of CSP notation to define interaction
protocols can be consulted in [All97].

2.6.2.4 Validation of Descriptions

As a formal specification language, Wright has value beyond enabling architects to write
down an architectural description. Another important aspect of the language is its support for
analysis and reasoning about the described system.

Two criteria for an architectural description are consistency and completeness. Informally,
consistency means that the description makes sense; that different parts of the description do not
contradict each other. Completeness is the property that a description contains enough information
to perform an analysis; that the description does not omit details necessary to show a certain fact
or to make a guarantee. Thus, completeness is with respect to a particular analysis or property.

Because the architectural level of design is fundamentally concerned with questions of
structuring and composition, consistency among parts is especially critical at this level of design.
The principles that ensure that a system will function as a coherent entity must be built in as part of
the overall structure; if the abstract description is inconsistent, any refinement or implementation of
it must necessarily retain that inconsistency.

The problem of completeness is especially critical for the architect because of the
importance of abstraction at this level of design. There is always a tension between the need to
include critical information that is necessary to guarantee important system properties and the risk
of  cluttering the architecture with constraints and details that can make the architecture unwieldy
and difficult to work with.

To guarantee that an architectural description is both consistent and complete, Wright
provides a set of tests. We just mention them. More detailed information can be obtained in [All97].
In our approach we use this set of tests to verify that the description that we get in our algorithm is
valid  exploiting the formal side of Wright ADL

1. Port/Computation Consistency (component)
2. Connector Deadlock-Free (connector)
3. Roles Deadlock-Free (role)
4. Single Initiator (connector)
5. Initiator Commits (any process)
6. Parameter Substitution (instance)
7. Range Check (instance)
8. Port-Role Compatibility (attachment)
9. Style Constraints (configuration)
10. Style Consistency (style)
11. Attachment Completeness (configuration)



   36                               Object Oriented Architectural Description of Frameworks

2.6.2.5 Properties

Having a general overview of how to use Wrigth ADL, let’s see which are the properties
that this language according to [MT97]. Thus, this language:

" Formalizes the semantics of architectural connections.
"  Models components components and connectors at a high level of abstraction and do

not assume or prescribe a particular relationship between an architectural description
and an implementation. It is referred as implementation independent.

" Provides the specification of component interfaces through the concept of port
"  Models component semantics allowing the specification of component functionality in

CSP.
"  Express the constraints of the components specifying the protocols of interaction for

each port.
" Refers to connector interface points as roles.
" Models connectors as first-class entities.
" Models connector semantics allowing the specification of connector glue with CSP.
" Constrains connectors by specifying protocols for each role.
"  Does not facilitate connector subtyping, but supports type conformance, where a role

and its attached port may have behaviorally related, but not necessarily identical,
protocols.

" Has the best potential to facilitate understanbility of architectural structure.
" Does not provide a ‘semantically-sound’ graphical notations.
" Allows hierarchical composition in principle, but provide no specific constructs to support

it.
"  Has been highlighted as an example of ADL lacking scalability features, yet they have

both been used to specify architectures of large, real world systems.

2.7 Summary

This chapter explains all the features related to software architectures and ADLs focusing
on Wright ADL. Thus, we have the vocabulary of the context and tools that we will be used to infer
an architectural description of an object oriented frameworks.



Designing software is hard and design of reusable software is even harder. The object
oriented software technology is not the exception in the problem. However the development of
object oriented framework seems to cope with this trouble in some aspects. In this chapter, we
introduced the concept of object oriented frameworks and their main characteristics. We focus our
work on two kinds: application and component frameworks.

3.1 Definition

The literature about this field shows a set of possible definitions to characterize an object
oriented framework. However we consider one given in [FSJ00] that defines a framework as a
reusable design of a system that describes how the system is decomposed into a set of interacting
objects. Sometimes the system is an entire application; sometimes it is just a subsystem. The
framework describes both the component objects and how these objects interact. It describes the
interface of each object and the flow control between them. It describes how the system's
responsibilities are mapped onto its objects [Joh88, WBJ90]. The most important part of a
framework is the way that a system is divided into its components [Deu89]. Frameworks also reuse
implementation, but that is less important than reuse of the internal interfaces of a system and the
way that its functions are divided among its components. This high-level design is the main
intellectual content of software, and the frameworks are a way to reuse it.

3.2 Differences with other concepts

The possibility of the frameworks of being used as the base for the development of a
number of applications in the application domain constrasts to the normal way of developing an
object-oriented application. Considering this issue, let’s enumerate briefly which are the differences
of a framework compared to other concepts such as an object oriented design pattern, a pattern
language and an ordinary object-oriented application.  We only keep the concepts that appear
during the development of this dissertation

An object oriented design pattern differs from a framework in three ways [GHJV95]. Firstly,
the design patterns are more abstract than a framework since frameworks are embodied in code
meanwhile only the examples of design patterns are coded. The design patterns also describe the
intent, trade-offs, and consequences of a design, which is not the case for frameworks. Secondly,
design patterns are smaller architectures than frameworks. Thus, a framework can contain a
number of design patterns, but the opposite is never possible. Then the design patterns have no
major impact of the application’s architecture. Finally, frameworks are more specialized than
design patterns. Frameworks are always related to a specific application domain, whereas design
patterns are general and can be applied in any application domain.

Pattern languages differ from frameworks in the way that a pattern language describes
how to make a design where an object oriented framework is a design. Pattern languages
complement a framework since they can teach software engineers how to use a framework, and
describe why it was designed the way it was. [Mat96]

An object oriented application differs from a framework in that the application describes a
complete executable program that satisfies a requirement specification. The framework captures

CChhaapptteerr   33::     OObbjjeecctt   OOrr iieenntteedd  FFrraammeewwoorrkkss



   38                               Object Oriented Architectural Description of Frameworks

the functionality of the application but it is not executable because it does not cover the behaviour
in the specific application case.[Mat96]

3.3 Characterization of Frameworks by different dimensions

The most important dimensions to characterize are: the problem domain the framework
addresses, the internal structure of the framework and how the  framework is intended to be used
[Tal94].

Considering the framework domains, they are classified as:
•  Application frameworks are frameworks that cover functionality that can be applied to

different domains. Examples of application frameworks are frameworks for graphical
user interfaces [WG94].

•  Domain frameworks capture knowledge and expertise in a particular problem domain.
Frameworks for manufacturing control [Sch95] and multimedia are examples of domain
frameworks.

•  Support frameworks are frameworks that offer low-level system services such as
device drivers [And94] and file access.

Support frameworks are typical cases of fine-grained frameworks, whereas application and
domain frameworks often are monolithic frameworks.

Taking into account the framework structures, if the framework’s internal structure is
described it can make it easier to understand the behaviour of the framework. The internal
structure of a framework is related to the concepts of software architectures. In [GS92] a number of
common software architectures have been identified. [BMR+96] calls these ‘architectural
frameworks’ since they have been designed in a way that captures the main structure of an object-
oriented software architecture: The Layered architectural framework, the Pipes Filters architectural
framework, the Model View Controller architectural framework, the Presentation-Abstraction-
Controller architectural framework, the Reflective architectural framework, the Microkernel
architectural framework, the Blackboard architectural framework and the Broker architectural
framework. We just mentioned them, but in fact we consider them as ‘architectural patterns’ in fine-
grained level compared to framework, that can be used integrated in an software architecture.

About the way of use issue, there are two possibilities [Ada95] [FSJ00]:
⇒  Architecture driven or inheritance focused frameworks (whitebox frameworks)
⇒  Data driven or composition focused frameworks (black box frameworks)

In the case of architecture driven or inheritance focused frameworks, the main approach is
to develop applications relying on inheritance and dynamic binding. Framework users make their
adaptation of the framework through:

1. inheriting from framework base classes and
2. overriding pre-defined hook methods using patterns like Template Method [GHJV95].

A problem with frameworks that are architecture-driven is that it can be difficult to adapt
them because:

1. it requires application users to have an intimate knowledge of the frameworks’ internal
structure,

2. the framework users have to provide the implementation of the behaviour themselves,
which implies a large amount of code to be written.

Thus, they tend to produce systems that are tightly coupled to the specific details of the
framework’s inheritance hierarchies.

However in data driven or composition focused frameworks, adapting the frameworks to
the specific needs of the application means relying on object composition and delegation. Existing
functionality is reused by

1. defining components that conform to a particular interface, and



Chapter 3: Object Oriented Frameworks                                                                      39

2. integrating these components into the framework using patterns like Strategy
[GHVJ95] and Functor.

How objects can be combined are described by the framework, but what the framework
does depends on what objects the framework user passes into the framework. A framework that is
data-driven is normally easy to use but limiting. They are more difficult to develop since they
require frameworks developers to define interfaces and hooks that anticipate a wider range of
potential use-cases [HJE95]

To handle the problems associated with using inheritance-focused and composition-
focused frameworks, a suitable approach can be to provide the framework with an architecture-
driven base and a data-driven layer so it is both extendable and easy to use [Tal94]. How the
objects can be combined are described by the framework, but what the framework does depend on
what objects the framework user posses into the framework. To handle the problems associated
with using inheritance focused and composition focused frameworks, a suitable approach can be
to provide the framework with an architecture-driven base and a data driven layer so it is both
extendable and easy to use.

3.4 Application Frameworks: Specific Features

As our approach is devoted to be applied in application frameworks because we explore
internal structures, let’s then the main features presented in [FSJ00] that we intend to represent in
an architectural description.

Each object in the framework is described by an abstract class. An abstract class is a class
with no instances, so it is used only as a superclass [WBJ90]. An abstract class usually has at
least one unimplemented operation deferred to its subclasses. Since an abstract class has no
instances, it is used as a template for creating subclasses rather than as a template for creating
objects. Frameworks use them as design of their components because they  both define the
interface of the components and provide a skeleton that can be extended to implement the
components.

In addition to providing an interface, an abstract class provides part of the implementation
of its subclasses. For example, a template method defines the skeleton of an algorithm in an
abstract class, deferring some of the steps to subclasses [GHJV95]. Each step is defined as a
separate method that can be redefined by a subclass, so a subclass can redefine individual steps
of the algorithm without changing its structure. The abstract class can either leave the individual
steps unimplemented (in other words, they are abstract methods) or provide a default
implementation (in other words, they are hook methods) [Pre95]. A concrete class must implement
all the abstract methods of its abstract superclass and may implement any of the hook methods. It
will then be able to use all the methods it inherits from its abstract superclass.

Frameworks take advantage of all three of the distinguishing characteristics of object
oriented programming languages: data abstraction, polymorphism, and inheritance. Like an
abstract data type, an abstract class represents an interface behind which implementation can
change. Polymorphism  is the ability for a single variable or procedure parameter to take on values
of several types. Object-oriented polymorphism lets a  developer mix and match components, lets
an object change its collaborators at runtime, and makes it possible to build generic objects that
can work with a range of components. Inheritance makes it easy to make a new component. a
framework describes the architecture of an object-oriented system;  the kinds of objects in it, and
how they interact. It describes how a particular kind of program, such as a user interface or
network communication software is decomposed into objects. It is represented by a set of classes
(usually abstract), one for each kind of object, but the interaction patterns between objects are just
as much a part of framework as the classes.

The first widely used framework, developed in the late 1970s, was the Smalltalk-80 user
interface framework called Model/View/Control (MVC) [Gol84, KP88, LP91]. MVC showed that
object-oriented programming was well suited for implementing graphical user interfaces (GUIs). It
divides a user interface into three kinds of components: models, views, and controllers. These



   40                               Object Oriented Architectural Description of Frameworks

objects work in trios consisting of a view and a controller interacting with a model. A model is an
application object and is supposed to be independent of the user interface. A view manages a
region of the display and keeps it consistent with the state of the model. A controller converts user
events (mouse movements and key presses) into operations on its model and view. For example,
controllers implement scrolling and menus. Views can be nested to form complex user interfaces.
Nested views are called subviews.

The important classes in the framework, such as Model, View, and Controller of MVC, are
usually abstract. Like MVC, a framework usually comes with a component library that contains
concrete subclasses of the classes in the framework. Although a good component library is crucial
companion to a framework, the essence of a framework is not the component library, but the model
of interaction and control flow among its objects.

3.5 Components and Frameworks

Considering white-box frameworks, we said that adapting them can be very difficult
because one has to understand what each element in the structure means and how the elements
work together in order to reuse the structure. The complexity of adaptation of course depends on
the complexity of structure to be adapted.  Moreover, putting several complex structures together
to form a bigger system (e.g. merging together groups of statements or different class hierarchies)
is also difficult. Thus, [MN95] proposes the use of  the software component to solve this problem.

A component is an abstraction of a software structure that may be used to build bigger
systems, while hiding the implementation details of the smaller structures. Putting together
components is simple, since each component has a limited set of ‘plugs’ with fixed rules specifying
how it may be linked with other componens. Instead of having to adapt the structures of a piece of
software to modify its functionality, a user plugs the desired behaviour into the parameters of the
component.

There are two important aspects to components:
•  Encapsulation of software structure as abstract components.
•  Composition of components by binding their parameters to specific values, or other

components.
Encapsulation is the means to achieve variability, since the possible variation is expressed

in the parameters (or ‘plugs’) of the component. Adaptability is achieved during composition, since
a software structure composed from components can be more easily reconfigured than an
unencapsulated structure.

The open variability of white-box structures can be changed for the fixed variability of
possible connections to the plugs of the component. This restriction of variability is possible due to
the fixed intented purpose of the component; it also includes the possibility to check the
correctness of combinations of parameters. This is called ‘closed’ or ‘black-box’ software reuse.

What are the differences between objects and components? First of all, objects
encapsulate services, whereas components are abstractions that can be used to construct object-
oriented systems. Objects have identity, state and behaviour, and are always run-time entities.
Components, on the other hand, are generally static entities that are needed at system build-time.
They do not necessarily exist at run-time. Components may be of finer or coarser granularity than
objects: e.g. classes, templates, mix-ins, modules. Components should have an explicit
composition interface, which is type-checkeable. An object can be seen as a special kind of
stateful component that is available at run-time.

A piece of software can be called a component if it has been designed to be composed
with other components. In general this is done to address a particular class of applications. If that
is the case, we say a component framework has been developed for that application area.

A component framework does not just consist of a library of components, but must also
define a generic architecture for a class of applications. A component framework is a collection of
software artefacts that encapsulated domain knowledge, requirements models, a generic software
architecture and a collection of software components addressing a particular application domain.
Thus, we have



Chapter 3: Object Oriented Frameworks                                                                      41

•  Flexibility in a framework that is achieved through variability in the components and
adaptability in the architecture.

•  Flexibility in an application that is promoted by making the specific architecture explicit
and manipulable.

Development of specific applications is framework-driven, in the sense that all phases of
the software lifecycle, including requirements collection and specification are determined according
to set patterns formalized within the framework.  To a large extent, system design is already done,
since the domain and system concepts are specified in the generic architecture. The remaining art
is to map the specific requirements to the concepts and components provided by the framework.

[MN95] proposes a scenario where they assume that all parts of the component framework
are formally specified, and managed by an application development environment. The environment
guides the requirements collection and specification activities, and helps to guide the specialization
and configuration of the application from available components.

Given this scenario of component-oriented development, software composition is defined
as the systematic construction of software applications from components that implement
abstractions pertaining to a particular problem domain. Composition is systematic in that it is
supported by a framework, and in the sense that components are designed to be composed.

3.6 Keys of Frameworks

3.6.1 : Analysis, Design and Code Reuse

As it is inferred from the definition and the features described so far, the analysis, design
and code reuse is one of the keys of the frameworks. Let’s enumerate the reasons given in
[FSJ00].

A framework reuses code because it makes it easy to build an application from a library of
existing components. These components can be easily used with each other because they all use
the interfaces of the framework. A framework also reuses code because a new component can
inherit most of its implementation from an abstract superclass. But reuse is best when you don't
have to understand the component you are  reusing, and inheritance requires a deeper
understanding  of a class that is using it as a component, so it is better to reuse existing
components than to make a new one. Of course, the main reason a framework enables code reuse
is that it is a reusable design. It provides reusable abstract design abstract algorithms and a high-
level design that decomposes a large system into smaller components and describes  the internal
interfaces between components. These standard interfaces make it possible to mix and match
components and to build a wide variety of systems from a small number of existing components.
New components that meet these interfaces will fit into the framework, so component designers
also reuse the design of a framework. Finally a framework reuses analysis. It  describes the kinds
of objects that are important and provides a vocabulary for talking about a problem. An expert in a
particular framework sees the world in terms of a framework and will naturally divide it into the
same components. Two expert users of the same framework will find it easier to understand each
other's designs, since they will come up with similar components and will describe the systems
they want to build in similar ways.

Analysis, design and code reuse are all important, though in the long run it is probably the
analysis and design reuse that provide the biggest payoff [BR96].

3.6.2 Hotspots and Frozen Spots

The functions in the framework design that need to be customised to change the
behaviour of the framework are called “hotspots”. Providing a new implementation for such a
function makes it possible to add variation to the applications that are based upon the framework.
The other functions in the framework are called frozen spots. They represent the static parts of the



   42                               Object Oriented Architectural Description of Frameworks

framework. These functions define the flow control in the application. They will call the hotspots at
the right time.

The template and concrete methods are frozen spots, while the abstract methods are
hotspots. The behaviour of template method is inherited by the subclasses of the framework
classes. These methods will call at least one template or abstract method that is implemented in
the same class or in another class of the framework. The framework developer encodes some of
his domain knowledge in the template methods. He knows which steps must be taken to perform
one of the framework responsibilities and he transmits this knowledge by calling other methods
(abstract as well as concrete) in the template method.

3.7 Analysis: Goals, Benefits and Weaknesses

According to the definition given previously, a framework can be seen as a set of
cooperating classes that comprises a reusable foundation for a specific application domain. In this
section we enumerate the general features about frameworks considering goals, benefits and
weakenesses [FSJ00, Mat96]

3.7.1 Goals

Within the main goals of a framework, we consider  the frameworks firstly must minimize
the amount of code needed to implement similar applications, since the common abstractions for
the applications are captured in the framework, which reduces the fraction of new code to be
developed.

Finally, they must optimize generality and leverage. The framework users have to tailor the
framework to the applications’s specific needs, for example, through subclassing. For leverage, it is
necessary that the frameworks include a set of predefined subclasses that the framework user can
use at once. Thus if the framework is too general, it will not support the framework user and, if it is
not general, it will be useable in very few situations.

3.7.2 Benefits

Talking about benefits, we can mention that the frameworks provide a real decrease in
lines of code that have to be developed if the application’s required functionality and the
functionality captured by the framework are similar to a high degree.

Secondly, an important aspect is that the framework's code is already written and
debugged.

Another aspect is that the frameworks offer reuse of design not only code. Framework
reusability leverages the domain knowledge and prior effort of experienced developers in order to
avoid re-creating and re-validating common solutions to recurring application requirements and
software design challenges.

The frameworks also enhance modularity by encapsulating volatile implementation details
behind stable interfaces. Framework modularity helps improve software quality by localizing the
impact of design and implementation changes

Another benefit is that the extensibility of the frameworks is provided by explicit hook
methods [Pre95] that allow applications to extend its stable interfaces. Hook methods
systematically decouple the stable interfaces and behaviors of an application domain from the
variations required by instantiations of an application in a particular context. Framework
extensibility is essential to ensure timely customization of new application services and features.

One of the critical benefits is the run-time architecture of a framework is characterized by
an “inversion of control.'' This architecture enables canonical application processing steps to be
customized by event handler objects that are invoked via the framework's reactive dispatching



Chapter 3: Object Oriented Frameworks                                                                      43

mechanism. When events occur, the framework's dispatcher reacts by invoking hook methods on
pre-registered handler objects, which perform application-specific processing on the events.
Inversion of control allows the framework (rather than each application) to determine which set of
application-specific methods to invoke in response to external events (such as window messages
arriving from end-users or packets arriving on communication ports).

The improved maintenance is another benefit because when an error is corrected in the
framework, the same error in software derived from the framework is corrected.

3.7.3 Weaknesses

Taking into account weaknesses, we can say that it is difficult to develop a good
framework. Experience in the application domain is necessary when building the framework.

One critical aspect is the documentation of the frameworks because if the frameworks are
not supported by the necessary user documentation, they are not likely to be used.

The backward compatibility can be difficult to maintain, since the frameworks evolve and
become more mature over time and the applications built on the frameworks must evolve with it.

The debugging process can be complicated because it is difficult to distinguish bugs in the
framework from bugs in the application code. If the bugs are in the framework, it can be impossible
for the framework user to fix the bug.

Thus it is possible to conclude that the generality and the flexibility of the framework may
work against its efficiency in a particular application.

3.8 Summary

This chapter summarizes the main features about object oriented frameworks, and thus,
we give the context where we apply the Wright ADL and architectural patterns as complementary
techniques to infer an architectural description.



   44                               Object Oriented Architectural Description of Frameworks



The terms software architecture and object oriented framework have in common the lack of
consensus in their definition. Thus, we presented the most known definitions in the two previous
chapters, and we took those that summarizes the main features of both concepts. In case of
software architecture, we use the classical definition given in [SG96] that defines the software
architecture as the structure of the components of a program/system, their interrelationships, and
principles and guidelines governing their design and evolution over time. About the definition of
object oriented framework,  we consider the definition given in [FSJ00] that defines a framework as
a reusable design of a system that describes how the system is decomposed into a set of
interacting objects. The framework describes both the component objects and how these objects
interact. It describes the interface of each object and the flow control between them. It describes
how the system's responsibilities are mapped onto its objects.

The most remarkable thing is that both terms seems to be applied in non-intersecting
contexts. Only the work proposed by [SG99] shows an approximation of getting an architectural
description of frameworks using Wright ADL to represent Sun JavaBeans components. Thus, as
our focus is to define a mapping from object oriented frameworks to a software architecture, we
must analyze previously which the problems are possible to find and answer them to give a context
to our work. This chapter presents some important issues and decisions made during the study of
the software architectures and their applicability in object oriented frameworks.

4.1 Software Architecture: Level of Abstraction

As we described in chapter 2, a software architecture is a bridge between domain
knowledge, functional and non-functional application requirements, and the design of an
application. A stable software architecture need to retain the concepts and structures from the
application domain [Ber98]. On the other hand, successful software architectures often require the
‘invention’ or discovering of a main mechanism or structure that captures the essence of an
application and its solution domains. As such the process of defining a software architecture
involves understanding and structuring of domain knowledge, in combination with the creative
process of inventing a conceptual model of the application’s essence.

An architecture is based on a choice of components and connectors. Components
represent a system’s main computational elements and data stores: clients, servers, filters,
databases, etc. Connections between thses elements  range from the simple and generic (e.g.
procedure call, pipes, shared data access) to the complex and domain-specific (e.g. implicit
invocation mechanisms, client-server protocols, database protocols). [AG96] This choice
fundamentally determines what the structure will be and what this structure tells us about the
system. [Neb98]

There are many valid notions of software architecture that exist at different levels of
abstraction. [AG96] says that an architectural description makes a complex system intellectually
tractable by characterizing it at a high-level of abstraction. In particular, the architectural design
exposes the top-level design decisions and permits a designer to reason about satisfaction of
system requirements in terms of assignment of functionality to design elements. The high-level of
abstraction is the trend in all the actual literature about software architecture. But in fact the
building of an architectural description is a conceptual modeling [Neb98].  A concept is

CChhaapptteerr   44::     AArrcchhii tteeccttuurraa ll   DDeessccrr iipptt iioonn  ooff
FFrraammeewwoorrkkss  ::   FF ii rrss tt   PPrroobblleemmss



   46                               Object Oriented Architectural Description of Frameworks

characterized by its denomination/designation (the names under which the concept is known), its
extension (the phenomena described by the concept), and its intention (the set of properties
defining the concept). By relating the extension and the intension of an architectural concept we
produce new information about the considered software. This is what is commonly known as
“moving to another abstraction level”.

Based on this idea, we restrict the use of the term architecture to the semantic structure of
an application, a static notion of software architecture, and we consider that what is important is to
understand how the classes in a framework are related structurally and what the consequences of
this structure are on the software system. We focus our work on a lowest or base-level notion of
software architecture that reflects the semantic structure of a software system: the code-level
combined with information about design-level in object oriented frameworks. We also adopt a more
restrictive definition of  architecture as the static instance structure, i.e. the instance structure that
is always present during execution and thus characterizes all run-time configuration of instances.
Furthermore, the architecture determines which configurations are reachable during execution.

This dissertation has as a main goal the definition of a bridge between the informal nature
of the design and implementation process and the formalism required from an architectural
description. The proposal works with Wright ADL as the formal language and also the architectural
patterns as a complement.

4.2 Architectural Description: Conceptual Model

The previous section gaves us the definition and the level of abstraction that we adopt.
Based on these concepts, the objective of this dissertation is searching a conceptual model of the
classes of the object oriented frameworks, composed of architectural components and connectors,
and that represents the semantic structure of an application. We call this model the architectural
description of an object oriented framework. Let’s see then the main features of the approach and
which the level of abstraction is located in.

Some ideas of this dissertation are based in the proposal made by [Now99]. In this work,
he proposes the conceptual modelling perspective on software architecture presented in the figure
4.1. The software domain is the reference system (left side of the illustration). The model system
(right side of the illustration) is the architectural model which explicitly describes the phenomena
and concepts in the software domain from an architectural perspective. During software
construction and evolution we form concepts by classification (top left) over the software domain.
Examples include design patterns [GHVJ95], architectural patterns [BMR+96], components
[Szy98], connectors [SG96] and architectural styles [SG96].



Chapter 4: O. O.  Architectural Description of Framework: First Problems               47

 

Modeling 

Interpreting 

Model 
System 

Architecture 
Representation 

Architectural 
Descriptions  

Referent  
System 

Architectural 
Concepts 

Software 
Domain 

Abstraction Specification  

Figure 4.1: Conceptual Modelling of Software Architectures [Now99]

Architectural models seeks to describe such concepts in a rigorous way (top right). The
descriptions specify representations of architectural phenomena (bottom right), that facilitate the
interpretation and understanding of the software domain (bottom-left).  But the main problem is that
the architectural model is “lost” in the process of modelling an object oriented application
(architectural concepts-architectural description in dotted line in figure 4.1) because it is expressed
using informal, diagrammatic notations (such as box-line diagrams) and idiomatic characterizations
(such as client-server organization, layered system, or blackboard architecture). The meanings of
such diagrams and phrases by informal convention are understood only by a small set of
developers. This relative informality leads to architectural designs that are inherently ambiguous,
difficult to analyze, hard to mechanize.

The objective of “building the bridge” between informal and formal approaches  is the
definition of a mapping  that allows to get an architectural description as an interaction architecture.
The concept of interaction architecture is proposed in [Now99]. We want to have the following
elements (these are a restricted definition compared to the presented ones in [Now99]):

⇒  A component instance models a set of collaborating objects providing an interface and a
behaviour at execution time. The interface is considered as the service interface and it
consists of a set of ports: input ports through signals/information are sent into the
component instance and hence affect its behavior; output ports where
signals/information are sent out from the component instance as well as affecting other
component instances.

