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Abstract

Aspect-Oriented Programming (AOP) has emerged as a programming para-
digm for better modularization of software. Thanks to AOP, features that
crosscut a modular software can be cleanly modularized in aspects. In this
line, many languages supporting AOP have been proposed, some of them
being general purpose, while others are domain-specific. Versatile kernels
based on partial reflection have recently been proposed as a means to fos-
ter interoperability between aspects, allowing aspects written in different
languages to be composed appropriately. This thesis is concerned with an
open architecture for a modular definition of aspect languages, as well as a
generic model for aspect composition.
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How to read this dissertation

The first part of the thesis presents the necessary background concepts, and
introduces existing works in the area of separation of concerns (first chap-
ter), aspect-oriented programming (chapter 2), computational reflection (3),
and the prototype this work is based on: Reflex (4). From the issues raised
in the introduction, chapter 5 states the motivations for the thesis.

The core of the dissertation is divided in two parts. Chapters 6 and 7
relate to abstraction and modularization issues, whereas 8, 9 and 10 present
composition solutions.

Chapters 11 and 12 are dedicated to examples: they illustrate language
modularization and aspect composition respectively.

Finally, three chapters compose the conclusion. Chapter 13 is a discussion
about related works. Chapter 14 reviews the progression of the dissertation
and the results. Lastly, chapter 15 presents the main perspectives for this
work.
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Chapter 1

Separation of concerns

1.1 The SOC principle

The separation of concerns (SOC) is a key principle in engineering. It states
that different kinds of concerns in a given problem should be identified and
separated, in order to cope with complexity and achieve required engineering
quality factors (the -ities: understandability, verifiability, maintainability,
evolvability or adaptability, reusability and robustness). Said differently, a
given problem must be decomposed appropriately in order to be solved.

The SOC principle can be applied in various ways and in different domains:
for instance the static, dynamic and systemic approaches to a mechanical
problem may be seen as concerns. The decomposition of problems has var-
ious names depending on the field of application: AI specialists use to talk
about problem reduction, whereas the literature refers more generally to the
divide and conquer strategy from a translation of Julius Caesar’s words. In
this dissertation we rather use the term separation of concerns, which is
common for software engineering.

1.2 Traditional modularization

Modularization is the possibility to cleanly encapsulate concerns in separate
modules. According to SOC, each concern of a given software design prob-
lem should preferably be mapped to exactly one module in the system.

The notion of module depending on the programming paradigm, this thesis
focuses on object-oriented modularization. Indeed, object-oriented program-
ming (OOP) was a major breakthrough in the history of modularization,
by promoting objects as the encapsulation of both state and behaviour in a
modular unit. The organization of objects in this paradigm, typically via
inheritance mechanisms, reflects a modularization of concepts and concerns.
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1.3 Crosscutting concerns

Despite SOC and object-oriented modularization, some concerns cannot eas-
ily be separated: when a concern must be mapped over many modules, this
is called crosscutting. Conversely, tangling refers to multiple concerns ap-
plying in a single module. Generally, crosscutting causes tangling.

Typical examples of crosscutting concerns are monitoring, logging, synchro-
nization, persistence management, load balancing, etc. They are a serious
problem for software designers: on the first hand, crosscutting concerns have
their code spread over many places; on the second hand, tangled concerns
are bound to pieces of code from other (crosscutting) concerns. As a re-
sult, none of these concerns can achieve the -ities, i.e. they are hard to
understand, reuse, extend, adapt or maintain.

1.4 Dealing with crosscutting

It may be surprising, but crosscutting concerns do not result from a bad
design. Said differently, no refactoring will succeed in removing them. In-
deed, they are inherent to the modularization paradigm, rather than the
modularization itself.

Crosscutting may be considered as a limitation of OOP. Indeed, object-
oriented languages and artefacts are designed from the perspective of a hier-
archical decomposition which does not align well with crosscutting concerns.
Highlighting some limits of the traditional modularization paradigm, these
concerns lead software designers to propose and explore alternative design
and programming techniques.

The following of this introduction presents two major approaches for adapt-
ing software in order to deal with crosscutting, namely aspect orientation
and computational reflection. Finally, Reflex is presented in chapter 4 as a
candidate for aspect-oriented programming using reflection.
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Chapter 2

Aspect orientation

2.1 Encapsulating crosscutting

Where conventional mechanisms fail to appropriately cope with the cross-
cutting problem, aspect-oriented software development [AOSD.net] provides
explicit abstractions for representing crosscutting concerns, namely aspects.
In particular, aspect-oriented programming (AOP) enables the separation of
traditional software components from crosscutting concerns at the program-
ming level, achieving clean modularization.

2.2 AOP concepts and terminology

Several aspect-specific terms will be used in the dissertation. Therefore, this
section defines the main concepts of AOP, despite there is still no consensus
terminology1.

Joinpoints. The points of the execution of a program where concerns may
crosscut modules. Consequently, crosscutting reflects the presence of
joinpoints in various modules for a single concern, whereas tangling can
be defined as joinpoints from different concerns in a single module.

Cuts. Cuts, pointcuts and pointcut specifications are three terms referring
to predicates over joinpoints. A cut specifies where crosscutting hap-
pens in a program.

Actions. Also called advices, they are semantic extensions applied over
an existing program. To make it clear, one can consider them as
instructions to be executed at certain points of the program.

Bindings. The bindings associate cuts and actions. In practice, they reflect
crosscutting concerns.

1Most terms however were introduced by Kiczales in 1997.
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Aspects. In the context of an aspect-oriented language (AOL), an aspect is
a module encapsulating a crosscutting concern. By extension, aspects
are generally considered as the abstraction for crosscutting concerns
in AOSD (particularly at the design level as early aspects). There
is a slight difference however: aspects are not bindings, they rather
encapsulate them. Indeed, aspect modules may contain more than
one pair cut-action (i.e. binding).

Actually, cuts and actions can be either behavioural or structural. Be-
havioural AOP applies to the behaviour or semantics of a base program
(typically, executing an instruction when a given method is called). Struc-
tural aspects modify the structure of the program (for instance, adding a
member to a set of classes). In this work we are concerned with behavioural
AOP, as explained later in 4.2.

2.3 AOP technologies

There is a variety of models and proposals around AOP, which differ with
respect to their level of support for cuts, actions and bindings, as well
as various other considerations: behavioural and structural capabilities,
symmetry of the paradigm [Harrison et al., 2002], achievement of oblivi-
ousness [Filman et al., 2000], technological approach (Composition Filters
[Bergmans et al., 2001], Aspect Attachment [Kiczales et al., 1997a], Hyper-
spaces [Tarr et al., 1999]), etc. In particular, some approaches try to achieve
genericity, whereas the others are voluntary domain-specific.

Historically, first attempts to separate crosscutting concerns were domain-
specific aspect languages (DSALs such as [Kiczales et al., 1997b, Irwin et al.,
1997, Kiczales et al., 1997c]). These solutions are limited, both in their con-
text of application and their capacity to traduce complex behaviors. Nev-
ertheless, DSALs are close to a particular problem area, which obviously
presents benefits: declarative representation, simpler analysis and reasoning
about aspects, domain-level error checking and optimizations.

However, development and deployment costs progressively replaced DSALs
by generic AOLs. AspectJ [Kiczales et al., 2001] in 1997 was a breakthrough
as the first generally applicable solution in AOP. Aspect-oriented logic meta
programming (AOLMP [De Volder, 1999]) is another attempt to genericity
with the model and languages written in a common ProLog-like language.
On the other hand, the Hyperspace proposal [Tarr et al., 1999] stands for
one of the most powerful AOP models, but its actual implementation is
not satisfying and limits its acceptance. Conversely, Composition Filters
[Bergmans et al., 2001] have a very limited model but fairly simple to use
and implement, and extensions were proposed still recently [Salinas, 2001].
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The various approaches and technologies for AOP lead to tradeoffs: one
would choose either a generic or a domain-specific solution depending on
the application purpose. In [Tanter & Noyé, 2004], the authors argue that
“the most adequate conceptual model and level of genericity for a given ap-
plication domain actually depends on the situation: there is no definitive,
omnipotent approach that best suits all needs”.

2.4 Combining approaches

Recently, software and language designers started to refocus again on domain-
specific solutions, assuming that each aspect is best specified in its own
vocabulary. Some propose to explore an alternative approach consisting
of combining different solutions, possibly domain-specific. [Rashid, 2001]
reports a positive feedback on such a hybrid approach. Considering the ad-
vantages of DSALs as well as the need for versatility, several researchers like
Wand argue that AOP should concentrate on building tools and environ-
ments supporting domain-specific solutions [Wand, 2003]. The combination
approach seems promising for AOP, since it should free designers from tra-
ditional AOP tradeoffs between genericity and DSAL benefits.

Unfortunately, most aspect-oriented solutions are bound to their implemen-
tation, therefore hard to combine. Despite the similarity of their transfor-
mations on programs, AOP tools are generally not compatible with each
other, or correctness is jeopardized when different technologies interact.

There is still no consensus solution, nevertheless several proposals aim to
address the issue of combining AOP approaches. The Concern Manipu-
lation Environment [CME] is a proposal for an ambitious AOSD kernel,
dealing with any software representation, including source code as well as
UML diagrams. AOLMP [De Volder, 1999] is a solution to building com-
posable aspect-specific languages with logic metaprogramming. XAspects
[Shonle et al., 2003] is a plugin mechanism for allowing DSALs to cooper-
ate. Josh [Chiba & Nakagawa, 2004] is an open AspectJ-like language aimed
at new aspect language experiments. Finally, Reflex is an open reflective
extension of Java [Tanter et al., 2001] which has evolved to implement a
model for partial reflection [Tanter et al., 2003] and now turns into a versa-
tile kernel for Java AOP [Tanter & Noyé, 2004].

This work is based on Reflex as a reflective AOP kernel prototype; con-
sequently, this introduction continues with a presentation of the paradigm
of reflection, then with Reflex itself. By the way, the last part of the thesis
(chapter 13) compares Reflex with the other combination technologies.
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Chapter 3

Computational reflection

3.1 Self meta computation

The reflective paradigm results from Brian Smith’ studies around the foun-
dations of consciousness and self-reference, as well as his work on the appli-
cation of these concepts to computer science.

Computational Reflection breaks the traditional distinction between pro-
grams and data, by conceiving programs as data for other programs. Pro-
grams working on other programs are called metaprograms, working at a
so-called metalevel. The metalevel is opposed to the base level, both be-
ing causally connected. By extension, a whole terminology is built with the
‘meta’ prefix: metadata, metaprogramming, metaobject, metaclass, meta-
model, etc. The support for metacomputation is one of the main properties
of reflection. Actually, reflection adds that programs can manipulate not
only other programs but themselves; said differently, computational reflec-
tion is self metacomputation.

Both experimental and theoretical approaches to computer science met to
consider reflection as a promising idea for software engineering. In particu-
lar, reflection seems a very appropriate technology for software adaptation.
Therefore, it is not surprising that it has been progressively applied to SOC.

3.2 Reflective mechanisms

Computational reflection is self metacomputation, or the ability of a pro-
gram to both view and modify its own state and behavior. The first mech-
anism is introspection, whereas modifications are called intercession. Like
for AOP, the support for these mechanisms can be structural or behavioural,
but we focus here on behavioural reflection.
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To allow programs to access successively the meta and base levels, reflec-
tive systems implement two complementary mechanisms: reification shifts
programs to data, whereas absorption1 shifts data to programs. These two
mechanisms make it possible to stop the execution of a (base level) program,
give control to metaobjects accessing the reified program, then go back to
the base level and continue the program execution.

3.3 Limits

Despite various approaches, models and implementations, the acceptance of
reflection has been limited until now. This is mainly due to the following
issues:

• First, reflective computation is expensive, in particular the reification
mechanism which consists of shifting programs to data and delegating
their interpretation to metaobjects. Full reification impacts seriously
on the performance of reflective systems. As a consequence, program-
mers have to explore alternative solutions, such as partial reflection
(we will see that Reflex implements such principles).

• Secondly, the adaptability of reflective solutions is often limited by
hardwired metaobject protocols (MOPs). A MOP specifies the way
metaobjects communicate. As a matter of fact, most reflective systems
provide a particular infrastructure, designed for a specific purpose;
said differently, the designer of the reflective extension commits to
particular tradeoffs. As a consequence, the infrastructure cannot be
adapted to the needs of a specific reflective application.

• Finally, reflection is generic and powerful, but consequently complex.
Working at the metalevel with full visibility and few restrictions on
possible modifications requires a good understanding of both reflective
mechanisms and the application structure. In practice, computational
reflection is reserved to metaprogramming specialists.

In the next chapter, one will be introduced to Reflex and its model for partial
reflection, in particular how they provide a solution to these traditional
issues of reflection.

