
Vrije Universiteit Brussel - Belgium
Faculty of Sciences

In Collaboration with
Universidad Nacional de La Plata (Argentina)

and
Ecole des Mines de Nantes (France)

ECOLE DES MINES DE NANTES

Towards a Scalable and Collaborative Information
Integration Platform and Methodology

2007

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange)

Author: Felix Van de Maele

Promoter: Prof. Dr. Robert Meersman (Vrije Universiteit Brussel)
Co-Promoter: Prof. Dr. Alicia Diaz (Universidad Nacional de La Plata)

Abstract

The need to integrate heterogeneous and distributed data sources and models is a problem
that is faced in almost any area of computer science. In our global, real-time, and constantly
changing information society this need is growing fast. In this thesis, we identify a number of
limitation of existing work on information integration. Furthermore, the recent trend towards
and acceptance of the need for collaboration have led us to propose a novel methodology and
platform to address the increased need for information integration.

In this thesis, we present a two-step methodology that splits up the traditional integration pro-
cess into two completely separated phases. In the first phase, the Mapping phase, heterogeneous
models are matched and mappings are created between the corresponding entities. The map-
pings are stored on a remote server in an application-neutral manner. We further introduce a
community and contextual dimension for each mapping. In the second phase of our methodol-
ogy, the Commitment phase, a final, application-specific alignment is created in a certain integra-
tion format or model.

We argue that this methodology enables a more scalable, efficient and collaborative integration
process. We develop a platform that allows a user to integrate heterogeneous models using this
methodology. We furthermore present a preliminary evaluation of our work by going through
a real use case: Using our tool, we integrate two real ontologies by following our methodol-
ogy.

1

Acknowledgments

First and foremost I would like to thank Professor Diaz for giving me the opportunity to conduct
my research and thesis at Lifia and making my experience abroad so enjoyable. I also want to
thank her for the numerous insights and the many proof readings and corrections. Without
them, this thesis would never be what it is now. My thanks goes also out to all members of
Lifia for being so friendly and making my stay in Argentina an unforgettable and invaluable
one.

I would also like to thank Professor Meersman and the other members of STARLab for support-
ing me and giving me the opportunity to finish my thesis in such a fun and exciting environ-
ment.

A special thanks goes out to my family and my girlfriend Isabelle for believing in me and
supporting my studies. My apologies for the many many lonely days when I spent all my
time working on this thesis.

2

Contents

1 Introduction 1
1.1 Problem Statement and Motivation . 1
1.2 Proposed Solution . 2

1.2.1 Research Questions & Objectives . 2
1.2.2 Research Methodology . 3

1.3 Outline of this Thesis . 3

2 Background 5
2.1 Semantics . 5

2.1.1 From Vocabulary to Ontology . 6
2.1.2 The Dogma Approach . 10

2.2 Semantics on the Web: The Semantic Web . 14
2.2.1 The Semantic Web Technology Stack . 15

2.3 Semantics in Software Engineering . 21
2.3.1 The OMGs Model Driven Architecture . 21
2.3.2 The Ontology Definition Model . 22

2.4 Semantic Integration . 24
2.4.1 Terminology . 25
2.4.2 Semantic Heterogeneity . 26
2.4.3 Ontology Matching . 28
2.4.4 Ontology Alignment & Merging . 33
2.4.5 Existing Integration Frameworks . 34

3 Approach & Methodology 35
3.1 Introduction . 35

3.1.1 Mapping Reuse . 36
3.1.2 Application-specific mappings . 37

3.2 Methodology . 38
3.2.1 Mapping phase . 40
3.2.2 Commitment phase . 41

3.3 Mapping Approach . 42
3.3.1 Uniform Mappings . 43

i

CONTENTS ii

3.3.2 Community-driven Mappings . 44
3.3.3 Context-aware Mappings . 47

3.4 Mapping Semantics . 49
3.4.1 Model & Entities . 50
3.4.2 Mapping Element . 51
3.4.3 Mapping Relations . 53

3.5 Motivation . 54
3.5.1 Scalability . 54
3.5.2 Efficiency . 55
3.5.3 Evolution . 57

3.6 Conclusions . 58

4 The Platform 59
4.1 Overview . 59

4.1.1 Remote Layer . 61
4.1.2 Client Layer . 64

4.2 Mapping Server . 67
4.2.1 Data Tier . 67
4.2.2 Business Tier . 70
4.2.3 Scalability . 74

4.3 Mapping Client . 74
4.3.1 Mapping Client Base . 76
4.3.2 Mapping phase . 78
4.3.3 Commitment phase . 83

4.4 Evaluation . 85
4.4.1 Scenario . 85
4.4.2 Mapping phase . 86
4.4.3 Commitment phase . 88

4.5 Conclusions . 91

5 Conclusions 92
5.1 Research Questions and Objectives . 92
5.2 Results and Contributions . 93

5.2.1 Background . 93
5.2.2 Approach & Methodology . 93
5.2.3 The Platform . 93

5.3 Discussion . 94
5.4 Future Work . 95

List of Figures

2.1 Semantics in relation to other branches of metaphysics 6
2.2 The meaning triangle [53] . 9
2.3 Illustartion of the two levels in DOGMA ontology. (Reproduced from [20]) 13
2.4 Illustration of two terms (within their resp. contexts), being articulated (via the

mapping ct) to their appropriate concept definition. (Inspired by [20]) 14
2.5 The Semantic Web layers . 15
2.6 An RDF example. 17
2.7 An RDF-Schema example. 18
2.8 The Onion Model. 20
2.9 Illustration of the 4-layers of the OMGs Model Driven Architecture 22
2.10 The remarkable analogies between the OMGs MDA approach and STARLab’s

DOGMA approach to ontology engineering. 23
2.11 The structure of the ODM . 23
2.12 Three possible approaches for integrating heterogeneous sources using ontologies. 25
2.13 The three dimensions of heterogeneity at the conceptual level, reproduced from

[12] . 27
2.14 The Match Operator . 28
2.15 Matching typology, based on [59] and [62] . 29
2.16 Semantic Intensity Spectrum, reproduced from [38] 31
2.17 Structure Awareness . 32
2.18 The alignment process . 33

3.1 The Match Operator by [59] (left) and the Alignment Process by [12] (right) 36
3.2 A high-level view, from top to bottom, of Dogma’s ontology engineering ap-

proach, OMGs model driven architecture paradigm, and on the bottom, our ap-
proach to semantic integration, our mapping platform. 39

3.3 An example of committing a conceptual mapping to an application specific align-
ment. In this example, the alignment is an instance of the Alignment API [26]
model. 42

3.4 An example of a community-driven mapping elicitation and creation process. . . 45

iii

LIST OF FIGURES iv

3.5 An example of a communication and negotiation process in which the commu-
nity can express its confidence and thrust in the existing mappings. 46

3.6 An example of a communication and negotiation process in which the commu-
nity can express its confidence and thrust in the existing mappings. 48

3.7 Different scenarios in which existing mappings can be reused in Ontology match-
ing to create new ones. 56

3.8 A possible evolution scenario where one model changes and the mappings need
to be updated accordingly. 58

4.1 The two orthogonal dimensions of separation in our platform architecture 60
4.2 The different parts of the remote layer. 62
4.3 Different applications from the Client Layer supporting our two-step methodol-

ogy connecting to the Remote Layer. 64
4.4 The different methodological steps of the Mapping Phase. 65
4.5 The methodological steps of the Commitment phase and the necessary tool-support. 66
4.6 The architecture and technology stack of the integration platform implementing

our approach and methodology. 68
4.7 The Entity-Relational Model of the persistent data stored in the PostgreSQL DBMS. 69
4.8 The patterns and best-practices used in the Database Logic layer. 70
4.9 The domain Model in UML, implemented using the DTO pattern. 71
4.10 The Data Access Objects Model interfaces in UML. 72
4.11 The JPA-specific Data Access Objects Model implementations in UML. 72
4.12 A sequence diagram showing the Session Facade pattern applied in the Business

Tier. 73
4.13 A class diagram showing the classes and interfaces from the Business Tier rele-

vant to the Mapping Service. 73
4.14 A sequence diagram showing the Business Delegate pattern applied in the Busi-

ness Tier. 73
4.15 The high-level architecture of our mapping Client and its location and role within

our integration platform. 75
4.16 The domain objects in the Mapping Client Base. 77
4.17 The different figures from the Base plugin. 78
4.18 The different methodological steps of the Mapping Phase. 78
4.19 The traditional Eclipse-workbench with our Mapping Project Navigator. 79
4.20 The traditional Eclpse-workbench with our Mapping Project Navigator. 80
4.21 The Mapping Editor window with the Mappings tab selected. 81
4.22 A selected mapping in the Mapping Editor with the properties view showing the

Relation Definition assigned to the mapping. 82
4.23 The Mapping Editor window with the Editor tab selected. 83
4.24 The methodological steps of the Commitment phase and the necessary tool-support. 83

LIST OF FIGURES v

4.25 The perspective enabling the user to commit a meaningful set of mappings to a
final alignment. 84

4.26 Importing an RDF Ontology using an import wizard (left). The imported ontol-
ogy is now available as a Model with its entities in the Mapping Navigator (right). 86

4.27 The result of opening an Editor View and drag and dropping the two models into
the Editor tab. 87

4.28 Drawing mappings between the entities of both models. 88
4.29 The Mapping tab where the detailed mappings are shown and their properties

can be edited. 88
4.30 The Selected Mappings tab from the Alignment API Committer plug-in. 89
4.31 The Alignment Source tab from the Alignment API Committer plug-in. 90

List of Tables

2.1 The SPARQL query result . 21

3.1 A number of possible model / entity combinations 44

vi

List of Definitions

Definition 1 Ontology by Gruber . 9

Definition 2 Ontology by Ushold and Gruninger . 9

Definition 3 Lexon . 10

Definition 4 The Lexon Base . 11

Definition 5 Concept Definition Server . 12

Definition 6 Meta-Lexon Base . 13

Definition 7 Alignment Process by Bouquet et. al. [12] 33

Definition 8 Entity Model . 50

Definition 9 Entity . 50

Definition 10 Community . 51

Definition 11 Context . 51

Definition 12 Mapping Element . 52

Definition 13 Relation Articulation . 53

Definition 14 Relation Definition . 54

vii

1
Introduction

In our so-called information society we constantly demand and require access to available and
high-quality information. This information is stored in all corners of our society, be it on the
World Wide Web, in government agencies, in public libraries, in the information systems of
companies or implicitly in the computer programs we use. These information sources are stored
and maintained by different stakeholders, and are heterogeneous and distributed by nature.
However, as the need for high-quality information continues to grow, the need to integrate these
enormous amounts of distributed and heterogeneous data is becoming ever more important.
Furthermore, while these information sources have been developed and deployed with a certain
intended use in mind, they may now or in the future be used for very different purposes, for
example:

• for governance, to comply with governmental regulations (e.g. Sarbanes-Oxley);

• for intelligence, to be able to make well-informed decisions (e.g. Business Intelligence);

• for engineering new kinds of systems (e.g. context-aware and mobile applications).

1.1 Problem Statement and Motivation

The need to integrate heterogeneous and distributed data sources and models is a problem that
is faced in almost any area of computer science. Since long, a lot of research has been done

1

CHAPTER 1. INTRODUCTION 2

to allow us to cope with the enormous overflow of information around us. However, in our
ever more connected society, the needs for information integration have shifted. Nowadays,
a much more dynamic, adaptive and agile approach is needed to support the rapidly chang-
ing requirements of the different stakeholders. Within enterprises, existing solutions like data-
warehousing are no longer sufficient for the real-time and extended enterprise. These trends
have led enterprises to increasingly adopt a Service Oriented Architecture (SOA) to address
the agile and dynamic nature of our society. However, while such an architecture does enable
efficient application integration, it does not provide an efficient and scalable way to integrate
information. The same trends can be witnessed in the general software engineering field: More
and more systems are developed using a model-driven approach in order to cope with the fast
changing requirements and (un)intended use of these systems. Furthermore, the recent trend
towards and acceptance of the need for collaboration and what is often referred to as ”The
Wisdom of Crowds”[65] and ”Collective Intelligence”1 have led us to believe new approaches
should be explored to address the increased need for information integration.

We believe that more research is needed to explore these new techniques and trends in order
to address the increased and changed integration needs. Our earlier experience with seman-
tic integration frameworks, algorithms, and methodologies has helped us to identify certain
shortcomings in existing approaches. More specifically, the lack of a scalable methodology and
platform that enables the integration of a very large amount of heterogeneous data sources by
a very large number of stakeholders made us question the efficiency and effectiveness of these
approaches for real-world scenarios, now and in the future. The lack of support for collabora-
tion and evolution in existing works has furthermore motivated us to propose a novel approach
and methodology for data integration.

1.2 Proposed Solution

Given our previous experience with semantic integration frameworks and our interest in the
power of collaboration between a large number of actors and communities has led us to this
thesis in which we ask ourselves if and how we can address the shortcomings of previous
work. Therefore, we propose and present in this thesis an integration approach that adopts
a uniform, context-aware and collaborative methodology enabling efficient reuse to come to a
scalable integration platform.

1.2.1 Research Questions & Objectives

In this thesis we ask ourselves the following questions which are also the objectives we want to
tackle:

1”Collective intelligence is the capacity of human communities to evolve towards higher order complexity and harmony, through
such innovation mechanisms as differentiation and integration, competition and collaboration.” [55]

CHAPTER 1. INTRODUCTION 3

1. What kinds of information heterogeneity exist and where does this heterogeneity come
from?

2. What is the existing work on integration methodologies, algorithms and frameworks?

3. Can we propose a methodology based on the notions of collaboration, context-awareness
and reuse to attain a scalable integration approach?

4. What would the advantages and disadvantages of such an approach be?

5. Can we develop an platform that implements and support this methodology?

These five questions define the scope of this thesis.

1.2.2 Research Methodology

To answer these research questions and reach our objectives we took a methodological ap-
proach. These are the steps we followed:

1. start a literature study on the origin of heterogeneity, the role of semantics and ontologies,
and the existing work on information integration;

2. propose a solution by presenting our methodology with its specific and distinct properties
and advantages;

3. construct a platform that implements this methodology and do a preliminary evaluation
of this platform.

1.3 Outline of this Thesis

The outline of this thesis closely follows our research methodology:

Chapter 2: Background This chapter gives an introduction to semantics in general, the Seman-
tic Web and the OMG’s model-driven-architecture initiative. Furthermore it discusses the
different types of heterogeneity, the terminology used in the literature on semantic in-
tegration and the different methodologies, algorithms and frameworks that have been
proposed in the current literature.

Chapter 3: Approach & Methodology In this chapter we present our methodology and ap-
proach for a scalable and collaborative integration process. We propose our two-step
methodology and discuss the specific and distinct properties of this approach. Next, we
present the reader with the semantics of the elements used in our methodology. We con-
clude this chapter by reviewing the advantages our methodology brings to the integration
process.

CHAPTER 1. INTRODUCTION 4

Chapter 4: The Platform In chapter 4 we present the integration platform implementing the
methodology and conceptual framework we proposed in the previous chapter. We discuss
how we have mapped our two-step methodology on the platform and discuss the two
layers of the platform, the remote and client layer, in more detail. We conclude this chapter
with a preliminary evaluation of the platform and show how it can be used to integrate
two ontologies using our proposed methodology.

Chapter 5: Conclusions Chapter 5 is the last and final chapter that concludes the main contri-
butions of this thesis by discussing the research questions and answers. Based on the work
in the previous chapters a number of issues are discussed and a number of opportunities
for future research are highlighted.

2
Background

In this chapter, we give an introduction to semantics in general, the Semantic Web and the
OMG’s model-driven-architecture initiative. Furthermore we discuss the different types of
heterogeneity, the terminology on semantic integration used in the literature and the different
methodologies, algorithms and frameworks that have been proposed in existing works.

2.1 Semantics

Semantics is usually defined as the study of meaning. Depending on the field in which it is used,
a more restricted definition may be used. For example, in linguistics, semantics is often defined
as the study of the meaning of words. On the other hand, in computer science semantics usually
refers to the meaning of programs or functions. We will use the broader definition throughout this
thesis.

It is interesting to mention two terms that are related to semantics: Syntax and Pragmatics. The
three find themselves adjacent to each other in the domain of metaphysics which is the branch
of philosophy concerned with explaining the nature of reality, being, and the world. Figure 2.1
depicts the different branches in metaphysics. Syntax, as a philosophical study, is concerned
with first-order logic, or how to construct very basic grammars. In linguistics, syntax refers
to the rules that make op the structure of the sentence. In computer science, syntax may refer
to the structure and grammar of the language in which programs are written. Pragmatics, on

5

CHAPTER 2. BACKGROUND 6

Metaphysics

Epistomology Ontology Linguistics Cosmology

Phenomenology

Mereology Semantics

Semiotics

Syntax

Philosophical
Theology

Pragmatics

Figure 2.1: Semantics in relation to other branches of metaphysics

the contrary, is a branch of semiotics concerned with the relationship between language and
the people using it. In other words, it is concerned with bridging the explanatory gap between
sentence meaning and speakers meaning. A crucial concept in pragmatics is context. Pragmatics
studies how context influences the interpretation. As we will see, pragmatics are very important
in applying semantic technologies in practice. For these reasons, the notion of context will also
play a central role in our integration methodology and platform.

In the following sections, we will discuss the different aspects and applications of semantics
and semantic technologies. Some of the questions we will try to answer include: Where do
semantics come from? In what form are the used and constructed? What is the origin of seman-
tic heterogeneity? Why does semantics matter and may it be applied in software engineering?
How can it be applied to the web and what role do they play on the web? How can we success-
fully manage semantic information?

Throughout the discussion of these topics, we will come across several scenarios that show the
need for and importance of semantic integration. During this introduction, we will point out
these problematic cases in which semantic integration is needed. We will also point out the role
of context and community in the field of semantics and more specifically in semantic integra-
tion. This introduction to semantics and its uses can therefore be seen as the motivation for this
thesis: a scalable, uniform, context-aware, collaborative semantic integration methodology and
platform.

2.1.1 From Vocabulary to Ontology

Before we discuss the different forms of structured semantics, we must first introduce the con-
cept of terminology. Terminology is concerned with the naming of things or concepts. Different
terms exist for the same concept, and similar terms can refer to different concepts or things de-
pending on the context in which they are used. For example, the term ”bank” can refer to ”a
financial institution” or it can refer to ”the land alongside or sloping down to a river or lake”,
depending on the context in which the term is used. Terms and facts are semantic constructs.

CHAPTER 2. BACKGROUND 7

They are meant to have meaning that is shared by anyone who uses them. Unless producers
and consumers of information agree, the information will be meaningless.

Semantic information comes in various forms. The first distinction can be made between un-
structured and structured information. Every unstructured form of data has a form of seman-
tics attached to it, albeit implicitly in the human interpretation of this data. In structured or
semi-structured data sources, the form of semantics attached to this data range form implicit
to explicit as the expressiveness and complexity of the data increases. The simplest and most
used form of structured semantics is as a vocabulary which is simply an agreement on terms.
The most complex form of semantics are found in ontologies which allow relations between
concepts and tries to conceptualize the world. We will now give a brief overview of the differ-
ent forms of semantics, from their simplest form as vocabularies to their most complex form as
ontologies.

Vocabulary

A Vocabulary is the set of symbols to which a given language has ascribed a shared meaning.
Each community (in the sense of ”a group of people”) creates its own vocabulary. On the highest
level, the group of people speaking the same language have created a vocabulary for that lan-
guage (note however that in average each of us understands only between 2% and 4% of the vo-
cabulary we supposedly share [47]). Underneath the language level, several sub-communities
create their own vocabulary on top of this. For example, each industry traditionally has its own
vocabulary. Similarly, each business within this industry typically creates its own vocabulary
which is added to the vocabulary of its industry.

Communities have several techniques to construct new vocabularies [47]:

1. Overloading of common words: Different communities can overload existing words and
give them a special meaning specific to that community. This is a large source of misun-
derstanding between communities and creates a lot of the integration problems we ad-
dress in this thesis. Similar terms that have a different meaning are called homonyms. Lets
illustrate this with an example. Take the term ”router”. Depending on the community, this
term means: A device that carves rounded edges on molding for woodworkers, a person
who lays out a circuit board in the electronics industry, an electronic device that dispatches
packets in the data communications industry, and a person who stocks vending machines
in the snack food industry.

The problem of homonyms is where pragmatics and more specifically context comes in to
play. The context in which a term is used is crucial to be able to infer to which concept or
thing the term refers. As we will see, in most of the existing semantic technologies, the
notion of context does not exist, at least not explicitly.

2. Creating new words: To reduce the number of overloaded words, communities also cre-
ate new words to denote community-specific concepts. Created words come in different

CHAPTER 2. BACKGROUND 8

forms, many are acronyms, some are technical terms, some are borrowed from foreign
languages, etc. Interestingly, many technical terms are borrowed from dead languages
such as Greek and Latin. This trend is also community-dependent, for example, in the
medical and law domain many terms come from Latin, while in the computer science
domain many acronyms are used.

3. Nonword identifiers: A technique that is typically seen in industries is the use of nonword
identifiers. In industry and company-specific vocabularies, many concepts or things are
referred to by an identifier. This technique is used more in small communities. For ex-
ample, companies often refer to their products using the product identifiers. Only when
these concepts are widely used outside the company will they become more commonly
used.

4. Compounds: Another tricky area is the use of compounds. Compounds are two or more
existing words combined to create a new meaning. Similarly to the technique of over-
loading existing words, this can create the illusion of understanding where there is none.
The problem, both for humans and for systems attempting to interpret language, is de-
termining when a phrase is really a word or, more correctly, determining when several
words together stand for one semantic thought[47]. For example, a ”claim check” appears
to mean ”review of a claim”, but it actually means ”a piece of paper that lets you retrieve
your property”. For a more detailed treatment of this subject, we refer to [61].

A traditional way to specify vocabularies and their meanings is through definitions. A commu-
nity may create a glossary to define the terms in a vocabulary and how they will be used in a
particular system. However, there are several issues with capturing semantics using only defi-
nitions [47]: First, glossaries may suffer from ”design time” artefacts: A design time artefact is
one that is used while the system is being developed but generally ignored by users and main-
tainers of the system. Secondly, the glossary may suffer because it is created by inexperienced
workers. Third, the glossary may suffer for the same reason that more general-purpose glos-
saries fall short. Glossaries and vocabularies are not designed to distinguish or group closely
related concepts; they are designed to ”define”. As a result, most are full of ambiguity and
overlap. In effect, this leaves much of the defining to the reader.

Taxonomy

A taxonomy is the next step from vocabulary towards more explicit and formal semantics. It is
a form of organized vocabulary. It is generally composed of a hierarchical parent-child classifi-
cation.

CHAPTER 2. BACKGROUND 9

Ontology

The notion of ontology was first used in the field of Philosophy. The term Ontology (with an
uppercase ’O’) was later used by AI practitioners 1. Ontologies are becoming increasingly pop-
ular in the domain of computer science. Recently they have been moving from the realm of
AI-laboratories to the desktops of knowledge experts and are now one of the fundaments of the
Semantic Web.

Several definitions have been proposed in literature 2. One of the most cited definitions of an
ontology is defined by Gruber [32]

Definition 1 (Ontology by Gruber) :
An ontology is a specification of a shared conceptualization.

Another, closely related definition by Ushold and Gruninger in [66] is:

Definition 2 (Ontology by Ushold and Gruninger) :
Ontologies are agreements about shared conceptualizations

The latter definition is less strict: In this definition, ontologies and conceptualisations are kept
clearly distinct. An ontology in this sense is not a specification of a conceptualisations, it is a
(possibly incomplete) agreement about a conceptualisation [63].

