
Vr ije Universiteit Brussel – Belgium
Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes – France
and

Monash University – Australia
2001

Dynamic Service Discovery across

Technology Boundaries

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange)

By: David Würth

Promoter: Prof. Theo D’Hondt (Vrije Universiteit Brussel)
Co-Promoters: Christine Mingins (Monash University)

1

Abstract

The Web Service model enables the creation of services which can be exposed to the Internet.
By using only open standards as underlying technologies, this model promises a new way of
building service-oriented applications. The Web Service model promises seamless integration
for heterogeneous platforms and languages, hence providing interworking across technology
boundaries. This model is based on XML and Internet-based protocols. A survey of the state
of the art of the Web Service model is provided.

The Jini model provides also a service-oriented approach, which is, from an architectural and
conceptual point of view, similar to the Web Service model. But being based on the object-
oriented paradigm and on the Java language environment, makes the Jini approach very
different.

In this thesis we shall introduce and implement a Web Service-to-Jini bridge. The
implementation of the bridge is used to prove the promises made by the Web Service model.
In addition, the use in conjunction with another service-based approach, namely Jini, enables
a comparison of two models, sharing conceptual and architectural similarities. Though, being
based on completely different paradigms and technologies.

2

Table of Contents

PART A THE ROAD TO WEB SERVICES ...6

1 WEB SERVICE DEFINED ...6
1.1 Abstract View on Web Services...6
1.2 What others are saying ...7
1.3 The Web Service Component Model ..8
1.4 Web Service Key Specifications and Technologies ...10
1.5 Open Standards ...12

2 THE SIMPLE OBJECT ACCESS PROTOCOL ..14
2.1 Introduction ...14
2.2 Current-day middleware..15
2.3 SOAP’s Technical Background..17

2.3.1 HTTP, the Internet RPC mechanism ...17
2.4 SOAP Structure..19
2.5 The Structure of a SOAP Document ...21

2.5.1 A SOAP call ..22
2.5.2 The SOAP Response ..23
2.5.3 SOAP Exceptions ...24

2.6 SOAP’s Constituent Parts...24
2.7 XML Schemas...25

2.7.1 XML Schema Instance Documents ..26
2.7.2 XML Schema Class Documents ...27
2.7.3 Definition of New Datatypes ...28
2.7.4 Derivation of Types to Create New Types ...30
2.7.5 Documentation...31
2.7.6 Composing Schemas from Multiple Files...32
2.7.7 Substitution Groups ..32
2.7.8 Abstract and Final Types ..33

2.8 XML Namespaces..34
2.8.1 Conclusion ..35

2.9 Critical look ..35
2.9.1 SOAP’s problems ...36
2.9.2 Conversion to a Network Representation ..36
2.9.3 Transmittable Data ..37
2.9.4 SOAP Interoperability...38

2.10 Conclusion..39
3 THE WEB SERVICE DESCRIPTION LANGUAGE ..40

3.1 Introduction ...40
3.2 Current Implementations...40
3.3 Defining Web Services with WSDL ..42

3.3.1 Defining Request and Response Messages ..44
3.3.2 Port Types and Operations...45
3.3.3 Transition from Abstract to Concrete ...46

3.4 Conclusion..48

3

PART B THE ROAD TO JINI ..50

4 INTRODUCTION ...50
4.1 Jini’s View on Networking...50

4.1.1 Jini’s Approach to Distributed Computing..50
4.1.2 Federation and Centralized Control..51
4.1.3 What Makes Jini Different ..52

4.2 Architectural Overview..53
4.3 Components Making Up the System..54
4.4 Fallacies of the Network and Self-Healing Approach..57
4.5 Java’s Language Environment as Requirement ..58
4.6 The Importance of the Interface Type ..58
4.7 Mobile Code...59
4.8 Architecture Independence..60
4.9 Protocol Independence ...61
4.10 Language Independence ..62
4.11 Some Thoughts on Jini..64
4.12 Community-Based Evolvement ..64
4.13 Lack of Marketing Support ..65
4.14 Security Issues..65

4.14.1 Problems that Might Occur ..65
4.14.2 Requirements for a Secure Jini Environment...68
4.14.3 Drawbacks of the Proposed Security Approaches ..69

PART C THE WEB SERVICE-TO-JINI BRIDGE...71

5 THE BRIDGE ...71
5.1 Overview ..71
5.2 The Purpose of the Bridge..71
5.3 Requirement Analysis...71
5.4 Design and Implementation Criteria..72
5.5 Selection of Technologies ...73
5.6 Operational and Functional Description..74

5.6.1 The Core Classes ..74
5.6.2 A Walkthrough Scenario...75

5.7 Results...77
5.8 SOAP Interoperability with Apache SOAP and Microsoft....................................79
5.9 Known Limitations and Evolution Path...79

6 CONCLUSION...81

References ...82
Appendix A – The SchemaMapper class..84
Appendix B - The JavaMapper class ...90
Appendix C – The ImplCode class..95
Appendix D - Test Walkthrough and Generated Code..97

4

Introduction

The thesis describes an approach to a Web Services and Jini interworking approach. This
approach provides transparent interworking between applications exposed as Web Services
and Jini services. This is provided by building a software bridge, which enables Web Services
to be exposed as Jini services. The Web Service paradigm with its underlying technologies,
promises seamless integration for heterogeneous platforms and languages, hence providing
interworking across technology boundaries. The purpose of the bridge is to use Web Service
technology as base, describing the emerging issues and problems. This evaluation of Web
Services, a relative new development approach, will test the maturity of this approach. In
addition, the use in conjunction with another service-based approach, namely Jini, enables a
comparison of two models, sharing conceptual and architectural similarities. Though, being
based on completely different paradigms and technologies.

Web Services are a new component-based paradigm. It comprise a conceptual and
architectural foundation. Major software companies like Microsoft, IBM, and SUN, are
providing application frameworks and their product palettes with Web Service support. The
underlying technologies adhere all to specifications and open standards. The competition
will be who is providing the better tools and development environments for Web Service
development. We take a look at what development frameworks and tools are available today
and to what extent they keep to the specifications. Quality of implementation and ease of use
are important points to be considered. Further, another interesting question emerging here is,
to what extent Web Services will be portable amongst different development platforms.
Because the Web Service model is a very recent model, most of the specifications are still
work in progress.

Web Services describe a distributed software architecture of service components. They can be
integrated a run time, thus producing dynamic and flexible applications. Web Services can be
expressed and linked using XML. The messaging passing protocol is based on XML. The use
of XML entails platform neutrality. The component-based approach is based on the fact that
Web Services are language independent. The use of XML messaging and dynamic discovery
facilities enhance the current-day component model, by promoting a very loosely coupled
model and the runtime integration of components. Whereas, nowadays component models
are language dependent and runtime dependent. This service-based paradigm seems to be
meant to supersede the object-based paradigm. The question arising here is if Web Service
are only a concern of commercial nature or if they really leverage the existing models.

The building blocks which are enabling the concept of Web Services, are SOAP, WSDL, and
UDDI. These three technologies are closely linked to XML and HTTP. The current problem
involves the integration and coordination between the Web Services, above all concerning
Web Services built within different vendor platforms. One major issue in this thesis is to
evaluate the interoperability of different implementations of Web Service technologies. The
approach taken is to use the aforementioned implementation of a bridge, which enables Jini
services to access dynamically Web Services, implemented and exposed by the .NET
application framework. This environment provides all the issues emerging concerning the
integration across network and technology boundaries.

5

The implementation of distributed software is changing from a object-oriented approach to a
documented-oriented approach using HTTP and XML. One of the emerging standards,
SOAP, replaces the remote procedure call technology by its own XML based messaging
model. The SOAP protocol is supposed to a lightweight protocol to support the exchange of
information in a distributed environment. Because it need to fit the needs of all involved
platforms and clients, it must be completely general. This prevents SOAP to be specialized
for certain kinds of communication requirement. Is the SOAP protocol holding its promise to
be lightweight and how does it cope with its need to be general?

Jini, building on an object-oriented model, entails the notion of types, hence providing a
distributed, type safe model. In contrast, Web Services, which consist rather of documents
than of object types, support the notion of types through WSDL. WSDL is a general purpose
XML language for the describing the interface, protocol bindings, and deployment bindings
of network services. The description of Web Services with WSDL can be compared with the
definition of CORBA objects using an Interface Definition Language (IDL). The Web Service
model WSDL embodies the notion of types. A question is if WSDL can assure type safety ?

The gist of the thesis is to provide the knowledge on Web Services, Jini, and the elaboration
of its differences. This carries out a clear understanding of the different approaches used and
the underlying technologies. These entails the evaluation of the models, having a critical look
on it, and proposing enhancements. Moreover, it is our objective to evaluate these
technologies in a practical environment, using the newest tools. Further, the thesis is going to
answer the questions which have been outlined in this introduction.

As test basis for this evaluation serves the Microsoft .NET platform and the Java platform. In
the .NET architecture, Web Services play a major role. Sun’s Jini technology has a lot in
common with the Web Services approach advocated by Microsoft, including the idea of
services that are published on the network and registered in searchable directories. Jini’s
system is Java-technology centered. Theoretically, every language translating to Java
bytecodes can be used to create Jini services. Even if Jini is Java-centric, its architecture
promotes a communication which is protocol independent. Protocol design, like any
engineering design, is often a trade-off between efficiency and generality. In systems that are
designed around a one-size-fits-all protocol, such decisions need to favor generality. Is the
demand of SOAP a limiting factor of Web Services?

One part of the thesis is to compare these two models by elaborating the main differences
between a document-based approach and a object-based approach. The two approaches
share some semblance, mainly concerning the key concepts and the architectural model. Both
are based on the notion of services. Services can be made public and a center. Another
important component is the lookup service which serves as a repository for services. The
technology infrastructure defines, in both cases, a means to dynamically discover services.
But, the underlying technologies and programming models differ considerably. The thesis
takes the dynamic discovery mechanism to show the main differences emerging. What are
the main differences and what is their effect on the respective model?

6

Part A the Road to Web Services

1 Web Service Defined

This section tries to dissect the term Web Service. Because there is no official definition of this
term a myriad of different definitions are appearing. This comes as no surprise concerning
the amount of interest triggered by the Web Service approach. Most of the big software
companies, such as Microsoft and IBM, and many smaller ones are trying to establish
themselves as provider of Web Service solutions and tools. Though the proliferation of
companies focusing on Web Services is immense there is only a little difference amongst their
view on what a Web Service is.

Our purpose is to give first an abstract view on Web Services and its relevant features,
resulting in a concise definition. Then moving to more subjective definitions of Web Services
issued by some major companies in this area, like Microsoft, IBM, and Sun Microsystems.

1.1 Abstract View on Web Services

Web Services are a description of specific functionality delivered via standard Internet
protocols. The main purpose is to provide a mechanism for other services or applications to
use this exposed functionality. In order to expose Web Services some problems have to be
addressed. Because of the diversity of information systems which can take part in a Web
Service environment, problems arising are, how to enable a uniform access to diverse
information sources and operating systems, and how to deliver content to different output
channels or devices. A channel can be thought of the Web, Business-to-Business
communication, mobile applications, and so forth. The idea behind Web Services is to
provide an abstraction from the complexity of interacting with multiple information sources,
communication protocols, and delivery channels in a standardized way.