1Also called deification or reflection.
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Chapter 4

Reflex

This chapter closes the introduction by presenting Reflex, a reflective proto-
type evolving to an AOP kernel. First is highlighted the strong link between
AOP and reflection. Secondly the Reflex model is described through its re-
flective primitives, their mapping to aspect-oriented concepts and the bene-
fits. Thirdly, an example illustrates the implementation of a basic AspectJ
aspect with Reflex. Finally is introduced the concept of a versatile kernel
for AOP, as well as the relating requirements, addressed by this thesis.

4.1 AOP and Reflection

AOP as well as reflection are metaprogramming techniques, since they define
semantic extensions over a base program. Consequently, it is not surprising
to see both solutions being applied to the same issue, namely SOC. In this
section, we want to highlight the fact that they also have a strong historical
link.

AOP is all the more rooted in reflection that Kiczales, who introduced as-
pects and AspectJ in 1997 [Kiczales et al., 1997a], strongly contributed in
the domain of reflection before promoting aspects. Kiczales qualified AOP
of a “principled subset of reflection”. Indeed, most aspect techniques have
limitations, such as domain specificity, which do not exist in generic reflec-
tive systems. By the way, it is probably what makes AOP a better candidate
than reflection for wide acceptance, particularly in industrial contexts.

On the other hand, with the technology combination issue, reflection is pro-
moted as an appropriate framework for AOP. First, [Kiczales et al., 1997a]
classifies computational reflection with aspectual decomposition paradigms.
In [Malenfant & Cointe, 1996], it is argued that reflection is a promising
approach to general and extensible aspect weavers. Finally, [Sullivan, 2001]
shows how theorical AOP can be implemented with reflection.
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4.2 Reflex model and mapping to AOP

Reflex as presented in [Tanter et al., 2003] is the open implementation of
an original model for partial reflection. This model is made of three layers,
namely from bottom to top level: hooksets, metaobjects and links. These
concepts are very similar to cuts, actions and bindings in the AOP termi-
nology:

Figure 4.1: Reflex artefacts from [Tanter et al., 2003].

Hooksets. A hook is a base-level piece of code responsible for a shift to the
metalevel. To express specifications on hooks, Reflex introduces the
model of hooksets. A hookset has no limitation with respect to the
hooks it contains: in particular, it is not necessary to gather hooks
on a per-class or per-object basis, contrary to other reflective systems.
Secondly, hooksets can be composed at will via standard operators
(union, intersection, difference). As a result, they are good abstrac-
tions for representing the cut of a crosscutting concern.

Metaobjects. In a reflective model, they act like an interpreter of the base
level, possibly changing the way computation is performed. In prac-
tice, metaobject bodies implement actions over the base-level program.

Links. Also called metalinks, they are the association of a metaobject with
a hookset, i.e. a binding in the AOP terminology. Contrary to most
reflective systems, Reflex reifies links as first-class entities. They own
various explicit and configurable properties, which enable a fine-grained
taylorization of the system. The main link-specific properties are the
metaobject, the MOP, the scope (object, class or hookset), the acti-
vation condition and the control.
A control determines whether the metaobject is given control before,
after, before and after an operation occurrence, or if it is allowed to
replace it. It is equivalent to the semantics of before, after and
before-after advices in AspectJ, the replace control corresponding
to an AspectJ before-after without any call to proceed().
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Lastly, activation conditions are dynamically-evaluated conditions con-
trolling the actual application of a link. Comparing with AspectJ,
there may be various ways to implement this kind of conditions (booleans,
cflow conditions, etc.), but no dedicated primitive.

Hooksets as well as open-MOP links enable specifications over what will be
reified, that is why Reflex is said to implement spatial selection of reifica-
tion. Similarly, activation conditions limit when shifts to metaobjects occur,
which reflects temporal selection. As a result, Reflex users can choose an ap-
propriate level of power (or performance) for a specific application. Thanks
to its model for partial reflection, Reflex addresses the traditional reflection
issues seen in 3.3.

Finally, Reflex cuts, actions, and links can be either behavioural or struc-
tural. In order not to modify the standard Java execution environment,
Reflex behavioural links (BLink) are set up at load time, i.e. hooks and
necessary infrastructure elements are installed in base code according to the
hookset, whereas structural links (SLink) are fully applied at load time. Re-
flex structural mechanisms being simpler, this thesis focuses on behavioural
applications, and presents a model for behavioural link composition. Struc-
tural composition will be implemented as a future work, as a simplification
of behavioural mechanisms.

A direct mapping is possible between Reflex primitives and AOP concepts.
The following table shows the bridges between the concepts seen previously
in 2.2, the AspectJ and Reflex terminologies:

Concept AspectJ term Reflex term
joinpoint joinpoint hook

cut pointcut hookset
action advice body metaobject body

binding aspect link

Figure 4.2: AOP concepts mapped to AspectJ and Reflex.

In [Tanter & Noyé, 2004], Reflex authors review the main features of AOP
and explain how “an appropriate reflective model [...] is generic enough to
handle a wide range of [...] aspect-oriented approaches”. After presenting
the back-end reflective model, they show how Reflex is able to apply aspects
from various AOLs. Aspects are translated in terms of reflective primitives,
in particular Reflex links.
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4.3 An AspectJ-Reflex example

Since Reflex and AOP concepts align well with each other, it is not sur-
prising to imagine an AspectJ aspect being written similarly with Reflex
artefacts. For an illustration, we consider an aspect in charge of logging the
argument of a given method each time it is called. To make it clear, let
Test.foo(String) be the method and System.out.println("foo execu-
tes with argument "+arg); the behaviour to implement whenever the
method is called.

Typically in AspectJ, one defines a pointcut to match the call to foo. The
argument is passed to, for instance a before action, which implements the
logging process.

public aspect LogAspect {

pointcut callToFoo(String arg):
call(Test.foo(String);
&& args(arg);

before(String arg): callToFoo(arg) {
System.out.println("foo executes with argument "+arg);

}
}

In Reflex, a hookset is associated to the reception of the foo message. A
metaobject implements the action in a standard method body. Thirdly, a
link is created to bind the hookset and the metaobject. The link control is
set to BEFORE, while the activation condition is left to (always) TRUE. Finally,
the MOP is configured so that only the required argument is passed to the
metaobject, since other pieces of information are useless for this specific
application.

public class LogConfig {

public static void initReflex() {

PrimitiveHookset theHS = new PrimitiveHookset(
MsgReceive.class,
new NameClassSelector("Test"),
new NameOperationSelector("foo"));

MODefinition theMO = new MODefinition.MOClass(
LogMetaobject.class.getName());

BLink theLink = API.links().addBLink(theHS, theMO);
theLink.setControl(Control.BEFORE);
theLink.setActivation(Activation.TRUE);
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theLink.setMOCall(new CallDescriptor(
LogMetaobject.class.getName(),
"performLogging",
Parameter.FIRST_ARGUMENT));

}
}

public class LogMetaobject implements BMetaobject {

public void performLogging(String arg) {
System.out.println("foo executes with argument "+arg);}

}

In the Reflex piece of code, the selector classes NameClassSelector and
NameOperationSelector, the control BEFORE, the condition TRUE as well as
the parameter FIRST_ARGUMENT are predefined. Nevertheless it is possible
to replace them or implement them from scratch for a specific application.

Not all code details are explained here, but the example highlights most
of the benefits of Reflex over AspectJ. Even if it takes more lines of code
to specify the aspect with Reflex, at least the concepts and code fragments
composing the metalevel application are well separated, and each concept
has its own class (for standard reusable objects). Conversely, the AspectJ
file gathers the whole metalevel specification, and individual elements are
difficult to reuse since they are not objects. In a nutshell, Reflex shows
benefits in terms of expressiveness (thanks to explicit artefacts such as the
activation condition), reusability (promoting types and objects rather than
syntax) and dynamicity (artefacts and properties being accessible at run-
time1).

4.4 To a versatile kernel for AOP

Since most AOP approaches rely upon common implementation mecha-
nisms, Reflex authors proposed to make the reflective tool evolve to a ver-
satile AOP kernel : thanks to the reflective primitives and their mapping to
AOP, it would support core semantics, allowing to use and compose aspects
from different aspect technologies. By the way, such a kernel should provide
expressive means for applying and composing aspects.

In [Tanter & Noyé, 2004], Reflex authors promote a language layer over the
reflective kernel and abstractions (hooksets, links, etc.). Indeed, Reflex uses
static configuration classes2 to create and set up reflective primitives, but

1Keeping in mind that the current Reflex implementation cannot modify hooks in a
class once this class was loaded.

2LogConfig seen in 4.3 is an example of a static configuration class.
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no mechanism automates the translation of aspects into Reflex artefacts:
users are responsible for translating aspect semantics. As a consequence,
the syntatic support intrinsic to aspect-specific languages is lost. A lan-
guage layer composed of AOL-specific translators would be a guidance for
programmers, who would not have to know the details of the reflective model
to make the kernel apply their aspects.

Secondly, the resolution of aspect interactions cannot be decided automat-
ically (without taking into account the application semantics), according
to [Tanter & Noyé, 2004]. Nonetheless, their detection can be automatic:
there is an interaction whenever “several inserts are executed at the same
point”; said differently, there is no conflict if “at most one aspect crosscuts
at each join point” [Douence et al.]. Since aspects apply through links, Re-
flex detects aspect interactions as two or more links applying at the same
joinpoint (i.e. hook). On top of detection mechanisms, composition fea-
tures could be implemented in order to let users specify the resolution of
interactions. Composition should be supported in a flexible manner, so
that complex interactions (possibly overpassing the AOL composition ca-
pabilities) are handled by the AOP kernel (Figure 4.3). By the way, the
composition models and implementations presented in this thesis will allow
runtime specification, even if for the moment Reflex cannot apply new com-
position specifications after classes are loaded (i.e. links are set up as seen
in 4.2).

Figure 4.3: Aspects in different languages cooperate, being both composed
and applied by the AOP kernel. (illustration from [Tanter & Noyé, 2004])
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Chapter 5

Motivation

The context of this thesis is the transition of Reflex from a partial reflection
tool to a versatile kernel for AOP.

The first motivation lies in a higher user level of abstraction. According to
[Tanter & Noyé, 2004], Reflex can apply aspects from different languages;
however users are responsible for translating them into reflective primitives.
First, we want kernel users to manipulate aspects directly. Since Reflex
links are bindings (seen in 4.2) and bindings are not exactly aspects (2.2),
the thesis starts with the introduction of an appropriate abstraction for rep-
resenting and reasoning about aspects (chapter 6). Secondly, a good AOP
kernel should provide an open-language layer over low-level primitives (4.4),
since the family of AOLs remains open-ended; besides we think a clean mod-
ularization of language translators is also a requirement for a good kernel.
As a result, chapter 7 presents an open-language plugin architecture, imple-
menting the language layer introduced in 4.4.

On the other hand, [Tanter & Noyé, 2004] states an AOP kernel should
support aspect composition, without being limited to the semantics from a
given aspect language. Consequently, the second part of the thesis is con-
cerned with the definition of a generic composition model, an appropriate
framework and its implementation in the Reflex AOP kernel. Chapter 8
presents a first solution based on link composition. Chapter 9 shows the
limits of this approach through an example. At last, chapter 10 refines the
model and presents new composition mechanisms.

Chapters 11 and 12 are dedicated respectively to modularization and com-
position examples. Chapters 13 to 15 make the conclusion, comparing the
solution built from 6 to 10 with existing works, reviewing its incremental
design and presenting perspectives.
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Part II

Abstraction and
Modularization
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Chapter 6

An abstraction for aspects

In this chapter, a new abstraction is introduced to represent aspects. An
appropriate artefact allows users to reify and compose aspects explicitly,
instead of low-level kernel primitives.

6.1 Introduction

As seen in part 4.2, Reflex links reify the concept of bindings. However
bindings and aspects are different notions: a binding is the association of a
cut and an action, whereas an aspect is a programming artefact encapsulat-
ing one or more bindings. Therefore, it cannot be expected that aspects are
always reified by only one link. As an illustration, an AspectJ cflow-based
pointcut results in two Reflex links: one for the cflow itself, another one for
the pointcut using the cflow. Actually, aspects correspond to a higher level
of abstraction than links: aspects contain links.

Another layer above links is the language layer introduced in 4.4, which will
be implemented by the plugin architecture in chapter 7: language transla-
tors form another level of abstraction. However, it is obvious that there is
not a one-one relation between aspects and translators, therefore plugins no
more than links are appropriate to reason about aspects.

One will conclude there is a lack for an appropriate abstraction to represent
and manipulate aspects in Reflex.

6.2 Model: the linkset artefact

We introduce linksets as a mean to group links that are part of the same
higher-level conceptual or semantic unit. Similarly to hooksets gathering
hooks, there is no explicit restriction on the set of links contained by a
linkset: it is only assumed that they have some concept, source plugin,
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purpose, etc. in common. This definition makes linksets appropriate ab-
stractions to gather links from a given aspect, therefore abstractions for
representing aspects.