Concept

Symbol Thing
stands for

evokes refers to

Figure 2.2: The meaning triangle [53]

An ontology always includes a vocabulary of representational concept labels to describe a
shared domain. These concept labels are usually called terms (lexical references represented
by symbols) and are associated with entities (non lexical referents – the concepts) in the uni-
verse of discourse. The meaning triangle [53], depicted in Figure 2.2, is a figure that is used to
explain the relationship between Concepts, Symbols and Objects or Things. Formal axioms are
also introduced to constrain their interpretation and well-formed use.

1AI researchers use ontologies mostly for building Knowledge Bases
2See [33] for more definitions

CHAPTER 2. BACKGROUND 10

An ontology is in principle a formalisation of a shared understanding of a domain that is agreed
upon by a number of agents [63]. In order for this domain knowledge to be shared amongst
agents, they must have a shared understanding of the domain and therefore, agreement must
exist on the topics about which to communicate. This raises the issue of ontological commitment
which Gruber [32] describes as ”the agreements about the objects and relations being talked about
among agents”. In other words, in order to facilitate meaningful communication, an agent must
commit to the semantics of the terms and relationships in the common ontology [56]. This
includes axioms about properties of objects and how they are related, also called the semantic
relationships of the ontology.

2.1.2 The Dogma Approach

DOGMA3 is a research initiative of VUB STARLab where various theories, methods, and tools
for ontology engineering are studied and prototypes developed. Our description of the DOGMA
framework has been inspired by several previous papers such as [10, 58, 63, 17, 21]. A full for-
malisation of DOGMA can be found in De Leenheer, Meersman, and de Moor [20, 19].

The DOGMA approach to ontology engineering aims to satisfy real world needs by developing
a useful and scalable ontology engineering approach. A DOGMA ontology is inspired by a clas-
sical model-theoretic perspective [60] and articulates an ontology in two distinct layers. This is
called the principle of double articulation [64]. DOGMA is a representation model and framework
that separates the specification of the conceptualisation (i.e. the lexical representation of concepts
and their interrelationships, see the ontology definitions 1 and 2) from its axiomatisation (i.e. the
semantic constraints).

In DOGMA’s double articulation principle, an ontology is decomposed into a lexon base and a
commitment layer

The Lexon Base

The Lexon Base is an uninterpreted, extensive, and reusable pool of elementary building blocks
for constructing an ontology [18]. These building blocks are defined as Lexons, formalised in
definition 3.

Definition 3 (Lexon) :
A lexon is an ordered 5-tuple of the form < γ, ζ, t1, r1, r2, t2 > with γ ∈ Γ, ζ ∈ Z, t1 ∈ T ,
t2 ∈ T , r1 ∈ R and r2 ∈ R. Where:

• T and R are sets of strings;

• t1 is called the head-term of the lexon and t2 is called the tail-term of the lexon;
3Developing Ontology-Grounded Methods for Applications

CHAPTER 2. BACKGROUND 11

• r1 is the role of the lexon and r2 is the co-role of the lexon;

• γ is the context in which the lexon holds;

• ζ is a code that refers to the natural language in which the lexon is defined.

A lexon < γ, ζ, t1, r1, r2, t2 > is a fact that might hold in a domain, expressing that within the
context γ and for the natural language ζ, an object of type t1 might plausibly play the role r1 in
relation to an object of type t2. On the other hand, the same lexon states that within the same
context γ and for the same language ζ, an object of type t2 might play the role r2 in (the same)
relation to an object of type t1. This description of lexons shows that they represent plausible
binary fact types (e.g., Person drives/is driven by Car).

Definition 4 (The Lexon Base) :
The Lexon Base Ω as a structure < T, R,Γ, Z,D,Λ > where:

• T ⊆ T is a non-empty finite set of terms that occur in the Lexon Base,

• R ⊆ R is a non-empty finite set of role names that occur in the Lexon Base,

• D is a non necessarily finite document corups,

• Γ is a finite set of context identifiers,

• Z ⊆ Z is a non-empty finite set of natural language codes,

• Λ is a finite set of 5-tuples: Λ ⊆ Γ × Z × T × R × R T ⊆ L. These 5-tuples are
called lexons.

Logically, since lexons represent plausible fact types, this database of lexons can become very
large. To guide an ontology engineer through this database, contexts impose a meaningful
grouping of the lexons. The context of a lexon refers to the source it was extracted from. This
source could be terminological or human domain experts.

It is important to note that this lexon base is uninterpreted. For example, while a lexon like < γ,
manager, is-a, subsumes, person > might intuitively express a specialisation relationship, the
interpretation of a role/co-roe label pair as being a part-of or specialisation relation, is postponed
to the commitment layer, where the semantic axiomatisation takes place.

The Commitment Layer

The Commitment Layer can be reified as a separate layer, mediating between the lexon base and
the applications that commit to the lexon base. Committing to the Lexon Base means selecting
a meaningful set Σ of lexons from the Lexon Base that approximates well the intended4 con-
ceptualisation, and subsequently putting semantic constraints on this subset. The result (i.e., Σ

4With respect to the application domain.

CHAPTER 2. BACKGROUND 12

plus a set of constraints), called an ontology commitment, is a logical theory that intends to model
the meaning of this application domain [18]. The set of constraints in the ontology commitment
are specific to an application (intended conceptualisation) using the ontology.

The Concept Definition Server

As we have introduced in the previous sections, a lexon is basically a lexical representation
of a plausible conceptual relationship between two concepts, though there is no one-to-one
mapping between a lexical representation and a concept. Therefore, a higher conceptual level is
introduced [64]. As a result not only do we have a double articulation between the Lexon Base
and the Commitment layer, we also have two different kind of levels in the DOGMA ontology,
namely the Language level (where the Lexon Base is located) and the Conceptual Level.

On the Conceptual Level, we have the Concept Definition Server (CDS). The idea for a Con-
cept Definition Server was first mentioned in [10] and is inspired by lexical databases such as
Wordnet [50]. In line with these lexical databases, for each (lexical) term, a set of senses is
kept (comparable to synsets in Wordnet). A concept definition is unambiguously explained by
a gloss (i.e. a natural language (NL) description) and a set of synonymous terms. Consequently
we identify each concept definition in the CDS with a concept identifier c ∈ C. The following
definition specifies the CDS:

Definition 5 (Concept Definition Server) :
We define a Concept Definition Server Υ as a triple < TΥ, DΥ, concept > where:

• TΥ is a non-empty finite set of strings (terms),

• DΥ is a non-empty finite document corpus,

• concept : C 7−→ DΥ × ℘ (TΥ) is an injective mapping between concept identifiers c ∈ C
and concept definitions.

Further, we define conceptdef(t) = {concept(c) | concept(c) = < g, sy > ∧t ∈ sy},
where gloss g ∈ DΥ and synset sy ⊆ TΥ.

Going from the language level to the conceptual level corresponds to articulating lexons into
meta-lexons. The articulation of a (lexical) term to a Concept in the Concept Definition Server is
also called the lift-up of a term. In figure 2.3, we illustrate the two levels in DOGMA: on the left
- the lexical level, lexons are elicited from various contexts. On the right, there is the conceptual
level consisting of a concept definition server. The meaning ladder in between illustrates the
articulation (or lift-up, therefore the ”ladder” terminology) of lexical terms into concept defini-
tion.

CHAPTER 2. BACKGROUND 13

Concept definition s i

• Concept identifier c 1

• Natural language gloss

• Synset = { tk ,..., tm }

Concept definition s i

• Concept identifier c 1

• Natural language gloss

• Synset = { tk ,..., tm }

Concept definition s i

• Concept identifier c 1

• Natural language gloss

• Synset = { tk ,..., tm }

Terminologist

LANGUAGE LEVEL CONCEPTUAL LEVEL

Information Systems

 Incompatible information < γγγγ, , , , t1, r1, r2, t2 >

< γγγγ, , , , t1 >
< γγγγ, , , , r1 >

< γγγγ, , , , t2 >

< ct1, cr1, cr2, ct2 >

Concept definition si

• Concept identifier c1

• Natural language gloss

• Synset = { tk ,..., tm }

MEANING LADDER

LEXON META-LEXON

Concept Definition Server

Quality Assurance

Lexon Base

Domain Experts

Knowledge engineer

excerpt

ct(γγγγ, , , , t1) = ct1

ARTICULATION

< γγγγ, , , , r2 >

CDS Record for term “capital”

conceptdef (capital) = { s1, s2,,sn }

Figure 2.3: Illustartion of the two levels in DOGMA ontology. (Reproduced from [20])

Definition 6 (Meta-Lexon Base) :
Given a Lexon Base Ω and a total articulation mapping ct : Γ × T ∪ R → C, a Meta Lexon
Base MΩ,ct = {ml,ct|l ∈ Ω} can be induced.

Example: As an illustration of the defined concepts, consider Figure 2.9. The term ”bank” in two
different contexts can be articulated to different concept definitions in the CDS. The terms are
part of some lexons residing in the Lexon Base. The knowledge engineer first queries the CDS Υ
for the various concept definitions of the term: concepdef(bank) = Sbank ⊆ DΥ × ℘ (TΥ). Next,
he articulates each term to the concept identifier of the appropriate concept definition:

• The term ”bank” was extracted from a seaport navigation document, and is articulated to
a concept identifier c1 that corresponds to concept definition (or meaning) s1 ∈ Scapital (as
illustrated on the right of Figure 2.9). A gloss and set of synonyms (synset) is specified for
s1.

• The term ”bank” was extracted from a financing book, due to the different context it was
extracted from, it is articulated to another concept identifier c2 that is associated with a
concept definition s2 ∈ S.

CHAPTER 2. BACKGROUND 14

LANGUAGE LEVEL CONCEPTUAL LEVEL

<Seaport Navigation Map, bank > Concept Definition s1

• Concept identifier c1
• Gloss =

• Synset = { }

MEANING LADDER

Concept Definition Server
Lexon Base

CDS Record for term “capital”

conceptdef (capital) = { s1, s2, ,sn }

ct(γγγγ, , , , t) = c

ARTICULATION

< Financing Book, bank >

Sloping land (especially the slope
beside a body of water)

Concept Definition s2

• Concept identifier c2
• Gloss =

• Synset = { banking concern ,
depository financial institution , }

A financial institution that accepts
deposits and channels the money
into lending activities

Figure 2.4: Illustration of two terms (within their resp. contexts), being articulated (via the
mapping ct) to their appropriate concept definition. (Inspired by [20])

2.2 Semantics on the Web: The Semantic Web

The advent of the World Wide Web (WWW) has taken the availability of information to an
unprecedented level. The rapid growth of the web poses new problems. Anyone can easily
publish a new document or add a link to a site with no restrictions on the structure or validity
of the new content. The lack of restrictions have been partly the reason for the success of the
web. It has kept the expertise necessary to create content for the web low and thereby origi-
nated the amount of available content. The overabundance of unstructured and possibly faulty
information has made it difficult for the users of the web to find relevant information easily. It
also poses scaling difficulties on current web crawlers and search engines.

These difficulties have given rise to the successor of the current web: the Semantic Web. The
Semantic Web is a project that intends to create a universal medium for information exchange
by giving meaning (semantics), in a manner understandable by machines, to the content of doc-
uments on the Web. Currently under the direction of the Web’s creator, Tim Berners-Lee of the
World Wide Web Consortium (W3C), the Semantic Web extends the World Wide Web through
the use of standards, markup languages and related processing tools5. With the Semantic Web

5http : //en.wikipedia.org/wiki/Semantic web

CHAPTER 2. BACKGROUND 15

we not only receive more exact results when searching for information, but also know when we
can integrate information from different sources, know what information to compare, and can
provide all kinds of automated services in different domains from future home appliances and
digital libraries to electronic business and health services[8].

2.2.1 The Semantic Web Technology Stack

Currently, the World Wide Web consists primarily of documents written in HTML. This makes
the the Web readable for humans, but since HTML has limited ability to classify the blocks of
text apart from the roles they play, the Web in its current form is very hard to understand for
computer agents. The purpose of the Semantic Web is to add a layer of descriptive technologies
to web pages so they become readable and can be reasoned about by computer agents.

Figure 2.5: The Semantic Web layers

The Semantic Web principles are implemented as a technology stack consisting of layers of
Web technologies and standards. The layers are presented in Figure 2.5 and described as fol-
lows:

• The Unicode and Uniform Resource Identifier (URI) layers make sure that we use interna-
tional characters sets and provide means for identifying the objects in the Semantic Web,
respectively. The most popular URI’s on the World Wide Web are Uniform Resource Lo-
caters (urls).

CHAPTER 2. BACKGROUND 16

• The XML layer with namespace and schema definitions enables the integration of the Seman-
tic Web definitions with the other XML based standards. XML provides a surface syntax
for structured documents, but imposes no semantic constraints on the meaning of these
documentes. XML Schema is a language for restricting the structure of XML documents.

• The ontology layer supports the evolution of vocabularies as it can define relations between
the different concepts. The structure is simple: knowledge is expressed as descriptive
statements, stating some relationship exists between one thing and another. The tech-
nologies to represent that structure are already in place6:

– The Resource Description Framework (RDF) is a simple data model for referring to
objects (”resources”) and their relations to each other. An RDF-based model can be
represented in XML syntax classes or in n3-notation.

– RDF Schema is a vocabulary for describing properties and classes of RDF resources,
with a semantics for generalization-hierarchies of such properties and classes.

– The Web Ontology Language (OWL) adds more vocabulary for describing properties
and classes: among others, relations between classes (e.g. disjointness), cardinality
(e.g. ”exactly one”), equality, richer typing of properties, characteristics of properties
(e.g. symmetry), and enumerated classes.

– SPARQL [57] is a query language for RDF and is a W3C candidate recommendation
since 2006. It has a similar syntax as the well-known SQL but operates on triples
instead of on relational tables.

– Early 2005, the W3C formed the Rule Interchange Format (RIF) working group7 with
the task of standardizing the rules that propel data across the Web, regardless of
format. RIF will provide a way to allow rules written for one application to be pub-
lished, shared, merged and re-used in other applications and by other rule engines.

• The top layers Logic, Proof and Trust, are currently being researched and simple applica-
tion demonstrations are being constructed. The Logic layer enables the writing of rules
while the Proof layer executes the rules and evaluates together with the Trust layer mech-
anism for applications whether to trust the given proof or not.

RDF

RDF is an abstract data model that defines relationships between resources. These resource can
be web-pages or surrogates for real world objects (e.g. persons). Meaning (semantics) is thus
encoded in sets of ’triples’: in a graphical representation the source of the relationship is called
the subject, the labeled arc is the property and the relationship’s destination is the object.

On its conception the most important design goals RDF is intended to meet are [40]:

6http : //en.wikipedia.org/wiki/Semantic web
7http://www.w3.org/2005/rules/

CHAPTER 2. BACKGROUND 17

http://www.felixvandemaele.net

Felix Van de Maele

DC: Creator

Felix' Blog

DC: Creator

Figure 2.6: An RDF example.

• A simple data model. RDF has a simple data model that is easy for applications to process
and manipulate. Note that the term “model” used here has a completely different sense
than that in the term “model theory”, where a model is a satisfying interpretation [34].

• Formal Semantics and Inference. Because the Semantic Web is all about machine processable
content, RDF has a formal semantics which provides a dependable basis for reasoning
about the meaning of an RDF expression and allow inferencing.

• Extensible URI-based vocabulary. Based on URI it allows for naming all kinds of things in
RDF. Besides the URIs there is one other kind of value that appears in RDF data which is
a literal.

• Anyone can make statements about any resource.

In the RDF data model we distinguish between resources, which are objects represented by URIs,
and literals which are strings. These resources may be related to each other or to literal values
via properties. Such a relationship may also be considered as a resource, which makes it possible
to make statements about statements.

The Dublin Core is one standard for a set of descriptors (such as the title, publisher, subjects,
etc.) that are used to catalog a wide range of networked resources, such as digitized text docu-
ments, photographs and audiovisual media. The following is an RDF example that makes use
of The Dublin Core8.

<rdf:RDF>

<rdf:Description rdf:href=Òhttp://www.felixvandemaele.netÓ>

<dc:Creator>Felix Van de Maele</dc:Creator>

<dc:Title>Felix’ Blog</dc:Title>

</rdf:Description>

</rdf:RDF>

Figure 2.6 gives a graphical representation of this example. For more details about RDF we refer
to [42].

8http://www.dublincore.org/

http://www.dublincore.org/

CHAPTER 2. BACKGROUND 18

application specific schema and namespace

application specific actual data

RDF/RDFS representation vocabulary

rdfs:Resource

Chateau Cheval BlancMerlot

rdfs:Class rdfs:Property

ww:Wine

ww:Red-Wine ww:White-Wine

ww:Grape

S S

T
T

S S

ww:madeWith

T
R

D

ww:name

T

ww:madeWithhttp://www.foograpes.com/
Merlot

http://www.chateau-
cheval-blanc.com

ww:name ww:name

S: subClassOf
R: range
D: domain
T: instanceOf

Figure 2.7: An RDF-Schema example.

RDFS

RDF-Schema is an RDF application that introduces an extensible type system to RDF. With
RDFS we can define class hierarchies and domain and range restrictions for properties.

Figure 2.7 shows an example ontology (wine-world) modeled with RDFS9.

• The most general class is rdf:Resource, which has two subclasses rdfs:Class and
rdf:property. When specifying a domain specific schema for RDF(S), the classes and
properties defined in this schema will become instances of these two resources.

• The resource rdfs:Class denotes the set of all classes in an object-oriented sense. This
means that the classes ww:Grape and ww:Wine are instances of the meta-class rdfs:Class.

• Likewise, each property defined in an application specific RDFS is an instance of rdf:Property
(e.g. ww:madeWith).

• RDFS provides rdfs:subClassOf, which is a special property, that defines the subclass
relationship between classes. Likewise there is rdfs:subPropertyOf that defines a hierar-
chy of properties.

9The figure falsely indicates that Chateau Cheval Blanc consists entirely of Merlot. Correct would be an encepage-
ment of 50% Cabernet Franc and 50% Merlot [46].

CHAPTER 2. BACKGROUND 19

• RDFS allows to define domain and range restrictions associated with properties. In our
example only ww:Wines can only be made with ww:Grapes.

The following is a simple illustration of the RDFS syntax. It declares three classes. The classes
”red wine” and ”white wine” are declared to be subclasses of the class ”wine”.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xml:base="http://www.wine-world.uto/wines">

<rdfs:Class rdf:ID="wine" />

<rdfs:Class rdf:ID="red wine">

<rdfs:subClassOf rdf:resource="#wine" />

</rdfs:Class>

<rdfs:Class rdf:ID="white wine">

<rdfs:subClassOf rdf:resource="#wine" />

</rdfs:Class>

</rdf:RDF>

RDF Schema provides basic capabilities for describing RDF vocabularies, but still some impor-
tant semantic aspects are missing (this list is not exhaustive):

• cardinality constraints on properties

• uniqueness constraint on properties of a class

• range constraints

• ability to describe new classes as a union or intersection of other classes

For a deeper discussion on RDFS we refer to http://www.w3.org/TR/rdf-schema/

OWL

OWL stands for Web Ontology Language and extends RDFS. OWL facilitates greater machine
interpretability of Web content by providing additional vocabulary along with a formal seman-
tics. OWL provides three increasingly expressive sub-languages:

• OWL Lite supports those users primarily needing a classification hierarchy and simple
constraints. For example, while it supports cardinality constraints, it only permits cardi-
nality values of 0 or 1.

• OWL DL10 allows some extra constraints, but guarantees computational completeness and
decidability. OWL DL includes all OWL language constructs, but they can be used only

10Description Logics

http://www.w3.org/TR/rdf-schema/

CHAPTER 2. BACKGROUND 20

Figure 2.8: The Onion Model.

under certain restrictions (for example, while a class may be a subclass of many classes, a
class cannot be an instance of another class).

• OWL Full allows maximum expressiveness and syntactic freedom, but without the guar-
antee of computational completeness and decidability. For example, in OWL Full a class
can be treated simultaneously as a collection of individuals and as an individual in its
own right.

It is hard to implement a full ontology management system and it may be superfluous for some
applications. Therefore W3C suggests the Onion Model of increasingly complex specs (cfr. Fig-
ure 2.8).

On http://www.w3.org/TR/owl-features/ the interested reader can find an in-depth
explanation of OWL.

SPARQL

SPARQL is an RDF query language; its name is a recursive acronym that stands for SPARQL
Protocol and RDF Query Language. It is undergoing standardization by the RDF Data Access
Working Group (DAWG) of the W3C. SPARQL enables the querying of rdf graphs in a similar
way like SQL queries relational databases. Its syntax is also very similar to that of SQL. At this
point, only read queries are possible.

For example:

The data: an RDF Object - Predicate - Subject triple

<http://example.org/book/book1>

<http://purl.org/dc/elements/1.1/title>

"SPARQL Tutorial"

The SPARQL query:

SELECT ?title

WHERE {

<http://example.org/book/book1>

http://www.w3.org/TR/owl-features/

CHAPTER 2. BACKGROUND 21

<http://purl.org/dc/elements/1.1/title>

?title .

}

The result:

title
”SPARQL Tutorial”

Table 2.1: The SPARQL query result

2.3 Semantics in Software Engineering

2.3.1 The OMGs Model Driven Architecture

The Object Management Group (OMG), a standardization consortium for various aspects of
software engineering including the well-established Unified Modeling Language (UML, [4])
has introduced, not so long ago, the Model Driven Architecture (MDA, [14]) paradigm. This
approach has the ability to create (using metamodeling) a family of languages [25] that are
defined in a similar way as UML.

Since the definition of UML, there has been a new wave of proposals at the OMG which is ev-
idence of a new era and a new vision. At the center of this vision is the Meta-Object Facility
(MOF, [3]), a unique and self-defined meta-meta-model. It acts as a framework to define and
use meta-models [28, 16]. The need for MOF resulted from the fact that UML was only one
of the meta-models in the software development landscape. Because of the risk posed by the
presence of a variety of different, incompatible meta-models being defined and evolving in-
dependently (data warehouse, workflow, software process, etc.) there was an urgent need for
a global integration framework for all the meta-models in the software development industry
[9].

The MDA defines an approach whereby you can separate the system functionality specifica-
tion from its implementation on any specific technology platform. That way you can have an
architecture that will be language, vendor and middleware neutral. For creating MDA-based
applications, the first step will be to create a Platform Independent Model (PIM), which you
should express in UML. Such a PIM can then be mapped to a Platform Specific Model (PSM)
to target platforms like the CORBA Component Model (CCM), Enterprise JavaBeans (EJB) or
Microsoft Transaction Server (MTS). Standard mappings should allow tools to automate some
of the conversion. Such a PSM, again expressed in UML, can then be actually implemented on
that particular platform.

CHAPTER 2. BACKGROUND 22

MOF
M3 Layer:

Meta-Meta Model

UML ODM
M2 Layer:

Meta Model

UML modelsUML modelsUML modelsUML models

Java, C#, XML, Databases,

MDA: 4 layered Architecture

M1 Layer:
Model

Ohter modelling
languages

Figure 2.9: Illustration of the 4-layers of the OMGs Model Driven Architecture

The analogies between the OMGs Model Driven Architecture approach, and the approach to
ontology engineering by STARLab’s DOGMA initiative is remarkable. Figure 2.10 shows a
conceptual comparison of the two paradigms.