⇒  A component class is a description of a number of similar component instances, and it
models a set of object classes describing objects existing before runtime. The objects
implement the component instance as described above.

⇒  An interaction instance models either the creation of an object, the deletion of an object,
or the communication of a signal or information between two component instances at
runtime. An interaction instance has a role interface consisting of a set of component
roles. When connecting interaction instances with component instances we map
components to roles. The roles are qualified by a set of required ports.

⇒  An interaction class is a description of a number of interaction instances with the same
component interfaces.

The developed algorithms and the mapping are focused on the definition of component
classes and interaction classes mapping from classes in an object oriented framework.  The
component instances and interaction instances are obtained when the topological configuration is
defined using in Wright ADL.



   48                               Object Oriented Architectural Description of Frameworks

4.3 Architectural Components = Software Components ?

Having decided the level of abstraction of the software architectures where we work and
how the architectural elements (components and connectors) will be, two questions should be
answered: can we define a direct mapping from software components  to architectural
components? can the classes in an object oriented framework be considered as software
components?. In spite that the relationship between class-object and architectural component
appeared in the previous section, and it seems to let us define the direct mapping that we are
searching, this section intends to answer these questions and give more elements to work in the
context.

Firstly, let’s see the concept of software component. [Szy98] summarizes all the definition
in the literature considering that a software component:

⇒  is a unit of composition and an encapsulated part of a software system
⇒  has contractually specified interface
⇒  has context dependencies only
⇒  serves as the building block for a structure of a system.

To clarify the concepts, [MN95] explains that the interface of a component defines the
component’s access points and the access to the services provided by the component. As the
component and its clients are developed in mutual ignorance, it is the contract that forms a
common ground for successful interaction.  The definition requires specification of what the
deployment environment will need to provide, such that the components can function. These needs
are called context dependencies, referring to the context of composition and deployment.  A
component’s specification of context dependencies must include its required interface and the
component world (or worlds) that it has been prepared for. Based on the features given previously,
[PW92] proposes two possible categorizations of components:

•  Processing elements: supply transformations of the data elements that contain the
information that is transformed.

•  Data elements
•  Connecting elements: which at any time may be either processing elements, data

elements or both- constitute the 'glue' that holds the different pieces together.
Another categorization of components developed for the object-oriented programming

paradigm is as follows [BMR+96]:
•  Controller components
•  Coordinator components
•  Interface components
•  Service provider components
•  Information holder components
•  Structuring components.

So far, we have obtained the main features of a software components and a two possible
categorization of them. Let’s see now the definition of object. [Mat00b] defines that an object can
be viewed as a unit that holds a cohesive piece of information and that defines a collection of
operations (implemented by methods) to manipulate it. Meanwhile, [MKMG96] says that an object
oriented design allows system designers to encapsulate data and behaviour in discrete objects that
provide explicit interfaces to other objects. They can therefore hide the fact that they might
encapsulate existing programs, act as proxies for remote resources, or even coordinate multiple,
concurrent requests [MN95].

Specifically, at a programming language level, components may be represented as classes
objects or a set of them, because the requirements to be a software component (encapsulated
information, specified interface, context dependencies and serve as a building block) are fulfilled by
an object according to the definition given previously. Thus, we can provide a direct mapping
between a software component (in our case classes) and an architectural component (component



Chapter 4: O. O.  Architectural Description of Framework: First Problems               49

class [Now99]). This process is transparent in the developed mapping. The interface of the
architectural components will be the services provided by the classes.

4.4 Connectors

The components does not represent anything by themselves, in fact the most relevant part
is the possibility of connecting them providing different types of relationships (defined as
connectors in [SG99]). Defining the architectural structure of a framework, another key question is
what are the connectors. This question is important because having a clear distinction between the
classes, and the mechanisms that coordinates their interaction  helps the comprehensibility of the
framework. In that way, we isolate two models in the architecture: one for the communication and
one for the computation, avoiding to have just only a set of classes without a semantic meaning for
the developers. Let’s see firstly two ways of identifying possible connectors presented in [SG99]
and then study which are the relationships that we can find in an object oriented framework.

 
Y X 

C 

A B C 

A B 

Figure 4.2: Component or Connector ? [SG99]

Consider a system consisting of three components : A, B, and C (figure 4.2). In some
cases the purpose of C is to enable the communication between A and B, using A-C specific
protocol over connector X, and C-B protocol over connector Y. If those two protocols are
completely independent, it makes sense to represent C as a distinct component, and keep X and Y
as separate connectors.

On the other hand, if events on X are tightly coupled with those on Y (or vice versa), then it
makes more sense to represent the protocol between X and Y directly using a single connector. In
this case, the connector itself encapsulates the mediating behaviour of C.

In this dissertation, we take both definitions, because our main goal is the abstraction of
the relationships between the classes in the connectors. But in some cases, it is possible to find a
class that can be mapped as a connector (second definition). For example, if we can classify
classes as connecting, controller, coordinator, interface components, it is obvious that the objective
of them is to provide a communication between classes.

Let’s enumerate what kinds of relationships (that will map as connectors) we can find in an
object oriented framework [BMR+96]. A relationship may be static or dynamic. Static relationships
show directly in source code. They deal with the placement of components within an architecture.
Dynamic relationships deal with temporal connections and dynamic interaction between
components. They may be easily visible from the static structure of source code. Aggregation and
inheritance are examples of static relationships. Object creation, communication between objects,
and data transfer are usually dynamic relationships. An example of a temporal relationship is when
an object is inserted into a container at some point in time and later deleted. Thinking in terms
used in an architectural description, [MN95] establishes that a message passing abstraction is
used as the glue that connects the objects and defines the communication channels in design
component and to describe and encapsulate complex protocols of component interaction that are
difficult to describe using traditional object-oriented concepts and notations.

Relationships between components have a great impact on the overall quality of a
software architecture. For example, changeability is much better supported by software
architectures in which the relationships support the variation of the components, in contrast to



   50                               Object Oriented Architectural Description of Frameworks

architectures in which any change to a component affects the implementation of its clients and
collaborators.

4.5 Internal State of the Components

The most remarkable problem using the Wright ADL is the lack of having internal state of a
component. In fact, this ADL is focused on the interaction behaviour and there is no possibility to
use the operations given by the components. Most of the executions are hidden behind the non-
deterministic choices in the specification. Thus, it is not possible to have any specification about
the functional aspects of the components. [San97] proposes the use of Abstract Machines B to
solve this problem. Let’s see how this mechanism works and how it can be applied in a description
made with Wright ADL.

4.5.1 Wright and Abstract Machines B

Wright ADL is focused on the behavior of the interaction and the components themselves
are not considered. It is not possible to use the operations which are offered by the components.
All the executions specific to the components are hidden in the non-deterministic choices and no
specification of the functional aspects of the component is given. It is seems interesting to have  an
specification of the module itself combining Wright with this vision of the module.

To describe a module, the method B [Abr96] is an adequate solution because it allows a
checking of the description of the abstract machines and it is able automatically to generate C or
Ada code. Details about how the method B works can be found in [Abr96]. But to have an idea of a
specification of B, we present the specification of Text_Filter.

An abstract machine B (figure 4.3) has an internal state represented by declarations of
variables (line andword for Text_Filter). These variables can be initialized during the first use of the
abstract machine. We can declare invariants which must be checked by all the operations.

An abstract machine B provides operations and can import another abstract machine B .
Text_Filter has and imports operations to do some tests (IsLetter, IsDigit) or to  modify its internal
state (BuildWord, IncrementLine). These are the operations that the abstract machine  B has and
they will be used in this specification.

Knowing how to describe the behavior and the interaction of the components using Wright
and the components using the formal specification B, let’s see how to join these two concepts
respecting their philosophy and their constraints. The idea is to use the method B to describe the
components in order to emphasize the internal executions of the components masked in non-
deterministic choices.



Chapter 4: O. O.  Architectural Description of Framework: First Problems               51

 MACHINE 
Text 
INCLUDES 
BASIC_STRING 
PROMOTES 
IsLetter, IsDigit, IsSeparator, StrComp, Concat, Small  
VARIABLES 
line  
word 
INVARIANTS 
line å NAT1 

word å Word 
 
INITIALISATION 
line:=1; 
word:=empty  
 
OPERATIONS 
bb <-- IsEmptyWord = bb:= (StrComp(word, empty)) ;  
BuildWord(cc) = PRE cc  å  Letter THEN word:= Concat(word, cc) END ; 
IncrementLine = PRE line +1 å NAT1 THEN line:= line+1 END ; 
ww, ii <-- Data = ww, ii, word:= Small(word), line, empty  
 
END 

 
Figure 4.3: Specification in B of Text_Filter

4.5.2 Interaction of the Abstract Machine B with the environment

The  first problem relates to how we express the interaction of the abstract machine B with
its environment and then, the connection with the Wright component. Taking into account that a
Wright component interacts with his environment by ports, we decide to make the same thing for
the abstract machine B by defining a special port called Port B. On the level of the Wright
component , we define also a special port called  Port  Component, which will be used for the
interaction with this abstract machine B (Figure 4.4).

 Port B 

Port Component  

 
Component Wright  

Abstract 
Machine 

B 

Figure 4.4: Ports Component and B

As the concept of port is not specific to the method B, it is necessary to create an interface
which makes the bridge feasible between these two concepts. We can see an abstract machine B
as a black box with buttons (operations) which carry out the desired operation  pressing them.
From this vision of an abstract machine two observations can be considered:

•  the interface must contain all the operations offered by the abstract machine B.
•  It is necessary to use the deterministic choice of CSP to specify these different

operations since the choice of the operation does not depend on the machine but on the
environment.



   52                               Object Oriented Architectural Description of Frameworks

•  
Thus, if we have an abstract machine B proposing the operations we will have the

following specification:
Port B = (op1 _ B) _ (op2 _ B) _ … _ (opn _ B)

A considerable advantage of this specification is that it can be generated in an automatic
way. We can now represent our abstract machine B as in the figure 4.5 This interface must thus
have a system which allow to link the events opi with the operations opi of the abstract machine B.
Thus, when the interface receives an event opi, it will call the operation opi of the abstract machine.

 Port B 

Port B = (op1 ? B) ?  (op2 ? B) ?  … ?  (opn ? B)  
 
…. 
OPERATIONS 
op1 … 
op2 … 
… 
opn 

Interface 

Abstract 
Machine 

 B 

Figure 4.5: An Abstract Machine B with its interface

There is a syntax which links the event and the operation:
⇒  The event opi represents an operation which has not input or output parameters.
⇒  The event opi?x represents an operation which has x as input parameter.
⇒  The event opi!y represents an operation which returns y as output parameter.
⇒  The event opi?x!y represents an operation which has x as input parameter and y as

output parameter.
We take the CSP convention  that the communications are synchronous and blocking

(sending and receiving).

4.5.3 Connection between a Wright Component and an Abstract Machine B

There are two possible solutions to provide the connection between these two ports
Component and B (Figure 4.6):

•  We can quite simply connect these two ports by a simple link.
•  We can make interact these two ports by a special connector called connector B.

 

Role Component 
Port B 

  Port Component 

 
Component Wright

Interface 
 

Abstract 
Machine 

B Port B 

 
Component Wright

Interface 
 

Abstract 
Machine 

B 

Figure 4.6: Two possible connections between a Wright component and an Abstract Machine B



Chapter 4: O. O.  Architectural Description of Framework: First Problems               53

The second solution is better in this context because:
•  The interaction between the Wright component and the abstract machine B requires

specifications more complex than those described in the port B.
•  By using a connector, we can describe this interaction rigorously while remaining

coherent with the Wright component because the specification of Calculation will only
describe the interaction of the different ports.

•  The use of a connector has the advantage of playing the role of glue between these two
concepts of Wright component and abstract machine B. Moreover, this connector makes
possible to keep a rather strong independence between these two different concepts.

4.5.4 Description of the interaction between a Wright component and an
Abstract Machine B

The goal is to emphasize the internal executions of the component which are masked in
non-deterministic choices in the Wright specification . Being specified these executions in the
abstract machine B, it is enough to use the port B to reveal them in the Wright specification. Let’s
see how this is done in the example of the Text_Filter component.

Example: The component Text_Filter receives a set of characters. If the character that read is:
•  One letter or one number, it adds the character to the word that is building, and it reads the next
character
•  The special character B, It increments the line counter and it reads the next character
•  One separator , if the previous character was not one separator or this separator is not the first
character, it writes the word in small letters and it sends the pair (word, line number) and it reads the
next character.

When the component has finished analyzing the set of characters, it sends the last pair and it stops.

Component Text_Filter
Port Input = DataInput
Port Output = DataOutput
Computation =

readInput.  _ (( Input.data ?c _ (Computation

_ ),(!. iwwriteOutput   _ Computation )))

_ (Input.end_of_data _  closeInput.  _ (( closeOutput. _ §)

_ ( ),(!. iwwriteOutput _ closeOutput. _ § ))))

Based on this informal specification, it is possible to describe the internal behavior which is
masked in the non-deterministic choices. To do that, we use the ports Component and B as well as
the connector B.  In the connector B we reveal the description of the internal behavior of the
component.

On the level of the Wright component, we must describe the interaction between this
component Wright and the connector B. This interaction is at the level of the non-deterministic
choices:

•  In the first non-deterministic choice, where a character is read (Input.data?c), the internal
behavior depends on the read character. Thus we have the new specification:

Input.data ?c _ cwriteComponent !.  _

 ((Component.continue _ Computation)

_(Component.Data ?(w,i) _ ),(!. iwwriteOutput   _ Computation ))



   54                               Object Oriented Architectural Description of Frameworks

•  For the second non-deterministic choice, where we receive the event Input.end_of_data, it
should be made sure that there is no data waiting to be sent. The new specification is
thus:

Input.end_of_data _  closeInput.  _ dataofendComponent __. _

 (( Component.end _ closeComponent.  _ closeOutput. _ §)

_ (Component.Data?(w,i) _ closeComponent.  _ ( ),(!. iwwriteOutput _ closeOutput. _ § ))

The new specification of the Texte component is the following one:

Component Text_Filter
Port Input = DataInput
Port Output = DataOutput

Port Component = ( cwrite! _ (continue _ Component _ Data ?(w,i) _ Component ))

_  ( dataofend __ _ (end _ close  _ § _ Data ?(w,i) _ close _ § ))

Computation =

readInput.  _ (( Input.data ?c _ cwriteComponent !.  _

((Component.continue _ Computation)

 _ (Component.Data ?(w,i) _ ),(!. iwwriteOutput   _ Computation )))

_(Input.end_of_data _  closeInput.  _ dataofendComponent __. _ ((

Component.end _ closeComponent.  _ closeOutput. _ §)

_ (Component.Data?(w,i) _ closeComponent.

_ ( ),(!. iwwriteOutput _ closeOutput. _ § ))))

As we can see, the specification of Calculation only describes the interactions between the
different ports. We thus remain coherent with the role of the components given in Wright ADL.

On the level of the connector B, we describe the interaction between the role Component
and the role B. Thus, the specification of the B_Texte connector is the following one .

Connector B_Texte
Role Component =

 ( cwrite! _ (continue _ Component _ Data ?(w,i) _ Component ))

_  ( dataofend __ _ (end _ close  _ § _ Data ?(w,i) _ close _ § ))

Role B = (IsLetter?c!b _ B) _ (IsDigit?c!b _ B) _ (IsCR?c!b _ B)
_ (IsSeparator?c!b _ B) _ (StrComp?(m,w)!b _ B)
_ (Concat?(m,c)!w _ B) _ (Small?m!w _ B) _ (IsEmptyWord!b _ B)
 _ (BuildWord?c _ B) _ (IncrementLine _ B) _ (Data!(w,i) _ B)

Glue = component.write?c _ (( cBuildWordB !.  _ continueComponent. _ Glue)

_ ( ineIncrementLB. _ continueComponent. _ Glue)

_ ( ),?(. iwDataB  _ continueComponent. _ Glue)

_ continueComponent. _ Glue)

_

(Component.end_of_data _ (( endComponent. _ Component.close _ §)

_



Chapter 4: O. O.  Architectural Description of Framework: First Problems               55

( ),?(. iwDataB _ ),(!. iwDataComponent

_ Component.close _ §)))

In this specification of the connector B, we see the description of the internal behavior of
the component using the events of the role B. However, it is important to note that our special
connector B is not completely a Wright connector . The connector B_Texte makes internal choices
which are represented by non-deterministic meanwhile a Wright component can not make internal
choices and only describes the interaction between different components. However, this is not
incoherent with the idea of connector in our case. Starting we know that the special connector B
did not have same specificity comparing Wright connectors. There are two reasons:

•  A Wright connector can have different styles of interactions: connector pipe-filter, client-
server, whereas the purpose of our special connector B is precisely to describe only one
interaction: internal behavior of the component.

•  The purpose of a Wright connector is only to describe the interaction between various
components. The connector B does not aim to connect various components but rather to
describe the interaction between the Wright component and its abstract machine B
which represents in fact one component.

4.5.4.1 Resolution of non-determinism in the connector B

The non-determinism of the Wright component which is in the connector B_Text can be
solved. Thanks to the abstract specification of the component Text_Filter, we know to clarify these
non-deterministic choices. In our case, the non-deterministic choices correspond to tests of the if-
then-else type. In the figure , a little abstract specification of this resolution of the non-deterministic
choices is given. There is a notation in CSP to express the test of the if-then-else [Hoa85 ]: the
process P < |b| > Q behaves as the process P if the Boolean expression B is true and like the
process Q if not.

Thus we can describe in a formal way the connector B_Texte specified in an abstract way.
Connector B_Texte

Role Component = ( cwrite! _ (continue _ Component _ Data ?(w,i) _ Component ))

_  ( dataofend __ _ (end _ close  _ § _ Data ?(w,i) _ close _ § ))

Role B = (IsLetter?c!b _ B) _ (IsDigit?c!b _ B) _ (IsCR?c!b _ B) _ (IsSeparator?c!b _ B)
 _ (StrComp?(m,w)!b _ B) _ (Concat?(m,c)!w _ B) _ (Small?m!w _ B)
 _ (IsEmptyWord!b _ B) _ (BuildWord?c _ B) _ (IncrementLine _ B) _ (Data!(w,i) _ B)

Glue =
component.write?c _ 

if (B.IsLetter!c?b) or (B.IsDigit!c?b) then ( cBuildWordB !.  _ continueComponent. _ Glue)

else if  (B.IsCR!c?b) then ( ineIncrementLB. _ continueComponent. _ Glue)

else if (B.IsSeparator!c?b) and not (B.IsEmptyWord?b)

then ( ),?(. iwDataB  _ continueComponent. _ Glue)

else continueComponent. _ Glue)

_

(Component.end_of_data _ if (B.IsEmptyWord?b) (( endComponent. _ Component.close _ §)

else( ),?(. iwDataB _ ),(!. iwDataComponent _ Component.close _ §)))

 We could also choose to carry out these tests by the abstract machine B which is more
suitable to describe tests than CSP. The problem is that it is not very easy to specify the behavior



   56                               Object Oriented Architectural Description of Frameworks

which must follow the Wright component. We could, indeed, describe an operation in B which
makes all the tests and calls the corresponding operations but then it is necessary to be able to

specify when the B_Texte connector must initialize the event continueComponent. or the event

),(!. iwDataComponent or the event endComponent. .

4.6 Summary

This chapter summarizes the main specific difficulties that we found when we started to
study the applicability of the concepts of software architecture and ADLs to describe an object
oriented framework. We consider important to enumerate them because they represent the basis
for the developed approaches of this dissertation.



The overall design and the specification of an object oriented framework using box-line
drawings artefacts usually makes us lose the semantics of the main architectural concepts that
were thought when the framework was developed.  Besides this, we can not have any information
such as the points of variability, reuse, if it can be integrated to other ones or a reference to
measure the changes in subsequent versions. The ADLs can be the answer to these issues. Thus,
in this chapter, we present the approach to cope with the problem of a lack of a semantic structure
of an object oriented framework: Two algorithms to get an architectural description of frameworks
using as tools Wright ADL and architectural patterns. As the formal basis of Wrigth ADL is CSP
[Hoa85], we also define a mapping from Smalltalk/Java code to CSP notation. We use all the
analyzed points presented in the previous chapter.

Our approach is an alternative one to the classical proposal of working with software
architectures. In fact, the common applicability of the concept of software architectures is the
inference of an architecture of pre-built systems in a ‘high level’ of abstraction. Mostly, these
systems were not designed using the object oriented paradigm, and thus, we do not have any
information about rules or mechanisms of how to discover components and interrelationships. The
main idea of this proposal is to provide a way to do it in object oriented frameworks.

5.1 Introduction

There is very few work made in software architectures applied in object oriented
applications. It is possible to see all the work made in terms of (design) patterns to make the object
oriented applications easier to understand talking about 'similar' models. For example, if you find in
the design that the classes A, B and C were modelled using the Composite pattern [GHVJ95], the
user associates a picture such as shown in figure 5.1 and clearly knows the way of working
between the different classes.

CChhaapptteerr   55::     AArrcchhii tteeccttuurraa ll   DDeessccrr iipptt iioonn  OO FF
OObbjjeecctt   OOrr iieenntteedd  FFrraammeewwoorrkkss::   AAnn

AA pp pp rr oo aa cc hh



   58                               Object Oriented Architectural Description of Frameworks

Composite

Operation()
Add()
Remove()
GetChild()

Leaf

Operation()

Component

Operation()
Add()
Remove()
GetChild()

+children

forall g in children
   g.Operation()

Figure 5.1: Composite Pattern

But not all the applications can be seen with known structures such as design patterns
[GHVJ95]. In fact, all the  details about an application in general should be provided in the
documentation of it. However, one of the main problems in frameworks is the lack of clear
documentation or a better complement between the different methodologies/techniques to
understand functionality and structure and also fullfil needs depending on the kind of users of
frameworks. Usually, all the documentation of the process of building a framework or of the
framework itself is poor and when the developer has finished  the framework the possibility of
understanding how the different classes of the framework are connected or what their
collaborations are to perform a task is a 'titanic' work. The classes diagrams show design patterns
or known structures of classes considering different relationships between two (set of) classes with
a line. For example, in the figure 5.2 different generic relationships are shown: composition
(diamond), hierarchy (triangle), creation (dotted line) and generic relationship (full line). But if you
want to know exactly what the line means or how the composition between two classes is used
(share a data, synchronic communication), you have to search for collaboration diagrams, for
example, or in the worst case, have a look at the code.

Class A Class B Class A

Class BClass A Class B

Class BClass A

Figure 5.2: Graphical Relationships between classes

The ADL seems to be one possible answer to this lack of semantics in terms of interaction
protocol between the classes. In this chapter, we consider two approaches to get an architectural
description of object oriented frameworks. Both approaches were thought as algorithms (a set of
steps). In both cases, we work with frameworks in which all the design decisions were already
made. The first approach defines a set of steps to get an architectural description of a framework,
based on that the documentation of the framework is the design expressed with class hierarchies
using UML notation [UML] , notes about the design and the code  itself. Using these three
artefacts, the algorithm infers an architecture of the framework in terms of components and
connectors explicitly.  The second approach is a derived algorithm from the first one. The algorithm
defines a set of steps to get also an architectural description of an object oriented framework



Chapter 5: O. O. Architectural Description of Frameworks: An Approach                59

component, based on that the documentation of the framework component is only the design
expressed with the class hierarchies in UML notation [UML] and notes about the design. In the
second approach we work with a part of a framework (a component) and the main idea is the use
of ADLs as one description tool to help us in  the process from the design to the implementation,
expressing the implementation in terms of interaction protocols and in the code at the same time.
The main difference between two algorithms is that in the first one we already have the framework
implemented, and in the second case, we use the algorithm to help in the implementation.

We use Wright ADL to represent all the relationships between the classes in a framework.
Before starting to define how we get an architectural description in terms of components and
connectors, we present a defined mapping between code written in Java or in Smalltalk in terms of
CSP process. This lets us define easily the protocol for the ports and computation of the
components and the role and glue of the connectors

5.2 MAPPINGS: Definition and Assumptions

A description of the different elements of Wright ADL was presented in the chapter 2.
Briefly, in this ADL, a component is defined by an interface and a computation. The interface
consists of a number of ports. Each port represents an interaction in which the component may
participate. A connector consists of a set of connector roles and the connector glue. Each role
specifies the behavior of participant in the interaction and the glue describes how the participants
work together to create an interaction. Thus, the general structure of a component and a connector
in Wright ADL  is the following one:

Component ComponentName
Port NamePort1  = ...

 ...
Port NamePortn = ...
Computation = ...

Connector ConnectorName
Role NameRole1  = ...
...
Role NameRolen = ...
Glue = ...

As our first objective of working in different levels of description is to be closer to the code
going from one coarse-grained level to fine-grained level of description, firstly we show the
mapping from the code to the architectural elements. Our mapping must be in terms of CSP
process to be able to use it in the Wright ADL . It must be clear enough to the reader that in most
of the cases, we are constrained by the possibilities to represent architectural elements with Wright
ADL.

5.2.1 Mapping for Classes

A direct mapping between classes and components is made. This means that each class
in the class model is considered as a component in the description. But we decouple all the
information about class communication between the component and the connector. All the
information about the communication to other objects is put in the connector. For example,
supposing that we have a class model to represent a book that is composed pages (See Figure
5.3).



   60                               Object Oriented Architectural Description of Frameworks

Book

author : String
title : String
publisher : String

check()

Pages

number : Integer
words : set of String

check()

1..*1..*

Component Book Connector Has

Component Page 1

Component Page 2

Component Page n

check

check

check

check

Figure 5.3: Class Model for a Book and the Mapping with Connectors and Components

These classes are mapped as two components: Book and Page, and we get a connector
Has which represents the relationship between the two components. The behaviour of the
component regarding to the other objects is left to the connector. In this case, for example, when
the Book wants to do a spelling checking, it just only sends the event to the connector which
forwards the events to the pages. This fact is also illustrated graphically in Figure 5.3.

5.2.2 Mapping for Relationships between Classes

Besides of the relationships that can be mapped by the message sendings (explained in
the next subsection), we also consider three kinds of relationships between two classes A and B.

•  instances of B can be instances/class variables of A
•  instances of B used as parameters in one method of A
•  instances of B are connected to an instance of A by a dependency mechanism.

In all the cases, we represent A, the instances/class variables of A and the parameters as
components in the Wright description whenever the objects are not instances of primitive classes
(in Smalltalk) or primitive types (in Java) such as Char, Integer, Boolean. We only want to keep
objects with a composite structure. For example, in the figure 5.4 we can see the class model of a
Truck and its representation in terms of components and connectors. It must be clear for the user
that this is a complete representation for this model., this means  that we can simply represent the
Truck and avoid any information of the Manufacturer. In this case we represent them because we
use the information of the latter. But it is clear that we do not have, for example, a component for
the name of the Manufacturer. All the information (called as simple) can be used as parameters.
This assumption is taken because the management of parameters in Wright ADL is limited to
simple parameters such as letters and integers.



