
Vrije Universiteit Brussel - Belgium
Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes - France

and

Universidad de Chile - Chile

2000

V
R

IJ
E

UNIVERSITEIT BRUSS
E

L

S
C

IE
N

TIA
VINCERE TENEB

R
A

S
ECOLE DES MINES DE NANTES

Reflex

{ A Reective System for Java {

Application to Flexible Resource Management
in Mobile Object Systems

A Thesis submitted in partial ful�llment of the requirements

for the degree of Master of Science in Computer Science

(Thesis research conducted in the EMOOSE exchange)

By: Eric Tanter

Promotor: Prof. Theo D'Hondt (Vrije Universiteit Brussel)

Co-Promotor: Dr. Jos�e Piquer (Universidad de Chile)

Acknowledgments

I would like to take this opportunity to thank the people who helped to

make this work possible:

First of all, thanks to all the organizers of the EMOOSE project for their

vision and commitment. The EMOOSE project was a fantastic experience,

and I do hope it will be reconducted over years.

Thanks to my promotor Prof. Dr. Theo D'Hondt for taking all EMOOSE

students under his wings. Also thanks to my co-promotor Dr. Jos�e Piquer,

for suggesting a subject, and allowing me to deviate from it and �nally work

on what I wanted. I especially appreciate the freedom I was given. Thanks

to Dr. Luis Mateu, for the many technical discussions we have had, allowing

me to confront and therefore improve my ideas.

I also would like to thank Dr. Jacques Noye for giving some of its precious

time to proofread this thesis and for the highly helpful comments he gave

me.

Thanks to the people of the supporting institutions, the Ecole des Mines

de Nantes and the Universidad de Chile for helping me whenever they could,

in particular during my stay in Chile.

Last, but not least, many thanks to my parents for fully supporting me

during this year, and for their understanding of my personal choices.

i

Contents

1 Introduction 1

1.1 Goals . 1

1.2 Overview . 2

1.3 Note for the Non-Technical Reader 3

2 Concepts 4

2.1 Code Mobility . 4

2.1.1 Mobile Code Technologies 6

2.1.2 Applications of Code Mobility 11

2.1.3 Code Mobility in Java 13

2.2 Meta-Programming and Reection 14

2.2.1 Principles . 14

2.2.2 Applications of Reection 16

2.2.3 Reection in Java . 16

2.3 Reection for Code Mobility in Java 16

2.4 Summary . 17

3 Reex 18

3.1 Introduction . 18

3.2 Motivation and Objectives . 19

3.2.1 Transparent Type-Compatibility 20

3.2.2 Creation of Reective Objects 22

3.2.3 A Framework for Metaobjects Composition 23

3.2.4 An extensible MOP 25

3.3 Architecture of Reex . 26

3.3.1 The Javassist Library 26

3.3.2 Building Reective Classes 31

3.3.3 The Meta-level Architecture 33

3.3.4 The Metaobject Protocol 38

3.3.5 The Reex Public Interface 42

3.4 Summary . 43

ii

CONTENTS iii

4 Reex for Mobile Object Systems 44

4.1 Introduction . 44

4.2 Interfacing with Mobile Object Systems 45

4.2.1 Kinds of Serialization 46

4.2.2 Stream Identi�ers . 46

4.2.3 The StreamMetaobject Class 47

4.3 Serialization Awareness and Control 48

4.3.1 Serialization in Java 48

4.3.2 Serialization Awareness 48

4.3.3 Serialization Control 49

4.3.4 Serialization Wrapper 50

4.3.5 Extension of the Reex Framework 53

4.3.6 Advanced Serialization Issue 55

4.4 Summary . 58

5 Metaobjects for Resource Management 59

5.1 Introduction . 59

5.2 The Rebinding Policy . 60

5.2.1 Design and Implementation 61

5.2.2 Examples . 61

5.3 The Network Reference Policy 64

5.3.1 Design and Implementation 64

5.3.2 Examples . 66

5.4 Summary . 68

6 Evaluation 69

6.1 Achievements . 69

6.2 Performance . 70

6.3 Limitations . 71

6.3.1 Final classes . 71

6.3.2 Final methods . 72

6.3.3 Composition of metaobjects 72

7 Conclusions and Perspectives 74

7.1 Future Work . 74

7.2 Perspectives . 74

7.3 Conclusions . 76

A Paradigms of Distributed Computing 77

A.1 Client-Server . 77

A.2 Remote Evaluation . 77

A.3 Code on Demand . 78

A.4 Mobile Agent . 78

A.4.1 What's a Software Agent? 78

CONTENTS iv

A.4.2 The Paradigm . 79

A.4.3 Drawbacks of the Mobile Agent Paradigm 79

A.5 Summary . 81

B EzAgent 82

B.1 Concepts . 82

B.2 The ezagent.EzAgent class . 82

B.3 The ezagent.EzPlace interface 83

B.4 The ezagent.EzPlaceImpl class 85

B.5 Summary . 85

C Resource Manager for Java 86

C.1 The java.lang.ResourceManager class 86

C.2 The new java.lang.System class 88

C.3 Summary . 89

List of Figures

2.1 The internal structure of an executing unit. 7

2.2 Data space management mechanisms. 10

3.1 How Javassist makes a class reective. 29

3.2 Metaobjects and their dependencies|(a) a root metaobject

alone. (b) non-cooperative metaobject added. (c) cooperative

metaobject added. 34

3.3 UML diagram of the metaobject composition framework . . . 36

4.1 Reective objects and migration|(a) A simple con�guration

before migration of the mobile agent. (b) After migration has

taken place. The question marks indicate the speci�cation

points for implementing di�erent semantics. 45

4.2 Principle of a serialization wrapper. 50

4.3 Creating a transmitting a blank object|the necessity of switch-

ing the metaobject link. 52

5.1 Design of the rebinding policy|(1) Lazy-initialization of the

resource. (2) The resource is initialized, calls are forwarded

to it. 62

5.2 Design of the network reference policy. 65

v

List of Tables

3.1 Main methods of the Metaobject class of Javassist. 30

3.2 Implicit part of the inter-level MOP. 39

3.3 Explicit part of the inter-level MOP. 40

3.4 Methods of the intra-level MOP. 41

3.5 Extra methods of the intra-level MOP for cooperative metaob-

jects. 42

4.1 The StreamIdenti�er interface. 47

4.2 The SerializableReexObject interface. 54

B.1 Customization methods of the life-cycle of an EzAgent. . . . 83

B.2 The EzPlace interface. 84

vi

Chapter 1

Introduction

Computer networks are evolving at a fast pace, in particular with the advent

of the Internet and intra- and inter-organization networks. Networks are

invading our society, may it be at a business level or at a personal level.

There are more and more users of computer networks every day, and we

can foresee that this expansion will go on for a while. Indeed, a huge number

of small electrical devices will make use of network connection in the future,

in houses as well as in companies. It is predictable that soon many persons

will carry along with them a small device connected to the Internet (or its

successor), using it for a tremendous variety of applications.

This evolution is changing the settings of the computing world, introduc-

ing contrasts in technologies, such as wireless networks and high-bandwidth

networks. This in turns implies new requirements for software. It should

now be adaptable to network characteristics in order to optimize the use of

resources, it should be easily updatable, in a distributed manner, since the

topology of the network will not be static anymore, etc.

The mobile code distributed paradigm is an emerging approach to ad-

dress the issues of this new environment. The need for adaptability and

exibility is however still pending, since these days research on mobile code

is more focused on issues like security and performance.

In traditional computing, distributed or not, computational reection is

an interesting approach to build open systems using a powerful separation

of concerns. Therefore it seems attractive to apply reection to mobile code

in order to achieve the adaptability that mobile programs will need in the

near future.

1.1 Goals

The objective of this thesis is to build a reective system for Java that can be

used to achieve exibility in mobile object systems. Java is a programming

language that has raised many expectations in the area of code mobility,

1

CHAPTER 1. INTRODUCTION 2

and is widely used in the Internet today. Therefore most current research

works on mobility are done using Java.

Though the reective system we aim at building is targeted at mobile

object systems, we want to make it generic enough to be applicable to other

domains. The idea is to �rst build an appropriate reective system in Java,

without any assumption on the application domain. Then, we want to ex-

tend this generic system to be suited to mobile object systems.

We want to use this system to address one particular issue of exibility

in mobile object systems: that of resource management policies. Indeed, in

current mobile object systems, the resource management policy is chosen

in a �xed manner (by-copy, by-reference, by-move, etc.). This �xed choice

is however incompatible with the need mobile programs have to be able to

adapt themselves to network status. It should be possible to specify which

policy should be used for each resource, without entailing tough program-

ming.

Finally, we aim at opening interesting perspectives concerning the use of

reection to make mobile object systems exible, o�ering a concrete working

product that can be used for experimenting new ideas.

1.2 Overview

The next chapter will introduce a number of concepts about the �elds of code

mobility and computational reection. From this presentation will arise the

technical motivation of this dissertation, namely reection for code mobility

in Java.

Chapter three will present Reex, a reective Java system that we have

built during this thesis. The motivation and objectives of Reex as well as

its detailed architecture are exposed.

The fourth chapter will discuss the extensions made to the Reex system

to make it operational in a distributed environment. In particular, the

interface between Reex and mobile object systems is analyzed.

In chapter �ve we will present two classes of metaobjects that we have

developed in order to apply Reex to resource management policies. Along

with these presentations, small practical examples are included.

Chapter six will discuss the evaluation of our work, focusing on the

Reex system: performance issues and current limitations of the system are

highlighted.

The �nal chapter will present our conclusions and suggest some topics

for future work and perspectives for further research.

CHAPTER 1. INTRODUCTION 3

1.3 Note for the Non-Technical Reader

The present report is a master's thesis, thus focusing on research related

issues. However, since it should as well play the role of an industrial project

report, we have included some applicative elements. Hereby follows an in-

dicative roadmap that should help the non-technical reader select which

parts of the thesis are worth reading.

Chapter two is probably the most interesting part for the non-technical

reader, since it explains the concepts of the research work carried out, and

highlights the potential bene�ts and application domains of the �elds.

The beginning of chapter three is also well-suited to a non-technical

reader since it introduces the Reex system we built, with its motivation

and objectives. The last part of the chapter presenting the architecture of

the system is much more technical and can therefore be skipped.

The introduction of chapter four presents the ideas behind Reex for

distributed systems, and is thus of interest for the non-technical reader. The

following of the chapter keeps on increasing in terms of technical complexity.

We believe that at least the beginning of section 4.2 should be read, since it

introduces the main idea of the interface between Reex and mobile object

systems. The rest of the chapter could be skipped, in particular section 4.3.6

which goes deep down into details.

We think that chapter �ve is easy to read and gives a good illustration

of the use of our work, in concrete situations. The principles are presented

at a high conceptual level, and no implementation details are addressed.

Finally, chapter six and seven are of interest to any non-technical reader

since they highlight our own evaluation and conclusions on our work.

We hope that this brief roadmap will help the non-technical reader make

his way through this dissertation and get a good view of the research work

we have been doing during this thesis.

Chapter 2

Concepts

In this chapter we introduce some necessary concepts related to code mobil-

ity and reection. We �rst survey the relevance of the research �eld of code

mobility, and then present mobile code technologies and their concrete appli-

cations. Then we expose the principles of reection and meta-programming,

emphasizing the bene�ts of such an approach to solve issues of mobile code

technologies. We end up identifying the technical motivation of this disser-

tation.

2.1 Code Mobility

Computer networks are evolving at a fast pace, and this evolution proceeds

along several lines: the size of the network is growing rapidly, let it be the

Internet or intra- and inter-organization networks. Side e�ects of this growth

is the signi�cant increase of the network traÆc, which implies e�orts to

enhance the performance of the communication infrastructure, and network

complexity (unpredictable response times, availability, packets loss, etc.).

In turn, the increase in size and performance of computer networks is

both the cause and the e�ect of the pervasive and ubiquitous nature of

networks [32]. Indeed, network connectivity has became a basic feature

of any computing facility and will probably be so for many products in

the consumer electronics market, thus making networks pervasive. Recent

developments in wireless technologies free the network nodes from the con-

straint of being placed at a �xed physical location, enabling the advent of

so-called mobile computing, where users can move together with their hosts

across di�erent physical locations and geographical regions. This is networks

ubiquity.

The increasing availability of easy-to-use technologies like the World

Wide Web has implied the creation of new application domains and markets,

therefore changing the nature and role of networks.

However, all this evolution poses several challenging problems that must

4

CHAPTER 2. CONCEPTS 5

be addressed [32]. The increase in size of networks raises a problem of

scalability. Wireless connectivity poses even tougher problems [30]. Since

network nodes can move and be connected discontinuously, the topology

of the network is no longer de�ned statically. This undermines some of

the basic tenets of research in distributed systems, implying the need of

adapting to this new scenario. Also, the di�usion of network services and

applications to very large segments of our society makes it necessary to

increase the customizability of services. Finally, the dynamic nature of both

the underlying communication infrastructure and the market requirements

demand increased exibility and extensibility.

Most of the proposed approaches to provide answers to this multifaceted

problem try to adapt well-established models and technologies within the

new setting, and usually take for granted the traditional client-server ar-

chitecture. CORBA [36] is an example of such an approach, relying on

remote procedure calls. However, those approaches do not ensure the de-

gree of exibility, customizability and recon�gurability needed to cope with

the requirements discussed above.

A di�erent approach comes from the promising research area exploiting

the notion of mobile code. Code mobility can be de�ned informally as the

capability to dynamically change the bindings between code fragments and

the location where they are executed [16]. This is a powerful concept that

originated a very interesting range of developments.

However, despite the wide interest in mobile code technology and appli-

cations, the research �eld is quite immature. There is not even a commonly

agreed term to qualify the subject of this research: code mobility, mobile

code, mobile computations, mobile object systems, or again program mobil-

ity are widely used terms, depending on the authors. In [32], the authors

achieve a step towards a sound terminological and methodological frame-

work for the �eld. This section on code mobility is deeply based on this

pioneer work.

The main attempt of the latter work is to enlight the confusion about the

semantics of mobile code concepts and technologies. There is a clear distinc-

tion to be made between technologies, design paradigms and applications

domains ([32]):

Mobile code technologies are the languages and systems that provide

mechanisms enabling and supporting code mobility. They are used by

the application programmer in the implementation stage.

Design paradigms are the architectural styles that the application de-

signer uses in de�ning the application architecture. Client-server is a

well-known example of design paradigm.

Application domains are classes of applications that share the same gen-

eral goal, e.g. distributed information retrieval or electronic commerce.

CHAPTER 2. CONCEPTS 6

The expected bene�ts of code mobility in a number of application do-

mains is the motivating force behind this research �eld.

In this thesis we target at improving mobile code technologies by ad-

dressing a speci�c issue of these technologies. Therefore we are not directly

concerned by the mobile code paradigms. However, the interested reader

can �nd in Appendix A a short description and comparison of the di�erent

paradigms of distributed computing, with a special focus on the emerging

mobile agent paradigm.

Similarly, application domains are not of our concern. However, to mo-

tivate the necessity of code mobility, the main application domains of code

mobility are exposed later in this chapter as well as the expected key bene-

�ts.

2.1.1 Mobile Code Technologies

The technical motivation of this dissertation arises from the limitations en-

countered in mobile code technologies available today. Hereafter we intro-

duce the terminology exposed in [32] to characterize distributed systems

making use of code mobility.

Terminology

In technologies supporting code mobility, the structure of the underlying

computer network is not hidden from the programmer like in traditional

distributed system, rather it is made manifest. A Computational Environ-

ment (hereafter, CE), retain the \identity" of the host where it is located.

The purpose of the CE is to provide applications with the capability to

dynamically relocate their components on di�erent hosts. It therefore han-

dles the relocation of code, and possibly of state, of the hosted software

components.

Components hosted by the CE can be separated in two categories: ex-

ecuting units (EUs) and resources. Executing units represent sequential

ows of computation, e.g. single-threaded processes or individual threads of

a multi-threaded process. Resources represent entities that can be shared

among multiple EUs, such as a �le in a �le system, or, what is of interest to

us, an object shared by threads in a multi-threaded object-oriented language

(like Java).

EUs are modeled as the composition of a code segment, which provides

the static description for the behavior of a computation, and a state com-

posed of a data space and an execution state, as illustrated on Figure 2.1.

The data space is the set of references to resources that can be accessed

by the EU. These resources are not necessarily co-located with the EU on

the same CE, as we will see later. The execution state contains private

CHAPTER 2. CONCEPTS 7

Figure 2.1: The internal structure of an executing unit.

data that cannot be shared, as well as control information related to the EU

state, such as the call stack and the instruction pointer.

Mobility mechanisms

In conventional systems, each EU is bound to a single CE for its entire

lifetime. In Mobile Code Systems (MCSs), the code segment, the execution

state, and the data space of an EU can be relocated to a di�erent CE.

The portion of an EU that needs to be moved is determined by composing

orthogonal mechanisms:

� Mechanisms supporting mobility of code and execution state;

� Mechanisms for data space management.

Though our work aims at providing an enhanced mechanism for data space

management for Java MCSs, we introduce briey the di�erent mechanisms

for code and execution state mobility.

Code and execution state mobility

Existing MCSs o�er two forms of mobility, characterized by the EU con-

stituents that can be migrated:

Strong mobility is the ability of an MCS to allow migration of both the

code and the execution state of an EU to a di�erent CE;

CHAPTER 2. CONCEPTS 8

Weak mobility is the ability of an MCS to allow code transfer across dif-

ferent CEs; code may be accompanied by some initialization data, but

no migration of execution state is involved.

In [32], the authors propose a detailed classi�cation of code and execution

state mobility mechanisms that goes beyond the two forms presented here.

Strong mobility mechanisms can support eithermigration or remote cloning,

both either in a proactive or reactive manner. Weak mobility mechanisms

provide either code shipping or code fetching. The moved code can either

be stand-alone code or code fragment, and the mechanism can operate ei-

ther in a synchronous or asynchronous way. In asynchronous mechanisms,

the actual execution of the code transfer can occur either in an immediate

or deferred fashion. We refer the interested reader to the paper for more

information on the topic.

Data space management

Upon migration of an EU to a new CE, its data space, i.e., the set of bind-

ings to resources accessible by the EU, must be rearranged. The way it

is rearranged depends on the nature of the resources involved, the type of

binding to such resources, as well as on the requirements posed by the ap-

plication. Fuggeta et al. model resources as a triple Resource = fI, V, Tg,

where I is a unique identi�er, V is the value of the resource, and T is its

type, which determines the structure of the information contained as well as

its interface. The nature of the resource determines the possible data space

management mechanisms. They distinguish three kind of resources:

� A free transferable resource can be migrated over the network (e.g. a

data �le);

� A �xed transferable resource could be migrated over the network, but

it is not the case (e.g. a huge or crucial data �le);

� A �xed not transferable cannot be migrated over the network (e.g. an

OS printer handle).

Resources can be bound to an EU through three forms of binding:

� The strongest form is by identi�er : the EU requires that, at any mo-

ment, it must be bound to a given uniquely identi�ed resource. The

EU is interested in the identity of the resource.

� A binding established by value declares that, at any moment, the re-

source must be compliant with a given type and its value cannot change

as a consequence of migration. The EU is interested in the content of

the resource.

CHAPTER 2. CONCEPTS 9

� The weakest form of binding is by type: the EU requires that, at any

moment, the bound resource is compliant with a given type, no matter

what its actual value or identity are. This kind of binding is exploited

typically to bind resources that are available on every CE, like system

variables, libraries, or network devices.

Note that it is possible to have di�erent types of binding to the same re-

source.

The di�erent data space management mechanisms1 are illustrated on

Figure 2.2. The �gure shows, for each mechanism, the con�guration of

bindings before and after migration of the grayed EU. Let us consider a

migrating executing unit U whose data space contains a binding B to a

resource R:

� in a by move mechanism, the resource R is transferred along with the

execution unit U to the destination CE and the binding is not mod-

i�ed (see Figure 2.2(a)). There are two alternatives: either the other

bindings to R are removed (top of the �gure) or they are converted to

a network reference (bottom of the �gure). This mechanism can only

be exploited if R is a free transferable resource.

� in a network reference (or remote reference) mechanism, the resource R

is not transferred and once U has reached its target CE, B is modi�ed

to reference R in the source CE. Every subsequent attempt of U to

access R through B will involve some communication with the source

CE (see Figure 2.2(b)). This mechanism can be exploited whatever

the type of the resource and of the binding.