2.3.2 The Ontology Definition Model

As we have discussed before, the standardization of the Web Ontology Language (OWL, [23])
by the World Wide Web Consortium (W3C) and the compelling vision of the Semantic Web [8]
contributed heavily to the wide-spread use of ontologies. In order to overcome the gap between
software engineering practitioners and the formal ontology practitioners coming from the AI
and Knowledge Management field, the OMG replied to this evolution by issuing a Request for
Proposal for an Ontology Definition Metamodel (ODM, [1]).

The intention was to provide a MOF based metamodel to support the development of ontolo-
gies using UML modeling tools and the two-way transformation between ontologies written
in a specific ontology representation language and ontologies modeled using a dedicated UML
syntax. Since that time, a submission team has developed a submission (see [15] for a concise
overview) which has undergone several revisions, based on comments solicited not only of the
OMG but from the W3C, ISO and Semantic Web communities as well.

CHAPTER 2. BACKGROUND 23

Conceptual Level:
Concept Definition Server

Language Level:
Lexon Base

ApplicationsCommitment
Layer

Platform Independent
Models (PIM)

Platform Specific
Models (PSM)
(J2ee, .NET, ...)

Transformer

D
O

G
M

A
M

D
A

Figure 2.10: The remarkable analogies between the OMGs MDA approach and STARLab’s
DOGMA approach to ontology engineering.

Besides the now very popular RDFS [13] and OWL [23] languages from the Semantic Web, there
is a considerable body of legacy expressed in UML and the Entity-Relationship (ER) model,
and an active ISO standard process Topic Maps (TM) [2]. However, none of these metamod-
els support a fully declarative first-order predicate calculus language for expressing predicates.
Therefore, the ODM includes a metamodel for Simple Common Logic (SCL) [36] for this pur-
pose. The modular structure of MOF makes it straightforward for third parties to extend and
enhance the metamodel.

To avoid an n-squared set of mappings, the ODM includes a further metamodel, a weakly-
constrained abstract formulation of Description Logic (DL), to be the target of bi-directional
mappings from the other metamodels. To map a legacy application from say UML to say OWL,
one would first map it to DL then from DL to OWL. The DL metamodel is not intended to be
used for ontology development in its own right.

RDFS

OWL

DL

SCL

UML

ER

TM

Figure 2.11: The structure of the ODM

SCL is an exception to this strategy. SCL is much more expressive than the other metamodels,

CHAPTER 2. BACKGROUND 24

so could be used to represent ontologies, but is therefore much more difficult to map into the
other metamodels. The ODM intends SCL to be used to implement predicates which cannot be
expressed in the other less-expressive metamodels. It is intended that a predicate be specified
in a primary metamodel, say OWL, and implemented in SCL. The relevant elements of the M1
model expressed in the primary metamodel will be mapped into SCL. So only a uni-directional
mapping from DL to SCL will be included. This mapping could also be used to migrate an
application from one of the other metamodels to SCL for further development. The ODM does
not provide a mechanism to get back from SCL to the other metamodels. Figure 2.11 depicts the
structure and possible mappings of the ODM.

2.4 Semantic Integration

As we have discussed in the previous sections, ontologies have gained popularity as means for
establishing explicit formal vocabulary to share between applications. Therefore, one can say
that one of the goals of using ontologies is not to have the problem of heterogeneity at all. It
is of course unrealistic to hope that there will be an agreement on one or even a small set of
ontologies. While having some common ground either within an application area, a sector of
organisations, or for some high-level general concepts could alleviate the problem of semantic
heterogeneity, we will still need to map between ontologies, or heterogeneous semantic models
in general. Not only do we need to map between different ontologies, we also need to map these
ontologies to other models and applications, as is for example being done in OMG’s Model
Driven Architecture and by STARLab’s DOGMA approach.

Semantic integration is the process of providing an integrated access to different, distinct and
heterogeneous data sources that contain some form of semantics, implicitly or explicitly. For
an overview of the different sorts of (implicit or explicit) semantics, we refer to our previous
discussion in section 2. In [67], Wache et. al. have identified three possible scenario’s in which
ontologies can help integration heterogeneous information systems. Figure 2.12 shows the three
scenarios.

The first scenario is the single ontology approach where one global ontology provides a shared
model for the specification of the semantics. In this scenario, each object of each source must be
related to the global domain model. This process is equal to the commitment of an application
to an ontology in the DOGMA approach: It maps the objects from each source to the global
ontology. This kind of mapping problem is one of the problems our platform addresses.

The first approach becomes very difficult if the granularity of the domains of each source is sig-
nificantly different (we will discuss the different levels of granularity of ontologies later). This
brings us to the second scenario: using multiple ontologies. In this approach, each information
source is described by its own ontology. To relate the different objects for each source, the user
needs to map the local ontologies. Here too is the problem of semantic integration which our
platform tries to solve.

CHAPTER 2. BACKGROUND 25

Global Ontology

Data
Source

Data
Source

Data
Source

Local
Ontology

Local
Ontology

Local
Ontology

Data
Source

Data
Source

Data
Source

Local
Ontology

Local
Ontology

Local
Ontology

Data
Source

Data
Source

Data
Source

Shared
Vocabulary

Single Ontology Approach Multiple Ontology Approach

Hybrid Ontology Approach

Figure 2.12: Three possible approaches for integrating heterogeneous sources using ontologies.

To overcome the drawbacks of the single or multiple ontology approaches, hybrid approaches
were developed. Similar to the multiple ontology approaches, the semantics of each source is
described by its own ontology, but in order to make the source ontologies comparable to each
other, they are built upon one global shared ontology. This approach is often described as the
Upper Ontology. One example of an upper ontology proposal is the Suggested Upper Merged
Ontology (SUMO) [51].

Now that we have seen one of the many scenarios and problems for semantic integration, we
will discuss the background on semantic integration and give a brief state of the art in this
section.

2.4.1 Terminology

Before continuing this chapter, it is important that we first provide a clear and unambiguous
terminology concerning the different aspects of ontology integration. We have opted to reuse
the integration terminology that is adopted the most often in the current literature. We have
borrowed the term definitions from [12].

Mapping: a formal expression that states the semantic relation between two entities belonging
to different ontologies. When this relation is oriented, this corresponds to a restriction of
the usual mathematical meaning of mapping: a function.

Ontology Alignment: a set of correspondences between two or more (in case of multi-alignment)
ontologies. These correspondences are expressed as mappings.

CHAPTER 2. BACKGROUND 26

Ontology Coordination: broadest term that applies whenever knowledge from two or more
ontologies must be used at the same time in a meaningful way (e.g. to achieve a single
goal).

Ontology Transformation: a general term for referring to any process which leads to a new
ontology o′ from an ontology o by using a transformation function t.

Ontology Merging: the creation of a new ontology om from two (possibly overlapping) source
ontologies o′ and o′′. This concept is closely related to that of integration in the database
community.

Ontology Reconciliation: a process that harmonizes the content of two (or more) ontologies,
typically requiring changes on one of the two sides or even on both sides.

Meaning Negotiation: the protocol through which two agents (either human or artificial) agree
on the changes required to reconciliate their ontologies.

2.4.2 Semantic Heterogeneity

In the distributed and open systems that is IT today, heterogeneity can not be avoided. Different
actors have different interests and habits, use different tools, and use knowledge at different
levels of detail. These various reasons for heterogeneity lead to different forms of heterogeneity
that are considered below.

Heterogeneity may occur at many different levels, and a detailed list of all the forms of possible
mismatches is beyond the scope of this document. We refer to [31, 7, 39, 37] for a more complete
discussion on this matter. However, for the sake of the definition of our conceptual framework,
we provide a classification into four main levels, based on [12].

The syntactic level

At the syntactic level, we encounter all forms of heterogeneity that depend on the choice of
the representation format. Indeed, the semantic models come in several formats (UML, RDF,
OWL, DB-Schema, ...), and each of them is based on a different syntax. In this thesis, we are not
strongly concerned about the syntactic level. In general, transformations on the syntactic level
are well understood in the computer science domain (e.g. XSLT).

The terminological level

The terminological level addresses all forms of mismatches that are related to the process of
naming the entities (e.g. individuals, classes, properties, relations) that occur in models. Nam-
ing is the process of associating a linguistic object from a public language (or vocabulary – the

CHAPTER 2. BACKGROUND 27

one that is used to exchange information with other parties) to entities described in the ontol-
ogy. In section 2.1.1 we have addressed how communities come up with new vocabularies,
namely by (i) overloading common words, (ii) creating new words, (iii) non-word identifiers
and (iv) compounds. This results in typical terminological mismatches:

• different words are used to name the same entity: synonyms;

• the same word is used to name different entities: polysemy and homonyms;

• words from different languages are used to name entities;

• syntactical variations of the same word (different spelling, abbreviations, prefixes and
suffixes, etc.).

These terminological mismatches may occur in situations where the models or entities are con-
ceptually equivalent. While mismatches at the terminological level are not as deep as those
occurring at the conceptual level (see below), they are very common and real in most cases and
therefore this level is just as important as the other one.

The conceptual level

At the conceptual level, we encounter mismatches that have to do with the content of the mod-
els. The practical forms in which metaphysical differences can rise are countless. However,
following the artificial intelligence literature on this topic (in particular [7]), we follow the sug-
gestion by [12] and visualised by figure 2.13 to cluster them in three abstract types:

Representation

World
Coverage

Representation 2

World
Granulartiy

Representation 1

World

Perspective

Representation 2

Representation 1

Figure 2.13: The three dimensions of heterogeneity at the conceptual level, reproduced from
[12]

CHAPTER 2. BACKGROUND 28

Coverage : an ontology may differ from another as they cover different portions - possibly
overlapping - of the world or domain. For example, an ontology on planes may contain
properties of fighter jets while another ontology might only cover passenger planes.

Granularity : an ontology may differ from another as the first provides a more (or less) detailed
description of the same entities. For example, an ontology concerned with accounting
and taxes, or delivery, would only consider the generic concept of document, while an
ontology for libraries or scholars would distinguish between types of documents.

Perspective : an ontology may provide a viewpoint on some domain which is different from
the viewpoint adopted in another ontology. For example, two ontologies may represent
the same domain at the same level of coverage and granularity, but as different points in
time (which means that the same property can hold at the time when the first ontology
was designed and do not hold at the time when the other was designed.

2.4.3 Ontology Matching

Schema matching has become a much debated topic in today’s research agenda, especially with
the advent of the Semantic Web. Its roots, however, can be found in the database literature of
the eighties. Due to the widespread importance of integration and matching, many disparate
communities have tackled this problem.

In a nice survey of the different matching approaches up to 2001, Rahm et. al. [59] have intro-
duced the Match operator. They define the match operator as a function that takes two schemas
(models) S1 and S2 as input and returns a mapping between those two shemas as output, called
the match result. We have depicted our interpretation of the Match operator in figure 2.14.

Match
Operator

Model 1

Model 1

Mappings

Match Result

Figure 2.14: The Match Operator

Many different matching approaches have been proposed by several different communities.
While the actual matching process is not the goal of our integration platform, it is a critical part
of the full ontology integration process. Therefore, we present here a typology and classification
of the most popular matching approaches and algorithms.

In a first classification of matching approaches, we present a typology of the different match-
ing techniques. A second classification is based on the observation that a common trend in

CHAPTER 2. BACKGROUND 29

semantic integration is to progress from semantically-poor to semantically-rich solutions ([38]).
This classification, described in [38], ranks the different techniques along a semantic intensity
spectrum.

Typology of Matching Techniques

Matching Approaches

Schema-based Instance-based

Element-level Structure-level

Syntactic External Syntactic Semantic Syntactic

Stringbased
- name similarity
- Description
similarity
- Global namespace

Language-based
- Tokenization
- Lemmatization
- Morphological
analysis
- Elimination

Constraint-based
- Type similarity
- Key properties

Linguistic-resource
- Lexicons
- Thesauri

Alignment-reuse
- entire schema /
ontology
- Fragments

Upper level formal
ontologies

- SUMO, DOLCE

Graph -based
- Graph matching
- Paths
- Children
- Leaves

Taxonomy-based
- Taxonomic
structure

Model-based
- Propositional SAT
- DL-based

Linguistic
- IR techniques

Constraint -based
- Value and Pattern
ranges

Figure 2.15: Matching typology, based on [59] and [62]

As we described earlier, most of the schema and ontology matching techniques are mutually
beneficial. Therefore, it should be no surprise that classifications of schema matching tech-
niques, which are targeted on schema matching approaches, have been used and revised for
ontology-based matching systems. A well-cited classification that targets database schema
matching approaches is the typology that was proposed by Rahm and Bernstein [59]. The
classification of Rahm and Bernstein distinguishes between elementary (individual) and com-
binations of matchers. Elementary matchers comprise instance-based and schema-based, element-
and structure-level, linguistic- and constrained-based matching techniques. Also cardinality and
auxiliary information (e.g., thesauri like WordNet [50], global schemas) are taken into account.

CHAPTER 2. BACKGROUND 30

This typology has been used and revised by Shvaiko and Euzenat in [62]. In their revision, they
have introduced two synthetic classifications: a Granularity/Input Interpretation classification is
based on (i) the granularity of a match, i.e., element- or structure-level, and then (ii) on how
the techniques generally interpret the input information. The second classification is the Kind of
Input which is concerned with the type of input considered by a particular technique.

The resulting typology can be seen in Figure 2.15.

Element-level vs Structure level Two alternatives can be distinguished for the granularity of
a match: element-level and structure-level matching. This criterium was first introduced
in [59]: ”For each element of the first schema, element-level matching determines the matching
elements in the second input schema. [...] Structure-level matching, on the other hand, refers to
matching combinations of elements that appear together in a structure.

Syntatic vs external vs semantic This criteria is the Input Interpretation classification proposed
by Shvaiko and Euzenat in [62]: ”The key characteristics of the syntactic techniques is that
they interpret the input in function of its sole structure following some clearly stated algorithm.
External are the techniques exploiting auxiliary (external) resources of a domain and common
knowledge in order to interpret the input. These resources might be human input or some thesaurus
expressing the relationships between terms. The key characteristic of the semantic techniques is that
they use some formal semantics (e.g. model-theoretic semantics) to interpret the input and justify
their results. In case of semantic based matching system, exact algorithms are complete.”

Semantic Intensity Spectrum

Another interesting classification is described in [38]. This classification is based on the observa-
tion that a common trend for DB and AI semantic integration practitioners is to progress from
semantically-poor to semantically-rich solutions. This metaphor of semantic richness is used
to classify works from both communities along a semantic intensity spectrum. Along this spec-
trum are several interim points to address string similarity, structure, context, extension and
intension awareness as different layers of semantic intensity (see Figure 2.16).

This classification is interesting for us as, in general, semantically-rich solutions are more com-
plex then semantically-poor solutions.

We will now give an overview of the different interim points on the spectrum, based on [38].
We refer to the full text ([38]) for a complete and detailed discussion.

String similarity , occupying the semantically-poor end of the spectrum, compares names of
elements from different semantic models. These techniques consider strings as sequences
of letters in an alphabet. They are typically based on the following assumption: The more
similar the strings of the concepts or nodes, that is, the syntactic similarity, the higher
their semantic similarity. Usually, the string is first normalized, then token-based distance
functions are used to map the pair of strings to a real number. Some examples of such

CHAPTER 2. BACKGROUND 31

Semantically Poor Semantically Rich

Ontology Matching

String Similarity Structure -Aware Context -Aware Extension -Aware Intension-Aware Semantic
Similarity

- Name similarity
- Description
similarity

- Graph Matching
- Property
characters

- Labelled DAG
matching
- Crawling
- Namespaces

- Formal concept
analysis
- Content similarity
- Data mining
- IR techniques

- information flow - Logic morphism
- Logic
satisfiability

Figure 2.16: Semantic Intensity Spectrum, reproduced from [38]

techniques that are frequently used in matching systems are prefix, suffix, edit distance and
n-gram.

Linguistic similarity , is just a little bit more to the right-end side of the semantic intensity
spectrum then pure string-based similarity. In this case, names of concepts or nodes are
considered as words of a natural language. Therefor, these techniques use Natural Lan-
guage Processing (NLP) techniques. For example, instance, pronunciation and soundex
are taken into account to enhance the similarity purely based on strings. Also, linguistic
relations between words like synonyms and hypernyms (a word that is more generic than
another word) will be considered based on generic and/or domain-specific thesauri, e.g.
WordNet [50], Dublin Core.

Structure-aware , refers to approaches that take into account the structural layout of ontologies
and schema data. Going beyond matching terms (strings), structural similarity considers
the entire underlying structure. Although, in some interpretations, structure-level tech-
niques include full graph matching algorithms, the interpretation of structure-aware tech-
niques here, is the matching of ontologies that are represented as a hierarchical, partially
ordered lattice. Therefor, in pure structural matching techniques, matching is equivalent
to matching vertices of the two source graphs. Similarity between two such graphs G1

and G2 is computed by finding a subgraph of G2 that is isomorphic to G1 or vice versa.

Context-aware , in many cases, there is a variety of relations among concepts which makes it
necessary to differentiate distinct types of connections among nodes. This gives rise to a
family of matching techniques which are more semantically rich than structure-aware ones.
In general, two different types of context-awareness can be identified.

In the simplest form, algorithms that compare nodes from two ontologies also traverse
downwards several layers along the direction of edges from the node under considera-

CHAPTER 2. BACKGROUND 32

Transaction

ItemSold
PO

POShipTo

City Street

POShipTo

City Street

PurchaseOrder

Address 1

City Street

Address 2

City Street

Customer

S1 S2

Figure 2.17: Structure Awareness

tion, or upwards against the direction of edges to the node under consideration. All the
visited nodes, together with the information about edges connecting them (taxonomic
relationships like part-of, subclass-of, is-a, etc) are evaluated as a whole to infer further
mappings between nodes in the context.

Extension-aware , when a relatively complete set of instances can be obtained, the semantics
of a schema or an ontology can be reflected through the way that instances are classified.
A major assumption made by techniques belonging to this family is that instances with
similar semantics might share features [45], therefor, an understanding of such common
features can contribute to an approximate understanding of the semantics.

Formal Concept Analysis (FCA) [27] is a representative of instance-aware approaches. FCA
is a field of mathematics emerged in the nineties that builds upon lattice theory and the
work of Ganter and Wille on the mathematisation of concept in the eighties. A formal
context is a triple K = (O, P, S), where O is a set of objects, P is a set of attributes (or
properties), and S ⊆ OxP is a relation that connects each object o with the attributes
satisfied by o.

The intent (the set of attributes belonging to an object) and the extent (set of objects having
these attributes) are given formal definitions in [27]. A formal concept is a pair < A,B >

consisting of an extent A ⊆ O and an intent B ⊆ P , and these concepts are hierarchically
ordered by inclusion of their extents. This partial order induces a complete lattice, the
concept lattice of the context. FCA can be applied to semi-structured domains to assist in
the main structure most the mapping systems work with.

Intension-aware refers to the family of techniques that establish correlations between relations
among extent and intent. Such approaches are particulary useful when it is impossible
or impractical to obtain a complete set of instances to reflect the semantics. A mathe-
matical theory that goes beyond extension-awareness towards the tick marked by intension-
awareness is Information Flow, proposed by Barwise and Seligman. We refer to [6] for a

CHAPTER 2. BACKGROUND 33

detailed description.

Semantic Similarity , very close to the semantically-rich end lays the family of logic satisfiability
approaches which focus on the logic correspondences. The idea behind techniques in this
category is to reduce the matching problem to one that can be solved by resorting to logic
satisfiability. Concepts in a hierarchical structure are transformed into well-formed logic
formulae (wffs). These notions are also used in the DOGMA Framework: the lexons in
DOGMA are all well-formed formulae.

2.4.4 Ontology Alignment & Merging

For our purposes, aligning two or more ontologies or models is a process that produces a set
of mappings across entities which allow ontology coordination (see section 2.4.1 describing the
terminology). Ontology merging, on the other hand, is a more specialised case which corre-
sponds to the problem of generating an ontology Om which mediates between two heteroge-
neous ontologies O and O′. Ontology alignment & merging are only possible after the ontolo-
gies are matched (by a matching framework or by human actors). However, in most ontol-
ogy integration approaches no explicit difference is made between the matching and alignment
phase.

We back this claim by presenting the definition of the alignment process proposed in [12]:

Definition 7 (Alignment Process by Bouquet et. al. [12]) :
The alignment process can be seen as a function f which, from a pair of ontologies o and
o’ to align, an input alignment A, a set of parameters p, a set of oracles and resources r,
returns a new alignment A’ between these ontologies:

A′ = f(o, o′, A, p, r)

This definition can be represented as in figure 2.18.

f

o

o

A

r

p

A'

Figure 2.18: The alignment process

This definition and the figure shows that the alignment process by Bouquet et. al. is almost
equal to the Match operator defined by Rahm et. al. As we will discuss in detail in chapter 3,

CHAPTER 2. BACKGROUND 34

our approach separates these two processes. We will also argue that this two-step methodology
has many benefits to the existing single-step approach.

2.4.5 Existing Integration Frameworks

In light of our classification and typology of matching approaches, we discuss here a short
overview of different matching systems that implement one or more of these algorithms. The
big difference with these systems and our mapping platform, is that the systems below actually
compute the mapping using a combination of matching algorithms. The goal of our platform
on the other hand, is to store language independent mappings (which might come from the
systems described here) and put them within a certain context and community.

This is a brief overview of the best-known matching systems, we refer to [62] for a more in-depth
overview and description:

Cupid Cupid [44] implements a hybrid matching algorithm comprising linguistic and struc-
tural schema matching techniques, and computes similarity coefficients with the assis-
tance of a domain specific thesauri.

COMA COMA (COmbination of MAtching algorithms) [24] is a composite schema matching
tool. It provides an extensible library of matching algorithms; a framework for combining
the obtained results, and a platform for the evaluation of the effectiveness of the different
matchers. The features that set COMA apart from CUPID are a more flexible architecture
and a possibility of performing iterations in the matching process.

Anchor-PROMPT Anchor-PROMPT [52] is an ontology merging and alignment tool with a so-
phisticated prompt mechanism for possible matching terms. In this respect, this system is
more likely to ours compared to the other matching systems discussed here, in that it al-
lows human suggestions and feedback. The other systems here are completely automatic.

S-Match S-Match [29, 30] is a schema-based matching system. It takes two graph-like struc-
tures and returns semantic relations (e.g. XML schemas or ontologies) and returns se-
mantic relations (eg. equivalence, subsumption) between the nodes of the graphs that
correspond semantically to each other.

3
Approach & Methodology

In this chapter, we will discuss our approach and methodology towards semantic integration.
In the first section, we will briefly summarise, from the previous chapter, the need for seman-
tic integration and why the existing approaches are not sufficient. In the methodology section
we discuss and elaborate on our specific, multi-step approach to semantic integration. In the
following section we describe in more detail our approach. More specifically, we discuss the
uniformness of our proposed mapping platform, its context-awareness and its support for the
influences of different communities. Furthermore, we provide an overview of the specific se-
mantics of our integration platform. We elaborate on the specific meaning of a community, a
context, a mapping, etc. within our framework by providing the reader with a set of definitions.
In the last section of this chapter we provide the reader with the motivation for our choices. We
provide a number of significant advantages of our approach compared to existing platforms
and we discuss how our proposed methodology achieves the goals for this thesis.

3.1 Introduction

As we have discussed in detail in section 2.4 on semantic integration, integrating two heteroge-
neous models corresponds to finding a set of mappings between the entities of the first model
and the entities of the second model that enable the first model to be translated into the other,
and/or the other way around. In the current literature, the integration process of finding a fi-

35

CHAPTER 3. APPROACH & METHODOLOGY 36

nal set of mappings between two models is considered one process within a well-defined time
span. If we recap from the background chapter: Some authors use the notion of Match Operator
to describe the mapping process (e.g. Rahm et. al. [59]) while another group of authors talks
about an alignment process (e.g. Bouquet et. al. [12]). Both approaches are depicted next to
each other in Figure 3.1.