To describe the content of a Web Service in a standardized and abstract way, XML comes to
rescue. Services are defined using XML as a standard syntax resulting in an uniform
information access. The description of services embraces the definition of various properties
of the information source to be accessed and the syntax of the service request and response is
described. This results in a well-defined service contract. The usage of XML as a description
language for services provides a self-describing, structured representation of data that can be
implemented broadly. Every system or language providing the means to handle XML
constructs can be a part in a Web Service architecture.

Services can be published in service registries enabling a global access to them. To find and
use these services a flexible mechanism for service discovery is needed. Other services or
applications are able to lookup dynamically services at run-time in these registries.

7

To summarize, a Web Service is an abstract description of application functionality mainly
exposed to the Internet or Intranet. The standardized description of its functionality and the
dynamic access are crucial ingredients. To provide a uniform access , they are accessible
through standard Internet protocols. Web Service descriptions are carried out using XML as a
description language. Standard Internet protocols, like HTTP, and XML, as a standardized
syntax, are the cornerstones of Web Services.

1.2 What others are saying

To probe further in the Web Service concept it is necessary to take a more practical view on
them. This is done by presenting definitions of four major software companies strongly
involved in promoting Web Services. These companies, namely Microsoft, IBM, Oracle, and
Sun Microsystems, agree on the importance of the Web Service approach and are currently in
the process of consolidating their Web Service strategy.

The companies have submitted following definitions of Web Services:

• Microsoft. A Web service is a unit of application logic providing data and services to other

applications. Applications access Web services via ubiquitous Web protocols and data
formats such as HTTP, XML, and SOAP, with no need to worry about how each Web
service is implemented. Web services combine the best aspects of component-based
development and the Web, and are a cornerstone of the Microsoft .NET programming
model. [KIRT]

• IBM. Web services are self-describing, self-contained, modular applications that can be
mixed and matched with other Web services to create innovative products, processes,
and value chains. Web services are Internet applications that fulfill a specific task or a set
of tasks that work with many other web services in an interoperable manner to carry out
their part of a complex work flow or a business transaction. [KREGER]

• Oracle. Fundamentally, a Web Service is a piece of logic that applications can access over
a network via a standardized XML-based interface, in a platform-independent and
language-neutral way. Web Services are designed to be published, discovered, and
invoked dynamically in a distributed computing environment. By facilitating real-time
programmatic interaction between applications over the Internet, Web Services allow
companies to more easily exchange information, leverage information resources, and
integrate business processes. [ORACLE]

• Sun Microsystems. A Web service describes specific business functionality exposed by a
company, usually through an Internet connection, for the purpose of providing a way for
another company or software program to use the service. [KAO]

These definitions express characteristics and basic concepts of the Web Service model.
Moreover, the definitions entail promises and marketing-driven issues, which are a natural
part of a company’s strategy to promote their ideas and products. The below sketched points

8

are an elaboration of the most important statements made in the definitions. This points are
examined with the purpose to find out if the promises are hold. The main points are:

• Description and access through ubiquitous Web protocols and data formats.
• Component-based development.
• Web Services represent self-describing, self-contained, modular application.
• Interoperability with other services to achieve a specific task.
• Platform-independency and language-neutrality.
• Integration of heterogeneous information systems, with the purpose to facilitate the

data exchange between businesses.

In the remainder of this chapter the Web Service model is described in detail by elaborating
the basic concepts and presenting the underlying technologies.

1.3 The Web Service Component Model

The Web Service model bears a close semblance to the current, common definition of
component models. The idea in this section is to elaborate this statement by comparing Web
Services to object-based and component-based concepts and to contrast the Web Service
model with current-day, well known component models.

The combination of services, based and open standard protocols and XML standards, is a
new paradigm in the way that applications and its collaborations are modeled. This “service-
oriented paradigm” provides a conceptual and architectural foundation which can be
implemented using a variety of platforms and programming languages. These standards, on
which a web service system is built upon, allows for an implementation-neutral approach.
This standard-based approach promises to facilitate the integration of heterogeneous
information systems, hence resulting in a cross-language and cross-platform interoperability.

The Web Service system introduces fundamental concepts and ideas which are very similar
to object-oriented systems, such as message passing, dynamic binding, and encapsulation.
Though, the Web Services model goes beyond the object-based approach. It can be seen as a
logical evolution from object-based systems to service-based system. Web Service systems
foster significant decoupling and dynamic binding of components. All components in a
system are represented as services. They encapsulate behavior and publish a messaging API
to other collaborating components on the network. Services are looked up by applications
using service discovery for dynamic binding of collaborations. Web Services can be
dynamically composed into applications by means of a capabilities-based look-up at runtime,
instead of the traditional static binding. The dynamic nature of the collaborations yields
implementations that are platform- and programming language neutral, and
communications mechanism independent. Further, a Web Service implementation is not
restricted to a specific language paradigm, such as object-orientation. For instance, a service
can be built using a script language.

9

Comparing the Web Service model to other so called component models, such as Javasoft’s
Enterprise JavaBeans (EJB) or Microsoft’s Component Object Model (COM), it seems to have
more in common with the characteristics defined for component models. The term “so
called” is used here, because usually they are denoted as component model by their creators.
But they are only partially adhering to the common understanding of a component model.
Even if there is still a lot of debate on how to define what a component really is, there is a
general agreement on what a component should look like. Betrand Meyer and Clemens
Szyperski, both respected persons in the context of component technologies, agree in
[MEYER] that components should adhere to at least the following list of characteristics: a
component may be used by other software elements (clients); may be used by clients without
the intervention of the component's developers; includes a specification of all dependencies
(hardware and software platform, versions, other components); includes a precise
specification of the functionalities it offers; is usable on the sole basis of that specification; is
composable with other components; can be integrated into a system quickly and smoothly.
The above mentioned component architectures have the restrictions of being language-
dependent or runtime-dependent. Taking this into consideration, Web Services are
leveraging components to the next level and Web Services represent the next generation,
because they are not limited by these restrictions.

Like components, Web services represent black-box functionality that can be reused without
worrying about how the service is implemented. Web Services provide well-defined
interfaces, so called contracts, that describe the service provided. Developers can assemble
applications by composing several services which can be located on the same machine or
which are accessible on a remote machine. “A major thrust for the design of components is
design for independence. The idea is simple: If a component is constructed with minimal,
built-in dependencies on its environment, it is likely to be widely usable. Design for
independence is central to the notion of components. [SZYP]” This idea expressed by
Szyperski is especially true for Web Services because of their above mentioned independence
concerning the implementing language and used operating system. Further, the exposition of
their functionality through a standardized service description language.

Moreover, unlike current component technologies, Web Services do not use object model
specific protocols such as Microsoft’s Distributed Component Object Model (DCOM),
Javasoft’s Remote Method Invocation (RMI), which is using the Java Remote Method
Protocol (JRMP), or the Object Management Group’s Common Object Architecture (CORBA),
using the IIOP, that require specific, homogeneous infrastructures on both the client and
server machines. These low-level connection standards are, in the case of DCOM and RMI
product-drive, and in CORBA’s case is standard-driven.
Implementations tightly coupled to specific component technologies provide a tailored
connection protocol by exploiting the underlying environment, hence resulting in a
“proprietary standard” perfectly fitting the needs of its environment. Those protocols are
acceptable in a controlled environment, but they become impractical on the Web. As
technology changes over time, it becomes difficult to guarantee a single, unified
infrastructure, resulting in heterogeneous systems. The emerging issue here is how to
guarantee interoperability. Web Services take a different approach. They communicate using
ubiquitous Web protocols and data formats such as HTTP and XML. Any system supporting

10

these Web standards will be able to support Web Services. Hence, the Web Service model
uses a communication protocol which is mediated by lightweight, vendor-neutral
communication technologies. This technologies allow every network-enabled system to
interact.

Web Services are executables which can be linked to using XML messaging. A Web Service
interface is defined strictly in terms of messages the Web Service accepts and generates.
Clients of services can be implemented on any platform in any programming language,
presupposed they can create and consume the message defined for the Web Service interface.
This message-oriented approach is key to this component-based model, resulting in the
above mentioned characteristics of being language, platform, and object-model agnostic. A
Web Service can be implemented using the full feature set of any programming language,
object model, and platform. Moreover, a Web Service can be consumed by applications
implemented in any language for any platform. As long as the component contract that
explains the service’s functionality and the message sequences and protocols it expects is
honored, the implementations of Web Services and Web Service consumers can vary
independently without affecting the application at the other end of the conversation.

The specification of functional aspects of a Web Service is described declaratively with a
description language providing metadata to empower dynamic service discovery. The
service metadata contains enough information about the service’s capabilities and further, it
is specifying which communication protocols it supports. This feature leads to another
important characteristic of the model. The feature is the possibility to compose services at
run-time. This notion of execution-time building of applications is very different to the
common development time deployment of components. It is a much different aspect of
binding. In object oriented terms the notion of late binding is introduced. Web Services
introduce the notion of an “extreme late binding”. A Web Service can be composed at run-
time, as opposed to objects and their collaborations adhering to a development-time model.
What characterizes the Web Service architecture is that the model is very loosely coupled,
using XML messaging and HTTP-based protocols to talk to each other. Therefore, Web
Services can be bound to each other either at execution time or deployment time, as opposed
to development time, allowing just-in-time integration. This just-in-time integration is
achieved by providing a mechanism to discover components which provide a specific
functionality. Because this functionality is published with a service description language, a
client can find this service at run-time.

1.4 Web Service Key Specifications and Technologies

This section is to educate the reader on the major technologies entailing Web Services, and
describing their contribution to the Web Service model. In the following sections these
technologies are explored in detail. This investigation shall discover if the technologies are
feasible and appropriate concerning the model.

The previous sections introduced Web Services and its component model. The next step is to
give an overview on the underlying technologies. These technologies enable the building of

11

service components and are a crucial part of the technical framework. Later sections give a
more detailed description of these technologies.

There are a few key specifications and key technologies very likely to be encountered when
building and consuming Web Services. These specifications and technologies address some
distinct requirements for service-based development. The issues addressed are as follows:

• the need for a standard way to represent data
• a common, extensible, message format
• a uniform, extensible, service description language
• a way to discover services located on a particular Web site.

XML seems to be the obvious choice for a standard way to represent data. Most Web Service-
related specifications use XML for data representation, as well as XML Schemas to describe
data types. The important point is that XML is the basis for a distributed object-like model
which includes messages, state, methods, and object-oriented interfaces. In section 2.7 “XML
Schemas”(25) is shown that XML Schema represents a feasible approach to reflect an object-
based system into a document approach, but has its limits in representing some object-based
related issues, such as distributed references. Another important point is, supporting XML
with its widespread use and tool support, results in chances that developers have some
previous knowledge of XML.

As a message format, the Simple Object Access Protocol (SOAP) turns to be out, to be the
most supported communication model, in the scope of Web Services to date. As already
mentioned before, Web Services are protocol independent. Hence, other protocols can be
conceived as part of a Web Service architecture. SOAP defines a lightweight protocol for
information exchange. Part of the SOAP specification defines a set of rules for how to use
XML to represent data. Other parts of the SOAP specification define an extensible message
format, conventions for representing remote procedure calls (RPC) using the SOAP message
format, and bindings to the HTTP protocol.