One should notice that the new linkset artefact is not limited to aspects. If
for instance aspect translators need to declare infrastructure links in addi-
tion to aspect bindings resulting from direct aspect translations, they can
use specific linksets to gather them. Said differently, these infrastructure
linksets will contain links which do not result directly from a user aspect,
but share a common purpose reified by their linkset.

Finally, we think that linksets are more appropriate for aspects and plu-
gin infrastructure links than user links. User links refer to links built and
declared individually in static configuration classes1: they are created and
configured explicitly by the user and are not supposed to require higher ab-
straction. Consequently, we choose to bind the concept of linkset to aspect
translators: user links remain individual, whereas translators have to declare
their links inside a linkset. This mechanism will be seen in paragraph 7.2.2,
its influence on composition in part III.

6.3 Implementation

The Linkset class consists of a mere link container with a reference to the
parent aspect translator. It is checked by construction that each link added
to the linkset is a plugin link (opposed to a user link), owned by the same
plugin as the linkset.

In order to facilitate the manipulation of plugin links and linksets, par-
ticularly in algorithms, they implement the well-known composite design
pattern. This pattern allows to treat single components and collections of
components exactly the same. In practice, clients manipulate instances of
an abstract type, PluginLink, ensuring that components, primitive or com-
posite, implement the same protocol. Figure 6.1 shows linksets as composite
components and nested links (links inside a linkset) as primitives.

A consequence of implementing the composite design pattern is that linksets
may contain linksets. This capability could be used to explore the perspec-
tive of aspects of aspects, but also to create conceptual hierarchies of linksets,
not necessarily representing aspect hierarchies. A specific study should as-
sess the precise meaning, benefits and drawbacks of linkset hierarchies.

1Such as the link configured for the logging example in 4.3.
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Figure 6.1: The composite pattern applied to plugin links.

6.4 Conclusion

The linkset definition introduced in this chapter provides an appropriate
abstraction to group and manipulate links with respect to aspects. By the
way, our implementation allows linksets of linksets, which should be studied
as a future work. Concerning Reflex frameworks for plugins and composi-
tion, the influence of linksets will be seen in the next chapters, which present
those frameworks in detail.
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Chapter 7

Language layer & aspect
translators

This chapter presents a plugin architecture for AOL translators on top of
the kernel reflective model. The aim is to increase the levels of abstraction
and automatization provided by the AOP kernel.

7.1 Introduction

7.1.1 A layer over reflective primitives

The Reflex AOP kernel is able to apply aspects from different aspect-specific
languages using its own primitives, in particular the link abstraction for
bindings (4.2), reified by Link instances. [Tanter et al., 2003] shows how
one can define and manipulate links and other kernel-level primitives inside
static configuration classes, or dynamically using dedicated kernel APIs.
Nevertheless, one would like to use and compose aspects from different lan-
guages without having to translate them manually into kernel primitives.
Contrary to Reflex developers, standard kernel users should not necessarily
be aware of the internal reflective model, assumed they should rather con-
centrate on writing aspects and composing them. This chapter addresses the
issue translating aspects automatically, in order to increase the user level of
abstraction.

7.1.2 Modularizing translators

Secondly, the language layer must not be limited to a closed set of AOLs: it
should rather be opened to (even not aspect-specific) future languages. To
open the architecture, we decided to encapsulate language-specific transla-
tors into explicit reusable entities called plugins.

Plugins in general are components designed to fit a specific infrastructure.
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As an illustration, three (Java) component models are briefly presented here,
to highlight the main characteristics expected from a plugin:

Eclipse plugins [Eclipse.org]. The Eclipse platform is probably the most
famous example of plugin architecture [Eclipse]. Eclipse plugins are
composed of three elements: a manifest, JAR archives1 and additional
ressources. In practice, implementing classes are gathered in the JAR
archives, whereas the manifest describes the plugin in XML. This de-
scription includes an identificator, references to external libraries or
components, as well as a protocol to manipulate the plugin (creation,
deployment, activation): actually, the manifest is responsible for the
integration of the plugin with the platform.

Enterprise JavaBeans [EJB]. The EJB specification from J2EE defines a
business component architecture for multi-tiers client-server systems.
In practice, EJB components are made of a remote interface, a home
interface and implementing classes in Java. The remote protocol re-
flects the services offered by the component, whereas the home in-
terface is used to create or find the component: both participate to
integrate the component with the other components and the so-called
EJB container.

Reflex argument handlers [Tanter & Noyé, 2004]. Reflex handlers ap-
ply configurations on the kernel through startup arguments. These
components implement the ArgumentHandler interface, which ensures
their integration with Reflex. The protocol forces handlers to declare a
set of tags to the kernel, which consequently distributes Reflex startup
arguments depending on their tag. To integrate a new handler with
the kernel, one encapsulates it in a JAR and places it in the dedicated
Reflex folder.

Eclipse, EJBs and Reflex argument handlers are very different technolo-
gies, however their component models share commonalities: components
are made of implementing classes on the first hand, manifests or interfaces
to integrate with their environment on the second hand.

This section presents a modular AOL plugin architecture on top of Reflex,
then an appropriate framework and its implementation.

1A JAR is a Java code archive.
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7.2 Model

7.2.1 Reflex plugins

Plugins encapsulate AOL translators and compose the language layer above
Reflex primitives.

In practice they are designed as an extension of argument handlers: en-
capsulated in a plugin JAR and deployed automatically, they declare their
tags to the kernel, which forwards them appropriate arguments at load time.
Alternatively, they can be called at runtime via their public methods. Fi-
nally, plugins use a specific plugin API to configure the kernel. The details
of this API are presented in the next sections.

7.2.2 Nested links

Nested links are primitive links inside a linkset (6.2), which is equivalent to
state they were declared by a plugin. As seen in 6.3, a plugin link is either
a nested links or a linkset.

In practice, nested links embed a reference to their owner (i.e. the parent
plugin). It enables plugin link traceability, therefore better user feedback
quality, particularly in case of link conflict. As an illustration, appendix A
shows how error and warning messages from the kernel explicitly refer to
plugin names and descriptions instead of bare link identifiers.

7.3 Frameworks and implementation

7.3.1 Kernel configuration

Like standard handlers, plugins have to implement handleArgs(args), which
is used by the kernel to dispatch startup arguments to handlers and plugins.
Typically, handleArgs encapsulates the business part of the plugin.

To configure the kernel with respect to aspect semantics, plugins use the spe-
cific PluginAPI interface. Configurations relating to operations, attributes
and composition are forwarded to the standard Reflex API, whereas the link
part of the protocol, namely PluginLinkAPI, ensures mechanisms specific
to plugins:

• First, PluginLinkAPI forces plugins to declare linksets rather than
links. Secondly, plugins cannot instantiate links themselves: they have
to obtain instances from the kernel, configure them, then send them
back to Reflex. Actually, plugins are always returned nested links (but
it is transparent from a plugin point of view thanks to the downcast):
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as a result, link implementation details are hidden from plugins, be-
sides the binding of nested links with their parent plugin is performed
automatically by the kernel.

• Secondly, plugins can only manipulate their own links. The API pre-
vents them from accessing external links. Similarly, one will see in
chapter 8 that plugins cannot express composition rules involving other
links than their own ones.

Figure 7.1 illustrates how plugin instructions to the kernel are filtered at the
level of the plugin API: some configurations are forwarded directly to the
standard APIs (for Reflex handlers and configuration classes), whereas the
link part of the protocol is implemented specifically for plugins:

Figure 7.1: Reflex standard and plugin APIs.

7.3.2 Plugin registration

From an implementor point of view, a plugin is very similar to a standard
Reflex handler. Indeed, they are encapsulated in a JAR, receive Reflex
startup arguments, perform configurations on the kernel... In particular,
plugins like handlers must register at startup.

The registration phase consists in providing information to the kernel in
order to be referenced and activated. The kernel looks for the name of the
plugin, its textual description, its specific tags and their description. Tags
precede arguments in the Reflex startup line; they can start with “-” (stan-
dard tags) or “--” (getting priority over standard tags).
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Actually, plugins register by implementing a set of getters2 for each piece
of information: getSupportedTags, getTagsExplanation and handleArgs
from ArgumentHandler, as well as getName and getDescription from the
Describable interface also implemented by plugins. These methods are
used at startup for registration and argument dispatch, as well as user feed-
back at runtime (displaying activated plugins, their description and tags, in
case of conflict for instance).

7.3.3 Smart feedback

Smart user feedback consists of displaying plugin and aspect references inside
error and warning messages, rather than bare links identifiers. Appendix A
illustrates this concept with examples.

Traceability being ensured from links to linksets and linksets to plugins
(from parent references in nested links and linksets respectively), the kernel
can use the plugin getters again to display additional information in case of
link conflict, in particular aspect-level descriptions of interactions. By the
way, plugins implement a protocol called RuleOwner used to get the source
of a composition rule3. The source of a rule, which is generally an aspect, is
another piece of information used to improve the quality of user feedback.

To sum up, the plugin architecture ensures a full mapping from bottom
to top between the different layers of abstraction in the kernel: links and
rules (primitives), linksets (composites) and plugins (translators).

7.4 Conclusion

This section has presented a modular architecture for language translators
based on plugins and plugin links. Thanks to this language layer, it is possi-
ble to design aspect translators and configure the kernel automatically with
respect to aspects. Moreover, traceability and user-friendly feedback are
achieved by the framework, in particular the automatic binding of reflective
primitives with their aspect and translator.

Chapter 11 shows how to implement and activate plugins through exam-
ples.

2A getter is a method returning an attribute of the object.
3Indeed, one will see in chapter 8 that plugins may declare composition specifications.

30



Part III

Composition
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Chapter 8

Composing links

This chapter presents a first solution to the issue of composing aspects,
which is built on top of link composition mechanisms. First, the composi-
tion model and primitives are defined, then a dedicated framework and its
implementation.

In next chapters, this proposal will be refined to support an explicit consid-
eration of link controls defined in 4.2.

8.1 Introduction

As seen in the preliminaries, Reflex is based on a model for partial reflection
caracterized by reified metalinks. Links are low-level artefacts used as prim-
itives by the reflective kernel to translate and apply aspects, whatever the
aspect language. Like aspects associate cuts and actions in AOP, links reify
bindings between hooksets and metaobjects. Aspect interactions reflect the
application of multiple links at the same point of the base program. There-
fore, the issue of composing aspects is tightly bound to the composition of
resulting links.

This chapter presents the design and implementation of a generic model
for composing aspects via links. First, a new primitive is introduced to
support composition specification. Secondly, a framework is defined to rule
how kernel users access and use composition features. At last, we present
our implementation, in particular how it supports additional user-defined
composition operators.
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8.2 Model

8.2.1 Four-step composition process

The Reflex kernel provides link primitives and detects their interactions at
runtime. When an interaction occurs, the kernel should be able to resolve
the application of these links using composition rules (specifications) de-
clared by users or translators.

To reason about composition, we consider a four-step process: Specification
(of composition rules), Detection (of interactions), Resolution (of interac-
tions) and Application (of the solution), or SDRA. Contrary to the other
steps of the process being performed automatically (by the kernel), the spec-
ification phase directly involves users and plugins. It starts at loadtime and
finishes when an interaction is detected: during this phase, rules can be spec-
ified dynamically. After the resolution of an interaction, the cycle restarts,
and it is allowed again to declare rules until a new interaction is detected.

Clearly, the SDRA model we introduce is supposed to be a convenient
scheme for reasoning about interactions and presenting how resolution works,
more than a constraining framework.

8.2.2 An artefact for composition rules

To enable composition, it is necessary to introduce a representation for com-
position rules.

Our proposal is based on abstract syntax trees (ASTs) for composition rules.
These data structures are often used in compiler and interpreter represen-
tations of a program, optimized for representing parsed information and
generating code from this information. To reify link composition rules, we
make ASTs from composition operator nodes and link leaves (including user
links, nested links and linksets), as shows Figure 8.1.

Figure 8.1: AST rules made of composition operators and links.
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Assuming links are the lowest-level artefacts composed by the kernel, added
a system opened to new operators (seen further in 8.4.3), AST composition
rules ensure maximum expressivity for composing aspects.

8.3 Framework

After composition primitives, an appropriate framework must be defined
to specify their usage and result in concrete composition features for the
AOP kernel. This section describes a composition rule patterns system and
presents each composition phase in details.

8.3.1 Rule patterns

To ensure plugins cooperate without cancelling each other, they manipulate
only their own primitives. As seen in 7.3.1, plugins cannot access external
links. Similarly, the composition framework guarantees that plugins express
rules involving no other link than their own.

To achieve this requirement, we introduce rule patterns. Depending on the
type of links involved in a composition rule, as well as the source of these
links, different patterns are distinguished. The following table shows who is
allowed to declare each type of rule:

User Plugin
Links from a unique linkset - Ok

Linksets from a unique plugin Ok Ok
Linksets from different plugins Ok -

User links and linksets Ok -
User links Ok -

Figure 8.2: User and plugin rule patterns.