Match
Operator

Model 1

Model 1

Mappings

Match Result
f

o

o

A

r

p

A'

Figure 3.1: The Match Operator by [59] (left) and the Alignment Process by [12] (right)

The Match Operator receives 2 models as input and uses a set of matching algorithms to compute
the similarity between the entities of both models. As a result, the match operator outputs a list
of mappings between the entities of both models.

Similarly, the Alignment Process receives two models as input and an alignment (initially this
might be an empty alignment or an instance training set). The output is an updated alignment,
which exists of a set of mappings between the entities of both models. Because the alignment
process also receives an alignment as input, these alignment processes can be chained.

Both approaches show a one-step process (or several chained one-step processes) that do not
have a persistent state between the start and the end of the process. We argue that these ap-
proaches come with several drawbacks as we will show in the following sections.

3.1.1 Mapping Reuse

The idea behind this thesis is to propose a conceptual framework to allow efficient and scalable
mapping reuse. This is one of the promising directions in semantic integration. A rational be-
hind mapping and alignment reuse is that many ontologies or models to be matched are similar
to already matched ontologies and models, especially if they are describing the same applica-
tion domain [59, 62]. Once an alignment has been determined, it can be saved, and further
reused. Thus, a (large) repository of mappings has a potential to increase the effectiveness of
matching systems by providing yet another source of domain specific knowledge. Knowledge
is contained within mappings between heterogeneous data sources. It is important that this
knowledge can be shared, governed and agreed upon by the community of interest. Just like
ontologies, which are shared conceptualisations, we argue that mappings should just as well
represent the shared vision and domain knowledge of a community. Enabling actors to estab-
lish and reuse mappings can, especially within their specific communities, create an adequate
and timely domain representation, facilitate knowledge exchange, etc.

CHAPTER 3. APPROACH & METHODOLOGY 37

Most of the existing integration frameworks do not explicitly support mapping reuse. As we
have presented the advantages of having a shared and agreed upon set of mappings, the limi-
tations and drawbacks of integration platforms and framework that lack such an approach are
evident: Currently, a mapping is the interpretation of a single individual for a certain integra-
tion problem. There are no processes in place for the mapping to represent the interpretation
of a group of individuals that are affected by the particular integration problem. There is no
way the community of interest can represent its confidence or thrust in the mappings. These
are very important issues that are overlooked in the current integration frameworks. Further-
more, as mappings are not shared, every individual must redo the entire mapping process for
integration scenarios that may be very similar to already solved problems. Because of these
limitations, the integration problem is still a very labour-intensive problem that does not scale
well. As it happens, the efficiency and scalability of mapping frameworks will become ever
more important while we are moving more and more towards model-driven architectures and
methodologies in a lot of application areas of computer science and Information Technology, as
we have shown in the Semantic Web and OMGs Model Driven Architecture initiatives.

One framework, COMA++ [5] does support mapping reuse, but only privately: Access to the
system is limited to individual users, who usually do not know each other, hence, they do
not communicate with each other. While this private reuse solves some issues on the practical
side of the integration problem, it does not address our proposition that the mappings should
represent the shared knowledge of the community of interest. In this private reuse of mappings
approach, shared knowledge of the community with its negotiation processes can not be fully
leveraged.

3.1.2 Application-specific mappings

Not only does the current work on semantic integration not account for shared mapping reuse,
it does also make no distinction between the conceptual meaning of a mapping and its applica-
tion specific representation. Using the definition of semantic integration, mappings must allow
one model to be translated into the other. To allow models to be translated into each other, the
mappings between the entities of these models need to be described in a specific integration
language or integration model that can be interpreted and executed by a specific application for
a specific purpose. We give a few examples of how this issue can present itself:

Map an SQL schema to an ontology In this scenario, we want to map an SQL schema from a
relation database to an ontology. Using this mapping, we want to be able to query the
ontology for the content of the relational database.

Let’s say that there are two applications that can translate queries on the concepts and
properties from the ontology to standard SQL queries. To do that, both programs need a
mapping file that precisely specifies how the ontology is translated to relation tables and
columns. However, both these applications are developed by distinct software vendors
and use their own proprietary language to describe these mappings. Currently, there is

CHAPTER 3. APPROACH & METHODOLOGY 38

no integration framework that enables the actors to save the mappings from the ontology
to the relational tables in an application-neutral format. This clearly shows the need to
separate the conceptual meaning of the mapping (matching a relation table to a concept
from the ontology for example) from the application- or language-specific representation
of these mappings.

Translate instance data from one model into another model In this scenario, the actors need
to translate instance data that is represented in one model into another given model. This
is a very well known problem in the enterprise-IT market. One example in which this sce-
nario often occurs is data warehousing. A data warehouse is a decision support database
that is extracted from a set of data sources. The extraction process requires transform-
ing data from the source format into the warehouse format. As shown in [54], the match
operator is useful for designing transformations. However, these transformations again
have to be interpreted and executed. For example, a concatenate transformation needs to
be executed when the instance data is actually transformed into the other model, in this
case the data warehouse.

Another drawback of directly working on language- or application-specific mappings is that
these mappings can only be created by an actor that is familiar with the language or application.
However, mappings between different models often require a more high-level and conceptual
view of the data and models. The information that is needed to create valid mappings is often
contained by users with a managerial role in the organisation while these users often have no
knowledge of the specific, low level integration language used.

While these limitations are not so serious on integration platforms that don’t support map-
ping reuse, on our platform, where we aim to provide the actors with a platform on which
they can establish their shared and reusable mappings, this constraint is much more severe:
To be able to establish such a shared knowledge, the involved actors must be able to com-
municate in a manner that all of them understand. Therefore, it is important that the shared
mappings are expressed in a conceptual manner which also non-technical knowledge experts
understand.

3.2 Methodology

As we have discussed in the previous section, semantic integration is traditionally a one-step
process that, given two heterogeneous models, returns a set of mappings that can translate
one model into the other. We have also argued that this approach comes with a number of
drawbacks such as dealing with application-specific mappings, no conceptual framework to
reason, discuss and approve the mappings, hard to reuse existing mappings, etc.

In this thesis we propose a possible solution for these problems: We introduce an integration
approach that splits up the integration process into two distinct phases: the Mapping Phase and

CHAPTER 3. APPROACH & METHODOLOGY 39

the Commitment Phase. In short, the mapping phase is similar to the Math Operator or Align-
ment Process in that it takes two heterogeneous models as input and returns a set of mappings
between the entities of both models. The difference lies in the fact that these mappings are
language-, application and paradigm-neutral or in other words, uniform. In the second step,
the commitment phase, the actors select a meaningful subset from the large number of con-
ceptual mappings. The mappings from this subset are context-, community-, and application-
dependent and are represented in a language- or application-specific format.

Our two-step approach has been inspired by both the STARLab Dogma approach to ontology
engineering and OMGs Model Driven Architecture paradigm. A very high-level comparison
between the three is depicted in figure 3.2.

Conceptual Level:
Concept Definition Server

Language Level:
Lexon Base

ApplicationsCommitment
Layer

Platform Independent
Models (PIM)

Platform Specific
Models (PSM)
(J2ee, .NET, ...)

Transformer

D
O

G
M

A
M

D
A

Application
Specific Mapping
& Transformation
Models

Committer

M
ap

pi
ng

Pl

at
fo

rm

Model/Entity Server

Relation Definition Server

Mapping Base

Figure 3.2: A high-level view, from top to bottom, of Dogma’s ontology engineering approach,
OMGs model driven architecture paradigm, and on the bottom, our approach to semantic inte-
gration, our mapping platform.

In Dogma’s approach to ontology engineering, the commitment layer is a separate layer, medi-
ating between the lexon base and the applications that commit to the lexon base. Committing to
the lexon base means selecting a meaningful set of lexons from the lexon base that approximates
well the intended conceptualisation with respect to the application domain.

In the OMGs Model Driven Architecture paradigm, the envisioned applications are created us-
ing platform independent models, using for example UML, OCL, etc.. In a second phase, these
platform independent models are transformed into platform specific models that deploy the
application on a specific platform in a specific language, for example in Java J2EE or Microsoft
.NET.

Similarly, on our mapping platform, application or platform independent mappings are created

CHAPTER 3. APPROACH & METHODOLOGY 40

in the mapping phase. We call these mappings plausible mappings as they might be valid in a cer-
tain context and community, but not necessarily in another. In the second phase, a meaningful
subset is chosen from this large set of conceptual, plausible mappings depending on the context,
the involved community, and the application domain of the integration scenario in the commit-
ment phase. We call this process ”committing” . For this process, platform or language-specific
committers must be created that will help the actor to interpret the conceptual mappings and
translate them to a language-specific, executable alignment. Next, we will go into more detail
on both steps of our integration methodology.

3.2.1 Mapping phase

The goal of the mapping phase is to identify plausible mappings between entities from the
heterogeneous models. The result of this process is a set of uniform, plausible mappings that are
added to a large mapping store. This process is split up into two methodological steps:

1. Preintegration: In this step, the syntactical heterogeneities of the models are overcome by
parsing the entities of both models into our uniform mapping data model. We will discuss
our mapping data model in the coming sections of this thesis.

2. Matching: In the second step, the different entities are matched and mappings are created
between similar entities. This matching process can be completely automated by using a
set of matching algorithms we reviewed in our first chapter, but more realistically, match-
ing algorithms will create a number of mappings after which a human actor or actors
should validate these. The resulting mappings are stored in a large mapping repository.

Each mapping process is executed within a certain context and is executed by a certain com-
munity. Therefore, each mapping stored in the mapping store has a context and community
identifier attached to it.

The context of the mapping models the environmental settings in which the mapping has been
deducted. A mapping might be plausible in a certain context, while the same mapping might
not be valid in another. The context also enables the actor to provide a well-defined and context-
specific definition of the relation of the mapping. For example, a relation between two entities in
one context might be transitive, while the same relation in another context might not be.

The community of a mapping contains the actors, processes and goals of the actors that have
created the mapping. Again, a mapping might be relevant to one community but not to another.
Furthermore, reuse of mappings created by different actors implies resolving, among others,
such challenges as the appropriateness of mappings when using them in applications and thrust
issues. We will review the context and community aspects of our integration platform in more
detail in the coming sections.

The mappings that are created in the mapping phase should be viewed as conceptual mappings,
that is, they are not meant to be used in applications, but should be used by the communities of

CHAPTER 3. APPROACH & METHODOLOGY 41

interest to negotiate and share the implicit knowledge that they contain: How does one model
or ontology relate to another within a certain given context through the eyes of a certain commu-
nity. Because each mapping has a context and community aspect, these can be fully leveraged
in the next phase, the commitment phase, of the integration process. To conclude: The result of
the mapping process is a set of uniform, conceptual mappings with a well-defined relation that
are plausible in a certain context and are created by a certain community.

3.2.2 Commitment phase

The goal of the commitment phase is to create an application-specific alignment that best ap-
proximates the intended use of the alignment. The alignment is modelled in an alignment
model described in a certain language to be used by a specific application.

During the commitment process a (group of) actor(s) selects a meaningful set of mappings that
best approximates their intended alignment. This selection and reuse process of committing
a mapping to an alignment corresponds to augmenting the representation-neutral mapping
element to a commitment rule that is valid in this particular alignment described in a partic-
ular language. The validity of the commitment-rule is dependent on the intended use of the
alignment, which will be domain-, community-, organisation-, or application-specific. Hence, a
commitment or alignment can be seen as an interpretation of a set of mappings.

The resulting alignment corresponds to an instance of an alignment model which is described in
a specific language. For example, when integrating two OWL-ontologies, the alignment may be
an instance of an OWL Alignment Ontology which provides a language-specific interpretation
of the mappings from the alignment. Figure 3.3 depicts the process of committing a plausible,
conceptual mapping from the mapping phase to an instance of the Aligment API integration
model1 [26]. The resulting alignment is language specific and should be created with a certain
application scenario in mind. It is also the interpretation of the conceptual mapping from which
it originated. In the example, the conceptual relation of the mapping, equals, is interpreted to the
language specific relation =. When committing to other formats, the conceptual relation may
be interpreted to rules in a certain rule language (for example, RuleML [11], SWRL [35], etc.) or
it may interpreted as an owl:SameAs relation, etc.

By adopting this clear separation and distinction between the matching and alignment phase,
the actors of the system can reuse the existing mappings to create an alignment that best ap-
proximates its intended use - which will be domain-, community-, organisation-, or application-
specific. We will further elaborate on the advantages of our methodology after we have fully
presented our methodology and the semantics of our platform in the following sections.

1The Alignment API is a format for expressing alignments in RDF, so that they can be published on the web.

CHAPTER 3. APPROACH & METHODOLOGY 42

< e11 equals e22 >

Context 1 Context 2

Community 1 Community 2

< e12 subsumes e23 >
< e11 equals e23 > < e13 equals e23 >

<rdf:RDF xmlns='http://knowledgeweb.semanticweb.org/heterogeneity/alignment'
 xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema#'>
<Alignment>
 <xml>yes</xml>
 <type>11</type>
 <onto1>onto1.owl</onto1>
 <onto2>onto2.owl</onto2>
 <map>
 <Cell>
 <entity1 rdf:resource='http://www.example.org/ontology1#e11'/>
 <entity2 rdf:resource='http://www.example.org/ontology2#e22'/>
 <measure rdf:datatype='xsd:float'>0.0</measure>
 <relation>=</relation>
 </Cell>
 </map>
</Alignment>
</rdf:RDF>

Committing a conceptual mapping to an alignment

Figure 3.3: An example of committing a conceptual mapping to an application specific align-
ment. In this example, the alignment is an instance of the Alignment API [26] model.

3.3 Mapping Approach

In the previous section, we have reviewed our two-step methodology for semantic integration.
Separating the mapping phase from the commitment/alignment phase allows us to introduce
other important aspects that have not yet, or only briefly, been addressed in the current liter-
ature with respect to semantic integration. We introduce here the tree aspects that make our
methodology different from existing approaches: We support uniform, language-neutral, con-
ceptual mappings between models without any constraints on the type of models and their
entities. We also introduce the notion of context into our integration approach. We argue that
mappings are dependent on the context in which they are created or elicited. Furthermore, we
discuss how communities can influence the integration process. We will elaborate on how com-
munities can play an important role in the alignment phase of the integration process. We will
also discuss the possibilities that communities bring to the integration process in the context
of groupware: how can they help to introduce measures of quality, confidence and thrust in a

CHAPTER 3. APPROACH & METHODOLOGY 43

mapping, and how can a group of actors participate and collaborate to create a larger, richer
and better set of high quality mappings.

In the following sections, we will elaborate on each of these three aspects that makes our ap-
proach unique.

3.3.1 Uniform Mappings

As we have discussed in section 2.4.2 on Semantic Heterogeneity, there are several forms of
heterogeneity that must be overcome to achieve semantic integration: Heterogeneity occurs on
the syntactical level, on the terminology level, and on the conceptual level.

One of the goals of this thesis is to propose a conceptual platform on which actors and com-
munities can create, maintain, reason and govern (express their thrust and confidence) about
mappings. As we have discussed earlier, to reach this goal, it is required that the mappings
are created and stored in a paradigm and application-neutral form. Therefore, we make no
assumptions on the possible scenarios, platforms and applications on which these mappings
can be used (that’s why we have the separate commitment/alignment phase). Hence, it is very
important that we also make no assumptions on the type of information sources that need to
be integrated, in other words, we must support syntactic heterogeneity on the input side (the
models that need to be integrated) as well as on the output side (the alignments between the
models resulting from the commitment phase).

The requirements and proposed solution of our integration approach asks for a complete sup-
port of syntactical heterogeneity. We call this aspect of our integration platform the support for
Uniform Mappings. Under uniform mappings we understand the following:

• Allow the creation of mappings between any two different types of models. For example,
the platform must support mappings between relational databases and ontologies, but
also between UML diagrams and ontologies and of course between ontologies themselves.

• The mappings must be created and stored on a conceptual level, that is, they should only
refer to other entities or definitions. We will elaborate on this in more detail when we
discuss the semantics of our integration platform.

• The mappings are never used in the form they are created and stored. To use a mapping
in a real application or scenario, they must be interpreted and transformed into a repre-
sentation that is specific for their intended use. Any representation format should be sup-
ported. A mapping between concepts from two different ontologies could be committed
into different integration models. For example, a mapping with a conceptual equal relation
could be interpreted as a owl:SameAs relation in one commitment, while the same mapping
could be interpreted as a complex rule in a certain rule language (such as RuleML [11],
RIDL [48], SWRL [35], etc.) in another commitment for another application and scenario.

CHAPTER 3. APPROACH & METHODOLOGY 44

Model Entities
Relational Database Table Columns

OWL Ontology OWL Classes, properties & relations
UML Diagram UML Classes & properties

Table 3.1: A number of possible model / entity combinations

To support these uniform mappings, we parse any input model into our own Model - Entity
format. A model is basically a set of entities that can be logically grouped together. One or
more entities from a first model can be mapped to one or more entities from a second model.
No syntactic or semantic constraints are put upon these entities. Table 3.1 lists some possible
model/entity combinations:

3.3.2 Community-driven Mappings

By a community we mean here a group of individuals that have a common interest and share
a certain goal. They often maintain their own communication and collaboration environments
through for example, web portals, thin- or thick-client applications, etc. Recent research has
identified a high importance of direct involvement of humans and communities in ontology
management: An actor (an agent or human contributor) was shown to be an indispensable
part of a semantic network [49], and participation of a community construction has since long
been shown as a way to a more complete and up-to-date domain knowledge representation
[22, 68].

We argue that the interaction, collaboration and negotiation between actors and communities
of actors is also very important in the process of integrating heterogeneous semantic models.
As we have stated previously, in this thesis we propose a novel framework that encourages
mapping reuse to come to a more efficient and scalable integration process. We also argue
that in order to achieve such an efficient and scalable integration platform, actors should be
able to reuse mappings that have been created by other actors and individuals. As we have
discussed, current work only support private reuse of mappings. This is our first motivation
for introducing actors grouped in communities: In order for actors to reuse mappings, they have
to know from which actor these mappings originated. Furthermore, it is important that the user
of the mappings knows by which community this mapping was created. This is an important
fact because each community has a certain goal and process which might have influenced the
elicitation or creation of the mapping. The established mapping might be valid or plausible
to a certain community while another community might disagree. It is therefore necessary
that when an actor reuses an existing mapping, he knows by which community this mapping
was established. As a result, one could call these mappings subjective mappings in that they are
appropriate in one community or domain, but not in another.

Figure 3.4 shows a possible mapping phase of the integration process. There are 2 actively par-

CHAPTER 3. APPROACH & METHODOLOGY 45

Biology Domain BioInformatics Domain

Mapping Repository

Ann Mark Dave

?

Isabelle

Biology, Mapping

Model 1 Model 2

BioInformatics, Mapping

Adds a mapping subjective
to the biology domain

Adds a mapping subjective to the
bioinformatics domain

M
ap

p
in

g
 p

h
as

e

Figure 3.4: An example of a community-driven mapping elicitation and creation process.

ticipating actors in this example: Isabelle and Mark are individuals that are familiar with the
biology domain as well as the BioInformatics domain. Both individuals are part of both com-
munities. Both of them create a mapping between two similar entities from a first model from
the biology domain and a second model from the bioinformatics domain. However, Isabelle
creates the mapping for the community of biology researchers while Mark creates the mapping
with respect to the Bioinformatics community. As a result, there are two different mappings
stored in the mapping repository between the same entities from the same two models, but
with a different community aspect and possibly with a different relation between the entities of
the mapping.

However, introducing reuse of mappings created by different actors also implies resolving,
among others, such challenges as the level of thrust and confidence that the users have in the
existing mappings. Therefore, it is important that members of the community can express their
confidence and thrust in mappings. These confidence measures should also be stored with the
mapping. When these confidence measures are stored, users can see the mappings in which
their peers have most confidence in and reuse these. This measure acts as a useful way to rate
the relevant mappings that may be reused, it allows the actor to make a better choice of which
mapping he should reuse. This is an important feature because when this would be unavailable,
the user could get a very large number of potentially relevant mappings of which he would not
know how to make a choice from.

CHAPTER 3. APPROACH & METHODOLOGY 46

Biology Domain BioInformatics Domain

Mapping Repository

Mark Dave

?

Isabelle

Biology, Mapping BioInformatics, Mapping

Express the confidence & thrust
from a community in the mapping

Express the confidence & thrust
from a community in the mapping

Figure 3.5: An example of a communication and negotiation process in which the community
can express its confidence and thrust in the existing mappings.

To revisit the previous example, figure 3.5 shows the negotiation and communication process
in which the community members can express their confidence and thrust in the mappings pre-
viously created by their peers. Because these mappings are stored in a conceptual manner and
do contain any application-specific technicalities, the knowledge engineers and domain experts
can efficiently review the quality of the mappings. When the quality is not sufficient, they can
add their own mappings. As a result, when an individual want to reuse a mapping from his
community, he will be able to see in which mappings the other actors from his community have
most confidence in. When we discuss the context of a mapping, we will show how we can iden-
tify similar mappings (mapping between the same entities) from the same community.

In the second phase of our integration methodology, the commitment phase, the actor must
make a selection of mappings to create an alignment that best approximates its intended use. In
this phase, the actor will browse or search through the mapping repository to find the most rele-
vant mappings. The community-driven integration platform brings two important advantages
in this stage of the integration process:

1. Since the mappings are grouped by community, the actor can easily find the relevant map-
pings for his application. This is important because when the mapping repository grows
larger and larger, finding the relevant mappings will prove to become more difficult over
time. This is a recursive problem: When the actor is unable to find a relevant mapping, he
might decide to create its own and add it to the mapping repository which will become
larger. The next actor that needs to find a relevant mapping will have an even harder time
to find the relevant mapping and might also decide to create his own mapping, etc.

CHAPTER 3. APPROACH & METHODOLOGY 47

2. Because the members of the different communities have been able to share their confi-
dence and thrust in these mappings, the actor will be able to better find the best possible
mapping to include in his alignment.

We give an example of this phase by revisiting our previous examples. Figure 3.6 depicts two
possible commitment scenarios. In the first, Ann needs to build a system that allows the users
of the system to query for articles about new crop growing techniques. There is a query system
available that can query a large number of heterogeneous information sources by using a given
alignment. The only thing that Ann has to do is to build this application-specific (in the for-
mat that is understood by this particular query system) alignment that maps between different
sources about crop growing techniques (the intended use). As shown in this case, Ann needs
a mapping (which we call Mapping1) between a two specific entities from two relevant models,
one from the biology domain and one from the bioinformatics domain (as we have seen in the
previous examples). As shown in the figure, the mapping repository has two mappings that
could provide Ann with this particular mapping (called Mapping1). One of these mappings is
created by someone from the BioInformatics domain (Mark) and the other mapping is created
by someone from the Biology domain (Isabelle). While both mappings express the same actual
mapping, Ann will most likely choose the one that has been created by one of her colleges from
her own community as this mapping will most likely express the relation Ann intends to use it
for.

Similarly, Dave needs to create an alignment that will allow the query engine to query for arti-
cles about AI-search problems. Mark needs the same mapping as Ann, but will in this case use
the one that has been established by a member of his own community.