SOAP is still just an RPC, calling low-level functions and leaving most communication
definitions to a developer. In order to make it easier to use, there is a need for a format to
describe services that can be invoked by SOAP. Following from this, given a Web Service, it
is necessary to have a standard to document what messages the Web Service accepts and
generates, that is to document the Web Service contract. A standard mechanism makes it
easier for developers and developer tools to create and interpret contracts. The Web Service
Description Language (WSDL) is an XML-based contract language jointly developed by
Microsoft and IBM. WSDL can be seen as a complement to SOAP, as it facilitates
interoperability between Web Services. Like the Interface Definition Language (IDL), which
acts as a service describer with CORBA, WSDL is an XML syntax to describe Web Services.
Most of the current SOAP implementations support this description language. Applications,
that use SOAP as their communication protocol, can self-configure exchanges between Web
Services, while hiding most of the low-level technical details.

12

Developers will also need some way to discover Web Services. In many cases the developer
will not know the Internet address where services can be found. Universal, Description,
Discovery, and Integration (UDDI) specifies a mechanism for Web Service providers to
advertise the existence of their Web Services and for Web Service consumers to locate Web
Services of interest. The discovery aspect appearing can not be seen alone with UDDI. WSDL
is a major part of the evolving technology around the discovery aspects by providing the
necessary service metadata. UDDI offers a technical framework that is independent from
platforms and totally open, so that enterprises can find one another, define how they will
interact on Internet, and define how information should be shared using a worldwide
registration system. The result of this project will be, that enterprises will be able to enter the
business-to-business world by using a standard approach. The effort behind UDDI is
strongly business oriented. The investigation of UDDI yielded, that this mechanism is very
important in a business related use of Web Services, for instance for discovering a service
providing a specific business functionality. The idea expressed by UDDI is to built business
registries, where every company can register its supported services. Client can discover
services using the registries as a kind of yellow pages. Different roles can be conceived here.
That is the service provider, who provides a service interface for a software asset that
manages a specific set of tasks. A service provider node can represent the services of a
business entity or it can simply represent the service interface for a reusable subsystem. A
second role is the service requestor, who wants to discover and invoke other software
services to provide a business solution. The third role can be seen as a service broker. A
service broker acts as a repository or yellow pages for software interfaces that are published
by service providers. A business entity or an independent operator can represent a service
broker.

The bottom line is, that component models, with the purpose to be used throughout the Web,
needs to be augmented with a few other platform devices, which maintain the ubiquity and
simplicity of the Web, to constitute a more functional platform. The full-function web service
platform can be thought of as XML plus HTTP, as the standard base of the platform. SOAP,
WSDL, and UDDI are extensions, build on these standards, to provide a higher-level
programmatic access to Web Services. The Web Service model is promoting these standards
that are independent both of programming languages and of operating systems to ensure an
absolutely open environment.

1.5 Open Standards

What can be derived from the above mentioned idea of Web Services, that the model is only
going to work, if open standards are provided and supported by Web Service development
tools. For this sort of openness to work, standardized formats and methods are crucial
ingredients. Concerning the above mentioned technologies SOAP and WSDL, they were
submitted to the World Wide Web Consortium (W3C), and actually still a work in progress,
which means that there may be changes or updates. But this shows the commitment, the
involved companies like Microsoft and IBM have, to promote Web Services. SOAP and
WSDL, were submitted, amongst others, by Microsoft and IBM. Further, the industry is

13

attempting to take advantage of Internet Task Force (IETF) standards such as Extensible
Markup Language (XML) and the Hypertext Transport Protocol (HTTP).

The key to Web Service interoperability is reliance solely on Web standards. However,
simply agreeing that Web Services should be accessed through standard Web protocols is not
sufficient to make things interoperable. Web Service development tools have to adhere only
to these standards. As experienced before, for instance in the case of CORBA, companies tend
to compromise standards with proprietary extension, to gain a business advantage. This time
the companies seem to agree on the importance of adhering to standards and
interoperability.

To conclude, what makes Web Services model approach very different and interesting is its
commitment to open standards. To date, the submitted specifications are relatively unstable,
but robust enough to predict their future. Only the fact, that Microsoft and IBM are both
promoters of Web Services, show the impact Web Services will have in the nearer future. But
everything relies on interoperability issues.

14

2 The Simple Object Access Protocol

This chapter explains the Simple Object Access Protocol (SOAP) [W3CSOAP] and its main
constituent technologies. It is necessary to understand its underlying technologies to get the
whole picture of SOAP. SOAP has recently gained a lot of marketing momentum, and is
promoted by Microsoft and IBM. They agree, that SOAP should become the main protocol
used in conjunction with Web Services. It is the purpose in this section to present the
underlying technologies SOAP is based upon, and to provide an evaluation of SOAP. This
investigation should discover, if the SOAP specification provides appropriate functionality to
be used in a Web Service architecture. Further, it is examined if existing tools support adhere
to the specification and, above all, if they are interoperable.

2.1 Introduction

The Simple Object Access Protocol (SOAP) is a simple and lightweight protocol, specified
with a minimal set of conventions for exchanging structured and typed information between
peers. SOAP is lightweight in the sense that it does not itself define any application semantics
such as a programming model or implementation specific semantics. Rather, it defines a
packaging model and an data encoding standard to express application semantics. The
specification is submitted to the W3C and is currently work in progress [W3CSOAP]. One
main purpose of SOAP is to provide only a minimal set of conventions, resulting in a
protocol, that can be used in a variety of communication models, ranging from remote
procedure call mechanisms to message-oriented models. SOAP represents the base
technology of the decentralized and distributed Web Service environment. The protocol is
based on the Extensible Markup Language (XML), and as the investigation has shown, often
used in conjunction with the Hypertext Transport Protocol (HTTP). Web Service
development tools, such as Microsoft .NET and the Web Service Tool Kit (WSTK) from IBM,
support at least this combination.

The protocol utilizes this Internet-based protocol as its RPC-style transport mechanism, to
deliver method requests which are encoded as XML. This combination of XML and HTTP
yields a protocol which is platform-neutral and language-independent. This statement is
based on the experience gained implementing the bridge described in Part C The Web
Service-to-Jini bridge” (71). Though HTTP is often mentioned as the transport layer for
SOAP, it is transport independent. Other Internet-based protocols, such as FTP and SMTP,
can also be used. The current specification defines protocol bindings only for HTTP and
HTTP Extension Framework. Current development tools, such as Microsoft .NET and IBM’s
Web Service Tool Kit, allow SOAP in conjunction with HTTP only.

The SOAP message exchange model consists of one-way transmissions from sender to
receiver which can be combined to be used as a request/response pattern to simulate an
RPC-style exchange mechanism. SOAP messages rely on XML Namespaces and the XML
Schema definition language. The XML encoding makes SOAP messages simple to read and
parseable by humans and machines alike. The technical requirements to use SOAP are very

15

few. All is needed is an XML parser, XML Namespace and XML Schema compliant, used in
combination with an operating system supporting current Internet protocols, above all the
HTTP protocol. Thus, SOAP can be used in various languages running on multiple
platforms.

SOAP’s main purpose is to facilitate the integration of heterogeneous information systems,
hence enabling interoperability among applications and platforms. SOAP's interoperability
arises from its characteristics mentioned above.

2.2 Current-day middleware

SOAP can be seen as another middleware which is taking its place amongst a plethora of
already existing middleware technologies, such as CORBA and DCOM. But SOAP is
promising to have a major advantage compared to current-day middleware, and that is
interoperability. The promise of being platform and language independent, and further
providing an Internet-based protocol makes SOAP much different. Hence, the justification
for this new distributed computing model is cross-platform and cross-programming
language interoperability. In chapter 5 (71) we will evaluate SOAP’s promise of
interoperability, which we conceive as a very important issue of SOAP implementations. If
SOAP implementations are failing to provide seamless integration and interoperability,
SOAP will fail as technology. The remainder of this section will focus on the shortcomings of
previous solutions and future requirements for successful solutions.

At this time, the are three dominant Remote Procedure Call (RPC) protocols used in the
industry. These are DCOM , Java’s RMI, and CORBA’s Internet Inter-ORB Protocol (IIOP).
We will focus on DCOM and CORBA here. Even if both approaches have conceptual
similarities, for instance, both protocols use endpoint identifiers to identify a target object on
the server-side, and both use method identifiers to determine the signature of the method to
be invocated, there are differences, which impact crucially interoperability.

One major difference is the encoding styles used for the parameter values in the payload. In
DCOM, the payload is written in a format known as Network Data Representation (NDR). In
IIOP/GIOP, the payload is written using Common Data Representation (CDR) format. Both
NDR and CDR deal with the differing data representations used on various platforms.
However, in [BOX] is investigated that there are some minor differences between these two
formats that make them incompatible with one another.

Another key distinction is how CORBA and DCOM uniquely indentify server-side endpoints
and objects across network boundaries. CORBA/IIOP uses a representation called
Interoperable Object Reference (IOR). IOR’s contain addressing information, which can be
transmitted across network boundaries, so that any CORBA product can resolve this
reference to an object endpoint. DCOM provides a similar representation called OBJREF. This
unique identifier combines distributed reference binding with endpoint identification. Both
approaches are crucial for uniquely identifying distributed CORBA or DCOM resources.
Different research projects have shown that different representations of network resources

16

are a main hindrance for interoperability. For instance, in [GISOLFI] is elaborated that “IORs
do not correlate to OBJREFs, which results in an interoperability problem between CORBA
and DCOM applications.” And [BOX] points out that these protocols tend to be not
interoperable.

A shortcoming both approaches are sharing is that both are based on a single vendor
solution. Using the protocols to a maximum advantage, entails, in the case of CORBA,
vendor-specific extensions which are very unlikely to work unless all applications are built
against the same ORB product. Though both protocols have been implemented on a variety
of platforms and products, the reality is, that a given deployment needs to use a single-
vendor’s implementation. With DCOM, that comes as no surprise, the Windows operating
system above Windows NT, has to be used. DCOM was ported to LINUX, but with some
major functionality lost, as expressed in [BOX]. CORBA interoperability has been an issue for
several years now. The reality has been that vendors compete on ORB implementations,
hence there is no motivation from a business perspective to achieve interoperability. The
result is that every machine runs the same ORB product. Even if it is possible to get two
CORBA products to call one another using IIOP, many of the higher level services, such as
security and transaction management, are not generally interoperable at this time [BOX].

Moreover, both protocols are not suitable for communication across the Internet. Experience
has shown that DCOM and CORBA are both reasonable protocols for server-to-server
communications. However, both, DCOM and IIOP, have severe weaknesses for client-to-
server communications, especially when the client machines are scattered across the Internet.
The problem appearing, regarding Internet communication, are firewalls which separates the
client and server machines. Firewalls are often so restrictive that the likelihood of either IIOP
or DCOM packets getting the permission to pass is very low. This is due to the HTTP-based
communication on the Internet. Many providers of middleware technology have HTTP
tunneling support built-in in their products. Due to a lack of standard they are not
interoperable and hence very sensitive to configuration of a Web server.

None of these issues impact the use of DCOM or IIOP within a server farm. Relying on a
closely administered environment makes a consistent configuration possible. This empowers
system administrators to use the full functionality provided by either product. The relatively
small number of machines also helps to keep the costs of using commercial ORB products
under control, as a smaller number of ORB licenses are needed. If IIOP is only spoken within
the server farm, a smaller number of ORB licenses are needed. Finally, it is likely that all of
the host machines in a server farm will have direct IP connectivity, removing the firewall-
related problems of DCOM and IIOP.