� in a by copy mechanism, a copy R' of R is create, the binding to R is

modi�ed to refer to R', and then R' is transferred to the destination

CE along with U (see Figure 2.2(c)). This mechanism is suitable a

priori in any case where the binding type is not by identi�er.

� in a rebinding mechanism, B is voided and re-established after migra-

tion of U to another resource R' on the target CE having the same

type of R (see Figure 2.2(d)). Rebinding is suited to by-type bindings:

it exploits the fact that the only requirements posed by the binding is

the type of the resource, and avoids resource transfers or the creation

of inter-CE bindings. This mechanism requires that, at the destination

site, a resource of the same type of R exists.

Fuggetta et al. analyze further the relations between the nature of re-

sources, of the bindings to these resources and the consequences on the

possible data space management that are applicable. They do achieve some

1In the following of this thesis, we also refer to such mechanisms as resource manage-

ment policies.

CHAPTER 2. CONCEPTS 10

Figure 2.2: Data space management mechanisms.

CHAPTER 2. CONCEPTS 11

kind of classi�cation, but it is not absolute. In most of the cases, it eventu-

ally depends on application speci�c criteria. For instance, a �xed transferable

resource, which is bound by value to an EU can support either a by copy or

a by network reference mechanism.

The existing MCSs exploit di�erent policies as far as data space man-

agement is concerned. However, the nature of the resource and the type of

binding is often determined by the language de�nition or implementation,

rather than by the application programmer, thus constraining the mecha-

nisms exploited. We will come back to this issue later in this chapter since

it is precisely that point that motivated our thesis work.

2.1.2 Applications of Code Mobility

As of now, applications exploiting code mobility are still very few in com-

parison to client-server based applications. This is a consequence of the

immaturity of the technology on the one hand (in particular concerning per-

formance and security [64]), and of the lack of appropriate methodologies

for application development.

However, mobile code is expected to bring bene�ts by enabling new ways

of building distributed applications and even creating brand new applica-

tions. This is very appealing in some application domains in particular.

The key bene�ts of mobile code are listed below:

Service customization. In conventional distributed systems built follow-

ing the client-server paradigm, servers provide a �xed set of services

through a statically de�ned interface. This set of services does not

necessarily meets the needs of every user, thus entailing the server to

be upgraded, increasing both its size and complexity without increas-

ing its exibility. Using code mobility, the server can provide a set

of very simple and low-level services that are then composed by the

client code to obtain the adequate high-level functionality.

Deployment and maintenance. Mobile code is proving useful in sup-

porting these last phases of the software development process. Indeed,

in a distributed setting, installing of rebuilding an application at each

site still has to be performed locally and with human intervention.

Conversely, a mobile program could visit each host and perform the

operation automatically, or even the application itself could request a

central repository for automatic update.

Autonomy. Mobile concepts and technologies embody a notion of auton-

omy of application components that is useful for coping with the het-

erogeneous nature of communication links (reliability, bandwidth). Us-

ing a mobile program, a set of several interactions with a server can be

packed into one entity that needs to be passed only once through the

CHAPTER 2. CONCEPTS 12

network, operate autonomously and independently, and �nally trans-

mit the �nal results to the node that sent it. This way, interactions

between the sending node and the server are reduced to the minimum.

Fault tolerance. The action of migrating code and possibly sending back

the results is not immune from the partial failures that can occur in

any distributed systems. However, the action of executing code that

embodies a set of interactions that should otherwise take place over

the network is actually immune from partial failure.

Hereafter is a non-exhaustive list of the application domains that are

expected to bene�t from code mobility:

Distributed information retrieval. Such applications gather information

matching some speci�ed criteria from a set of information sources dis-

persed in the network. This application domain is very wide, en-

compassing very diverse applications. Code mobility could improve

eÆciency by migrating the code that performs the search process close

to the information base to be analyzed [40].

Active documents. In active documents applications, passive data like

e-mail or web pages are enhanced with the capability of executing

programs which are somewhat related with the document contents.

Code mobility is fundamental since it enables the embedding of code

and state into documents and supports the execution of the dynamic

contents during document fruition.

Advanced telecommunication services. Support, management, and ac-

counting of advanced telecommunication services like video confer-

ence, video on demand, or telemeeting, require a specialized \mid-

dleware" providing mechanisms for dynamic recon�guration and user

customization|bene�ts provided by code mobility.

Remote device control and con�guration. Such applications are aimed

at con�guring a network of devices and monitoring their states. This

domain encompasses several other application domains, e.g. industrial

process control and network management. In the classical approach,

based on the client-server paradigm, monitoring is achieved by polling

periodically the resource state and con�guration by using a prede�ned

set of services. This approach can lead to a number of problems [68].

Code mobility could be used to build monitoring components that are

co-located with the devices being monitored and report events repre-

senting the evolution of the device state. In addition the shipment of

management components to remote sites could improve both perfor-

mance and exibility [3].

CHAPTER 2. CONCEPTS 13

Workow management and cooperation. Workow management ap-

plications support the cooperation of persons and tools involved in

an engineering or business process. The workow de�nes which activ-

ities must be carried out to accomplish a given task as well as how,

where, and when these activities involve each party. A way to model

this using code mobility is to represent activities as autonomous en-

tities that, during their evolution, are circulated among the entities

involved in the workow [14].

Electronic commerce. Such applications enable users to perform busi-

ness transactions through the network. The application environment

is composed of several independent and possibly competing business

entities. A transaction may involve negotiation with remote entities

and may require access to information that is continuously evolving,

e.g. stock exchange information. There is the need to customize the

behavior of the parties involved in order to match a particular nego-

tiation protocol. Moreover, it is desirable to move application compo-

nents close to the information relevant to the transaction, for security

reasons for instance. All these problems make mobile code appeal-

ing for electronic commerce applications. Actually, Telescript [66] was

conceived explicitly to support electronic commerce.

2.1.3 Code Mobility in Java

Java has triggered most of the attention and expectations on code mobility.

Most of the research work done in the �eld today is performed using Java.

Apart from systems developed in Java, the Java language itself supports

code mobility.

The Java compiler translates Java source programs into an intermediate,

platform-independent language called Java Byte Code. The bytecode is

interpreted by the Java Virtual Machine (JVM)|the CE implementation.

Java provides a programmable mechanism, the class loader, to retrieve and

link dynamically classes in a running JVM. The class loader is invoked by the

JVM run-time when the code currently in execution contains an unresolved

class name. The class loader actually retrieves the corresponding class,

possibly from a remote host, and then loads the class in the JVM. At this

point, the corresponding code is executed. In addition, class downloading

and linking may be triggered explicitly by the application, independent of

the need to execute the class code. Therefore Java supports weak mobility

using mechanisms for fetching code fragments.

Several mobile agents systems have been developed in Java, e.g. Aglets [42,

44], Mole [55], Ajanta [63]. All these systems support weak mobility, and

adopt a �x mechanism for data space management. Aglets uses a by copy

mechanism, whereas Mole uses a by move mechanism. Anyhow, the choice

CHAPTER 2. CONCEPTS 14

is �xed.

Java by itself does not support strong mobility. However, there are sev-

eral attempts to achieve it, based on di�erent approaches [8]. The problem

is that such approaches either require a modi�cation of the JVM and/or

its interpreter ([7]), therefore sacrifying portability, or they use some pre-

processing ([33, 53]), which is very costly. The problem comes from the

fact that Java programs do not naturally have access to the internal state

information of threads.

2.2 Meta-Programming and Reection

Reection in programming languages dates back to the seminal work of

Smith in the early eighties [54]. It was introduced in object-oriented pro-

gramming by the famous work of Pattie Maes [47]. It is basically the ability

of a system to watch its computation and possibly change the way it is

performed.

2.2.1 Principles

Bobrow et al. noticed that there are two aspects of reection, observation

and modi�cation:

\Reection is the ability of a program to manipulate as data

something representing the state of the program during its own

execution. There are two aspects of such manipulation: intro-

spection and intercession.

Introspection is the ability for a program to observe and there-

fore reason about its own state. Intercession is the ability for a

program to modify its own execution state or alter its own inter-

pretation and meaning. Both aspects require a mechanism for

encoding execution state as data; providing such an encoding is

called rei�cation." [6]

An object-oriented reective system is logically structured in two (or

more) levels, constituting a reective tower. The �rst level is the base-

level and describes the computation that the system is supposed to do.

The second one is the meta-level and describes how to perform the previous

computations. The entities working in the base level are called base-entities,

while the entities working in the other level(s) are called meta-entities. Meta-

programming is the activity of programming meta-level entities.

Each reective computation can be separated in two logical aspects:

computational ow context switching and meta-behavior [17]. A compu-

tation starts with the computational ow in the base-level; when the base-

entity begins an action, such an action is trapped by the meta-entity and the

CHAPTER 2. CONCEPTS 15

computational ow raises at meta-level (shift-up action). Then the meta-

entity completes its meta-computation, and when it allows the base-entity

to perform the action, the computational ow goes back to the base level

(shift-down action).

There are two kinds of reection, behavioral reection and structural re-

ection. The former can be de�ned as the ability to intercept an operation

such as method invocation and alter the behavior of that operation. The

latter is the ability to alter data structures used in a program, which are

statically �xed at compile time. Some kind of language extensions require

structural reection for implementation, and thus cannot be simply imple-

mented using behavioral reection.

Reective systems di�er in the type of reection they provide, as well

as in the nature of the meta-entities. There are four recognized reective

models in this regard [17]:

the meta-class model (MCM). In this model, the reective tower is re-

alized by the instantiation link [24, 13]. The meta-object reifying a

base-entity is its class, the meta-object reifying a meta-object is its

meta-class, and so on. This main problem of this model is the dif-

�culty of specializing the meta-behavior for a single instance, since

any instance of a class has the same meta-object. Also, dynamically

changing the behavior of an object implies substituting its meta-class,

which can lead to inconsistencies and is not o�ered by all languages.

the meta-object model (MOM). In this model, the reective tower is

realized by the clientship relation [38]: separate entities handle in-

tercession and introspection on each base-entity. With this approach

it is simple to specialize the meta-behavior per object. The major

drawback of the model is that a meta-object does not have access to

the sender's identity when monitoring a message. It is the most used

model, with applications in several areas.

the message-rei�cation Model (MRM). In this model, meta-entities

are special objects called messages which reify the actions that should

be performed by the base-entities [28]. Every method call is rei�ed

into an object which is charged with its own management and exists

only for the duration of the action it embodies. The major drawback

of this model is the lack of information continuity, since it is impossible

to store information among meta-computations.

the channel rei�cation model (CRM). This model is an extension of

the message rei�cation model [2]. It is aimed to overcome some of its

limits, in particular that of information continuity, while keeping its

advantages.

CHAPTER 2. CONCEPTS 16

2.2.2 Applications of Reection

Reection allows deriving new behaviors from initial ones by introducing

some variations of the computational model. Separation of concerns, reusabil-

ity, extensibility and exibility are some of the main advantages of reection.

Therefore, computational reection is a programming paradigm suitable to

develop open systems (i.e., systems that can be extended in a simple man-

ner).

Reection has been applied to various application domains, such as com-

pilers [41], operating systems [69], distributed systems [49]), middleware

[45, 5], fault tolerant systems [26] and graphic interfaces [51].

In this thesis we apply it to mobile object systems, a special kind of

distributed systems, to introduce exibility in the way resources (passive

objects) attached to migrating entities are managed.

2.2.3 Reection in Java

Java is a programming language supporting reection. The ability of Java

in reection is called the reection API [61]. However, it is restricted to

introspection: for instance, Java enables a program to know the names of

the methods in a given class and to instantiate the class with a given string

name. On the other hand, it does not enable to alter program behavior.

Only can one modify the value of an instance variable, e.g..

To address the limitations of the Java reection API, several extensions

have been proposed, most of them enabling behavioral reection. The run-

time systems of those extensions call a method on a metaobject for notifying

that an operation is intercepted. The programmer can de�ne their own

version of the metaobject so that the metaobject executes the intercepted

operation with customized semantics. This follows the meta-object model

(MOM) exposed above.

Some kinds of language extensions, such as the Reex system exposed

in this thesis, require structural reection. As of now, structural reection

for Java is o�ered only by the Javassist API [21], on which Reex is based.

2.3 Reection for Code Mobility in Java

Reection can be used to achieve adaptability in various domains, and in

particular to that of code mobility. In section 2.1.1 we have presented the

two areas where code mobility mechanisms are involved: code and execution

state management, which can be based either on strong mobility or on weak

mobility, and data space management, which can rely on mechanisms such

as by copy, by network reference, rebinding, etc. We have highlighted that in

present systems, the mechanisms used are �xed choices, though application

requirements could imply the need for other mechanisms.

CHAPTER 2. CONCEPTS 17

The point is that reection could be used to make these choices adapt-

able to the programmer's needs. In particular, we think that �xed choices

in data space management mechanisms are not suited to the dynamical and

unpredictable nature of networks. Thus we aim in this thesis at develop-

ing a system that can allow for customized speci�cation of the data space

management mechanism (or resource management policy) to be used. We

use reection for that purpose, in Java. The remaining of this dissertation

is the presentation of our work in this regard.

A possible application of easily speci�able policies for data space man-

agement is in the mobile agent domain [46]. Network traÆc, network reliabil-

ity, CPU performance, access to memory and resources topology are indeed

subject to change, i.e. network characteristics are not de�ned statically.

Therefore, if these resources are rei�ed, then an agent could dynamically

introspect them and adapt its resource management policy depending on

them.

For instance, in the case of a free transferable resource, if we deal with a

low-reliable network (i.e. a disconnection can occur), then the by-reference

mechanism should be avoided; if we deal with a low-bandwidth network and

moderate network traÆc, then the by-move policy should be avoided.

Reection could also be used to make code and execution state man-

agement policies dynamically interchangeable, as sketched out in [46]. The

authors claim that the policy to be used (weak mobility, strong mobility, or

even remote evaluation or code on demand) should not be �xedly chosen by

the system. Instead, depending on the entities that do need to be migrated,

a particular policy can be chosen.

The concrete realization of these ideas is still to be done, since as far

as we know only concepts have been formulated on the topic. Reex, the

reective system developed during this thesis, is a �rst concrete attempt to

achieve such adaptability in code mobility in Java.

2.4 Summary

In this chapter, we have introduced the necessary concepts used in this

dissertation.

We presented what code mobility is about and how to look at it in a

structured way, analyzing its di�erent characteristics. Limitations in exi-

bility of existing mobile code systems have been highlighted.

Then we exposed the core concepts of reection and meta-programming,

which can help in developing open and adaptable systems.

Finally, the technical motivation of this thesis has been put into light:

using reection to solve the limitations in exibility of Java mobile code

systems. This is a particular application of a reective system we developed,

called Reex.

Chapter 3

Reex

In order to achieve exibility in the speci�c area of resource management

in mobile object systems, we have designed and implemented a Java system

called Reex whose aim is to provide transparent reective objects in

Java .

A reective object is an object that has an associated meta-behavior, al-

tering or extending its normal behavior. Similarly, we will refer to a reective

class as being a class whose instances are reective objects. By transparent,

we refer to the property of transparent type-compatibility between a reec-

tive object and its non-reective equivalent. This property implies that a

reective object can be assigned to a variable declared as a non-reective

one|as opposed to interface-based approaches, where the variable to assign

the object to has to be declared as being of the type of the interface that

the reective object implements.

In this chapter, we present the Reex system, its motivation, design

and implementation, along with some examples of use, not restricted to

our target application domain. As the Reex implementation relies upon

an existing library for reection in Java, Javassist [20, 21], we also briey

explain the principles and functionalities of this library (in section 3.3.1).

3.1 Introduction

In general, having a reective version of an object can be useful to implement

speci�c (meta-) behaviors while preserving intact the base implementation

of the object, achieving convenient separation of concerns. This use is unre-

stricted, o�ering a virtually in�nite set of areas of application. This is after

all what makes reective techniques so fascinating and at the same time so

dangerous: the best (the most meaningful) as well as the worst (the most

absurd) can be done very easily.

In our case, we foresaw that we could ful�ll our needs if we had an

adequate system to get reective objects. In fact, all the semantics of re-

18

CHAPTER 3. REFLEX 19

source management policies in mobile object systems could, supposedly eas-

ily, be implemented as meta-behaviors in metaobjects. A resource requiring

a particular management policy could be associated with a metaobject im-

plementing the policy semantics. By locating the policy semantics in the

resource itself (its metaobject) and not in the objects referencing the re-

source, we could ensure a consistent use of the resource. Also this solution

seemed lighter than a centralized approach, with cooperating central man-

agers in each host ensuring the correct semantics for all special resources

located within themselves. This assumption was still an assumption when

we undertook the development of Reex|we will validate it further in this

thesis report.

There are two kinds of existing systems that achieve similar behavioral

extensions of objects that the one we aim at, but neither of them did meet

our requirements:

� The �rst kind rely upon the use of Java interfaces to achieve type-

compatibility ([15, 60]). They lack what we call transparent type-

compatibility. In section 3.2.1 we argue why we consider this a major

issue.

� The second kind, namely libraries for behavioral reection in Java ([65,

39, 35, 67]), provide transparent type-compatibility, but are not suf-

�cient since they have the drawback of modifying the original class

in some way (modifying the class source �le or its bytecode represen-

tation). We expose this issue in more details in section 3.3.1, when

discussing our choice of the Javassist library as a technology provider

for our system.

Since we could not �nd a satisfying system, we undertook the develop-

ment of our own, baptized Reex, with the following major requirements:

� a reective object should be transparently type-compatible with its

non-reective equivalent;

� the system should be able to create reective objects or convert exist-

ing objects to reective ones;

� dynamically controlling the layer of meta-behaviors associated with a

reective object should be possible, easy, and consistent;

� it should be suÆciently open to be adaptable to unforeseen uses.

3.2 Motivation and Objectives

In this section we discuss the motivation of each of the four objectives stated

above, as well as their achievement.

CHAPTER 3. REFLEX 20

3.2.1 Transparent Type-Compatibility

Types and type-compatibility in Java

Java [56] is a strongly typed language, which means that every variable and

every expression has a type that is known at compile time. Types limit

the values that a variable can hold or that an expression can produce, limit

the operations supported on those values, and determine the meaning of

operations.

The types of the Java language are divided into two categories: primitives

types and reference types. Primitives types are the boolean type and the

numeric types. Reference types are class types, interface types, and array

types. There is also a special null type.

A variable of a primitive type always holds a value of that exact type.

A variable of a class type T can hold a null reference or a reference to an

instance of class T or of any class that is a subclass of T. A variable of an

interface type can hold a null reference or a reference to any instance of any

class that implements the interface.

As stated in the Java language speci�cations [56], a reference to an object

of type S (source) is assignable to a variable of type T (target) if:

� if S is a class type:

{ if T is a class type, then S must either be the same class as T,

or S must be a subclass of T ;

{ if T is an interface type, then S must implement interface T.

� if S is an interface type:

{ if T is a class type, then T must be Object;

{ if T is an interface type, then T must be either the same interface

as S or a superinterface of S.

In other words, type-compatibility of two objects is equivalent to assignment-

compatibility of their respective types (class type or interface type), and this

is achieved either by type equality or by subtyping. In the Reex system,

type-compatibility between a reective object and its non-reective equiv-

alent is achieved by subtyping, i.e. the type of the reective object is a

subtype of that of its non-reective equivalent.

The need for transparent type-compatibility

An important factor of acceptance of new systems in general is their ability

to integrate seamlessly into existing systems. Introducing a new aspect into

a system should ideally not entail rewriting part of it.

Part of the existing systems that generate specialized versions of ob-

jects achieve type-compatibility through the use of Java interfaces (such as

CHAPTER 3. REFLEX 21

the ProActive library for distributed computing [15], or the Dynamic Proxy

Classes of the upcoming JDK1.3 [60]). The class of the object to convert

is assumed to implement a set of interfaces that specify all or part of its

services, and the generated object is typically an instance of a class which

implements the same set of interfaces, and implements the specialized be-

havior.

This approach works �ne only if the host system was entirely developed

with interfaces in mind, or if the whole system is being developed from

scratch. Moreover, it implies a constraint on the kind of objects that can

be specialized. Indeed, we might want to specialize objects that are reused

from an existing library|the Java class library being the most obvious case.