3.3.3 Context-aware Mappings

As we have discussed in our background chapter, context is a critical concept for applying se-
mantics in practice. For example, in the elicitation and application of ontologies, the meaning
of the ontological knowledge is dependent on the context [18]. While it is such an important
aspect of semantic technologies, most of the current works on semantic integration do not men-
tion context.

A possible reason for this is that modelling the context is a very difficult problem that has not yet
been solved by the research community. Important work in that respect has been done by Lenat
in the Cyc Ontology project [43]. Lenat categorises context into 12 dimensions: time, typeoftime,
geolocation, typeofplace, culture, sophistication/security, topic, granularity, modality/disposi-
tion/epistemology, argument-preference, justification, and ”let’s”. However, in this thesis, we
will model the context as a black box so it is up to the user to describe the context. This is the
same method that is adopted by most of the current work that handles context. Context is very
complex to precisely specify and the pragmatic solution we adopt in this thesis is sufficient for
our needs.

CHAPTER 3. APPROACH & METHODOLOGY 48

Biology Domain BioInformatics Domain

Mapping Repository

Ann Mark Dave

?

Isabelle

Biology, Mapping BioInformatics, Mapping

Dave needs to build a system
that finds articles about AI-

Search problems

C
o

m
m

itm
en

t P
h

ase

Query EngineQuery Engine

Ann needs to build a system that
finds articles about new crop

growing technologies

Application-specific Alignment Application-specific Alignment

Heterogeneous Information Sources

Figure 3.6: An example of a communication and negotiation process in which the community
can express its confidence and thrust in the existing mappings.

The way we use the context of a mapping is very similar to the way as we use the community in
our framework: It is an important grouping mechanism that allows the actor to easily retrieve
the most relevant mapping to be used in the commitment phase. While the community is a
very specific differentiator between mappings (we will give a precise definition of what a com-
munity looks like later), the context allows the actors to arbitrarily group mappings together.
For example, the context can differentiate between mappings that have been created by a dif-
ferent set of matching algorithms, by a different number of users from the same community,
at a different time, etc. Furthermore, there is no link between the context and the community:
A community can contain mappings that belong to several contexts but a context can just as
well contain mappings that belong to several communities as we will see in the examples. The
combination of a context and community describes a unique set of mappings. We will elaborate

CHAPTER 3. APPROACH & METHODOLOGY 49

on the exact semantics of our integration model in the next section.

Because the context is such a undefined, black-box, we think it is best to show its use through a
couple of examples:

Context to disambiguate mappings: The first obvious use of context is to disambiguate be-
tween mappings. While we introduced the community-awereness of a mapping to specif-
ically disambiguate on the creators of the mappings, we also need to disambiguate on
other potential aspects of a mapping. This is particularly critical in our framework. Be-
cause the strength of our approach is directly linked with the ability to reuse plausible,
conceptual mappings, it is important that enough of these relevant mappings exist. There-
fore, we need a way to disambiguate similar mappings on more then only their creators
so that enough mappings are available for different scenarios.

Context to disambiguate relations: In ontology management, the context is used to disam-
biguate similar terms that refer to different concepts. Context can be similarly used in
ontology integration whereas a relation term in one context refers to a certain relation
definition while the same relation term in another context can refer to another relation
definition. For example, a relation in one context might meant to be transitive while the
same relation in another context might not. It is important that our platforms provides a
way to disambiguate these two relations by letting them refer to a different relation defini-
tion. We will discuss this in more detail when we present the semantics of our integration
platform.

Context to support collaboration: To allow public reuse of mappings, the mappings must be
stored in a repository which runs on a server accessible by different actors through differ-
ent systems. However, such a collaboration environment introduces typical groupware
problems: What to do if two actors edit the same mapping at the same time and store it
back into the repository? The offline editing of mappings and storing them back in to the
repository introduces a number of typical problems. One possible solution is to view the
mappings from a database perspective and use several locking techniques. However, the
scalability of this approach is questionable. Another possible solution is to build a merge-
operator that merges different versions of a single mapping. A potential implementation
of this solution could be to automatically create a new context when two mappings can
not be merged. This could be extended to introducing dependencies between contexts
and brings us to the concept of evolution. We will discuss this in more detail when we
elaborate on the additional benefits of our approach.

3.4 Mapping Semantics

In this section we elaborate on the specific semantics underlying our methodology and plat-
form. We will provide definitions of the different concepts we have introduced in the previous

CHAPTER 3. APPROACH & METHODOLOGY 50

sections: the context and community of a mapping, the model and its entities, the conceptual
relation of a mapping and of course the mappings themselves. It is important that we pro-
vide well defined descriptions of these concepts in respect to our specific integration approach
as these concepts are used in many other scenarios and have been overloaded with different
meanings over time.

Several different mapping models have been proposed in the current literature. A very formal
and logic-based model is described in [12]. Another, similar model - one that is often-used in the
field of ontology alignment - is described by Euzenat [26]. Our model is based on to the latter
but extended to support our methodology and framework: we introduce the notions of entities
and models to support the uniform mappings we discussed before, context and community.

3.4.1 Model & Entities

We start by defining our data model. With data model, we understand here the models and
the content of the models that are being integrated by the framework. As we have discussed,
one of the goals of our platform is to enable the integration of heterogeneous data models (e.g.
OWL ontologies, Dogma Lexons, UML diagrams, relation database schemas, etc.). To enable
this integration, we parse any input data model into a model / entity combination. The goal
is not to describe or specify the full model, we only store a description of it, the type of the
model, a reference to the actual model, and the entities that are part of the model. The following
definition captures the semantics of an Entity Model:

Definition 8 (Entity Model) :
An Entity Model Υ is represented as a 4-tuple: < ref, desc, T , E >, where:

• ref is the reference identifier to the actual model, this should be a Unique Reference
Identifier (URI);

• desc is the description of the model;

• T is the type of the model, eg. RDFS, OWL, Dogma-Lexon, Relational Database Schema,
...;

• E = {e1...en} is the set of Entities e1 to en that the model contains.

An entity can be anything that is part of the model. It can be a class, a relation, a property, an
instance, etc. We have defined an Entity in a similar way as the Entity Model, that is, it has a
reference name, a representational name, and an Entity Model of which it is part of, the entity
itself is not stored. We have defined it as such:

Definition 9 (Entity) :
An Entity e is defined as a 3-tuple: < ref, term,Υ >, where:

CHAPTER 3. APPROACH & METHODOLOGY 51

• ref is the reference identifier of the entity;

• term is the representational term of the entity;

• Υ is the model of which the entity is part of.

3.4.2 Mapping Element

We first introduce the 2 concepts of Community and Context before we define the mapping el-
ement. At this point, our goal is not to provide a complete and sound definition for the com-
munity and the context. They are very complex dimensions. Their use is mostly pragmatic and
lies in the commitment phase, where they will both be leveraged by the actors involved in the
commitment phase to commit to a final alignment.

However, to agree on a certain terminology, we give an informal, pragmatic definition of both
concepts:

Definition 10 (Community) :
A community P has two intrinsic elements: an ID which identifies the community and a
number of actors which identify the persons involved in the community. Two extra extrin-
sic characteristics are the goal of the community (for example, agreeing on an alignment of
two ontologies) and the process they want to perform on the knowledge they share.

The community P is modelled as a 3-tuple: < A,G, ρ > where:

• A is the set of Actors;

• G is the goal of the community; and

• ρ is the process the community wants to follow.

At this time, the context is still a black box. We do not define a precise model for the context.
The actors are free to model it as they wish. The goal of the context however, is to model the
timeframe, algorithms used, domain, ... in which the creation of the mapping element took
place. While the context is not formally defined, it must not be overlooked. The context is an
important information-source for the actors in the commitment-phase and is needed to keep the
mapping element unambiguous from other mappings which share the same concepts, relation
and community elements.

Definition 11 (Context) :
A Context γ is represented as the tuple: < ref, term, description > where:

• ref is the unique reference to this particular context;

• term is the terminological name of the context; and

CHAPTER 3. APPROACH & METHODOLOGY 52

• description is the informal description of the context.

Now that we have provided definitions for the community and the context, we can move on to
give the formal definition of a Mapping Element. We use the term Ontology in our definition
very broadly: It can be a very rich ontology described in OWL or modelled in Dogma, but it can
also be a lightweight ”Ontology” such as a shared vocabulary, taxonomy, XML model, ... that
contains far less (up to none) explicit semantics. The two ontologies used in a mapping also
don’t need to have a similar level of explicit semantics of formalism. The purpose is to allow
mappings between very different data sources, which is an important requirement to be able to
use this mapping framework in all of the foreseen scenarios.

Definition 12 (Mapping Element) :
We define a mapping elementM between 2 ordered lists of entities E1 = {e1, ..., ex} ε OntologyO1

and E2 = {ex+1, ..., ey} ε OntologyO2 as a 6-tuple < P, γ, E1, E2,Rtermx, n > where:

• P stands for the community that was responsible for creating the mapping;

• γ is the context in which the mapping was created;

• E1 is the ordered list of entities belonging to Ontology O1;

• E2 is the ordered list of entities belonging to Ontology O2;

• Rtermx is the relation term. This is not the actual relation definition. Rterm is the
terminological name of the relation and should, in combination with the context,
refer to a unique relation definition. We will discuss this in more detail when we
introduce the semantics of a relation.

When the relation is fuzzy, x is the strength of the relation.

• n is the degree of confidence, a measure of thrust in the fact that the mapping is
appropriate. This degree of confidence will given by the community (directly or
indirectly) to the mapping.

Both the strength of the relation (x) and the degree of confidence (n) are normalised be-
tween an upper bound (>) and a lower bound (⊥). We set the upper and lower bound to
respectively 1 and 0. A mapping element will always be at least unidirectional, however,
the direction of the mapping depends on the relation definition. The relation definition
will always be at least unidirectional but may also be bidirectional. A mapping is also
uniquely identified by it’s community, context, and entities. That means that only one
possible relation between two sets of entities in a certain context and community is possi-
ble.

The mapping element can also be written in a less verbose manner. This will be the format
we will use in the remainder of this thesis:

P, γ : E1 Rtermx,n E2

CHAPTER 3. APPROACH & METHODOLOGY 53

Let us clarify this definition with some examples:

• A mapping from the entity e1 from Ontology O1 to an entity e2 from Ontology O2. The
mapping has a non-fuzzy equivalence relation. The confidence in the mapping is 0.85. This
mapping would be written as:

P, γ : {e1} equivalence1,.85 {e2}

• A mapping between the same entities, but now by a different community in a different
context and with a fuzzy subsumes relation with strength 0.90 and confidence 0.70.

P ′, γ′ : {e1} subsumes.90,.70 {e2}

• A mapping between property {foaf : name} from the FOAF Ontology2 and properties
{person : firstName, person : middleName, person : lastName} from ebiquity’s Person
Ontology3, with a fuzzy union relation with strength 0.75 and confidence 0.95.

P ′′, γ′′ : {person : firstName, person : middleName, person : lastName}
union.75,.95

{foaf : name}

3.4.3 Mapping Relations

A mapping element is a lexical representation of a conceptual mapping between two lists of
entities. As the definition of a mapping element shows, the entities are only references to the
actual entities from the model. In the same way, the relation name is only a reference to a con-
ceptual relation definition. A relational name Rterm from a mapping combined with a context
γ refers to exactly one unique relation definition R. Going from the lexical representation to
the conceptual relation corresponds to articulating the relational term into a relation definition.
This articulation is done using an articulation mapping ct:

Definition 13 (Relation Articulation) :
Given the partial function ct : γ × Rterm → R, then

ct(γ,Rterm) = R.

An association ct(γ,Rterm) = R is called the ”relation articulation” or articulation of a
relation term Rterm (in particular context γ) into a relation definition R.

A relation definition should provide the system with a well-defined relation that can be inter-
preted by the different committers:

2http://www.foaf-project.org/
3http://ebiquity.umbc.edu/ontology/person.owl

CHAPTER 3. APPROACH & METHODOLOGY 54

Definition 14 (Relation Definition) :
A Relation DefinitionR is represented as the tuple: < name, description, definition, properties >

where:

• name is the name of the relation definition;

• description is the textual description of the relation;

• definition is the logical description of the relation, in first order or description logic;

• properties are the properties of the relation; these can be one or more of the fol-
lowing: unidirectional, bidirectional, transitive, reflexive, irreflexive, symmetrical,
assymetrical and antisymmetrical.

3.5 Motivation

Now that we have thoroughly reviewed the methodology of our integration approach and its
differentiating characteristics, we will elaborate on the motivation for our choices. We will give
a number of additional advantages and benefits that are a direct consequence of our uniform,
context-aware and community-supported integration platform. We argue that the advantages
that we will discuss here show how this thesis tackles some of the problems of existing works
in the semantic integration domain.

3.5.1 Scalability

Semantic integration is an expensive process and one that is currently not scalable: For every
integration scenario the entire integration process must be redone. While this is not a big prob-
lem when the user is confronted with only a few integration problems, this becomes a critical
issue when the user must integrate a large number of heterogeneous date sources - which is a
trend that we see more and more in the current and future IT applications.

To tackle this scalability problem, we have split the integration process into two separate phases.
The first phase, the mapping phase, must only be done once. After the plausible mappings are
established in the mapping phase and stored in an application-neutral manner, they can be
reused by selecting the relevant mappings for the specific integration scenario and committing
them to the application-specific integration language. In that way, the end user can fully lever-
age the existing mappings so that the full integration process becomes much shorter, hence
faster and more scalable.

However, by introducing mapping reuse, another issue of scalability represents itself: The
storage of mappings must also be sufficiently scalable. It must scale in two different dimen-
sions:

CHAPTER 3. APPROACH & METHODOLOGY 55

1. Performance wise: Fast querying of the mapping repository;

2. Usability wise: The actors must be able to efficiently find the relevant mappings.

In order to satisfy these concerns, the mappings stored in the repository have a simple structure
which allows efficient storage and retrieval. While there will be a very large number of map-
pings stored in the mapping repository, every mapping has a community and context dimension
which can be used, among others, as a grouping mechanism to guide the actor through this
large mapping base and allow efficient look-up, browsing and searching in this very large map-
ping store.

3.5.2 Efficiency

One of the key goals of this thesis is to propose a methodology and platform to enable more ef-
ficient integration of heterogeneous data sources. Therefore, during the research on this thesis,
a lot of focus was given to the efficiency and performance of our proposed mapping methodol-
ogy and platform. As we have argued before, the separation of the standard integration process
into our two phases is the core of our methodology. This can be leveraged to increase the per-
formance and efficiency of the integration process in many ways:

Efficiency of the resulting alignment Our proposed methodology allows the actor to create an
alignment that is specifically focused on its intended use (that is, application specific). In
previous integration frameworks, the involved actors might have opted to build a more
general alignment which could be used in more scenarios because the high cost of the
integration process. This however makes the alignment less efficient towards the specific
applications for which it is intended to be used.

Our approach to increase the efficiency of the integration process is similar to the OMGs
vision of model driven development where platform independent models are created and
can afterwards be transformed into platform specific models.

Furthermore, because the created mappings are context-aware and community-driven,
they represent the domain and connection with other domains more comprehensibly then
the alignments created by the traditional integration approaches. External knowledge
engineers are typically the bottleneck to the alignment comprehensiveness, as they are
not capable to capture all the varieties of the mapping elements that might take place in a
community and associated communities.

Efficiency of the integration process Not only are the resulting alignments more efficient, the
integration process itself is also more efficient. The increased efficiency of the process is
achieved by several properties of our proposed methodology and platform:

• The mappings stored by the mapping layer are representation-neutral but still se-
mantically well-defined. This makes it possible to split up the integration process to

CHAPTER 3. APPROACH & METHODOLOGY 56

different responsible stakeholders. For example, a domain expert who has no knowl-
edge of the representation model in which the alignment should be created, can cre-
ate the valid mappings in our application-neutral format. In the second phase, the
application engineer, who has insufficient knowledge about the domain to create the
mappings, can select the mappings created by the knowledge engineer and commit
them to the application-specific alignment.

• The reuse of existing mappings can be leveraged to automatically create new map-
pings using inference. Automated matching algorithms can look-up existing map-
pings and use reasoning engines to find new mappings. It has been shown that
reusing existing mappings can help in matching concepts from new ontologies. We
have outlined several example scenarios in Figure 3.7.

O1 O2

O3

O1 O2

O1 O2

O3

O1 O2

O1 O2

O3

O1 O2

O4

Mediator

Mapping
Base

Figure 3.7: Different scenarios in which existing mappings can be reused in Ontology matching
to create new ones.

As illustrated in the figure above, the mediator allows the actor to find existing map-
pings in the mapping repository between the given ontologies O1, O2 using the al-
ready mapped ontologies O3, O4. The mappings can be reused by the actor (which
can be a real user or an automated matching algorithm) to create new and better
mappings between the two given ontologies.

In the first scenario, mappings already exist from ontology O1 to ontology O3 and
from ontology O3 to O1. These mappings can be used to create (automatically or
guided by a human actor) new mappings from ontology O1 to ontology O2. In the
second scenario, both ontologyO1 andO2 have been mapped to ontologyO3. There-
fore, this can be leveraged to create new mappings from O1 to O2 and the other way
around. The last scenario goes one step further in that both O1 and O2 are already
mapped to two other ontologies, respectively O3 and O4. This can be used in turn to
create new mappings from O1 to O2.

• In community-driven integration, the expenses of the integration process are shifted
from the ontology/alignment maintainers to the communities employing them. This
shift results in an adequate investment distribution among the mappings. Specifi-
cally, the mappings of higher importance to the communities gain more support in
terms of more associated resources.

CHAPTER 3. APPROACH & METHODOLOGY 57

• The storage of existing mappings provides an excellent evaluation environment for
new mappings created by automated matchers. These mappings can be checked
against similar existing mappings, created by human actors such as domain experts
and knowledge engineers. In this way, one can create an extremely large test-bed
for the development of new matching algorithms: Use the algorithm to map a very
large number of ontologies that already have high quality existing mappings in the
mapping repository (probably created by human actors). This allows for much more
fine-grained and thrust-worthy evaluation results compared to the toy-examples that
are usually used to evaluate matching algorithms. The existing mappings could also
be leveraged to make the algorithms use machine-learning principles to ”learn” their
optimal set of configuration settings which, based on our own experiences, has a
large influence on the efficiency and quality of such matching algorithms.

3.5.3 Evolution

When mappings can not be stored in a application-neutral manner and reused at a late time-
frame, this raises serious issues in real-world scenarios with respect to the evolution of the
mappings. In real applications, the models that need to be integrated evolve constantly. Fur-
thermore, also the applications that use the resulting alignments will change. For example, a
new updated version of the application might introduce changes in the alignment format it
uses. When mappings are not stored in a application-neutral manner, they do not support any
evolution on the input (the integrated models) or the output (the resulting alignments) side. We
will point out the problems of the current integration approaches and how our approach deals
with these problems for the two possible scenarios:

Evolving input models The first issue presents itself when one or both or the integrated mod-
els change. When this happens, the existing alignment will no longer represent the correct
integration of both models. In the existing integration frameworks, this scenario obligates
the actors to make an entire new alignment from scratch. This is almost as much work as
creating the initial alignment. The amount of work to integrate the new models is also not
dependant on the number of changes in the models: Even if the models only changed on
a few entities, the entire alignment needs to be redone.

In our approach, the actor must only create new mappings for the new or changed enti-
ties. Many of the existing mappings between both models will still be valid and can be
reused. We show an example of this scenario in figure 3.8. As shown in the figure, initially
model M1 is mapped to model M2 and the mappings are stored in a mapping repository.
When model M1 changes to M1’, the existing mappings stay the same in the mapping
repository. Only new mappings must be created for the changed entities in model M1’.
As shown in the figure, the new mappings Mappings’ stay the same except for the extra
mappings denoted by the shaded rectangle. Another consequence of this approach is that
now both models M1 and M1’ (the old one and the updated one) have been mapped to the

CHAPTER 3. APPROACH & METHODOLOGY 58

M1 M2

Mapping
Repository

M1'

M
ap

pi
ng

s
M

ap
pi

ng
s'

Figure 3.8: A possible evolution scenario where one model changes and the mappings need to
be updated accordingly.

other model M2 so the previous version of the model is still supported by the mapping
repository.

Evolving application scenarios The second scenario represents itself when the application in
which the alignment resulting from the integration process must be used, changes. In
existing works, the entire alignment must again be entirely recreated. In our case, only
the second phase of our integration methodology must be redone: The actor can reuse the
mappings stored in the repository to commit to the new alignment format.

3.6 Conclusions

We started this chapter by introducing the two cornerstones of our proposed integration ap-
proach: Mapping reuse and application-specific mappings. We identified several scenarios that
are problematic for the existing integration frameworks, but are much better handled using
our methodology. In the second section of this chapter, we elaborated in more detail on our
methodology. We discussed in detail the two phases of our integration approach: The Mapping
phase and the Commitment phase. We discussed the tree most significant characteristics of our
approach and methodology: Uniform and context-aware mappings, and a community-driven
mapping process. In the third section we defined the precise semantics of the conceptual data
model used by our methodology: We provided exact definitions of the Context, the Commu-
nity, the Mapping, the Model, the Entity, and the Relation Definition used in our approach. To
conclude the section, we elaborated on the motivation for our choices. We showed how our
approach has significant benefits over existing approaches and how it accomplishes the goals
we have set for this thesis.

4
The Platform

In this chapter, we present our integration platform implementing the conceptual framework
and specifications we presented in the previous chapter. We first discuss the architecture of the
platform: We describe how we have mapped our two-step methodology (the mapping phase
and commitment phase) and the specific characteristics of our approach (uniform, context-
aware, and community-driven mappings) to our integration platform. In the second section
we elaborate on the implementation details of the Platform Server. We show its technology
stack and motivate our choices. In the third section of this chapter, we provide the reader with
an overview on our Mapping Client tool. We also give a brief overview of its implementation
while not going into too much irrelevant details. We end this chapter with a preliminary evalu-
ation of the platform. In a real-life scenario we integrate two ontologies using the platform by
following our methodology. In this way, we show how the platform we developed supports the
integration of two heterogeneous models using the methodology we presented in the previous
chapter.

4.1 Overview

In the previous chapter we have outlined the methodology and approach of our integration
process. In this section, we will present the architecture of our platform that implements this
methodology. As we have discussed, the two cornerstones of our proposed integration ap-

59

CHAPTER 4. THE PLATFORM 60

proach are mapping reuse and application-specific mappings. To enable these properties on
our platform, we have split-up the platform into two layers in two orthogonal dimensions, as
depicted in figure 4.1. In the first dimension we split-up the platform into a Remote Layer and
a Client Layer. In the second dimensions we map our two step methodology, the Mapping phase
and the Commitment phase upon the Client Layer. Furthermore, a mediator is needed that me-
diates between the server and the clients and provides the actors with the necessary services to
manage and leverage the existing mappings.

Re
m

ot
e

La
ye

r

Mapping Phase

Mapping Server

Mediator

Cl
ie

nt
 L

ay
er

Input Adapters Committers

Commitment Phase

Platform Architecture

Fi
rs

t D
im

en
si

on

Second Dimension

Figure 4.1: The two orthogonal dimensions of separation in our platform architecture

The first dimension is the local-remote dimension. To allow public mapping reuse and collab-
oration, the mappings must be stored on a server that can be accessed by the stakeholders. In
order for these actors to be able to create, manage, maintain and commit these mappings, they
must have one or more client applications that support these features. Therefore, we have split
up our platform into the two horizontal layers depicted in figure 4.1:

Remote Layer: In the remote layer, the mappings created in the mapping phase are stored on
a Mapping Server. A Mediator is needed to enable the communication from different types
of clients with this mapping server. Furthermore, the mediator provides an extra layer of
services on top of the simple storage of mappings offered by the mapping server.