The shortcomings of these approaches are the major strengths represented in SOAP. SOAP is
a solution which is based on open standards that can truly support interoperability, as long
as the implementing tool adhere to the standard. The major difference that SOAP has as a
distributive computing solution, is that it is achieving interoperability through open
standards at the specification level and the implementation level.
Concluding from the previously described characteristics and shortcomings of the different
communication models, the place where there is a need for XML messaging mechanisms like

17

SOAP is on the Internet, where traffic in protocols like DCOM and CORBA IIOP is not
supported. For one thing, firewalls not let them pass. SOAP harnesses existing Internet
protocols that are already ubiquitous, meaning HTTP primarily, but also SMTP, FTP, and
secure Web protocols such as the Secure Socket Layer (SSL). The binary distributed
computing protocols also have an inherently limited audience. DCOM is limited to
connecting Windows computers, while RMI is confined to Java platforms, and CORBA tends
to be limited to high-end enterprise environments. They are tightly coupled to a particular
environment and technology, whereas XML messaging is a loosely coupled solution. On the
Internet, it is not predictable to what platform a connection will occur.

2.3 SOAP’s Technical Background

To understand the simplicity of SOAP and its close relation to HTTP, an example is
presented, showing SOAP’s syntax structure and its inherent semantics. This technical
examination of a SOAP call and response example, will provide the knowledge necessary to
understand arising interoperability problems and negative side effects introduced by SOAP.

2.3.1 HTTP, the Internet RPC mechanism

The Hypertext Transfer Protocol (HTTP) is the most used application protocol used on the
Internet. It is the only protocol which is tolerated by firewalls and supported by nearly every
operating system and Web browser. The following investigation will show that HTTP is an
RPC-like protocol that is simple to use. To date, it is widely deployed, and very likely to
function in the face of firewalls. Protocols like IIOP or DCOM are commonly used in in-house
networks, whereas HTTP provides the connecting means to the client. HTTP requests are
typically handled by Web server software, but an increasing number of application server
products are supporting HTTP as a native protocol in addition to DCOM and IIOP, such as
IBM’s WebSphere application server.

HTTP, like DCOM and IIOP, supports a request/response communication model over
TCP/IP. An HTTP client connects to an HTTP server using TCP, usually using port 80 as
standard port. After establishing the TCP connection, the client can send an HTTP request
message to the server. The server then sends an HTTP response message back to the client
after processing the request. Both the request and response messages can contain arbitrary
payload information, typically tagged with the Content-Length and Content-Type HTTP
headers.

18

The following is a legal HTTP request message:

POST / f oobar HTTP/ 1. 1
Host : 209. 110. 197. 12
Cont ent - Type: t ext / pl ai n
Cont ent - Lengt h: 12

Text cont ent

The HTTP headers are just plain text which makes them easy to use in conjunction with
programming environments popular in Web development. A lot of programming languages
can be used, for instance in combination with Common Gateway Interface (CGI), to
implement the server-side application logic. The first line indicates that this is an HTTP POST
request that conforms to the rules per HTTP 1.1. The target for the request is identified by an
Uniform Resource Identifier (URI). The Request-URI is simply a token used by the HTTP
server software to identify the target of the request. All these conventions are based on a
standard specified by the Internet Engineering Task Force (IETF). The great success the
Internet has gone through, is, among other things, based on the fact that it uses commonly
accepted standards, such as HTTP. Among other things, the standard specifies a fixed
number of HTTP methods. GET is the HTTP method used to navigate through the Web.
POST is the most commonly used HTTP method for building Web-based applications. Unlike
GET, POST allows arbitrary data to be sent from the client to the server. HTTP/1.1 added
several features to its predecessor (HTTP/1.0), including support for a flexible data transfer
and explicit support for keeping TCP connections alive across HTTP requests, which is a
requirement for a response/request communication model introduced by SOAP. The next
lines of the request indicate the size and type of the request payload. The Content-Length
header specifies the number of bytes of payload information. The Content-Type identifier
specifies the encoding style of the payload information. HTTP, much like DCE, allows the
client and server to negotiate the transfer syntax used to encode information. Most DCE
applications, such as DCOM, use NDR to encode its data. Most Web applications use
text/html or other text-based syntaxes. The request then contains raw bytes whose syntax
and length are identified by the Content-Length and Content-Type HTTP headers. In this
example, the content is the 12-byte plain text string "Text content". The text-based HTTP
payload information makes it very easy to understand and to use, compared to a binary
protocol.

After processing the request, the HTTP server is expected to send an HTTP response back to
the client. The response must contain a status code indicating the outcome of the request. The
response can also contain arbitrary payload information much like the request message. The
following is an HTTP response message:

200 OK
Cont ent - Type: t ext / pl ai n
Cont ent - Lengt h: 12

Message r ecei ved

19

In this case, the server returned a status code of 200, which is the standard success code for
HTTP. Had the server been unable to decode the request, it would have returned the
following response instead of the one shown previously:

400 Bad Request
Cont ent - Lengt h: 0

Had the HTTP server decided that requests for the target URI should be temporarily
redirected to a different URI, the following response would have been returned:

307 Tempor ar i l y Moved
Locat i on: ht t p: / / 123. 456. 789. 00/ ur n
Cont ent - Lengt h: 0

This response informs the client that the request could be satisfied by retransmit ting it to the
endpoint identified in the Location HTTP header. All of the standardized status codes and
headers part of the IETF standard. Very few of them relate directly to SOAP users, with one
important exception. In HTTP/1.1, the underlying TCP connection is reused across multiple
request/response pairs. The HTTP Connection header allows either the client or the server to
close the underlying connection. By adding the following HTTP header to a request or
response, both sides are required to shut down their TCP connections after processing the
request.

Connect i on: c l ose

This section has shown a subset of HTTP’s functionality which provides the basis for a RPC-
style mechanism SOAP. It is examined now, how SOAP is using this functionality to provide
a Internet-based remote procedure call model, and conserving the ease of ease introduced by
HTTP.

2.4 SOAP Structure

SOAP uses the aforementioned HTTP protocol to a great extent to provide an RPC
mechanism with an easy to use, ubiquitous Internet-based protocol. One of the advantages of
HTTP is its wide deployment and acceptance. As already mentioned above, SOAP is protocol
independent, and supports an RPC-style and message based communication model.
However, in the current state, SOAP is mostly used with HTTP over an RPC-style protocol.
Current development tools, supporting the construction of Web Services, such as Microsoft
.Net and IBM’s WSTK, are providing SOAP bindings over HTTP. Therefore we will focus on
this combination.

Remote procedure calls in SOAP are essentially client-server interactions over HTTP where
the request and response comply with SOAP encoding rules. SOAP allows methods to be
invoked against endpoints over HTTP. A SOAP endpoint is identified by a URL, just like any
other HTTP-based resource. A SOAP method is uniquely identified by a namespace Uniform
Resource Identifier (URI) and an NCName. A URI is simply a formatted string that uniquely

20

identifies a resource. The NCName maps to a symbolic name of the method. The Request-
URI in HTTP is typically used at the server end to map to a class or an object, but this is not
mandated by SOAP. The namespace URI scopes the method name, much like an interface
name scopes a method in Java or CORBA. The common HTTP header is extended with an
additional SOAPAction parameter. This HTTP header SOAPAct i on specifies the interface
name and the name of the method to be called on the server.

The SOAP message is an XML document whose root element, the Envelope, specifies the
overall structure of the message, its intended recipient, and other attributes of the message.
SOAP specifies a remote procedure call convention, which includes the representation and
format to be used for calls and responses. The HTTP payload for a SOAP method request
contains the information needed to invoke the request. A method call is modeled as a
compound data element consisting of a sequence of fields, one for each parameter. A return
structure consists of the return value as well as the out and in/out parameters. SOAP
encoding rules specify the serialization for primitive and application-defined datatypes.

HTTP is a fairly functional RPC protocol that provides most, of the functionality of IIOP or
DCOM in terms of framing, connection management, and support for serialized object
references. URLs are surprisingly close to IORs and OBJREFs in functionality. What HTTP
lacks is a single standard format for representing the parameters of an RPC call. This is where
XML comes into play. Like NDR and CDR, XML is a platform-neutral data representation
mechanism. XML allows data to be serialized into a transmissible form that can be decoded
on any platform, presupposed an XML parser is provided.

The format of data and the protocol used to exchange is a determining factor in the degree of
interoperability among applications. The lack of a reliable and commonly understood data-
exchange format has limited effective communication between heterogeneous systems, as in
the case with the current-day protocols mentioned above. XML has emerged as a standard
for representing data in a platform-independent way. XML is, in short, essentially a tree-
oriented data representation language that is simple to generate and parse. Its simplicity and
platform independence makes XML a perfect solution for an encoding standard.

Also, HTTP has emerged as a simple, universally supported protocol for exchanging data
over the Internet. HTTP requests/replies are passed through firewalls and handled securely,
supported by various security standards. Thus, moving XML data via HTTP is a way for
distributed applications to communicate with each other. That is precisely what SOAP does.
By expressing RPCs independent of platforms, it opens the possibility of implementing other
architecture-specific protocols in SOAP. One use of SOAP which can be perceived is to use it
as an intermediary protocol into which other protocols can be easily translated. The bridge
described in chapter 5 uses SOAP to make calls from a Java environment to a Microsoft
environment.

21

2.5 The Structure of a SOAP Document

To present the overall structure of a SOAP document a complete SOAP/HTTP request, with
the content, encoded as XML, is shown. Although this particular set up uses HTTP to deliver
SOAP messages, SOAP can ride on any other transport protocol. SMTP, the Internet email
protocol, can be used to deliver SOAP messages. The header differs between transport layers,
but the XML payload remains the same.

A SOAP request is sent as an HTTP POST with the content type set to text/xml and a field
called SOAPAct i on set to either an empty string or the name of the SOAP method. The
SOAPAction field allows a receiving Web server to detect incoming SOAP messages and
provide appropriate means to handle them. For instance, for routing or filtering reasons. The
SOAP specification does not mandate the SOAPAct i on field to contain a value. At the first
look, this seems to cause no problem. Examining the SOAP specification shows that, on the
one hand, the specification tries to be as flexible as possible by not imposing to many
restrictions. As in the case of the SOAPAct i on field which leaves the interpretation to the
implementers. But on the other hand, it is this flexibility which can compromise
interoperability. For instance, there are tools which require the SOAPAct i on field is given a
value. They use this value to dispatch the SOAP call to the appropriate method call. Apache
SOAP is using the SOAPAction field for that reason. If another tool does create SOAP calls
without this field value, which would be standard conformant, Apache SOAP would not be
able to handle the call.