According to this grid, the kernel validates newly declared rule: if no pattern
is matched or if it is not allowed for the rule owner, an error is raised (see
appendix A for examples); otherwise the rule is stored in a repository1.

One should notice that our current rule pattern set is not appropriate for
linksets of linksets. In 6.3 we suggested to study the influence of linkset
hierarchies; if such a study is carried out and linksets of linksets used, the
rule pattern set should be updated consequently.

1Except intra-linkset rules, which become an attribute of the linkset, achieving better
object orientation.
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8.3.2 Composition phases

Specification phase

Even if the current implementation of Reflex detects link interactions and
applies compositions when loading classes, we introduce a public API dedi-
cated to dynamic specification. These composition services are implemented
by a new dedicated kernel module2.

Assumed composition specifications should be overridable during the ex-
ecution, we allow multiple rules to be declared at runtime. Another choice
is to allow partial speicifications: indeed, involving all links for each new
rule seems far too constraining from a user point of view and forces to sys-
tematically over-specify composition, added links can be added at runtime
(what about previous specifications then?).

The drawback with multiple partial rules is the difficulty to merge them
when necessary (to solve a particular interaction). To illustrate this, let’s
introduce the Seq operator, commonly used in AOP to express precedence.
Assuming two link rules Seq(L1,L2) and Seq(L2,L3) were declared, if L1
and L3 interact, composing them correctly requires a merging mechanism.
Indeed, the solution or Seq(L1,L2,L3) (optimally Seq(L1,L3)) can be de-
ducted from the rules, since precedence is transitive. If rules are not merged,
the kernel cannot compose L1 and L3.
Merging rules is a very complex issue, particularly in an open-operator con-
text. So are consistency checking mechanisms between specifications. We
consider that a specific study is required for bringing such features into
this Reflex composition model: typically, a logical programming approach
could be adopted. Our solution does not provide rule merging or consis-
tency checking features. Consequently, the composition module mentionned
in first paragraph is actually very similar to a mere rule repository, where
composition specifications are stored and accessed at runtime.

Nevertheless, even if the global consistency of declared rules is not veri-
fied, each one is inspected3 to ensure several of their properties: a rule must
never be cyclic or empty, and its pattern must be allowed for its owner (as
seen in 8.3.1).

Detection phase

The detection of link interactions is already implemented in Reflex. When
an aspect interaction occurs, the list of interacting links is now passed to an
interaction solver, which is in charge of returning the composition to apply.

2One will see that this module consists more or less in a bare rule repository.
3The correct term is visited, as seen later in 8.4.1.
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Resolution phase

Solving a link interaction means here to express and return an appropriate
composition specification, which can be interpreted and applied. To express
the solution of an interaction, a standard AST rule is used (as in 8.2). As a
result, the solver is a module which takes a list of interacting links as input
and returns an AST composition rule.

If no or not enough rules specify composition to solve an interaction, the
solver returns a warning message and performs default composition: typi-
cally, all links are applied successively (as it will be seen in the example 12.3).

As explained previously, our first implementation has no rule merging capa-
bility. Therefore, the role of the solver consists of selecting and returning the
most appropriate rule for a given interaction, which we temporarily define
as the smallest4 specification containing5 all interacting links. An algorithm
extracting this rule for a given interaction is presented in the implementa-
tion section (8.4.2).

By the way, we think that the solver should only return strictly necessary
links and branches from a rule, in order to simplify further processing. Back
to the previous example, we expect the solution rule Seq(L1,L3) rather
than Seq(L1,L2,L3), i.e. a version of the merged rule minimized for the
current interaction. Not surprisingly, the semantics of rule minimization
depends on both operators and links. For instance, minimizing a Seq-based
rule consists of removing not interacting links. Conversely, if If(L1, L2) is
a conditionnal rule6, minimizing it when L1 does not apply will not result
in If(L2) (which has no sense a priori). To illustrate correct rule minimiza-
tion, an example involving a Seq and a If is presented in Figure 8.3. To sum
up, the minimization of a rule depends on the operators semantics as well as
the interacting links. In 8.4.3 one will see how to implement minimization
mechanisms in the context of an open-operator support.

Application phase

Once a solution has been returned for a given interaction, it must be con-
cretely applied by the kernel. Nonetheless, we are not concerned with this
part of the process, since it is part of a specific engineering work at the
University of Chile.

4In terms of numbers of links involved.
5Considering an AST ‘contains’ its leaves.
6Understand L2 applies only if L1 applies for instance.
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Figure 8.3: Rule minimization is applied from bottom to top, with respect
to interacting links as well as operator semantics. The figure shows the
result of the minimization of (a), first if L2, L3 and L4 interact (b), or if the
interaction involves L1, L2 and L3 (c).

8.4 Implementation

This section first presents the implementation of composition primitives
(AST rules), as well as details about the composition phases (specifica-
tion, detection, resolution and application). At last, it focuses on the open
operator support issue.

8.4.1 Rules

AST rules are instances of Rule. This class implements an interface called
Visitable, in order to fit the visitor design pattern. The benefit is a clean
encapsulation of rule browsing mechanisms.

The first property of a rule is its owner, for traceability. It is set auto-
matically at declaration time (rather than creation time), consequently the
owner is not the object who instantiated the rule but the one who added
it to the kernel. Besides, a rule owns either a set of children rules (which
makes the rule a node associated to an operator in the AST model) or a
link (which makes the rule a leaf): indeed, another implementation of the
composite design pattern allows to treat rules and link leaves similarly in
composition algorithms.

By the way, several rule-specific capabilities, like returning a user-friendly
string representation, or the list of wrapped links7, are implemented using
rule-specific visitors in anonymous inner classes.

7Direct containees or links from nested rules
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8.4.2 Phases

Specification phase

As explained previously, composition rules can be declared at runtime. For
this purpose a specific method is introduced in the kernel public API, namely
addRule(rule,owner), the owner being of the dedicated type RuleOwner.

In the current implementation, rule owners are merely responsible for re-
turning rule sources as strings. When an error occurs with a rule (typically
while resolving a link interaction), the kernel gets its source for better user
feedback: for the moment it may be a plugin, a user, an aspect filename,
actually anything meaningful.

When a composition rule is added to the kernel, a specific initialization
process is triggered, consisting of matching a correct rule pattern (8.3.1),
setting the owner (a kind of late binding), and verifying several rule prop-
erties (the presence of at least one leaf, the non-cyclic nature of the tree,
etc.). The implementation of these mechanisms involves specific visitors.

Detection phase

As seen previously, the thesis is not concerned with the detection part, which
is already implemented in Reflex.

Resolution phase

Resolving a link interaction consists of selecting appropriate composition
rules and returning a minimized version of the most appropriate. To achieve
this, a simple algorithm is proposed:

1. First, composition rules are selected from the repository. Rules are
stored by pattern, which improves the selection mechanism for a given
interaction. Each rule is observed with respect to interacting links8:
only rules containing all links are kept; if no rule is appropriate, a
warning message is displayed and default composition is applied.

2. From remaining rules, only those with a minimal number of links are
kept. From what remains after this new selection, the first rule is
arbitrarily kept.

3. Lastly, the selected rule is minimized and returned. Minimization
consists of removing unnecessary branches and leaves, with respect
to operators and interacting links. 8.4.3 will expose how operators
implement minimization in practice.

8The input of the algorithm
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Actually, it would be sufficient if composition rules were only made of primi-
tive links. Since rules can include linksets, a dedicated mechanism is applied
over the original algorithm to enable shifts between both levels of abstrac-
tion. In practice, linkset-level interactions are processed before lower-level
interactions between links. The following algorithm ensures the resolution
of link interactions in the context of linkset-level rules:

1. First, nested links are replaced by their linkset, so that the input of
the previous algorithm is a list of user links and linksets.

2. Secondly, the previous algorithm is applied, returning a rule invloving
user links and linksets9.

3. Finally, the rule returned is expanded, which means that linksets are
replaced by their interacting links: if there is only one interacting link
from a linkset, the linkset is replaced by this link inside the global
solution; if more than one link from this linkset interact, then the
linkset is replaced by the most appropriate from its intra-linkset rules
(indeed, the selection algorithm is applied recursively with the linkset
links and the intra-linkset rules as inputs).

As a result, a minimized link-level rule is returned in any case of interaction,
sometimes directly selected from the repository, sometimes built on purpose
from existing rules.

Application phase

As said previously, this part of the process is currently the subject of a
parallel work at the University of Chile, which is why it is not described
here.

8.4.3 Open operator support

Assumed we are not concernet with the application phase, only minimiza-
tion mechanisms are operator-dependent in the composition process. For
this reason, operators have to embed their own minimization strategy.

In practice, operators are forced to implement the minimize(links) method,
which takes interacting links as input, and returns a minimized version of
the rule. To minimize it, the minimize method is called on the highest-
level operator10, which consequently minimizes its children rules, may move
or remove some of these branches, depending on interacting links and the
operator own semantics.

9Thanks to the composite pattern, manipulating both links and linksets inside the
algorithm is very straightforward.

10I.e. the rule itself.
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8.5 Conclusion

In this chapter we have built a complete solution (model, framework and
implementation) for composing links in Reflex.

First, we decided to reify composition specifications as ASTs made of oper-
ators and links. We chose to allow multiple partial specifications, without
implementing complex inter-rule merging or checking mechanisms. These
features could however inspire future works.
To reason about composition, we proposed a four-step process: specification,
detection, resolution, application. In practice we described completely two
of them, detection mechanisms being already implemented and application
being part of a specific study.
Finally, we proposed an algorithm to select the most appropriate rule in the
context of a given link interaction, supporting both link and linkset levels
of abstraction inside rules.

However, our assumption that links are the lowest-level entities to manipu-
late for composing aspects in Reflex will be corrected in chapter 9. Indeed,
one will realize the benefits of considering link controls too in the composi-
tion model.
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Chapter 9

To an explicit consideration
of controls

This chapter highlights the benefits of reasoning about controls (4.2) as well
as links. Several new concepts are introduced; in chapter 10 it will result in
new composition primitives, refining the solution built in 8.

9.1 Introduction

As seen in 4.2, links can apply at different positions of a given point in
the base program, similarly to aspects themselves. In a language such
as AspectJ, the position is made explicit by using a before, after or
before-after1 advice. In Reflex, it is reified by a Control object asso-
ciated to the link. To illustrate the advantage of considering controls explic-
itly in link composition, this chapter presents a short example: it shows the
limits of the model built in chapter 8, then leads to introduce new control-
level artefacts, which will be used in chapter 10 to refine Reflex composition
mechanisms.

9.2 A composition example

Let’s consider two links applying at the same point of a base program, both
before and after the joinpoint is reached (i.e. their control is before-after).
To make it clearer, let’s imagine these links correspond to a timer and a
scheduler aspect respectively, both applying on the execution of a method
called foo. The timer triggers a counter before foo is called (TB); when
foo returns, it displays the time elapsed (TA). By the way, the other aspect
schedules the calls to foo and locks variables before it method executes (SB);
when foo returns, it unlocks the variables (SA).

1With or without call to proceed().
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Figure 9.1: Two before-after aspects make four possibilities.

Timer and scheduler are composed of four behaviour fragments: TB, TA,
SB and SA. Figure 9.1 shows how they possibly combine:

1. First, the timer can be given priority over the scheduler.

2. Alternatively, the scheduler can execute before the timer.

3. The timer can wrap scheduling, which means it starts before the sched-
uler executes, then stops the counter after variables are unlocked.

4. Finally, it is possible for the scheduler to wrap the timer execution.

9.3 Working with link operators

Let’s now see how one can express the four compositions using the mecha-
nisms from chapter 8:

• (1) and (2) are easy to specify: they correspond to standard ordering,
relating to the Seq operator introduced in 8.3.2.

• (3) and (4) are more difficult to express: indeed, wrapping is a new
relation between two links. To distinguish wrapping from ordering, a
new operator is required. Let’s call Wrap this new operator.

If T represents the timer link and S the scheduler link, behaviours (1) to (4)
can be expressed using Wrap and Seq as follows:

1. Seq(T,S)

2. Seq(S,T)

3. Wrap(T,S)

4. Wrap(S,T)
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Actually, one can only see the difference between Wrap and Seq by looking
at the ordering of link fragments, i.e. the behaviour fragments around the
joinpoint. To apply these operators correctly, the kernel must make the dif-
ference at the level of controls: the link level of abstraction is not sufficient.

Since we are not concerned with the application phase, we may assume
that the kernel knows how to apply control-level relations. Nevertheless,
the example is useful, considering it shows that operators not only need to
express link-level, but also control-level relations.

9.4 Introducing control-level operators

Let’s now observe the consequences of introducing explicitly control-level
operators, i.e. at the level of behaviour fragments associated to specific link
control positions.