Client Layer: The client layer contains all the applications that the involved actors will use
to interact with the mappings stored on the remote layer. We can identify two kinds of
interactions with the remote layer corresponding to the second dimension and similarly
to our two-step integration methodology:

CHAPTER 4. THE PLATFORM 61

1. In what we call the Mapping phase, the actors will elicit and create the mappings be-
tween the heterogeneous models. This will often include the matching of the different
entities of the models. Furthermore, this phase also entails the different aspects of our
integration platform we have discussed in the previous chapter: In this phase, differ-
ent communities can govern and express their confidence and thrust in the different
mappings, new mappings can be created with a specific context by leveraging exist-
ing mappings or because the input mappings have changed and the mappings must
evolve accordingly.

2. The second kind of interactions by the client applications with the remote layer corre-
spond to the second step of our methodology and is called the Commitment phase. In
this phase, the actors will select a meaningful set of mappings which are stored on the
mapping server and create an application-specific alignment from this set. The choice
of mappings which they select should be specific for the intended use of the resulting
alignment. The intended use will be application-, domain-, and community-specific.
Furthermore, the client applications from this phase must also enable the actor to
transform his selection of representation-neutral, uniform mappings from the map-
pings server to an application-specific alignment format such as OWL, ω-RIDL, the
Alignment API, Semantic Web Rule Language (SWRL), etc. To do that, the appli-
cation must be able to interpret the conceptual relations from the mappings in the
mapping server to mappings or rules in the chosen alignment format.

In the following sections, we will elaborate on each layer of our architecture. In each layer, we
will further discuss the different parts it contains and the role and responsibilities of each part.
After that, we will present the full, detailed view of our architecture and move on to discuss its
implementation details.

4.1.1 Remote Layer

The goal of the remote layer is to enable the complete separation of the mapping- and commit-
ment phase. To arrive at such a separation, the mappings must be stored in a repository to be
reused at a later time. By storing the mappings in a repository, the mappings have a persis-
tent state between the mapping and commitment phase which allows the complete separation
between these phases.

Requirements

Based on our methodology and integration approach, we identified the following requirements
and responsibilities for the remote layer:

• The mappings created in the mapping phase must be stored in a repository which must
be remotely accessible.

CHAPTER 4. THE PLATFORM 62

• This repository must be able to store mappings from any given input format. That is, it
must be possible to create mappings between any kind of model and store these on the
remote layer of the architecture.

• The mappings must be stored in a application-neutral, uniform manner. The mappings
must also be context- and community-aware. The relations in the mapping must further-
more be well-defined and context-dependant. Therefore, the remote layer must support
the relation articulation function we have defined in the section on our mapping seman-
tics.

• The involved actors must be able to select a meaningful set of mappings from this map-
ping repository in order to create an application-specific alignment. They should be able
to efficiently search and browse the mapping repository to discover the relevant mappings
to allow for an efficient and scalable integration process.

R
em

ot
e

La
ye

r

Mediator

Mapping Base
Model/Entity

Store
Relation
Library

Mapping Server

mapping element
mapping element
mapping element
mapping element
mapping element
mapping element
mapping element
mapping element
mapping element
mapping element
mapping element
mapping element
mapping element
mapping element
mapping element
mapping element

mapping elementmapping elementmapping elementmapping elementmapping elementmapping elementmapping elementmapping element

Figure 4.2: The different parts of the remote layer.

These requirements have led to four big parts that constitute the Mapping Layer: the Mapping
Base which stores the mappings, the Relation Library which provides definitions of the relations
used in the mappings, the Model and Entity Store that enables the uniform use of different data
sources and a Mediator which mediates between this layer and the actors of the system. The
overview of the remote layer is depicted in figure 4.2.

Mapping Base

The Mapping Base is the repository in which the mapping elements we have defined in section
3.4 are stored. In time, the Mapping Base will become very large (to the order of millions)
as a match between two models with respectively n and m number of elements will yield nm

mappings. Not all of these mapping elements should be added to the mapping base however
as most entities will be completely unrelated. Nevertheless, as we described in our integration
methodology, the selection of relevant and meaningful mappings happens at the commitment
phase. Hence, the actor should not decide (up to some limit - probably using some threshold
value) which mappings are relevant enough to add to the mapping base. The large size of the

CHAPTER 4. THE PLATFORM 63

mapping base is one of the features and brings many of the advantages to the framework: The
larger the Mapping Base, the more mappings can be reused.

Because of the large size of the Mapping Base, it is important that it allows efficient look-up,
search and browsing through this large repository. It must be able to quickly return the map-
pings given a certain concept, context, community, etc.

Relation Library

The relation between the different entities of the mapping is the most important element of a
mapping element. The relation denotes how the entities correspond and relate to each other and
how the first list of entities can be translated to the second. The possible scope of the complexity
of the relations is very wide, ranging from very simple relations like ”Equal” or ”Subtype of” to
complex, composed relations expressed in a certain language L. For example, a complex relation
expressed in first-order logic could be:

∀x, z grandparent(x, z) =⇒ ∃y; parent(x, y) ∧ parent(y, z)

Furthermore, even simple relations might have small, but still significant semantic differences
between different mappings. For example, the exact semantics of ”subtype” might be different
depending on the context of the mappings. Therefore, as we have discussed in section 3.4, we
use a relation-articulation function to articulate the lexical term of the relation in the mapping
element to a relation definition stored in the relation library.

Model and Entity Store

As we have stated before, the goal of our integration platform is to provide a unified platform
that allows actors to integrate entities from heterogeneous models. To enable such a platform,
we store the entity and model information in a separate Model and Entity Store. In this repository,
we save the necessary information about a model and it’s entities such as the type of the model,
a representation term, a reference identifier that allows the actor to uniquely identify entities,
and a description of the model and its entities.

Mediator

The mediator should be seen as the interface to the mapping layer. It enables the actors to add
and remove mapping elements. It also acts as a service that connects committers to the map-
ping base: through the mediator, actors can query, browse and search the mapping layer. It is
modelled as a distinct part from the mapping layer because it also allows some basic reasoning
on alignments and mappings, this application logic should be separated from the mapping base
and dictionaries whose sole responsibility is to store the mapping elements.

CHAPTER 4. THE PLATFORM 64

4.1.2 Client Layer

The Client Layer contains the client-side applications the actors will use to do the actual inte-
gration. As we have discussed in section 3, our methodology separates this integration process
into a Mapping Phase and a Commitment Phase. The Client Layer must provide the actors with the
necessary tools that support these phases. Several different tools can connect with the remote
layer and each of them can support one or more of the necessary features.

Re
m

ot
e

La
ye

r

Mapping Server

Mediator

Cl
ie

nt
 L

ay
er

Input
Adapters Committers

Platform Architecture

Input
Adapters Committers

Application 1 Application 2 Application 3

Mapping
Phase

Commitment
Phase

Commitment
Phase

Mapping
Phase

Figure 4.3: Different applications from the Client Layer supporting our two-step methodology
connecting to the Remote Layer.

Figure 4.3 shows different possible clients from the Client Layer. Each client may support a part
of our two-step methodology. In this section, we will discuss the different features that must be
supported by the tools to enable the actors to perform each phase of our methodology.

Mapping Phase

The Mapping Phase is the first step of our integration approach. In this step, the actor will match
two heterogeneous models and elicit a number of mappings between the entities of those mod-
els. These mappings will be stored on the mapping server in order to be used in the commitment
phase.

In practice, the process creating of mapping between entities of two heterogeneous models and
storing them on the mapping server can again be divided into several methodological steps,
some only computational and some needing human interaction:

CHAPTER 4. THE PLATFORM 65

Mapping Phase

Model 1

Model 2 Input
Adapter

Input
Adapter

Model 1
Entity 1
Entity 2

Model 2
Entity 1
Entity 2

Matcher Mapping
Server

Mapping 1
Mapping 2

Preintegration Matching Storage

Figure 4.4: The different methodological steps of the Mapping Phase.

1. Preintegration: In this step, the syntactical heterogeneities of the models are overcome
by parsing them into our uniform mapping model: The model and its content are trans-
formed into our Model and Entities data model. The transformation from the original
input models to our own Model/Entity data model is handled by Input Adapters. The
Input Adapters must make sure that each entity has a unique reference identifier, a de-
scription and is part of a specific model. Each model must also have a unique reference
identifier, representation name and a model type. For each supported format, an input
adapter must be created to transform the format into our mapping model. For example,
an input model may be an OWL Ontology, RDFS Ontology, SQL Schema, etc.

2. Matching: In the second step, the different entities resulting from the preintegration phase
are matched and mappings are created between similar entities. Furthermore, the relation
term from each mapping must point to a specific relation definition. It can point to an
existing relation definition from our relation library or in the other case, the actor must
create a new relation definition.

3. Storage: The Model and Entities, Mappings, and Relation Definitions must be stored in
the Model/Entity store, Mapping Base, and Relation Library on the Mapping Server re-
spectively in order to be shared and reused in the commitment phase.

Commitment Phase

In the commitment phase, the actor will select a meaningful set of mappings and create an
application-specific alignment from this set. We call the process of selecting a meaning full
set of mappings for the intended alignment and interpreting and transforming these mappings
to an application-specific alignment format Committing to an application-specific alignment. The
tools from the Client Layer must help the actor to discover and search the mapping base to find
the relevant and meaningful mappings for the intended use of the alignment. Furthermore,

CHAPTER 4. THE PLATFORM 66

the tools must guide the actor to interpret this set of mappings with their relation definition to
transform it to an application-specific alignment in a certain integration format.

Commitment Phase

Mapping
Server

Mapping 1
Mapping 2
Mapping 3
Mapping 4
Mapping 5

Meaningful set of
application-neutral

Mappings
OWL

Committer

Omega-RIDL
Committer

Alignment-API
Committer

Application-specifc
Alignments

OWL
Alignment

Omega-RIDL
Alignment

Alignment-API
Alignment

Select meaningful set of mappings Translate to specific alignment format

Figure 4.5: The methodological steps of the Commitment phase and the necessary tool-support.

Figure 4.5 depicts the Commitment Phase process. We identify the two methodological steps
that are needed to create the final, application-specific alignment. First, a meaningful set of
mappings must be selected from the Mapping Base. Secondly, this set of mappings must be
interpreted and translated into a specific alignment format. We will now elaborate on both
steps of the commitment process:

1. Select meaningful set of Mappings:

When an actor needs an alignment to integrate two heterogeneous data sources, this align-
ment will be application-specific: To integrate the two sources, the alignment will need to
be executed to, for example, transform data in one format to another data model format.
The kind of mappings that will be needed to do this integration are dependant on the use
of the alignment. For example, two scenarios in which the same two models need to be
integrated, may still need a different alignment. In the first scenario, it might be sufficient
that a certain concept from the first model is similar to a concept from the second model;
while in the second scenario, the concept from the first model might need a specific trans-
formation function to be translated to the concept from the second model.

In this step, the actor must search and browse the mapping base to discover the meaning-
ful set of mappings that best models or approximates the intended use of the alignment.
He can do this efficiently because of our context-aware and community-driven mappings:
The mappings are grouped by context and community which enables the actor to quickly
find the relevant mappings. Furthermore, the community might have expressed their
thrust and confidence in certain mappings which may be used by the actor as a measure
of quality and acceptance of the mapping.

CHAPTER 4. THE PLATFORM 67

2. Translate to a specific alignment format:

Given the meaningful set of mappings from the previous step of the committing process,
the actor must now interpret and translate these conceptual mappings to an application-
specific integration model or format. This is necessary as the final alignments will need
to be executed which means they must be understood and interpreted or compiled for a
certain application.

Translating the application-neutral mappings into a specific alignment format conforms
to: i) Interpreting the conceptual relation definitions into executable relations, functions,
or rules in the alignment format and ii) translating the mappings into the format specified
by the alignment model. These two functions must be supported by the different Commit-
ters. In some cases, both functions can be executed fully automatically, but in most cases,
some human interaction will be necessary.

Given the meaningful set of mappings from the previous step, the actor can translate it
into several final alignments, each in a specific alignment format. Each alignment format
will have his own committer that can interpret the relations and translate the mappings
into the specific format. The final alignments, independently from the format used, will
typically contain the set of mappings, the arity of the alignment (one-to-one, one-to-many,
etc.), the models that are aligned, etc.

4.2 Mapping Server

In this section we present in detail our Mapping Server which implements the Remote Layer
of our conceptual architecture. We present the technology stack our server is build upon and
discuss each relevant layer of the stack in more detail. We will however not go into to much
implementation details as this goes beyond the scope and purpose of this thesis.

One of the goals of this thesis is to present a scalable integration approach and platform. There-
fore, we have opted to use a classical three-tiered J2EE architecture. This allows the platform to
scale horizontally as well as vertically as we will show in a later section. Figure 4.6 depicts our
three-tiered architecture and the technologies or solutions we have chosen for each layer.

In the following sections we will elaborate on the Data Tier and Business Tier. The Client Tier
corresponds with our Client Layer, which we will discuss in more detail later.

4.2.1 Data Tier

The cornerstone of our approach is our two-steps methodology which introduces an intermedi-
ate, persistent state of application-neutral mappings. In order for our platform to support this
methodology, we have a Data Tier that handles the persistence of the mappings. The Data Tier
consists of two successive layers:

CHAPTER 4. THE PLATFORM 68

Database Logic

Data Tier

Business Logic

Business Tier

Client Tier

Presentation Manager

Presentation Logic

Application Logic

PostgreSQLDatabase Manager

EJB3 / JPA / Hibernate

EJB3

Eclipse Plugins

J2EE on an
Application Server

R
em

o
te

 L
ay

er
C

lie
n

t
L

ay
er

M
ap

p
in

g
S

er
ve

r
M

ed
ia

to
r

Figure 4.6: The architecture and technology stack of the integration platform implementing our
approach and methodology.

1. Database Manager: The first layer of the Data Tier is the Database Manager. The Database
Manager is responsible for the low-level storage of the mappings. We use the PostgreSQL
DBMS1 to store the mappings. The data model used by the database server is depicted in
figure 4.7.

2. Database Logic: The Database Logic layer on top of the Database Manager layer handles
the interaction with the database. Its purpose is to abstract the persistent level from the
other parts of the platform architecture. In that way, the persistence layer can be easily
swapper for another one, like another DBMS (MySQL, Oracle, etc.) or another persis-
tent model, using ontologies instead of relational databases for example. The other parts
of the system only interact with the domain object using Java classes and the database
logic layer translates these interactions to SQL queries on the database. There are several
best-practices and patterns in the J2EE community that enable such an abstraction. An
overview of the ones we have adopted is depicted in figure 4.8:

Java Persistence API: The Java Persistence API (JPA) specification allows developers to
manage relational data as Java classes and objects. It is an object-relational mapper

1PostgreSQL is a powerful, open-source DBMS: http://www.postgresql.com

CHAPTER 4. THE PLATFORM 69

Figure 4.7: The Entity-Relational Model of the persistent data stored in the PostgreSQL DBMS.

that maps relation tables and rows into Java classes and objects respectively. JPA is
only a specification and an actual product implementing this specification is needed.
We use Hibernate2 as the implementation for the JPA specification. Hibernate is a
powerful, open-source solution that has become the de-facto standard within the
Java community.

Data Transfer Object: As we have discussed, the JPA enables the system to interact with
Java objects instead of performing SQL queries on the database. The relational model
used in the database is therefore translated to a domain model of Java objets. We have
used the Data Transfer Object (DTO) pattern to implement these domain objects. The
DTOs do not contain any behaviour except for storage and retrieval of its own data
(accessors and mutators). The domain object implemented as DTOs are Entity Beans:
They can be deployed on the Application Server and used throughout the platform,
locally and remotely.

Figure 4.9 shows the domain model as a UML class diagram. As we have used the
DTO-pattern, only getter and setter operations exist on the classes so we have not
shown them in the figure.

Data Access Object: Data Access Objects (DAO) are a Core J2EE Design Pattern and con-
sidered best practice. The advantage of using data access objects is that any business
object (which contains application or operation specific details) does not require di-
rect knowledge of the final destination for the information it manipulates. As a result,
if it is necessary to change where or how that data is stored that modification can be

2http://www.hibernate

CHAPTER 4. THE PLATFORM 70

Database Logic

JPA / Hibernate

Data Transfer Objects (DTO)

Data Access Objects (DAO)

Database Manager

Data Tier

Figure 4.8: The patterns and best-practices used in the Database Logic layer.

made without needing to change the main application. Data Access Objects can be
used in Java to insulate an application from the underlying Java persistence tech-
nology, which could be JDBC, JDO, EJB CMP, TopLink, Hibernate (which we use),
iBATIS, or any one of a range of technologies. Using Data Access Objects means the
underlying technology can be upgraded or swapped without changing other parts
of the application.

Figure 4.10 depicts the DAO interfaces for each class from the domain model DTOs.
By implementing the DAO pattern using interfaces, the architecture is even further
abstracted from the underlying technologies. In the second figure 4.11, the JPA-based
implementation of the DAO interfaces are shown using a UML class diagram. We
have omitted the operations and attributes in the second figure as these are exactly
the same as the ones from the interfaces they implement.

Figure 4.11 also shows that the JPA-specific DAO classes are Stateless Session Beans
from the EJB3 specification. A class can be specified as a Stateless Session Bean using
annotations first introduced in Java 5. When a class is specified as a session bean,
the class automatically becomes available in the application server and can be used
remotely or locally to support the Inversion of Control (IOC) pattern.

4.2.2 Business Tier

The Business Tier of our implementation architecture corresponds with the mediator of the plat-
form. It mediates between the data tier and the requests from the remote client applications.
It provides services which allow the clients to interact with the data stored in the data tier. We
have implemented this tier using two specific patterns and best-practices: the Session Facade
pattern and the Business Delegate pattern.

CHAPTER 4. THE PLATFORM 71

vub.starlab.ds.mappingserver.mappingbase.model

IPersistent
< interface >

> antisymmetrical
> assymetrical
> definition
> id
> irreflexive
> logical_description
> reflexive
> relation
> symmetrical
> transitive

MappingCommunity
< Entity >

> description
> entities
> id
> name
> type
> uri

EntityModel
< Entity >

> id
> mode
> name
> uri

MappingEntity
< Entity >

> community
> confidence
> context
> description
> firstEntities
> id
> relation
> relationStrength
> secondEntities

MappingElement
< Entity >

> id
> mappingContext
> relation
> relationTerm

MappingRelationLookup
< Entity >

> context
> id
> mappings
> name

MappingContext
< Entity >

> goal
> id
> name
> process

MappingCommunity
< Entity >

Figure 4.9: The domain Model in UML, implemented using the DTO pattern.

Session Facade

The Session Facade pattern defines a higher-level business component that contains and cen-
tralizes complex interactions between lower-level business components such as the DAOs and
DTOs we discussed earlier. A Session Facade is implemented as a session enterprise bean. It
provides clients with a single interface for the functionality of conceptual server subset. It also
decouples lower-level business components from one another, making designs more flexible
and comprehensible.

Fine-grained access through remote interfaces is inadvisable because it increases network traffic
and latency. Figure 4.12 shows the sequence diagram of one of our session facades. Without a
Session Facade, the client would have to access the fine-grained business objects through a
remote interface. The multiple fine-grained calls would create a great deal of network traffic,
and performance would suffer because of the high latency of the remote calls.

Business Delegate

The purpose of the Business Delegate pattern is to reduce coupling between presentation-tier
clients and business services. The Business Delegate hides the underlying implementation de-
tails of the business service, such as lookup and access details of the EJB architecture.

The Business Delegate acts as a client-side business abstraction; it provides an abstraction for,

CHAPTER 4. THE PLATFORM 72

vub.starlab.ds.mappingserver.mappingbase.dao

> findAll()
> flush()
> clear()
> makeTransient()
> findById
> makePersistent()
> merge()

GenericDao
< interface >

> getMappingElement()
> getAllMappingElements()
> saveMappingElement()
> getMappingsInContext()
.....

MappingElementDao
< interface >

> getMappingRelationLookup()
> saveMappingRelationLookup()
.....

MappingRelationLookupDao
< interface >

> getRelation()
> getAllRelations()
> saveMappingRelation()
> getNumberOfRelations()

MappingRelationDao
< interface >

> getByURI()
> getEntityModel()
> saveEntityModel()
> mergeEntityModel()

EntityModelDao
< interface >

> getMappingEntity()
> getByURI()
> saveMappingEntity()
> mergeMappingEntity()

MappingEntityDao
< interface >

> getMappingCommunity()
> saveMappingcommunity()
.....

MappingCommunityDao
< interface >

Figure 4.10: The Data Access Objects Model interfaces in UML.

vub.starlab.ds.mappingserver.mappingbase.dao.jpa

GenericDao
< interface >

GenericJpaDao
< Stateless Bean >

MappingElementDao
< interface >

MappingRelationLookupDao
< interface >

MappingelementJpaDao
< Stateless Bean >

MappingRelationLookupJpaDao
< Stateless Bean >

EntityModelDao
< interface >

EntityModelJpaDao
< Stateless Bean >

MappingRelationDao
< interface >

MappingRelationJpaDao
< Stateless Bean >

.....

Figure 4.11: The JPA-specific Data Access Objects Model implementations in UML.

and thus hides, the implementation of the business services. Using a Business Delegate reduces
the coupling between presentation-tier clients and the system’s business services.

We also use the factory pattern in combination with the Business Delegate pattern to increase
the level op abstraction and reduce the level of coupling even further.

Figure 4.13 depicts a subset of the classes involved with the MappingService in the Business
Tier as a class diagram.

CHAPTER 4. THE PLATFORM 73

doThis()

Client Object

Network Boundary

Session Bean 1 Session Bean 2

doThat()

MappingElementDao MappingRelationDao

Session Facade

MappingService

do()

Figure 4.12: A sequence diagram showing the Session Facade pattern applied in the Business
Tier.

AbstractBDelegate
< Abstract >

MappingBDelegate
< Class >

> getService()

> init()

BDeleateFactory
< Class >

S factory
> mappingDelegate

S getInstance()
S getMappingService()

MappingService
< Stateless Session Bean >

S remoteJNDIName
S localJNDIName

> addMapping()
> getMappingInContext()
> saveOrUpdateMapping()
> saveMappings()
> getMappingFromID()

MappingServiceRemoteMappingServiceLocal
< Interface @Local > < Interface @Remote >

Figure 4.13: A class diagram showing the classes and interfaces from the Business Tier relevant
to the Mapping Service.

In Figure 4.14 a UML sequence diagram of a client object calling the BDelegateFactory to receive
a MappingServiceRemote interface is depicted. The MappingServiceRemote interface is used re-
motely to interact with the Data Tier. On the server, the remote interface is implemented by the
MappingService stateless session bean.

BDelegateFactory.getInstance()
.getMappingService()

Client Object BDelegateFactory MappingBDelegate

getService()

return MappingServiceRemote

locateService()

Figure 4.14: A sequence diagram showing the Business Delegate pattern applied in the Business
Tier.

CHAPTER 4. THE PLATFORM 74

4.2.3 Scalability

One of the goals of this thesis is to present a scalable integration platform. This scalability re-
quirement is reflected in our integration approach and two-step methodology promoting reuse
of mappings. However, the scalability factor is equally important in our implementation ar-
chitecture: If the methodology allows for a scalable integration approach, the platform and
architecture enabling the methodology must too. Therefore, we will discuss briefly the scal-
ability potential of our platform. While this discussion falls mostly outside the scope of this
thesis, we find it important to discuss it briefly in order to back-up our choice of technologies
and frameworks on which we have build our platform.