In such case, a system that relies on interface-based type-compatibility can

be problematic, as illustrated hereafter.

Let us consider an existing mobile-agent application, where a particular

mobile agent has a method that accepts as parameter an instance of the

class java.util.Vector. Now let us consider that we want to specialize

the behavior of a particular vector, say, using a reective object with a log

feature metaobject that logs every operation performed on the vector into

a �le. As de�ned in the Java class library, the java.util.Vector class

implements the java.util.List interface, which de�nes some, not all, of

the operations that can be performed on a vector. Using an interface-based

system, one can only generate an object whose type is compatible with the

List type (i.e. it is an instance of a class that implements List). There are

two important limitations to this:

1. Obviously, it is impossible to invoke on the generated object methods

which are speci�c to the class Vector, not contained in List (e.g.

setSize(), firstElement(), capacity(), etc.). To solve this issue,

one can only create an exhaustive interface for a vector, build a sub-

class of Vector and make it implement that interface.

2. Worse, if ever the mobile agent class was developed using Vector as the

argument type for the method we are considering (which is obviously

the most frequent case), it is needed to modify the code and replace

Vector with the name of the interface to use. Moreover there are

cases where the source code of the client accessing the vector is not

even available...

This simple example illustrates what we consider a major drawback of the

practical use of interface-based programming. Restricting ourselves to sys-

tems like Reex that generate reective objects, we claim that it is crucial

for the integratability of such systems (and consequently their acceptance)

that the generated objects are of the same type than the source object. In

our example, if the reective objects system can create a reective vector

CHAPTER 3. REFLEX 22

which is an instance of class java.util.Vector, then no rewriting is neces-

sary: the mobile-agent does not even know that the vector it is receiving is

di�erent from a standard one. This is true transparency.

For these reasons, Reex generates reective objects that are instances

of a reective subclass of the class we want to instantiate. The motivation

for building reective subclasses is exposed in section 3.3.1, and the process

itself is explained in details in section 3.3.2.

3.2.2 Creation of Reective Objects

Conceptually, a reective object is the composition of a base object and a

meta-behavior (one or more metaobjects). The combination between both

is done when the reective object is instantiated. The creation of a reective

object falls into two distinct cases, depending on whether the basic object

already exists or not.

Basic Instantiation

In the most simple case, the object itself is not yet created, thus we want a

convenient instantiation mechanism that allows us to specify the class from

which the object must be instantiated and the metaobject to be associated

with it.

The Reflex class, the main class of our system, has a simple method to

instantiate a reective object:

A o = (A) Reflex.createObject(``mypackage.A'',

new MyMetaobject());

This method returns an object which is of type A, and whose associated

metaobject is an instance of MyMetaobject (an example class of metaob-

jects). The returned object is in fact an instance of a reective subclass

of class A, which has been generated automatically (as explained in sec-

tion 3.3.2).

Note that there exist overloaded versions of this method for specifying ar-

guments that should be passed to the constructor of the object. Specifying

the metaobject at creation-time is not compulsory, it can also be speci�ed

later.

Conversion

The creation scheme presented above is suÆcient most of the time, when

the programmer has easy access to the line of code where the object is

instantiated, but might be problematic in other cases.

For example, a design pattern that is frequently used in object-oriented

programs is the Factory pattern [34]. When using code developed according

CHAPTER 3. REFLEX 23

to such a creational design pattern, the line where the concrete instantiation

of the object occurs is generally not accessible to the programmer. Obviously

in such a case we need a way to convert an already-created object to a

reective object.

For this purpose, the Reex class has a converting method:

// get the object from a factory

A o = MyFactory.getInstance();

// convert it

o = (A) Reflex.convertObject(o, new MyMetaobject());

This method returns a new object, which is a reective shallow clone of the

given object. Recall that shallow clone means that the value of the �elds of

a shallow-cloned object are not cloned themselves. The returned object has

exactly the same �elds as the original one, and each �eld value is either a

copy of the original �eld value (if it is a primitive type) or a reference to the

actual value of the original �eld (if it is an object).

Obviously, as such a conversion does not actually change the object, but

instead returns an enhanced equivalent, it must be performed before any

references to the object are given to the outside world. Otherwise, some

objects in the application will still hold references to the \unconverted"

object, while others will have references to the reective one.

3.2.3 A Framework for Metaobjects Composition

Obviously, developing metaobjects is similar to developing any other kinds

of objects. After all, a metaobject is just a normal object that has meta-level

properties. Thus, all the concerns of object-oriented development are still

applicable, in particular reusability. All the more that meta-level program-

ming is generally acknowledged as a diÆcult and potentially dangerous task

(because of its system-wide implications).

Since meta-level programming is achieved using the same programming

paradigm than that of the base level, namely object-oriented programming

(hereafter OOP), reuse of metaobjects should be obtained by taking ad-

vantage of the two traditional ways to compose behaviors in OOP, namely

aggregation and specialization.

Therefore, in the light of previous work that has been done on explicit

composition of metaobjects [50], we consider that a consistent composition

mechanisms for metaobjects is crucial in a system like Reex. This compo-

sition mechanism should not only address the issue of composing orthogonal

customizations but as well those having potentially overlapping semantics.

The composition mechanism we have adopted for Reex relies on the

concept of cooperative metaobject introduced in [50]. A cooperative meta-

object can be considered as a metaobject containing a \hole" into which

CHAPTER 3. REFLEX 24

may be inserted another metaobject. That metaobject can itself be cooper-

ative, or non-cooperative, thus making a chain of metaobjects. A cooperative

metaobject is designed keeping in mind that it needs to collaborate with the

metaobject it is aggregating, if any. As any other metaobjects, it strictly

respects the contract enforced by the metaobject protocol [38] (hereafter

MOP) and should not make any assumptions on its aggregated metaobject

other than the respect of this contract. Therefore, for each request it is its

responsibility to perform possible pre-processing, forward the request to its

aggregated metaobject, and then �nally perform possible post-processing.

As a matter of fact, there is an unbreakable limit to composition of

metaobjects: there can be only one value returned to the base-level. It

is then up to the designer of metaobjects to ensure the consistent seman-

tics. Generally speaking, a non-cooperative metaobject (at the end of the

composition chain) will be called a semantically strong metaobject (e.g. im-

plementing a new message-passing semantics), whereas a cooperative meta-

object is, in our terminology, either an auxiliary behavior provider (e.g.

implementing a tracing feature) or an adaptor to a semantically strong meta-

object. In the case of an auxiliary metaobject, the returned value is the one

returned by the semantically strong metaobject, whereas in the case of an

adaptor, the returned value might be changed1. As of now, composition

details are left as the programmer's task, since we could not �nd a generic

solution to ensure composition consistency (see section 6.3.3).

The composition mechanism of Reex allows for dynamic composition

and decomposition of metaobjects. It o�ers methods for adding a metaobject

(which must, obviously, be a cooperative one2) and removing a metaobject

from the chain:

A o = (A) Reflex.createObject(``mypackage.A'',

new MyMetaobject());

... // do something here until you need,

// say, a log metaobject

LogMetaobj log = new LogMetaobj(``logfile.out'');

// add it to the chain of metaobjects

Reflex.addMetaobject(o, log);

... // do logged actions

// remove it

1This terminology of metaobjects is ours, and simply aims at giving a general feeling

on the role of each kind of metaobject. It is still in a very immature state, therefore this

part of the discussion should not be seen as an immutable rule.
2Exception made of the case where the metaobject to add is the �rst one in the chain.

CHAPTER 3. REFLEX 25

Reflex.removeMetaobject(log);

... // go on

There is however a consistency concern with being able to remove metaob-

jects at any time. For instance, a metaobject could have set up an infras-

tructure to achieve its role, and removing it at that time could leave the

system in an inconsistent state. Or it could be simply meaningless to re-

move such a metaobject. This is why the result of the removeMetaobject()

call is not guaranteed to work: the metaobject can refuse to be removed.

We will introduce other particularities of our framework when presenting

the meta-level architecture in more details (section 3.3.3).

3.2.4 An extensible MOP

When designing the MOP of Reex, we considered important to accept the

fact that we could not make it suÆciently complete for all kinds of needs.

Thus the solution we adopted is to let an \open-door" in the MOP that can

be used to freely extend it without having to modify it.

To achieve this, we have introduced the concept of a metamessage.

Mainly, a metamessage is a message that can be sent from the base pro-

gram to the layer of meta-behaviors of a reective object. A meta-behavior

implementation (a metaobject) is free to process or not any incoming meta-

message. Such a metamessage is characterized by a name, which identi�es

its kind, and by an array of objects being the arguments to that message:

A o = (A) Reflex.createObject(``mypackage.A'',

new MyMetaobject());

// pack arguments for the metamessage

Object[] args = {``on''};

// send it

Reflex.sendMetamessage(o, ``setDebugMode'', args);

The MOP enforces that a metaobject will accept incoming metamessages.

However, it makes the assumption that a properly-acting metaobject will

forward the metamessage to the other members of the meta-layer, may it

process it or not.

Though the primary aim of a metamessage is to open a free communica-

tion channel between the base level and the meta level (inter-level commu-

nication), its use can be extended to communication between metaobjects

themselves (intra-level communication). In such a case, the assumption

that a metaobject systematically forwards each metamessage to the other

metaobjects in the chain does not hold anymore. It is left up to the designer

to address this issue.

CHAPTER 3. REFLEX 26

The metaobjects we have developed during this thesis make use of this

feature, as we will explain in a next chapter. A particular kind of metaob-

jects, targeted to distributed environments, understand an extra MOP mes-

sage, that we implemented as a metamessage. This metamessage is used to

control the serialization process of a reective object. Similarly, we are con-

vinced that this feature will be helpful to people using Reex and wanting

to extend the present MOP.

3.3 Architecture of Reex

The Reex system is centered around the reflex.Reflex class, whose public

interface o�ers methods to create a reective object, convert an existing

object to a reective object, communicate with the layer of meta-behaviors

of a reective object, and add/remove metaobjects to this layer.

As we saw before, in Reex a meta-behavior is implemented as a meta-

object. Such a metaobject is a standard Java object that respects a given

protocol, the MOP, and implements actions that should be taken in some

circumstances. The hooks that activate the meta-behavior are principally

the method calls performed on the base object3. Such a method call is �rst

rei�ed|i.e. made accessible in terms of the programming language itself.

It is then passed to the metaobject which can analyze it and operate accord-

ingly. To achieve this, we need a system that provides behavioral reection

in Java, that is to say a system that is able to somehow insert the hooks

necessary to trigger the meta level processing.

We �nally adopted the Javassist library for our needs. The motivation of

this choice as well as a quick presentation of it is the subject of the following

section.

3.3.1 The Javassist Library

Javassist [20, 21] is a class library enabling structural reection in Java.

Since portability is a crucial issue in Java, it relies on a new architecture for

structural reection that can be implemented without modifying an existing

runtime system or compiler, since it operates at load time, i.e. when a class is

loaded into a JVM. Javassist is a Java implementation of that architecture.

An essential idea of this architecture is that structural reection is made

possible only before load time and it is achieved by equivalent bytecode

transformation. After a program has been loaded into the JVM, it is not

possible to perform structural reection anymore.

3Meta-behavior can also be activated by sending metamessages, as explained in sec-

tion 3.2.4.

CHAPTER 3. REFLEX 27

Javassist and other extensions for reection in Java

A great feature of Javassist is that it provides high-level abstractions, there-

fore entailing that users of this library do not need to have a deep under-

standing of the Java bytecode (conversely to other libraries for bytecode

transformation such as the JavaClass API [25] and JOIE [23]).

The compile-time metaobject protocol [19] is another architecture en-

abling structural reection without modifying an existing runtime system.

OpenJava [62] is a Java implementation of this architecture. This architec-

ture was mainly designed for o�-line use at compile time, since it operates

on source code �les, whereas Javassist operates on bytecode �les. There are

two major advantages for Javassist as opposed to compile-time approaches:

� Javassist can operate on classes even if the source code is not available

(e.g. when the class is provided by a third party);

� Javassist operates faster than compile-time based systems, as demon-

strated in [21], since it does not require compiling source code.

Finally, since behavioral reection can easily be implemented on top

of Javassist (and is actually implemented and included in the distribution

of Javassist), Javassist indirectly covers applications of behavioral reection

systems for Java such as Kava [65], MetaXa [39, 35] and Reective Java [67].

The need of structural reection for Reex

As a matter of fact, behavioral reection could be suÆcient for what we want

to achieve with Reex, that is to say creating reective objects in order

to alter behavior through metaobjects implementations. Thus we could

have used a system restricted to behavioral reection like Kava, Reective

Java, MetaXa. Hooks to perform the interception of method invocations is

implemented by performing source-to-source translation before compilation

in Kava, and by performing bytecode-level transformations just before a

class is loaded into the JVM in Reective Java and MetaXa.

In these systems, transparent type compatibility (3.2.1) is achieved by

directly modifying the class of which a reective instance is needed (at the

source level or at the bytecode level). Thus reective objects are obviously of

the same type than normal objects, since it is the type itself that is updated.

The problem with this approach is that all the instances of a given class are

reective. This might not be what is required, and implies an unnecessary

cost. For instance, if in an application one needs one reective vector,

then, since class java.util.Vector will be updated, all the vectors used

in the system will be reective too. In addition to the performance cost,

in a distributed environment, there could be class compatibility issues if a

running host already loaded the \normal" version of that class4.
4If a remote host has already loaded class Vector, it will not reload it (for instance

CHAPTER 3. REFLEX 28

We did not want to include those drawbacks in Reex. This is why we

adopted the idea of creating a subclass, which is reective, for any class that

we want (at least) one reective instance of. Thus a reective vector is con-

cretely an instance of a class generated by Reex, which is made reective.

The original class java.util.Vector is not modi�ed at all. The process of

creating this class is explained in details in section 3.3.2, along with the class

structure of the framework we developed to make this process specializable.

Thus, we need a system that provides structural reection in Java in

order to create these reective subclasses dynamically. Until Javassist ap-

peared, no systems addressed this issue of structural reection in Java,

though it could be indirectly achieved using low-level bytecode transformers

such as JOIE and the JavaClass API.

To sum up, we need both types of reection: structural to dynamically

create the reective classes, and behavioral to have our runtime adaptations

running. Javassist is the only library available at present that o�ers both

and, moreover, in a very elegant and high-level way.

Structural reection with Javassist

Javassist provides several methods for creating a new class dynamically, as

well as methods for altering class de�nitions. These methods can be divided

into three main categories:

� Methods for changing class modi�ers: making the class public, ab-

stract, or removing the �nal modi�er from the class;

� Methods for changing the class hierarchy: changing the class name,

changing the superclass, changing the interfaces implemented by the

class;

� Methods for adding a new member: adding a constructor, adding a

(possibly abstract) method, adding a wrapper to a method, adding a

�eld. It is also possible to alter a method body, by specifying the body

of another (compiled) method to copy.

All those features are made available through a very high-level API, designed

in such a way that it is diÆcult to wrongly produce a class rejected by the

bytecode veri�er of the JVM.

Behavioral reection with Javassist

As mentioned before, behavioral reection can be implemented on top of

Javassist. The implementation of behavioral reection relies on the struc-

tural abilities of Javassist. To make a given class reective, Javassist modi�es

the bytecode of this class in the following way:

when a parameter value to some method is a Vector). If the loaded version is the normal

version, then instances of it will not be reective.

CHAPTER 3. REFLEX 29

Figure 3.1: How Javassist makes a class reective.

1. it makes the class implement the javassist.reflect.Metalevel in-

terface, which de�nes methods to get and set the metaobject associated

with an instance of the reective class;

2. it adds to that class a �eld to hold a reference to the metaobject in-

stance (the class from which this metaobject is instantiated is speci�ed

when making a class reective);

3. for each method of that class, it renames it following an internal nam-

ing convention, and adds a new method, which has the original name,

that just invokes the trapMethodcall() method of the metaobject

(with parameters specifying the method being invoked and the argu-

ments to that method), as illustrated on �gure 3.1.

A Metaobject is created for every object at the base level. A di�erent

reective object is associated with a di�erent metaobject. The reective

version can directly be loaded into the JVM without updating the original

class �le, but it can as well be compiled to disk.

Finally, Javassist includes the javassist.reflect.Metaobject class,

which serves as a base class for implementing classes of metaobjects. Among

others, this class implements the methods listed in table 3.1.

More on Javassist

Our presentation of Javassist largely remains basic and limited to the fea-

tures we make use of in our system. In particular, Javassist reectional

abilities normally include the trapping of accesses (read/write) to instance

variables of a reective class. However, this feature requires that a reective

class is known when the JVM is �rst started, so that the Javassist class

CHAPTER 3. REFLEX 30

method name description

String getMethodName returns the name of the method speci�ed by

(int identifier) identifier (for eÆciency reasons, methods

of the base objects are indexed in a array,

and thus are manipulated by identi�ers, which

represent their index in this array).

Object getObject() obtains the object controlled by this

metaobject.

Class[] getParameterTypes returns an array of Class objects

(int identifier) representing the formal parameter types

of the method speci�ed by identifier.

Class getReturnType returns a Class object representing the return

(int identifier) type of the method speci�ed by identifier.

Object trapMethodcall invoked when base-level method invocation

(int identifier, is intercepted. The implementation of this

Object[] args) method in the Metaobject class simply

invokes the original method on the base object.

It is normally overriden by subclasses. A subclass

will typically refer to this method when wanting

to invoke the base-level object method.

Table 3.1: Main methods of the Metaobject class of Javassist.

CHAPTER 3. REFLEX 31

loader can modify the bytecode (i.e. insert hooks) of any class accessing

instance variables of the reective class. Obviously, this feature is not suit-

able in a distributed environment, moreover with the dynamic generation of

reective classes that we use.

For a complete description of the architecture implemented by Javassist

as well as an exhaustive presentation of the API, we refer the interested

reader to the original paper [21] as well as the Javassist' homepage [18]

where all related documents as well as the library package can be found.

3.3.2 Building Reective Classes

In this section we present the class building process to obtain reective

classes. But �rst of all, let us localize more precisely at which point of time

comes the issue of building a reective class.

Looking for the reective class

Let A be the name of the class we want to have reective objects of. As

introduced before, we are �rst going to create a subclass of A, say RA, which

will be the one instantiated to obtain reective objects of type A.

When the following line of code is executed:

A o = (A) Reflex.createObject(``mypackage.A'',

new MyMetaobject());

the Reflex class �rst checks if class RA is already de�ned and loaded into

the JVM:

� If it is the case, then RA is instantiated, the new object is returned,

and the process terminates.

� If RA is not yet loaded, but a �le RA.class is available on disk, then

RA is loaded into the JVM, instantiated, the new object is returned,

and the process terminates.

� If RA does not exist at all, then it needs to be created. Here starts

the class building process. Once created, RA is writtent to disk, loaded

into the JVM, instantiated, the new object is returned, and the process

terminates.

We have implemented Reex so that reective classes are built only if neces-

sary, in a lazy-manner|only when we need to instantiate a given reective

class.

CHAPTER 3. REFLEX 32

Class builders

To allow for customization of the class building process5, we decoupled the

responsibility of checking if the reective class exists or not, possibly order

its creation, and then instantiate it, from the responsibility of creating the

reective class. The �rst set of responsibilities is implemented by the Reflex

class, whereas the e�ective class building process is implemented by what

we call a class builder.

A class builder is responsible for allocating a name to the subclass it

is creating, respecting a de�ned naming convention. From a class builder

point of view, any class has only one reective subclass. The name the class

builder allocates to that subclass should be unique, and always the same

(there is an equivalence relationship between a class name and the name

of its reective subclass, from the perspective of a particular class builder).

Obviously, to avoid conicts, two class builders should not have exactly the

same naming convention.

To be used by Reex, a class builder class should implement the interface

reflex.builder.ReflexClassBuilder. This interface declares a method

to get the name of the reective subclass based on the name of a class,

a method to order the creation of the reective subclass of a class, and a

method that de�nes the order relationship on class builders 6.

Class reflex.builder.BasicClassBuilder is a basic implementation

of this interface. The naming convention of this class builder is extremely

simple: the name of the new class is the concatenation of a package name

for Reex-generated classes (reflexgen) and the fully quali�ed name of the

class we are creating a subclass of. For instance, the reective subclass of

class mypackage.A will be baptized reflexgen.mypackage.A.