Chapter 5: O. O. Architectural Description of Frameworks: An Approach                61

Manufacturer

name : String
address : String
city : String
offices : Integer

Wheel

material : String
trademark : String

1..*1..*

Component Truck Component Manufacturer

Wheel 1

Wheel n

Connector Has

Connector Composed

Truck

driver : String
manufacturer : Manufacturer
year : String

checkState()

Figure 5.4: Class Model for a Truck and Representation with Components and Connectors

5.2.3 Format for Components and Connectors

As our approach focuses on having components only as units of computation and
connectors as units of communication, we model the classes as components without any
knowledge of what objects are connected with and we leave all this information to the connectors.
In this way, the names of the ports in the component are left to the user, but we  adopt the names
of the roles in the connector with the names of classes that must be connected. If an instance of
class A must connect with instances of class B, the connector have the following format:

Connector AB
Role A =....
Role B1..n = ...
Glue = ...

5.2.4 Mapping for the Messages

The method calls in a method mk in a class A have the following formats:
•  in Smalltalk:

o objecti messagej

o objecti messagej: p1 with: p2 ... with: pn

•  in Java:
o objecti . messagej

o objecti . messagej  (p1, p2, … pn )

where objecti ,p1, p2, … pn  can be instances/class variables of A, parameters in the method or the
class itself and  messagej can be seen as a service that the class initializes or simply the
notification of a change (dependency mechanism). We are assuming that objects pi have only one
level of objects' composition in their structure. Following with the example of the Truck (Figure 5.4),
p1 can be an instance of the Wheel class, but it can not be an instance of the Truck Class, because
this latter has two levels of composition. We are making this assumption because we are



   62                               Object Oriented Architectural Description of Frameworks

interested in being able to decompose the parameter pi in terms of its components px(ox1,..,oxm). In
the case of Manufacturer, we will get manufacturer(name, address, city, offices). Thus, we get a
good level of expressiveness in the description. Based on the structure of methods, let's see the
different focus that we have about the methods themselves and their bodies. Firstly, all the
methods (mk) are mapped as events in CSP. Thus, we must know if the methods are called by the
another object or if the method is a 'shooter' of actions. In the first case, the method will be mapped
as an observing event mk, and in the second case, the method will be mapped as an initiating

event km . So the component A (class A mapped as component in the description) has the

following structure:

Component A

Port Out = (  mk  |  km  )  |

( mk | km  _ objectNamejmessage !  _ ),..,1(!;..1 xmoxoxprasParametenx ∀

Computation = ( Out.mk | kmOut.  )  |

( Out.mk  | kmOut.  _ objectNamejmessageOut !.

_ ),..,1(!.;..1 xmoxoxprasParameteOutnx ∀

Connector AB

Role A = (  mk  |  km  )  |

 (  mk  |  km  _ objectNamejmessage !  _ ),..,1(!;..1 xmoxoxprasParametenx ∀

Role objectName = messagej  _ ),..,1(?;..1 xmoxoxprasParametenx ∀

Glue = (  kmA.  | A.mk   )  _ A.messagej?objectName

 _ ),..,1(?.;..1 xmoxoxprasParameteAnx ∀  _  
jmessageobjectName.

 _ ),..,1(!.;..1 xmoxoxprasParameteAnx ∀

The connector uses a name matching with the parameter objectName and thus identify to
which component (identified with the portname) it sends the events.

5.2.5 Mapping for Classes' Creation

Class A must create instances of classes B in one of its methods, so we find the following
codeline:

•  in Smalltalk:
o B new
o B new: p1 with: p2 ... with: pn

•  in Java:
o B ()
o B (p1, p2,.., pn)

In the first case, it maps as a special event name Bcreate!  in the protocol of the
component. The class A is creating an element B so it is an initiating event. In the second case, it

maps as a sequence of events Bcreate!  _ ),..,1(!;..1 xmoxoxprasParametenx ∀



Chapter 5: O. O. Architectural Description of Frameworks: An Approach                63

5.2.6 Mapping for Conditional Statements

In the methods calls we can also have a conditional statements.
•  in Smalltalk:

o (condition) ifTrue: [actionTrue]
o (condition) ifFalse: [actionFalse]
o (condition) ifTrue: [actionTrue] ifFalse: [actionFalse]
o (condition) ifFalse: [actionFalse] ifTrue: [actionTrue]
o (condition) whileTrue: [action]
o (condition) whileFalse: [action]
o 1 to: n do: [action]

•  in Java:
o if (condition) actionTrue
o if (condition) actionTrue else actionFalse
o while (condition) action
o for (i:=0; i++; i<=n) action

where the condition can only be one boolean expression (e1) or a set of boolean expressions
(e1,..,en) joined by logic operators (and, or, xor), and the action, actionTrue and actionFalse can be
a method call (m1) or a sequence of method calls (m1,..mk) (as we explained previously). In the
case of expressions, they are method calls which reply True or False. Thus in both cases, we
consider them as events inside the description.

Firstly, we study the condition. The expressions e1,..,en are a sequence of method calls
(except in the case they evaluate an internal state of the object, e.g. comparing two values of
instances variables), so we map the condition such as:

Process Condition = xenx ;..1∀  _ (answer?True _ ... _ answer?False _ … )

Thus we leave the responsability of evaluating the logic expression to the connector. Let's
see how the process in the connector would be modeled.

Connector Logic (nb: 1..n)
Port A = Condition

Port B1..nb = ej _ ( Trueanswer! _ B _  Falseanswer! _ B )

Computation =  xeAnx .(;..1∀  _ exB .  )

if the logic operator is 'and' :  TrueanswerxBnx ?.;..1∀ _ TrueanswerA !.

_ FalseanswerxBnx ?.;..1∃ _ FalseanswerA !.

if the logic operator is 'or' :  TrueanswerxBnx ?.;..1∃ _ TrueanswerA !.

_ FalseanswerxBnx ?.;..1∀ _ FalseanswerA !.

We consider the possibility of expressing explicitly the condition. But if the user decides to
avoid it, the events to execute when the condition is true or false are expressed as non
deterministic choice because we do not have any information about the condition, so we can think
that the component takes the decision of the actions to follow. In the other case, we must use the
deterministic choice, because it has an observing event (answer) which communicates the result of
the condition.  Let's see how it works.
The if-statement maps as a non  deterministic choice with the following format:

Process if = actionTrue  (or 
xactionTruenx ;..1∀ )

       _  eactionFals  (or 
xeactionFalsnx ;..1∀



   64                               Object Oriented Architectural Description of Frameworks

But in the case of using the condition explicitly:

Process if = all the conditions are sent _

(answer?True _ actionTrue  (or xactionTruenx ;..1∀ )

_ answer?False  _  eactionFals  (or xeactionFalsnx ;..1∀ )

In the case of WHILE-statement, using non-deterministic choice:

Process While =  action  (or xactionnx ;..1∀ ) _ While _ §

But using a deterministic choice:

Process While = all the conditions are sent _

 (answer?True _ action  (or xactionnx ;..1∀ ) _ While

 _ answer?False _ §  )

The For-statement maps as a non  deterministic choice with the following format:

Process For = action  (or xactionnx ;..1∀ ) _ For _ §

But using a deterministic choice:

Process For = execute0

where executei = action  (or xactionnx ;..1∀ )  _ executei+1)  when i in  1..n

§  otherwise.

5.3 Object oriented Architectural Description -  First Case:
Design and Code

Based on different object oriented application frameworks we have developed an algorithm
(set of steps) to infer a possible architecture which represents the set of classes and  different
relationships between them. The main idea is just to infer a set of  components and connectors
which shows the complete behaviour of an application framework. We show two approaches:

1.  Use of Predefined Style: components and connectors defined in other configurations
2. Use of Steps: Start from the « scratch » following closer to the design and

implementation decisions made in the framework
Firstly, we explain why we decided not to take the first approach as our main approach.

We use an example for both cases, because it will turn the process more illustrative and
understandable.

5.3.1 Example: Measurements System Framework [Bos00]

Measurement systems are a class of systems to measure the relevant values of a process
or product. It is used for quality control of parts entering production or of produced products that
can then be used to separate acceptable from unacceptable items to categorize the products in
quality categories.

A measurement system consists of more than sensors and actuators. A typical
measurement cycle starts with a trigger, indicating that a product, or a measurement item, is



Chapter 5: O. O. Architectural Description of Frameworks: An Approach                65

entering the system. The first step after the trigger is the data collection phase performed by the
sensors. The sensors measure the relevant variables of the measurement item. The second step is
the analysis phase, during which the data from the sensors are collected in a central
representation and transformed until they appear in a form in which they can be compared to the
ideal values. Based on this comparison, some discrepancies can be deduced, which in turn, lead
to a classification of the measurement item and is used to perform associated actions, such as
rejecting the item, which causes the actuators to remove the item from the conveyer belt and put it
in a separate store, or to print the classification on the item so that it can be automatically
recognized at a larger stage. One of the requirements for the analysis phase is that the way the
transformation takes place, the characteristics on which each classification should be flexible and
easily adaptable during system construction, but also, to some extent during the actual system
operation.

5.3.1.1 Architecture of the System

[Bos00] identifies five entities that communicate with each other to achieve the required
functionality.

1. The trigger triggers the abstract factory when a physical item enters the system
2. The abstract factory creates representation of the physical object in the software, that is,

the measurement item.
3. The measurement item requests the sensor to measure the physical object.
4. The sensor sends back the result to the measurement item that stores the results.
5. After collecting the required data, the measurement item compares the measured values

with the ideal values.
6. The measurement item sends a message to the actuator requesting the actuation

appropriate for the measured data.

The proposed architecture is shown in the Figure 5.5. For the approach, we work only with
the microarchitecture composed by ItemFactory, Measurement Item and Actuator. All the
architectural description complemented with design techniques such as collaboration diagrams and
class hierarchies can be consulted in Appendix A.

Figure 5.5: Architecture of the Measurement System Frameworks

5.3.1.2 Minimal details about the design

The Item Factory incorporates both the Abstract Factory and the Prototype design patterns
[GHVJ95] and it is responsible for instantiating instances of class Measurement Item whenever it
receives a trigger event, to configure these instances and to activate each instance by providing it
with a separate process or invoking its start method. The Item Factory class contains an instance
of Measurement Item denoted as prototype item and a state variable, inCalibration, indicating
whether the system is in calibration mode or in normal operation.

Sensor

Actuator

Measurement
Item

Abstract
Factory

Trigger

1
6

5

4

3
2



   66                               Object Oriented Architectural Description of Frameworks

This system can be in two possible states: Normal or Calibration state. In the Normal state,
the system works exactly as it was described in the steps previously. But if it is in Calibration state,
the Item Factory and the Measurement Item both play a role. The Item Factory contains an
instance of Class Measurement Item that it is used as a prototype for generating measurement
items during normal system operation. When the user of the system decides to calibrate, the first
step is to notify the item Factory that the next measurement item is to be used for calibration.
When the trigger notifies the item factory, the item factoy instantiates a measurement item, but
replaces the normal actuation strategy with a calibration strategy. This causes the item factory to
replace its current prototype item with the last measurement item.  Now, all following trigger events
will result, in that the item factory instantiates a copy of the measurement item now stored as the
prototype item; in other words, the prototype measurement item contains the new set values.

The measurement item is the object that contains the data collected from the sensors
concerning the physical measurement item. It is invoked via its start method by the item  factory
after it has instantiated the item. The start method contains the top-level behavior for the
measurement item with respect to its primary task – to collect data on the physical item it
represents and to actuate the actuators appropriately, based on the measured data and the
comparison to the set data.

The calculation phase of the measurement item is concerned with collecting the data and
converting it to a value form that matches the requirements within the system. The only action
performed by the measurement item is to invoke each measurement value that it contains with a
request to collect the data from the sensor to which the measurement value is connected and to
process this data.  The actuation phase is concerned with generating the necessary effects on the
actuators, based on the values collected during the calculation phase. In the case of Calibration
state, the actuators are not considered and the actuation strategy provokes that the item factory
makes a new prototype using the last measurement item as a basis.

5.3.2 First Approach: Use of Predefined Styles

The first approach is based on the use of predefined styles given in other systems’
description using Wright ADL].

Supposing that we identify the classes Item Factory and Measurement Item as
components, and we analyze the behaviour between these two classes. We can consider that the
behaviour can be mapped as a seudo Master/Slave style, where the master is the Item Factory
and the slave is the Measurement Item. The item factory creates objects to measure specific
values on a physical item, and when the task is done,  and if the item factory has not to copy the
last measurements as the new prototype, it destroys the object. Behind these conditions, we
establish the relationship between them in terms of master/slave style and we used a predefined
style (shown in the figure 5.6).

Interface Type SlavePullT = open  _ Operate _ §

where Operate = request  _  result?x _  Operate _ close _  § 

Interface Type MasterPushT = open _  Operate _ §

where Operate = request _ xresult!  _  Operate _ close _  § 

Connector MasterSlave
Role Slave = SlavePullT
Role Master = MasterPushT

Glue = Slave.open _  openMaster.  _  Glue

_ Slave.close _  closeMaster.  _  Glue

 _ Slave.request _  requestMaster.  _  Glue

 Factory 

Item 

Master 

Slave 

MasterSlave 



Chapter 5: O. O. Architectural Description of Frameworks: An Approach                67

 _ Slave.result ?x _  xresultSlave !.  _  Glue

Component Slave
 Port Service = SlavePullT

Computation = …..  requestService.  _ Service.result?x _ …..

Component Master
Port Service = MasterPushT

Computation = …… _ Service.request _ xresultService !.  _ …..

Figure 5.6: Master / Slave Pattern

Let’s see then what the advantages and disadvantages are using this approach.  The use
of a predefined style gives us a generic and global overview of the system and also we have the
reuse of components and connectors already defined in other architectures. But, in this case we
have to study the adaptability of other configuration to our system and, as the use of ADLs to
represent architectures is relatively new and is not often used for object oriented applications, there
is no catalog (such as design patterns[GHVJ95]) of predefined components and connectors.
Finally, in spite of the generic view that we get, this way of description does not give us enough
information about the connection between the components in terms of messages between objects.
This means that if we are interested in more details closer to the implementation, we need to have
a meaning for the different events in the architecture. For example, is the event open a message
between the two classes or just a way of representing a set of messages between the two classes
?. As our approach focuses on mapping messages in terms of events, we decided not to take this
approach. We are not claiming that it is an useless approach, but according to our needs it does
not fulfill our requirements.

5.3.3 Second Approach: Use of Steps

Having as documentation the design expressed in class hierarchies and the code itself,
this set of steps for describing frameworks has the objective of working in different levels going
from the domain-specific to implementation-specific issues. We follow the proposed
microarchitecture to understand the applicability of the different steps.

Step 1: Identify the main classes of framework in terms of the domain. This step is concerned with
identifying classes which were mapped of concepts of the studied domain where the framework will
be applied. In most of the cases these classes are clearly identified in the design. In the case of
having classes hierarchies, we suggest to take the root class of the hierarchy.
For example, considering our micro-architecture of the MSF, we have three main classes:
Actuator, Item Factory and Measurement Item.

Step 2:  Each class is mapped to a component and each possible relationship between two
classes is mapped to a connector in terms of Wright ADL, avoiding to have a relationship with
classes of simple types (integer, char, boolean). This step is concerned with getting relationship
between classes which are composed of other objects.
In our example, we define four components: Actuator, Item Factory and Measurement Item
mapped from the classes and Measurement Value mapped from the composition relationship with
Measurement Item Class.

Step 3: The protocols of each classes are classified as initiating or observing events, and all the
messages called in the body of the messages are classified as initiating events. We avoid to take
into account methods classified in protocols cathegories such as initializing or accessing  and also
the assignments in the implementation. We explain later the reasons and the limitations of Wright
ADL.



   68                               Object Oriented Architectural Description of Frameworks

The Component ItemFactory and the Component Measurement Item has three observing events
that work together: trigger/start  to indicate the beginning of its working; and normal and calibrate to
indicate the state in which the system is. In the case of Component ItemFactory they are also
initiating events because they are used to initialize the Measurement Item. The Measurement Item
has two initiating events: performCalculation to make the values measure and calibrate to indicate
the calibration process to the values. The Component Measurement Value and the Component
Actuator (in this microarchitecture) are only receivers of events of the Measurement Item. Thus all
their events are observing ones.

Step 4: The protocols for the ports and the computation of the components are built.

Class ItemFactory
iv: prototypeItem inCalibration

trigger
“called by the trigger sensor to indicate that a measurement item has entered the system”
| mi as |
mi:=prototypeItem copy.
(inCalibration)

ifTrue:[as:=CalibrationStrategy new. inCalibration:=false]
ifFalse:[as:=ActuationStrategy new].

as context: mi.
mi actuationStrategy: as.
mi factory: self.
mi start.
^mi

calibrate
“sets the calibration state so that the next measurement item is used for calibration”
inCalibration:=true.
^self

calibrate:aMeasurementItem
“makes the argument the prototype item”
prototypeItem:= aMeasurementItem
^self

Component Item_Factory
Port In =  trigger → In  calibrate → §

Port Out =  start  → ( calibrate  → Out _ normal  → Out )

Computation = In.trigger → startOut.  →
 ( calibrateOut. → Computation

_ normalOut.  → Computation )
           _ In.calibrate → Computation

 _ §

The Component Item_Factory has one observing event trigger which is activated by the
Class Trigger. Then it will start an measurement item in two possible states: normal or calibration.
As this condition is based on an internal state of the component, we used a non-deterministic
choice. In the method start, this condition is changed by assigning different algorithms to
ActuateStrategy. We did not find another adequate representation and we decided to express as
two possible states of starting the process.



Chapter 5: O. O. Architectural Description of Frameworks: An Approach                69

Class MeasurementItem
iv: sensor, measurementValues, actuators, myItemFactory actuationStrategy

performCalculation
measurementValues do:[ :n | n performCalculation]
^self

calibrate
“perform calibration”
measurementValues do: [:mv | mv calibrate]

start
(self calculationStrategy) performCalculation.
(self actuationStrategy) actuate
^self

Component Measurement_Item
Port In = start → (normal → In _ calibrate → In)

Port Out  = culationperformCal  → Out _ calibrate  → Out

_ actuate→ Out
Computation = In.start →

( In.calibrate→ culationperformCalOut. → calibrateOut.

 In.normal→ culationperformCalOut. → actuateOut.  )

→ Computation  _  §

The component protocol is very simple. Once the measurement item is created in both
states, just ask for the measurements to the measurements values.

Class MeasurementValue

performCalculation

calibrate

Component C_MeasurementValue
Port In =  performCalculation → In _ calibrate → In
Port Out = …
Computation = In.perform_calculation

→ “call the sensors” → Computation   
  _ In.calibrate

→ “calibrate their values”  → Computation
  _  §

The Measurement Value and Actuator  are also simple because just only receives the
requests from the Measurement Item and executes their requests.

Class Actuator

actuate
“Perform the actuation associated with this actuator”



   70                               Object Oriented Architectural Description of Frameworks

inActuation value:true.
(hardwareActuator isNil) ifFalse: [hardwareActuator actuate].
InActuation value:false.
^self

Component Actuator
Port In = actuate → In
Computation = In.actuate → “call the actuators” → …→ Computation

Step 5: The connectors are built using the messages sent from one class to another one. In this
case, we have three connectors Item_MI, MI_Act and MI_MV.

Connector IF_MI

Role IFactory = start  →
 ( calibrate → IFactory _  normal   → IFactory)

Role Mitem =  calibrate → Mitem
_ start → (normal → MItem _ calibrate → Mitem)

Glue = IFactory.start → startMItem.  →
(IFactory.normal → normalMItem.  → Glue

_ IFactory.calibrate → calibrateMItem.  → Glue)

Connector MI_MV (numMvs: 1..)

Role MI = culationperformCal   → MI _ calibrate  → MI

Role MValues 1..numMVs = perform_calculation → MValues
  _ calibrate → MValues

Glue = MI.perform_calculation →
numMVsi ..1:∀ ;  culationperformCaliMValues .  → Glue

_ MI.calibrate → numMVsi ..1:∀ ;  calibrateiMValues .  → Glue

_ §

Connector MI_Act (numAct: 1..)

Role MI = actuate  → MI
Role Actuators1..numAct =  actuate → Actuators

Glue = MI.actuate → numActi ..1:∀ ;  actuateiActuators . → Glue _ §

Step 6: Identify the variations of the one component (each subclass of a root class) and what other
components related to the component must be changed. In the first step we identify abstract
classes in the case of having class hierarchies to have the components in the first description. But
this component is just one prototype of other components that can be mapped from the
subclasses. Thus, if we have a class hierarchy, the idea is just to take each subclass, to see what
other classes are related and then map them as components.  Then, repeat the process from the
step 3 until getting different versions of the description. In our example, the studied framework is
small and all the classes were mapped in the first run of this algorithm. But in frameworks in large-
scale, this step can be applied.

Step 7: Identify the components that represent hotspots and frozen spots. This step is focused to
identify which components and connectors are fixed (this situation can be detected in the different
descriptions obtained from the Step 6) and which ones are candidates to be changed in terms of a
framework instantiation. In the microarchitecture that we are studying, all the components are
frozen spots except the actuator which can customize its behaviour in the process actuate.



Chapter 5: O. O. Architectural Description of Frameworks: An Approach                71

Step 8: At this step, we have a first level of description. We can identify predefined architectural
styles in terms of set of classes or just components and connectors with an specific behaviour. For
example it is possible to prove that the relationship between Measurement Item and Measurement
Values is managed by the connector, when the measurement item needs information from their
values, just only send the event to the connector and the connector makes the task of forwarding
the same request to all the measurement values and also process the final results for the
Measurement Item obtained from all the partial results of the Measurement Values

Step 9: We run the tool to verify the different properties in Wright.
1. Port Computation Consistency (component)
2. Connector Deadlock-Free (connector)
3. Roles Deadlock-Free (role)
4. Single Initiator (connector)
5. Initiator Commits (any process)
6. Parameter Substitution (instance)
7. Range Check (instance)
8. Port-Role Compatibility (attachment)
9. Style Constraints (configuration)
10. Style Consistency (style)
11. Attachment Completeness (configuration)

This step just only ensures us that our description is valid using Wright ADL. If there is an error
reported by the tool, we should check it following the format defined in the Steps described
previously.

Step 10: Refine each component considering
•  if we have a hierarchical composition of objects that work together (definition of

microarchitectectures). This step is concerned to discover if there is a component that is
composed of other objects and the different services that it offers are made using these
objects. All the objects must be inside the ‘boundaries’ of the main object to consider it as a
hierarchical composition. This means that for example, we can consider in this Step the
composition relationship between Measurement Values and Measurement Item because the
item calls the services of the values and the values call the sensors to do it, and all the
information is returned to the measurement item. The possibility of using hierarchical
composition will let us this kind of description.

•  If there is a set of events joined by a non-deterministic choice which indicates a decision of
the component regarding an internal state (internal state of the component). This step is
concerned with expressing all the information related to the component avoiding to have non-
deterministic choices. For example, in the case of Measurement Item there is a decision of
starting in normal or calibration state. In fact, this choice depends on a boolean variable of the
Measurement Item.  The possibility of using Abstract Machines B let us this modification in the
component.

Step 11: New components (not necessarily mapped from domain concepts) can be discovered.
This step is concerned with having a new level of description. If this situation happens, it is
suggested to start to study the component as a microarchitecture and follow again the steps only
with the new components.
If we are interested in refining the behaviour of the component, this step is also concerned with
having detailed information about the defined behaviour protocol in the components. For example,
in the method start of the Measurement Item there are calls to Calculation Strategy and Actuation
Strategy because the Calculation strategy is used to coordinate what actions must be made for
collecting and converting data from one representation into another and Actuation Strategy is used
to coordinate what actions must be made for generating the necessary effects on the actuators.



   72                               Object Oriented Architectural Description of Frameworks

Step 12: Definition of the interaction protocols  in interface types and association of frozen spots
and hotspots in styles.  This step is concerned with identifying the set of events that belong to an
interaction protocol and defining styles for the fixed part and variable points of the framework. This
will let us to have a clear view of how the framework is composed and measures the impacts of
possible changes in  its structure and object behaviour.



Chapter 5: O. O. Architectural Description of Frameworks: An Approach                73

5.4 Architectural Description – Second Case: Architectural
Patterns + Wright Description

According to [LC98] the architecting phase comes very early in the development process
of an application. As it was said previously, its purpose is to define the gross organization of the
application in order to provide first solutions partially meeting the application requirements and
reaching some non-functional qualities like reusability, adaptability or portability. If not prepared at
the architectural level, most requirement and non-functional qualities cannot be met in the code
level. This is the reason that the architectural decisions are most of the time hard to take and
require deep expertise both in software engineering and in the domain under consideration.

The objective of the first algorithm is to provide a way to recover the qualities mentioned
previously. But in fact, it results interesting to have also a mechanism that allows us to notice the
architectural concepts during the process of building the framework. [LC98] calls this process as
architecting phase and says that it involves the following tasks:

1. Performing a first domain analysis and understanding the requirements of the
application under construction.

2. Designing an architecture providing first solutions meeting the application requirements
and reaching targeted qualities.

3. Allocating requirements to components and connections
4. Representing the architecture
5. Analyzing and evaluating the architecture with regards to the requirements
6. Documenting and communicating the architecture

This phase is followed by a phase of implementation of the architecture.
The second algorithm presented in this section proposes to carry out this architecting

phase together with the process of design and implementation of an object oriented framework
component. The objective is to show all the variations of services provided by the component in
each run of the algorithm. As in the first algorithm, we use an example to make the algorithm
understandable.

5.4.1 Example: A Generic Coordination Abstraction for Managing Shared
Resources [CTN97]

A Coordination Component Framework for Open Distributed Systems was proposed in
[CTN97]. They introduce different solutions to coordination problems, and each solution is
embodied in a component in the framework. One of these components is used to provide solution
to the management of shared resource.

In[CDK94], they define that there are some common elements which define the structure of
these solutions : the definition of the resource, and the definition of the allocation policy. Some
features of these elements are fundamental for the specification of the solutions. For the resource
they are basically : the size of the resource, and the number of concurrent entities which can
access the resource at the same time. For the allocation policy they are basically : the order in
which the resource is going to be assigned, the maximum allowed to each entity, if there will be
priorities on the requests of the allocations, and what to do with the allocation requests that cannot
be processed simultaneously (to define a waiting queue of entities, to ignore them, etc.). There are
also some fault-tolerance aspects like what to do in case of software failures (to ignore precedent
request, to guarantee recovery, etc.) that have taken into account. All these aspects define the
parameters of variability of the generic coordination abstraction that could be specified and that
can be used to generate specific coordination solutions.

One example shown to see how the component is applied is a toy banking system. In this
case the resource is an account database which is shared by multiple teller machines. The teller
machines need to get information from the account database in order to check a client’s account.



   74                               Object Oriented Architectural Description of Frameworks

They also need to update account information if they have given money to a client. To keep the
database consistent we need an access policy to regulate the multiple requests.

As a solution for this regulation they introduce an access policy component. This solution
not only provides access regulation, but also explicitness of architecture and flexibility.