There are two types of scalability, vertical scalability and horizontal scalability:

Vertical Scaling is achieved by adding capacity (CPU, memory, storage) to the existing infras-
tructure. It requires no changes to the architecture of a system and is usually cheaper than
horizontal scalability. However, one can not endlessly vertically scale-up a system and
the limits are quickly reached. Furthermore, vertical scaling decreases the reliability and
availability of the system as a single failure is more likely to lead to system failure. J2EE
supports vertical scaling because of its automatic lifecycle management: Adding more
capacity to a server allows it to manage more components (Entity beans, Service beans,
etc.).

Horizontal Scaling is achieved by adding servers to the system. While it increases the com-
plexity of the system architecture, it should be possible to scale a system almost endlessly
in this way. It further increases the reliability, availability, capacity and performance of the
system. Our architecture supports horizontal scaling because the J2EE application servers
on which the business logic runs and database management system for storage can be
replicated and clustered and the whole can be load-balanced without many changed to
the architecture of the platform.

4.3 Mapping Client

To validate our methodology and approach, we have implemented a client-application that
enables actors to create mappings and store them on the Mapping Server. The tool also allows
actors to browse the Mapping Server and select a meaningful set of mappings to commit to a
final alignment.

In this section, we will present our tool: We give an overview of the looks and features imple-
mented by the tool and provide a brief overview of its implementation details.

We start the discussion of our Mapping Client with an overview of the main parts of the
Mapping tool and how it is situated within our platform’s architecture. Figure 4.15 gives an
overview or the most important components of the tool. It further shows how and where the

CHAPTER 4. THE PLATFORM 75

tool is situated within our platform’s architecture we presented in section 4.1. The Mapping
Client is one of the potentially many client applications the actors can use to integrate heteroge-
neous models using our integration methodology. In this particular case, the actor can use the
tool to do both phases of our integration methodology: The tool supports the Mapping Phase
as well as the Commitment Phase.

Eclipse Framework

Mapping Tool Base plugin

Mapping Tool
Mapping
plugins

Mapping Tool
Committer

plugins

Re
m

ot
e

La
ye

r

Mapping Server

Mediator

Cl
ie

nt
 L

ay
er

Platform Architecture

Input
Adapters

Application 2

Mapping
Phase

Mapping Client

Figure 4.15: The high-level architecture of our mapping Client and its location and role within
our integration platform.

Our Mapping Client is build upon the Eclipse Framework using a number of plugins. The
collection of plugins can be divided into three main components depending on their role within
our integration approach and methodology:

1. The Base plugin is the foundation for the client.

2. The Mapping plugins corresponds to the plugins needed to do the Mapping-phase of our
integration methodology. They are responsible for providing the necessary features and
support the actor in transforming heterogeneous models to our data model and creating
mappings between these models to be stored on the Mapping Server.

3. The Committer plugins corresponds to the plugins needed to do the Commitment phase
of our integration methodology. That is, finding and selecting a meaningful set of map-
pings from our Mapping Server and transforming them into an application-specific align-
ment.

In the next section we discuss the two components corresponding to the two phases of our
methodology in further detail after we have briefly introduced the Eclipse Framework and our
Base plugin.

The Eclipse Tool Project3 is an open source software development project that provides a ro-
3http://www.eclipse.org

http://www.eclipse.org

CHAPTER 4. THE PLATFORM 76

bust and full-featured industry platform for the development of highly integrated tools. It is
composed of three subprojects, Platform, JDT - Java development tools, and PDE - Plug-in de-
velopment environment. The success of the Eclipse Platform depends on how well it enables a
wide range of tool builders to build best of breed integrated tools.

Building a visual component requires a graphical framework of some sort. In Eclipse this is
provided by GEF. The Graphical Editing Framework (GEF) allows developers to create a rich
graphical editor from an existing application model.

GEF consists of two plug-ins:

• The org.eclipse.draw2d plug-in provides a layout and rendering toolkit for display-
ing graphics.

• The org.eclipse.gef framework, which defines a lot of utility classes, ready for the
user to be extended.

The developer can take advantage of the many common operations provided in GEF and/or
extend them for the specific domain. GEF employs a strict MVC (model-view-controller) ar-
chitecture which enables simple changes to be applied to the model from the view and back,
but always via a controller. Using this powerful plug-in architecture as a backbone, it enables
developers to add functionality as time progresses. It forces them to a good design, avoiding a
monolithic, static environment unable to accept future changes.

4.3.1 Mapping Client Base

The Mapping Client Base is the foundation for the tool that was implemented (see Figure 4.15).
It contains all the basic building blocks needed by the Mapping and Committer plugins and can
be viewed as the framework of our Mapping Client.

In the next section we explore the base plug-in in more detail to give the reader an idea as to
how it was implemented using the eclipse framework.

Architecture

Because GEF enforces a strict Model-View-Controller architecture [41], the developer has to
model his software component using:

• models: to represent the business logic;

• controllers: communicate between the model and the view;

• views: graphical representation of elements in the model.

We discuss each component in more detail:

CHAPTER 4. THE PLATFORM 77

Model The first component that we discuss is the model. The idea is that this model contains
all the business logic needed to graphically represent the Mapping Elements, Models and
Entities and support editing operations upon them. The model in the Base plugin is simi-
lar to the model from the Data Tier on the Mapping Server. However, we have to extend
the model classes from the Data Tier in order to support the graphical representation of
the models. Furthermore, GEF requires that each ”thing” that can be selected in the views
and editors must have its own class.

Figure 4.16 depicts the two types of domain objects defined by the Mapping Client Base:
The persistent objects are a one-to-one mapping to the domain objects from the server-side
Data Tier (the DTOs) while the UI domain objects are needed to support the different
graphical views and interactions of the Mapping Client.

VCommunity

IPersistentObject

VContext

VEntity

VEntityModel

VMappingElement

VRelation

VRelationDefinition

VMappingRelation

VRelationProperty

VTreeCommunity

VTreeCommunityContainer

VTreeEntityModelContainer

VEntityModelContainer

VRelationContainer

VTreeCommunityContext

Persistent domain objects UI domain objects

Figure 4.16: The domain objects in the Mapping Client Base.

View The view is the graphical representation of the model. This is what the users of the
software see on their screen when they work with the tool. The figures are an almost one
to one mapping to the models, aside from the more abstract container figures, which are
in fact the canvases that contain all the other figures. Figure 4.17 gives an overview of the
different figures.

The figures here will be further specialised in the plugins for the mapping and commit-
ment phases. We will show screenshots of the figures when we discuss the plugins for
these two phases in more detail.

CHAPTER 4. THE PLATFORM 78

ICommunityContextFigure

IEntityModelFigure

IMappingElementFigure

IRelationFigure

IRelationPropertyFigure

IVEntityFigure

CommunityContentFigure

EntityContainerFigureEntityModelContainerFigure

EntityModelFigure

MappingElementFigure

RelationFigure

RelationPropertyFigure

SelectableFigure

SimilarityBoxFigure

VEntityFigure

Figure 4.17: The different figures from the Base plugin.

4.3.2 Mapping phase

In this section, we present the part of the Mapping Client that enables the actor to transform
heterogeneous models to our data model and create mappings between the entities of these
models. The actor should furthermore be able to store these mappings on the server.

In section 4.1.2, we have reviewed the methodological steps that make up the mapping phase
of our integration approach. Let us recap this process with Figure 4.18.

Mapping Phase

Model 1

Model 2 Input
Adapter

Input
Adapter

Model 1
Entity 1
Entity 2

Model 2
Entity 1
Entity 2

Matcher Mapping
Server

Mapping 1
Mapping 2

Preintegration Matching Storage

Figure 4.18: The different methodological steps of the Mapping Phase.

Figure 4.18 depicts the methodological steps of the Mapping Phase. Our Mapping Client will
need to support each of these steps. This helps us to identify the following requirements for the
mapping-phase part of the client:

CHAPTER 4. THE PLATFORM 79

Preintegration The Mapping Client should support the conversion of specific model formats
into our own data format. It should be able to convert these modal automatically with
none to minimal interaction from the user of the tool.

Matching The client should make it easy for the user to create mappings between entities from
different models. It should further allow the user to create these mappings in a certain
context and

Storage The entities, models and mappings must be stored on the Mapping Server. This pro-
cess should be as simple as possible for the user. The user of the tool should not have to
know he is working remotely on the server. The line between the local and remote storage
should be completely transparent.

Look & Feel

Now that we have identified the major requirements for our Client Tool to support the Mapping
phase of our integration approach, we will present here the features and look & feel of our tool.
We feel that this is best done using a number of relevant screenshots accompanied with the
necessary explanations.

Figure 4.19: The traditional Eclipse-workbench with our Mapping Project Navigator.

Our first screenshot, depicted in figure 4.19, shows the traditional Eclipse-workbench. At the
right, the standard Eclipse Navigator is shown. This navigator shows all the files stored on disk
within the workbench. This navigator contains a standard Java Project and a general project
named ”MappingProject”. Note that this project has only two files stored on the local disk:

CHAPTER 4. THE PLATFORM 80

.project and serverconfig.properties. The serverconfig.properties file, shown in the center of the
screenshot, contains the server information which is used by the plugins to connect to our Map-
ping Server, more specifically, the Java Application Server.

In Eclipse, the user can add a Nature to a project. We have created or own nature for our Map-
ping Client and added it to the ”MappingProject” project. At the left side of the screenshot, our
own Mapping Project Navigator is shown. This navigator shows only projects that have our
”Mapping Nature” added to them. Furthermore, it uses the information stored in the server-
config.properties file to connect to the Mapping Server. The client receives from the Mapping
Serve the Communities, Contexts, Mapping Elements, Models, Entities, and Relation Defini-
tions; which are shown in the navigator.

One of the key-points of our approach and methodology is the support for context-aware and
community-supported mappings. Therefore, we have designed the mapping-phase plugins in
such a way the actor always works with the combination of a certain context and a certain
community. The combinations of a context and community contains a unique set of mappings.
If we would enable the actor to work within a context, the mappings could still belong to several
different communities. This goes both ways of course: When an actor would work with a
number of mappings belonging to a specific community, these mappings could still belong to
several different contexts.

With this requirement in mind, we have developed a navigator on which the actor can browse
different communities and contexts. A detailed screenshot of the navigator is depicted in figure
4.20.

Figure 4.20: The traditional Eclpse-workbench with our Mapping Project Navigator.

CHAPTER 4. THE PLATFORM 81

Note that while in this screenshot, a context is placed below a community, this could just as
well be the other way around. There is no connection between a context or community. The
four contexts below Community 1 and Community 2 in the screenshot are the same contexts,
however, the combination Community 1 + Context1 will result in a different set of mappings
than the combination Community 2 + Context 1. If the user double-clicks on a context in the
navigator. An editor window opens in which he can create or edit the mappings within that
community + context combination. The editor window has 4 tabs: a Mappings-, Editor-, Context-
, and Community- tab.

The Mappings tab, as depicted in figure 4.21, shows the user all the mappings contained in the
selected Community and Context combination. Each mapping must be read from left to right.
In the center, the relation string is shown. The combination of this relation string and Context of
the mapping points to a specific Relation Definition. The number to the left of the relation string
is the strength of the relation. The number to the right of the relation string is the confidence
measure, representing the confidence and thrust from the community in the mapping.

Figure 4.21: The Mapping Editor window with the Mappings tab selected.

The articulation of a relation string to a relation definition is shown in figure 4.22. The screen-
shot shows a mapping from ”M1 Entity 1” to ”M2 Entity 1” with the relation name ”equivalent”.
The strength of the relation is 1.0 and the confidence in the mapping is also 1.0. The mapping
belongs to the community ”Community 1” and to the context ”Context 1” as can be seen in the
navigation view on the left. The properties view on the screenshot shows the relation properties
of the mapping. It shows that the relation string ”equivalent” points to the Relation Definition
”Equal” within context ”Context 1”.

CHAPTER 4. THE PLATFORM 82

Figure 4.22: A selected mapping in the Mapping Editor with the properties view showing the
Relation Definition assigned to the mapping.

While the Mapping tab is useful to view and edit existing mappings, it it not convenient to create
new mappings using this view. Therefore, we have created a second view which can be accessed
using the editor tab. In this view, the user can drag Models from the navigator into this view.
The Models will be placed next to each other. The user can than easily create new mappings
by dragging lines from an entity from one model to an entity of a second model. Figure 4.23
depicts a screenshot of the editor view. This editor view corresponds to the Matching step in
the mapping phase.

The Client Tool must also support the Preintegration step from the Mapping Phase. The tool
must enable to user to easily import different models and convert them into our own data
integration model. Therefore, we have created input adapters to convert a specific data format
into our data model. In the evaluation of our approach and tool in section 4.4, we will show
how we have created an RDF/XML input adapter to convert an OWL-ontology into our data
model.

The Storage step of the mapping phase is completely transparent to the user of the tool. As
we have briefly discussed in the beginning of this section, the user is constantly working with
remote data. The mappings, models and relations are never stored locally on disk. When the
user performs the standard Save operation, the data is send and stored on the server.

CHAPTER 4. THE PLATFORM 83

Figure 4.23: The Mapping Editor window with the Editor tab selected.

4.3.3 Commitment phase

In this section, we will present the part of our Mapping Client that enables the actor to com-
mit a meaningful set of mappings to a final alignment. In section 4.1.2 we have reviewed the
methodological steps that are needed in the commitment phase of our integration approach.
The Client tool must provide support for the two methodological steps from the commitment
phase as depicted in figure 4.24:

Commitment Phase

Mapping
Server

Mapping 1
Mapping 2
Mapping 3
Mapping 4
Mapping 5

Meaningful set of
application-neutral

Mappings
OWL

Committer

Omega-RIDL
Committer

Alignment-API
Committer

Application-specifc
Alignments

OWL
Alignment

Omega-RIDL
Alignment

Alignment-API
Alignment

Select meaningful set of mappings Translate to specific alignment format

Figure 4.24: The methodological steps of the Commitment phase and the necessary tool-
support.

Select meaningful set of mappings The actor must be able to browse the Mapping Server and

CHAPTER 4. THE PLATFORM 84

find the relevant and meaningful mappings for the intended use of his alignment. He then
must be able to select these relevant mappings to create the final alignment.

The Mapping Client supports this requirement with the same navigator and editor win-
dow we have presented in the Mapping phase. The user can select the mappings he wants
to include in the final alignment by dragging them to a new editor window in which the
final Alignment is shown. This window perspective and process is depicted in figure 4.25

Figure 4.25: The perspective enabling the user to commit a meaningful set of mappings to a
final alignment.

Translate to specific alignment format When the actor has selected the relevant, application-
neutral mappings from the Mapping Server, these mappings must be translated into a
specific alignment format. Therefore, a special committer must be available that interprets
the mappings with their relation definitions and converts them into the specific alignment
format.

The user of the Mapping Tool can select which kind of alignment he wants to create.
Then, according to the chosen alignment format a corresponding committer plug-in will
be loaded. The relations of the mappings he select to constitute the alignment will be
interpreted by this specific committer and translated into the alignment format.

In figure 4.25, such a committer plug-in is shown. It enables the user to create an alignment
in the Alignment API format. As shown on the figure, the alignment view has two tabs:

1. Selected Mappings: This tab shows the mappings the actor has chosen for this par-
ticular alignment. The mappings are shown in the same application-neutral manner
from the Mapping phase.

CHAPTER 4. THE PLATFORM 85

2. Alignment Source: This tab shows the selection of meaningful mappings from the
alignment translated into the specific alignment format chosen by the user.

4.4 Evaluation

To validate our methodology and approach, we have implemented an integration platform con-
sisting of a server and client tool following the specification of the platform from chapter 3. In
the previous sections, we have presented the Mapping Server and Mapping Client in further
detail and have elaborated on how they support our proposed methodology.

In this section, we will further evaluate these tools using a more real-life scenario in order to
do an preliminary evaluation of our thesis. It should be noted however that is is very difficult
and out of the scope of this thesis to do a full evaluation of our community-driven, context-
aware, and scalable integration approach. In order to be able to evaluate these elements of
our approach, we would need a much larger test- and user-base. Both things take a significant
amount of work to set up and accurately measure, therefore, we feel that this falls outside of the
scope of this thesis.

As a preliminary evaluation of this thesis, we present a real-life scenario in which an align-
ment must be created between two heterogeneous ontologies. We have opted to integrate two
RDF-based ontologies as these should sufficiently show the strengths and weaknesses of our
platform.

In section 4.4.2 of this evaluation, we will precisely show how the user can create mappings
between two heterogeneous models and store these mappings on the server, within a certain
context and community. In section 4.4.3, we show how the user can browse the contexts and
communities from the server and get a detailed view of every mapping contained in such a
context/community pair. We furthermore show how the user can then select the relevant map-
pings and create an alignment between these two heterogeneous models in the Alignment API
format.

4.4.1 Scenario

In this evaluation we will go through the entire process of integrating two similar, but hetero-
geneous RDF-based ontologies. We have chosen two citation ontologies:

1. UMBC Publication Ontology4: This is a publication ontology developed by the UMBC
ebiquity research group from the university of Maryland. The authors use the ontology to
publish their publications on their home-page conforming the Semantic Web principles.

4http://ebiquity.umbc.edu/ontology/publication.owl

CHAPTER 4. THE PLATFORM 86

2. Bibtex citation Ontology5: The bibTeX Definition in Web Ontology Language (OWL) Version
0.1 is developed by Nick Knouf, a researcher at the MIT Media Lab.

In this evaluation, we will integrate these two ontologies by creating an alignment from the
Bibtex Ontology to the Publication Ontology. As we have repeatedly argued in this thesis, this
alignment must be stored in a certain alignment format. In this case, we have opted for the
Alignment API[26] as the format to store the final alignment in. The Alignment API is an API
and implementation for expressing and sharing ontology alignments. It is mainly developed
and maintained by Jerome Euzenat from INRIA Rhone-Alpes in France.

4.4.2 Mapping phase

To integrate these two heterogeneous ontologies using our platform and integration method-
ology, the models must first be translated into our own data model. We have written an input
adapter that translates RDF documents into our Model/Entity model. How this process is sup-
ported by our Mapping Client is shown in figure 4.26.

Figure 4.26: Importing an RDF Ontology using an import wizard (left). The imported ontology
is now available as a Model with its entities in the Mapping Navigator (right).

As shown on the above figure, we have created an RDF Import wizard which can be used to
import RDF Ontologies. The user provides the wizard with the file or URL of the ontology
and the wizard automatically translates it to our own Model/Entity model. When the wizard
is finished, the new model is stored on the Mapping Server and can be seen in the Mapping
Navigator.

5http://zeitkunst.org/bibtex/0.1

CHAPTER 4. THE PLATFORM 87

The next step from the Mapping phase is the actual matching of the elements from both mod-
els. In this case, the actor has to create mappings from the Bibtex ontology to the Publication
ontology. The user can double click on an Community-Context combination in the Mapping
Navigator. This will open a Mapping Editor window in which the user can create the map-
pings. Next, the user can drag an drop the two models to the Editor tab of the Mapping Editor.
Having done that, the entities from both models will be displayed in this editor tab and the user
can draw mappings from one entity to another. The result of these steps are depicted in figure
4.27 and 4.28.

Drag and Drop

Drag and Drop

Figure 4.27: The result of opening an Editor View and drag and dropping the two models into
the Editor tab.

For every mapping drawn in the Editor tab, a detailed mapping is shown in the Mapping tab.
The Mapping tab shows all the mappings with the given Community and Context. When a
user clicks on a mappings, he can specify its details. Most importantly, he can specify to what
Relation Definition the Relation Name (string) must point to.

The process of selecting a mapping and pointing the ”equal” Relation Name to the Equal Rela-
tion Definition is depicted in figure 4.29.

When the user has created the mappings and saves the Editor window like in traditional appli-
cations, the mappings are stored on the Mapping Server.

CHAPTER 4. THE PLATFORM 88

Figure 4.28: Drawing mappings between the entities of both models.

Figure 4.29: The Mapping tab where the detailed mappings are shown and their properties can
be edited.

4.4.3 Commitment phase

Now that the mappings have been created and stored on the Mapping Server. An actor can
use our Mapping Client to make the final alignment. This actor must not be the same as the

CHAPTER 4. THE PLATFORM 89

one that has made the mappings as all mappings are available remotely through the Mapping
Server.

We have named the process of creating a final alignment by selecting a meaningful set of map-
pings and transforming them to the required alignment format committing an alignment. As we
have shown, the client can support many different committers depending on the alignment for-
mat needed. In this scenario, we will use the Alignment API Committer. This committer will
enable the user to select the mappings from the Mapping Server and drag them to the align-
ment. In the same time, the comitter will interpret the Relation Definition from these mappings
and translate the mappings into the Alignment API format. This process is depicted in figure
4.30 and 4.31.

Drag and Drop

Figure 4.30: The Selected Mappings tab from the Alignment API Committer plug-in.

The Alignment API Committer has two tabs:

1. Meaningful Mappings tab: This tab will show all the mappings contained in the align-
ment, in the same application-neutral way as they are shown in the Mapping Editor.
Selecting the relevant and meaningful mappings from the Mapping Server is done by
dragging them from the Mapping Editor to this tab window.

2. Alignment Source tab: In this tab, the final alignment is shown. This result from inter-
preting the selected mappings and converting them to the specific alignment format. As
shown in figure 4.31, the transformation of the two mappings:

”Community2”, ”Context2” : {Inproceedings} equal1,1 {Inproceedings}

and
”Community2”, ”Context2” : {Techreport} equal1,1 {Techreport}

is transformed into the following alignment conform the Alignment API format:

CHAPTER 4. THE PLATFORM 90

<?xml version=”1.0” encoding=”utf−8” standalone=”no”?>
<rdf:RDF xmlns=”http://knowledgeweb.semanticweb.org/heterogeneity/alignment”

xml:base=”http://knowledgeweb.semanticweb.org/heterogeneity/alignment”
xmlns:rdf=”http://www.w3.org/1999/02/22−rdf−syntax−ns#”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema#”>

<Alignment>
<xml>yes</xml>

<level>0</level>

<method>Mapping Client</method>

<onto1>http://zeitkunst.org/bibtex/0.1/bibtex.owl</onto1>

<onto2>http://ebiquity.umbc.edu/ontology/publication.owl</onto2>

<map>

<Cell>
<entity1 rdf:resource=”http://zeitkunst.org/bibtex/0.1/bibtex.owl#Inproceedings”/>

<entity2 rdf:resource=”http://ebiquity.umbc.edu/ontology/publication.owl#Inproceedings”/>

<measure rdf:datatype=”http://www.w3.org/2001/XMLSchema#float”>1.0</measure>

<relation>=</relation>

</Cell>
</map>

<map>

<Cell>
<entity1 rdf:resource=”http://zeitkunst.org/bibtex/0.1/bibtex.owl#TechReport”/>

<entity2 rdf:resource=”http://ebiquity.umbc.edu/ontology/publication.owl#TechReport”/>

<measure rdf:datatype=”http://www.w3.org/2001/XMLSchema#float”>1.0</measure>

<relation>=</relation>

</Cell>
</map>

</Alignment>

Figure 4.31: The Alignment Source tab from the Alignment API Committer plug-in.