A class builder is associated with a method factory, which is a class that

implements the methods of the MOP that a reective object should imple-

ment (those de�ned in the ReflexObject interface). For eÆciency reasons,

Javassist does not perform online compilation of source code, therefore meth-

ods need to be available in a compiled format in order to be inserted into a

newly created class. A method factory class is just a repository of compiled

methods that the class builder will use to insert into the class it is creating.

The process

The process of creating the reective subclass is derived from how behavioral

reection is implemented by Javassist. We saw in section 3.3.1 that Javassist

will trap all invocations of public methods and forward them to a speci�ed

metaobject. It does this by modifying all the public methods of the class. So,

5An illustration of such a customization is presented in chapter 4 when adapting Reex

to RM.
6This issue is examined in section 3.3.3 dealing with the integration of class builders

within the metaobject composition framework.

CHAPTER 3. REFLEX 33

in order to make all public methods trapped, we need to rede�ne (override)

all the public methods of the class, in order to make them trapped later.

Thus, in the default version of the class building process, we want to

create a class with the following properties:

1. it is a subclass of the speci�ed class;

2. it implements the reflex.ReflexObject interface, since instances of

it are reective objects;

3. for each public method of the speci�ed class (including those that are

de�ned upper in the class hierarchy), there needs to be an overriding

one (same name, same parameter types), that simply makes a super-

call|in order to eventually use the true implementation of the method,

which is found in a super class;

4. it has all the methods de�ned in the ReflexObject interface.

The structural reectional abilities of Javassist cover all these needs. A class

builder simply builds the reective class sequentially, following these criteria

one by one.

To make the super calls (step 3), the Javassist API contains a way to

add a delegator method to a class. Such a method delegates its execution to

a speci�ed one (in our case, the one taken from the superclass that actually

de�nes the method). To add all the methods of the MOP (step 4), Javassist

provides a way to add a pre-compiled method to a class (the class builder

gets it from its method factory).

When the class builder has created the class, it makes it persistent on disk

so that next time it does need to be recreated, thus limiting the performance

cost due to this process.

3.3.3 The Meta-level Architecture

As introduced in section 3.2.3, we have developed a framework for metaob-

jects composition within Reex. In this section we present in details the

architecture of the meta-level generated by Reex, showing how the frame-

work is implemented.

Chain of Metaobjects

Javassist has the limitation that it can only associate a metaobject to a

base object in a static manner: the class of metaobjects to instantiate is

speci�ed once, when the reective class is generated, and cannot be changed

afterwards 7.

7This limitation was removed in version 0.7 of Javassist (most of our work was done

with versions 0.5 and 0.6).

CHAPTER 3. REFLEX 34

Figure 3.2: Metaobjects and their dependencies|(a) a root metaobject

alone. (b) non-cooperative metaobject added. (c) cooperative metaobject

added.

To allow for dynamic composition/decomposition of metaobjects, we

have introduced a special kind of metaobject, a root metaobject. Such a

metaobject is systematically associated with a reective object and serves

as the root of the chain of metaobjects. In itself, this metaobject does not

modify the behavior of the base level object it is attached to. It just serves

as a \hook" to hang other metaobjects. If a metaobject is attached to it,

then it forwards requests to it (by default, it is self-attached). Moreover,

an important role of the root metaobject is to manage the chain of metaob-

jects: it is its responsibility to add a metaobject to the chain, remove one,

or remove all metaobjects of a given type8.

Figure 3.2 illustrates the architecture of the meta-level in di�erent cases.

In 3.2(a), there is only the root metaobject in the meta-level layer. This hap-

pens if the reective object was created without specifying any metaobject

to associate with. The embedded link points to itself. In this con�guration,

every public method call on the base object is trapped by the root meta-

object, which forwards it to itself, and just invokes the normal method on

the base object.

In 3.2(b), a non-cooperative metaobject has been added to the meta-level

8This central role of a root metaobject remains suÆcient to justify its presence, though

it is not necessary anymore to dynamically change of metaobject since Javassist 0.7.

CHAPTER 3. REFLEX 35

layer. The embedded link of the root metaobject now points to this new

metaobject. Reciprocally, the non-cooperative metaobject has a parent link

that points to the root metaobject. This link provides it with the services

of a standard Javassist metaobject (see table 3.1).

Finally, in 3.2(c), an extra cooperative metaobject has been added. The

root metaobject's embedded link now points to this latter metaobject. Like

the non-cooperative metaobject, this metaobject has a parent link pointing

to the root metaobject. It also has an embedded link (since it is aggregating

the other metaobject) which is the collaboration link. Note that it has been

added at the head of the chain, entailing that it will be the �rst to receive

a request, and reciprocally the last to return any value.

Class Structure

The UML [31] diagram of the class structure of the metaobject composition

framework is given in Figure 3.3. This framework has several specialization

points:

� the interface reflex.metaobj.ReflexMetaobject can be implemented

by any class claiming to be a class of metaobjects integratable with

Reex;

� the interface reflex.metaobj.AggregatingMetaobject can be im-

plemented to create classes whose instances behave like cooperative

metaobjects;

� for convenience, abstract class reflex.metaobj.BasicMetaobject can

be extended to build metaobject classes;

� reflex.metaobj.CooperativeMetaobject is another convenient ab-

stract class that can be extended to create classes of cooperative

metaobjects.

The class reflex.metaobj.RootMetaobject implements the concept of

root metaobject. It is a subclass of reflex.metaobj.MethodMetaobject,

which is itself a subclass of javassist.reflect.Metaobject. The role of

the MethodMetaobject class is just to withdraw the Javassist metaobject's

initial capacity to trap accesses to instance variables9. Also, RootMetaobject,

as subclass of Metaobject, o�ers all the services of this latter, i.e. getting

the base object it is attached to, translating a method index into a method

name, invoking the base object's method, etc. (see table 3.1).

A root metaobject aggregates a metaobject. It therefore implements

the AggregatingMetaobject interface, which only de�nes accessors to the

embedded metaobject. To be valid, a metaobject should be an instance

9In section 3.3.1 we explained why this feature cannot be used in our con�guratio

CHAPTER 3. REFLEX 36

Figure 3.3: UML diagram of the metaobject composition framework

CHAPTER 3. REFLEX 37

of a class that implements the ReflexMetaobject interface. This interface

declares the protocol a metaobject should respect in order to be integratable

with Reex (presented in section 3.3.4). For convenience, we provide an

abstract implementation of such a class of metaobjects, BasicMetaobject.

This class implements all the services of a Javassist metaobject by forwarding

requests to the root metaobject. It lets the implementation of the speci�c

behaviors (i.e. handling method calls and metamessages) to its concrete

subclasses. Our classes of metaobjects for resource management policies

derives from this base class.

The framework includes another abstract class, CooperativeMetaobject,

subclass of BasicMetaobject implementing the AggregatingMetaobject

interface, which serves as a base class for cooperative metaobjects. The

implementation of CooperativeMetaobject includes an appropriate imple-

mentation of the getClassBuilder() method (see later in this section).

It also de�nes a special constructor taking as an argument an instance of

ReflexMetaobject. This constructor can be used to specify the chain of

composition directly when creating the reective object. For instance, in

the example below, we initially associate with the reective object a chain

of metaobjects consisting of a log feature metaobject, a tracing metaobject,

and a semantically strong metaobject:

A o = (A) Reflex.createObject(``mypackage.A'',

new LogMetaobj(new TraceMetaobj(new MyMetaobj()));

Metaobjects Composition and Class Builders

Since a class builder (see section 3.3.2) needs a method factory in order to

insert all the methods of the MOP into the generated reective class, there

is a logical dependency between a particular MOP and the associated class

builder.

Indeed, an extension of the MOP such as adding a method to it requires

adding this method to the classes which are generated, that is to say mod-

ifying the method factory. Other extensions10 might require adding other

methods to the factory, or even new �elds to the reective class. Therefore,

when the Reflex class determines that a reective class must be built, it

should use the adequate class builder, for the particular kind of metaobjects

we want to associate (since metaobjects are MOP-aware entities, whereas

neither Reflex nor the class of origin are). This dependency introduces

some complications when considered along with the metaobjects composi-

tion framework.

Metaobjects are therefore aware of the class builder that should be used

for them, since the latter embeds the MOP de�nition. The issue comes

from the possible composition of metaobjects that do not require the same

10E.g., serialization awareness discussed in section 4.3.

CHAPTER 3. REFLEX 38

class builders. This case occurs when reusing in an extended MOP some

metaobject classes developed for a simpler version of the MOP.

The consistency issue can be solved by considering that MOP extensions

are compatible with the base MOP, i.e. they add elements to the MOP

without modifying the original ones11. Therefore, the class generated by a

specialized class builder (extended MOP) is completely compatible with the

class generated by the original class builder (normal MOP).

At the most abstract level, there must be a way to make a choice be-

tween class builders. For this purpose, we introduced an order relation on

class builders that is de�ned by the predicate prevailsOn(aClassBuilder)

(part of the ReflexClassBuilder interface). This predicate is true if the

receiver should be used instead of the parameter one. The abstract class

CooperativeMetaobject takes this predicate into account in order to re-

spond to the getClassBuilder() message. In fact it returns the most

prevailing class builder between its own, and the result of the invocation

of the getClassBuilder() method on its embedded metaobject|thus en-

suring the correct propagation of the most prevailing class builder through

the composition chain.

We advocate that there is a hierarchy of class builders that reects the

specialization tree of the MOP. When composing metaobjects, the deepest

class builder (the one that reects the most specialized MOP) should be

used. The default implementation of the prevailsOn() predicate is based

on this principle: a class builder prevails on another one if its class is a

subclass of that of the parameter. Obviously, another principle can be used,

since the latter is just implemented in the BasicClassBuilder class.

There is however a limitation to this mechanism: to work properly, the

metaobject that requires the most prevailing class builder should be spec-

i�ed at instantiation-time (since it is at that time that the class might be

created). It cannot be added later when the reective class has already

been created. In practice, most probably the metaobject that relies upon

the most specialized MOP is a semantically strong metaobject, speci�ed

at instantiation-time. However, we should not ignore other cases where,

though we know at instantiation-time the class builder that should be used,

we do not wish to associate such a metaobject instantly. For that pur-

pose, the Reflex class o�ers overloaded versions of its createObject and

convertObjectmethods that do accept as an extra �nal parameter the class

builder that should be used to create the reective class.

3.3.4 The Metaobject Protocol

In this section we summarize the metaobject protocol of Reex. Although

some of the methods mentioned here have been previously introduced in

11The base MOP was designed with this idea in mind: it should only embed the essential.

CHAPTER 3. REFLEX 39

method name description

Object trapMethodcall invoked by the Javassist reective

(int identifier, core mechanism each time a public

Object[] args) method is invoked on the baseobject.

Arguments to this method are the

identi�er of the method and an array

of objects that represents the arguments

of the method being invoked. In the

implementation of RootMetaobject,

this method invokes the intra-level MOP

method handleMethodcall() of the

embedded metaobject.

Object trapMetamessage invoked by the reective object itself

(String message, each time sendMetamessage() is

Object[] args) called on it. Its arguments are the name

of the metamessage and its arguments. In

the implementation of RootMetaobject,

this method invokes the intra-level MOP

method handleMetamessage() of the

embedded metaobject.

Table 3.2: Implicit part of the inter-level MOP.

scattered examples here and there, we considered important to give a clear

exhaustive listing of the protocol.

The metaobject protocol can be split in two parts:

1. the part that addresses so called inter-level communication, that is to

say the communication protocol between a reective base object and

its associated meta-layer;

2. the part that addresses intra-level communication, i.e. the communi-

cation protocol between metaobjects themselves.

Inter-level communication protocol

The �rst aspect of the inter-level communication protocol can be character-

ized as the implicit part of the protocol. It deals with the basic mechanisms,

which are the method calls and the metamessages. The root metaobject has

to provide two public methods for handling those cases. These methods,

described in table 3.2 are not invoked by the base programmer explicitly.

The second aspect of the inter-level communication protocol is the meth-

ods that are made accessible to the base programmer in order to interact

with the meta-layer associated with a given reective object. Thus this part

CHAPTER 3. REFLEX 40

method name description

Object sendMetamessage sends a metamessage to the chain of

(String message, metaobjects. Its arguments are the

Object[] args) name of the metamessage and its

arguments (an array of objects).

void addMetaobject adds a metaobject to the chain of

(ReflexMetaobject rm) metaobjects. Its argument is a

ReflexMetaobject, which in

fact must be a cooperative metaobject

if ever the chain of metaobjects is

not empty.

void removeMetaobject attempts to remove the metaobject

(ReflexMetaobject rm) speci�ed as parameter.

The metaobject will be informed of

this removal request through the

invocation of its intra-level MOP

method onRemoval(). It is free

to refuse the removal operation.

void removeMetaobjectType attempts to remove all the metaobjects

(Class type) of the chain that are of the type

speci�ed as argument. Since this method

relies uponremoveMetaobject(),

the same restrictions do apply.

Table 3.3: Explicit part of the inter-level MOP.

of the protocol can be characterized as explicit. These methods are de�ned in

the reflex.ReflexObject interface, implemented by every reective class

generated by Reex (see table 3.3).

Intra-level communication protocol

The protocol that a metaobject should respect is described in table 3.4, and

de�ned in the ReflexMetaobject interface.

There are two other methods of this intra-level communication proto-

col that only concern cooperative metaobjects. They are de�ned in the

AggregatingMetaobject interface, and implemented in our abstract imple-

mentation of a cooperative metaobject|CooperativeMetaobject. They

are used by the root metaobject to manage changes in the chain of metaob-

jects (see table 3.5).

CHAPTER 3. REFLEX 41

method name description

void setParent called by the root metaobject in order to

(RootMetaobject parent) initialize the parent link of a metaobject.

Recall that this link allows any

implementor of ReflexMetaobject to

have access to the services provided by a

standard Javassist metaobject (see table 3.1).

Object handleMethodcall This method is the core of the implementation

(int identifier, of behavioral reection in our system.

Object[] args) Its implementation de�nes the speci�city of

a metaobject. For instance, a metaobject

providing a log feature will do the log

action in that method, before invoking the

method on the base object.

A cooperative metaobject will invoke this

method on its embedded metaobject.

Object handleMetamessage de�nes the handling behavior for metamessages.

(String message, It is generally structured in a switch/case

Object[] args, alike form, testing for the kind of the

boolean treated) incoming message and eventually performing

some actions. A cooperative metaobject will

invoke this method on its embedded

metaobject.

The boolean parameter is used to inform

whether the current message has been treated

at least by one metaobject in the chain (if

not, an exception will be raised).

boolean onRemoval() called by the root metaobject when a removal

request that concerns the metaobject has

been received. Operations to perform before

being removed will be implemented here. Note

that this method returns a boolean indicating

whether the metaobject accepts to be removed

or not.

ReflexClassBuilder initially called by the Reflex class

getClassBuilder() in order to check for a reective class

and/or build one.

Returns the class builder associated to the

metaobject. Note that if the metaobject is a

cooperative one, it will invoke this method on

its embedded metaobject and return the most

prevailing class builder of the two.

Table 3.4: Methods of the intra-level MOP.

CHAPTER 3. REFLEX 42

method name description

void setEmbedded sets the embedded metaobject of the

(ReflexMetaobject mo) receiver to the metaobject passed as

parameter.

ReflexMetaobject getEmbedded() returns the metaobject embedded by

the receiver.

Table 3.5: Extra methods of the intra-level MOP for cooperative metaob-

jects.

3.3.5 The Reex Public Interface

The public interface of the Reflex class is made up of two kinds of methods:

the creational methods, that allow the programmer to get reective objects,

and convenient methods, which are just aliases to the methods de�ned in

the ReflexMetaobject interface.

Creational methods

The creational methods have already been introduced in section 3.2.2.

� createObject(). This method returns a reective object that is an in-

stance of a reective subclass of the class speci�ed as parameter. Some

metaobjects might be associated with it, if speci�ed. This method is

overloaded to accept di�erent parameters to use for the constructor of

the object. As explained in section 3.3.2, invoking this method might

entail the whole process of creating a reective class, if it does not

exist yet.

� convertObject(). This method returns a reective object that is a re-

ective shallow clone of the speci�ed object. Some metaobjects might

be associated with it, if speci�ed. The shallow clone can be obtained

in two di�erent ways. If the class of the object to convert de�nes a

constructor that takes as parameter an instance of this same class,

then convertObject() uses this constructor. Otherwise, it makes use

of the Java Reection API [61] to initialize the �elds of the new object.

Convenient methods

As a matter of fact, invoking a method of the inter-level MOP on a reec-

tive object implies downcasting the object to ReflexObject. Since this is

somewhat heavy, the Reflex class o�ers the same methods as those of the

ReflexObject interface, taking as an extra �rst parameter the object on

which to invoke the MOP method. The downcasting is then done by the

Reflex class.

CHAPTER 3. REFLEX 43

For instance, to add a metaobject, one would normally type the following

code (o is a reective object):

((ReflexObject) o).addMetaobject(new TraceMetaobj());

The same e�ect can be obtained by invoking the equivalent method on the

Reflex class:

Reflex.addMetaobject(o, new TraceMetaobj());

All in all, this is just but syntactic sugar, though convenient one.

3.4 Summary

In this chapter, we have presented Reex, a reective system for Java.

We �rst highlighted the necessity of implementing a system of our own,

since none of the existing systems achieved what we were aiming at. The

requirements and main objectives of this system have been presented.

Then we detailed the architecture of Reex, deeper into its design and

implementation. The Javassist library on which Reex relies has also been

introduced.

The Reex system we exposed here makes absolutely no assumption

on the application domain. Though it is not adapted to operate fully in a

distributed environment, it is open enough to make this extension smoothly.

Chapter 4

Reex for Mobile Object

Systems

The Reex system we developed o�ers interesting perspectives to achieve

exibility in a variety of application domains. Within the context of our

thesis, we have applied its use to the domain of resource management in

mobile object systems.

In this chapter, we present how we extended Reex so that it is suitable

for a distributed environment. The idea in mind was to use it within a

mobile object system, a particular case of distributed system with complex

mobility. If Reex is fully operational within a mobile object system, then

it is also for other kind of distributed systems.

More precisely, we expose how we designed and implemented the in-

terface with mobile object systems so that Reex can be easily plugged

in. Then we explain how we extended Reex to make metaobjects \clever

enough" to act in an distributed environment with migration.

This chapter still only focuses on the Reex system, independently of

any particular case. Examples of concrete use are the topic of the next

chapter.

4.1 Introduction

The broad idea behind our adaptation, the one that in fact motivated us to

develop Reex, is that it is possible to obtain the di�erent resource manage-

ment semantics using metaobjects associated with these resources.

The concept is the following: when we determine that a given resource

(which is nothing more than a Java object) needs to be dealt with in a

particular manner, we make it reective|either at instantiation-time or by

converting it. Thus some metaobject is attached to it. The metaobject itself

will then adopt the appropriate behavior to achieve the correct semantics it

represents, depending on the state of its attached object.

44

CHAPTER 4. REFLEX FOR MOBILE OBJECT SYSTEMS 45

Figure 4.1: Reective objects and migration|(a) A simple con�guration be-

fore migration of the mobile agent. (b) After migration has taken place. The

question marks indicate the speci�cation points for implementing di�erent

semantics.

For instance, let us consider a resource R located on a site A, referenced

by a mobile agent M . On site A, R has an associated metaobject that

implements a given metabehavior MoA (Figure 4.1(a)). If M now moves

to another host B, it will bring along with him a copy of R, say RB , as

well as a copy of its metaobject|since mobile object systems rely upon

RMI [59], objects are passed by copy1 over the network using the Java

Object Serialization [58]. The metaobject should be aware of this migration

and then adopt another metabehavior, MoB (Figure 4.1(b)). In fact, all

resource management policies can be implemented by specifying what are

exactly RB , MoA and MoB , and how MoA and MoB interact if they do

(the \?" on Figure 4.1(b)).

This principle implies that a metaobject should be able to know when

migration is taking place, in order to adapt its own behavior (i.e. switch to

MoB), and determine how its attached resource should be transmitted over

the network (i.e. the content of RB).

4.2 Interfacing with Mobile Object Systems

A major objective when designing the adaptation of Reex for our appli-

cation domain was its integrability with existing mobile object systems.