Considering again the four compositions, and expressing them with control-
level relations, one notices only one type of relation is still required, namely
ordering. Indeed, if we call Ord the control-level operator representing or-
dering (similarly to Seq at the link level), compositions can be written as
follows:

1. Ord(TB,SB) plus Ord(TA,SA)

2. Ord(SB,TB) plus Ord(SA,TA)

3. Ord(TB,SB) plus Ord(SA,TA)

4. Ord(SB,TB) plus Ord(TA,SA)

These relations are control-level translations of previous Seq and Wrap re-
lations: one may say these link-level rules were expanded to control-level
relations.

Clearly, explicitly control-level relations seem more expressive than link op-
erators, which hide semantics since they only apparently work at the link
level. From a kernel point of view, working at a lower level reduces the num-
ber of possible relations, therefore the minimal number of operators required
for ensuring the translation of any composition.
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9.5 Conclusion

In this chapter we have seen that a composition model based on link-level
relations may have serious drawbacks in terms of expressiveness. Actually,
link operators lead to the definition and implementation of more operators
than control-level relations, to express even basic composition specifications.
Additional operator definitions are supposed to balance the poor expressiv-
ity resulting from the lack of controls in the model. However, it is complex
and clearly not natural to reason about control-level semantics using oper-
ators supposed to reflect link-level relations.

As a consequence, next chapter (10) refines the composition model and
mechanisms in order to manage link controls explicitly.
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Chapter 10

Refining composition with
controls

In this chapter, composition is refined by explicitly considering link controls
and control-level relations. It leads to identify a set of minimal kernel op-
erators, which in the end provides solutions to some of the limits from the
previous model.

10.1 Introduction

As seen previously, Reflex links apply at given points in the base program
with respect to the cut expressed by their hookset. Precisely, links are
specified to apply before, after, before and after or replace the joinpoint,
depending on their control attribute.

According to chapter 9 showing the benefits of reasonning about compo-
sition at a lower level than links, this chapter refines the model designed in
chapter 8, extending its granularity to the level of controls. First section
presents a new composition model and associated primitives. Secondly, the
framework is modified. Third part provides implementation details.

10.2 Model

This section introduces successively a new abstraction for reasonning about
links and controls, then explicit control-level relations, lastly a data structure
to manipulate the new primitives and express composition solutions.

10.2.1 A new control-level abstraction

In order to reason explicitly at the control level, a new abstraction is used as
the composition primitive (i.e. the artefact manipulated by the kernel). We
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call link element1 the association of a link and a control; for instance TB,
TA, SB and SA from 9.4 (even if we called them link fragments at first). In
Reflex, controls are accessible from links; therefore, it could be argued that
link elements merely consist of a shortcut abstraction. Actually, section 10.3
will show several reasons for manipulating these artefacts instead of links.

10.2.2 Kernel and user operators

Control-level operators being more expressive, the kernel concentrates on
them and does not support higher-level specifications explicitly. From this
point forward, we call kernel operators low-level operators, such as Ord from
9.4, which reflects ordering between link elements.

By the way, we prefer to keep some higher-level operators on top of link
element operators. Indeed, a link-level operator is generally more conve-
nient to manipulate than its low-level translation: as an example, a Seq is
generally more convenient to declare than multiple Ord. We call high-level
operators user operators.

To sum up, kernel users and plugins declare composition rules made of user
operators and links; these high-level rules automatically expand to low-level
relations, made of kernel operators and link elements, which are interpreted
by the kernel.

10.2.3 Looking for a minimal set of kernel operators

Expanding link-level relations to control-level rules reduces the number of re-
quired operators at the kernel level. For instance, both Seq and Wrap expand
to the same kernel operator relation, namely Ord. From this observation,
one tries to identify a minimal set of kernel operators. By definition, this
is the smallest set of operators required for expressing any relation between
link elements. By definition, such operators cannot be expanded themselves;
besides, they are orthogonal to each other; thirdly, we suppose they are bi-
nary, which is equivalent to state that n-ary link element operators can be
expanded to a set of binary operators.

1The name comes from the association of a Link and a HookElement, which encapsu-
lates the control in the current Reflex implementaton.
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For the moment, three minimal kernel operators have been identified:

The ordering operator: Ord represents ordering between two link ele-
ments.

The nesting operator: Nest reflects the same relation as precedence in
AspectJ (a nested advice applies if and when its parent around advice
invokes proceed), the nesting element being associated to a replace
control.

The conditional operator: Cond expresses that a link element applies
only if a given condition is verified. Contrary to Ord and Nest, Cond
requires no link element as left argument but a boolean expression.

Conditional relations are already implemented in Reflex as link activations
(4.2). Indeed, activations refer to standard links, nonetheless a given control
can be checked by adding an appropriate clause to the activation condition:
for instance, Cond(booleanexpr, linkplusbefore) can be written as the
activation condition (booleanexpr && controlisbefore)2. Consequently,
there is no need to implement the Cond operator explicitly.

10.2.4 A data structure for link elements

Ordering and nesting can be used as two orthogonal dimensions for sorting
link elements and applying their semantics. The following diagram shows
how one can sort elements with respect to these concerns:

Figure 10.1: A set of link elements sorted with respect to ordering and
nesting dimensions; elements should be applied from top to bottom and left
to right.

2This is obviously pseudo-code.
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Ordering and nesting orthogonal dimensions form a kind of 2D link element
‘map’, which specifies how to apply interacting link elements (Figure 10.1).

We call hooknode the corresponding data structure for link elements. A
hooknode is composed of three sets: the before, the replace and the after
link elements. Each replace element nests its own child hooknode, the hi-
erarchy of hooknodes reflecting the levels of nesting between link elements.

As a conclusion, a hooknode is a convenient artefact to represent composi-
tions of link elements, therefore links.

10.3 Framework

This section shows how the modifications on the model and primitives enable
an earlier management of composition specifications. Secondly, composition
phases are reviewed in this new context.

10.3.1 Early rule management

In chapter 8, the composition operator family was open-ended, which made
it complex to merge rules or check consistency among specifications. With
the identification of a minimal set of kernel operators, each rule becomes
a combination of a small and fixed number of relations (namely: ordering,
nesting and the conditionnal relation). As a result, rules are easier to merge,
rule contradictions simpler to detect.

For the second version of the Reflex composition model, we decide to process
rules and detect contradictions as soon as their declaration (i.e. specification
phase). Each rule newly declared to the kernel is instantly translated into
kernel rules between link elements.

The problem is, one doesn’t know at specification time which link elements
will be really involved in an interaction, therefore which control bind to
the links when expanding user rules. To illustrate this, let’s see how a basic
rule Seq(L1,L2) may be interpreted differently depending on the interaction
context:

• If one considers that L1 and L2 both apply before the given joinpoint,
then the user rule Seq(L1,L2) means Ord(L1_with_before,L2_with
_before) at the kernel level.

• If both links apply after the joinpoint, then the rule corresponds to
Ord(L1_with_after,L2_with_after).
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• Similarly, if links are associated to replace controls, then the rule must
be interpreted as Ord(L1_with_replace,L2_with_replace).

• Finally, if L1 and L2 do not apply with the same control, then their
interaction is trivial to solve, considering a before applies before a
replace, itself applying before an after element.

Actually, high-level rules can have multiple translations depending on the
context. Nevertheless, those kernel rules are complementary, since each one
is the specification for a different case of control. Consequently, high-level
rules can be translated into the sum of their (hypothetic) translations. As
an illustration, Seq(L1,L2) is equivalent to the sum of the hypothetic kernel
rules listed above: depending on the control, only the appropriate rule will
apply.

However, manipulating hypothetic rules raises a problem with link elements.
At specification time, when user rules are translated into hypothetic kernel
rules, there is no guarantee that the link elements involved will correspond
to an existing link with the right control. To manipulate hypothetic rules,
hypothetic link elements are required. Actually, this is a good reason to use
a specific artefact for the concept of link elements (i.e. a link-control pair):
indeed, it would be complicated to instantiate hypothetic links with hypo-
thetic controls without modifying the Reflex link model and implementation.

To conclude, high-level rules expand into hypothetic kernel rules (while it
is checked rules keep consistent between each other), then hypothetic link
elements are bound to concrete links at resolution time.

10.3.2 Composition phases

Specification phase

The difference with chapter 8 lies in rule processing mechanisms. Even if
nothing changes from a user point of view, newly declared rules are inter-
preted while added to the specification pool. If something wrong is detected
with the rule, for instance a contradiction with a previous rule, then a feed-
back message is displayed very early. Moreover, it improves the resolution
of conflicts, in terms of performance as well as complexity.

Detection

Since the granularity of composition gets to a lower level than links, so
should the definition of interactions. However, it was chosen not to modify
it: indeed, if two links apply at the same point of the program, even if
they have different controls (then resolution is trivial and there is no real
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conflict), it might be better to warn the user anyway and ask for an explicit
specification for their interaction.

Resolution

For manipulating and sorting link elements, as well as expressing the solution
to a link element interaction, the hooknode data structure is used:

1. First, a hooknode is created and filled with interacting link elements,
corresponding to interacting links associated with their control, placed
in the appropriate set inside the hooknode with respect to this control.

2. Secondly, the hooknode inspects its replace elements and creates
the nesting hooknode hierarchy recursively from nesting kernel rules.
In practice, nested hooknodes are created for replace elements, and
gather their nested elements as nesting rules are being processed. It
results in a two dimension link element structure such as Figure 10.1.

3. Thirdly, each link element subset in the hooknodes is ordered with
respect to ordering kernel rules.

Application

The way interaction results are applied is still not presented here, however
one can expect hooknodes to be easier to apply than a standard composition
rule: as a matter of fact, their structure reflects only two types of relations,
namely ordering and nesting, whereas AST rules are open-operator specifi-
cations.

10.4 Implementation

This section presents the implementation for kernel rule and link element
primitives, the hooknode data structure and high-level operators.

10.4.1 Kernel rules and partial specification

AST rules as seen in chapter 8 represent high-level user rules. For low-level
kernel rules, no new artefact is introduced.

First, conditional rules are tranlated in terms of activation conditions, which
are already implemented in Reflex.

Concerning ordering and nesting, the information is stored in link elements
themselves, as predecessors: a link element is a predecessor if it applies be-
fore another one (ordering predecessor) or if it nests another one (nesting
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predecessor). Each link element has two lists of predecessors, for ordering
and nesting respectively. This way the Link implementation is not modified,
which keeps the original reflective model as pure as possible. By the way,
link elements are abstractions dedicated to composition, therefore it seems
more natural and object-oriented to make them encapsulate the information
about their composition.

Whenever a rule introduces a new predecessor, all its own predecessors
are added recursively. Consequently, it is easy to check that there is no
contradiction or cyclic specification: for instance, Ord(LE1,LE2) added to
Ord(LE2,LE1) makes LE2 (or LE1 respectively) its own predecessor, which
reflects a contradiction. For more illustration, appendix A shows the differ-
ent possible errors, their associated message and description.

Besides, the object-oriented solution consisting in storing predecessor lists
in link elements is better than updating a global list, since it enables partial
specification of composition. Partial specification means that not all order-
ing and nesting relations between all link elements of the application must
be specified explicitly. First, several trivial rules can be deducted by the
kernel. Secondly, the predecessors mechanism allows one to specifies that a
given element applies, for instance, before a second one, without specifying
anything with respect to a third one; conversely, a single ordered list reflects
the specification for each pair of elements.

To illustrate partial ordering, let’s imagine that links L1, L2, L3 and L4
interact, L4 with a replace control, the others with a before position. Con-
sidering rules Seq(L1,L2) and Wrap(L4,L3), the kernel applies L1, then L2,
then L4 wrapping L3. Actually, several mechanisms combine to build this
solution: first and obviously, the relations explicitly expressed by the rules;
secondly, the fact that a before applies before a replace, which applies
before an after3; thirdly, two elements not at the same level of nesting4

do not need to be ordered. Both last principles correspond to what we call
trivial rules, and hopefully users do not have to declare them explicitly. Be-
sides, even if there were other links in the application, no more specification
would be required as long as they do not interact with L1, L2, L3 and L4.

Concerning partial nesting, the mechanisms are very similar.

3Assuming they are at the same level of nesting (L1 and L2 for instance).
4L1 and L3 for instance.
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10.4.2 Link elements

LinkElement instances are composed of a Link and a HookElement en-
capsulating the control. Each link element contains two lists of prede-
cessors and exposes two associated methods addNestingPredecessor and
addOrderingPredecessor. Each time a predecessor is added, all its own
predecessors are added recursively, and it is verified there is no contradic-
tion.

Three classes extend LinkElement, namely Before, Replace and After.
In particular, Replace elements have an additional attribute which is the
nested hooknode used during the resolution phase.

Besides, LinkElement overrides the equals and hashcode methods from
Object, which helps a LinkElementRepository in managing link element
instances without duplicates.