5.4.2 Requirements

The main goal of the design is to implement the access policy to the database in a
reusable and configurable way. In terms of the component oriented approach, this means that we
want to have a structure where we can plug in different policies, without having to change other
parts of the solution. Three kinds of policies are distinguished:

•  Policies that need no other information about the requests: This is the easiest kind of
policy. They can do their job without any knowledge about the commands they have to
dispatch. A typical example is a FIFO policy: no matter what commands come in, the
policy just dispatches them in order they come in.

•  Policies that need type information about the requests: This kind of policy depends on
the “nature” of the command: every commandtype has one or more properties which are
needed by the policy. A typical example for this case is the readers/writers policy. The
policy has to know if a command is a reader or a writer command. So this information
must be made available in our solution.

•  Policies that need external information about the requests: This kind of policy depends
on information which can be different for each instance of a command. It can be thought
as a priority policy, where, depending on the sender of the request, a command has a
certain priority. Again, somehow this information must be available to the policy.

5.4.3 Solution

There is an Interface of the solution to the rest of the application. Clients have to call this
Interface to access the access solution. The resource itself is also modelled and there is a part
which represents the control policy. To give the policy the ability to buffer the commands, change
their order or execute them in parallel, it is necessary an explicit representation of the commands.
This is done using the Command Pattern [GHVJ95].

Then let’s see the relationship between Command and Policy. For the first kind of policy,
the basic Command pattern suffices. For the second kind of policy, we need to make type
information available at run-time in order to be able to use this information at run-time, for instance
to link this information to certain policy-dependent properties. We make this information available
by providing a CommandType class to every subclass of the abstract Command class.

For the third kind of policy we need to make information available which can differ for every
instance of a command. We do this by connecting a Property class to every Command class and
the addition of a SetProperty and a GetProperty method to the Command class. What the exact
information is, that subclasses of this class represent, is totally dependent on the application in
which it is used. It could be that the name of the sender of the request is made available. The
information, that is made available, should not be information especially linked to a policy. As an
example, we take again the priority policy. In the Property object, we should make the sender of a
request available. The linking of this sender with a priority is done later at the policy. We do this to
keep the Command as independent of the policy as possible: the information is really a property of
the Command and this information can be used by different policies.

The Policy part is set up using the Strategy pattern [GHVJ95]. The hard part is again the
fact that we have to deal with the application dependent information. The solution is to represent
this information explicitly in so-called “configuration” objects. These configuration objects contain at
run-time the information that is needed by the policies. So we may have, for example, a
configuration object that contains of a link between command types and a property isReader.
Another example is an object that links the names of possible request senders to a certain priority.
We see here the difference between information that is made available in a Property object and



Chapter 5: O. O. Architectural Description of Frameworks: An Approach                75

that in a Configuration object. The former is general information, the latter contains the policy
dependent information.

In figure 5.7, we see the total design for the shared resource access policy solution. The
class Interface is the interface to the resource for the rest of the system. For every command which
is invoked by an incoming events, a Command object is created. These commands are then given
to the policy which is connected (through parameterization) to the interface. This policy handles the
commands, i.e. determines when and in which order the request can access the resource. If the
command is allowed, it is executed.

Concrete Command

execute()

ConcreteProperty

Property

Resource

request()

Command Type

FIFOPolicy ReadersWriters Policy

RW Configuration

Priority Policy

PrConfiguration

Interface

request()

Command

execute()
setProperty()
getProperty()

Policy

Concrete Command Type

Figure 5.7: Class Model for the Shared Resource Access Policy

5.4.4 Approach: Use of Steps

Step 1: Can we apply any known architectural pattern in our model ?
It is possible to use the guidelines proposed in [BMR+96] and [SG96] to identify some

architectural patterns that can be applied:
" Control decomposition of an overall system task into cooperating subtasks: Layers, Pipers and

Filters, Blackboard
" Infrastructure for distributed applications: Pipes and Filters, Microkernel, Broker
"  Support the structure of software systems that feature human-computer interaction: Model-

View-Controller, Presentation-Abstraction-Controller
" Support the extension of applications and their adaptation to evolving technology and changing

functional requirements: Microkernel, Reflection.

Clearly, as we explained in the chapter 2, the domains and the models allow us to apply
none, one or a combination of several architectural patterns. Unfortunately, we can not give an
example of the use of an architectural pattern with the framework that we use as example in this
algorithm. But we studied other components’ frameworks in a larger scale, and we discovered a
large applicability of the Layers Architectural Pattern. For example, in [BGK+97] they document the
development of a framework for application covering almost the entire area of banking: tellers,
loans, stocks and investments departments as well as self-services facilities. In the class model,
they use layered framework (shown in the figure 5.8), where the Application Layers provide the



   76                               Object Oriented Architectural Description of Frameworks

software support for the different workplace contexts, Business Section Layers consists of
frameworks with specific classes for each business section and Business Domain Layer contains
the core concepts for the business as a whole.

Investor

Client

Borrower Guarantor

CustomerCore CustomerRole

1..*

+roles

1..*

Customer

core

Figure 5.8: Example of Application of Layers Architectural Pattern

Next steps of the algorithm are focused on the description of each layer or each
component in the framework.

Step 2: Classify and categorize your abstract classes in the model of connectors and components.
In this step, the objective is to define the semantic function of the different classes inside

the model. We define semantic function as the kind of task  that the class fulfils inside the model,
avoiding to have just only a set of classes without any meaning for the developer or the designers.
The main idea is to divide the classes in two sets: units of computation (components) and units of
communication (connectors). To do this process, we propose:
1. To make a preliminar mapping of each class in a component according to their activity in the

model: processing, data, connecting, controller, coordinator, interface, service provider,
information holder or structuring components. In our example, we classify Command and
Resource classes as  data components, Policy as coordinator component and Interface as
connecting component  (although it can be classified as coordinator or interface component).

2. To “reclassify” some components to convert them in connectors following the table 1. This
conversion is a variant using a mixture of the categorization of components presented in the
chapter 4. In our case, the result is Command and Resource are components and Interface and
Policy are connectors.

Preliminar Mapping Final Mapping:
 Architectural Element

Processing Components Component
Data Components Component
Connecting Components Connector
Controller Components Connector
Coordinator Components Connector
Interface Components Connector
Service Provider Components Component/Connector
Information Holder Components Component

Application
Layer

Business
Domain Layer

Business
Section Layer



Chapter 5: O. O. Architectural Description of Frameworks: An Approach                77

Structuring Components Component

Table 5-1: Mapping for Architectural Element

Step 3: Study the relationships between the different classes represented as components to map
them as connectors. The last step allows to identify classes as components or connectors, but in
fact, there are classes mapped as components and they do not have any evident connectors, or
any class which fulfills this function. The idea of this step is to capture these relationships in a
connector. The reason is that we must express the interrelationships between components as
explicit connectors with Wright ADL. As it was defined in the section about Mappings for
Connectors, there are three ways in which classes A and B: instances of B can be instances/class
variables of A, instances of B are used as parameters in one method of A and instances of B are
connected to an instance of A by a dependency mechanism . In these cases the connectors can
be as simple as sender-receivers of events without any other events, in the best case the
connector will have a function such as distribution of events. In our example, the Command
component has the former relationship with Resource, so we express this relationship as a
connector.

Step 4:  Using Wright ADL, define the protocol of the components or connectors based on the
information of the classes and their possible interactions.

This step help us to identify the set of messages and different states of the object that we
need in the model. From our example, we take two connectors (Interface and Policy) and two
components (Command and Resource) to analyze.

Connector Interface: This element represents the entry point to the framework component, so we
need two events: one to indicate that we received a request to be executed (request) and one to
indicate that this request has to be processed according to the policy (create). The event request is
an observing event and the event create is an initiating event. This connector represents the
relationship between the external users of the component and the Command component.

Component Command: This element represents the request that will be executed in the resource.
It has three events: create (indicates that it was created), put (indicated that it is enqueued in the
policy to wait for the moment to be executed)  and execute (indicates that it can be executed). The
events create and execute are observing events and the event put is an initiating event.

Component Resource: This element in any context can answer to three states associated to
events : free (it can accept any request), request (it receives the request), busy (it is processing a
request).

Connector Policy: This element represents the algorithm that administrates the order of execution
of the commands.  This connector receives the Commands components and gives the order of
execution to work on the resource. It has associated three events: put (indicates that it received a
Command), execute (indicates that a Command can start to work on the resource), and ready
(indicates that the resource is free).

Step 5: Model the set of events in the Ports of the components and the Roles of the conectors and
the chain of events in the Computation and Glue of the components and connectors respectively.
Following from the last step we show the definition of the protocols of the two components and the
two connectors.

Connector Interface: We assume that we have only one type of request to be executed.

Connector Interface



   78                               Object Oriented Architectural Description of Frameworks

Role User = request  _ _ §

 Role Command  =  create _ Command

Computation =  User.request _ createCommand . _ Computation

Component Command: The restriction is that once it is created, it must be enqueued in the policy
queue and has to wait for its turn to execute. This restriction is shown in the Computation

Component Command
Port In = create _ In

Port Out_Policy =  put  _ Out_Policy _ execute _ ready  _ §

Computation = In.create _ putPolicyOut ._  _ Out_Policy.execute

_ “execute the work on the resource”  _ readyPolicyOut ._  _ §

Connector Policy:

Connector Policy

Role Command = put  _ Command _ execute _ ready  _ §

Computation = Command.put  _  executeCommand.
_  Command.ready _ Computation _ §

Component Resource: The only condition to be fullfilled is that while the resource is available
sends the event free. But when it receives the request, it has to notify that the state is busy and
that can not execute the request event. Both conditions are shown in the computation of the
component.

Component Resource

Port In = execute _ In _ free  _ In _ busy  _ In _ §

Computation = freeIn.  _ In.execute _ Continue  _ Computation

where Continue = In.execute _ busyIn. _  Continue _ §

Step 6: Use the Wright tool to check all the properties in a description and solve the possible
problems.

1. Port Computation Consistency (component)
2. Connector Deadlock-Free (connector)
3. Roles Deadlock-Free (role)
4. Single Initiator (connector)
5. Initiator Commits (any process)
6. Parameter Substitution (instance)
7. Range Check (instance)
8. Port-Role Compatibility (attachment)
9. Style Constraints (configuration)
10. Style Consistency (style)
11. Attachment Completeness (configuration)
This step just only ensures that our description is valid using Wright ADL. If there is an

error reported by the tool, we should check it following the format defined in the steps defined
previously.

Step 7: Analyze the interface where there is a non-deterministic choice to see if the component
must have an internal state to take some decisions.



Chapter 5: O. O. Architectural Description of Frameworks: An Approach                79

This step can be optional because we can change the non-deterministic choice in a deterministic
one using an Abstract Machine B, getting a new level of the description. Or we do nothing and we
solve this problem in the implementation itself.  For example, in the Resource component we can
specify the state of working or not.

Component CH_Resource

Port In = execute _ In _ free  _ In _ busy  _ In _ §

Computation
Component Resource

Port In = execute _ In _ free  _ In _ busy  _ In _ §

Port Component = workingis _  _

(working _ Component _ not_working _ Component)
_  set_value?value _ Component

Computation = freeIn.  _ In.execute _ TruevaluesetComponent !_.

_ Continue  _ Computation

where Continue = In.execute _ isWorkingComponent.

_ (Component.working _ busyIn. _  Continue

_ Component.not_working _ freeIn. )

_  FalsevaluesetComponent !_. _ §

Component AM_Resource
Port B = is_working_ B _ set_value?val  _ B

_ working _ B _ not_working _ B

Connector B_Resource
Role B = is_working_ B _ set_value?val  _ B

_ working _ B _ not_working _ B

Role Component = workingis _  _

(working _ Component _ not_working _ Component)
_ set_value?value _ Component

Glue = Component.set_value?True _ TruevaluesetB !_.  _ Glue

 _ Component.set_value?False _ FalsevaluesetB !_.   _ Glue   

_ Component.is_working _

( workingComponent.  _ Glue

_ workingnotComponent _.  _ Glue)

Instances
State = AM_Resource
I_Resource = Resource

Attachments
State.B as B_Resource.B
I_Resource.Component as B_Resource.Component

End Resource

Bindings



   80                               Object Oriented Architectural Description of Frameworks

I_Resource.In = In
End Bindings

Step 8: Translate the description in an implementation following the mapping from CSP to
Smalltalk/Java code presented previously.

Step 9: Analyze the points of variability in the set of components and connectors resulting from the
first description. Build the new variations in terms of the components and connectors with the class
model in parallel.

This step consists of identifying which changes are necessary to get a specialized
behaviour of the component. In the example, we detected three types of changes:

" Extension of the protocol of a component or a connector.
" Use the same protocol but changing the behaviour of the component/connector.
" Objects that are not modified and are useful in all the proposed descriptions.

In the first case, we talk about hierarchical classes and in the second case we can infer
that it is possible to use a Strategy pattern, where all the algorithms are encapsulated in classes, or
a Composite Pattern, where the behaviour of some messages are different if we have the
Composite or the Atomic object. These two variations show the hotspots of the component and the
last one the frozen spots of the component that we map in the description.

For example, in our example the first variant is to have a set of operations, e.g. read and
write. The fact that we have two operations with conflicts between them (an operation of writing
can not be made during reading process, and reading process can not be taken into account when
a writing process is happening) changes the definition of the protocols of Resource, Interface and
Policy. In all the cases, we must identify what kind of operations is to know how to proceed.

Connector Interface

Role User = read  _ User _ write  _ User _ §
 Role CommandReader  =  create _ CommandReader

Role CommandWriter = create _ CommandWriter

Computation = User.read _ createaderCommand .Re  _ Computation

_ User.write _ createterCommandWri .  _ Computation

Connector Policy (nbr: 1.., nbw: 1..)

Role CommandReader1..nbr = put  _ CommandReader

 _  execute _ ready  _ CommandReader _  §

Role CommandWriter1..nbw = put  _ CommandWriter

_  execute _ ready  _ CommandWriter _  §

Computation = ( ∃ i..k < nbr || CommandReader.put  _  executeaderCommand .Re )
  _ ∀ i..k  _ CommandReader.ready _ Computation

 _ CommandWriter.put _ executeterCommandWri .  
_ CommandWriter.ready _ Computation

_ §

The Component Resource must not pay attention to inform that the operation has finished,
because in this case it can accept a set of operations of the same type (e.g. readers at the same
time, or just only one writer).

Component Resource (nbr: 1.., nbw: 1..)
Port In = execute _ In _ §
Computation =  E i:1..k || In.execute _ Computation



Chapter 5: O. O. Architectural Description of Frameworks: An Approach                81

Step 10: Repeat the steps 8-9-10 to get different variations of the component and their
implementations.

Algorithm for the application
framework

Algorithm for a framework component

Identify the main classes of framework in
terms of the domain

Can we apply any known architectural
pattern in our model ?

Map each class as a component and
each possible relationship between two
classes as a connector

Classify and categorize your abstract
classes in the model of connectors and
components.

Classify the protocols of each class as
initiating or observing events, and all the
messages called in the body of the
messages as initiating events

Study the relationships between the
different classes represented as
components to map them as connectors.

Build the protocols for the ports and the
computation of the components

Define the protocol of the components or
connectors based on the information of
the classes and their possible
interactions

Identify the variations of the one
component (each subclass of a root
class) and what other components
related to the component must be
changed.

Model the set of events in the Ports of
the components and the Roles of the
conectors and the chain of events in the
Computation and Glue of the
components and connectors

Identify the components that represent
hotspots and frozen spots

Use the Wright tool to check all the
properties in a description and solve the
possible problems.

Identify predefined architectural styles in
terms of set of classes or just
components and connectors with an
specific behaviour

Analyze the interface where there is a
non-deterministic choice to see if the
component must have an internal state.

Run the tool to verify the different
properties in Wright.

Translate the description in an
implementation following the mapping
presented previously.

Refine each component considering
hierarchical composition of objects that
work  together  (de f in i t ion  o f
microarchitectectures).
If there is a set of events joined by a non-
deterministic choice regarding an internal
state (internal state of the component).

Analyze the points of variability in the set
of components and connectors resulting
from the first description. Build the new
variations in terms of the components
and connectors with the class model in
parallel.

Discover new components (not
necessarily mapped from domain
concepts) can be discovered

Define the interaction protocols  in
interface types and associate of frozen
spots and hotspots in styles.

Figure 5.9: The developed algorithms seen graphically



   82                               Object Oriented Architectural Description of Frameworks

5.5 Summary

In this chapter, we presented the definition of the mapping from Java/Smalltalk code to
CSP-notation and two algorithms to get an architectural description for an object oriented
application framework and a framework component. We also describe the applicability of these
algorithms with two specific examples to make them more understandable. This work lets us to see
specifically where we found problems to use architectural patterns and Wright ADL to inference a
semantic structure of an object oriented framework (component).



Chapter 5: O. O. Architectural Description of Frameworks: An Approach                83



The formal approaches such as Wright ADL and architectural patterns can be considered
as complementary techniques to get an architectural description of an object oriented framework.
The two algorithms presented in the previous chapter give the proof of this fact. But we have found
some interesting aspects (during the development of the algorithms) that should be analyzed
separately. This chapter proposes a discussion of them with the goal of giving a complete
panorama and conditions before the analysis of evolution impacts in our approach.

6.1 Analogy between Architectural Style and Framework
Architecture

In the first algorithm the last step proposes: “Define the interaction protocols in interfaces
types and associate of frozen spots and hotspots in styles”. Let’s see the reasons and the
consequences of this decision. To do this, then let’s consider the following definitions,

⇒  An application framework is a set of classes the embodies an abstract design for
solutions to a family of related problems [Joh92].

⇒  An architectural style defines a family of systems that have a common architectural
design vocabulary and satisfy a common set of design constraints [All97].

Defining a software architecture for a framework (component), we identify the frozen spots
and the hotspots. They represent the fixed part and the points of variability of the frameworks. In
the case of application frameworks, if we model the classes as components and the relationships
between them as connectors, in fact, the fixed part can be considered as the architectural style of
the framework because these components express the common design vocabulary and set of
design constraints  for all the applications resulted from the framework instantiation. For example,
in the case of  the Measurements System Framework, all the classes are frozen spots except the
behaviour of the strategies (CalculationStrategy, UpdateStrategy and ActuationStrategy classes).
So, we can define an architectural style considering:

•  Components and connectors defined as components and connectors types
•  The set of events of each port and role in the components and in the connectors

respectively defined as interface types
•  The constraints of how the components and the connectors must be related.
•  A cardinality indicating how many components (mapped from the classes) we need in a

possible instantiation of the framework, represented by a definition of instances and
attachments in a Wright configuration.

Let’s see one example where we present the architectural style partially:

{ Specification of Interface Types for the Components’ Ports }

Interface Type TInFactory =   trigger → InFactory  calibrate → §

Interface Type TOutFactory = start  → ( calibrate  → OutFactory _ normal  → OutFactory )

Interface Type TInItem = start → (normal → TInItem _ calibrate → TInItem)

CChhaapptteerr   66::     AArrcchh ii tt eecc ttuurraa ll   DDeessccrr iipp tt iioonn
AAssppeeccttss ::   DDiissccuussss iioonn



Chapter 6: O. O. Architectural Description Aspects: Discussion                                 85

Interface Type TOutItem =  culationperformCal  → TOutItem _ calibrate  → TOutItem

_ actuate→ TOutItem       

Interface Type TIFactory = start  →  (calibrate → IFactory _  normal  → IFactory)
Interface Type  TMitem =  calibrate → Mitem _ start → (normal → MItem _ calibrate → Mitem)

{ Specification of Components }

Component Item_Factory
Port In =  TInFactory
Port Out =  TOutFactory

Computation = In.trigger → startOut.  → ( calibrateOut. → Computation

_ normalOut.  → Computation )
           _ In.calibrate → Computation
  _ §

Component Measurement_Item
Port In = TInItem
Port Out  = TOutItem

Computation = In.start → ( In.calibrate→ culationperformCalOut. → calibrateOut.

 In.normal→ 
culationperformCalOut. → actuateOut.  )

→ Computation
_  §

{ Specification of Connectors }

Connector IF_MI
Role IFactory = TIFactory
Role Mitem = TMItem

Glue = IFactory.start → startMItem.  → (IFactory.normal → normalMItem.  → Glue

_ IFactory.calibrate → calibrateMItem.  → Glue)

{ Specification of the Constraints }

Constraints

∃  factory : Components _ Type(factory) = IFactory  ^  # factory = 1
^  p: Ports | p _   Ports(factory)

_ Type(p) = TInFactory  v  Type(p) = TOutFactory

∃  item : Components _  Type(item) = Measurement_Item  ^  # item = 1
^  p: Ports | p _   Ports(item)

_ Type(p) = TInItem  v  Type(p) = TOutItem

 ∃  factory_item : Connectors _ Type(factory_item) = IF_MI  ^  #factory_item =1
^  r: Roles | r _   Roles(factory_item)

_ Type(r) = TIFactory  v  Type(r) = TItem

∀ r : Roles | r _ Roles(factory_item)



   86                               Object Oriented Architectural Description of Frameworks

∃  p1 : Ports  |  p1 _ Ports (Item_Factory)  
( ( Item_Factory, p1 ), ( factory_item, r ) )   Attachments

^ ∃  p2 : Ports  |  p2 _ Ports (Item_Factory)  
( ( Item_Factory, p2 ), ( factory_item, r ) )   Attachments

In the case of a framework component, as it is thought as a black-box entity, the
architectural style will be used in the configuration of the system where the component will be
used.

This approach of separating fixed from variable parts in an architecture is similar to  a
proposal made in [Mac00] and in [Neb98].

[Mac00] works with product families and they propose the existence of a reference
architecture and a configuration architecture in product families architecture . The reference
architecture describes the style upon which every product is built. It lists the rules for interaction of
the various components, and the abstract framework that holds them together. A reference
architecture may contain information, constraints and guidelines on the infraestructure that needs
to be present in order to hold together the various components. This could mean the architectural
structure, or the glue that holds the components together into the same system. Meanwhile, the
configuration architecture is described for every product by the product configuration architecture
document. In the case of several products that belong to the same family, a family configuration
architecture document naturally springs from the combination of all member product configuration
architecture documents.

An approach closer to the developed one in this dissertation is [Neb97] which proposes
two complementary notions of software architecture. They represent a separation of concerns
relating to the distinct nature of the information encompassed by each kind of architecture. The
initial distinction is between classes and instances. A domain architecture consists of a set of
classes (components) that are connected by potential relationships (connectors) between classes
as expressed by its set of dependencies. The term domain reflects the fact that this notion of
architecture tells you how the model of your problem domain is structured. But a situation
Architecture  consists of a set of instances (components) that are connected by the actual
relationships (connectors) between these instances. The term situation architecture reflects the
fact that a situation architecture represents the structure of a particular concrete situation from the
problem domain as defined by a configuration of instance and their actual relationships. This is in
contrast to a domain architecture, which represents potential relationships.The relationship
between a domain and situation architecture is one of instantiation. A situation architecture is an
instance of a domain architecture. The situation architecture’s components and connectors are
instances of the domain architecture’s components and connectors. Two kinds of architecture are
complementary but they are fundamentally different. One way of thinking of the relationship is that
the domain model defines what can and can not happen while a situation model defines, in
conjunction with any input, what does and does not happen.

In our approach, the reference architecture [Mac00] and domain architecture [Neb98] could
be compared to the definition of our architectural style of the framework, where we express which
the classes (frozen spots: different aspects already implemented) are in all the  applications
resulting from the framework instantiation. In fact, in [Neb98], the mapping for relationships
between classes are closer to our working level (code-level) and also a lower level of description

In our approach, we do not have a configuration architecture [Mac00] and situation
architecture [Neb98]. In fact, we can think that this is similar to the configuration description made
with Wright ADL to represent an instantiation of a framework. In this case, we use the defined
architectural style and we define the components and connectors that are specific to the
instantiation.



Chapter 6: O. O. Architectural Description Aspects: Discussion                                 87

6.2 Levels of Description

In both algorithms we propose an incremental process of the growth of the architectural
description starting from the first architecture obtained.  There are two possible issues of growth:

•  refinement (or grouping) of components getting microarchitectures and
•  replacement of a component (mapped from a class) by another one that represents a

refinement in the protocol of the component (a subclass).
We consider that in fact, we have two dimensions of growth and each dimension generates

levels of description. If we consider both dimensions in X-Y axis, we can have a parameter to
measure qualities of our design and/or implementation mapped to an architectural description.
Supposing that we build a X-Y cartesian axis where (Figure 6.1):

•  Y-axis gives information about how many architectural descriptions we have obtained
refining (or grouping) components and connectors (r1, r2, … rn)

•  X-axis gives information about how many changes in components and connectors
(mapped from classes) we have made in our base architectural description (s1, s2, … sm)

 (rn, s1) 

r1 

r2 

r4 

r5 

rn 

 s1      s2     s3      s4        s5               sm 

refinement 

subclasses 

(r1, sm) 

Studied Area 

Figure 6.1: Growth of the Architectural Description in X-Y axis

Let’s see then what kinds of evaluation we can make about our architectural description.
An architectural description located in (sm, r1 ) indicates that we have a deep tree

representing hierarchy of classes and the absence of microarchitectures (grouping of classes
related to fulfill a task). This can be a signal of ‘bad design’ caused by too many classes (related by
a hierarchy) and few responsabilities in each subclass.

An architectural description located in (s1, rn ) indicates that we have a set of classes
(without siblings in a hierarchy), each of them is an entry point for a microarchitecture.  Here we
have different possibilities. If we are modelling a components’ framework, each refinement
represented in the Y-axis will indicate a refinement in one different component each time. This
means that  the framework is well-built because in those cases, the components are built as black-
box entities and they are like microarchitectures that are adapted by the interface offered by the
component. But if we are modeling an application framework, the point (s1, rn ) in the diagram
shows that we have a set of classes (very few because we are in the first step of growing in the X-
axis) , and the classes have too many services each of them and several classes are dependent of
the main classes (big microarchitectures). This can be a signal that the classes should be divided
with different responsabilities in the classes which are the result.

We can also use the diagram to locate regions of what we consider a large or a small
framework in terms of amount of classes and microarchitectures. We can also decide which of
these regions are better to determine a good balance of classes as lonely units and entrypoints to
microarchitectures. In our case, we have studied a region limited by (s0, r0 ), (s0, r4,), (s5, r0 ) and



   88                               Object Oriented Architectural Description of Frameworks

(s5, r4 ) where the application framework and the framework components have around 20-25
classes.

6.3 Level of Components

In the mapping from classes to components, we refine the relationships of the classes until
the level of management of simple datatypes (integer, char, etc). We adopt this level of detail,
because

•  We are working at the code-level
•  We are limited by the non-inferenced information of the parameters provided by Wright

ADL
But in fact, we are not constrained to work in this level of detail. Going back to the example

of the class model of Truck presented in chapter 5, if we are sure that we will not work with the
information about the Manufacturer, we can work with this component as a simple datatype
parameter, such as for example: Truck (driver, manufacturer, year)

6.4 The Potential of the Connectors

Wright ADL expresses explicitly the connections between  components through the use of
connectors . The focus of this ADL is in the connectors. In the developed example, most of  the
connectors are only just receivers and senders of events. But in fact, they can be considered the
‘core’ of the application because they organize all the behaviour and interaction between all the
classes (mapped as a components).