The structure of a request call defined with SOAP consists of the three parts. The first part is
an envelope that defines a framework for describing what is in a message and how to process
it. The envelope defines the various namespaces that are used by the rest of the SOAP
message, typically including the SOAP Envelope namespace, XML Schema for Instances
(XSI), and XML Schema for DataTypes (XSD). Second, a set of encoding rules is defined. This
is used for expressing instances of application-defined datatypes. SOAP allows hierarchically
structured queries and responses, and specifies serialization of primitive datatypes, such as
string, numeric and date, and aggregates like arrays and vectors. New types may be defined
using the <compl exType> construct inside a schema definition. The default SOAP encoding
scheme uses the <type> attribute, which can be found in the Schema for Instances
namespace, to indicate an XSD type. XSD defines several basic types, including int, byte,
short, boolean, string, float, double, date, time and URL. It also specifies a format for sending
arrays. Because SOAP is intended to be platform and language neutral, XSD does not define
formats for encoding objects or structures unique to a single language. XML Schemas are
further investigated in section 2.7 ”XML Schemas” (25).

The last part defines a convention for representing remote procedure calls and responses.
SOAP can potentially be used in combination with a variety of other protocols. However, in
the current specification, the only bindings defined is how to use SOAP in combination with
HTTP and HTTP Extension Framework.

22

The XML schema of an SOAP request is looking as follows:

<schema
 t ar get Namespace=' ur n: schemas- xml soap- or g: soap. v1' >
 <el ement name=' Envel ope' >
 <t ype>
 <el ement name=' Header ' t ype=' Header '
 mi nOccur s=' 0' / >
 <el ement name=' Body' t ype=' Body'
 mi nOccur s=' 1' / >
 </ t ype>
 </ el ement >
</ schema>

This XML schema shows that a SOAP message needs a mandatory SOAP envelope, which
contains the namespace definitions, followed by an SOAP header. The Header is an optional
element that can carry auxiliary information such as authentication, or transaction
management. Any element in a SOAP processing chain can add or delete items from the
Header. Elements can also choose to ignore items if they are unknown. If a Header is present,
it must be the first child of the Envelope. The third part is a mandatory SOAP body element.
The Body is the main payload of the message. When SOAP is used to perform an RPC call,
the Body contains a single element that contains the method name, arguments, and Web
service target address. If a Header is present, the Body must be its immediate sibling,
otherwise it must be the first child of the Envelope.

2.5.1 A SOAP Call

The next figure shows an example of a request/response SOAP message pair which uses
HTTP to deliver the message. As already mentioned, SOAP can be delivered but any other
protocol, such as SMTP or FTP. The XML payload will be the same but the headers are
changing.

A SOAP message embedded in an HTTP request

POST / St ockQuot e HTTP/ 1. 1
Host : www. st ockquot eser ver . com
Cont ent - Type: t ext / xml ; char set =" ut f - 8"
Cont ent - Lengt h: nnnn
SOAPAct i on: " Some- URI "

<SOAP- ENV: Envel ope
 xml ns: SOAP- ENV=" ht t p: / / schemas. xml soap. or g/ soap/ envel ope/ "
 SOAP- ENV: encodi ngSt yl e=" ht t p: / / schemas. xml soap. or g/ soap/ encodi ng/ " >
 <SOAP- ENV: Body>
 <m: Get Last Tr adePr i ce xml ns: m=" Some- URI " >
 <symbol >DI S</ symbol >
 </ m: Get Last Tr adePr i ce>
 </ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

23

The HTTP protocol uses a simple POST request via the network. The next line denotes the
target site. The content type has to be set to t ext / xml to provide the appropriate content
type. The SOAPAct i on field enables a Web server to detect that this request is an SOAP
message, so the server can filter the request or process other actions. The namespace-
qualified tagname in the Body element matches the SOAPAct i on in the HTTP header exactly.
This redundancy is to allow the HTTP-based infrastructure, such as firewalls or Web servers,
to process the call without having to parse the whole document.

The <body> element contains the XML payload. Here all the information is provided which is
necessary to invoke a Web service operation. In the SOAP <envel ope> element, various
namespaces are defined. The schemas defined in this namespaces can be used by the rest of
the SOAP message, because they are defined globally. In this case, the typically included
namespaces are presented. That is the namespace containing the vocabulary for the SOAP
envelope elements. Further, the encoding standard that is going to be applied is added. Here
it is the namespace for XML schemas.

2.5.2 The SOAP Response

A SOAP response message is depicted in the following:

HTTP/ 1. 1 200 OK
Cont ent - Type: t ext / xml ; char set =" ut f - 8"
Cont ent - Lengt h: nnnn

<SOAP- ENV: Envel ope
 xml ns: SOAP- ENV=" ht t p: / / schemas. xml soap. or g/ soap/ envel ope/ "
 SOAP-
ENV: encodi ngSt yl e=" ht t p: / / schemas. xml soap. or g/ soap/ encodi ng/ " / >
 <SOAP- ENV: Body>
 <m: Get Last Tr adePr i ceResponse xml ns: m=" Some- URI " >
 <Pr i ce>34. 5</ Pr i ce>
 </ m: Get Last Tr adePr i ceResponse>
 </ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

The figure above shows the SOAP response message created by some server-side process.
The SOAP response is embedded in an HTTP response containing the results of the
operation. The result will always be inside an element whose name matches the method
suffixed by “Response”.

Upon receiving the SOAP request, the server-side software is expected to execute some code
that creates the SOAP response. How this happens is completely outside the scope of the
SOAP protocol. Possible server-side implementations are a CGI program containing a Perl
script, a Java servlet which constructs the XML document, a CORBA server object, a .NET
application, and so forth. This is part of SOAP’s independence of the platform and language

24

used. Once the server-side operation has executed, an HTTP response message will be
returned to the client containing the results of the operation.

2.5.3 SOAP Exceptions

The SOAP protocol will create a SOAP exception if a server is not able to respond to a SOAP
request. This can be due to several reasons, such as a generic HTTP errors. Different error
sources are explicitly dealt with in the SOAP specification and different error code are
included in the generated SOAP fault structure. A fault message is simply an instance of the
following type encoded as the root element in the Body part of a SOAP message:

<schema
 t ar get Namespace=' ur n: schemas- xml soap- or g: soap. v1' >
 <el ement name=' Faul t ' >
 <t ype>
 <el ement name=' f aul t code' t ype=' st r i ng' / >
 <el ement name=' f aul t st r i ng' t ype=' st r i ng' / >
 <el ement name=' r uncode' t ype=' st r i ng' / >
 <el ement name=' det ai l ' / >
 </ t ype>
 </ el ement >
</ schema>

The faultcode attribute must contain either a well-known SOAP fault code as an integer or a
namespace-qualified value that is application-specific. The faultstring accessor contains the
human-readable description of the error that occurred. The runcode accessor contains a
string, whose value is indicating whether the requested operation was actually performed
prior to the error generation. The detail accessor is optional, and is used to contain an
application-specific exception object. It is up to the receiving SOAP client, what actions to
take.

A SOAP request and response pair can be constructed as quite as easy as in the case with
HTTP. A developer can introspect SOAP calls for debugging reasons, or can even built SOAP
responses by hand, due to SOAP’s simplicity.

2.6 SOAP’s Constituent Parts

The SOAP specification is relatively short. This is due to the fact that SOAP can built on
already existing standards. The SOAP specification is not demanding the use of specific
standards, rather it leaves is open which technology to use, as long as they adhere to the rules
defined by its own specification. The following figure acts as a reasonable decomposition of
the SOAP protocol. These technologies were chosen because they reflect the implementation
approach of many tools existing today.

The core of SOAP is the XML recommendation and XML Namespaces. This reflects the fact
that SOAP is simply an application of XML. The next layer is the XML Schemas specification.

25

While SOAP does not mandate the use of XML Schemas, it was designed to allow them to act
as its type description language. Comparing the encoding rules in the SOAP specification
with the XML Schema specification, shows the close relationship between the two.
Microsoft’s and IBM’s SOAP tool are using XML Schemas as encoding standard. XML
Schemas and XML Namespaces are not SOAP-specific. Rather, these are two technologies
that SOAP utilizes. SOAP introduces the element-normal-form encoding style which is
described in the SOAP specification. Further the figure defines an request/response
communication model and the use of SOAP over HTTP. As already mentioned, the
technologies chosen here are not mandatory. Other means can be provided, such as SMTP as
protocol, or a message-based communication protocol.

Two important technologies sketched in the figure above are XML Schemas and XML
Namespaces. The combination of them can be used to encode method parameters, which are
going to be sent through the wire. They are the means for mapping object-based constructs
into an XML syntax, and providing an extensible and reusable mechanism to define new
datatypes. The following section will probe further into this two technologies.

2.7 XML Schemas

This section will investigate whether XML Schemas [XMLSCHEMA0] provide the necessary
mechanisms to map typed object graphs to an XML representation. The purpose is to
examine what means are provided to represent object-oriented notions like inheritance,
classes, and objects as XML constructs. The XML Schema specification is an essential part of
the scope of Web Services. SOAP and the later described Web Service Description Language
(WSDL) are both based on XML Schema.

SOAP needs a means to serialize and deserialize a graph of objects in a language
independent and type-safe way. SOAP defines the rules and requirements for an encoding

26

schema in its specification. Even if XML Schema is not a mandatory part of this encoding
schema in SOAP, it is very likely to be used for this purpose. The encoding schema sketched
in the SOAP specification bears a close resemblance with the XML Schema specification.
One important issue concerning Web Services and the Web Service-to-Jini bridge to be built
is that the underlying technologies should be able to map object-oriented types into a
document-oriented model, and ensuring type safety across language boundaries.
We will use the following example schema to explain some of the important parts of the XML
Schema specification. The purpose is to show how these rules can be harnessed to map
object-oriented constructs into XML documents without losing type information.

2.7.1 XML Schema Instance Documents

The purpose of a schema is to define a class of XML documents. An XML document class can
be seen as a template for so called instance documents. Instance documents conform to a
particular XML schema. They have the same relationship as classes and objects in the object-
oriented world. The next figure is showing and XML Schema instance document
representing a purchase order. This example is part of the XML Primer [XMLSCHEMA0].

<?xml ver s i on=" 1. 0" ?>
<pur chaseOr der or der Dat e=" 1999- 10- 20" >
 <shi pTo count r y=" US" >
 <name>Al i ce Smi t h</ name>
 <st r eet >123 Mapl e St r eet </ st r eet >
 <c i t y>Mi l l Val l ey</ c i t y>
 <st at e>CA</ st at e>
 <z i p>90952</ z i p>
 </ shi pTo>
 <bi l l To count r y=" US" >
 <name>Rober t Smi t h</ name>
 <st r eet >8 Oak Avenue</ st r eet >
 <c i t y>Ol d Town</ ci t y>
 <st at e>PA</ st at e>
 <z i p>95819</ zi p>
 </ bi l l To>
 <comment >Hur r y, my l awn i s goi ng wi l d! </ comment >
 <i t ems>
 <i t em par t Num=" 872- AA" >
 <pr oduct Name>Lawnmower </ pr oduct Name>
 <quant i t y>1</ quant i t y>
 <USPr i ce>148. 95</ USPr i ce>
 <comment >Conf i r m t hi s i s el ect r i c</ comment >
 </ i t em>
 <i t em par t Num=" 926- AA" >
 <pr oduct Name>Baby Moni t or </ pr oduct Name>
 <quant i t y>1</ quant i t y>
 <USPr i ce>39. 98</ USPr i ce>
 <shi pDat e>1999- 05- 21</ shi pDat e>
 </ i t em>
 </ i t ems>
</ pur chaseOr der >

27

The instance document contains a root element, pur chaseOr der , and different subelements
namely shi pTo, bi l l To, comment , and i t ems . The whole document represents a tree-like
structure, hence the subelements can have subelements again, and so on. The leaves of this
tree like structure are concrete values, such as numbers or strings. XML Schema datatypes
can be distinguished in simple types and complex types. Simple types consist only of
concrete values, whereas complex types can have other subelements such as child nodes or
additional attributes. Attributes can carry only simple types.