Whatever mobile technology is used by the host system it should be quick

and easy to integrate Reex and the appropriate metaobjects to it. We even

1Except objects of the RMI remote type for which a stub to the object is passed,

instead of the object itself.

CHAPTER 4. REFLEX FOR MOBILE OBJECT SYSTEMS 46

aim at specifying an interface for such systems that do not require any single

modi�cation to an existing system. It is explained later on in this section.

4.2.1 Kinds of Serialization

In fact, as stated in the previous section, the only interface we need is to

make metaobjects aware of when migration is actually taking place. Our

solution to this issue comes from the observation of how systems providing

object migration work: when migrating, an object (and all the objects it

references2) is serialized and transmitted over the network. Most of the

systems rely upon the standard RMI mechanisms for transmission over the

network, though some systems (e.g., Aglets [42, 44]) use extended versions

of the RMI streams.

In any case, migration cannot occur without serialization. Thus a meta-

object needs to be aware of serialization of its base object|this is the topic

of the next section. Once aware that serialization is happening, a metaobject

should be able to determine the purpose of the serialization:

� Is it a serialization for backup (persistence)?

� Is it a serialization for parameter passing (remote method invocation)?

� Is it a serialization for migration?

� Is it for another purpose?

This distinction can be made by looking at the concrete type of the stream

used for serialization|this is the idea of the interface between Reex and

mobile object systems.

4.2.2 Stream Identi�ers

Therefore, we have introduced the notion of a stream identi�er. Such an ob-

ject is able to determine, given a serialization stream and a prede�ned type

identi�er, whether this stream is of that speci�ed type. Since this knowledge

is speci�c to the mobile object system into which Reex is being integrated,

it has to be explicitly speci�ed at integration-time. For that purpose, a stan-

dard interface, reflex.streamid.StreamIdentifier, de�nes the method a

class of stream identi�ers should implement (see table 4.1) as well as type

identi�ers (static variables) that represent the three main types we have

identi�ed, namely backup, parameter passing, and migration.

The reflex.streamid.DefaultStreamIdentifier class provides a de-

fault implementation of that interface. Mobile object systems that rely upon

the basic RMI streams can use it, in which case there is nothing at all to

do to integrate Reex. For instances of that class, if a stream is of type

2Exception made of RMI remote objects.

CHAPTER 4. REFLEX FOR MOBILE OBJECT SYSTEMS 47

method name description

boolean identifyStream returns true if the given stream is of the

(OutputStream stream, speci�ed type.

int streamType) Three types are de�ned in this interface,

BACKUP, PARAMETER, and MIGRATION.

Table 4.1: The StreamIdenti�er interface.

sun.rmi.transport.ConnectionOutputStream, then it is considered as a

migration stream and a parameter stream. Otherwise it is a backup stream.

However, some systems might require a specialization of this default

class. To allow automatic use of a specialized version, without having to

modify anything in Reex, the user stream identi�er class should be called

reflex.streamid.UserStreamIdentifier. This class must obviously im-

plement the StreamIdentifier interface. Thus the interfacing with mobile

object systems is reduced to the (optional) implementation of a class with

a simple method.

Moreover, since the method from the StreamIdentifier interface takes

as a second parameter an integer constant that represents the serialization

type to check, it is possible for subclasses to de�ne new constants if needed,

in order to make a more speci�c classi�cation of serialization types. This

will not entail any modi�cation of the actual framework.

4.2.3 The StreamMetaobject Class

In order to simplify the use of stream identi�ers we have extended the Reex

framework of metaobjects with the reflex.metaobj.StreamMetaobject

class.

This class is an abstract class that simply adds the stream identi�cation

abilities to its instances. It de�nes a new instance variable that holds a

stream identi�er object (of type StreamIdentifier), and implements the

method of the StreamIdentifier interface by delegating to the stream

identi�er object. The correct initialization process for the stream identi�er

object is also implemented: it �rst looks if class UserStreamIdentifier

is available, and if so, instantiates it; otherwise it instantiates the default

stream identi�er class3. Metaobjects that are instances of concrete sub-

classes of this class can therefore determine the type of serialization a stream

is bound to.

3Note that it is done also if an exception occurs while instantiating the user stream

identi�er class.

CHAPTER 4. REFLEX FOR MOBILE OBJECT SYSTEMS 48

4.3 Serialization Awareness and Control

All the above relies on the idea that a metaobject is:

� aware of the fact that serialization is occuring;

� aware of the type of the stream used for serialization;

� able to control how its base object is serialized.

The �rst two points are referred to as serialization awareness and the last

one as serialization control.

4.3.1 Serialization in Java

The Java programming language supports Object Serialization [58], that

is the translation of any Java object to a sequence of bytes that can be

reused afterwards to rebuilt the object completely. The sequence of bytes

can be written to disk, to achieve persistence, or can be transmitted over

the network (this is the marshalling/unmarshalling of arguments and return

values in remote method invocation, e.g.).

By default, a Java object is serialized completely, meaning that all its

�elds are recursively serialized. In remote method invocation, the only mod-

i�cation to this principle is that if an object to serialize is a remote object,

then a stub of this object is serialized instead of the object itself.

In any case, Java o�ers di�erent means to specialize the serialization

of an object. One mean is to make a class de�ne two special methods,

namely writeObject and readObject, in which one can respectively de�ne

the data that is e�ectively written to an output stream and how that data is

read in order to build the object back. The limitation of this specialization

mechanism is that a class can only control how members it declares are

serialized, it has no control over inherited members.

Another way of specializing serialization is to use object replacement and

object resolving. With object replacement, a class can specify an alternative

object to be serialized instead of its instance. When deserialized, this al-

ternative object must be resolved to an object that is type-compatible with

the original object. This mechanism allows for much more exibility and

control over the serialization process.

As far as Reex is concerned, the latter mechanism provides with means

to achieve both serialization awareness and control, whereas the �rst one

only allows for serialization awareness. It does not provide suÆcient control

over the serialization process for what we aim at.

4.3.2 Serialization Awareness

As mentioned above, serialization awareness is two-fold: being aware that

serialization occurs on the base object, and being aware of the stream used

CHAPTER 4. REFLEX FOR MOBILE OBJECT SYSTEMS 49

for that serialization. Making a metaobject aware that serialization is oc-

curing is fairly simple: it just needs to be aware of the name of the public

method invoked, what we refer to as the serialization hook method.

However, an implementation complication comes from how Java serial-

ization works. Sequentially, when an object is to be serialized, the following

happens:

1. the class is introspected to check whether it declares the object re-

placement method (namely writeReplace()). If it does, then the

serialization process starts again but this time for the object returned

by the replacement method.

2. the serialization of the object e�ectively starts.

3. the class is introspected to check whether it declares the writeObject

(ObjectOutputStream) method, which allows for customized serial-

ization of class-speci�c data. Note that at that point, when this is

checked in the reective class, all the data inherited from its super-

classes has already been written to the stream.

A metaobject should be aware of the serialization stream used, and at

the same time make use of object replacement (we will discuss this neces-

sity in the following section dealing with serialization control). But, the

writeReplace() method does not take as argument the stream used for

serialization. Thus at that time, when this method is invoked, the meta-

object does not know the stream used. Reciprocally, when the writeObject

method is called, it is too late to use object replacement.

The solution to this issue is exposed thereafter, since it is strongly cou-

pled with achieving serialization control.

4.3.3 Serialization Control

To be able to implement any semantics, a metaobject should be able to

control how the serialization of its base object occurs. In fact, depending

on the semantics being implemented, there are two cases:

The whole base object should be serialized. This case corresponds to

backup serialization, and particular semantics of parameter passing or

migration serialization. For instance in the default by-copy semantics,

the whole base object has to be serialized.

The data of the base object should not be serialized. This case cor-

responds to particular semantics of parameter passing or migration

serialization. For instance, in a by-reference semantic, the base object

should be transfered empty. In those cases, only the metalevel of the

base object should be serialized, so that it can control the semantics

CHAPTER 4. REFLEX FOR MOBILE OBJECT SYSTEMS 50

Figure 4.2: Principle of a serialization wrapper.

by forwarding method invocations to the appropriate object. All the

other �elds of the object should be empty (null), in order to make the

object as lightweight as possible.

In the following, we refer to a normal object (the �rst case) as a full object,

and to its lightweight equivalent (the second case) as a blank object.

The necessity of using object replacement is that it is the only way o�ered

by the Java serialization API to control what is serialized, beyond the limit

of the class-speci�c members. It is thus necessary to be able to transmit

blank objects instead of full ones when needed.

4.3.4 Serialization Wrapper

Our solution to the two issues of full serialization awareness and serialization

control relies on the introduction of a new kind of object, a serialization

wrapper. The principle of such an object is illustrated in Figure 4.2.

When a full reective object has to be serialized, a serialize wrapper

is returned instead. This is implemented by the metaobject itself. The

wrapper has a reference to the full reective object it is replacing. Later,

when the writeObject method is invoked on it, it queries the metaobject

in order to know which object should be serialized. The metaobject looks

at the stream being used, and returns a boolean indicating in which case we

are: serializing the full object, or a blank object.

The serialization wrapper, possibly after creating the blank object, keeps

only a reference to the object that should be serialized. The couple serial-

ization wrapper{reective object (blank or full) is then serialized, and when

deserialized, the serialization wrapper is resolved to its embedded reective

object.

Briey summarized, here is how serialization wrappers provide a solution

to the issues of serialization awareness and control:

CHAPTER 4. REFLEX FOR MOBILE OBJECT SYSTEMS 51

serialization is occuring The metaobject traps the invocation of the re-

placement method on the reective object4.

type of the stream used If the metaobject decided that it needs to be

aware of this, it will have returned a serialized wrapper when the

writeReplace method was invoked. In which case the serialize wrap-

per, when serialized, will invoke an extra MOP method to query the

metaobject. This extra MOP method has been added transparently,

using the metamessage feature of Reex (see section 3.2.4). The meta-

message sent takes as parameter the stream actually used for serial-

ization.

control the object that is serialized By responding to the metamessage,

the metaobject indicates to the serialize wrapper which object should

be serialized, the full one or the blank one.

The concrete class of the serialization wrapper is chosen by the meta-

object itself, since the latter has the control over which object is used for

replacement. Therefore this framework for serialization awareness and con-

trol is freely adaptable.

As far as our implementation is concerned, we have developped a class

of serialization wrapper, dsm.SerializationWrapper, that some of our

metaobjects for data space management policies (part of the dsm package)

make use of.

Creating and transmitting a blank object

As introduced earlier, a blank object is a reective object that has the same

metalevel part than its full equivalent, but whose �elds are all set to null

(object references and arrays). This way, serializing a blank object does not

entail serializing all the data contained in its full equivalent. For instance,

a vector keeps its data in a particular private �eld. In the blank object

equivalent of that vector, this �eld will be set to null, entailing that all the

objects contained in the vector will not be serialized.

The main idea of a blank object is to externally be a normal object, but

as lightweight as possible, with a metalevel that takes care of implementing

the correct behavior. Such an object is needed to simulate a by-reference

semantics, for instance.

A blank object is created by instantiating the reective class, properly

initializing the metalevel �elds (such as the reference to the metaobject),

and, using reection, setting all the other �elds (inherited) to null. Fields

which are of a primitive type are unchanged.

Figure 4.3 illustrates the exact process that occurs when creating and

transmitting a blank object. The original situation is a full reective object

4More details are exposed in section 4.3.5.

CHAPTER 4. REFLEX FOR MOBILE OBJECT SYSTEMS 52

Figure 4.3: Creating a transmitting a blank object|the necessity of switch-

ing the metaobject link.

CHAPTER 4. REFLEX FOR MOBILE OBJECT SYSTEMS 53

with some attached metaobject. Then, the blank object is created, pointing

to the same metaobject as the full object. However, for the blank object to

be in a consistent state when deserialized, the link from the metaobject (the

root metaobject) to its base object should be updated so that it points to the

blank object (step 1). Then the blank object is serialized, and deserialized in

a consistent state (step 2). As soon as serialization �nished, the metaobject

link is re-established as it was before, in order to restore the initial state

(step 3).

This way, we have on the side where serialization occurs the same situa-

tion as before, and on the side where deserialization occurs, we have exactly

the same con�guration, but with a blank object instead of a full one.

4.3.5 Extension of the Reex Framework

The Reex framework has been extended to include an appropriate class

builder able to build reective classes ready for serialization awareness and

control, as well as a new abstract metaobject class that combines the stream

identi�cation facilities with serialization awareness and control.

The SerializeReexObject interface

In the wrapping mechanism previously exposed, there is an obvious risk of

in�nite recursion: a reective object gives as replacement for itself an object

that points to it. Thus the serialization process will enter in an in�nite loop.

Therefore, a reective object ready for serialization should have an ex-

tra state information that indicates whether it is wrapped or not. If it is

wrapped, the replacement method returns itself directly. If it is not wrapped,

the replacement method calls a public serialization hook that the metaobject

will trap (to return, possibly, the serialization wrapper). Similarly, a blank

object should never be wrapped. Therefore another state information is

added to reective objects, indicating whether it is a blank object or not.

To this end, we have introduced a new interface for reective object

that are ready for serialization, the reflex.SerializeReflexObject, a sub-

interface of the ReflexObject interface. It adds accessors to state indicators

(see table 4.2).

The SerializeClassBuilder class

In order to build reective classes with serialization awareness and control,

we have de�ned the reflex.builder.SerializeClassBuilder class, a new

class of class builders, subclass of the BasicClassBuilder class.

A SerializeClassBuilder object �rst lets its superclass build the re-

ective class, and then does the following:

� makes the class implement the java.io.Serializable interface;

CHAPTER 4. REFLEX FOR MOBILE OBJECT SYSTEMS 54

method name description

Boolean _isWrapped() returns true if the object is already wrapped.

void _setWrapped sets the wrapped ag to the given boolean.

(Boolean b)

Boolean _isBlank() returns true if the object is a blank object.

void _setBlank sets the blank ag to the given boolean.

(Boolean b)

Table 4.2: The SerializableReexObject interface.

� makes the class implement the reflex.SerializableReflexObject

interface;

� adds two boolean instance variables, blank and wrapped;

� adds the four methods of the SerializableReflexObject interface.

The implementation of those methods in the method factory uses the

previously added boolean instance variables;

� adds the serialization methods:

{ writeReplace()|object replacement method from the Java Ob-

ject Serialization framework. The implementation of this method

�rst checks if the object is blank or wrapped, in which case it sim-

ply returns this. Else it calls the public serialization hook below;

{ doWriteReplace()|public serialization hook that informs a meta-

object that serialization is occuring, and lets it return a possible

alternative object for serialization. The implementation of that

method simply returns this, in order to remain compatible with

metaobjects that do not listen to serialization.

When this is done, the class is returned and the building process goes

on, making the class reective and persistent on disk, before instantiation.

There is actually a major issue with this process concerning classes that

cannot easily be made serializable. It is exposed in details in section 4.3.6.

The MigrationMetaobject class

The reflex.metaobj.MigrationMetaobject class is an abstract class that

extends the StreamMetaobject class. It thus has the stream identi�cation

facilities provided by that class.

In addition to that, this class speci�es that the class builder it requires is

a SerializeClassBuilder, since its instances will make use of serialization

awareness and serialization control.

CHAPTER 4. REFLEX FOR MOBILE OBJECT SYSTEMS 55

Therefore, instances of concrete classes of this class will be ready to op-

erate in a distributed environment with migration: they have the abilities to

determine whether migration is occuring or not and control the transmission

of their base object. Indeed, this class served as the base class for the di�er-

ent classes of metaobjects we have implemented for resource management

policies, presented in the next chapter.

4.3.6 Advanced Serialization Issue

There is an issue that we have overshadowed until now: the problem of

making non-serializable classes serializable. Recall that in section 4.3.5 we

have exposed that a SerializeClassBuilder makes a reective class seri-

alizable|i.e. it makes it implement the java.io.Serializable interface.

The Serializable interface is just a marker interface for which the

serialization process checks for in order to go on. If it encounters an object

to serialize whose class does not implement this interface5, it will stop and

throw an exception.

The issue

For some classes, simply adding the fact that they are serializable will not

entail any problem, in particular if they only declare instance variables which

are of a serializable type. However, if a class declares instance variables

which are not of a serializable type, then an exception will be thrown when

they will be serialized. This occurs only if the object is serialized completely

(full object), of course|since if it is a blank object, the �elds of the object are

all null. In the case where the associated metaobject orders a serialization

of the meta-level only, there will not be any problem... except if the class of

the instance to serialize does not respect the following law:

\a Serializable class must be able to access the no-arg con-

structor of its closest non-Serializable superclass." [57]

This is actually where the big issue lies. Because the problem of not being

able to take along a non-serializable object completely is obvious. But, there

are cases where the whole object is not serialized, just its meta-level part, and

still there can be a problem: the serializable class needs a non-serializable

superclass that declares an accessible no-arg constructor.

An example

Let us consider a by-reference alike semantics. A mobile agent has a ref-

erence to a PrintStream and moves to another site. The PrintStream is

in fact a reective object to which is attached a by-reference metaobject.

5or any of its subinterfaces, like the Externalizable interface.

CHAPTER 4. REFLEX FOR MOBILE OBJECT SYSTEMS 56

Thus, when migrating, the metaobject speci�es that the content of the ob-

ject should not be serialized, since once in the new site, it is the metaobject

itself that will forward requests to the PrintStream that stays in the �rst

site. What is expected from this case is that when the agent prints on the

remote site to the PrintStream, it will in fact print on the local one.

However, this will not work since the java.io.PrintStream class does

not have an accessible no-arg constructor. This problem is the same with

most of the output and input stream classes of Java. Though it is semanti-

cally possible, it does not work because of this limitation.

A solution

Apart from rewriting the serialization process entirely, there exists an alter-

native to solve this issue. As a matter of fact, in semantics such as the one

exposed in the example above, the actual object that is deserialized does

not play an important role: only do we need it for its public interface, since

then it is the metaobject that handles the rest. Therefore if we can �nd a

way to build a dumb object, yet valid, it will solve the problem.

The idea is to provide a no-arg constructor for such a class, that would

call a true constructor with the required parameters. For instance, in the

case of the output streams of Java, they can all be created by specifying

an output stream on top of which they operate. You could then add a

no-arg constructor that will call the normal constructor with as argument

a minimal output stream, such as a ByteArrayOutputStream of size zero.

The same \trick" would work similarly for all the input stream classes of

Java, making them read from an empty ByteArrayInputStream.

In our example above, the PrintStream on the remote host would in

fact be a PrintStream on an empty ByteArrayOutputStream. As it is

a valid object, the mobile agent can still print to it. Since all calls are

trapped by the metaobject and forwarded to the local PrintStream, the

dumb object is in fact never used: nothing will be printed to the empty

ByteArrayOutputStream.

Implementing the solution { serialization adapters

The actual solutions to this issue are very case-speci�c. It is impossible

to specify in a generic way how a no-arg constructor should be created.

However, it is yet possible to make this process exible, and reusable by

optimizing the possibilities of \making the trick for several classes in one

shot".

When the SerializeClassBuilder is asked to build a reective class,

before doing anything, it checks whether the class is problematic, i.e. if (1) it

is not serializable, and (2) it does not have an accessible no-arg constructor.

If it encounters such a problematic class, it does the following:

CHAPTER 4. REFLEX FOR MOBILE OBJECT SYSTEMS 57

� creates an intermediate non-serializable subclass of that class, adding

to it a no-arg constructor;

� creates a serializable reective subclass of that generated class (this

class will be the one returned to Reex for instantiation).

Creating a class and adding a constructor to it is straightforward with Javas-

sist. Then making a reective subclass of it is what we have already ex-

plained. Thus the only issue is from where the no-arg constructor should

be copied (recall that Javassist only allows for bytecode-copying of methods

and constructors).

In fact, the no-arg constructor is copied from what we call a serialization

adapter class. An adapter class has the following characteristics:

1. it has the same name than the class it is adapting, within the package

reflex.adapters;

2. it is a class (possibly abstract) that extends the adapted class;

3. it has a public no-arg constructor that calls this(<args>) (it should

not call directly super(<args>))6;

4. it has another constructor, the one called from the public no-arg con-

structor, which makes the super call7.

When the SerializeClassBuilder is building the intermediate subclass

with a public no-arg constructor, it looks for an adapter to the class it is

working on, and if it cannot �nd it, it attempts to get an adapter for its

superclass, etc. until it gets to the Object class (in which case it throws

an exception because it cannot go on). The main point of this mechanism

is to allow a user to specify an adapter for a complete subtree of the class

inheritence tree, while still allowing for speci�c specializations where needed.