[MKMG96] proposes that the structure for pattern description provided in [GHJV95] for
describing architectural patterns of the RTP/C style. Let’s see in the figure one example of the
proposal.

 Shared-Resource Architectural Pattern  
Intent: Avoid deadlock when processes share common resources
Motivation: System-deadlocks can occur when architectural 
components lock shared resources in an appropriate order.  
Applicability : Architectural  designs done in the RTP/C style 
where process components share resource components and 
deadlock-freedom is a more important than run -time 
performance 
Participants : N RTP/C Process Components, each connected to 
m o fewer RTP/C Resource Components. All conn ectors used 
are RTP/C sync-request connectors from processes to resources.  
Collaborations : In order  to avoid deadlock, a process P k can 
only send a request on resources sr i  (locking sri ) if  i > j , where 
sj  is the highest numbered resource currently h eld by Pk  

Consequences: Using the ordered access protocol to prevent 
deadlock will not generally lead to optimal resources access or 
allocation. Other protocols may lead to better average -case 
performance 

P1: RTP/C 
Process 

Pn: RTP/C 
Process 

srm : Resource 

sr2 : Resource 

sr1 : Resource 

Clearly, the examples identify different ways of connection offered by the style. Thinking in
connectors defined with Wright ADL, we can think in generating a catalog of them  and promotes
the reuse of them having into account that all formal properties have been proven in the defined
structures. For example, we could have a catalog of connectors that models the different policies to
access a shared resource.



Chapter 6: O. O. Architectural Description Aspects: Discussion                                 89

6.5 Increment of Connectors and Components

In the first algorithm, we present two approaches: use of predefined styles and start from
the “scratch” with the description. Comparing both approaches developed, we see clearly an
increment of the amount of components and connectors. But, in fact, the main idea points out to
represent close all the framework classes and their interaction. After the analysis of the
microarchitectures and styles inside the description, we can reduce this  amount getting a
description according to our needs of description

6.6 Management of Errors

The static nature of the Wright ADL and  the typed protocol makes us  difficult adding
management of errors. The problem is focused that we must modify the protocol of the ports and
computation, and this can provoke a great impact in all the description. In the case of modification,
we can do it trying to focus the changes in the microarchitectures and also running the tool for
checking that our description is valid.

6.7 Lack of Expressiveness in Structural Features

The structural features can not be expressed. In both  algorithms,  we established that the
description was composed of our classes mapped to the domain concepts. The hierarchy
relationship between two components can not be expressed explicitly, this means that we can
change a component by another one which adds behaviour to the first one (subclass relationship)
but losing the idea of that one is subclass of the another one.

6.8 Lack of Expressiveness of Timing

The Wright ADL does not allow us express timing relationships. This means expressing a
service that is regulated by a timer, and that it is offered in regular time intervals. For example, this
restriction can be seen when we work with the Measurement Systems Framework and we
represent PeriodicUpdate class (subclass of UpdateStrategy  class) used by the Sensor class. An
instance of this class has a cycle that indicates that after a set time interval, it must indicate to the
sensor that it must update its information about the measurement item. We express this
relationship is related as non-deterministic choice between the different behaviours of an instance
of UpdateStrategy class.

6.9 Dynamic Binding and Creation/Destruction of Components

The static nature of Wright ADL does not allow us to represent a dynamic binding of an
object in a body method and the creation and destruction of components in the description. The
first case can be illustrated with the example of ActuationStrategy  in the method trigger in the Item
Factory class. In this method, an instance of a Measurement item is initialized and one of the
instance variables  is an instance of Actuation Strategy class. This variable indicates if the
instantiated measurement item  is in normal state (after having taken the measurements of the
physical item, the actuators are called) or in calibration state (after having taken the measurements



   90                               Object Oriented Architectural Description of Frameworks

of the physical item, the item is taken as the new prototype for the rest of the items). But this
behaviour at run-time is seen when the actuation phase arrives, but in our description we had to
express this difference when we modelled the initialization of the item.

Following with the same example, the factory initializes one item each time that a physical
item enters in the physical system. Here, we should have a creation/destruction of instances, but in
the description we fix the relationship between these two classes and we simulate this process with

the event createcomponent. . But the notation should provide a way to express that this is a dynamic

relationship between the two components.

6.10  Detection of Errors with the Wright Checking Tool

The focus of our approach was the use of Wright checking tool as a secondary tool to our
algorithms. The tool can assure us that the obtained description is valid. In case of an error
detection, while arguably one might attribute the detected problem to our specification, and not to
framework, it does point out a place where the complexity of the specification can lead to errors
that might be hard to detect otherwise. Without a precise model and effective automated analysis
tools to identify problem areas, errors could easily be introduced, undetected, into an
implementation

6.11  Use and Discovering of  Patterns in the Architectural
Description

In both algorithms we propose the discovering of architectural and design patterns during
the inference of the architectural description. We must note that we have different levels of
abstraction  with patterns (from higher to smaller scale):

⇒  Architectural Patterns associated (or not) to architectural styles: Patterns and
architectural styles are complementary mechanisms for encapsulating design expertise.
As we said previously an architectural style provides a collection of building block design
elements, rules and constraints for composing the building blocks, and tools for
analyzing and manipulating designs created in the style. Styles generally provide
guidance and analysis for building a broad class of architectures in a specific domain
whereas patterns focus on solving smaller, more specific problems within a given style
(or perhaps multiple styles) [Neb98]

⇒  Design Patterns: They are conceptual  on a smaller scale than an individual architecture
and numerous architectural patterns may be found in a single architecture. A design
pattern is similar to a domain model in the sense that they both provide general solutions
to a class of a related problems; however, the major difference is  that a pattern is
generic and will occur across many otherwise unrelated domain architectures
[MKMG96].

The studied frameworks and the inferenced description allowed us discover only a few
patterns. The detection of an architectural pattern in a framework is a difficult task  because all the
design/implementation decisions were already made and the idea of applying one was not
considered in the first design stages. The most applied  is the Layered Architectural Pattern . The
parts are separated into layers by responsibility or service, the increased complexity associated
with large applications become spread across those layers. By applying a divide-conquer approach
to complexity, the total number of connections per part can be kept reasonable. Components, in
turn, become more reusable and certainly more understandable.

Luckily we can detect an architectural pattern associated to an architectural style and
different design patterns to be joined to the generated architectural style at framework-level. The
interesting issue about the detection of design patterns is to see how they can be represented with



Chapter 6: O. O. Architectural Description Aspects: Discussion                                 91

formal languages and thus, having another way of considering them, not just only informal
solutions to particular problems.

6.12  Properties of Cohesion and Coupling in the Architectural
Description

[San97] proposes to evaluate the quality of the structure of an architecture introducing the
concept of cohesion and coupling. The cohesion of a component makes it possible to measure the
quality of its structuring. A component should aim to fulfill only one logical function or logical entity.
Thus, all the parts of a component must allow this goal. We thus calculate the degree of cohesion
of a component compared to the parts of this component which contribute to its logical function (if
every part do it, then the component will have a high degree of cohesion). In our approach, the
component are small (mapped from classes) and are not composed of other ones, but we make
the analysis of microarchitectures which comprises a set of classes that are gathered to fulfill a
task of the framework.

[San97] thus defined seven levels of cohesion. We define them and mention if they can be
analyzed in our context

"  Cohesion by coincidence: there are no relationships between the various parts of the
component, they are simply gathered in this component.

"  Logical association: the components which carry out similar operations are gathered in
only one component.

"  Temporal cohesion: all the components which are activated at the same time are
gathered. Procedural cohesion: the elements of a component constitute only one
sequence of control.

None of these kinds of cohesion appear in our description because the idea of
microarchitecture is to discover and join a set of classes related by a service that they must provide
working together. The microarchitecture is modelled with hierarchical composition [All97] of classes
where the idea is to see the microarchitecture as a black box. We have an entrypoint for the input
and an entrypoint for the output usually represented by ports of components that are used as the
interfaces of the microarchitecture.

" Cohesion of communication: all the elements of a component operate on the same input
data and produce the same output data.

This kind of cohesion does not appear in the microarchitecture because all the
components process the data producing different results, not necessarily related or of the same
type.

"  Sequential cohesion: the output of an element of the component is used in input of
another element.

This kind of cohesion is shown in the microarchitecture because the components in the
microarchitecture are connected and coordinated by the communication provided by the
connectors mostly in a sequenced way. Thus, they are data transformers in a sequential way.

" Functional cohesion: each part of the component is needed to do only one function.
This kind of cohesion is expressed in the second developed algorithm. When we classify

the classes we do it analyzing what kind of services it provides. Thus we distinguish between
processing, data, connecting, controller, coordinator, interface, service provider, information holder
or structuring components.

"  Cohesion of object: each operation offers a functionality based on the modification, the
inspection or the use of the attributes of the object.

This kind of cohesion can be seen in each component and it appears when we replace the
non-deterministic choices by the use of an abstract machine B to show that the behaviour of a
component is dependent of an internal state of the component.

Coupling, on the other hand, measures the interconnection between the various modules
of a system. It is recommended to have lowest coupling allowing a greater independence of the



   92                               Object Oriented Architectural Description of Frameworks

modules.  In this case, we can evaluate the coupling at component-level, because we will take into
account the communication between them provided by the connectors.

[San97] again identified seven levels of coupling:
"  No direct coupling: two modules are without direct coupling if they correspond to two

modules without any link.
This kind of coupling appears clearly in the description, because we only relate classes if

they have one of the three proposed relationships in the mapping. Given two classes A and B,
instances of B can be instances/class variables of A; instances of B used as parameters in one
method of A; or instances of B are connected to an instance of A by a dependency mechanism.

"  Coupling by data: the system whose information is represented internally in the
components only communicate themselves by sending elementary data.

This kind of coupling appears in the description because Wright ADL does not allow us
make inferences over structures of data. Thus, we must work with elementary data.

" Coupling by structured data: This coupling is an alternative of the coupling by data. This
time they are structures of data which are sent by a module interfaces.

As we explained previously, this kind of coupling does not appear in the description.
"  Coupling of control: it is a well-known coupling in the design of architectures. This

coupling is observed when the internal execution of a module depends on the value of a
variable called " flag " which is provided by another module.

This kind of coupling can be considered if we think that observing events in a component
are ‘flags’. Supposing this,  when that event is executed in another component (in this second
component it is an initiating event), this action shoots the starting process indicated by the
observing event.

"  External coupling: the coupling happens when modules are bound by an external
environment with the software, for example, a communication protocol.

This kind of coupling is essential but must be limited to a restricted number of modules. We
can say nothing about this kind of coupling because we focus our study to the internal parts of a
framework and we do not find a framework with any external environment.

"  Common coupling: the modules are rather independent from/to each other but have
strong interconnections by global variables.

This kind of coupling is not fullfilled by the architectural elements, because the protocols
defined in the ports of the components are related to the protocols of the roles of the connectors.
There is no independency among the components and the connectors that represents a
relationship between classes. Besides this, there is no global data.

"  Coupling by contents: this mode of coupling takes place when a module uses
information of data or control kept internally in another module.

This kind of coupling exists in our architectural description but considering that the
communication between the components is made through events and they can have parameters
as data.

The considerable advantage to have strongly coherent components and slightly coupled is
that these components are well defined and independent. That thus enables us to more easily
carry out the maintenance and the reusability of a component.

6.13  Architectural Views

The goal of a software architecture is to address each concern in order to satisfy all the
expectations of the various stakeholders involved. With respect to this goal, a software architecture
incorporates many different views of the system. These views are complementary and allow to
improve the understanding of the system showing various aspects of it [LC98]

A non-exhaustive list of the views which are more commonly developed can be found in
[GCBA95]. Among them, we just keep the views which are possible to get with our approach:



Chapter 6: O. O. Architectural Description Aspects: Discussion                                 93

⇒  Structural/topological view : this view describes the components and the connections of
the system and the topology of the connected set of components. Since this topology
may evolve dynamically, this view must show all the potential components and
connectors. This view is obvious, because a configuration of an architectural description
is a topological configuration  in Wright ADL.  The result is a topology of the classes and
its interrelationships mapped as components and connectors respectively.

⇒  Behavioural view : this view describes  the scheduling of system actions or system state
transitions. This view is reflected by coordination of events made by the connectors to
order the communication among the classes.

⇒  Growth view : this view describes maintainability, extensibility, adaptability, portability,
scalability, and product line applicability of a system. This view can be seen when the
architectural description grows through the modification/addition/grouping of components
and connectors.

6.14  Complementariness with other Techniques

In the previous sections, we enumerate different  problems and insufficiencies appeared
using the Wright ADL to get an architectural description of a framework (component): lack of
expressiveness in structural features, lack of expressiveness of timing and no possibility to express
dynamic binding or creation/destruction of components. In fact, our approach is focused in using
the formal approach given by an ADL to have a complementary technique to the existing ones. The
main idea is combine structural and behavioural software descriptions. The structure describes
how the different parts in a software system are arranged, and the behaviour of a system describes
the way in which it functions or operates.  According to [SPL98], objects are dynamic entities,
changing their state and behaviour throughout their existence. Object-oriented design models such
as UML (Unified Modelling Language) [UML], provide several diagrams for capturing the static and
dynamic aspects of a particular domain. While object structure is often simple to model , object
behaviour is extremely complex and requires numerous models to decompose the complexity.
UML includes several diagrams for capturing the dynamic aspects of behavior, including
statechart, activity, and interaction (sequence and collaboration) diagrams. The interaction
diagrams tend to be flow-oriented, depicting primarily interobject message flow (sequence
diagrams) and data flow (collaboration diagrams). The statechart and activity diagrams focus on
modeling intra-object behavior, depicting the variations of behaviour an object exhibits during its
life (statechart diagrams) and the internal operations of a particular class method or operation
(activity diagrams).

If we intend to make a parallel work between these techniques and our approach to infer
architectural description, we show different aspects that can be complemented from both sides:
informal and informal approaches. Let’s enumerate some possibilities.

The static aspects of the model can be described using the Wright ADL expressing the
classes and their relationships, but also building class hierarchies in parallel when we need to
change a class (mapped as a component) by a subclass (mapped as another component). Thus,
we avoid to lose the idea of hierarchical relationship between the classes.

The object behaviour is localized in the port of a component. In fact, it is the same set of
methods that appears in a class definition, but as they are classified in initiating/observing events
in the architectural description, we know which services are initialized by the object and which ones
the object must wait to be notified by another object to start them. Thus, we also have a way of
complementing a class definition having extra information about the methods.

The computation part of a component also gives us local information about the sequence
of messages that are executed in the methods bodies of the object. This aspect is more oriented to
intra-object information, but if we are interested to know the communication between two classes
that are not related directly, we should use collaboration diagrams. This notation offers us a way to
see a set of classes related by methods calls in a global overview. For example, the different
behaviours of  the subclasses of the UpdateStrategy class to notify the sensor when it should



   94                               Object Oriented Architectural Description of Frameworks

update its data were expressed in three different collaboration diagrams in the example shown in
the Appendix A. This is a limitation because a collaboration diagram is started by only one
message and each possible variant in one communication between two classes changes the
diagram. Anyway, this kind of diagram offers a good panorama of communication between a set of
classes.

The statechart and activity diagrams focus also on intra-object information. The different
states of an object and how they behave based on a set state are expressed in non-deterministic
choices using Wright ADL. Both techniques are complementary, one offers a visual idea and the
other one offers the formal representation of the situation.

Another description technique that can be complemented by components described with
Wright ADL is CRC Cards. In the CRC cards a class is described informally detailing its
responsibilities and its collaborators. As our approach defines a direct mapping from classes to
components/connectors, the CRC cards could add a section to represent the formal model of the
class specifying how the different responsibilities are carried out in the computation of the
architectural element.

Examples can also find a formal perspective with architectural topologies described with
Wright ADL. Examples show particular functionalities of a framework through the use of a partial
instantiation. Restricting the set of events of the involved components to the example, we can
provide the topology corresponding to the particular instantiation

Summarizing, if we are interested in a complete description of a framework with
complementary methodologies, we can consider the following viewpoints:

⇒  Global overview of the system structure: Components and Connectors
⇒  Objects with structural features : UML diagrams (e.g. Composite Pattern)
⇒  Interfaces of the objects : Port of the Components
⇒  Localized behaviour: Component Description
⇒  Relationship between two Objects  (not necessarily connected in the Wright description):

Collaboration diagrams

6.15  Summary

This chapter presents some general aspects that show the flexibility and the
complementariness of the studied approaches. We also enumerate some advantages and
disadvantages of using an ADL such as Wright: potential of the connectors, increment of
components and connectors, management of errors, lack of expressiveness in timing and
structural features, the non-possibility of expressing creation-destruction of objects and processes,
etc. Thus, we get first analysis before considering the evolution aspect. This is an important point
in which we are interested that can produce changes in the frameworks and we would like to see
the impacts in the inference architecture.



An object oriented framework is defined as a reusable design of all or part of a system that
is represented by a set of abstract classes and the way their instances interact or the skeleton of
an application that can be customized by an application developer.  The second definition
comprises the first one, because we consider that the skeleton of the application is the abstract
classes and the customization is the process of instantiation. Thus, the second definition gives the
main feature of the framework: the customization of a design and code to get different applications
in a specific domain. To get this level of a stable design and code, there was a development
process that can be summarized with the following steps [Mat96]:

•  Analysis of the problem domain
•  The first version of the framework is developed using the key abstractions found
•  One or possibly a few applications are developed based on the framework
•  Problems when using the framework in the development of the applications are captured

and solved in the next version of the framework
•  After repeating this cycle a number of times the framework has reached an acceptable

maturity level, and can be released for multiuser reuse in the organization
Following the approach of an iterative process, in chapter 5 we presented two algorithms

to get an architectural description of an object oriented framework or a framework component in
different levels of abstraction (going from a general behaviour to specific behaviour). Thus, we
obtained an “architectural vision” or an interaction architecture [Now99] that shows us how the
framework or the component can be seen in a ‘high-level’ of abstraction, with:

•  classes and interrelationships  mapped as components and connectors
•  (in the second algorithm) assigning a semantic function to the classes in the framework.

 Thus, we can have a classification of classes according to the kind of service that they
provide, and not only a set of classes without any semantic relevance. For example, Policy class is
a class which is in charged of policy access to a shared resource. In the studied model, this class
is clearly mapped as a connector.  However, not all the classes offer one single function. This
situation happens mostly in object oriented frameworks already implemented (the case study of the
first algorithm). In these cases, we adopt the idea of separating the internal state and the behaviour
of the class in component and a connector.  Thus, we focus the information on the component and
all the management of communication  in the connector.

But the requirements in the different domain applications can vary  and it is necessary to
update the framework to be able to instantiate it and cover all the new functions required. At this
level, we talk about this phase as framework evolution.  In this chapter we explain what are the
possible changes that a framework can have and how they affect to the architectural description
that we proposed previously

7.1 General Overview of the Levels of Abstraction

During all the development of this dissertation, we have found that most of the literature
considers the view shown in the figure 7.1 to speak about different levels of abstractions. This view
is the original conception of a system, where a top-down methodology was applied to build a
system. Considering this viewpoint, from one perspective software evolution can take place at
three fundamentally different abstraction levels: the implementation level, the design level, and the
architectural level. Depending on the characteristics and extent of an implementation change, it
may result in no major design changes, and thus no major architectural changes. However, it may
also result in radical design and architectural changes. Changing the software design, may result in

CChhaapptteerr   77::     EEvvoolluutt iioonn  ooff   FFrraammeewwoorrkkss



   96                               Object Oriented Architectural Description of Frameworks

no major changes. For example, if the change can be realized simply by reorganizing parts of the
old version in new version. Most likely however, a change to the design could also imply major
changes on both the architectural and implementation level. Finally, a change of architecture
typically result in major changes of the design and implementation. In very special cases, we can
imagine a change of architecture not resulting in major design and implementation changes.
However, these must be considered exceptional cases.

 
Pattern and Styles I  Pattern and Styles II  

UML OO Model I UML OO Model II 

Application I  Application II  

Architectural 
Design 

Design 

Implementation  

Figure 7.1: Software Evolution at Three Levels of Abstraction

But the problem proposed in this dissertation is that once the system was built, the
documentation of all the design decisions which can reflect the design and architectural level
(proposed by [Now99]) is expressed informally and using the line-box diagrams. Thus the changes
in the framework are very difficult to trace in the documentation. The final result is that the changes
are only made in the code, new documentation is generated and we have versioning of the
application and the documentation. Thus, detecting a change in the code implies to run tools over
different versions of the application and  compare them to show the changing parts of the
application. However, our proposal is based on a recovering an ‘architectural description’ of a built
object oriented framework based on the design and code and use it as a documentation source for
future changes . Our architectural description is very tied to the source code and so any change
will have an impact on it. Next subsection shows briefly a discussion of possible changes in a
framework. Based on them, we search  to see how to track the evolution issue, the use of rules to
reflect the changes and evaluate the quality of the proposed architectural description.

7.2 Aspects of Evolution

Using object oriented frameworks as components  and working in the software product-line
architecture and the effect of new or changed products requirements, [Mat00a]  identifies a
classification scheme of framework evolution. In fact, this proposal works in a coarser grained level
of components than one considered in this dissertation but the different features of evolution are
applied at framework level. Thus, we  show the proposed categorization and analyze how these
changes are (not) propagated in  the architectural description proposed in the previous chapter.

7.2.1 Internal reorganization

In response to new requirements, the framework may be reorganized internally without
affecting the externally visible functionality of the framework. The reason for reorganization is to
improve one or more of the quality requirements (sometimes referred to an non-functional
requirements) of the framework, e.g. flexibility, reusability or performance.

Hot spot introduction: The client of the framework has a possibility to use this new flexibility option
or rely on the original default behaviour. Introduction of a new hotspot generally improves the
flexibility quality attribute of the product.



Chapter 7: Evolution of Frameworks                                                                         97

In application frameworks, we take only into account three possibilities [FPR00]:
introduction of an abstract method in an existing class, introduction of a new class and introduction
of a set of classes (microarchitectures).

Let’s see step by step how we must change our description in each case.
Introduction of an abstract method in an existing class:

1. Transform the new method in a process
2. Detect the component which represents the class.
3. Add as parameter the method mapped as a process.
4. Adapt the protocol of the component in the ports and in the computation with the new

process. This can mean add the process in the right position in the chain of execution.
5. Change the roles of the connector that is affected by the previous change.
6. If the change is located in the first levels of description, propagate the changes in the

successive descriptions

Introduction of a new abstract class
1. Model the class as a component considering the behaviour as initiating/observing events

and transform the abstract method(s) in process(es).
2. Detect the classes  (and the respective components) affected by the relationship with

the new class.
3. Modify the connectors with the new relationships and the new protocols.
4. If necessary, modify the affected components. In some cases, the components can have

a new task based on the event of the new component.
5. If the change is located in the first levels of description, propagate the changes in the

successive descriptions
6. If we have subclasses of the affected component, we should try to test the change in the

different level of description considering this new subclass

Introduction of a new microarchitecture
In this case, we must run the first algorithm to build the new microarchitecture (including

following the suggested steps for modelling abstract methods or classes).
Following the same steps for the introduction of a new abstract class (considering all the

microarchitectures as the new class) considering which are the entry points for the
microarchitecture.

Restructuring: It may be necessary to perform some framework restructuring using refactoring
techniques [Opd92] to comply to new requirements. An example of a possible refactoring is
transforming a class hierarchy relationship into an aggregate relationship. These kinds of
transformations are behaviour preserving but result in a changed reuse interface of the framework.
Restructuring is often used for achieving better maintainability of the framework and only affects
the internal structure of the framework since the restructuring is behavior preserving.

Let’s see two of some examples of refactoring proposed in [DDN99] and how these
changes can be shown in the architectural description. Most of  them look for creation/
modification/removal of a superclass/subclasses together with a number of pull-ups or push-downs
of methods and attributes: Split into Superclass/Merge with Superclass, Split into Subclass/Merge
with Subclass, Move to other Class (Superclass, Subclass or Sibling Class), Split Method/Factor
Out Functionality

Split into Superclass
1. Detect the components which must be splitted.
2. Classify the (set of) events that must be distributed in the new three components.
3. Build the new three components with their respective protocols in the ports and the

computation.
4. Detect the original connectors of the components.
5. If necessary, build new connectors with the subset of events of the protocols.



   98                               Object Oriented Architectural Description of Frameworks

6. If the change is located in the first levels of description, propagate the changes in the
successive descriptions

Merge with Superclass
1. Detect the components which must be merged.
2. Classify the (set of) events that must be distributed in the two components, which will

have the final result.
3. Build the two components adapting their respective protocols in the ports and the

computation.
4. Detect the original connectors of the component to be removed.
5. Adapt the connectors of the new two components with the new events.
6. If the change is located in the first levels of description, propagate the changes in the

successive descriptions

Changing control flow: in cases where the order of actions in response to an event needs to be
changed, the flow of control between the objects in a framework needs to be changed.  One may
argue whether this is a change in functionality, since the same behavior is executed, although in a
different order.

This change in the architectural description is focused on the connectors, because they
coordinate the communication between the different classes mapped as components. So the
change of control flow is the change in the sequence of events in the glue of the connectors that
communicate the classes affected by this evolution issue. This aspect is not so critical, because
the propagation in the different levels of description is just only the change of a protocol in a
connector

Refining framework concepts: The new requirements may point out flaws in the framework design
such as classes that has two roles that now have to be refined further. This action will make the
framework more understandable and it may provide new hot-spots to be added to the reuse
interface. Concept refining does not affect the internal behaviour but it does change the internal
structure of the framework.

This issue can be considered as a mixture of refactoring and introduction of hotspots.

7.2.2 Changing functionality

The functionality of the framework may need to be changed. For instance, due to new
underlying hardware the way the framework interacts with the hardware needs to be adapted. The
calling interface and structure of the framework tend to remain constant, but the behavior in
response to events is changed.

Changing the internal class behaviour : This behavioural change is localized to only one class in
the framework and the class affected has no complex behavioral relationships to other classes.

This aspect just only affects the definition of a class, thus, we must change the respective
component in the architectural description, and also propagate the changes if the change is made
in the first levels of description. In spite that the definition says ‘no complex behavioral
relationships’ , the relationships of the classes are mapped on the connectors and the ports and
the roles protocols are tied in a configuration definition through the attachments. Then we must
propagate the change if some events are added or removed from the protocols definition in the
component.

Restructuring the subsystem: When extending the product family with new products, a typical
situation is where a framework needs to provide different versions of a part of its behaviour.
Assuming that no preparations were taken in the original framework design, the version-dependent
functionality will often be spread out over the framework. This requires a restructuring and



Chapter 7: Evolution of Frameworks                                                                         99

partitioning of the framework’s behavior , generally leading to a division into two subsystems,
containing version-independent and version-dependent behavior, respectively. The subsystems
are often organized in a layered or master-slave like structure.