10.4.3 Hooknodes

Hooknodes consist of three sets of link elements, namely Before, Replace
and After elements. Like kinds of containers, they provide methods to check
the existence, add or remove link elements.

More interestingly, the needsResolution method implements the detection
of interactions. Interactions are detected as the presence of more than one
link in the hooknode (10.3.2), nevertheless this definition can be modified
(so that for instance a before and an after elements at the same level of
nesting are not considered to interact).

Last but not least, the solve method is called at the end of the resolution
phase, responsible for filling nested hooknodes as well as ordering elements
according to rules. Sorting is performed via specific Comparator extensions,
looking for predecessors to sort link elements. Consequently, the sorting
algorithm is the traditional sort algorithm provided by Java. Appendix C
explains why we prefered this algorithm to a not-less-traditional Quicksort.

To sum up, a hooknode is a triple list of link elements, created when an
interaction occurs, which structures itself to reflect ordering and nesting
specifications. As a result, hooknodes compose the data structure to ex-
press link element compositions.
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10.4.4 Operators and open-operator support

In this second composition model, ASTs do not express low-level composi-
tions anymore; instead they expand to link element relations. Link elements
represent compositions once sorted in their specific data structure according
to kernel rules. There is no rule minimization anymore, nonetheless opera-
tors must specify the way they expand to kernel rules.

In practice, each operator implements the apply() method, responsible for
translating its semantics into kernel relations. Since many user operators
expand by considering each link pair successively to form binary relations,
a specific subclass provides an algorithm implementing the decomposition
mechanism, allowing inheriting operators to focus on their implementation
of apply(Link,Link). By the way, they may subclass other operators or
express their semantics in terms of other operators.

To facilitate the implementation of operators, a set of methods is provided by
their superclass: ord, nest and cond permit to declare kernel rules between
two link elements as standard method calls with two arguments, whereas
before, replace and after accept a link argument and create the corre-
sponding hypothetic link element (which is also registered to the repository).
As a result, operator implementors can express kernel rules as simply as, for
instance, ord(before(link1),before(link2)). As a better illustration,
chapter 12 exposes the implementation of Seq and Wrap user operators.

Finally, operators are responsible for translating themselves to kernel re-
lations, either explicitly or by subclassing or composing existing operators.

10.5 Conclusion

From the explicit consideration of controls in composition, we have built an
alternative to the solution in chapter 8. We have identified a minimal set
of kernel operators and introduced two new artefacts, namely link elements
and hooknodes, which are not new concepts but convenient abstractions for
the design and implementation of this second solution.

The first benefit is the early processing of composition rules, in particu-
lar the early detection of contradictions. User operators, made of other
high-level operators or well-known low-level relations, are also easier to im-
plement and reason about. Finally, the application phase should be easier
to implement, because of the closed family of kernel operators in comparison
with chapter 8.
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Part IV

Examples
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Chapter 11

Plugin examples

In order to validate the plugin architecture presented in chapter 7, several
translators were implemented in parallel to the infrastructure itself. This
chapter exposes their implementation as plugin examples.

The chapter is structured as follows. First section provides general informa-
tion about implementing plugins (11.1). Secondly, a plugin called Profiler
is described in details, from the definition of its purpose to its code gen-
eration (11.2). Then, two slightly more complex plugins are presented in
order to illustrate the various applications for plugins: ReifyCalls facilitates
the reification of messages (11.3), whereas the SOM plugin implements a
concurrency model (11.4).
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11.1 Implementing new plugins

As seen in chapter 7, plugins share information with the kernel, in particular
their identity, their loadtime arguments and the source of the composition
rules they may declare.

In practice, plugins must implement three respective protocols: Describable,
ArgumentHandler and RuleOwner. The following piece of code illustrates
how one can implement those protocols to create a new plugin class from
scratch:

public class DummyPlugin extends Plugin {

// Constructor
public MyPlugin() {

super("my plugin name", "my plugin description");
}

// This method is called by the argument dispatcher
// @param the arguments mapped to their tag
public void handleArgs(Map aTagsArguments) {}

// @return supported tags
public String[] getTags() {return new String[0];}

// @return the tags description
public String getTagsDescription() {return "";}

// @return the source of a composition rule
// declared by the plugin
public String getSource(Rule aRule) {return "";}

}

The argument dispatcher is responsible for sending dedicated tags to each
plugin. It corresponds to aTagsArguments in the handleArgs signature,
which is filled by the dispatcher with tag-argument pairs intended for the
plugin.

The example shows that plugins may have no tag, then supportedTags
returns an empty array. It means that the plugin needs no loadtime argu-
ment to achieve its purpose, nevertheless it may receive runtime arguments
through any public API it implements (at least handleArgs is available for
sending instructions to the plugin).
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In order to make plugin implementations more convenient, several Plugin
subclasses are provided as Reflex tools.

For instance, AntlrParserPlugin implements plugins using ANTLR tech-
nologies [ANTLR.org] to parse string arguments from either startup ar-
guments or a given configuration file. The following code shows how to
implement a new ANTLR-based plugin class from AntlrParserPlugin:

public class MyPlugin extends AntlrParserPlugin {

// Constructor
public MyPlugin() {

super("my plugin name", "my plugin description",
new String[0], // Tags
"no tag for this example");}

// @param a tag supported by the plugin
// @return the associated lexer class
protected Class getAntlrLexerClass(String aTag)
{return MyLexer.class;}

// @param a tag supported by the plugin
// @return the associated parser class
protected Class getAntlrParserClass(String aTag)
{return MyParser.class;}

// @return the input source of a composition rule
// declared by this plugin
public String getSource(Rule aRule) {return "";}

}

The abstract AntlrParserPlugin class is in charge of handling arguments
and parsing commands. It handles multiple tags (possibly associated to
different lexers and parsers) and multiple arguments. Each argument is
recognized either as an individual command or a filename (a bundle of com-
mands). Finally, each command is parsed using the appropriate lexer and
parser, the process being triggered by a call to start, which is implemented
by ANTLR parsers. On the other hand, the parser is responsible for calling
appropriate methods from the plugin API to make it perform kernel config-
urations with respect to parsed commands.

Appendix B explains the reasons why we chose ANTLR to implement our
first plugin examples. Nevertheless, only the call to start is specific to
ANTLR, besides it is embedded in a tool class rather than the core plu-
gin architecture. Obviously, one can easily implement tools based on other
existing parsing technologies.
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11.2 The Profiler plugin

Purpose, usage

The profiler plugin is an extension of the timer introduced in 9.2. It logs
method calls and their return time, being triggered by commands like:

profile: "methodName" fromClass: className;

Single commands can be sent to the plugin using a specific tag, -profile,
followed by the command string. For multiple profiling, commands can be
gathered in a text configuration file, then the filename follows the tag.

The following trace shows a typical Profiler log:

(...)
[ProfilerPlugin] Method ’foo’ is called (call #1).
(method ’foo’ executes)
[ProfilerPlugin] Method ’foo’ returns (after 862 milliseconds).
(...)

Design

ProfilerPlugin subclasses AntlrParsersPlugin (11.1). The plugin de-
clares its name, its description, the -profile tag and its description, as
well as ProfilerLexer and ProfilerParser ANTLR classes. It gets its
arguments from the Reflex dispatcher through handleArgs, which parses
commands and filenames using ANTLR, then configures the kernel. Lexers
and parsers are embedded inside the Profiler JAR archive: ProfileParser is
implemented so that correct commands (matching the Profiler-specific gram-
mar) trigger calls to profile(String aMethod, String aClass) from the
plugin API. This method performs configuration as follows:

1. Register the message receive operation if necessary.

2. Create a hookset for the appropriate method-class cut.

3. Get a new link, configure it as before-after, binds it to a counter.

4. Wrap the link into a linkset, then send it to the kernel.

The counter is a metaobject. The Counter class inside the JAR archive
implements two methods, called respectively before and after the execution
of the method, performing the log.
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Source code

Four classes compose the Profiler JAR: the plugin itself, the counter, the
lexer and parser.

The following code implements the plugin:

public class ProfilerPlugin extends AntlrParsersPlugin {

public ProfilerPlugin() {
super("ProfilerPlugin", "A plugin to log invocations

on a method and their return time",
"-profile",
"[file1:file2:...] \\n\\t to log invocations on given
methods and their return time, directly as a string
command or in a text file (syntax: ’profile:
\"method_name\" fromClass: class_name;’)");}

public String getSource(Rule aRule) {
return null;} //This plugin does not declare composition rules

protected Class getLexerClass() {
return ProfilerLexer.class;}

protected Class getParserClass() {
return ProfilerParser.class;}

public void profile(String aMethod, String aClass) {
System.out.println("[" + getID() + "] Applying: ’profile: "

+ aMethod + " fromClass: " + aClass + "’.");

//Declare the MsgReceive operation if necessary
if (PluginAPI.operations().existOperationSupportFor(MsgReceive.class)

&& !(PluginAPI.operations().getOperationSupport(MsgReceive.class)
instanceof MsgReceiveInstaller))

System.err.println("[ProfilerPlugin] Warning: a different
installer is already defined for operation MsgReceive.");

} else
PluginAPI.operations().addSupport(new OperationSupport(

MsgReceive.class, new MsgReceiveInstaller()));
}

//Create yhe hookset (cut)
PrimitiveHookset theHookset =

new PrimitiveHookset(MsgReceive.class,
new NameCS(aClass),
new NameOS(aMethod));
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//Get a new link
String theName = "PROFILER_" + aClass.substring(

aClass.lastIndexOf(’.’)+1) + "_" + aMethod;
BLink theLink = PluginAPI.links().getBLink(theHookset,

new MODefinition.MOClass(Counter.class.getName()), theName);

//Set up the link
theLink.setInitialization(Initialization.EAGER);
theLink.setControl(Control.BEFORE_AFTER);

//Wrap and declare the link
Linkset theLinkset = new Linkset(this, theName+"_Linkset");
theLinkset.addLink(theLink);
PluginAPI.links().addLinkset(theLinkset);

}
}

The following class implements the counter metaobject:

public class Counter implements BeforeMsgReceive, AfterMsgReceive {

private int itsCounter = 0;
private long itsInitialDate;

public void beforeMsgReceive(Object[] aReifiedData) throws MOPException {
String theMethodName =

DMsgReceive.convert(aReifiedData).getMethod().getName();
System.out.println("[ProfilerPlugin] Method ’" + theMethodName

+ "’ is called (call #"+(++itsCounter)+").");
itsInitialDate = System.currentTimeMillis();

}

public void afterMsgReceive(Object[] aReifiedData) throws MOPException {
long theTimeElapsed = System.currentTimeMillis() - itsInitialDate;
String theMethodName =

DMsgReceive.convert(aReifiedData).getMethod().getName();
System.out.println("[ProfilerPlugin] Method ’" + theMethodName

+ "’ returns (after "+theTimeElapsed+" milliseconds).");
}

}
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Concerning the lexer and parser, they are generated from the following
ANTLR grammar specification:

class ProfilerParser extends Parser;

start :( rule )+ ;

rule
{itsMethod = null; itsClass = null;}
:PR m:METH SP FC c:CLASS SEMI ( NEWLINE )*

{itsClass = c.getText();
String theString = m.getText();
itsMethod = theString.substring(1, theString.length()-1);
itsPlugin.profile(itsMethod, itsClass);};

class ProfilerLexer extends Lexer;

options { k=10; }

PR :"profile" COL SP;

FC :"fromClass" COL SP;

CLASS: ( (’a’..’z’) (’a’..’z’ l’A’..’Z’ l’0’..’9’)* PT )*
(’A’..’Z’) (’a’..’z’ l’A’..’Z’ l’0’..’9’)*;

METH :’"’ (’a’..’z’) (’a’..’z’ l’A’..’Z’ l’0’..’9’)* ’"’;

NEWLINE :’\t’ l’\n’ l’\r’;

COL :’:’;

PT :’.’;

SEMI:’;’;

SP :’ ’;

61



11.3 The ReifyCalls plugin

ReifyCalls provides facilities to reify method calls on Java objects and per-
form shifts to metaobjects. The specific syntax is:

reifyCallsOn: className toMO: MOClassName;
reifyCallsOn: className toBody: @body@;
reifyCalls: "methodName" on: className toMO: MOClassName;
reifyCalls: "methodName" on: className toBody: @JavaBody@;

Similarly to Profiler, ReifyCallsPlugin extends AntlrParsersPlugin and
deals with both individual commands and configuration files. The following
commands could be a typical input file:

reifyCallsOn: test.Foo withMO: test.FooMO;
reifyCalls: "bar" on: test.Bar withBody:

@System.out.println("bar");
return null;@;

reifyCallsOn: test.Zorg withBody:
@return DMsgReceive.convert($1).perform();@;

As seen in class Counter (11.2), metaobject are provided a reified data ar-
gument from the MOP. Here, the $1 variable is a Javassist shortcut refering
to the first argument of the method, i.e. reified data. Calling the perform
method on those data executes the original target method. Said differently,
the third command in this configuration file actually does nothing: it reifies
a method call then executes the method.