In our example, we could de�ne an adapter for the PrintStream class,

by de�ning the reflex.adapters.java.io.PrintStream class. However,

since PrintStream is a subclass of FilterOutputStream, we can directly

create an adapter for that class|we know that all instances of this class and

its subclasses can be created by giving an empty ByteArrayOutputStream

as argument to the standard constructor. This way, if ever we need to use an

ObjectOutputStream for instance, the adapter will automatically be found

and used by the class builder.

The code below de�nes a serialization adapter class for the output stream

abstract class java.io.FilterOutputStream|and all its subclasses.

6This comes from the fact that the constructor is bytecode-copied and then inserted

into the new class: super references do not behave correctly in that case. The class would

be rejected by the bytecode veri�er of the JVM.
7This constructor is never copied and inserted into the new class, it just serves to

produce correct bytecode for the no-arg constructor.

CHAPTER 4. REFLEX FOR MOBILE OBJECT SYSTEMS 58

package reflex.adapters.java.io;

import java.io.*;

public abstract class FilterOutputStream

extends java.io.FilterOutputStream {

//the public no-arg constructor that will be copied

public FilterOutputStream(){

this(new ByteArrayOutputStream(0));

}

//the needed dumb constructor

FilterOutputStream(java.io.OutputStream o){

super(o);

}

}

With such a small class de�ned, it is now possible to get reective stream

objects and use them in several semantics of resource management, like in

the example above, or as illustrated in the next chapter. Similarly, on a

case-by-case basis, but still with some genericity, it is possible to overcome

the limitation exposed in this section.

4.4 Summary

In this chapter we presented the extension of Reex to make it fully op-

erational in a distributed environment, especially within a mobile object

system.

We �rst discussed the broad idea behind this adaptation, the one that

made us think about a system like Reex as a solution to achieve exibility

in resource management.

We talked about the minimalistic interface needed between Reex and

any Java mobile object system, and detailed the Reex extension that sim-

pli�es integration.

Finally we introduced the concepts of serialization awareness and control,

the necessary cornerstones of Reex operatibility in distributed systems, and

explained how they were added to Reex.

Now Reex is up-and-ready for our target application domain. We can

start using it to implement di�erent semantics of resource management.

Chapter 5

Metaobjects for Resource

Management

The original aim of this thesis was to provide exibility in resource man-

agement, in the particular area of mobile object systems. Until now, we

have presented the Reex system as well as its extension to the world of

distributed computing.

In this chapter, the practical use of Reex for our target domain is il-

lustrated through concrete examples. The development of two classes of

metaobjects implementing two di�erent resource management policies is ex-

posed, one for the network reference policy and one for the rebinding policy

(see section 2.1.1). Sample test programs exercising these metaobjects are

also included.

5.1 Introduction

To apply and thus validate our ideas, we developed metaobjects for Re-

ex that implement di�erent resource management semantics. We chose

to experiment with the network reference and rebinding policies, since we

see them as the most interesting in practice|the by-copy semantics being

already available.

Numerous examples of applications of these semantics can be found,

especially in the area of code mobility, or more precisely in mobile agents.

For instance, the network reference policy is useful in cases where a unique

object has to be accessed by several mobile entities, keeping consistency at

any moment, or in cases where the tradeo� network reliability/bandwidth

indicates that it is better for a somewhat huge object not to be transmitted,

but instead to be accessed remotely. The rebinding policy as well is useful

in all cases where a roaming entity repetitively needs to access a resource

that is local to the host, such as I/O resources for instance.

These two policies have therefore been implemented, and tested with

59

CHAPTER 5. METAOBJECTS FOR RESOURCE MANAGEMENT 60

di�erent types of resources. To perform experiments, we wanted a mobile

agent platform. The problem was that it needed to be a platform compatible

with the JDK1.2, since Javassist relies upon it. Unfortunately, the Aglet

platform has not been updated within the last year, and is thus inadequate

for the JDK1.2. Finally, after looking in vain for a compatible and working

Java mobile agent platform, we undertook the development of our own, the

EzAgent platform1. This platform is an experimental platform relying upon

RMI2. Only agent migration is implemented, since it was the only required

feature for our tests. This means that communication inter-agents has not

been implemented. This platform is presented more precisely in Appendix B.

The metaobject classes we have developed are part of the package dsm,

which stands for data space management. The package dsm.rebind con-

tains the classes for implementing the rebinding policy, and the ones for

the network reference policy are in the package dsm.remoteref. The meta-

object classes, RebindMetaobj and RemoteRefMetaobj are subclasses of the

Reex metaobject class MigrationMetaobject (see section 4.3.5).

5.2 The Rebinding Policy

To achieve the rebinding policy, we have to assume that hosts on the net-

work provide a way of getting a reference to a local resource based on some

identi�er. This way an agent can rebind this resource each time it arrives

to a host, and unbind it each time it leaves.

There are several ways such a system for local resources management

can be implemented. As for the tests, we have developed a very simple

resource management system, that allows any program to bind a resource

to a string identi�er. Any incoming entity can query the resource manager

in order to get a reference to this previously bound resource. In order to get

the resource manager, we have extended the java.lang.System class with

an extra method, getResourceManager(), that returns a reference to the

current manager. There is one resource manager per JVM. More details on

the resource manager can be found in Appendix C.

The main point of using Reex for this purpose is that the actions of

rebinding and unbinding are handled automatically by a metaobject. The

object that holds a reference to such a resource just needs to instantiate the

resource using Reex, specifying an instance of our class of metaobjects for

rebinding as parameter. Then it simply accesses the resource as it would

do normally, without having to implement the rebinding and unbinding

operations.

1The Ez pre�x (easy) was inspired by the basic and limited nature of the platform.
2Therefore the work to integrate Reex into EzAgent was reduced to nothing.

CHAPTER 5. METAOBJECTS FOR RESOURCE MANAGEMENT 61

5.2.1 Design and Implementation

The design principle is illustrated in Figure 5.1. The agent holds a reference

to a dumb reective object of the appropriate type. This dumb reective ob-

ject has an attached metaobject that maintains the binding to the concrete

local resource (obtained from the local resource manager). Each invocation

on the dumb base object is trapped by the metaobject that forwards it to

the bound resource. Thus the dumb object is concretely never used, it is

the resource bound to the metaobject that is used instead. This way, the

agent always invokes methods on the same object, and it is the metaobject

that takes care of forwarding those calls to a local resource (Figure 5.1(2)).

The metaobject is responsible for making the binding to the resource.

Obviously, it needs to know the identi�er to be used for the resource man-

ager. In our implementation of the rebinding metaobject, RebindMetaobj,

this can be speci�ed when the metaobject is �rst created, or later, using

a special metamessage. We have implemented the initialization of the re-

source in a lazy-manner. When the metaobject traps an invocation on the

base object, if the resource has not been bound already, then it does it by

requesting the local resource manager (Figure 5.1(1)).

Unbinding the resource is done each time the base object is serialized.

This is systematic, since generally a local resource is not something one

wishes to serialize, even for a backup. It is more a local service accessible

to any object that requires it. Simply, each time the metaobject itself is

serialized, it unbinds the resource. This is implemented by declaring the

resource object as a transient �eld of the metaobject.

For performance optimization, the metaobject keeps a cache of the meth-

ods of the resource in an array (this array is also a transient �eld). Method

invocation is then performed using the reection API of Java. Note also

that all methods invoked on the base object are forwarded to the resource,

except the serialization request.

5.2.2 Examples

Let us consider a simple test case: a roaming mobile agent has to perform

some activity in several nodes on the network, following a given itinerary.

For tracking purposes, we want this agent to log its actions into a �le.

Each site on the network has a local resource named logfile in which such

roaming agents can write.

To write to a �le, the agent has an instance variable of type PrintStream,

a convenient class of the Java I/O library for writing text, and a method

that logs a given operation in the log �le:

// declaration of the instance variable.

PrintStream logfile;

CHAPTER 5. METAOBJECTS FOR RESOURCE MANAGEMENT 62

Figure 5.1: Design of the rebinding policy|(1) Lazy-initialization of the

resource. (2) The resource is initialized, calls are forwarded to it.

CHAPTER 5. METAOBJECTS FOR RESOURCE MANAGEMENT 63

//log method that uses the instance variable.

private void logWork(Operation op){

logfile.print(this + `` has performed: '');

logfile.print(op.getDescription());

logfile.println(``on date: '' + new Date());

}

There are di�erent alternatives for initializing the PrintStream resource,

either in the code of the agent itself, or it can be passed as a parameter

to some method, the constructor for instance. In any case, the following

code creates a dumb PrintStream with the correct rebinding metaobject

attached:

// create the metaobject, specifying the resource identifier.

ReflexMetaobject mo =

new dsm.rebind.RebindMetaobj(``logfile'');

// instantiate the PrintStream object (dumb).

logfile =

(PrintStream) Reflex.createObject(``java.io.PrintStream'',

mo);

Note that the created object is a dumb object, instance of the class created

by Reex using the appropriate serialization adapter (see section 4.3.6),

since PrintStream is normally a class that cannot be serialized.

We have successfully implemented this example using the EzAgent plat-

form, with two di�erent kinds of resource: a simple Java vector and a

PrintStream to a �le, exactly like in the example above. More precisely, our

agent is created remotely in a given site, the resource being passed as a pa-

rameter, writes something, moves to another site, and writes the same thing

again. Each agent place (EzPlace) has been extended to automatically reg-

ister the local resource with the resource manager when it is started. Also,

in order to validate the serialization identi�cation mechanism, each agent

went for deactivation (serialization to disk - timer - deserialization) in each

site.

This example illustrates how Reex largely simpli�es the implementation

of a rebinding policy. Of course, this policy can be implemented without

Reex, putting all the code speci�c to binding/unbinding of the resource in

the agent itself 3. Anyhow, it is a fact that this code is not speci�c to the

agent, and will have to be copied to any other object that requires the same

semantics, solution which is highly inexible and unmaintainable. Here we

achieve a convenient separation of concerns, avoiding to mix application

code with resource management code, as well as enhanced maintainability

and reuse.
3Though the issue of the non-serializable classes remains.

CHAPTER 5. METAOBJECTS FOR RESOURCE MANAGEMENT 64

5.3 The Network Reference Policy

The Java RMI mechanism already provides a mean to achieve a by-reference

policy. An object that has to be passed by reference has to be of a remote

type, and then, when serialized, a stub to the object is passed instead. Then,

invocations on the stub are forwarded to the remote object.

The problem with this mechanism is that it is far from being exible. The

class of remote object has to implement a sub interface of the RemoteObject

interface, and must extend another class of the RMI framework. In addition

to this, stubs and skeletons have to be generated manually. All this is static,

it has to be done at implementation time. There are no means to make a

non-remote object remote dynamically.

However, the basics of the by-reference semantics are implemented, and

can be used to implement a more exible mechanism. Reex can be ade-

quately used for that purpose.

5.3.1 Design and Implementation

As mentioned before, the main points of a by-reference semantics are �rst to

avoid transmitting a huge object over the network, and second, to maintain

consistency between di�erent accessors to that object.

To avoid transmitting a huge object is quite straightforward: the meta-

object should specify that a blank object should be transmitted instead of

the whole object (see section 4.3.4).

Then, to forward the method invocations to the local object, we already

saw in the previous section presenting the rebinding policy that a metaobject

can fairly easily forward calls to any other object instead of its base object.

To be able to forward calls to the local object would mean that the local

object should be a remote object. However with RMI this is not exible at

all. The idea is to introduce a special kind of object, a remote proxy object.

Such an object is an RMI remote object, but a generic one: it is a method

invoker, able to invoke any method on any type of reective object. There-

fore, the metaobject of the blank object will forward all method invocation

to this remote proxy (that resides on the same site than the local object),

and this remote proxy will in turn invoke the method on the base object.

Architecture

The architecture is illustrated in Figure 5.2. On site A, a reective resource

has an attached metaobject of class RemoteRefMetaobj. When �rst serial-

ized for migration, the metaobject sets up the remote proxy, and serializes

itself with a reference to that proxy. Since it is a remote object, when the

metaobject will be deserialized, it will have a reference to a stub of the re-

mote proxy, and will thus be able to perform remote method invocation on

CHAPTER 5. METAOBJECTS FOR RESOURCE MANAGEMENT 65

Figure 5.2: Design of the network reference policy.

it. Apart from setting up the remote proxy, the metaobject also speci�es

that the base object should not be transmitted fully, a blank object should

be created instead.

Therefore on site B it is a blank object of the same type that has a

metaobject that will forward any invocation to the remote proxy. In order

to invoke methods on the resource, the remote proxy is initialized with

a reference to the root metaobject of the resource. Recall that the root

metaobject o�ers the service for invoking a method on the base object.

Using this metaobject, it is possible to make any type of resource accessi-

ble by the network reference policy. Nothing needs to be speci�ed statically

in the class of the resource, only does it need to be instantiated or converted

using Reex. Since the remote proxy is a generic one, stubs and skeletons

have been generated once for all, and thus there is no need to perform any

compilation manually.

Implementing the metaobject

Implementing the metaobject for network reference is slightly tougher than

implementing one for the rebinding policy since the metaobject does not

always behave similarly. In the rebinding policy, every metaobject has the

same behavior, may it be the �rst metaobject, or the one recreated after

transmission. In the network reference policy, however, there are two logical

states for the metaobject:

local In this state, the metaobject should set up the remote proxy when

serialized for migration, if it does not already exist. In addition to

this, it should serialize a version of itself which is in the remote state.

CHAPTER 5. METAOBJECTS FOR RESOURCE MANAGEMENT 66

All method invocations are simply invoked on the base object.

remote In that state, the metaobject should serialize itself as it is, with no

modi�cation to its state. All method invocations, except serialization,

should be invoked through the proxy and not on the base object.

To implement these states, we have applied the State design pattern [34].

A RemoteRefMetaobj object aggregates a behavior object, instance of the

abstract class RemoteRefBehavior. There are two concrete subclasses of

this abstract class, BehaviorRemote and BehaviorLocal that implements

the actual behavior to be done. A RemoteRefMetaobj delegates requests to

its aggregated behavior object.

As pointed out in [11, 34], the State design pattern lets open the issue

of where the state switching occurs. We have implemented it at the level of

RemoteRefMetaobj, in the customized serialization method writeObject. If

the metaobject is in the local state and goes for migration, then the behavior

object that is written to the stream is an instance of BehaviorRemote.

Remote proxy and concurrency

Since one of the advantage of the network reference policy is when several

entities should access the same object, it is necessary to take into account

the issue of concurrency at the level of the remote proxy.

For that purpose we simply implemented a second class of remote proxy,

whose public method is synchronized. However it is not always needed to

have a synchronized remote proxy, either because the base object itself is

synchronized already, or because only one object will access the resource.

To let the programmer able to specify what he wants, our implemen-

tation of the network reference metaobject understands a speci�c meta-

message, setSynchronizedProxy, that can be used to specify which proxy

class should be instantiated. Note that if the remote proxy has already been

created, it is not possible anymore to change its type. This can also be

speci�ed as a boolean argument given as a parameter when instantiating

the metaobject.

5.3.2 Examples

Let us consider the following test case: in the �eld of information retrieval,

several agents are launched on the network with the task of getting some

information. Each time an agent �nds a relevant piece of information, it

should store it in some vector. In order to take advantage of the network

reference policy, let us say that a unique vector is created and used by

all agents to store data. This way, when the user wants to check what

information is currently available, he just has to look at the elements of the

vector, he does not need to contact each and every agent.

CHAPTER 5. METAOBJECTS FOR RESOURCE MANAGEMENT 67

The central vector will be created either by a client application, or by

a coordinating agent that in turn creates several slave agents to look for

information. In any case, the following code will instantiate the result vector:

// create the vector with a metaobject for network reference.

// the true argument passed when instantiating the metaobject

// informs that the remote proxy should be a synchronized one.

Vector results =

(Vector) Reflex.createObject(``java.util.Vector'',

new RemoteRefMetaobj(true));

Then, the program that looks up the state of the vector just accesses it

as usual:

public void displayResults(){

System.out.println(results.toString());

}

And the roaming agents themselves add elements to the vector in a fully-

transparent way. They do not even need to know that the vector they are

adding elements to is a remote one.

//instance variable declaration

Vector myResults;

//method that adds to the result vector

protected void addInfo(Information info){

myResults.add(info);

}

Like for the rebinding policy, we have successfully implemented this ex-

ample using the EzAgent platform, with a Java vector like above, and with

a PrintStream to the JVM screen. The simulation was with three roaming

agents, accessing the same \by-reference" resource, while moving from one

host to another. As in the previous test, each agent went down for deac-

tivation on each site, thus testing the serialization identi�cation abilities of

Reex.

We also carried out another simulation, this time combining the two

policies exposed: each agent �rst writes something to a resource by reference

and then to a similar resource managed with the rebinding policy. This

example corresponds to cases where roaming agents log information to each

node as well as to their starting node (e.g. remote administration).

Here again we have illustrated how Reex simpli�es the implementation

of a resource management policy. Using the dsm.remoteref package, a

programmer can bene�t from a network reference policy without having to

generate skeletons, adapt all the class hierarchy, and so on. The example

makes full use of the transparent type-compatibility of reective objects to

achieve a clean separation of concerns.

CHAPTER 5. METAOBJECTS FOR RESOURCE MANAGEMENT 68

5.4 Summary

In this chapter, we have validated the concrete applicability of Reex to the

area of resource management in mobile object systems.

We have exposed the design, implementation and testing of two kinds of

metaobjects: one for the rebinding policy, and one for the network reference

policy.

In each case, a short test case has been presented as well as results of

the simulations carried out during the thesis. These tests have shown the

correctness and feasibility of the semantics simulated.

The tests also demonstrated the functioning of the interface between

Reex and mobile object systems, since di�erent types of serialization were

used and properly exploited.

We therefore validated our starting assumption according to which the

di�erent semantics of resource management could be reasonably easily im-

plemented as metaobjects attached to the resources.

Here ends the presentation of the concrete work done during this thesis.

Now begins our own evaluation of the work, perspectives for further research,

and conclusions.

Chapter 6

Evaluation

In this chapter we perform an evaluation of the work carried out during this

thesis. In particular, we examine the performance issues related to Reex

and the current limitations of Reex.

6.1 Achievements

During this thesis we have developed the reective system Reex. This

system meets our four primary objectives:

� it provides transparent type-compatibility of a reective object with its

non-reective equivalent. This was achieved by making a reective ob-

ject instance of a reective subclass of the class we want some reective

objects of. Type-compatibility is therefore achieved by subtyping (see

section 3.2.1).

� it is able to create reective objects and convert existing non-reective

objects to reective ones. Since conversion is achieved by creating a

whole new object, there is the limitation that such a conversion should

be done before any references to the object are passed to the \outside

world" (see section 3.2.2).

� it is possible to dynamically control the layer of meta-behaviors as-

sociated to a reective object, thanks to the metaobject composition

framework we have set up (see section 3.2.3).

� it is suÆciently open to be adaptable to unforeseen uses, since we have

let an open door for customization of the MOP with the concept of

metamessages (see section 3.2.4).

Moreover, we have successfully extended Reex, which is a priori ap-

plication domain-independant, so that it is operational in a distributed en-

vironment, making its interface with mobile object systems minimal (see

69

CHAPTER 6. EVALUATION 70

chapter 4). Finally we have concretely applied the extended Reex to im-

plement di�erent resource management policies and tested the same with

mobile agents (see chapter 5).

The Reex system as well as the di�erent metaobjects developed, in-

cluding sample test programs, will soon be available in the Internet for

download. Until then, they can be requested to the author by e-mail at

etanter@vub.ac.be.

6.2 Performance

Using Reex is not free in terms of performance. There are several points

where extra processing is introduced:

Cost of meta-level processing. Having an interpretation layer at the meta-

level is obviously a loss of performance. However it is important to

see that this loss is reduced to some extra method calls. This cost

is relatively negligible when used in a distributed environment, where

real performance problems come from the network latency time [22].

Cost of reection. In Reex many basic operations rely upon the reec-

tion API of Java. For instance, method invocation on the base object

is performed using reection, and the class building process uses some

reection as well. There is a cost for using reection, that cannot be

avoided. However, some research is actually being done to optimize the

use of reection in Java, thanks to partial evaluation techniques [12].