In this case, we have a large impact in the framework because we need to restructure and
partition the complete framework to adapt them. This impact obviously affects the architectural
description too. We recommend to identify changes in microarchitectures and propagate them in
the architectural description to see gradually how the changes affect it. Another possibility is just
generate all the changes and run the algorithms again, keeping as documentation the old and the
new versions of the architectural descriptions.

7.2.3 Extending functionality

A very common type of framework evolution is the extension of the framework functionality.
Especially when adding new products to a product family, additional functionality may be required
from one or more of the reusable frameworks.

Functionality introduction: new requirements may demand the extension of the framework
functionality. If the architectural requirement only affects one framework, the situation is similar to
the traditional monolithic framework development process, which implies iterating the framework
design for achieving a new framework version [Joh91] [Mat00b]. Our approach is focused on the
architectural description of only one framework. Thus, the introduction of functionality can be seen
as the introduction of a new microarchitecture and connect it to the existing classes. If so, we must
build the architectural description of the microarchitecture and we must detect the entrypoint of the
microarchitecture and which are the components and the connectors will be connected to the new
part of the framework. Thus we must modify the protocols of the components and the connectors
to adapt the new communication with the added michroarchitecture.

Concept introduction: The introduction of new concepts in the framework causes the introduction of
new functionality. New concepts require the reorganization of the framework since new concepts
have relations to the existing concepts. Concept introduction often requires the use of earlier
mentioned techniques, e. g. concept requirement, hot-spot introduction, etc.

7.2.4 Reducing functionality

In certain cases, functionality that was developed as an integral part of the framework
functionality has to be removed from the framework. For example, one possible cause includes the
introduction of a new specialized framework that requires the functionality it provides to be
removed from the other frameworks.

Enable/disable introduction: there may be product family requirements that require the introduction
of an enable/disable mechanism in the framework. This type is evolution is not so common
compared to the rest of the types of evolution taking into  account that we work with small
frameworks. But the an enable/disable mechanism can be thought as the introduction  of a new
component that has the responsibility of manage this, or just the modification of protocols of the
components and the connectors involved in the operation or simpler, the use of boolean variables.

In all the cases we must change (or create a new component and ) adapt roles and ports
protocols to reflect the new changes.

Cutting functionality: If new requirements for a product family require the use of an additional
framework that has to collaborate with the existing framework, conflicts due to of domain overlap or
implicit assumptions about ownership of the thread of control may occur (e.g. [MB00][SBC96]).
This will make it necessary to cut functionality out of the existing framework component since it



   100                               Object Oriented Architectural Description of Frameworks

may be not possible to make necessary changes in the new framework, for instance, due to lack of
access of source code or the complexity.

Thus, to cut the functionality means the deletion of components and connectors. Thus, this
action implies that firstly, we must detect which of the components are connected to the potential-
non-existing components and check which are the events to be deleted in the affected
components, and adapt the respective protocols with the reduced set of events.

7.3 Analysis

Except in the case of ‘change of control flow’, which is a change focalized in the
connectors, the rest of the evolution aspects causes many changes in our set of architectural
descriptions (obtained with several runnings of our algorithms). If the changes  are located in the
first levels of description (general aspects) , it will also provoke a propagation in the rest of levels
(specific aspects). But it is clear that this situation happens because, at the level where are working
(close to code-level) and the size of object oriented frameworks are very small and our mapping
relates tightly a class to a combination of a component-connector. Thus, the format of a component
gives information about the class structure, the ports protocols says the functionality of the class
and the connector shows how the different classes are related and how they collaborate to fulfil the
services provided by the framework. So if we reflect a change in the structure of classes, we have
clearly a change in a set of components and connectors (resulted from the mapping). In the best
case, we localize a change in only one class and thus, a modification in component; but in the
worst case, for example refactorings, the changes at structural level are deep in the architecture
and must be propagated in all the levels of description.  If we reflect a change in the functionality of
classes, the changes are localized in the computation and glue protocols, where all the classes
behaviour is expressed.

Considering that
" We are working at a low level of abstraction (code-level)
"  An evolution in the framework changes the structure/functionality of the architectural

description proposed by the dissertation
"  We propagate the changes from the more generic to specific behaviour in the

architectural description, because we are interested in keeping all the ‘process of growth’
as a documentation of the framework, complemented by other methodologies.

an evolution analysis helps to:
⇒  Gain an overview of the system evolution
⇒  Qualify the parts of the system in terms of their stability over the versions
⇒  Identify system components which could be reused in other systems
⇒  Identify the migration of components between systems parts, and
⇒  Identify components that have appeared or disappeared over the life-cycle of the system
⇒  Isolate the different ‘regions’ of the frameworks that change very often and thus

recognise the level of criticality of the different parts of the framework.

7.4 Summary

Based on scheme about framework evolution, this chapter summarizes the different types
of changes that a framework can have. We also provide a brief analysis in each case that shows
us what kinds of changes are made in the architectural description.



8.1 Context

In the research described in this thesis we have investigated the applicability of formal
approaches of software architectures (such as Wright ADL and architectural patterns) to get an
architectural description of object oriented frameworks, and also analyze the impacts of evolution
issues in the inferred framework architecture.

To fullfil with these requirements, firstly we start to study all the features of software
architectures, architectural styles and patterns, and ADLs. Thus, we discovered that the most
systems where these concepts are applied were not concerned with the object oriented paradigm.
This means that the systems were not designed using an object oriented methodology nor
language. In this context the use of ADLs was concentrated in recovering the properties of these
systems and mapped them in an architecture. If the resulting architecture could comprise classical
architectural styles (such as pipes and filters, layers, etc), this would include the ‘added values’ of
properties of these styles.

Secondly, we investigated the characteristics of object oriented frameworks in general and
we concentrated our analysis in application and components frameworks and how the informal
documentation techniques describe what are the services provided by the frameworks and what is
required to instantiate it for some application, for example. In this field, we found different
approaches. Most of them were guided by a similar idea presented in this thesis: the combination
and complement of several artifacts of domain analysis and object oriented design to give different
views of a framework’s architecture. Among these techniques we can mention usage scenarios,
examples, patterns and contracts. But, one critical issue of these artifacts is that they do not allow
us to make any inference about the formal properties about the framework that they describe
because the semantics of the parts are lost in box-line drawings, and thus, we do not have
information about design decisions taken during the building process and use of the framework. To
get them, in the worst case, we must understand the framework at code-level.

Finally, we developed the approach presented in this dissertation. It comprises of a
mapping from Java/Smalltalk code to CSP-notation and two algorithms that allows to get an
architectural description expressed in components and connectors with Wright ADL and
architectural patterns as a complement. This work was made in three stages. The first one was an
analysis of the common points between software architectures and object oriented frameworks to
find the gaps that we had to fill to fulfill the objective. Based on the first stage, the second one
consisted in the definition of the artifacts (proposed in this thesis) and the applicability of them in
two of all the studied cases. In that, the approach was more understandable and easy to follow.
The third step was comprised of a posterior analysis of the strengths and weaknesses of our
approach and also a discussion of impacts of change when the framework evolves.

Following we present the conclusions of our approach and some open research issues that
were generated during the development of this work.

CChhaapptteerr   88::     CCoonncc lluuss iioonnss   aanndd  FFuuttuurree
RR ee ss ee aa rr cc hh



   102                               Object Oriented Architectural Description of Frameworks

8.2 Conclusions

The lack of established rules to define how we can inference an architecture from an
application in general and the treatment of software architectures in a ‘high level of abstraction’
made us to define  the constraints of  our work context. Therefore, we restrict the use of the term
architecture to the semantic structure of an application, a static notion of software architecture, and
we consider that what was important was to understand how the classes in a framework were
related structurally and what the consequences of this structure are on the software system.
Classes seldom perform useful behaviour by themselves; they often contribute to a given function
by interacting with other objects. We focus our work on a lowest or base-level notion of software
architecture that reflects the semantic structure of a software system: the code-level combined with
information about design-level in object oriented frameworks.

Starting from the code and design of an object oriented framework where the information
about semantic structure was almost hidden, we get an architectural description with the following
characteristics:

"  The classes mapped as a combination of a component and a connector allows us to
obtain two models: units of computation (components) and units of communication
(connectors). Thus, we separate and localize the internal state of the class from the
information about which classes are connected with.

"  The model of communication (set of connectors) provides us all the behaviour that
appeared in the framework and makes us explicit the ordering method calls and the
protocol of interaction between the different classes.

"  A classification of the messages inside a class: Using the concept of initiating and
observing events of Wright ADL, we were able to know which messages were
dependent only of the class and which ones were called by other classes.

" We provide levels of abstraction that gives us the architecture from a generic to specific
view of the different parts of the framework.

"  The detection of microarchitectures encapsulating them in a hierarchical description
provided by Wright ADL.

Through the use of architectural styles we expressed the fixed parts of a framework
(hotspots). Therefore we got a formal model that characterizes all the applications resulting from
the framework instantiation.

About the mapping, we obtained a language-independent definition to transform statements
to CSP-notation. The considered statements are also present in procedure oriented languages, not
only in object-oriented ones, thus it can be useful to infer information about application generated
in those languages.

The run of the algorithm getting a sequence of architectural description gave us a parameter
to measure different qualities of the framework.

One of the most important points is that the developed description technique can be used as
a complement with existing ones, because this is a way of providing the ‘bridge’ between informal
and formal approaches.

However, during the use of Wright ADL as our main tool we found different problems:
"  The static nature of this language made us difficult to add a management of errors. To

do this we must change the interaction protocol of the components and connectors and
we lose the expressiveness of the protocols because the behaviour and the errors
messages are mixed

" The hierarchical relationship between two classes is not explicit in the description. If we
change a component from one level of description to another one, and the latter
component represented a subclass of the class mapped as the first component, this
relationship is lost.

"  The dynamic binding is expressed as two possibilities using non-deterministic choice.
This fact is related as the absence of  this ability in the ADL.



Chapter 8: Conclusions and Future Work
103

8.3 Future Research

An automatic tool to make the mapping and to run the algorithms would help us to validate
this approach and to evaluate object oriented framework larger than we presented here.

An analysis of the information that can provides us the test of formal properties given by
Wright ADL. In fact, the verification of the formal properties using the Wright tool was only used as
a way of verification if the built model was a valid description. But, we think that it is useful to study
what other information we can obtain from this verification.

The possibility of working in a higher level using all the architecture obtained through the
use of algorithms, focusing on the actual tendency of software.

We do not handle important issues such as performance, reliability, and security. For many
frameworks finding notations that expose such properties can be useful.

The formal model is essentially flat. To come up with this problem, our model we propose
to work in different dimensions and levels of description (from general to specific behaviour). It
would have been much nicer to be able to mirror the inheritance structure in the architectural
specification.

A formal representation of design patterns: in the case of component framework proposed
by [CTN97],  they apply a good principle of composition. They got adaptable components as black-
box entities that provide a solution to coordination problems. One of the components encapsulates
the Acceptor-Connector Pattern which provides a communication service. Based on this idea, it is
interesting to explore which design patterns can be encapsulated as a component with plugs and
we could generate a formal representation of it. Thus we would have not only the solution offered
by the design pattern but also a formal representation with classical properties checked by the
Wright tool.

Finally, it would be interesting to extend this work with ADL which allows dynamic
architectures (where components appear and disappear, or where the topology of a configuration
changes during an execution): such as PICCOLA, - π -Space, dynamic Wright. Some languages
may include all potential elements in the system description, and then ignore those that do not
currently exist. Others , however, describe each possible configuration as a different architecture

  



References

[AAG93] G. D. Abowd, R. Allen, and D. Garlan. Using style to understand descriptions of software
architectures. ACM SIGSOFT Software Engineering Notes, 18(5):9-20, December 1993

[Abr96] J-R. Abrial. The B Book. Cambridge University Press, 1996
[Ada95] D. Adair. Building Object-Oriented Frameworks, AIXpert, February-May 1995
[AG94] R. Allen and D. Garlan. Formalizing architectural connection. In Proceedings 16th

International Conference on Software Engineering, pp. 71-80. IEEE Computer Society
Press / ACM Press, 1994

[AG96] R. Allen and D. Garlan. A Case Study in Architectural Modelling: The AEGIS System. In
Proceedings of 8th International Conference on Software Specification and Design
(IWSSD-8), March 1996

[AGI98] R. Allen, D. Garlan, and J. Ivers. Formal modeling and analysis of the HLA component
integration standard. ACM SIGSOFT Software Engineering Notes, 23(6): 70-79,
November 1998. Proceedings of the ACM SIGSOFT Sixth International Symposium on
the Foundations of Software Engineering

[Ale76] C. Alexander. The Timeless Way of Building. New York: Oxford University Press. 1976.
[All97] R. Allen. A Formal Approach to Software Architecture. Ph. D. Thesis, School of

Computer Science, Carnegie Mellon University, Pittsburgh, May 1997
[And94] G. Andert. Object Frameworks in the Taligent OS. Proceedings of Compcon 94, IEEE

CS Press. Los Alamitos. California. 1994
[Ber98] L. Bergmans.  A Notation For Describing Conceptual Software Architectures. In

Proceedings of the First Nordic Software Architecture Workshop (
NOSA'98). University of Karlskrona/Ronneby.  August, 1998

[BGK+97] D. Baumer , G. Gryczan, R. Knol, C. Lilienthal, D. Riehle and H. Zullinghoven
Communications of the ACM, 40(10): 52-59, October 1997

[BJ94] K. Beck, R. Johnson. Patterns generate Architectures. In Proceedings of the 8th

European Conference on Object Oriented Programming. Bologna. Italy. 1994
[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland, and M. Stal. A System of

Patterns – Pattern Oriented Software Architecture. Wiley, 1996
[Bos00] J. Bosch. Measurements Systems Frameworks. In Domain Specific Application

Frameworks: Frameworks Experience by Industry. M. Fayad, R. Johnson editors, Wiley
Press, 2000

[BR96] T. Biggerstaff and C. Richter. Reusability framework, assessment , and directions. IEEE
Software 4(2): 41-49, March 1996

[Bro00] L. Bross. Box Structures as an ADL. Master Thesis to appear. University of South
Florida, 2000. http://home.tampabay.rr.com/adls/archben.html

[CDK94] G. Coulouris, J. Dollimore and Tim Kindberg. Distributed Systems Concepts and Design.
Addison Wesley, 1994

[CES85] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite state
concurrent systems using temporal logic specifications. Technical report, Austin, 1985

[CTN97] J. C. Cruz, S. Tichelaar and O. Nierstrasz. A Coordination Component Framework for
Open Systems. In Proceedings of COORDINATION ’97, 1997

[Deu89] L . P. Deutsch. Design Reuse and Frameworks in the Smalltalk-80 system. In Software
Resusability, Vol II, T. J. Biggerstaff and A. J. Perlis, editors . ACM Press, 1989

[DDN99] S. Demeyer, S. Ducasse and O. Niertrasz. Finding Refactoring via Change Metrics.
Proceedings of OOPSLA 99. 1999

[DMNS97] S. Demeyer, T. D. Meijler, O. Nierstrasz, and P. Steyaert. Design guidelines for
tailorable frameworks. Communications of the ACM, 40(10): 60-64, October 1997

[FPR00] M. Fontoura, W. Pree and B. Lumpe. UML-F: A Modeling Language for Object-Oriented
Frameworks. In Lecture Notes in Computer Science Nr. 1850 Proceedings of ECOOP
2000 Elisa Bertino (ed.) Springer-Verlag. June 2000.

[FSJ00] M. Fayad, D. Schmidt, and R. Johnson. Application Frameworks. In Building Application



References                                                                                                                   105

Frameworks: Object Oriented Foundations of Framework Design. M. Fayad, D. Schmidt,
and R. Johnson (editors). Wiley Press. 2000

[GA094] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting style in architectural design
environments. In Proceedings of SIGSOFT ’94: The Second ACM SIGSOFT
Symposium 1994 on the Foundations of Software Engineering, December 1994

[GAO95] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: Why reuse is so hard.
IEEE Software, 12(6): 17-26, November 1995

[Gar95] D. Garlan. What is Style ? In Proc. First International Workshop Software Architecture,
April 1995

[GCBA95] C. Gacek, B. Clark, B. Boehm, and A. Abd-AllAh. On the definition of software system
architecture. In Proceedings of the 1st International Workshop on Architecture for
Software Systems, pp. 85-94, Seattle, WA, April 1995

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Design. Addison Wesley, 1995

[GMW97] D. Garlan, R. Monroe, D. Wile: ACME, An Architecture Description Interchange
Language,  White-paper, 1997

[Gol84] A. Goldberg. Smalltalk-80: The Interactive Programming Environment. Reading MA:
Addison-Wesley. 1984

[GP94] D. Garlan and D. Perry. Software architecture: Practice, potential and pitfalls. In
Proceedings: 16th International Conference on Software Engineering, pp. 363-364. IEEE
Computer Society Press / ACM Press, 1994

[GP95] D. Garlan and Dewayne Perry. Introduction to the Special Issue on Software
Architecture. IEEE Transactions on Software Engineering, 21(4): 269-274, April 1995

[GS92] D. Garlan and M. Shaw. An introduction to software architecture. In Advances in
Software Engineering and Knowledge Engineering, pp. 1-40, V. Ambriola and G. Tortora
Editors. World Scientific Publishing Co. , 1992

[HJE95] H. Hueni , R. Johnson and R. Engel. A Framework for Network Protocol Software.
Proceedings of OOPSLA 95, Austin, Texas. October 1995

[Hoa85] C. A. R. Hoare. Communicating Sequential Programming. Prentice Hall, 1991
[Hol90] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1990
[HR94] F. Hayes-Roth. Architecture-based acquisition and development of software: Guidelines

and recommendations from the ARPA domain-specific software architecture (DSSA)
program. Technical Report, Teknowledge Federal Systems, Palo Alto, CA, October
1994

[Joh88] R. Johnson, B. Foote. Designing Reusable Classes, Journal of Object-Oriented
Programming, Vol .1, No. 2, June 1992

[Joh91] R. Johnson. Reusing Object Oriented Design, University of Illinois, Technical Report
UIUCDCS 91-1696, 1991

[Joh92] R. Johnson. Documenting frameworks using patterns. ACM SIGSOFT Notices, 27(10):
63-76, October 1992. OOPSLA ’92 Proceedings, Andreas Paepcke (editor)

[Joh93] R. Johnson. How to Design Frameworks, Tutorial Notes, 8th Conference on Object-
Oriented Programming Systems, Languages and Applications, Washington, USA, 1993

[KP88] G. Krasner and S. Pope. A cookbook for using the MVC user interface paradigm in
Smalltalk-80. Journal of Objecrt Oriented Programming 1(3):26-49. September 1988

[LC98] P. Lalanda and S. Cherki. Object oriented methods and software architectures. Position
Paper in ECOOP 98, Workshop on Object Oriented Software Architecture. 1998

[LK94] R. Lajoie and R. Keller. Design and reuse in object-oriented frameworks: Patterns,
contracts, and motifs in concert. In Proceedings of the 62nd Congress of the Association
Canadienne Française pour l’Avancement des Sciences (ACFAS), Montreal, Canada,
May 1994.

[LKA+95] D. Luckham, J. Kenney, L. Augustin, J. Vera, D. Bryan, and W. Mann. Specification and
analysis of system architecture using Rapide. IEEE Transactions on Software
Engineering, 21(4): 336-355, April 1995

[LT89] N. A. Lynch and M. R. Tuttle. An introduction to input/output automata. CWI Quarterly,
2(3): 219-246, 1989



   106                               Object Oriented Architectural Description of Frameworks

[LV95] D. Luckham and J. Vera. An event-based architecture definition language. IEEE
Transactions on Software Engineering, 21(9): 717-734, September 1995

[Mat96] M. Mattson. Object Oriented Frameworks: a survey of methodological issues. Licentiate
Thesis, Department of Computer Science, Lund University,1996

[Mac00] A. Maccari. Architectural Evolution of product families. Position Paper in ECOOP 2000
Workshop on Architectural Evolution. Cannes . 2000

[Matt00a] M. Mattsson. Object oriented Frameworks as Components – Experiences of Framework
Evolution. Position Paper in ECOOP 2000 Workshop on Architectural Evolution. Cannes
. 2000

[Matt00b] M. Mattson. Evolution and Composition of Object-Oriented Frameworks. PhD Thesis.
Department of Software Engineering and Computer Science. University of
Karlskrona/Ronneby. 2000

[MB00] M. Mattsson and J. Bosch. Object oriented frameworks:  Composition problems, causes
and, solutions. In Building Application Frameworks: Object-Oriented Foundations of
Framework Design, pp. 467-487, M. Fayad, D. Schmidt, R. Johnson editors, Wiley
Press, 2000

[MDEK95] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software
architectures, Lecture Notes in Computer Science, 989, 1995

[Men00] K. Mens. Automating architectural conformance checking by means of logic meta
programming. PhD Thesis. Vrije Universiteit Brussel. June 2000

[MK96] J. Magee and J. Kramer. Dynamic structure in software architecture. In Proceedings of
4th ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE 4),
SEN, Vol.21, No.6, pp. 3-14, New York, October 1996. ACM Press

[MKMG96] R. T. Monroe, D. Kompanek, R. Melton, and D. Garlan. Stylized Architecture, Design
Patterns, and Objects. IEEE Software, Jan 1997, pp. 43-52

[MN95] T. D. Meijler and O. Nierstrasz, Beyond Objects: Components, Cooperative Information
Systems: Current Trends and Directions, M.P. Papazoglou and G. Schlageter (Eds.), pp.
49-78, Academic Press, November 1995

[MORT96] N. Medvidovic, P. Oreizy, J. Robbins, and R. Taylor. Using object-oriented typing to
support architectural design in the C2 style. ACM SIGSOFT Software Engineering
Notes, 21(6): 24-32, November 1996

[MQR95] M. Moriconi, X. Qian, and R. A. Riemenschneider. Correct architecture refinement. IEEE
Transactions on Software Engineering, 21(4): 356-372, April 1995

[MT97] N. Medvidovic and R. Taylor. A framework for classifying and comparing architecture
description languages. In Proceedings of the Sixth European Software Engineering
Conference (ESEC/FSE 97), pp. 60-76, Lecture Notes in Computer Science Nr. 1013,
Springer-Verlag, September 1997

[MTW96] N. Medvidovic, R. N.Taylor, and E. J. Whitehead, Jr. Formal modeling of software
architectures at multiple levels of abstraction. In Proceedings of the California Software
Symposium, pp. 28-40, 1996

[Neb98] R. Nebbe. Semantic Structure: A Basis for Software Architecture. In Proceedings of the
ECOOP ’98 Workshop on Object-Oriented Software Architectures, Lecture Notes in
Computer Science Nr. 1543, J. Bosch and S. Demeyer editors. Springer-Verlag, 1998

[Now99] P. Nowack. Interacting Components – A Conceptual Architecture Model. Position Paper
in ECOOP 99 Workshop on Architectural Evolution. Lisbon . 1999

[Opd92] W. F. Opdyke. Refactoring Object-Oriented Frameworks. PhD Thesis. University of
Illinois at Urbana-Champaign. 1992

[Pet77] J. L. Peterson. Petri nets. ACM Computing Surveys, 9(3): 223-252, September 1977.
[Pre95] W. Pree. Design Patterns for Object-Oriented Software Development. Reading, MA:

Addision-Wesley, 1995
[PW92] D. E. Perry and A. L. Wolf. Foundations for the study of software architecture. ACM

SIGSOFT Software Engineering Notes, 17(4): 40-52, October 1992
[Ric98] T. Richner. Describing framework architectures: more than Design Patterns. In

Proceedings of the ECOOP ’98 Workshop on Object-Oriented Software Architectures,
Lecture Notes in Computer Science Nr. 1543, J. Bosch and S. Demeyer editors.



References                                                                                                                   107

Springer-Verlag, 1998
[RJFC94] F. C. Ribeiro Justo and P. R. Freire Cunha. Deadlock-free configuration programming. In

Proceedings of the 2nd International Workshop on Configurable Distributed Systems,
March 1994

[San97] R. Sanlaville. Description d’architecture logicielles: Utilisation du formalisme Wright  pour
l’interconnexion de machines abstraites B. Report for DEA d’Informatique: Systems et
Communications. Laboratoire LSR (Logiciels, Systèmes, Réseaux). Université Joseph
Fourier. Grenoble. France. 1997

[Sch95] H. Scmid. Creating the Architecture of a Manufacturing Framework by Design Patterns.
In Proceedings of the 10th Conference on Object-Oriented Programming Systems,
Languages and Applications Conference, Austin, USA, 1995

[SBC96] S. Sparks, K. Benner, C. Faris. Managing Object-Oriented Framework Reuse. IEEE
Computer. pp. 53-61. September, 1996

[SDK+95] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik. Abstractions
for software and architecture and tools to support them. IEEE Transactions on Software
Engineering, April 1995

[SG96] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.
Prentice-Hall, 1996

[SG99] J. P. Sousa and D. Garlan. Formal modeling of the enterprise JavaBeans component
integration framework. In Proceedings of FM ’99, Lecture Notes in Computer Science
1079, Toulose, France, September 1999. Springer-Verlag

[SPL98] L. Seiter, J. Palsberg, K. Lieberherr: Evolution of Object Behavior Using Context
Relations. IEEE Transactions on Software Engineering, 24(1): pp. 79-92 (1998)

[Szy98] C. Szyperski. Component Software: Beyond Ojbect-Oriented Programming. Addison-
Wesley and ACM Press. New York, NY, 1998

[Tal94] Taligent Inc. Building Object-Oriented Frameworks. A Taligent White Paper, 1994
[TLPD95] A. Terry, R. London, G. Papanogopoulos, and M. Devito. The ARDEC/Teknowledge

architecture description language. Technical report, Teknowledge Federal Systems,
1995

[Tra93] W. Tracz. Parameterized programming in LILEANNA.  Proceedings of the ACM/SIGAPP
Symposium on Applied Computing, pp. 77-86, E. Keaton, K. M. George, H. Berghel, and
G. Hedrick editors, Indianapolis, February 1993, ACM Press.

[UML] Rational Rose. UML Notation Guide Version 1.1. September 1997.
http://www.rational.com/UML

[Ves96] S. Vestal. MetaH Programmer’s manual, 1996
[WBJ90] R. Wirfs-Brock , and R. Johnson. Surveying current research in object-oriented design.

Communications of the ACM 33(9): 104-124, 1990



Appendix A

This appendix shows a complete analysis of the Application of Wright Architectural
Description Language to describe a Framework. The objective is to see an step-by-step process of
how to get an architectural description using this ADL

BRIEF DESCRIPTION OF THE MEASUREMENT SYSTEMS

Measurement systems are a class of systems to measure the relevant values of a process
or product. It is used for quality control of parts entering production or of produced products that
can then be used to separate acceptable from unacceptable items to categorize the products in
quality categories.