The ReifyCalls implementation is slightly more complex than Profiler. First,
the lexer introduces method body tokens, composed of a Java body wrapped
with @ characters1. Secondly, ReifyCalls has a second argument which con-
sists in the metaobject: if a class is specified, the plugin first verifies this
class is valid (i.e. the metaobject implements ReplaceMsgReceive); in case
a method body is given, it creates an appropriate metaobject from scratch
(i.e. a class is created, it is made implement ReplaceMsgReceive, then a
method is created from the given body and introduced in the class).

1Chosen because they are not valid in a Java expression.
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11.4 The SOM plugin

The SOM plugin achieves an implementation of Sequential Object Monitors
[Caromel et al., 2004], a scheduler-like approach to concurrency in Java.

As presented in [Tanter & Noyé, 2004], the standard SOM implementation
is a Reflex-based library. The SOM library is composed of a main class
called SOM, an API class and a set of relating classes used by SOM.

Figure 11.1: SOM library classes and API.

The SOM plugin extends the library implementation, achieving in particular
a configuration language for SOM. This language is an evolution of the one
proposed in [Tanter & Noyé, 2004]. Its syntax is:

schedule: className withScheduler: SchedulerClassName;
schedule: className withBody: @JavaBody@;

The parser consists in a simplified version of the ReifyCalls parser. The
SomPlugin class replaces SOM, configuring Reflex with respect to the plugin
framework. SOM still exists, but does not configure the kernel anymore, in-
stead it acts like a public API and forwards calls to the plugin core class.

Figure 11.2 shows there are now different types of input for SOM: first,
direct commands and configuration files at startup in the SOM plugin con-
figuration language; on the other hand, calls to SomPlugin and SOM which
provide the SOM programmatic access API.
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Figure 11.2: The SOM plugin classes, inputs and output.
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Chapter 12

Composition examples

This chapter is concerned with illustrating composition mechanisms, in par-
ticular the implementation of operators and the usage of composition rules.

First are exposed the implementation of Seq (12.1) and Wrap (12.2) user
operators as presented in chapter 9. Then, a basic interaction example is
described, how default composition applies, then how one can adapt the
behaviour of the application by specifying appropriate rules (12.3).
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12.1 The Seq operator

The Seq operator reflects precedence between links. A Seq tree accepts any
number of nested rules and link leaves.

As seen in 9.4, a link rule Seq(link1, link2) is equivalent for the ker-
nel to the following control-level relations:

• Ord(link1_with_before, link2_with_before)

• Ord(link1_with_replace, link2_with_replace)

• Ord(link1_with_after, link2_with_after)

Consequently, the Seq operator is implemented as follows:

public class Seq extends OperatorNode {

public Seq(Rule[] aChildren) {
super(aChildren);}

//Apply kernel rules
protected void apply() {

//Use the rule expansion algorithm
super.apply(getChildren());}

//Apply kernel rules for a pair of links
protected void apply(Link aL1, Link aL2){

//Instantiate link elements, declare kernel rules
ord(before(aL1), before(aL2));
ord(replace(aL1), replace(aL2));
ord(after(aL1), after(aL2));}

}

The apply() method is called when the rule needs to be translated, i.e. at
declaration time.

Since a Seq can be interpreted by taking its containees two by two in a
certain order, apply(getChildren()) is used to expand the rule into bi-
nary relations. The algorithm, which is implemented by the superclass, is in
charge of extracting primitive links from both nested rules and linksets, mak-
ing pairs in a valid order, as well as triggering calls to apply(Link,Link)
for each pair. Actually, this last method encapsulates most of the operator
semantics.
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12.2 The Wrap operator

The Wrap user operator implementation differs from Seq by its kernel-level
semantics considering two links (i.e. its apply(Link,Link) implementa-
tion). As a matter of fact, Wrap(link1, link2) must be translated into:

• Ord(link1_with_before, link2_with_before)

• Nest(link1_with_replace, link2_with_before)

• Nest(link1_with_replace, link2_with_replace)

• Nest(link1_with_replace, link2_with_after)

• Ord(link2_with_after, link1_with_after)

The following source code implements the Wrap operator:

public class Wrap extends OperatorNode {

public Wrap(Rule[] aChildren) {
super(aChildren);}

//Apply kernel rules
protected void apply() {

//Use the rule expansion algorithm
super.apply(getChildren());}

//Apply kernel rules for a pair of links
protected void apply(Link aL1, Link aL2){

//Instantiate link elements, declare kernel rules
ord(before(aL1), before(aL2));
nest(replace(aL1), before(aL2));
nest(replace(aL1), replace(aL2));
nest(replace(aL1), after(aL2));
ord(after(aL2), after(aL1));

}
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12.3 Solving interactions

This section introduces an interaction example based on Profiler (11.2) and
SOM (11.4). To obtain a conflict, both plugins are asked to intercept the
same message: foo sent to class Foo. Reflex is started with the following
arguments:

--pluginClasses SomPlugin ProfilerPlugin
-profile "profile: \"foo\" fromClass: Foo;"
-som "schedule: Foo withScheduler: MyScheduler;"
Main

The first line loads both plugins1; it could have be done automatically by
placing them as JARs in the plugin autoload folder. Second and third lines
configure Profiler and SOM to intercept calls to Foo.foo(). Finally, the
application main class is called (fourth line), creating a Foo instance then
calling foo to get the conflict.

Default composition

When Reflex starts with the arguments above, the kernel detects the inter-
action of both links, which try to apply at the same point. By default, links
are composed in sequence and the following warning is displayed:

[HookFactory] Warning: no composition specification to sort
beforeafter(profiler_link) and beforeafter(som_link). Links
will be installed in sequence.

In practice, links apply as follows:

1. Profiler records the current date as the starting of foo.

2. SOM calls the appropriate scheduler before foo is called.

3. (foo executes)

4. Profiler considers that foo returned and traces the time elapsed.

5. The scheduler returns.

Consequently, the following trace displays:

(...)
[ProfilerPlugin] Method ’foo’ is called (call #1).
[Scheduler] Scheduling ’foo’.
(foo executes)
[ProfilerPlugin] Method ’foo’ returns (after 1194 milliseconds).
[Scheduler] Scheduling of ’foo’ complete.
(...)

Semantically, the default application order does not make much sense here.
In next section, we show how one can adapt composition by specifying rules.

1Thanks to a new handler added to Reflex for this purpose.
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Adapting composition

To illustrate how one can modify the behaviour of the application in case
of aspect interaction, we use two successive composition rules and check the
composition trace.

First, let’s specify Wrap(profiler_link, som_link) by adding the rule
to the kernel startup arguments:

-rule "Wrap(profiler_link, som_link)"
--pluginClasses SomPlugin ProfilerPlugin
-profile "profile: \"foo\" fromClass: examples.Foo;"
-som "schedule: Foo withScheduler: MyScheduler;"
Main

The first line specifies the rule; indeed, a dedicated handler allows users to
specify composition rules at startup. As a result, Profiler counts the time
foo takes to execute as well as the time taken by the scheduler:

(...)
[ProfilerPlugin] Method ’foo’ is called (call #1).
[Scheduler] Scheduling ’foo’.
(foo executes)
[MyScheduler] Scheduling of ’foo’ complete.
[ProfilerPlugin] Method ’foo’ returns (after 1286 milliseconds).
(...)

As an alternative, let’s try Wrap(som_link, profiler_link):

--pluginClasses SomPlugin ProfilerPlugin
-profile "profile: \"foo\" fromClass: examples.Foo;"
-som "schedule: Foo withScheduler: MyScheduler;"
-rule "Wrap(som_link, profiler_link)"
Main

Consequently, the counter measures the time taken by foo to return, wrapped
by the scheduler:

(...)
[MyScheduler] Scheduling ’foo’.
[ProfilerPlugin] Method ’foo’ is called (call #1).
(foo executes)
[ProfilerPlugin] Method ’foo’ returns (after 145 milliseconds).
[MyScheduler] Scheduling of ’foo’ complete.
(...)

As a conclusion, one can easily adapt composition semantics, declaring com-
position rules at startup or anytime before the interaction occurs. One must
notice however, that Reflex applies these semantics only once when classes
are loaded, which limits the actual scope of runtime composition specifica-
tions.
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Part V

Conclusion
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Chapter 13

Related work

As seen in the introduction, a variety of approaches exist for separating
crosscutting concerns. Among them, several relate directly to this work by
promoting versatile solutions to AOP. This section presents those technolo-
gies through their similarities and differences with the Reflex AOP kernel.

13.1 CME

The concern manipulation environment ([CME]) developed at IBM is an am-
bitious large-scale project, aiming to support AOSD at any level (analysis,
design, implementation, etc.) with respect to any object-oriented computing
environment (programs in various languages as well as artefacts like UML
diagrams), targeting both asymmetric and symmetric approaches.

In particular, the concern assembly toolkit (CAT [Harrison et al., 2002]) pro-
vides as part of the CME abstractions and support for concern assembly.
Concern assembly is defined as the low-level manipulation of software arte-
facts to implement “composition and weaving” from AOSD approaches. Ac-
tually the paper does not refer to aspect composition, but the composition
of class hierarchies and combination of methods. As a matter of fact, the
IBM solution is not concerned with the detection of aspect interactions, their
resolution nor the feedback issues emphasized by [Tanter & Noyé, 2004] and
addressed by this thesis.

Even if the CAT proposal does not focus on the same issues as Reflex,
it promotes the same idea that “an abstraction layer and toolkit support-
ing low-level concern assembly would enable AOSD tool builders to leverage
many of the similarities, reducing development effort and increasing the
scope and interoperation of their tools”. In the following paragraphs, Reflex
and the CME are compared with respect to the issues addressed by both
solutions: plugin architecture, back-end model and frameworks.
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In practice, the CAT toolkit is a set of interfaces, frameworks and concern
assemblers. Concern assemblers are kinds of plugins, intended to take any
type of AOSD artefacts as input and produce assembly directives as output.
Assembly directives are independent of the output language and result in
low-level modifications of the program. In comparison, Reflex plugins and
the kernel itself target only asymmetric approaches, besides they are limited
to Java bytecode output.

Secondly, assembly directives are expressed either in a specific concern as-
sembly language, or as calls to a dedicated API. Despite a similar public API,
Reflex does not promote an intermediate language. IBM designers justify
this layer by the serialization of low-level assembly specifications. Indeed,
once serialized specifications can be used for analysis, for instance detecting
behavioural interference. However, it is not clear in the paper if the transla-
tion to the intermediate language is required, since concern assemblers can
perform direct calls to the API: “[Assembly directives] can be written in
the concern assembly language, a usage of XML. Alternatively, they can
be issued as calls to a Java API implemented by all concern assemblers”.
Actually, one may wonder about the feasibility of a global analysis without
a uniform process1 for all assemblers.

By the way, IBM designers use open-ended string directives in the CAT
API, since it allows any type of specification without being bound to a
particular software artefact. Conversely, Reflex promotes object-oriented
protocols and high-level artefacts such as hooksets or linksets.

Finally, the IBM proposal is based on a specific model for representing
object-oriented concepts and directives. Indeed, the CAT paper introduces
its own object-oriented and organizational elements, as well a set of direc-
tives and protocols. In comparison, Reflex is based on a reflective model,
over which are defined additional abstractions such as hooksets and linksets.

To conclude, the CME provides an alternative to the language layer pro-
posed in this thesis, intended to be as generic as possible. However, the
IBM proposal does not consider explicitly aspect composition issues, which
are addressed by Reflex.

1For instance: translating semantics into written directives, then calling the API.
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13.2 AOLMP

Aspect-oriented logic meta programming (AOLMP) is an expressive approach
to building composable aspect-specific languages. It results from the unifi-
cation of aspect declarations and weaver implementations in a common logic
programming language. The solution promoted is very powerful and pure,
in particular for aspect composition: indeed, only one (general-purpose logic
meta) language is used to reason about aspects, both from a user and an
implementor point of view.

The main difference with Reflex lies in that no aspect-specific syntax is pro-
vided beyond the kernel (logic) framework. In comparison, a user-friendly
language layer as introduced in 4.4 provides the following benefits:

• No need to know the kernel underlying model to use aspects from a
given AOL: they can simply be ‘plugged in’.

• Using an aspect-specific syntax guides the aspect writer, who is also
shielded from the complexity and the expressiveness of the kernel
model.

As a conclusion, AOLMP makes a powerful solution to composing aspects,
however it does not address the language layer issue.

13.3 XAspects

XAspects [Shonle et al., 2003] is a plugin mechanism that integrates DSALs
and Domain-Specific Component Languages (DSCLs) with AspectJ.