A system like Reex can hope to bene�t from results of this research

area.

Making reective classes. The whole process of making a new reective

class is also time- and resource-consuming. Moreover, this can happen

at run-time since Reex classes are created in a lazy manner. However,

once generated, a reective class is written to disk. Therefore the

generation cost is restrained to its minimum. Once on disk, a reective

class is yet another Java class.

Cost of the meta-level architecture. The meta-level associated to a re-

ective object is at least of one metaobject, the root metaobject, plus

all the e�ective metaobjects. This entails some cost since metaobjects

collaborate together. It is a price to pay to have a composition frame-

work and to allow dynamic composition/decomposition of metaob-

jects. We believe it is worthwhile, since the exibility o�ered can

adequately be exploited and since Reex was targeted at distributed

environments.

CHAPTER 6. EVALUATION 71

Having reective objects. With Reex, only instances which are intended

to be used as reective are reective, since the base class is not modi-

�ed. Compared to a classical approach, having one reective object in

a system does not entail that all other objects of the same type are re-

ective too. Therefore the cost of having reective objects (meta-level

processing) is reduced to only those objects that really need it.

Of course, using Reex will never make a system faster. There is an

inevitable tradeo� between exibility and performance that has to be eval-

uated on a case-by-case basis. We have made our best to limit the over-cost

of Reex, as explained above, but it will ever remain.

6.3 Limitations

6.3.1 Final classes

The base principle of Reex is to create a reective subclass of the class we

want reective instances of. This principle encounters a limitation, however.

In the Java programming language there is a modi�er, named final, which

aim is, when applied to a class declaration, to disable the possibility of

extending the class. Such a class is referred to as a �nal class. Though it is

still possible to create a reective subclass of a �nal class, it will be rejected

when loaded by the bytecode veri�er of the Java virtual machine.

Therefore, it is currently impossible to get a reective instance of a

�nal class, though semantically it should be possible. Indeed, what Reex

does is not modifying the semantics of the class itself, but instead adding

the possibility of customizing it. However, for a �rst approach, we have

found this limitation not too dramatic, since very few classes are declared

as �nal classes in the Java library. Moreover, most of the classes that are

good candidates for our target application domain, in particular for resource

management, are not �nal classes (e.g. all classes of the java.util package,

all classes of streams, sockets, etc.).

However, the limitation remains. There is actually one solution that

could be implemented at load-time: using Javassist, it is possible when

loading a class into the JVM to remove its �nal ag. In this way, if later

on a reective subclass is loaded, it will not be rejected by the bytecode

veri�er. However this implies using a customized loader for loading all classes

included the system classes, and this is a very sensitive manipulation. Also,

in a distributed environment, it implies being sure that all hosts have been

started using the customized class loader. Finally, removing the �nal ag of

classes introduces a priori a security hole in the system, since it would allow

to load other, possibly non-trusted, subclasses of normally �nal classes.

CHAPTER 6. EVALUATION 72

6.3.2 Final methods

Similarly to the previously exposed limitation, there is an issue with public

methods of a class that are declared final. Applied to a method declaration,

this keyword indicates that the method cannot be overridden. Or, in order

to be able to trap all public method calls, a reective class overrides each

and every public method declared in any of its superclasses.

Currently, if a �nal method is encountered, it is skipped, since it cannot

be overridden. Therefore, invocations of this method, though public, will

not be trapped by the metaobject. Again, in practice, we did not encounter

any issue with this. But our level of experimentation remains very basic and

it is possible that this limitation could be problematic.

Again a possible solution to this issue is using a customized class loader

and Javassist. The idea would be to modify any class that has at least

one �nal public method. For each �nal public method, we should rename

that �nal method, following some internal naming convention, and then add

a new non-�nal public method with the original name. This new method

will simply delegate behavior to the original �nal method. Doing such a

transformation is easy with Javassist, but like the solution to the previous

issue, it requires acting on each and every class loaded into each JVM of the

(possibly distributed) system.

6.3.3 Composition of metaobjects

Composition of concerns in general is a very tough topic. Di�erent ap-

proaches have been explored by the research community ([10, 9]), but the is-

sue is still open. In particular, correctly managing the possible cross-cutting

and collaboration of concerns, may them be represented by metaobjects, or

composition �lters [4], or separately speci�ed aspects [37], is still an active

research topic today1.

In Reex, we have implemented a framework for metaobjects compo-

sition based on work on explicit composition of metaobjects [50]. In sec-

tion 3.2.3 we have exposed it, as well as an indicative terminology for

metaobjects, introducing the idea of a semantically strong metaobject, an

auxiliary metaobject, and an adaptor to a semantically strong metaobject.

However, we feel that work remains to be done here to explore more

deeply the composition model and its pitfalls. Surely this was not the aim

of this dissertation, and it would require a considerable investment to explore

this issue in details. Though the model was suÆcient for our experiments,

we are convinced it would need some rework, taking more time to study in

depth the di�erent works done in the �eld. In addition to that, it will be

necessary to consider the issue of dynamic metaobjects composition with

1A sign of this fact is the presence of a workshop dedicated to advanced composition

of concerns at the upcoming OOPSLA'2000 conference.

CHAPTER 6. EVALUATION 73

class builders, in particular the possibility of the case where a metaobject is

added to an object that has been created using a class builder that is not

specialized enough for that metaobject. Therefore we foresee that this part

of Reex is likely to be the most subject to changes in the future.

Chapter 7

Conclusions and Perspectives

7.1 Future Work

Concerning the Reex system, we foresee three directions for future work.

First of all, in order to solidify the Reex architecture, it is necessary to

develop more kinds of metaobjects for di�erent semantics. For instance, it

should be possible to extend our network reference metaobject to imple-

ment a transparent replication mechanism. Developing other metaobjects

will further test-proof the architecture of Reex, possibly entailing slight

modi�cations.

A second point to focus on is Reex integration to existing mobile object

systems. During this thesis, we were limited in the sense that most ma-

ture mobile agent platforms for Java are only compatible with the JDK 1.1

whereas Reex requires JDK 1.2. Most of the implementors of mobile agent

systems plan to make a version compatible with JDK 1.2 in the near future,

but as of now we have not encountered them. As soon as several platforms

are ported to JDK 1.2, the Reex integration mechanism should be tested,

though we do not foresee real issues in that regard. Indeed, we believe that

our interface is adequate to avoid the integration problems.

Finally, as mentioned in section 6.3.3, the framework for metaobjects

composition requires a deeper analysis. More work is needed on compo-

sition semantics and how to guarantee a certain level of consistency when

composing meta-level entities, addressing possibly cross-cutting concerns.

7.2 Perspectives

We believe that Reex is particularly well adapted to achieve exibility in

mobile object systems. Indeed, its applicability can be extended: until now,

we have only used Reex to make passive objects reective, and used that

ability to implement di�erent resource management policies. But Reex in

itself does not restrain its applicability to passive objects. Active objects,

74

CHAPTER 7. CONCLUSIONS AND PERSPECTIVES 75

agents, can also be made reective. This possibility opens many interesting

perspectives:

Alternative method implementations. Using an extended class builder,

it is conceivable to allow the speci�cation of di�erent implementations

for a particular method, and then make a metaobject invoking any

of the available implementations given a selection criteria. This func-

tionality can be implemented in a very exible way using Reex, since

Javassist o�ers all the convenient methods to manipulate bytecode

representation of methods. Such a functionality is useful in order to

achieve dynamic behavioral adaptation of mobile entities: for instance,

a mobile agent could use di�erent compression algorithms depending

on some external criteria, e.g. network congestion.

External resource awareness. Following the idea of Sumatra [1], it is

important to be able to make a mobile agent aware of the state of the

resources available, like the quality of the network at a given moment,

or the state of a persistence device. In the rebinding policy, we used

Reex to transparently connect resources to a local resource manager

(section 5.2). This resource manager was seen as a repository of refer-

ences to local resources. Similarly, such a resource manager could be

extended to provide noti�cations about the state of external resources.

A metaobject could be implemented to make mobile agents themselves

register with such a manager, and adapt their behavior accordingly.

Combination of both. In fact we foresee a combination of the two pre-

viously exposed functionalities, along with the resource management

policies implemented during this thesis. A metaobject (or set of col-

laborative metaobjects) could use information from a resource monitor

to determine which implementation to use for a given method. Using

the resource monitor, the metaobject could also change the manage-

ment semantics of some resources (passive objects) attached to the

metaobject. This would require an extension of our metaobjects, in

particular that of network reference, in order to make it possible to

consistently alternate between a network reference and a by-copy se-

mantics.

As of now we have quite a clear idea of how to implement these di�erent

features properly with Reex. We did not have time to give it a deeper

thought during the time of this thesis, but we plan to e�ectively do so in the

near future. Indeed we are convinced that what can be achieved here with

Reex, which corresponds to the ideas exposed in [46], will meet the needs

of the industry, giving the ability to computing entities to adapt themselves

to the status of the external resources, and being able to do so in a exible

manner. This is of major relevance for the computing world of tomorrow,

CHAPTER 7. CONCLUSIONS AND PERSPECTIVES 76

where a lot of small-sized mobile nodes will be connected by a limited and

uctuating network.

7.3 Conclusions

In this dissertation we created a Java reective system, Reex, which allows

a Java programmer to obtain reective objects, i.e. objects that have an

associated metaobject.

This reective system provides transparent type-compatibility of reec-

tive objects with their non-reective equivalents, o�ers means to dynami-

cally compose and decompose metaobjects associated to an instance, allows

for conversion of normal objects to reective objects, and sets up an open

metaobject protocol that can be easily extended.

The Reex system was developed with the objective in mind to o�er

exibility in data space management mechanisms in mobile object systems.

It has �rst been extended to be operational in distributed environments,

and then has been put into concrete use.

Two kinds of metaobjects implementing two di�erent resource manage-

ment policies have been developed. The applicability of Reex and those

metaobjects has been tested in several examples of mobile agent programs.

Therefore we have achieved our objective to provide for more exibility

in mobile object systems, limiting ourselves to the aspect of data space

management mechanisms as of now. However, when concluding this work,

we have foreseen other applications of Reex to o�er more adaptability in

di�erent aspects of mobile object systems, such as behavior customization

and adaptation to the network state.

Appendix A

Paradigms of Distributed

Computing

This appendix aims at giving a de�nition of the di�erent paradigms of dis-

tributed computing, in order to introduce that of mobile agents.

The focus is put on the mobile agent paradigm, highlighting its current

drawbacks.

A.1 Client-Server

The client-server model is the well-known and widely used approach to dis-

tributed computing problems. In this model, the server entity o�ers a set

of services that provide access to some of its local resources. This ability to

interpret the demands of clients is called the know-how. The code that im-

plements those services is local to the server's host, thereby the clients that

require the execution of a certain service need to know how to invoke them.

Servers are able to process the requests using their processor capability.

Hence in this paradigm, the server holds both the resources and the

know-how, while the client component does not hold anything.

A.2 Remote Evaluation

In the remote evaluation paradigm a component has the know-how neces-

sary to perform the service but it lacks the resources required, which are

located at a remote site. Consequently, the component sends the service

know-how to a computational component located on the remote site. The

remote component executes the code using the resources available there and

additionally delivers the result back.

77

APPENDIX A. PARADIGMS OF DISTRIBUTED COMPUTING 78

A.3 Code on Demand

The general idea behind this model is that whenever one host is unable to

perform a task due to lack of know-how, it must be possible to retrieve this

knowledge from another entity to which the host is connected. When the

host receives the needed information, it uses its own processor capability

and resources to perform the desired task.

The code on demand model di�ers from the client-server model in a

way that the notion of server (central host holding resources, know-how and

processor capability) disappears, distributing the resources and processor

capability through the hosts and letting the know-how be downloaded when

not available.

Java applets and servlets are good examples of technologies implement-

ing the code on demand paradigm. Applets are downloaded from the Web

by hosts and execute locally, while servlets are transferred to remote Web

servers with the purpose of executing there.

A.4 Mobile Agent

A.4.1 What's a Software Agent?

There is yet no consensus about the de�nition of what an agent is. From

the end user perspective, it is said that an agent is essentially a program

that is able to assist people and act on their behalf [43]. From this point of

view we can say that a user can delegate tasks to the agent which is then

responsible to perform them.

Pattie Maes gives in [48] a similar but slightly more speci�c de�nition.

She views agents as \software that is proactive, personalized, and adapted.

Software that can actually act on behalf of people, take initiative, make

suggestions, and so on". She emphasizes the notion of proactivity of an

agent, its ability to decide by itself or suggest, which goes a little beyond

the �rst de�nition we can �nd in [43].

From a system perspective, an agent can be seen as a software object

that resides in a certain execution environment. Danny Lange insists in [43]

on the fact that what actually makes agents a major breakthrough is the

fact that they can act asynchronously and autonomously inside their en-

vironment. They can be left executing continuously without needing any

interaction of its creator or other entities involved. Additionally, agents are

created to perform a predicted goal that will de�ne its execution completely.

During this execution they are sensible to changes in their environment, be-

ing able to react accordingly.

In addition to the common features mentioned above, agents may have

other properties. An agent can be:

� communicative - it is able to communicate with other agents,

APPENDIX A. PARADIGMS OF DISTRIBUTED COMPUTING 79

� mobile - it can travel from one host in the network to another,

� learning - it is able to adapt its behavior based on previous experiences.

A.4.2 The Paradigm

The mobile agent paradigm is a distributed computing model based on the

notion of a software agent, de�ned as above, which has the extra property

of mobility, and also - it is very often related to software agents in general

and even more often to mobile agents - which is communicative.

A mobile agent is a software object that has the ability to travel through

the hosts of a network. This means that when it is created its action is not

restricted to the creation environment. It can move from one host to another

where its work is needed, taking advantage of its mobility.

When an agent is transferred to the other host, it must carry his state and

code in order to be able to resume execution in the di�erent environment.

Here, state can be de�ned by the agent's attributes that determine what to

perform, while the code de�nes how to perform, when an agent arrives at

the destination.

The mobile agent paradigm is said to be an improved mixing of the

client-server and code on demand paradigms [43]. Here the client and the

server are one single host, with its own resources and processor capability.

The applet and servlet functions are now replaced by an emergent entity

called mobile agent. This entity holds the necessary know-how to perform

certain type of operations, and due to its mobility that knowledge becomes

available throughout the network where the mobile agent operates.

A.4.3 Drawbacks of the Mobile Agent Paradigm

The mobile agent paradigm has not yet obtained the global acceptance from

the industrial and research community. There are several reasons to this,

either due to complications and weaknesses of the mobile agent approach,

or due to the existence of well (or at least more) established alternatives.

The challenging diÆculties of mobile agents systems

As mentioned in [27], security is a crucial issue when using mobile agents

systems. In more traditional distributed computing approaches, security

is more or less guaranteed nowadays. But when switching to the mobile

agent paradigm, the entire architecture of distributed systems is changed.

Thus security turns out to exist under many di�erent forms that did not

appear in previous paradigms. There are three aspects to security in mobile

agents systems: protecting agents from malicious agents, hosts from mali-

cious agents, and also agents from malicious hosts. Each of these issues has

to be explored in depth before the mobile agents systems rise.

APPENDIX A. PARADIGMS OF DISTRIBUTED COMPUTING 80

There are other challenging concerns when using mobile agents such as

interoperability with other systems, coordination and communication as-

pects, and management of large societies of mobile agents [29]. Concerning

interoperability with existing systems, the OMG recently proposed MASIF

(Mobile Agent Systems Interoperability Facilities), a standard that deals

with interoperability issues between di�erent agent systems and CORBA

services. Other approaches, such as the one exposed in [29], bet on the fact

that mobile agents have to be merged with the existing WWW network,

thus integrated in Web browsers and Web servers.

Mobile agents are not always well-suited

Another point adding to the diÆcult emergence of mobile agents is the fact

that this approach is not always very well suited for distributed applica-

tions. In fact, moving agents over the network is good when the advantage

of locality counterbalances the price of transferring more raw data. For in-

stance, one can easily imagine that an email delivery system implemented

with mobile agents will certainly work perfectly and be very close to the

physical world analogy of mail delivery, but will be far less eÆcient than the

actual approach using SMTP.

The competing alternatives to mobile agents

There are several existing and established alternatives to mobile agents that

can achieve similar outcomes, as discussed in [52]. Among those alternatives

are message passing systems, advanced forms of remote procedure call such

as remote method invocation, or Common Object Request Broker Architec-

ture (CORBA).

For instance, the Knowledge Query Manipulation Language (KQML) is

one of the more advanced message passing system, which allows much more

complex forms of interactions between agents than simple query/response

mechanisms. With such advanced collaboration systems, agents need not

move to hosts, they can just interact by passing message, through a simple

transport mechanism.

CORBA is a platform and language independent mechanism for invoking

remote object methods. CORBA can be used to create distributed systems

that execute on many platforms, in many languages. CORBA is a direct

threat to mobile agents because of its great portability and exibility, and

would allow developers to create agents that are capable of complex com-

munication without ever traveling across a network.

APPENDIX A. PARADIGMS OF DISTRIBUTED COMPUTING 81

A.5 Summary

In this appendix we have introduced the di�erent paradigms of distributed

computing, client-server, remote evaluation, code on demand and mobile

agent.

We focused on the emerging mobile agent paradigm, highlighting its

drawbacks and competing alternatives.

Appendix B

EzAgent

In order to perform the di�erent tests needed to validate our work, we have

developed a very primitive mobile agent platform for Java, EzAgent. This

experimental platform based on RMI is primitive in the sense that it was not

developed to be a real mobile agent platform, but just enough to perform

the tests we needed.

For instance, the EzAgent platform does not provide for inter-agent com-

munication mechanisms, since this was not needed for this thesis. Similarly,

issues of security and performance were ignored. Though currently limited,

this platform could be extended in the future to make it more operative.

B.1 Concepts

The concepts on which EzAgent is based are the same than any mobile agent

platform, restricting ourselves to the existence and mobility of agents. An

agent is an active object that spends its life in so-called agent places.

An agent life-cycle starts with its creation within a place. Then an agent

can be dispatched to a remote place, either from its own will or from that

of the owner or from the place itself. Possibly, it can be deactivated, that is

made persistent on disk for a given deactivation time, and then reactivated

to continue its activity. Finally, an agent ends its life by being disposed.

An agent place is responsible for agent-related administrative tasks, such

as agent creation, reception, dispatching, deactivation and disposal. It is also

supposed to o�er a kind of yellow-pages service to contact an agent based

on its identi�er and to get the list of identi�ers of the agents it is currently

hosting.

B.2 The ezagent.EzAgent class

The EzAgent class is an abstract class that serves as the base class for

any class of agents within the EzAgent platform. This class implements

82

APPENDIX B. EZAGENT 83

method name description

void onCreation invoked when a agent is created.

(Object[] args) This method should be used instead of the

standard constructor.

void onArrival() invoked each time an agent arrives to a

new place.

void onDispatch() invoked each time an agent is about to be

dispatched to a remote place.

void onDisposal() invoked when an agent is about to be

disposed.

void onDeactivation() invoked when an agent is about to be

deactivated (written to disk for a time).

void onActivation() invoked when an agent has just been reacti-

vated (after deactivation time expired).

Table B.1: Customization methods of the life-cycle of an EzAgent.

the java.lang.Runnable interface, meaning it can be wrapped by a thread

object that will execute it.

In order to allow programmatic access to the di�erent life-stages of an

agent, the EzAgent class de�nes methods that are automatically invoked and

that can be rede�ned in subclasses (see table B.1). Only the onCreation

method is declared abstract and therefore must be implemented by con-

crete subclasses, whereas the others are optional. This method replaces the

normal constructor which should not be rede�ned in subclasses.

The dispatching, deactivation and disposal methods are implemented in

the EzAgent class as �nal methods, since they should not be overridden. Re-

call that those �nal methods �rst invoke the corresponding life-cycle method

to allow customization. Then they typically forward the request to the place

where the agent presently resides.

Finally, an EzAgent keeps a reference to its current place, its home place,

and has an internal state indicator (used to route the behavior each time

the object is re-run), as well as an identi�er.

B.3 The ezagent.EzPlace interface

The EzPlace interface de�nes the methods that should be implemented by

a class representing a place for EzAgents (see table B.2). It de�nes methods

for agent administration and yellow-pages services.