A measurement system consists of more than sensors and actuators. A typical
measurement cycle starts with a trigger, indicating that a product, or a measurement item, is
entering the system. The first step after the trigger is the data collection phase performed by the
sensors. The sensors measure the relevant variables of the measurment item. The second step is
the analysis phase, during which the data from the sensors is collected in a central representation
and transformed until it appears in a form in which it can be compared to the ideal values. Based
on this comparison, certain discrepancies can be deduced, which in turn, lead to a classification of
the measurement item and is used to perform associated actions, such as rejecting the item, which
causes the actuators to remove the item from the conveyer belt and put it in a separate store, or to
print the classification on the item so that it can be automatically recognized at a larger stage.

One of the requirements for the analysis phase is that the way the transformation takes
place, the characteristics on which each classification should be flexible and easily adaptable
during system construction, but also, to some extent during the actual system operation.

ARCHITECTURE OF THE SYSTEM

[Bos00] identifies five entities that communicate with each other to achieve the required
functionality
•  The trigger triggers the abstract factory when a physical item enters the system
•  The abstract factory creates representation of the physical object in the software, that is, the

measurement item.
•  The measurement item requests the sensor to measure the physical object
•  The sensor sends back the result to the measurement item that stores the results
•  After collecting the required data, the measurement item compares the measured values with

the ideal values.
•  The measurment item sends a message to the actuator requesting the actuation appropriate

for the measured data.

The necessary details about the design and the implementation of the framework will be
described later in order to understand the different decisions made in the architecture description.

After a first analysis made starting from the design documents [Bos00], it is possible to
identify the following components: Trigger, Item Factory, Measurement Item, Measurement Values,
Sensor and Actuator. We identified the same entities as the author, but we added also the
Measurement Value because this component has an active interaction with Measurement Item.

So far, the described components are the main part of the Measurement Systems
software, because in the most of the systems, a substantial part is hardware, since the system is
connected to the real world through a number of sensors and actuators.Then we added the
following components Physical Trigger, Physical Sensor, Physical Actuator

The figure 1 shows the studied architecture



References                                                                                                                   109

FIRST LEVEL

In this proposal, if the component A communicates with the component B through the
event m, one of the ports of the A will be called as B. Thus, in some way, we keep close to the
implementation, because if an event in the computation has the following format

B.m is similar to a structure object message
B.m!x is similar to a structure object message (parameters)
B.m?x is similar to a structure x _ object message
B.m!x?y is similar to a structure y _ object message (parameters)

About the connectors roles, we will use the classnames  that are connected by the
connector

ANALYSIS

Based on the previous ideas, we will start an analysis of all the architecture following the
process and identifying the participants and their interactions.

1. The trigger triggers the abstract factory when a physical item enters the system

Components : Physical Trigger, Trigger and the Abstract Factory.
Action: When a physical item enters the system, the physical trigger detects the entry and sends a
signal to the trigger in the system. Then, the trigger triggers the abstract factory.

Component C_Physical_Trigger
Port Out = T_Trigger_Out

Computation = triggerOut.  → Computation _ closeOut.  → §

Component C_Trigger
Port In = T_Trigger_In
Port Item_Factory = T_Trigger_Out_

Computation = In.trigger → triggerFactoryItem ._  → Computation

_ In.close → closeFactoryItem ._  → §

Component C_Item_Factory

CCoommppoonneennttss   SSppeecc ii ff ii ccaa tt iioonn

Sensor

Actuator

Measurement
Item

Abstract
Factory

Trigger

1
6

5

4

3
2



   110                               Object Oriented Architectural Description of Frameworks

Port Trigger = T_Trigger_In
…
Computation =  Trigger.trigger → …

            _ Trigger.close → …

Connectors Specification

C_PhysicalTrigger →→  C_Trigger and C_Trigger →→  C_Item Factory uses the same connector

Connector CN_Triggers
Port PTrigger = T_Trigger_Out
Port Trigger = T_Trigger_In

Glue = PTrigger.trigger → triggerTrigger. → Glue

  PTrigger.close → closeTrigger. → §

Observation: Physical Trigger and Trigger have similar behaviours, but there is one little difference
given in the non-determinisc or determinisc choices of close event. In Physical Trigger is non-
determinisc, because when there are no more items in the control process, this component can
decide to finish the software execution. The Trigger must wait the notification of closing the system
from the Physical Trigger, and thus to notify the rest of the components.

2. The abstract factory creates representation of the physical object in the software, that
is, the measurement item.

In the design [Bos00], the Item Factory incorporates  both the Abstract Factory and the
Prototype design patterns [GHVJ95] and it is responsible for instantiating instances of class
Measurement Item whenever it receives a trigger event, to configure these instances and to
activate each instance by providing it with a separate process or invoking its start method.

Components: Item Factory and Measurement Item
Action: When the Item Factory is notified by the Trigger, the Item Factory starts a new
Measurement Item choosing between if the measurement item will (or not) be in calibration state.

Components Specification

Component C_Item_Factory
Port Trigger = T_Trigger_In
Port Measurement_Item =  T_CalibrationState_Out 
Computation = Trigger.trigger →

( calibrateItemtMeasuremen ._ → startItemtMeasuremen ._ → Computation

_ normalItemtMeasuremen ._  → startItemtMeasuremen ._  → Computation

           _ Trigger.close → closeItemtMeasuremen ._  → §

Component C_Measurement_Item
Port Item_Factory = T_CalibrationState_In

 . . . . . .
Computation = ItemFactory.calibrate → Item_Factory.start → . . . .

          Item.Factory.normal → Item_Factory.start → . . .
         _ In.close → . . .



References                                                                                                                   111

Item Factory  →→  Measurement Item

Connector CN_ToMI
Role IF = T_Calibration_Out
Role MI = T_Calibration_In

Glue = (IF.calibrate  → calibrateMI.     IF.normal → normalMI. )

→ IF.start → startMI.  → Glue

_ IF.close → closeMI.  → §

Obervation : In the Computation of C_Item_Factory, there is a non-deterministic choice between
two events CALIBRATE and NORMAL and this is because of the class structure of Item Factory
contains an instance of MeasurementItem and a state variable indicating whether the system is in
calibration mode or in normal operation [Bos00]. The state is initialized in the Item Factory, thus,
we can think that the choice between the two different modes of operation has to be made by itself.

3. The measurement item requests the sensor to measure the physical object

The measurement item is the object that contains the data collected from the sensors concerning
the physical measurement item and the Measurement Value represents one aspect of the physical
measurement item that is used by the system [Bos00]. Thus, the measurement item has a
collection of measurements values, and these last ones represent the data of the measurement
item.

Components: Measurement Item, Measurement Values and Sensor
Action: When the measurement item requests the sensor(s) to measure the physical object, in fact,
this action is forwarded to the measurement values of the measurement item, and these
components will get the value from the connected sensors. In this stage, the calibration/normal
state is not important, so in both states the calculation phase is made.

Components Specification

Component C_Measurement_Item
Port Item_Factory = T_CalibrationState_In
Port MValues = T_Calculation_Out
. . . . . .
Computation = ItemFactory.calibrate → Item_Factory.start → Calculate → . . .

 Item.Factory.normal → Item_Factory.start → Calculate → . . .

_ In.close → closeMValues.   → . . .

where Calculate = ncalculatioperformMValues _.

Component C_MeasurementValue
Port Measurement_Item =  T_Calculation_In
Port Sensors = T_Measure_Out

Computation = Measurement_Item.perform_calculation → valuegetSensors _.  → . . . . .

_ Measurement_Item.close → closeSensors. → §

Component C_Sensor
Port Measurement _Item = T_Measure_In

CCoonnnneecc ttoorrss   SSppeecc ii ff ii ccaa tt iioonn



   112                               Object Oriented Architectural Description of Frameworks

. . . . .
Computation = Measurement_Item.get_value → . . . . .
               _ Measurement_Item.close → . . . . .

Connectors Specification

Measurement Item  →→  Measurement Values

Connector CN_ ToMV (numMvs: 1..)
Role MI = T_Calculation_Out
Role MV1..numMvs = T_Calculation_In
Glue = MI.perform_calculation

→ numMvsi ..1:∀  _ ncalculatioperformMVi _. → Glue

. . .

_ MI.close → numMvsi ..1:∀  _ closeMVi . →  §

Measurement Values  →→  Sensors

Connector CN_ToSensor (numSs:1..)
Role MV = T_Measure_Out
Role Sensors1.. numSs = T_Measure_In

Glue = MV.get_value → numSsi ..1:∀  _ valuegetSensorsi _.  →  . . .

_ MV.close → numSsi ..1:∀  _ closeSensorsi .  → §

4. The sensor sends back the result to the measurement item that stores the results

The Sensor is the software representation of a hardware device that meaures one particular
variable of the item in question. The sensor is responsible for maintaining an accurate model of the
ahardware sensor. To achieve this, the sensor communicates with the hardware sensor. The way
the sensor updates itself with the data in the physical sensor can vary, depending on the sensor
type and the application.

Components: Measurement Values, Sensor and Physical Sensor
Action: Following from the previous step, the sensor must send the measured value to the
measurement item.

Components Specification

Component C_MeasurementValue
Port Measurement_Item =  T_Calculation_In
Port Sensors = T_Measure_Out
Computation = Measurement_Item.perform_calculation

→ valuegetSensors _.  → Sensors.receive?val  → Computation

. . . . .

_ Measurement_Item.close → closeSensors.  → §

Component C_Sensor
Port Measurement _Item = T_Measure_In
Port Physical_Sensor  = T_Output_Input
Computation = Measurement_Item.get_value →

( valsendItemtMeasuremen !._  →  Computation

_ askSensorPhysical ._  → Physical_Sensor.receive?result →



References                                                                                                                   113

 resultsendItemtMeasuremen !._  →  Computation )

_ askSensorPhysical ._  →
Physical_Sensor.receive?result →  Computation

_ Measurement_Item.close → closeSensorPhysical ._ → §

Component C_Physical_Sensor
Port Sensor = T_InputOutput

Computation = Sensor.receive → )(!. valmeasuresendSensor  → Computation

_ Sensor.close → §

Connectors Specification

Measurement Value  →→  Sensor

Connector CN_ToSensor (numSs: 1..n)
Role MV = T_Measure_Out
Role Sensors1..numSs = T_Measure_In

Glue = MV.get_value → numSsi ..1:∀ _ valuegetSensorsi _.  →

  numSsi ..1:∀  _ Sensorsi.send?val →  process_values → valreceiveMV !.  → Glue

  MV.close → numSsi ..1:∀ _ closeSensorsi .  → §

Physical Sensor →→  Sensor

Connector CN_Sensors
Role Sensor = T_Output_Input
Role PSensor =  T_Input_Output

Glue = Sensor.ask → receivePSensor.  → PSensor.send?result

→ resultreceiveSensor !.  → Glue

_ Sensor.close  → closePSensor.  → §

Observation : Firstly, it is supposed that the sensor stores the values sent by the physical sensor.
We know that there is no way to store internal state of the components with a Wright description.
In the Component C_Sensor, the behaviour is given by different non-determinisc choices. The first
one is given by the event ASK and the second one is when it has to return the measured value of
an item aspect. As we explained before, the sensor updates itself, and this can be made for
example, after a time interval the sensor updates its value asking the physical sensor, or when
there was a change in the physical item, the physical sensor notifies the changed value to the
sensor. Another way of updating is when it is required by the client of the sensor, in this case the
measurement item. Thus, let’s make a small analysis of the given non-determinisc choices.  The
first one is given by the need of updating the value asking the physical sensor (because of time
interval). The second one is given when the measurement value ask the measured value. In this
case, the sensor can send the store value, or ask the physical sensor to update the value and send
it.

5. After collecting the required data, the measurement item compares the measured values
with the ideal values.



   114                               Object Oriented Architectural Description of Frameworks

Each measurement value contains a set value representing the correct value, a measured value
representing the value measured at the current physical item, and a compare method describing
how to interpret differences between the measured and set values

Components: Measurement Item, Measurement Values
Action: Based on the obtained data, in normal state of the system, the measurement item must
decide if the physical item is acceptable or not  in the production process. This is done comparing
the measured values with the ideal ones and is performed by each measurement values because
they keep the ideal and the measured values. Thus the process of comparison is forwarded to
each measurement value, and if all answer positively, the item is acceptable, if not, the item is not
acceptable.

Components Specification

Component C_Measurement_Item
Port Item_Factory = T_CalibrationState_In
Port MValues = T_Calculation_Out

. . . . . .
Computation = ItemFactory.calibrate → Item_Factory.start → Calculate → . . . .

 Item.Factory.normal → Item_Factory.start → Calculate
→ Compare → Computation

_ In.close → closeMValues.  →  . . . . .

where Calculate = ncalculatioperformMValues _.

Compare =  compareMValues. →
MValues.acceptable _ MValues.non_acceptable → . . . . .

Component C_MeasurementValue
Port Measurement_Item =  T_Calculation_In
Port Sensors = T_Measure_Out

Computation = Measurement_Item.perform_calculation → valuegetSensors _.

→ Sensors.receive?val  → Computation
. . . .
_ Measurement_Item.compare →
 ( acceptableItemtMeasuremen ._  → Computation

_ acceptablenonItemtMeasuremen _._  → Computation )

_ Measurement_Item.close → closeSensors.  → §

Connectors Specification

Measurement Item  →→   Measurement Values

Connector CN_ ToMV (numMvs: 1..n)
Role MI = T_Calculation_Out
Role MV1..numMvs = T_Calculation_In
Glue = MI.perform_calculation

→ numMvsi ..1:∀  _ ncalculatioperformMVi _.  → Glue

. . . . .



References                                                                                                                   115

_ MI.compare → numMvsi ..1:∀ _ compareMVi .  →
( numMvsi ..1:∀  _ MVi.acceptable → Glue

 numMvsi ..1:∃ _ MVi.non_acceptable → Glue )

 MI.close → numMvsi ..1:∀ _ closeMVi .  → §

Observation: As we said in the previous step, it is also supposed that the measurement value
keeps the last measured value and we explained that this was not possible. Thus, when the
measurement value receives the event of comparing, the decision of acceptability is described as
non-deterministic because in the actual description we do not have elements to evaluate this
condition.

6. The measurement item sends a message to the actuator requesting the actuation
appropriate for the measured data.

Components: Measurement Item, Measurement Values, Actuators and Physical Actuators
Action: In the normal state of the system, if the item is qualified as non-acceptablee, the actuators
must work. So the measurement item asks the actuators to work. But in calibration state, the
measurement Item asks the calibration to the measurement values themselves. This process
consists
in storing the real measured values as ideal values

Components Specification

Component C_Measurement_Item
Port Item_Factory = T_CalibrationState_In
Port MValues = T_Calculation_Out
Port Actuators = T_Actuate_Out
Computation = ItemFactory.calibrate → Item_Factory.start

→ Calculate → calibrateMValues.  → Computation
 Item.Factory.normal → Item_Factory.start

 → Calculate → Compare → Computation

_ In.close → closeMValues.  → closeActuators.   → §

where Calculate = ncalculatioperformMValues _.

Compare =  compareMValues.

→ MValues.acceptable _ MValues.non_acceptable)

→ actuateActuators.

Component C_MeasurementValue
Port Measurement_Item =  T_Calculation_In
Port Sensors = T_Measure_Out

Computation = Measurement_Item.perform_calculation → valuegetSensors _.

 → Sensorsi.receive?val  → Computation
 Measurement_Item.calibrate →  Computation

_ Measurement_Item.compare →
 ( acceptableItemtMeasuremen ._  → Computation

_ acceptablenonItemtMeasuremen _._ → Computation )

_ Measurement_Item.close → closeSensors.  → §



   116                               Object Oriented Architectural Description of Frameworks

Component C_Physical_Actuator
Port Actuator = T_Signal_In
Computation = Actuator.receive → actuate → Computation _ Actuator.close → §

Component C_Actuator
Port Measurement_Item =  T_Actuate_In
Port Physical_Actuator = T_Signal_Out
Computation = Measurement_Item.actuate

→ startActuatorPhysical ._ → Computation

_ Measurement_Item.close →  closeActuatorPhysical ._  → §

Connectors Specification

Measurement Item →→  Measurement Value

Connector CN_ ToMV (numMvs: 1..n)
Role MI = T_Calculation_Out
Role MV1..numMvs = T_Calculation_In
Glue = MI.perform_calculation

→ numMvsi ..1:∀ _ ncalculatioperformMVi _. → Glue

 MI.calibrate → numMvsi ..1:∀ _ calibrateMVi . →  Glue

_ MI.compare → numMvsi ..1:∀ _ calibrateMVi . →
( numMvsi ..1:∀  _ MVi.acceptable → Glue

 numMvsi ..1:∃  _ MVi.non_acceptable → Glue )

 MI.close → numMvsi ..1:∀ _ closeMVi .  → §

Measurement Item →→ Actuator

Connector CN_ToActuator (numAct: 1..n)
Role MI = T_Actuate_Out
Role Actuator 1..numAct= T_Actuate_In

Glue = MI.actuate → numActi ..1:∀ _ actuateActuatori .  → Glue

 MI.close →  numActi ..1:∀ _ closeActuatori .  → §

Actuator →→ Physical Actuator

Connector CN_Signallers
Role Actuator = T_Signal_Out
Role PActuator = T_Signal_In

Glue = Actuator.start → receivePActuator.  → Glue

_ Actuator.close → closePActuator.  → §

Observation: As we explained before, it is not possible to store values, so when the measurement
value receives the event CALIBRATE, just accepts it and does nothing.

SECOND  LEVEL



References                                                                                                                   117

MOTIVATION

As we saw so far, we found different problems in the description. The most remarkable
was the lacking of representation of internal state of the component (observations made in steps 2,
4, 5 and 6). In fact, Wright ADL [All97] is focused on the interaction behaviour and there is no
possibility to use the operations given by the components.  All their executions are hidden behind
the non-deterministic choices in the specification. Thus, it is no possible to have any specification
about the functional aspects of the components [San97]

In this level, we decided to solve the previous problem through the use of  B Abstract
Machines [San97] and refine the architecture using the concept of hierarchy in Wright ADL [All97]
in the following details:
•  The sensor updates itself with the data in the physical sensor and the update can vary ,

depending on the sensor type and the application. Thus, in this framework the updating
behaviour was abstracted using the Strategy design pattern [GHJV95]
•  Client Update: The sensor never updates itself , until it is called by a client
•  Periodic Update: The sensor will update itself with fresh data from the physical

sensor after a given time interval
•  On-change Update: When the value is changed, the sensor is notified

•  The data read from the hardware sensor has to be converted into a value that has some
meaning in the context of the software system. This conversion process can be different,
depending on the application an the way the sensor is used.  Therefore the conversion has
also been abstracted as a Calculation Strategy. But the Calculation Strategy is used also by
other objects in the framework.

•  After the Measurement Item is started, it contains two execution phases: to collect data on the
physical item it represents and to make the actuators actuate appropriately, based on the
measured data and the comparison to the set data. In fact, these two processes are
encapsulated in two strategies: Calculation Strategy (described previously) and Actuation
Strategy (uses the set of actuator references stored by the measurement item to activate the
various actuators)

•  When the Item Factory is in calibration state, this fact influences the Actuation Strategy of the
measurement item rather than the calculation strategy. Therefore, the normal actuation
strategy is replaced with a calibration strategy that performs the actions required during
calibration.

ANALYSIS

After an analysis, we detect that the components to be refined are: C_Item Factory,
C_Measurement_Item, C_Measurement_Value and C_Sensor. All of them have in common the
problem of not being able to store some special state in their description and, except the first one,
have in common that they have associated different strategies.

Here, we present the changes made analyzing each component separately. In this section
we will not show the evolution of each change as in the previous section, we will just present the
final component and the changes made.

Component: ITEM FACTORY

In the step 2 in the previous section, we explained that the item factory decides if the
system is in calibration or not and we expressed this fact through a non deterministic choice
between the events CALIBRATE and NORMAL. In fact, the component has a boolean variable to
express the actual state of the system. Using the concept presented in [San97], we build a new
component AM_Item_Factor (which is the representation of the B-Abstract Machine of Factory and
exports the operation Is_InCalibration), then we build the connector and we avoid the non-
deterministic choice in Item_Factory. As this process only is taken into account in the factory
environment, we encapsulated everything using hierarchical description.



   118                               Object Oriented Architectural Description of Frameworks

Component CH_Item_Factory
Port Trigger = T_Trigger_In
Port Measurement_Item =  T_CalibrationState_Out
Computation

Configuration Factory
Component  C_Item_Factory

Port Trigger = T_Trigger_In
Port Measurement_Item =  T_CalibrationState_Out

Port Component = nCalibratioin _  → (calibration → Component

          _  no_calibration → Component)

Computation = Trigger.trigger → nCalibratioinComponent _.  →

     (Component.calibration → calibrateItemtMeasuremen ._
      Component.no_calibration

→ normalItemtMeasuremen ._ )

 → startItemtMeasuremen ._  → Computation

_ Trigger.close → Measurement_Item.close → §

Component AM_Item_Factory
Port B = Is_InCalibration → B

Connector B_Item_Factory

Role Component = nCalibratioin _  → ( calibration → Component

   no_calibration → Component)
Role B = Is_InCalibration → B
Glue = Component.in_calibration →

  ( nCalibratioComponent. → Glue

  _ nCalibrationoComponent _.  → Glue )

Informally:

If B.Is_InCalibration then nCalibratioComponent.

           else  nCalibrationoComponent _.

Instances
   I_Factory : C_ItemFactory
      Factory_State : AM_Item_Factory
      Connection : B_Item_Factory
Attachments
      I_Factory.Component as Connection.Component
      Factory_State.B as Connection.B
End Factory

Bindings
      I_Factory.Trigger = Trigger
      I_Factory.Measurement_Item = Measurement_Item
End Bindings

Component: MEASUREMENT ITEM



References                                                                                                                   119

As we said previously, the starting process of the Measurement Item is described in two
phases: calculation and actuation phases. If we refer to the start method in the implementation, we
will see:

start

(self calculationStrategy) performCalculation
(self actuationStrategy) actuate
^self

In fact, the calculation strategy just forwards the calculation process to the measurement
item itself, and this last one forwards the performCalculation operation to its measurement values.
In case of actuation strategy, if the system is in normal state, the actuators must work; but if it is in
calibration state, just forwards the calibration process to the measurement item itself, and this last
one forwards the calibrate operation to its measurement values.

Thus, we have to add two new new components to represent the Actuation and Calibration
strategies and their respective connectors. As these concepts are used by other components, we
decide to build mini-styles with the strategies. More details will be given later, we just only add the
expression Style CalculationStrategy, ActuationStrategy
 As this process only is taken into account in the item environment, we encapsulated
everything using hierarchical description

Component CH_Measurement_Item
Port Item_Factory = T_CalibrationState_In
Port MValues = T_Calculation_Out
Port Actuators  = T_Actuate_Out
Computation

Configuration Item_To_Measure
Style CalculationStrategy, ActuationStrategy
Component C_Measurement_Item

 Port Item_Factory = T_CalibrationState_In
Port MValues = T_Calculation_Out
Port Actuators = T_Actuate_Out
Port ActuationStrategy = T_ActStrategy_Out
Port CalculationStrategy = T_CalcStrategy_Out
Computation = ItemFactory.calibrate → Item_Factory.start

→ Calculate → Calibrate

→ calibrateMValues.  → Computation
_ Item.Factory.normal → Item_Factory.start

 → Calculate → Compare → Computation
_ In.close → MValues.close → Actuators.close  → §

where Calculate = ncalculatioperformnStrategyCalculatio _. →
CalculationStrategy.context →

ncalculatioperformMValues _.

Compare =  compareMValues.  →
MValues.acceptable _ MValues.non_acceptable

→ Actuate  → actuateActuators.

Actuate = actuatetrategyActuationS .

→ ActuationStrategy.actuators



   120                               Object Oriented Architectural Description of Frameworks

Calibrate = calibratetrategyActuationS .

→ Actuation.Strategy.calibrate

Instances
  M_Item : C_Measurement_Item
       CalcStrategy : C_CalculationStrategy
       ActStrategy : C_ActuationStrategy
       CnToCalc :  Cn_MIToCalcStrategy
       CnToAct : Cn_ToActStrategy

 Attachments
       M_Item.CalculationStrategy as CnToCalc.In
 CalcStrategy.InOut as CnToCalc.Out
 M_Item.ActuationStrategy as CnToAct.In
 ActStrategy.InOut as CnToAct.Out
End Item_To_Measure

Bindings
M_Item.Item_Factory  = Item_Factory
M_Item.MValues = MValues
M_Item.Actuators = Actuators  

End Bindings

Component: MEASUREMENT VALUE

In this component, we have a combination of the problems presented in the two previously
components. Firstly, the component has to decide if the physical item is acceptable or not. In the
first level, this fact was expressed through a non-deterministic choice, but in fact this situation is
similar to one presented in Item Factory. The measurement values keep information about the last
measured value and the ideal value for an aspect of the item, and can determine the condition of
the acceptability of the item comparing this value. Thus, we apply the technique of [San97], and
develop a component AM_MeasurementValue which represents the B Abstract Machine, and this
component can export three operations: set_value (which stores the measured value), ideal_value
(which calibrates the value) and is-acceptable (which returns True (or False) if the item is (not)
acceptable).

Besides this, the measurement value has a calculation strategy. When the measurement
item asks the measured value for a specific aspect, the measurement value just calls the
calculation strategy, and this last one will say who will take the measure, in this case, the
associated sensor.

As this process only is taken into account in the item environment, we encapsulated
everything using hierarchical description

Component CH_MeasurementValue
Port Measurement_Item =  T_Calculation_In
Port Sensors = T_Measure_Out
Computation

Configuration Value
Component C_MeasurementValue

Style CalculationStrategy
Port Measurement_Item =  T_Calculation_In
Port Sensors = T_Measure_Out
Port CalculationStrategy = T_CalcStrategy_In

Port Component  =   valvalueset !_  → Component



References                                                                                                                   121

_ valueideal _  → Component

    _ compare  → ( acceptable → Component

  non_acceptable → Component )
Computation = Measurement_Item.perform_calculation

→ ncalculatioperformnStrategyCalculatio _.