2.7.2 XML Schema Class Documents

The class document defines a template for its instances, by specifying the types and elements
which have to be used. The vocabulary used in the class schema is defined in different
sources. A vocabulary defines XML schema types which can be reused. Some of the elements
are defined directly in the instance document, others can be defined in a separate XML
Schema. In this case other types, such as <el ement > or <compl exType>, are part of the
default vocabulary introduced in the XML Schema specification. All the XML Schema
vocabulary is part of the ht t p: / / www. w3. or g/ 2001/ XMLSchema namespace.
The following document shows the class document of the aforementioned instance
document.

<xsd: schema xml ns: xsd=" ht t p: / / www. w3. or g/ 2001/ XMLSchema" >

 <xsd: el ement name=" pur chaseOr der " t ype=" Pur chaseOr der Type" / >

 <xsd: el ement name=" comment " t ype=" xsd: st r i ng" / >

 <xsd: compl exType name=" Pur chaseOr der Type" >
 <xsd: sequence>
 <xsd: el ement name=" shi pTo" t ype=" USAddr ess" / >
 <xsd: el ement name=" bi l l To" t ype=" USAddr ess" / >
 <xsd: el ement r ef =" comment " mi nOccur s=" 0" / >
 <xsd: el ement name=" i t ems" t ype=" I t ems" / >
 </ xsd: sequence>
 <xsd: at t r i but e name=" or der Dat e" t ype=" xsd: dat e" / >
 </ xsd: compl exType>

 <xsd: compl exType name=" USAddr ess" >
 <xsd: sequence>
 <xsd: el ement name=" name" t ype=" xsd: st r i ng" / >
 <xsd: el ement name=" st r eet " t ype=" xsd: st r i ng" / >
 <xsd: el ement name=" ci t y" t ype=" xsd: st r i ng" / >
 <xsd: el ement name=" st at e" t ype=" xsd: st r i ng" / >
 <xsd: el ement name=" zi p" t ype=" xsd: deci mal " / >
 </ xsd: sequence>
 <xsd: at t r i but e name=" count r y" t ype=" xsd: NMTOKEN"
 f i xed=" US" / >
 </ xsd: compl exType>

 <xsd: compl exType name=" I t ems" >
 <xsd: sequence>
 <xsd: el ement name=" i t em" mi nOccur s=" 0" maxOccur s=" unbounded" >

28

 <xsd: compl exType>
 <xsd: sequence>
 <xsd: el ement name=" pr oduct Name" t ype=" xsd: st r i ng" / >
 <xsd: el ement name=" quant i t y" >
 <xsd: s i mpl eType>
 <xsd: r est r i c t i on base=" xsd: posi t i veI nt eger " >
 <xsd: maxExcl usi ve val ue=" 100" / >
 </ xsd: r est r i c t i on>
 </ xsd: s i mpl eType>
 </ xsd: el ement >
 <xsd: el ement name=" USPr i ce" t ype=" xsd: deci mal " / >
 <xsd: el ement r ef =" comment " mi nOccur s=" 0" / >
 <xsd: el ement name=" shi pDat e" t ype=" xsd: dat e" mi nOccur s=" 0" / >
 </ xsd: sequence>
 <xsd: at t r i but e name=" par t Num" t ype=" SKU" use=" r equi r ed" / >
 </ xsd: compl exType>
 </ xsd: el ement >
 </ xsd: sequence>
 </ xsd: compl exType>
</ xsd: schema>

The Schema document defines those elements used in the instance document. The document
consists of elements and subelements, most notably <compl exType>, and <s i mpl eType>.
These type definitions determine the appearance of elements and their content in instance
documents.

The elements used in the schema are all prefixed with xsd. The schema document declares a
namespace in the first line, namely xml ns: xsd=" ht t p: / / www. w3. or g/ 2001/ XMLSchema" .
This document contains the default XML Schema vocabulary. The prefix xsd denotes the
namespace. It is not mandatory to use exactly this prefix but it is commonly used. The built-
in simple types, being a part of the default namespace, have the same prefix. The purpose of
the association is to identify the elements and simple types as belonging to the vocabulary of
the XML Schema language rather than the vocabulary of the schema author.

This XML schema provides the information needed to be translated in a Java class. A strategy
would be to map all the complex types into Java classes and its subelements into variables. If
a subelement represents another complex type, this will first be mapped into a Java class. To
reflect the relationship between the element and its subelement, the Java class is holding a
reference to it. Hence, the above example would result in the generation of three Java classes,
namely the Pur chaseOr der , USAdr ess , and I t ems . The Pur chaseOr der class has two
references to the USAdr ess class, and a reference to I t ems . XML Schema instance documents
are then used to express object instances of this classes.

2.7.3 Definition of New Datatypes

What is needed is a flexible mechanism which can be extended by providing new data types.
As already described above, there is a basic difference between complex types and simple
types. Complex types allow elements in their content and may carry attributes, and simple
types do not. The creation of a new type is called a definition. Defined types can then be

29

declared with their specific type name and namespace and be used in instance documents.
Again, this is the same mechanism as in object-oriented languages. The purpose is to provide
the possibility to extend the language vocabulary by defining new and reusable types, built
on built-in or previously defined types.

We will focus first on the definition of complex types. There are three elements mainly used
for this purpose. That is the <compl exType>, the <el ement >, and the <at t r i but e>. Further,
an element can reference another element which is outside the scope of the type definition.

<xsd: compl exType name=" USAddr ess" >
 <xsd: sequence>
 <xsd: el ement name=" name" t ype=" xsd: st r i ng" / >
 <xsd: el ement name=" st r eet " t ype=" xsd: st r i ng" / >
 <xsd: el ement name=" ci t y" t ype=" xsd: st r i ng" / >
 <xsd: el ement name=" st at e" t ype=" xsd: st r i ng" / >
 <xsd: el ement name=" zi p" t ype=" xsd: deci mal " / >
 </ xsd: sequence>
 <xsd: at t r i but e name=" count r y" t ype=" xsd: NMTOKEN" f i xed=" US" / >
 </ xsd: compl exType>

In a schema document, <el ement > declares an element, and attributes are declared using the
<at t r i but e> element. The example shows the USAddr ess type. The type is defined as a
complex type, and within the definition of USAddr ess five element declarations and one
attribute declaration are defined. An instance document using this new type has to follow
exactly the predefined structure. The consequence of this definition is that any element with
the type USAddr ess must consist of five elements and one attribute. These elements must be
called name, st r eet , ci t y , st at e and zi p as specified by the values of the declarations' name
attributes, and the elements must appear in the same sequence in which they are declared.
The subelements are all simple types but complex types can also contain other complex types
or references to types. All the simple types are “strongly typed” to use this notion from
object-oriented languages. Strong typing is absolutely necessary to map XML Schemas to a
language like Java. The name type is defined as the built-in type string, which may be
transformed to a Java string. The element zip is a decimal.

The next example contains element declarations involving complex types. The
Pur chaseOr der Type contains a complex type. This type is declared like the other types, by
using the type attributes.

<xsd: compl exType name=" Pur chaseOr der Type" >
 <xsd: sequence>
 <xsd: el ement name=" shi pTo" t ype=" USAddr ess" / >
 <xsd: el ement name=" bi l l To" t ype=" USAddr ess" / >
 <xsd: el ement r ef =" comment " mi nOccur s=" 0" / >
 <xsd: el ement name=" i t ems" t ype=" I t ems" / >
 </ xsd: sequence>
 <xsd: at t r i but e name=" or der Dat e" t ype=" xsd: dat e" / >
 </ xsd: compl exType>

30

The declaration of this type in an instance document follows the same rules as the declaration
of a simple type. The elements named shi pTo and bi l l To, each containing the five
subelements that were declared as part of USAddr ess . The attribute declarations reference
simple types. Attributes cannot contain other elements or other attributes but only simple
types. It is also possible to reuse already existing elements. This is done through the r ef

attribute. The r ef attribute makes it possible to use an existing element, rather than defining
a new one.

<xsd: el ement r ef =" comment " mi nOccur s=" 0" / >

This declaration references an existing element, which was declared elsewhere in the schema.
In general, the value of the r ef attribute must reference a global element, meaning one that
has been declared under the schema element rather than as part of a complex type definition.
Because elements defined, for instance as part of a complex type, are local to this element.
These scoping rules are similar to the scoping rules in object-oriented languages. Hence,
global elements, and global attributes, are created by declarations that appear as the children
of the schema element. Once declared, a global element or a global attribute can be
referenced in one or more declarations using the r ef attribute as described above. A
declaration that references a global element enables the referenced element to appear in the
instance document in the context of the referencing declaration. It is like defining a global
attribute in a Java class.

In the example above the optional mi nOccur s attribute was introduced. XML Schema enables
the definition of cardinality of elements. Mi nOccur s determines the minimum mandatory
occurrences of an element. The maximum number of times an element may appear is
determined by the value of a maxOccur s attribute in its declaration. This value may be a
positive integer, or the term unbounded to indicate there is no maximum number of
occurrences. The default value for both the mi nOccur s and the maxOccur s attributes is 1.

2.7.4 Derivation of Types to Create New Types

New simple types are defined by deriving them from existing simple types. This can be built-
in types or derived simple types. The usual way to define a new simple type is by restricting
an existing one. It is important to understand, that a derived type is handled like a subtype of
the type defined in the restriction base. The notion of types and subtypes is lend from object-
orientation. The consequence is, as shown later in this section, types can be substitute by its
subtypes.

The elements <si mpl eType> and <r est r i c t i on> are used for this purpose. The restriction
element is used on an element to indicate the existing type, and to identify the so called facets
that constrain the range of values. Facets are different kinds of restrictions that can be
imposed on base types. To create a new type of integer called myI nt eger whose range of
values is between 10 and 99, we base our definition on the built-in simple type integer, whose
range of values also includes integers less than 10 and greater than 99. To define myI nt eger ,
we restrict the range of the integer base type by employing two facets called mi nI ncl usi ve
and maxI ncl usi ve:

31

<xsd: s i mpl eType name=" myI nt eger " >
 <xsd: r est r i c t i on base=" xsd: i nt eger " >
 <xsd: mi nI ncl usi ve val ue=" 10" / >
 <xsd: maxI ncl usi ve val ue=" 99" / >
 </ xsd: r est r i c t i on>
</ xsd: si mpl eType>

The following new type I SBNType is based on a string. The restriction facet used here is the
pattern. The pattern allows the definition of regular expressions. In this case three different
structural possibilities are provided. The three lines containing the pattern element can be
seen as an “or” boolean expression. The first regular expression defines an ISBN number as a
one digit followed by a dash, followed by a five digit number, followed by a dash, and so on.
The other two regular expressions can be read in the same way.