In the EzAgent platform, places are RMI remote objects that have a

name used to look them up in the RMI registry.

APPENDIX B. EZAGENT 84

method name description

void createAgent creates a new agent, instance of the class

(String clsname, speci�ed by clsname, using the speci�ed

Object[] args) arguments.

void receiveAgent receives the speci�ed agent sent by the

(EzAgent agent, place speci�ed as from.

String from)

void dispatchAgent dispatches the speci�ed agent to the place

(EzAgent agent, speci�ed by to.

String to)

void dispatchAgent dispatches the speci�ed agent to the

(EzAgent agent, speci�ed place.

EzPlace to)

void disposeAgent disposes the speci�ed agent.

(EzAgent agent)

void deactivateAgent deactivates the speci�ed agent for the

(EzAgent agent, given time.

long deact_time) The agent is stopped, and serialized to

disk. It is reactivated after expiration

of the deactivation time.

Set getAllIds() returns a set containing the identi�ers

of all the agents hosted by the place.

EzAgent getAgent returns a reference to the agent of the

(Integer agentId) speci�ed identi�er.

String getName() returns the name of this place.

Table B.2: The EzPlace interface.

APPENDIX B. EZAGENT 85

B.4 The ezagent.EzPlaceImpl class

This class is our concrete implementation of the EzPlace interface. Such a

place manages private hash tables that hold references to the active agents

in the place, to the deactivated agents, and to the other known places.

In order to run an agent, such a place uses an EzAgentRunner, which is a

thread object running the Runnable agent. When an agent creation request

arrives, the place instantiates the agent and creates an agent runner for that

agent. The runner simply runs the agent. When an agent is disposed or

dispatched, the place throws an exception that causes the agent runner to

stop (and therefore to be garbage collected later).

When a request for deactivation is received, the agent is serialized to

disk, removed from the active agents hash table and added to the deactivated

agents hash table, and a so-called WakeUpThread is created. The still running

agent is then killed. The wake-up thread runs during the deactivation time

of the agent, and when the time expires, it deserializes the agent and asks

the place to reactivate it. Reactivating the agent implies re-putting it in the

appropriate hash table, updating its internal state and creating a new agent

runner.

B.5 Summary

Hereby we have quickly presented the EzAgent platform, its concepts and

implementation guidelines.

A lot of work remains to be done to make a true agent platform from

it: security issues and performance (including garbage collection) have to

be dealt with.

Also, in order to make experiments of agents interaction, a mechanism

for inter-agent communication should be designed and implemented on top

of it.

In any case, this simple platform was suÆcient for us to test our work,

since it meets the necessary requirements we had: o�ering mobility and

persistence features for agents, and being compatible with the JDK 1.2.

Appendix C

Resource Manager for Java

A resource manager, or resource repository, is a local Java object that is

used to access local resources. It is basically an interface to a storage object

where local resources are bound to resource identi�ers. A local resource is

any Java object that is speci�c to the running JVM and that o�ers services to

incoming entities in the host. A resource manager is necessary to implement

a rebinding policy (section 5.2).

As a matter of fact, Java does not provide a standard resource manager.

We believe this would be useful, in particular when taking into account the

fact that most mobile object systems today are based on this language. It

is indeed in the area of mobile agent systems that such a resource manager

�nds all its usefulness.

In order to be able to test our metaobject for the rebinding policy, we

implemented a simple resource manager for Java. We have extended the

java.lang.System class in order to provide a way to get the local resource

manager.

C.1 The java.lang.ResourceManager class

Our implementation of a resource manager is simple: a ResourceManager

object aggregates a hash table of bindings resource identi�er{resource refer-

ence. A resource identi�er is simply a string identifying a resource.

The methods of a ResourceManager allow any object to bind a resource

to an identi�er, to unbind a resource given its identi�er, and to obtain a

reference to a resource based on its identi�er.

The binding mechanism is based on that of the RMI registry: there are in

fact two methods for binding a resource, bind and rebind. Using the bind

method, if a resource is already bound to the speci�ed string identi�er, then

a ResourceAlreadyBoundException is thrown. Using the rebind method,

if a resource is already bound to the speci�ed string identi�er, then the

binding is updated. Below is the code of these two methods:

86

APPENDIX C. RESOURCE MANAGER FOR JAVA 87

/**

* Binds the specified Object to the string id.

* If a binding with that id already exists, then a

* (runtime) ResourceAlreadyBoundException is thrown.

*/

public void bind(String name, Object value) {

if(bindings.containsKey(name))

throw new ResourceAlreadyBoundException(name);

else

bindings.put(name,value);

}

/**

* Binds the specified Object to the string id.

* As opposed to <code>bind</code>, this method

* never throws exception. If a binding already exists,

* then it is replaced by the new value.

*/

public void rebind(String name, Object value){

bindings.put(name,value);

}

Unbinding a resource is simply done by removing the entry in the hash

table:

/**

* Unbinds the resource that is bound to the

* specified identifier.

* If no resource is bound to it, does nothing.

*/

public void unbind(String name){

bindings.remove(name);

}

Finally, the getResource method allows any object to get a reference

to a resource based on its identi�er. If no resource is bound to the given

identi�er, then a ResourceNotBoundException is thrown. This exception

is a run-time exception.

/**

* Returns the resource (Object) bound to the given name.

* If no resources are bound to this name, then a

* (runtime) ResourceNotBoundException is thrown.

*/

public Object getResource(String name){

APPENDIX C. RESOURCE MANAGER FOR JAVA 88

if(bindings.containsKey(name))

return bindings.get(name);

throw new ResourceNotBoundException(name);

}

A ResourceManager can automatically bind some default resources when

initialized. This is speci�ed by giving a boolean argument to the constructor.

If this boolean is true, then the defaultInit method is invoked. Presently

this method binds the standard input/output streams of a JVM:

/**

* Adds three default bindings:

* - "stdout" for System.out

* - "stderr" for System.err

* - "stdin" for System.in

*/

protected void defaultInit(){

bindings.put("stdout", System.out);

bindings.put("stderr", System.err);

bindings.put("stdin", System.in);

}

C.2 The new java.lang.System class

In order to allow any object to get a reference to a unique local resource

manager, we have extended the System class of Java.

Since we want a unique ResourceManager object per JVM, we have

added a static instance variable to that class:

private static ResourceManager resourceManager = null;

Then, the static method getResourceManager returns a reference to the

manager, possibly initializing it if not yet created. A true argument is

given to the constructor of the ResourceManager object in order to make it

automatically bind the default resources (input/output streams).

public static ResourceManager getResourceManager() {

if(resourceManager == null)

resourceManager = new ResourceManager(true);

return resourceManager;

}

This is all we need to setup a simple but yet operational mechanism

of local resources binding/querying. Using our implementation, an object

that wants to get a reference to the standard output will typically do the

following:

out = System.getResourceManager().getResource(``stdout'');

APPENDIX C. RESOURCE MANAGER FOR JAVA 89

C.3 Summary

In this appendix, we have explained the necessity of a resource manager for

Java and presented our simple implementation of it.

We also detailed the extension made to the java.lang.System class in

order to make our resource manager unique and accessible in each running

JVM.

This work was necessary for us to experiment truly with the rebinding

policy.

Bibliography

[1] A. Acharya, M. Ranganathan, and J. Saltz. Sumatra: A Language

for Resource-aware Mobile Programs. In Mobile Object Systems: To-

wards the Programmable Internet, volume 1222 of LNCS, pages 111{

130. Springer, April 1997.

[2] M. Ancona, W. Cazzola, G. Dodero, and V. Gianuzzi. Channel Rei�ca-

tion: a Reective Model for Distributed Computation. In Proceedings

of IEEE International Performance Computing, and Communication

Conference (IPCCC'98), pages 32{36. IEEE, February 1998.

[3] M. Baldi, S. Gai, and G. P. Picco. Exploiting Code Mobility in De-

centralized and Flexible Network Management. In Mobile Agents: 1st

International Workshop MA '97, volume 1219 of LNCS. Springer, April

1997.

[4] L. Bergmans. The Composition Filters Object Model. Dept. of Com-

puter Science, University of Twente, 1994.

[5] G. S. Blair, G. Coulson, P. Robin, and M. Papathomas. An Architec-

ture for Next Generation Middleware. In Proceedings of Middleware'98,

pages 191{206. Springer-Verlag, September 1998.

[6] D. G. Bobrow, R. G. Gabriel, and J. L. White. CLOS in Context {

The Shape of the Design Space. In Object Oriented Programming { The

CLOS Perspective. MIT Press, 1993.

[7] S. Bouchenak. Pickling Threads State in the Java System. In Pro-

ceedings of the Third European Research Seminar on Advances in Dis-

tributed Systems (ERSADS'99), April 1999.

[8] S. Bouchenak and D. Hagimont. Approaches to Capturing Java Threads

State. In Proceedings of Middleware'2000, April 2000.

[9] M. N. Bouraqadi-Saâdani. Un cadre r�eexif pour la programmation par

aspects. In Langages et Mod�eles �a Objets (LMO'99), Villefranche sur

Mer - France, January 1999. Hermes.

90

BIBLIOGRAPHY 91

[10] M. N. Bouraqadi-Sadani, T. Ledoux, and F. Rivard. Safe Metaclass

Programming. In Proceedings of OOPSLA'98. ACM, October 1998.

[11] M. Braux and J. Noy�e. Changement dynamique de comportement par

composition de sch�emas de conception. In Langages et Mod�eles �a Objets

(LMO'99), Villefranche sur Mer, France, January 1999.

[12] M. Braux and J. Noy�e. Towards Partial Evaluating Reection in Java.

In ACM SIGPLAN Workshop on Partial Evaluation and Semantics-

Based Program Manipulation, Boston, MA, USA, January 2000. ACM

Press. ACM SIGPLAN Notices, 34(11).

[13] J. P. Briot and P. Cointe. Programming with Explicit Metaclasses in

SmallTalk-80. In Proceedings of OOPSLA'89, volume 24 of Sigplan

Notices, pages 419{431. ACM, October 1989.

[14] T. Cai, P. Gloor, and S. Nog. DataFlow: A Workow Management Sys-

tem on the Web using transportable Agents. Technical Report TR96-

283, Dept. of Computer Science, Dartmouth College, Hanover, NH,

1996.

[15] D. Caromel, W. Klauser, and J. Vayssiere. Towards seamless computing

and metacomputing in Java. In Concurrency Practice and Experience,

volume 10. Wiley and Sons, Ltd., September 1998.

[16] A. Carzaniga, G. P. Picco, and G. Vigna. Designing Distributed Appli-

cations with Mobile Code Paradigms. In Proceedings of the 19th Inter-

national Conference on Software Engineering (ICSE'97), pages 22{32.

ACM Press, 1997.

[17] W. Cazzola. Evaluation of Object-Oriented Reective Models. In

Proceedings of ECOOP Workshop on Reective Object-Oriented Pro-

gramming and Systems (EWROOPS'98), 12th European Conference on

Object-Oriented Programming (ECOOP'98), 1998.

[18] S. Chiba. Javassist Home Page.
http://www.hlla.is.tsukuba.ac.jp/~chiba/javassist/index.html.

[19] S. Chiba. A Metaobject Protocol for C++. In Proceedings of ACM Confer-

ence on Object-Oriented Programming Systems, Languages, and Applications,
volume 30 of SIGPLAN Notices, pages 285{299. ACM, 1995.

[20] S. Chiba. Javassist | A Reection-based Programming Wizard for Java. In
Proceedings of the ACM OOPSLA'98 Workshop on Reective Programming

in Java and C++, October 1998.

[21] S. Chiba. Load-time Structural Reection in Java. To appear at ECOOP'2000,
June 2000.

BIBLIOGRAPHY 92

[22] S. Chiba and T. Masuda. Designing an Extensible Distributed Language with
a Meta-Level Architecture. In Proc. of the 7th European Conference on Object-

Oriented Programming, volume 707 of LNCS, pages 482{501. Springer Verlag,
1993.

[23] G. Cohen, J.S. Chase, and D.L. Kaminsky. Automatic Program Transforma-
tion with JOIE. In USENIX Annual Technical Conference '98, 1998.

[24] P. Cointe. MetaClasses are �rst class objects: the ObjVLisp model. In Pro-

ceedings of OOPSLA'87, volume 22 of Sigplan Notices. ACM, October 1987.

[25] M. Dahm. Byte Code Engineering with the JavaClass API. Technical Report
B-17-98, Institut f�ur Informatik, Freie Universit�at Berlin, January 1998.

[26] J.-C. Fabre, V. Nicomette, T. P�erennou, R. J. Stroud, and Z. Wu. Imple-
menting Fault Tolerant Applications using Reective Object-Oriented Pro-
gramming. In Proceedings of FTCS-25 "Silver Jubilee". ACM, June 1995.

[27] W.M. Farmer, J.D. Guttmann, and V. Swarup. Security for Mobile Agents:
Issues and Requirements. In Proceedings of NISSC'96, 1996.

[28] J. Ferber. Computational Reection in Class Based Object Oriented Lan-
guages. In Proceedings of OOPSLA'89, volume 24 of Sigplan Notices, pages
317{326. ACM, October 1989.

[29] S. Fnfrocken and F. Mattern. Mobile Agents as an Architectural Concept
for Internet-based Distributed Applications { The WASP Project Approach.
In Proceedings of Kommunikation in Verteilten Systemen (KiVS'99), pages
32{43. Springer-Verlag, 1999.

[30] G. H. Forman and J. Zahorjan. The Challenges of Mobile Computing. In
IEEE Computer, volume 27, pages 38{47, 1994.

[31] M. Fowler. UML Distilled. Object Technology Series. Addison-Wesley, 1997.

[32] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code Mobility. In
IEEE Transactions on Software Engineering, volume 24, 1998.

[33] S. F�unfrocken. Transparent Migration of Java-based Mobile Agents (Cap-
turing and Reestablishing the State of Java Programs. In Proceedings of the

Second International Workshop on Mobile Agents (MA'98), volume 1477 of
LNCS, pages 26{37. Springer-Verlag, September 1998.

[34] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns { Elements

of Reusable Object-Oriented Software. Addison-Wesley professional computing
series, 1995.

[35] M. Golm and J. Klein�oder. Jumping to the Meta Level, Behavioral Reection
Can Be Fast and Flexible. In Proceedings of Reection '99, volume 1616 of
LNCS, pages 22{39. Springer Verlag, 1999.

[36] Object Management Group. CORBA: Architecture and Speci�cation, August
1994.

BIBLIOGRAPHY 93

[37] G. Kiczales, J. Irwin, J. Lamping, J. Loingtier, C.V. Lopes, C. Maeda, and
A. Mendhekar. Aspect Oriented Programming. In Special Issues in Object-

Oriented Programming. Max Muehlhaeuser (general editor) et al., 1996.

[38] G. Kiczales, J. Des Rivieres, and D. G. Bobrow. The Art of the Metaobject

Protocol. MIT Press, 1991.

[39] J. Klein�oder and M. Golm. MetaJava: An EÆcient Run-Time Meta Archi-
tecture for Java. In Proceedings of the International Workshop on Object

Orientation in Operating Systems (IWOOS'96). IEEE, 1996.

[40] P. Knudsen. Comparing two Distributed Computing Paradigms - a Perfor-
mance Case Study. Master's thesis, University of Troms�, 1995.

[41] J. Lamping, G. Kiczales, L. Rodriguez, and E. Ruf. An Architecture for an
Open Compiler. In Proceedings of the International Workshop on Reection

and Meta-Level Architectures, pages 95{106. Akinori Yonezawa and Brian C.
Smith, editors, 1992.

[42] D.B. Lange. Java Aglets Application Programming Interface (J-AAPI). IBM
Corp. White Paper, February 1997.

[43] D.B. Lange. Mobile Objects and Mobile Agents: The Future of Distributed
Computing? In Proceedings of ECOOP'98, July 1998.

[44] D.B. Lange and D.T. Chang. IBM Aglets Workbench | Programming Mobile
Agents in Java. IBM Corp. White Paper, September 1996.

[45] T. Ledoux. OpenCorba: a Reective Open Broker. In Reection'99, volume
1616 of LNCS. Springer Verlag, 1999.

[46] T. Ledoux and M. N. Bouraqadi-Saâdani. Adaptability in Mobile Agent
Systems using Reection. RM'2000, Workshop on Reective Middleware,
http://www.comp.lancs.ac.uk/computing/rm2000/, April 2000.

[47] P. Maes. Concepts and Experiments in Computational Reection. In Proceed-

ings of OOPSLA'87, pages 147{155. ACM Sigplan Notices, 1987.

[48] P. Maes. Pattie Maes on Software Agents. In IEEE Internet Computing, July
1997.

[49] J. McA�er. Meta-Level Programming with CodA. In Proceedings of the

9th Conference on Object-Oriented Conference (ECOOP'95), volume 952 of
LNCS, pages 190{214. Springer-Verlag, 1995.

[50] P. Mulet, J. Malenfant, and P. Cointe. Towards a methodology for explicit
composition of metaobjects. In Proceedings of OOPSLA'95, pages 316{330.
ACM Sigplan Notices, October 1995.

[51] R. Rao. Implementational Reection in Silica. In Proceedings of ECOOP'91,
pages 251{266. Springer-Verlag, July 1991.

[52] D. Reilly. Mobile Agents { Process migration and its implications.
http://www.davidreilly.com/topics/software_agents/, 1998.

BIBLIOGRAPHY 94

[53] T. Sekiguchi, H. Masuhara, and A. Yonezawa. A Simple Extension of Java
Language for Controllable Transparent Migration and its Portable Implemen-
tation. In Proceedings of Coordination'99, LNCS. Springer-Verlag, 1999.

[54] B. C. Smith. Reection and Semantics in Lisp. In Proceedings of the 14th

Annual ACM Symposium on Principles of Programming Languages, pages 23{
35, January 1984.

[55] M. Stra�er, J. Baumann, and F. Hohl. Mole|A Java Based Mobile Agent
System. In M. M�uhla�user, editor, Special Issues in Object-Oriented Program-

ming: Workshop Reader of the 10th European Conference on Object-Oriented

Programming ECOOP'96, pages 327{334. dpunkt, July 1996.

[56] Sun Microsystems, Inc. The Java Language Speci�cation, 1996.

[57] Sun Microsystems, Inc. Java Object Serialization Speci�cation { JDK1.2,
November 1998.

[58] Sun Microsystems, Inc. Object Serialization.
http://java.sun.com/products/jdk/1.2/docs/guide/serialization/,
1998.

[59] Sun Microsystems, Inc. Remote Method Invocation.
http://java.sun.com/products/jdk/1.2/docs/guide/rmi/, 1998.

[60] Sun Microsystems, Inc. Dynamic Proxy Classes.
http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html,
1999.

[61] Sun Microsystems, Inc. Reection API Documentation.
http://java.sun.com/products/jdk/1.2/docs/guide/reflection/,
1999.

[62] M. Tatsubori. An Extension Mechanism for the Java Language. Master's
thesis, University of Tsukuba, Japan, 1999.

[63] A. R. Tripathi, N. M. Karnik, R. D. Singh, T. Ahmed, J. Eberhard, and
A. Prakash. Development of Mobile Agent Applications with Ajanta. Techni-
cal report, Department of Computer Science, University of Minnesota, Min-
neapolis, 1999.

[64] G. Vigna. Mobile Agents and Security. In LNCS State-of-the-Art Survey.
Springer, 1998.

[65] I. Welch and R. Stroud. From Dalang to Kava| The Evolution of a Reective
Java Extension. In Proceedings of Reection '99, volume 1616 of LNCS, pages
2{21. Springer Verlag, 1999.

[66] J. E. White. Telescript technology: The Foundation for the Electronic Mar-
ketplace. White paper, General Magic, Inc., 1994.

[67] Z. Wu. Reective Java and A Reective-Component-Based Transaction Archi-
tecture. In Proceedings of OOPSLA'98 Workshop on Reective Programming

in C++ and Java. J.-C. Fabre and S. Chiba, eds, 1998.

BIBLIOGRAPHY 95

[68] Y. Yemini. The OSI Network Management Model. In IEEE Communications,
pages 20{29, May 1993.

[69] Y. Yokote. The ApertOS Reective Operating System: The Concept and Its
Implementation. In Proceedings of OOPSLA'92, volume 27 of Sigplan Notices,
pages 414{434. ACM, October 1992.