CHAPTER 4. THE PLATFORM 91

4.5 Conclusions

We started this chapter by presenting the high-level architecture of our integration platform.
The platform consists of a Remote layer and a Client layer. In the client layer, a separation can
be made between the two steps of our integration methodology: the Mapping phase and the Com-
mitment phase. We identified the different steps that need to be followed in each phase and how
these steps are translated into requirements for the Mapping Client. In the second section of
this chapter, we discussed the Remote Layer of our platform in further detail. We presented the
technology stack on which the remote layer is based: a three-tiered J2EE architecture. We further
elaborated on each of the two remote tiers, discussing the implementation details using UML
class and sequence diagrams and elaborating on the patterns we adopted. In the third section,
we discussed the Mapping Client in further detail. We presented the architectural foundation
of the tool. Next, we discussed how the Mapping Client supports the two methodological steps
of our integration methodology. In the last section, we performed a preliminary evaluation of
our platform and methodology using a real-life scenario. We showed how two heterogeneous
ontologies can be integrated using our two-step methodology.

5
Conclusions

In this chapter we reflect on the questions we have asked ourselves in this thesis and on how we
answered those questions. Finally we list what we feel are the most important points of future
work

5.1 Research Questions and Objectives

In this thesis we have asked ourselves the following questions and answered them in distinct
chapters of this thesis:

1. What kinds of information heterogeneity exist and where does this heterogeneity come
from? (Chapter 2)

2. What is the existing work on integration methodologies, algorithms and frameworks?
(Chapter 2)

3. Can we propose a methodology based on the notions of collaboration, context-awareness
and reuse to attain a scalable integration approach? (Chapter 2)

4. What would the advantages and disadvantages of such an approach be? (Chapter 2)

5. Can we develop an platform that implements and support this methodology? (Chapter 3)

In the next Section we describe how we have answered these questions and met our objec-
tives.

92

CHAPTER 5. CONCLUSIONS 93

5.2 Results and Contributions

We now present the results of the thesis. We split up the presentation of our results in three
parts following the research methodology we adopted:

5.2.1 Background

We answered our first two questions in this chapter. We discussed the different forms of se-
mantics and how these can lead to heterogeneity. We further discussed STARLab’s DOGMA
approach to ontology engineering as this framework forms the basis of many of the properties
of our own approach and methodology for information integration. Next, we discussed the
use of semantics in practice, more specifically, we presented the Semantic Web initiative and
the OMG’s model driven architecture (MDA) and ontology definition model (ODM) initiatives.
We ended this chapter by providing the reader with a background on semantic integration: We
presented the common terminology we used throughout the rest of this thesis; we discussed
the different forms and levels in which heterogeneity can appear; we presented a state of the art
on ontology matching, a very important part of the integration process, and finally provided an
overview of the most important existing integration frameworks.

5.2.2 Approach & Methodology

We started this chapter by introducing the two cornerstones of our proposed integration ap-
proach: Mapping reuse and application-specific mappings. We identified several scenarios that
are problematic for the existing integration frameworks, but are much better handled using
our methodology. In the second section of this chapter, we elaborated in more detail on our
methodology. We discussed in detail the two phases of our integration approach: The Mapping
phase and the Commitment phase. We discussed the tree most significant characteristics of our
approach and methodology: Uniform and context-aware mappings, and a community-driven
mapping process. In the third section we defined the precise semantics of the conceptual data
model used by our methodology: We provided exact definitions of the Context, the Commu-
nity, the Mapping, the Model, the Entity, and the Relation Definition used in our approach. To
conclude the section, we elaborated on the motivation for our choices. We showed how our
approach has significant benefits over existing approaches and how it accomplishes the goals
we have set for this thesis.

5.2.3 The Platform

We started this chapter by presenting the high-level architecture of our integration platform.
The platform consists of a Remote layer and a Client layer. In the client layer, a separation can

CHAPTER 5. CONCLUSIONS 94

be made between the two steps of our integration methodology: the Mapping phase and the Com-
mitment phase. We identified the different steps that need to be followed in each phase and how
these steps are translated into requirements for the Mapping Client. In the second section of
this chapter, we discussed the Remote Layer of our platform in further detail. We presented the
technology stack on which the remote layer is based: a three-tiered J2EE architecture. We further
elaborated on each of the two remote tiers, discussing the implementation details using UML
class and sequence diagrams and elaborating on the patterns we adopted. In the third section,
we discussed the Mapping Client in further detail. We presented the architectural foundation
of the tool. Next, we discussed how the Mapping Client supports the two methodological steps
of our integration methodology. In the last section, we performed a preliminary evaluation of
our platform and methodology using a real-life scenario. We showed how two heterogeneous
ontologies can be integrated using our two-step methodology.

5.3 Discussion

In this thesis, we have presented our two-step methodology that splits up the traditional inte-
gration process into two completely separated phases. In the first phase, the Mapping phase,
heterogeneous models are matched and mappings are created between corresponding entities
of these models. The mappings are stored on a remote server in an application-neutral manner.
We further introduced a community and contextual dimension for each mapping, which could,
among others, be used as a grouping mechanism providing an extra level of scalability as the
number of similar mappings can grow very large. In the second phase of our proposed method-
ology, the Commitment phase, a final, application-specific alignment is created by the actor. He
creates this alignment by selecting from the Mapping Server a meaningful set of mappings de-
pending on the intended use of the alignment. The tool will aid him in automatically interpret-
ing the selected application-neutral mappings and translating them into the application-specific
integration format.

As we argued in chapter 3, this methodology brings many of the advantages we found were
lacking in current integration frameworks, but very necessary in our increasingly information-
dependant, fast-moving, collaborative information society. By introducing an application-neutral,
persistent state between the two steps of our methodology, mappings can be efficiently reused
which enables a new level of scalability and efficiency:

• a mapping can be created once and used many times;

• when the model evolves, new mappings must only be created for the new and changed
entities of the model;

• because the process of creating an application-specific alignment from a large number of
existing application-neutral mappings is very efficient and requires only a small effort,
users must no longer create general alignments, but can create alignments that are specif-
ically tailored for their intended use without much overhead;

CHAPTER 5. CONCLUSIONS 95

• storing application-neutral, conceptual mappings on a remote server enables a commu-
nity of stakeholders to reason over, express their confidence in, and govern over these
mappings. In this way, the mapping creation and management process encourages collab-
oration and can become community-driven, which may result in more and higher-quaility
mappings.

While we argue that these advantages may result from adopting our methodology, this thesis
misses a real case-study evaluating our claims. This could be one argument against this thesis.
However, putting together such an evaluation study would need a large and controlled user
base. This is very difficult to set up and as we did not have such resources to our disposal, we
believe this falls outside the scope of this thesis and remains future work.

We have however done a preliminary evaluation of the platform we developed. We have shown
that two real ontologies can be successfully integrated using our platform by following our
methodology.

5.4 Future Work

In this thesis, we have presented our novel methodology and platform that should allow for a
more efficient, scalable, and collaborative integration process. However, more research should
be conducted in order to make this a robust, repeatable and well-tested process. We acknowl-
edge future work is needed on two aspects of our approach: The methodology needs more
research and evaluation to become more robust and well-defined. On the other side, better tool
support will need to be developed to aid the users and increase the efficiency of our two-step
approach. We identify a number of issues for which future work could further increase the
quality and efficiency of the integration process:

Integration Methodology

With respect to our integration methodology, we identify the areas where future work could
directly strengthen the methodology:

Collaboration More research is needed on the way users and communities of users interact to
come to a larger number of high-quality mappings. Certain policies of thrust and confi-
dence must be introduced and social network analysing techniques may be appropriate
to evaluate the quality and thrust in a mapping. This may lead to a complete community-
driven integration process which could further increase the scalability and efficiency of
the platform, and quality of the resulting alignments.

Evolution More research may be necessary to develop a robust methodology to support evo-
lution of models and hence the mappings between them. Problems like versioning and
governance will need to be looked into.

CHAPTER 5. CONCLUSIONS 96

Integration Platform

An integration platform that supports our methodology is almost just as important as the
methodology itself. It is critical that the actor has a powerful tool suite available that will enable
him to integrate heterogeneous models using our methodology as efficiently as possible.

Integrating existing matching frameworks Many matching algorithms and frameworks have
already been developed. These should be integrated in our platform as the Mapping
phase of our methodology has a matching step itself: The actors must match the corre-
sponding entities from the heterogeneous models to create the mappings. When match-
ing algorithms would be integrated in the client, they could propose the mappings to the
user. This could lead to a semi-automated mapping phase which would further increase
the efficiency of our approach. When the entire process becomes community-driven, a
fully automated Mapping phase might be possible: The mappings could be created fully
automatically after which the community could express their confidence and thrust in the
best mappings. This would fully exploit the Wisdom of Crowds and Collective Intelligence
we referred to in our introduction.

Interpretation of application-neutral mappings In the Commitment phase of our methodol-
ogy, the application-neutral mappings must be translated into application-specific map-
pings conform the given alignment format. It is important that the tool supports the user
as much as possible in this process. This translation should be as transparent as possible
for the user. Several interpreters will need to be developed to understand the concep-
tual relation from the mappings on the server and translate them into the corresponding
relations or rules in the different alignment formats.

Bibliography

[1] Ontology definition metamodel. Request for proposal, Object Management Group, March
2003.

[2] Topic maps data model. Technical Report 13250-2, ISO/IEC, December 2005.

[3] Meta object facility (mof) core specification. OMG Available Specification Version 2.0, Ob-
ject Management Group, January 2006.

[4] Unified modeling language. Technical Report Version 2.0, Object Management Group,
March 2006.

[5] D. Aumueller, H.-H. Do, S. Massmann, and E. Rahm. Schema and ontology matching with
coma++. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international conference on
Management of data, pages 906–908, New York, NY, USA, 2005. ACM Press.

[6] J. Barwise and J. Seligman. Information Flow: the Logic of distributed systems, volume Cam-
bridge Tracts in Theoretical Computer Science 44. Cambridge University Press, 1997.

[7] M. Benerecetti, P. Bouquet, and C. Ghindini. Contextual reasoning destilled. Journal of
Theoretical and Experimental Artificial Intelligence, 12(3):279–305, 2000.

[8] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American 284(5),
pages 34–43, 2001.

[9] J. Bézivin and O. Gerbé. Towards a precise definition of the omg/mda framework. In
Automated Software Engineering, San Diego, USA, November 2001.

[10] J. D. Bo, P. Spyns, and R. Meersman. Assisting ontology integration with existing thesauri.
In Z. T. e. a. Meersman R., editor, On the Move to Meaningful Internet Systems 2004: CoopIS,
DOA, and ODBASE (part I), volume 3290 of LNCS, pages 801 – 818. Springer Verlag, 2004.

[11] H. Boley. The rule markup language: Rdf-xml data model, xml schema hierarchy, and
xsl transformations. In Web Knowledge Management and Decision Support: 14th International
Conference on Applications of Prolog, INAP, volume 2543/2003 of Lecture Notes in Computer
Science, pages 5–22, Tokyo, Japan, October 2001. Springer Berlin / Heidelberg.

[12] P. Bouquet, M. Ehrig, J. Euzenat, E. Franconi, P. Hitzler, and et al. D2.2.1 specification of a
common framework for characterizing alignment. KnowledgeWeb Deliverable, February
2005.

97

BIBLIOGRAPHY 98

[13] D. Brickley and R. V. Guha. Rdf vocabulary description language 1.0: Rdf schema. W3c
recommandation, W3C, February 2004.

[14] A. Brown. An introduction to model driven architecture - part 1: Mda and today’s systems.

[15] R. Colomb, K. Raymond, L. Hart, P. Emery, C. Welty, G. T. Xie, and E. Kendall. The object
management group ontology definition metamodel. In F. Ruiz, C. Calero, and M. Piattini,
editors, Ontologies for Software Engineering and Technology. Springer, 2006.

[16] S. Crawley, S. Davis, J. Indulska, S. McBride, and K. Raymond. Meta-meta is better-better.
In Workshop on Distributed Applications and Interoperable Systems (DAIS), 1997.

[17] J. De Bo, P. Spyns, and R. Meersman. Creating a ”dogmatic” multilingual ontology infras-
tructure to support a semantic portal. In Z. T. e. a. R. Meersman, editor, On the Move to
Meaningful Internet Systems 2003: OTM 2003 Workshops, volume 2889 of LNCS, pages 253 –
266. Springer Verlag, 2003.

[18] P. De Leenheer and A. de Moor. Context-driven disambiguation in ontology elicitation. In
P. Shvaiko and J. Euzenat, editors, Context and Ontologies: Theory, Practice and Applications,
volume WS-05-01 of AAAI Technical Report, pages 17–24, Pittsburg USA, 7 2005. AAAI
Press.

[19] P. De Leenheer, A. de Moor, and R. Meersman. Context dependency management in on-
tology engineering: a formal approach. Journal on Data Semantics VIII, LNCS(4380):26–56,
2007.

[20] P. De Leenheer and R. Meersman. Towards a formal foundation of dogma ontology: part
i. Technical Report STAR-2005-06, VUB STARLab, Brussel, 2005.

[21] A. de Moor. Ontology-guided meaning negotiation in communities of practice. In P. Mam-
brey and W. Graether, editors, Proceedings of the Workshop on the Design for Large-Scale Digital
Communities at the 2nd International Conference on Communities and Technologies (C&T 2005),
pages 21 – 28, Milano, 2005.

[22] A. de Moor, P. De Leenheer, and R. Meersman. DOGMA-MESS: A meaning evolution
support system for interorganizational ontology engineering. In Proceedings of the 14th In-
ternational Conference on Conceptual Structures, (ICCS 2006), Aalborg, Denmark, Lecture Notes
in Computer Science. Springer-Verlag, 2006.

[23] M. Dean and G. Schreiber. Owl web ontology language reference. W3c recommandation,
Word Wide Web Consortium (W3C), February 2004.

[24] H. H. Do and E. Rahm. Coma - a system for flexible combinations of schema matching
approaches. Proceedings of the Very Large Data Bases conference (VLDB), pages 610–621, 2001.

[25] K. Duddy. Uml2 must enable a family of languages. Communications of the ACM, 45(11):73
– 75, 2002.

BIBLIOGRAPHY 99

[26] J. Euzenat. An api for ontology alignment. In The Semantic Web, ISWC 2004: Third Inter-
national Semantic Web Conference, volume 3298/2004 of Lecture Notes in Computer Science,
pages 698–712. Springer Berlin / Heidelberg, 2004.

[27] B. Ganter and R. Wille. Formal Concept Analysis: mathematical foundations. Springer, 1999.

[28] O. Gerbé and B. Kerhervé. Modeling and metamodeling requirements for knowledge man-
agement. In J. Bézivin, J. Ernst, and W. Pidcock, editors, Proceedings of OOPSLA Workshop
on Model Engineering with CDIF, Vancouver, Canada, October 1998.

[29] F. Giunchiglia and P. Shvaiko. Semantic matching. The Knowledge Engineering Review Journal
(KER), 18(3):265–280, 2003.

[30] F. Giunchiglia and P. Shvaiko. S-match: an algorithm and an implementation of semantic
matching. In Proceedings of the European Semantic Web Symposium (ESWS), pages 61–75,
2004.

[31] F. Giunchiglia and T. Walsh. A theory of abstraction. Artificial Intelligence, 57(2-3):323–390,
1992.

[32] T. R. Gruber. A translation approach to portable ontology specifications. Knowledge Acqui-
sition, 5(2):199–220, 1993.

[33] N. Guarino and P. Giaretta. Ontologies and knowledge bases: Towards a terminological
clarification. In N. Mars, editor, Towards Very Large Knowledge Bases: Knowledge Building and
Knowledge Sharing, pages 25 – 32, Amsterdam, 1995. IOS Press.

[34] P. Hayes. Rdf semantics. Technical report, W3C, 2004.

[35] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabel, B. Grosof, and M. Dean. Swrl: A
semantic web rule language combining owl and ruleml. W3c member submission, World
Wide Web Consortium, 2004.

[36] ISO/IEC. Information technology - common logic (cl) - a framework for a family of logic-
based languages. Official ISO FCD Draft 24707, ISO/IEC, April 2006.

[37] E. J. Towards a principled approach to semantic interoperability. In G.-P. A., G. M., and
S. H, editors, Proceedings IJCAI 2001 Workshop on ontology and ifnormation sharing, pages 19
– 25, 2001.

[38] Y. Kalfoglou, B. Hu, D. Reynolds, and N. Shadbolt. Capturing representing and opera-
tionalising semantic integration. 6th month deliverable: Semantic integration technologies
survey, The University of Southampton, Hewlett Packard Laboratories@Bristol, 2005.

[39] M. Klein. Combining and relating ontologies: an analysis of problems and solutions. In
A. Gomez-Perez, M. Gruniger, H. Stuckenschmidt, and M. Ushold, editors, Proceedings
IJCAI 2001 Workshop on ontology and ifnormation sharing, WA USA, 2001.

[40] G. Klyne and J. J. Carroll. Resource description framework (rdf): Concepts and abstract
syntax. Technical report, W3C, 2004.

BIBLIOGRAPHY 100

[41] G. E. Krasner and S. T. Pope. A cookbook for using the model-view controller user interface
paradigm in smalltalk-80. J. Object Oriented Program., 1(3):26–49, 1988.

[42] O. Lassila and R. R. Swick. Resource description framework (rdf) model and syntax speci-
fication. Technical report, World Wide Web Consortium, January 1999.

[43] D. Lenat. The dimensions of context space.

[44] J. Madhavan, P. Bernstein, and E. Rahm. Generic schema matching with cupid. In P. M. G.
Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. T. Snodgrass, editors,
Proceedings of 27th International Conference on Very Large Data Bases, pages 49–58, 2001.

[45] J. Madhavan, P. A. Bernstein, A. Doan, and A. Halevy. Corpus-based schema matching.
In ICDE ’05: Proceedings of the 21st International Conference on Data Engineering (ICDE’05),
pages 57–68, Washington, DC, USA, 2005. IEEE Computer Society.

[46] N. Martin. Wine Journal: Chateau Cheval-Blanc. http://www.wine-journal.com/

cheval.html, 2004.

[47] D. McComb. Semantics in Business Systems. Morgan Kaufmann Publishers Inc., 2003.

[48] R. Meersman. The ridl conceptual language. Control Data DMRL, 1982.

[49] P. Mika. Ontologies are us: A unified model of social networks and semantics. Web Seman-
tics: Science, Services and Agents on the World Wide Web, 5(1):5–15, 2007.

[50] G. A. Miller. Wordnet: a lexical database for english. Commun. ACM, 38(11):39–41, 1995.

[51] I. Niles and A. Pease. Towards a standard upper ontology. In C. Welty and B. Smith,
editors, FOIS ’01: Proceedings of the international conference on Formal Ontology in Information
Systems, pages 2–9, New York, NY, USA, 2001. ACM Press.

[52] N. Noy and M. A. Musen. Anchor-prompt: Using non-local context for semantic matching.
In In Proceedings of IJCAI workshop on Ontologies and Information Sharing, page 63ñ70, 2001.

[53] C. Ogden and I. A. Richards. The meaning of meaning: A study of the influence of lan-
guage upon thought and of the science of symbolism. 8th ed. 1923. Reprint New York: Har-
court Brace Jovanovich, 1923.

[54] E. R. Philip A. Bernstein. Data warehouse scenarios for model management. In Lecture
Notes in Computer Science, volume 1920, pages 1–15. Springer Berlin / Heidelberg, 2000.

[55] G. Pór. Blog of collective intelligence, 2007.

[56] A. J. Pretorius. Lexon visualisation: Visualising binary fact types in ontology bases. Un-
published MSc Thesis, Brussels, Vrije Universiteit Brussel, 2004.

[57] E. Prud’hommeaux and A. Seaborne. Sparql query language for rdf. W3c candidate rec-
ommendation, Word Wide Web Consortium (W3C), 2006.

[58] M. R. and J. M. An architecture and toolset for practical ontology engineering and deploy-
ment: the dogma approach. Technical Report 06, STAR Lab, Brussels, 2002.

http://www.wine-journal.com/cheval.html
http://www.wine-journal.com/cheval.html

BIBLIOGRAPHY 101

[59] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching. The
VLDB Journal, 10(4):334–350, 2001.

[60] R. Reiter. Towards a logical reconstruction of relational database theory. In Brodie, M.,
Mylopoulos, J., Schmidt, J. (eds.), On Conceptual Modelling, pages 191–233, 1984.

[61] B. Rosario. Classification of the semantic relations in noun compounds.

[62] P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches. Journal on Data
Semantics, IV, 2005.

[63] P. Spyns and R. Meersman. A survey on ontology alignment and merging. OntoBasis
Deliverable #D1.5, STAR Lab, Brussel, 2003.

[64] P. Spyns, R. Meersman, and M. Jarrar. Data modelling versus ontology engineering. SIG-
MOD Record Special Issue on Semantic Web, Database Management and Information Systems,
31(4):12–17, 2002.

[65] J. Surowiecki. The Wisdom of Crowds. Anchor, August 2005.

[66] M. Ushold and M. Gruninger. Ontologies: Principles, methods and applications. In The
Knowledge Engineering Review, 1996.

[67] H. Wache, T. Vogele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann, and S. Hüber.
Ontology-based integration of information – a survey of existing approaches. In Proceed-
ings of the IJCAI-Workshop Ontologies and Information Sharing, pages 108–117, Seattle, WA,
2001.

[68] A. V. Zhdanova, R. Krummenacher, J. Henke, and D. Fensel. Community-driven ontol-
ogy management: Deri case study. In Proceedings of the 2005 IEEE/WIC/ACM International
Conference on Web Intelligence, pages 73–79, Washington, DC, USA, 2005. IEEE Computer
Society.

	1 Introduction
	1.1 Problem Statement and Motivation
	1.2 Proposed Solution
	1.2.1 Research Questions & Objectives
	1.2.2 Research Methodology

	1.3 Outline of this Thesis

	2 Background
	2.1 Semantics
	2.1.1 From Vocabulary to Ontology
	2.1.2 The Dogma Approach

	2.2 Semantics on the Web: The Semantic Web
	2.2.1 The Semantic Web Technology Stack

	2.3 Semantics in Software Engineering
	2.3.1 The OMGs Model Driven Architecture
	2.3.2 The Ontology Definition Model

	2.4 Semantic Integration
	2.4.1 Terminology
	2.4.2 Semantic Heterogeneity
	2.4.3 Ontology Matching
	2.4.4 Ontology Alignment & Merging
	2.4.5 Existing Integration Frameworks

	3 Approach & Methodology
	3.1 Introduction
	3.1.1 Mapping Reuse
	3.1.2 Application-specific mappings

	3.2 Methodology
	3.2.1 Mapping phase
	3.2.2 Commitment phase

	3.3 Mapping Approach
	3.3.1 Uniform Mappings
	3.3.2 Community-driven Mappings
	3.3.3 Context-aware Mappings

	3.4 Mapping Semantics
	3.4.1 Model & Entities
	3.4.2 Mapping Element
	3.4.3 Mapping Relations

	3.5 Motivation
	3.5.1 Scalability
	3.5.2 Efficiency
	3.5.3 Evolution

	3.6 Conclusions

	4 The Platform
	4.1 Overview
	4.1.1 Remote Layer
	4.1.2 Client Layer

	4.2 Mapping Server
	4.2.1 Data Tier
	4.2.2 Business Tier
	4.2.3 Scalability

	4.3 Mapping Client
	4.3.1 Mapping Client Base
	4.3.2 Mapping phase
	4.3.3 Commitment phase

	4.4 Evaluation
	4.4.1 Scenario
	4.4.2 Mapping phase
	4.4.3 Commitment phase

	4.5 Conclusions

	5 Conclusions
	5.1 Research Questions and Objectives
	5.2 Results and Contributions
	5.2.1 Background
	5.2.2 Approach & Methodology
	5.2.3 The Platform

	5.3 Discussion
	5.4 Future Work