<xsd: s i mpl eType name=" I SBNType" >
 <xsd: r est r i c t i on base=" xsd: st r i ng" >
 <xsd: pat t er n val ue=" \ d{ 1} - \ d{ 5} - \ d{ 3} - \ d{ 1} " / >
 <xsd: pat t er n val ue=" \ d{ 1} - \ d{ 3} - \ d{ 5} - \ d{ 1} " / >
 <xsd: pat t er n val ue=" \ d{ 1} - \ d{ 2} - \ d{ 6} - \ d{ 1} " / >
 </ xsd: r est r i ct i on>
</ xsd: si mpl eType>

XML Schema defines fifteen facets. Among these, the enumeration facet is shown in the next
example. It is particularly useful because it can constrain the values of almost every simple
type, except the boolean type. The enumeration facet limits a simple type to a set of distinct
values.

<xsd: s i mpl eType name=" USSt at e" >
 <xsd: r est r i c t i on base=" xsd: st r i ng" >
 <xsd: enumer at i on val ue=" AK" / >
 <xsd: enumer at i on val ue=" AL" / >
 <xsd: enumer at i on val ue=" AR" / >
 <! - - and so on . . . - - >
 </ xsd: r est r i c t i on>
</ xsd: si mpl eType>

Only one value can be applied to this element in an instance document.

2.7.5 Documentation

One important approach for writing reusable schemas is to document them. XML Schema
provides elements for human readable comments and processing instructions to handle for
supporting tools. Human readable documentation can be defined in <document at i on>
elements, while information targeted at applications should be included in <appi nf o>

elements. Both elements must be included in an <annot at i on> element. They accept optional
<l ang> to indicate the language of the documentation. The source attribute is a URI reference
that can be used to indicate the purpose of the <appi nf o> to the processing application.
These elements are defined in the XML Schema vocabulary.

32

2.7.6 Composing Schemas from Multiple Files

In object-orientation design, large and complex architectures are dealt with, by decomposing
them into smaller, manageable software units, which are easier to handle. Further, it is
common practice to reuse existing libraries. Following from that, there is a need in XML
schemas to provide a mechanism to split up XML documents and to provide access to
existing vocabularies. Hence, as schemas become larger, it is often desirable to divide their
content among several schema documents. This is to reduce complexity and provide ease of
maintenance. To split up a large schema or to use libraries of schemas XML Schema provides
two mechanisms for including external schemas.

The first, <i ncl ude>, is similar to a copy and paste of the definitions of the included schema.
The demanded schema is only included. Hence, it is not possible to override any elements
definitions of the included schema. The include mechanism enables you to use externally
created schema components "as-is", that is, without any modification. It is used as follows:

<xsd: i ncl ude schemaLocat i on=" char act er . xsd" / >

Object-oriented languages like Java provide a similar mechanism to include other libraries.
The Java language defines the import keyword to include packages containing Java classes.
The classes inside the included packages can be used in the importing class. The second
inclusion mechanism, <r edef i ne>, is similar to include, except that it lets you redefine the
declarations from the included schema.

<xsd: r edef i ne schemaLocat i on=" char act er 12. xsd" >
<xsd: s i mpl eType name=" nameType" >
 <xsd: r est r i c t i on base=" xsd: st r i ng" >
 <xsd: maxLengt h val ue=" 40" / >
 </ xsd: r est r i c t i on>
</ xsd: si mpl eType>
</ xsd: r edef i ne>

Redefine shares the object-oriented notion of extending a class, thus providing a kind of
inheritance for XML schema documents. It is important to notice that new defined types,
based on an already existing type, are seen, in the scope of XML schemas, as subtypes of the
derived types. For instance, XML parsers complying to the standard, are able to recognize a
type as being a subtype of another type. Features like <i ncl ude> and <r edef i ne> are
introduced to create libraries of schemas. These are features borrowed from object oriented
design that can be used to create reusable schemas.

2.7.7 Substitution Groups

XML Schema provides a mechanism, called substitution groups, that allows elements to be
used in place of other elements. To use this feature, elements have to be assigned to a special
group of elements that are said to be substitutable for a particular named element called the
head element. The head element can be substituted by all elements defining this specific head

33

element in their subst i t ut i onGr oup attribute. One constraint is, that all elements in a
substitution group must have the same type as the head element, or they can have a type that
has been derived from the head element's type. It provides a mechanism for allowing
elements to be used interchangeably. The substitution group is defined through referencing a
common element, the head. The head element does not hold any specific declaration but
must be global. Then they can all be used in place of the head element. In the following
example the element "surname" can be used anywhere an element "name" has been defined.
Substitution groups provide the flexibility to reflect the notion of types and subtypes in
object-orientation.

<xsd: el ement name=" name" t ype=" xsd: st r i ng" / >
<xsd: el ement name=" sur name" t ype=" xsd: st r i ng"
subst i t ut i onGr oup=" name" / >

This concept is very important to provide the flexibility to map type substitutability from
object-oriented languages. In object-orientation, objects adhering to the same type, can be
used interchangeable. Late binding mechanisms resolve during run-time which object is
actually going to be used.

2.7.8 Abstract and Final Types

In object-oriented languages an abstract class can be defined to force a developer to extend
this class and to implement the missing parts. XML Schema introduces the abstract attribute
to support the same functionality. The following example defines a generic "name-elt"
element, which is the head of a substitution group. Because it is declared as abstract,
analogously to abstract classes in object oriented languages, it can not be used directly. It has
to be replaced by either name or surname everywhere it is referenced.

<xsd: el ement name=" name- el t " t ype=" xsd: st r i ng" abst r act =" t r ue" / >
<xsd: el ement name=" name" t ype=" xsd: st r i ng" subst i t ut i onGr oup=" name-
el t " / >
<xsd: el ement name=" sur name" t ype=" xsd: st r i ng"
subst i t ut i onGr oup=" name- el t " / >

The mechanism allows an element to change its type as long as it is a subtype of a specific
abstract type. This is quite similar to the notion of types in object-orientation where an
abstract class is defining the type of its subclasses. The derived classes can be used
everywhere where their superclasses can be used, too.

After having shown a mechanism for defining abstract types, there might be the need to
block the definition of subtypes. Where in Java the final keyword can be used to achieve this
requirement, the XML Schema specification introduces the final attribute which can be used
in an <compl exType> or <el ement >. This attribute can take the values restriction, extension
and #all to block derivation by restriction, extension or any derivation. The following
example would, for instance, forbid any derivation of the char act er Type complex type.

<xsd: compl exType name=" char act er Type" f i nal =" #al l " >

34

The investigation of XML Schemas has shown, that they provide a powerful mechanism to
represent object-oriented structures. The schema specification introduces plenty of object-
based concepts, such as derivation of types, and substitutability, hence supporting the
facilities needed to map class- or object graphs into an XML presentation. But, XML Schemas
can not be seen as an object-oriented language approach. It is rather an XML serialization
mechanism which is able to represent object-oriented constructs in a language independent
way.

2.8 XML Namespaces

Understanding XML namespaces is essential to understanding and building reusable XML
schemas. Namespaces have been a W3C standard since January 1999. The idea behind
namespaces is to provide a mechanism to fully qualify XML element and attribute names.
This is to prevent two elements having the same name but different meanings.

A schema contains a collection of type definitions and element declarations. These type
definitions and element declarations are named. A schema has its own name, which is
supposed to be unique. Hence, an element’s qualified name can be built by adding the
schema name to an element name. The schema name opens a unique namespace. The
elements whose names belong to a particular namespace are called a target namespace. For
instance, the qualified name of the <compl exType> is
ht t p: / / www. w3. or g/ 2001/ XMLSchema/ compl exType. This is because the complexType
element is residing in the XMLSchema namespace. But note, that a different <compl exType>
element can be defined in another namespace. The notion of namespaces provide a similar
mechanism as packages in Java. Packages provide the naming scope for Java classes. The
fully qualified name of a Java class consists of its package and its class name.

Target namespaces enable us to distinguish between definitions and declarations from
different vocabularies. For example, target namespaces would enable us to distinguish
between the declaration for an element in the XML Schema language vocabulary, and a
declaration for an element in another user-defined vocabulary pertaining to a completely
different context. The former is part of the ht t p: / / www. w3. or g/ 2001/ XMLSchema target
namespace, the latter is part of another target namespace, defined by the author.

For example, you might have an accounting application that uses an element called
<schedul e> to mean an accounting schedule. A time management application might use the
same element <schedul e> to mean a time schedule. Using both elements in an instance
document can cause name ambiguities. The purpose might be to keep track of all project
information including accounting and project timeline in the same document. Without
additional information an application would not be able to distinguish between this two
elements. Namespaces allow the provision of a fully qualified name which adds a prefix to
each of its containing elements. For instance, each <schedul e> element can be extended with
a unique prefix that indicates to which application it belongs. For example
<account i ng: schedul e> and <t i me: schedul e> would make things unambiguous. In the

35

next example accounting and time are namespaces. Usually, the namespaces used in an XML
schema can be added as attributes in the <schema> element.

<xsd: schema
 xml ns: xsd=" ht t p: / / www. w3. or g/ 2000/ 10/ XMLSchema"
 xml ns=" ht t p: / / exampl e. or g/ ns/ books/ "
 t ar get Namespace=" ht t p: / / exampl e. or g/ ns/ books/ "
 el ement For mDef aul t =" qual i f i ed"
 at t r i but eFor mDef aul t =" unqual i f i ed" >

Namespace declarations play an important role. The first namespace declaration in the XML
schema above, is xml ns: xsd=" ht t p: / / www. w3. or g/ 2000/ 10/ XMLSchema. The xml ns: xsd

prefix defines, that all elements pertaining to this namespace, have to be prefixed with xsd
throughout the document. As already mentioned, this namespace contains all the elements
which are part of the W3C XML Schema instructions. The name of the prefix used can be
chosen arbitrarily.

If most of the elements in the document belong to the same namespace, it is not necessary to
prefix each element name. Instead you can define a default namespace that applies to all non-
prefixed elements and attributes. The syntax for defining a default namespace is
xml ns=” namespace” . The defined default namespace in this case is
ht t p: / / exampl e. or g/ ns/ books/ . This means elements belonging to this namespace are
not prefixed. The target namespace defines the namespace in the current document. It
enables to distinguish between definitions and declarations from different vocabularies.
Further, it provides a unique name, which can be addressed by other schemas. These enables
reuse of existing schemas.

2.8.1 Conclusion

XML Schemas with XML Namespaces provide support for building reusable, decomposed
schemas, which can be organized as own vocabularies. As a encoding mechanism for SOAP,
there is to date no comparable solution providing the a similar amount of functionality.

2.9 Critical look

SOAP has attracted a widespread corporate interest, which is reflected by the amount of tools
emerged in the last few months. The promise of an remote procedure call and messaging
mechanism being Internet-capable and enabling the integration of heterogeneous system
platforms is causing interest in different kind of businesses. eBusiness solutions and
business-to-business integration are needing a more flexible and standardized approach to
consolidate their business. Naturally, companies providing SOAP tools, are tending to
publish biased information on SOAP and marketing oriented statements. Therefore this
section provides an objective view on SOAP which is a result of the investigation carried out
on SOAP.