The XAspects architecture is intended to make plugins cooperate with each
other. In practice, each plugin performs changes to the base program in a 6-
phase conversation with the XAspects compiler, which is actually composed
of two main steps :

• First, each plugin sends changes2 to the compiler, from the analysis of
its input aspect body.

• Secondly, plugins may send new instructions, from the analysis of the
bytecode produced by the compiler after phase one.

Actually, aspects cooperate with each other as plugins do to apply their
changes. However, XAspects provides neither analysis nor control over as-
pect interactions, no more than user feedback in case of conflict (not even
the names of involved plugins or aspects).

2As Java/AspectJ code.
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Turning on to XAspects limitations, [Shonle et al., 2003] describes several
requirements on aspect bodies, naming restrictions (in particular for in-
troductions), as well as more serious restrictions: in particular, structural
changes are forbidden during the second phase, and composition is limited
to (AspectJ) precedence.

A look at the source code examples shows that there is no real transla-
tion mechanism in XAspects: provided examples are either trivial or based
on DAJ tools [DAJ.sf.net, Lieberherr] to create Java/AspectJ files. Basi-
cally, the XAspects compiler wraps ajc3. If one compares XAspects with
using DAJ and ajc directly, the benefits are:

• XAspects theoretically prevents from having to weave aspects in a
special order, since each plugin gets the bytecode resulting from the
application of all aspects in phase one.

• It is possible to gather multiple aspects and associate them with a
particular plugin inside a single XAspects source file.

• The programmer needs only one command to perform the whole com-
pilation, since DAJ is executed behind the XAspects compiler.

Actually, one sees that XAspects deals mainly with the presentation issue
caused In terms of source code artefacts and weaving commands by multiple
aspects in different languages.

Comparing XAspects and Reflex, three issues are highlighted:

Aspect presentation: XAspects provides a solution to gathering multiple
aspects written in various languages. Conversely, Reflex does not deal
with this issue for the moment.

Aspect translation: the responsibility of translating aspect semantics into
an intermediate lodel or language is left by XAspects to DAJ. Con-
versely, this thesis directly addresses the issue with plugins.

Intermediate language: XAspects uses AspectJ as the intermediate lan-
guage, which is a serious limitation (in particular for composition). In
comparison, Reflex uses reflexive primitives and an open composition
model.

As a conclusion, one should state XAspects and Reflex address different
issues.

3The AspectJ compiler.
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13.4 Josh

Josh [Chiba & Nakagawa, 2004] is an open-AspectJ-like language that al-
lows to experiment new AOLs. Generally speaking, both Josh motivation
and realization are very close to Reflex.

Concerning the differences between both proposals, Josh inlines aspect bod-
ies, which contrasts with Reflex representing aspects via objects. Inline
weaving however disables a variety of features relating to Java security, as
well as per-object aspects and aspects of aspects capabilities.

Besides, Josh is aimed at experimenting languages, rather than combining
them. As a result, no support is provided for aspect composition, whereas
Reflex ensures the detection of interactions and provides means to resolve
them.
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Chapter 14

Thesis overview

As highlighted by the structure of the dissertation, this thesis exposes a so-
lution built incrementally.

First, chapter 6 introduces a new abstraction in the Reflex kernel, namely
linksets, which reify semantic groups of links. As such they can typically
reflect crosscutting concerns, and provide a convenient abstraction for rea-
soning about, tracing and composing aspects.
Secondly, chapter 7 proposes a plugin architecture to cleanly encapsulate
and integrate aspect language-specific translators in the Reflex AOP kernel.
This infrastructure implements the language layer introduced in 4.4 and
[Tanter & Noyé, 2004]. Moreover, its design supports and promotes trace-
ability and smart user feedback. Finally, the way translators are defined,
i.e. extending Reflex standard handlers, facilitates their design and imple-
mentation.

Turning on to aspect composition issues, chapter 8 promotes a generic model
for link composition. Design and implementation are exposed successively,
as well as a dedicated user framework to specify composition at load time
or dynamically.
Chapter 9 highlights the benefits of considering link controls explicitly in
the composition model, and shows how it promotes a cleaner design of com-
position operators.
As a consequence, chapter 10 proposes a new composition model, based on
explicit controls as well as links. Reasoning about controls leads to dis-
tinguish between two types of operators, called kernel and user operators.
Finally, a minimal set of operators is identified, which enables kernel com-
position features, such as the early detection of rule contradictions.

Finally, a set of working examples illustrates and validates the implementa-
tion of the thesis.
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Chapter 15

Perspectives

This last section presents several future works and perspectives for the so-
lution built in this thesis, and the Reflex AOP kernel in general.

First, a minimal set of operators was identified to express composition in
an open manner. Assuming the correctness of its specification, a variety of
operators and language translators are expected to be released in the next
future, similarly to the recently implemented AspectJ plugin for Reflex.

Secondly, advanced rule consistency analysis and checks could be imple-
mented over composition mechanisms. Even if the framework built for this
thesis implements several verifications over rules (cyclic rules, sequence con-
tradictions, etc.), interactions between aspects are far from being limited to
these cases, and should be the subject of a specific study.

Thirdly, it could be studied how the implementation of linksets can influ-
ence aspect-oriented programming with Reflex. In particular, since linksets
of linksets permit complex hierarchies over links, such issues as the possi-
bility to compose linksets that do not reify a standalone concern should be
studied (for instance if a linkset composed individually is part of a higher-
level linkset reflecting a concern).

Focusing on AOL modules, their infrastructure could be refactored so that
it accepts various layers of plugins. Said differently, the architecture could
be extended to allow plugins to use other plugins, making them act more
like components than standalone translators.

Finally, the composition frameworks presented in this thesis will be extended
to structural kernel mechanisms.
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Appendix A

Error messages

This section lists Reflex handled errors relating to linksets, plugins and
composition features. Each error is presented with a specific message which
illustrates Reflex traceability capabilities.

————————

Double tag declaration

Explanation: a tag is declared twice, by two plugins or twice the same
plugin.

Kernel policy: exception

Message: “Error: Tag A was declared twice (by B and C).” where A is the
string tag, B and C plugin IDs.

————————

Incorrect tag declaration

Explanation: tag is not well-formed, it should be prefixed with ‘-’ or ‘--’.

Kernel policy: exception

Message: “Error: Tag A declared by B is incorrect. Tags are prefixed with
‘-’ for basic tags or ‘--’ for server tags.” where A is the string tag and
B the plugin ID.

————————
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————————

Invalid plugin JAR

Explanation: a JAR in the plugin folder contains no subclass of Plugin.

Kernel policy: warning

Message: “Warning: File A is not a correct JAR plugin file. File will be
ignored.” where A is the file name.

————————

Double plugin link nesting

Explanation: a plugin tries to add an already owned PluginLink (this in-
cludes nested links and linksets) to another parent.

Kernel policy: exception

Message: “Error: Plugin A is adding link B to parent C. B is already
owned by D. A plugin link cannot have more than one parent.” where
A is the plugin ID, B the link ID, C and D the parents IDs.

NB: here only one plugin is mentioned. As a matter of fact, both parents
(the one already set and the new one) are owned by the current plugin,
since plugins cannot access links / linksets from other sources (see
framework part).

————————

Double linkset declaration

Explanation: a linkset is declared twice.

Kernel policy: warning

Message: “Error: A was declared twice by B. Second declaration will be
ignored.” where A is the linkset ID, B the plugin.

NB: here we already know that the linkset was declared twice by the same
plugin, since plugins cannot access linksets from other sources (see
framework part).

————————
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————————

Double link ID usage

Explanation: a plugin link is declared with an already existing ID.

Kernel policy: exception

Message: “Error: Plugin A tries to use name B already used by a user
link.” or “Error: Plugin A tries to use name B already used by a link
from plugin C.” where A is the plugin ID, B the link ID, C a plugin
ID.

————————

Composition sequence contradiction (between rules)

Explanation: rules are in sequence contradiction.

Kernel policy: exception

Message: “Error: composition sequence contradiction between rule A and
rule(s) B implies that C is declared anterior to itself!” where A is the
string representation of the rule being applied, B the string represen-
tations of other rules in contradiction, C the string representation of
the link element.

Example: “Error: composition sequence contradiction between
rule Seq(l1,l2) declared by TestPlugin [source: aspect TestAspect.rfx]
rule Wrap(l2,l3) declared by TestPlugin [source: aspect TestAspect.rfx]
rule Seq(l3,l1) declared by CompositionHandler [source: file TestIn-
put.txt]
implies that before(l1) is anterior to itself!”

————————

Composition sequence contradiction (within rule)

Explanation: a rule is in sequence contradiction with itself.

Kernel policy: exception

Message: “Error: composition sequence contradiction within rule A =¿ B
is declared anterior to itself!” where A is the string representation of
the rule and B the string representation of the link element.
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Example: “Error: composition sequence contradiction within
rule Seq( Seq(l1,l2), Seq(l2,l1) ) declared by CompositionHandler [source:
command line argument of tag -compositionRules]
implies that before(l1) is anterior to itself!”

————————

Composition nesting contradictions

Nesting related error messages are similar to sequence errors. See sequence
contradiction messages.

————————

Lack of sequence rule

Explanation: no rules specify an ordering relation between two elements.

Kernel policy: warning

Message: “Warning: no composition specification to sort A and B. Links
will be installed in sequence.” where A and B are the string represen-
tations of both link elements.

Example: “Warning: no composition specification to sort after(l4) and
after(l5). Links will be installed in sequence.”

————————
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Appendix B

Parsing technologies

In order to implement several plugin examples with their configuration lan-
guage, a parsing technology had to be chosen. A parser is a program that
can recognize a particular language, with respect to its specific grammar. A
parser generator is a program that reads a grammar, then outputs a parser to
recognize the corresponding language. ANTLR [ANTLR.org] is the popular
parser generator we decided to use. This section presents it and compares
with alternative solutions.

ANTLR is a second generation parser generator, the first generation being
the popular PCCTS also by Terence Parr. Implemented in Java, ANTLR
generates Java, C++ and C# parser. Besides, ANTLR provides several ad-
vanced features which make it popular among recent parsing technologies:
lookaheads bigger than 1, tree parser generation, etc.

As a parser generator, ANTLR can first be compared to hand craft parsers.
The benefits of a parser generator are quite obvious: shorter development
time, prevention of mistakes since most of the implementation is automated,
higher level of abstraction for both the programmer and any code reader.
On the other hand, generated parsers are traditionaly considered as slow,
using lots of memory and providing poor error reporting. Concerning the
amounts of time and memory needed by generated parsers, most claim they
are insignificant on modern computers. By the way, it is generally admitted
that ANTLR has a fairly good error reporting.

Moreover, we compared ANTLR with the most famous UNIX program
YACC [YACC] and the recent JavaCC by Sun Microsystems [JavaCC].
First, the YACC table driven solution makes parsers difficult to debug: in-
deed, parser state transitions result from values in a table. Besides, YACC
is limited to a lookahead of 1, it cannot produce C++ parsers, and its er-
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ror reporting is generally considered as poor1. Turning on to JavaCC, the
benefits are less obvious: even if several feedbacks are in favor of ANTLR
on the internet, it is generally accepted that few differences exist. Never-
theless, JavaCC does not generate C++, C# nor tree parsers. The ANTLR
licence is also less restrictive (pure open source). Finally, Sun now supports
ANTLR, after having supported JavaCC for a while.

To conclude, we thought ANTLR was both a convenient and promising
parsing technology, therefore we chose it for implementing plugin examples.

1Particularly when compared to ANTLR.
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Appendix C

Ordering algorithms

In order to sort link elements with respect to their ordering or nesting pre-
decessors, a specific algorithm had to be used or implemented. This section
presents the sort polymorphic algorithm from the Java JDK [algorithms],
which we decided to use rather than a traditional quicksort.

“The sort algorithm reorders a List so that its elements are ascending
order according to some ordering relation”. Typically, objects to be sorted
are made implement Comparable, which reflects ordering relations between
elements. In the case of link elements, the distinct ordering and nesting
relations require the use of two specific Comparators1: one looks at ordering
predecessors from each element, whereas the other is concerned with nesting
predecessors.

According to Sun, the Java sort is a slightly optimized merge sort algo-
rithm. Concretely, it makes the algorithm:

Fast: It is guaranteed to run in n.log(n) time, and runs substantially faster
on nearly sorted lists. Moreover, “empirical studies showed it to be as
fast as a highly optimized quicksort. Quicksort is generally regarded
to be faster than merge sort, but isn’t stable, and doesn’t guarantee
n.log(n) performance.

Stable: It does not reorder equal elements. In practice it is important when
a list is sorted repeatedly on different attributes, which is not our case.

Besides, the sort-based implementation with element predecessors is not
less object-oriented than an OO quicksort. Finally, using the algorithm
provided by Java prevents from the risk of mistakes inherent to implementing
one’s own algorithm.

1By the way, comparators are claimed to be better than traditional type-unsafe com-
pareTo() methods.
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