→ CalculationStrategy.sensor

→ valuegetSensors _.  → Sensors.receive?val )

→ valvaluesetComponent !_.  → Computation
 Measurement_Item.calibrate

→ valueidealComponent _.  →  Computation

_ Measurement_Item.compare → compareComponent. →
 (Component.acceptable →

acceptableItemtMeasuremen ._ → Computation )

_ Component.non_acceptable →
acceptablenonItemtMeasuremen _._

→ Computation )

_ Measurement_Item.close → closeSensors.
→ CalculationStrategy.close → §

Component AM_MeasurementValue
Port B = set_value?val → B _ ideal_value → B

_ Is_Acceptable → B

Connector B_MValue

Role Component = valvalueset !_  → Component

_ valueideal _  → Component

_ compare  → ( acceptable → Component

   non_acceptable → Component )
Role B = set_value?val → B _ ideal_value → B _ compare → B

 _ acceptable  → B _ acceptablenon _  → B

Glue = Component.set_value?val → valvaluesetB !_.  → Glue

 Component.ideal_value → valueidealB _.  → Glue

 Component.compare →
 ( acceptableComponent. → Glue

              _ acceptablenonComponent _.  → Glue )

Informally :

if B.Is_Acceptable then acceptableComponent.  → Glue

else acceptablenonComponent _. → Glue

Instances
M_Value : C_Measurement_Value
State : AM_Measurement_Value
CalcStrategy : C_CalculationStrategy
Connection : B_MValue
 MVToCalc : CN_MIToCalcStrategy



   122                               Object Oriented Architectural Description of Frameworks

 Attachments
M_Value.CalculationStrategy as MVToCalc.In
CalcStrategy.InOut as MVToCalc.Out
M_Value.Component as Connection.Component
State.B as Connection.B

End Value
Bindings

M_Value.Measurement_Item = Measurement_Item
M_Value. Sensors  = Sensors

End Bindings

Component: SENSOR

This component present the same situation as Measurement Value. It has associated a
Calculation Strategy, an Update Strategy and must keep information about internal state. The
Calculation Strategy just forwards the request to the sensor itself and the sensor ask the physical
sensor to measure the item. The Update Strategy decides when the sensor must update its value .
The internal state is represented using [San97] and the component AM_Sensor exports two
operations: set_value (which stores the measured value) and measured_value (which returns the
value).

As this process only is taken into account in the item environment, we encapsulated
everything using hierarchical description

Component CH_Sensor
Port Measurement _Item = T_Measure_In
Port Physical_Sensor  = T_Output_Input
Computation

Configuration SensorDevice
Style CalculationStrategy, UpdateStrategy
Component C_Sensor

Port Measurement _Item = T_Measure_In
Port Physical_Sensor  = T_Output_Input
Port CalculationStrategy = T_CalcStrategy_Out
Port UpdateStrategy = T_Update_Out

Port Component = valuemeasured _  → measured_value?val → Component

   _ valvalueset !_  → Component

Computation = Measurement_Item.get_value

→ updateclienttegyUpdateStra _.

→ ( UpdateStrategy.context

→  valuemeasuredComponent _.  →
 Component.measured_value?val →

valsendItemtMeasuremen !._ →  Computation

   UpdateStrategy.calculate_value →
ncalculatioperformnStrategyCalculatio _.

→ CalculationStrategy.context

→ askSensorPhysical ._

→ Physical_Sensor.receive?result

 → resultvaluesetComponent !_.  →

 resultsendItemtMeasuremen !._

→  Computation )



References                                                                                                                   123

 UpdateStrategy.calculate_value →
ncalculatioperformnStrategyCalculatio _.

→ CalculationStrategy.context

→ askSensorPhysical ._

→ Physical_Sensor.receive?result

 → resultvaluesetComponent !_.  → Computation

_ Measurement.close → Physical_Sensor.close → §

Component AM_Sensor
Port B = set_value?val → B _ measured_value!val → B

Connector B_Sensor

Role Component =  valvalueset !_  → Component

_ valuemeasured _  → measured_value?val

 → Component
Role B = set_value?val → B _ measured_value!val → B

Glue = Component.set_value?val → valvaluesetB !_.  → Glue
 Component.measured_value

→ valvaluemeasuredB ?_.  →
valvaluemeasuredComponent !_.  → Glue

Instances
Sensor : C_Sensor
CalcStrategy : C_CalculationStrategy
UpdStrategy : C_UpdateStrategy
State : AM_Sensor
SensorToCS : CN_MIToCalcStrategy
SensorToUS : CN_SensorToUpdStrategy
Connection : B_Sensor

Attachments
Sensor.CalculationStrategy as SensorToCS.In
CalcStrategy.InOut as SensorToCs.Out
Sensor.UpdateStrategy as SensorToUS.In
UpdStrategy.InOut as SensorToUS.Out
Sensor.Component as Connection.Component

State.B as Connection.B
End SensorDevice

Bindings
Sensor.Measurement_Item = Measurement _Item  
Sensor.Physical_Sensor = Physical_Sensor

End Bindings

STRATEGIES DEFINED AS STYLES

In the last section, we observed that most of the components used the Calculation, Update
and Actuation strategies. Thus, we think that it was useful to define an Style with each of them.



   124                               Object Oriented Architectural Description of Frameworks

Each style is composed of the component Strategy and the respective connector. They are simple
styles and they do not have any specific constraints.

Style ActuationStyle

Interface Type T_ActStrategy_Out = actuate → actuators → T_ActStrategy_Out

 calibrate  → calibrate → T_ActStrategy_Out
 close → §

Interface Type T_ActStrategy_In = actuate →  actuators → T_ActStrategy_In

 calibrate → calibrate  → T_ActStrategy_In
 close → §

Connector CN_ToActStrategy
Role In = T_ActStrategy_Out
Role Out = T_ActStrategy_In

Glue = In.actuate → actuateOut.  → Out.actuators → actuatorsIn.  → Glue

 In.calibrate → calibrateOut.  → Out.calibrate → calibrateIn..  → Glue

 In.close → closeOut.  → §

Component C_ActuationStrategy
Port InOut = T_ActStrategy_In

Computation = InOut.actuate → actuatorsInOut.  → Computation

 InOut.calibrate → calibrateOutIn .  → Computation

End Style

Style CalculationStrategy

Interface Type T_CalcStrategy_Out = ncalculatioperform _  → context → CalculationStrategy

      close → §

Interface Type T_CalcStrategy_In = perform_calculation → context   → CalculationStrategy
       close → §

Connector CN_ToCalcStrategy
Role In = T_CalcStrategy_Out
Role Out = T_CalcStrategy_In

Glue =  In.perform_calculation → ncalculatioperformOut _.

 → Out.context → contextIn.  → Glue

 In.close → closeOut.  → §

Component C_CalculationStrategy
Port InOut = T_CalcStrategy_In

Computation = InOut.perform_calculation → contextInOut.  → Computation

End Style

Style UpdateStrategy

Interface Type T_Update_Out = updateclient _  → T_Update_Out



References                                                                                                                   125

_ calculate_value → T_Update_Out
_ context → T_Update_Out

 Interface Type T_Update_In = client_update →  T_Update_In

_ Valuecalculate _  → T_Update_In

_ context  → T_Update_In

Connector CN_ToUpdateStrategy
Role In = T_Update_Out
Role Out = T_Update_In

Glue = In.client_update → updateclientOut _.  → Glue

_ Out.calculate_value → valuecalculateIn _.  → Glue

_ Out.context → contextIn.  → Glue

Component C_UpdateStrategy
Port InOut = client_update → InOut

_ valuecalculate _  → InOut

_ context  → InOut

Computation = InOut.client_update →  ( valuecalculateInOut _. → Computation

      _ contextInOut.  → Computation )

_ valuecalculateInOut _.  → Computation

End Style

Interface Types

Interface Type T_Signal_Out =  start  →  T_Signal_Sender _ close  → §
Interface Type T_Signal_In = receive → T_Signal_Receiver _ close → §

Interface Type T_Trigger_Out = trigger  → T_Trigger_Out _ close  → §

Interface Type  T_Trigger_ In = trigger → T_Trigger_In  close → §

Interface Type T_Output_Input =  ask  → receive?item → T_Output_Input _ close  → §

Interface Type T_Input_Output = receive → resultsend!  → T_Input_Output _ close → §

Interface Type T_Calibration_Out = calibrate  → start  → T_Calibration_Out

_ normal  → start  → T_Calibration_Out  _ close  → §
Interface Type T_Calibration_In = calibrate → start → T_T_Calibration_In

 normal → start → T_Calibration  close → §

Interface Type T_Calculation_Out = ncalculatioperform _  → T_Calculation_ Out

_ calibrate  → T_Calculation _Out

_ compare  → (acceptable → T_Calculation _Out

_  non_acceptable → T_Calculation _Out )

_ close  → §
Interface Type T_Calculation_In = perform_calculation → T_Calculation_In

 calibrate → T_Calculation_In

 compare → ( acceptable  → T_Calculation_Out

_ acceptablenon _  → T_Calculation_Out)

_ close → §



   126                               Object Oriented Architectural Description of Frameworks

Interface Type T_Actuate_Out = actuate → T_Actuate_Out  _ close  → §
Interface Type T_Actuate_In = actuate → T_Actuate_In  close → §

Interface Type T_Measure_Out = valueget _  → receive?val → T_Measure_Out _ close  → §

Interface Type T_Measure_In = get_value → valsend!  → T_Measure_In  close → §



References                                                                                                                   127

ConcreteSensor

Strategy

context

AbstractSensor

Sensor

updateStrategy : UpdateStrategy
childrenSensors : Collection

getValue()

1..*1..*
UpdateStrategy

clientUpdate()
onChangeUpdate()
update()

11

Trigger

itemFactory : AbstractSensor
sensor : Sensor

trigger()

MeasurementEntity

name : String
measuredValue
calculationStrategy : CalculationStrategy

calculateValue()
setValue()
performCalculation()

CalculationStrategy

performCalculation()

11

Figure 1: Class relations for Sensor

Strategy

context

UpdateStrategy

clientUpdate()
onChangeUpdate()
update()

Client Update OnChange Update
Periodic Update

cycle : int
process

startProcess()
stopProcess()
updateProcess()

Figure 2: UpdateStrategy class hierarchy



   128                               Object Oriented Architectural Description of Frameworks

Strategy

context

CalculationStrategy

performCalculation()

MICalcStrategy ConcreteCalcStrategy EmptyCalcStrategy

Figure 3: CalculationStrategy class hierarchy

Strategy

context

Measurement Value

sensors()
compare()

Actuator

hardwareActuator
inActuation : boolean

actuate()
initialize()

Item Factory

prototypeItem : Measurement Item
inCalibration : boolean

initialize()
trigger()
calibrate()

Measurement Item

sensors : Collection
measurementValues : Collection
actuators : Collection
myItemFactory : Item Factory
actuationStrategy : ActuationStrategy

performCalculation()
calibrate()
start()
initialize()
untitled()
m_values()
actuators()

1..*1..*
1..*1..*

UpdateStrategy

clientUpdate()
onChangeUpdate()
update()

11

MeasurementEntity

name : String
measuredValue
calculationStrategy : CalculationStrategy

calculateValue()
setValue()
performCalculation()

CalculationStrategy

performCalculation()

11

Figure 4: Relations for Class Measurements



References                                                                                                                   129

Sensor

updateStrategy : UpdateStrategy
childrenSensors : Collection

getValue()

Atomic MVComposed MV

Measurement Value

sensors()
compare()

Strategy

context

MeasurementEntity

name : String
measuredValue
calculationStrategy : CalculationStrategy

calculateValue()
setValue()
performCalculation()

CalculationStrategy

performCalculation()
11

Figure 5: MeasurementValue class relations

Strategy

context

UpdateStrategy

clientUpdate()
onChangeUpdate()
update()

Measurement Item

sensors : Collection
measurementValues : Collection
actuators : Collection
myItemFactory : Item Factory
actuationStrategy : ActuationStrategy

performCalculation()
calibrate()
start()
initialize()
untitled()
m_values()
actuators()

CalibrationStrategy

ActuationStrategy

actuate()

Item Factory

prototypeItem : Measurement Item
inCalibration : boolean

initialize()
trigger()
calibrate()

Figure 6: ItemFactory Class



   130                               Object Oriented Architectural Description of Frameworks

Strategy

context

Measurement Item

sensors : Collection
measurementValues : Collection
actuators : Collection
myItemFactory : Item Factory
actuationStrategy : ActuationStrategy

performCalculation()
calibrate()
start()
initialize()
untitled()
m_values()
actuators()

Actuator

hardwareActuator
inActuation : boolean

actuate()
initialize()

ActuationStrategy

actuate()

11

Figure 7: Context of class Actuator

INTERACTION DIAGRAMS

 : Trigger  : Item Factory  : Measurement 
Item

 : EmptyCalc
Strategy

 : Measurement 
Value

 : EmptyCalc
Strategy

 : Sensor  : Client Update
 : Physical 

Sensor
 : Physical 

Trigger
trigger( )

trigger( )
start( )

performCalculation( )

m_values( )

performCalculation( )
performCalculation( )

sensors( )

performCalculation( )

setValue( )

update( )

getValue( )

measure( )

setValue( )

Figure 8: Normal Process with the Sensor data updated through the request of the System



References                                                                                                                   131

 : Measurement 
Item

 : Measurement 
Value

 : Actuation
Strategy

 : Actuator
 : Physical 

Actuator
compare( )

actuate( )

actuators( )

actuate( )

Figure 9: Actuation Phase in Normal Process of the System

 : Trigger  : Item Factory  : Measurement 
Item

 : EmptyCalc
Strategy

 : Measurement 
Value

 : EmptyCalc
Strategy

 : Sensor  : Periodic 
Update

 : Physical 
Sensor

 : Physical 
Trigger

trigger( )
trigger( )

start( )
performCalculation( )

m_values( )

performCalculation( )
performCalculation( )

sensors( )

performCalculation( )

getValue( )

getValue( )

measure( )

measure( )

setValue( )

setValue( )

setValue( )

update( )

Figure 10: Normal Process with the Sensor data updated periodically



Appendix B

This appendix shows a complete analysis of the application of Wright ADL to describe a component of a
framework. The objective is to see an step-by-step process of how to get an architectural description using

this ADL.

A GENERIC COORDINATION ABSTRACTION FOR MANAGING SHARED RESOURCES

In [CTN97], a Coordination Component Framework for Open Distributed Systems was
developed. They introduce different solutions to coordination problems, and each solution is
embodied in a component in the framework. One of these components is used to provide solution
to the management of shared resource.

In[CDK94], they define that there are some common elements which define the structure of
these solutions : the definition of the resource, and the definition of the allocation policy. Some
features of these elements are fundamental for the specification of the solutions. For the resource
they are basically : the size of the resource, and the number of concurrent entities which can
access the resource at the same time. For the allocation policy they are basically : the order in
which the resource is going to be assigned, the maximum allowed to each entity, if there will be
priorities on the requests of the allocations, and what to do with the allocation requests that cannot
be processed simultaneously (to define a waiting queue of entities, to ignore them, etc.). There are
also some fault-tolerance aspects like what to do in case of software failures (to ignore precedent
request, to guarantee recovery, etc.) that have taken into account. All these aspects define the
parameters of variability of the generic coordination abstraction that could be specified and that
can be used to generate specific coordination solutions]

One example shown to see how the component is applied is a toy banking system. In this
case the resource is an account database which is shared by multiple teller machines. The teller
machines need to get information from the account database in order to check a client’s account.
They also need to update account information if they have given money to a client. To keep the
database consistent we need an access policy to regulate the multiple requests.

As a solution for this regulation they introduce an access policy component. This solution
not only provides access regulation, but also explicitness of architecture and flexibility.

8.4 REQUIREMENTS

The main goal of the design is to implement the access policy to the database in a
reusable and configurable way. In terms of the component oriented approach, this means that we
want to have a structure where we can plug in different policies, without having to change other
parts of the solution. Three kinds of policies are distinguished:

Policies that need no other information about the requests: This is the easiest kind of
policy. They can do their job without any knowledge about the commands they have to dispatch. A
typical example is a FIFO policy: no matter what commands come in, the policy just dispatches
them in order they come in.

Policies that need type information about the requests: This kind of policy depends on the
“nature” of the command: every commandtype has one or more properties which are needed by
the policy. A typical example for this case is the readers/writers policy. The policy has to know if a
command is a reader or a writer command. So this information must be made available in our
solution.

Policies that need external information about the requests: This kind of policy depends on
information which can be different for each instance of a command. It can be thought as a priority
policy, where, depending on the sender of the request, a command has a certain priority. Again,
somehow this information must be available to the policy.



Appendix B                                                                                                                 133

8.5 SOLUTION

There is an Interface of the solution to the rest of the application. Clients have to call this
Interface to access the access solution. The resource itself is also modelled and there is a part
which represents the control policy. To give the policy the ability to buffer the commands, change
their order or execute them in parallel, it is necessary an explicit representation of the commands.
This is done using the Command Pattern[GHJV95].

Concrete Command

execute()

ConcreteProperty

Property

Resource

request()

Command Type

FIFOPolicy ReadersWriters Policy

RW Configuration

Priority Policy

PrConfiguration

Interface

request()

Command

execute()
setProperty()
getProperty()

Policy

Concrete Command Type

Then let’s see the relationship between Command and Policy. For the first kind of policy,
the basic Command pattern suffices. For the second and third however, it is necessary some
additions. For the second kind of policy, we need to make type information available at run-time in
order to be able to use this information at run-time, for instance to link this information to certain
policy-dependent properties. We make this information available by providing a CommandType
class to every subclass of the abstract Command class.

For the third kind of policy we need to make information available which can differ for every
instance of a command. We do this by connecting a Property class to every Command class and
the addition of a SetProperty and a GetProperty method to the Command class. What the exact
information is, that subclasses of this class represent, is totally dependent on the application in
which it is used. It could be that the name of the sender of the request is made available. The
information, that is made available, should not be information especially linked to a policy. As an
example, we take again the priority policy. In the Property object, we should make the sender of a
request available. The linking of this sender with a priority is done later at the policy. We do this to
keep the Command as independent of the policy as possible: the information is really a property of
the Command and this information can be used by different policies.

The decision to take a Property class to hold information about commands has some
advantages and disadvantages. The advantage is that the Command does not have to be aware of
information that is made available about itself. It is also explicit in the architecture which
information is made available and it is applicable without having to change the Command class.



   134                               Object Oriented Architectural Description of Frameworks

The disadvantage is the overhead: the Interface may create Property classes and initialize
information that may never be used.

The Policy part is set up using the Strategy pattern [GHVJ95]. The hard part is again the
fact that we have to deal with the application dependent information. The solution is to represent
this information explicitly in so-called “configuration” objects. These configuration objects contain at
run-time the information that is needed by the policies. So we may have, for example, a
configuration object that contains of a link between command types and a property isReader.
Another example is an object that links the names of possible request senders to a certain priority.
We see here the difference between information that is made available in a Property object and
that in a Configuration object. The former is general information, the latter contains the policy
dependent information.

In figure X, we see the total design for the shared resource access policy solution. The
class Interface is the interface to the resource for the rest of the system. For every command which
is invoked by an incoming events, a Command object is created. These commands are then given
to the policy which is connected (through parameterization) to the interface. This policy handles the
commands, i.e. determines when and in which order the request can access the resource. If the
command is allowed, it is executed.

8.6 Wright Description

From the figure 1, we can see four elements: Interface, Command, Policy and Resource.
We will model as components Command and Resource and Interface and Policy as connectors.
The reasons are that Command is just one unit with information which has to receive a signal to be
executed, and Resource is one unit which process the information sent in the Commands objects.
The case for Interface is our connection to the virtual user and is the entry point for the system and
Policy is a unit of communication between the command and the resource because it put the order
of execution in the Resource.
Note: we will present different possible descriptions (from simpler ones to more elaborated), but in
all the cases we explain all the taken assumptions.

Connector Interface: This element represents the entry point to the component, so we need two
events: one to indicate that we received a request to be executed (request) and one to indicate that
this request has to be processed according to the policy. We will assume that we have only one
type of request to be executed.

Connector Interface

Role User = request  _ _ §

 Role Command  =  create _ Command

Computation =  User.request _ createCommand . _ Computation

Component Command: This element represents the request that will be executed in the resource.
I has three events: create (indicates that it was created), put (is enqueued in the policy to wait for
the moment to be executed)  and execute (indicates that can be executed).The restriction is that
once it is created, it must be enqueued in the policy queue and has to wait for its turn to execute.
This restriction is shown in the Computation

Component Command
Port In = create _ In

Port Out_Policy =  put  _ Out_Policy _ execute _ ready  _ §

 Port Out_Resource = execute  _ Out_Resource _ free _ Out_Resource
_ error _ Out-Resource _ busy _ Out_Resource

Computation = In.create _ putPolicyOut ._  _ Out_Policy.execute



Appendix B                                                                                                                 135

_ Continue _ readyPolicyOut ._  _ §

where Continue = Out_Resource.free _ executesourceOut .Re_  _ §

_ executesourceOut .Re_  _ Out_Resource.error _ Continue

 _ executesourceOut .Re_ _ Out_Resource.busy _ Continue

Component Resource: This element is any context can answer to three states associated to
events : free(can accept any request), request(receives the request), busy(processing state of the
request). The only condition to be fullfilled is that:

" while the resource is available sends the event free
"  but when it receives the request, has to notify that the state is busy and that can

not execute the request event.
Both cases are shown in the computation of the component.

Component Resource

Port In = execute _ In _ free  _ In _ busy  _ In _ §

Computation = freeIn.  _ In.execute _ Continue  _ Computation

where Continue = In.execute _ busyIn. _  Continue _ §

Connector Policy: This element represents the algoritm that will administrate the order of
execution of the commands. Now, we will consider that the policy is FIFO and that there are no
constraints in the amount of commands that the policy queue can manage.

Connector Policy

Role Command = put  _ Command _ execute _ ready  _ §

Computation = Command.put  _  executeCommand.
_  Command.ready _ Computation _ §

Trick: We need a superfluous connector between Command and Resource components.

Connector Superfluous

Role Command = execute  _ Command _ free _ Command
 _ error _ Command _ busy _ Command

Role Resource = execute _ Resource _ free  _ Resource _ busy  _ Resource _ §

Glue = Command.execute _ executesource.Re  _ Glue

_ freesource.Re  _ Command.free _ Glue

_ busysource.Re  _ Command.busy _ Glue

_ §

With these four architectural elements, we get a michroarchitecture to represent the
management of a shared resource with a FIFO policy and only one type of operation that can be
executed atomically in the resource. In fact, the architectural description to define these
components is very simple. It is interesting to add/change functionalities to extend the
expressiveness of the different elements.

Some possible variants are:
•  To have a set of operations to be executed over the resource, e.g. read and write



   136                               Object Oriented Architectural Description of Frameworks

•  To change the policy: Some policies need type information about the requests or
need external information about the requests. We can consider also the possibility of
having a waiting queue of requests.

•  To check the number of concurrent entities which can access the resource at the
same time.

There are other possible variants that can be taken into account, but our objective is just
only to show how all of them can be applied in our description to get different functionalities.

8.6.1 First Variant: To have a set of operations, e.g. read and write

The fact that we have two operations with conflicts between them (an operation of writing
can not be made during reading process, and reading process can not be taken into account when
a writing process is happening) changes the definition of some protocols of Resource, Interface
and Policy. In all the cases, we must identify what kind of operations is to know how to proceed.

Connector Interface

Role User = read  _ User _ write  _ User _ §
 Role CommandReader  =  create _ CommandReader

Role CommandWriter = create _ CommandWriter

Computation = User.read _ createaderCommand .Re  _ Computation

 User.write _ createterCommandWri .  _ Computation

Connector Policy (nbr: 1.., nbw: 1..)

Role CommandReader1..nbr = put  _ CommandReader _  execute _ CommandReader

 _  ready  _ CommandReader _  §

Role CommandWriter1..nbw = put  _ CommandWriter _  execute _ CommandWriter

 _  ready  _ CommandWriter _  §

Computation = ( ∃ i..k < nbr || CommandReader.put  _  executeaderCommand .Re )
  _ ∀ i..k  CommandReader.ready _ Computation

 _ CommandWriter.put _ executeterCommandWri .  
_ CommandWriter.ready _ Computation

 §

The Component Resource must not pay attention to inform that the operation has finished,
because in this case it can accept a set of operations of the same type (e.g. readers at the same
time, or just only one writer).

Component Resource (nbr: 1.., nbw: 1..)
Port In = execute _ In _ §
Computation =  E i:1..k || In.execute _ Computation

8.6.2 Second Variant: Generalize the set of commands.

Some requests in a real domain can be categorized as readers or writers of the resource,
without be called explicitly read or write. The solution made in [CTN97] is to have an object called
Configuration which associates the information about the command with its properties (in this case,
the property is indicated as isReader or isWriter).

Component Configuration

Port In = property?i _ ( aderisRe  _ In _ isWriter  _ In)



Appendix B                                                                                                                 137

Computation = In.property?i _

( aderisIn Re.  _ Computation _ isWriterIn.  _ Computation)

The connector Policy is responsible for managing how the commands will be controlled to
access the shared resource.

Connector Policy (nbc: 1..)

Role Command1..nbc = put  _ Command _  execute _ Command

_  ready  _ CommandReader _  §

Role Configuration = property?i _

( aderisRe  _ Computation _ isWriter  _ Computation)

Computation = Commandi.put _ ipropertyionConfigurat !.

 _ ( Configuration.isWriter _ executeCommandi.

_ Commandi.ready _ Computation
_  Configuration.isReader _ Read _ Computation )

Where Read = (( executeCommandi. || ( ∃  2..k < nbc || Commandi. put

_ executeCommandi. ) _ ∀ i..k   Commandi.ready

8.6.3 Third Variant: Use of commands with properties

This variant is very similar one to second variant. Some commands can occur concurrently
in the resource and others ones should be executed alone. It is obvious that the architectural
elements to be modified are Configuration and Policy.

Component Configuration

Port In = property?i _ ( _ xopertyhas !Pr  _ In)

Computation = In.property?i _ xopertyhasIn !Pr.

Connector Policy (nbc: 1..)

Role Commandi:1..nbc = put  _ Command _  execute _ Command

_  ready  _ CommandReader _  §

Role Configuration = property?i _ ( _ xopertyhas !Pr  _ Configuration )

Computation = Commandi.put _ xpropertyionConfigurat !.  _

 ∃  j :1..k jpropertyionConfigurat !. _ executeCommand j.

_ Commandj.ready _ Computation

 ∃  j :1..n  jpropertyionConfigurat !.  _ Read _ Computation

where Read = (( executeCommand j.  || (∃  n:2..k < nbc || Commandn. put

 _ executeCommandn.  ) _ V i..k   Commandn.ready

 The index i indicate all the commands that have to be executed alone and index j indicate
all the commands that can be executed concurrently.

 Let’s see in a progressive way what kinds of change we have made thinking in terms of
classes diagrams:



   138                               Object Oriented Architectural Description of Frameworks

Steps Classes and Relationships Wright Description

Initial Phase Identify ‘abstract’ classes Classify the classes as
c o m p o n e n t s  a n d
connectors in terms of
their function inside the
system.

Second Phase Identify responsabilities, behaviours and
collaborations

Mode l  t he  po r t s ,
computation, roles and
glue in the components
and connectors

Third Phase:
First Variant

Specialize Command Class

Command

Read Write

        

Policy

RWPolicy

Modify the roles of
Connector Interface and
the Computation
Modify the Computation
of the Connector Policy

Third Phase:
Second Variant

Generalize the Command Class

CommandTypeCommandConfiguration

isWriter isReader

Add the Component
Configuration
Modify the connector
Policy in the computation

Third Phase:
Third Variant

Generalize the properties of the Commands

Command

commandProperty
policyProperty

Configuration

 

Policy

PropertyPolicy

Modify the Role of the
Component Configuration
Modify the connector
Policy in the computation

The steps show that in fact most changes is focused on the behaviour of policy. This class
was modelled with the Strategy pattern, and all the changes represented to have a new subclass in
the model.