36

2.9.1 SOAP’s problems

As described in the previous sections, SOAP is an XML messaging and RPC standard. As
one benefit, it provides a framework for XML messaging without excessive complexity. This
is mainly due to reusing already successful and widely spread technologies, which have
already proved their ease of use, such as XML and HTTP. The SOAP specification is fairly
concise compared with many other messaging standards, with much of the text dedicated to
encoding. Because of its widespread industry support, simple design, and the use of SOAP in
other XML standards, SOAP appears to be the XML messaging standard which is going to be
used in the future. But the investigation has shown that SOAP does not fit in every
environment. There are situations where a protocol like SOAP is not appropriate.

Two problems are occurring with SOAP which can be a hindrance to use SOAP in certain
environments. The first problem is the performance of the serialization and deserialization
mechanism. The second problem is the size of the message created by SOAP. Hence, the
interesting issue emerging here is the performance of the text-based approach SOAP
compared with binary protocols, such as CORBA, RMI, or DCOM.

With binary protocols, encoding arguments and return values is carried out using a binary
data format. The client and server agree on the binary format, there is no need to add meta-
information such as the names or types of the arguments. Whereas, SOAP has to provide
quite a lot of additional information, such as the complete method signature with type
information, as shown in the SOAP example previously. The advantage of binary protocols is
that they achieve better performance, above all considering the serialization and
deserialization time needed for their method arguments. But different binary encoding
systems are hard to work together. In the case of CORBA’s CDR and DCE’s NDR format,
which is used in DCOM, as already mentioned before, makes it impossible to work together.
A text-based approach facilitates to process and to debug messages, because they are easier
to read. A simple XML parser can be used to read or write a SOAP message. The negative
side here is, that existing XML parsers are very expensive, in terms of code size, processing
time and memory footprint. In the remainder of the section where the use of SOAP makes
more sense, and where traditional middleware, such as CORBA and DCOM are the preferred
mechanism to be used.

2.9.2 Conversion to a Network Representation

A serialization mechanism converts an object into a persistent state. SOAP uses XML as its
serialization format. Deserialization converts objects from their persistent state to their
representation in memory. Deserialization in SOAP involves parsing the XML representation
of an object and instantiating the object using reflection. With binary protocols, such as Java
RMI, the class structure of the object being deserialized is already known. The serialized code
contains the information where to find the class, and provides the mechanism, in this case the
class loader, to dynamically load the class information. On the other hand, in SOAP
deserialization, the class structure is learned as the XML is parsed. This shows that SOAP’s
encoding scheme is limited in its functionality to provide a full object-based language. For

37

instance, SOAP does not define a means to represent remote references. The need to include
class and type information coupled with the already large size of the XML representation of
the serialized object makes the SOAP deserialization considerably less efficient.

The impact of this performance penalty might be a problem in a closed network environment
where a fast server-to-server connection is needed. Taking into consideration the steps a
SOAP call involves, a significant performance overhead would not be a surprise. SOAP
message creation and parsing consists of several task of generating the envelope structure,
filling it, verifying it, extracting the necessary parameters, and so on.
In an Internet environment, SOAP is revealing its main advantages, compared to binary
formats. One advantage is that SOAP, being based on Internet standards, can pass firewalls
easily. On the surface, it seems that an XML-based scheme would be intrinsically slower than
that of a binary-based model, but it is not as straightforward as that. When SOAP is used for
sending messages across the Internet, the time to encode/decode the messages at each
endpoint is tiny compared with the time to transfer the bytes between endpoints, so using
XML in this case is not significant.

Another question arising here is, if some parts of a SOAP call are representing an overhead,
above all in an local network environment. SOAP needs additional meta-information about
all types used in messages, using its default encoding rules. The sending of typing
information in every message is an unnecessary overhead since this information is already
implicit in the input and output schema definitions of the service, of which can be assumed
the client is knowledgeable. SOAP implementations, like Microsoft’s SOAP, are using a
service description language to avoid to send additional information in SOAP calls. Apache
SOAP has no support for a description language.

Further, including typing information within each message complicates the evolution of both
clients and servers because changes in this information must be synchronously distributed
and incorporated into their implementations.

2.9.3 Transmittable Data

Overall, SOAP provides many advantages. Unfortunately, its universality comes with a
performance penalty. Because XML messages are textual the sizes of its messages are
significantly larger than protocols which send binary data. In an environment, where large
data sets have to be send as a part of a RPC call, the overall size of a SOAP call might
compromise performance.

In [GOVIND] the performance relative to other communication protocols was tested. The
throughput was compared for Sun RMI and Apache SOAP. The performance was compared
to a transfer of serialized array and linked list data over a raw socket connection. In general
SOAP is approximately ten times slower than Sun's implementation. Considering the relative
sizes of data that must be sent for the same object, this comes as no surprise.

38

Further the investigation has shown that the size of serialized data types in SOAP is
approximately ten times larger than in Sun native serialization. This increase in size is from
the translation of binary data into text.

For example, in Java, each double takes 8 bytes. The string representation in XML of a double
with 16 digits of precision takes at least 16 characters in addition to the 17 bytes for the tags
<doubl e> and </ doubl e>. Thus, each double serialized into XML could take at least 33
bytes. This results in an overhead that is at least a factor of four larger in the XML
representation of a double array. Since SOAP uses XML for data representation, this
overhead is intrinsic to the SOAP protocol and cannot be removed by choosing a better
implementation.
Serializing Java objects into SOAP-encoded XML data takes approximately ten times more
memory than the binary representation. Sun's native Java serialization-deserialization is
closely tied to Java and hence providing a very efficient mechanism. Serialization and
deserialization speeds for SOAP-based implementations are approximately 100 times slower
and their throughputs are also a 100 times lower.

The most significant defect detected in [GOVIND] of using SOAP for RMI is performance.
Sending the 8-byte double in XML, <doubl e>3. 141592653589793E+000</ doubl e>, requires
40 bytes of data. SOAP's data representation size in general is about 10 times the size of
binary representations. Determining the precise performance penalty is important for
deciding when SOAP is appropriate. Because the costs of serialization and deserialization of
XML encoded messages is very high, the use of SOAP in a closed environment where server-
to-server performance is critical, should not be considered yet. On the Internet, where the
time spent for communication is much higher, SOAP is the preferable protocol to be used.

2.9.4 SOAP Interoperability

To date, over 50 SOAP toolkits have appeared. The challenge is to provide interoperability
among the tools. SOAP’s full value can only be realized if interoperability between the
toolkits is ensured. Taking a look at the huge amount of marketing literature for SOAP issued
since the first introduction of the specification, one of the main promises made is cross-
platform interoperability, regardless of development platform or programming language.
The companies are aware that interoperability is the driven force behind the Web Service
technology, but examples like CORBA have shown, that companies tend to add proprietary
mechanisms.

The challenge with the SOAP specification is, that it introduces many optional components,
which may result in different interpretations. The ambiguity of the specification language can
cause interoperability problems. The built-in flexibility of the SOAP specification yields
implementations, which are SOAP compliant but may have made distinct assumptions on
certain issues. Optional components are, for instance, it is optional if SOAP message
parameters are provided type information directly inside the SOAP document, or if the type
information is provided somewhere else. An implementation making the assumption that
parameters are typed will not be able to process the untyped SOAP message. As [bridge] will

39

show, this is actually the problem with Apache SOAP and Microsoft SOAP. Further, a toolkit
provider might decide to implement only a subset of the SOAP specification. There might be
a mismatch in supported features amongst two different tools.

There is evidence that in the case of SOAP, the companies are committed to ensure
interoperability. To help address this issue and to promote SOAP interoperability in general,
the SOAPBuilders online group [ILAB] was founded. Group members are representants from
large companies, such as Microsoft or IBM, to individual persons with their own
implementation of SOAP. The group has introduced a mailing list to discuss interoperability
issues, and has specified a test suite for testing interoperability. The SOAPBuilder
Interoperability Lab (ILAB) is established to support the testing of SOAP implementations.
The ILAB is using the test suite to investigate the interworking of tools and publishes the test
results. This concerted effort shows that software industry has realized the importance of
SOAP and that interoperability is a center-stage issue. The community work is a prove for the
effort made in realizing the promise of SOAP toolkits from whatever provider to work
seamlessly together. In the Part C The Web Service-to-Jini bridge chapter is it investigated if
this effort was a success in the case of Apache SOAP and MS SOAP.

2.10 Conclusion

One of the big questions about using SOAP, or any XML-based mechanism for distributed
computing is where it makes most sense. The investigation has shown that there will also be
a place for other distributed technologies, such as DCOM, CORBA, and Java Remote Method
Invocation (RMI). To many existing applications rely on these mechanism.

DCOM, CORBA and Java RMI are using binary protocols. As the last section has shown this
means speedier transmission across the network and more instantaneous processing by the
recipient. XML messages need more bandwidth and have to be run through a parser before
processing.

However, it can be argued that those disadvantages are not so important, given the rapidly
increasing speed of parsers and CPUs. The success of the Web, which is also based on
relatively verbose protocols, can be taken as example. The Web has achieved a more
widespread adoption than any competing network computing technology. Hence, the
benefits of SOAP are, in the current situation, most obvious for applications that cross local
network boundaries. Because it is not possible to control what technologies are going to be
used outside of a network boundary.

40

3 The Web Service Description Language

This chapter describes the Web Service Description Language (WDSL). WSDL is a
specification to describe Web Services and how to access them. The WSDL was submitted by
Microsoft, IBM, and Ariba to the W3C, the standardization is still in process. The purpose is
to provide a structured way to describe the communication protocols and message formats
introduced by the Web Service model. This need is addressed by defining an XML grammar
for describing the services and its exposed operations. �
�

3.1 Introduction

A WSDL document entails the location, and the description of the operations it exposes. It
provides a simple way for service providers to describe the basic format of requests to their
systems regardless of the underlying protocol used, such as Simple Object Access Protocol
and the data encoding used, such as XML Schema or Multipurpose Internet Messaging
Extensions (MIME), in a standardised way. The operations and messages are described
abstractly, and then bound to a concrete network protocol and message format to define an
operation. Related concrete operations are combined into abstract services. WSDL is
extensible and supports service descriptions and their messages regardless of what message
formats or network protocols are used to communicate. Currently, the only bindings
described in the WSDL specification are SOAP 1.1, HTTP GET/POST, and MIME. WSDL
provides a way for service providers to describe the basic format of web service requests over
different protocols or encoding. It describes what a Web service can do, where it resides, and
how to invoke it.

In object-orientation, there is a generally understood notion of an interface. The interface is a
concrete and immutable description of what the object looks like to external applications that
are going to use the services of that object. In some languages, the interface takes the shape of
an Interface Description Language (IDL). WSDL defines services as collections of network
endpoints called ports in WSDL. The abstract definition of endpoints and messages is
separated from their concrete network deployment or data format bindings. This allows the
reuse of abstract definitions of messages, which are abstract descriptions of the data being
exchanged, and port types, which are abstract collections of operations. The idea of
describing a service in abstract form is similar to the use of an interface in an object-oriented
context or CORBA IDL. The concrete protocol and data format specifications for a particular
port type constitute a reusable binding. A port is defined by associating a network address
with a reusable binding, a collection of ports define a service.

3.2 Current Implementations

Because WSDL, as with all the other technologies comprising the Web Service model, is a
current technology, tools supporting WSDL are relatively uncommon. The most widely
known ones are Microsoft.NET, part of the Microsoft .NET SDK, which is the most mature

41

and advanced tool set utilizing WSDL. The second one is the IBM Web Service Tool Kit
(WSTK), which also provides tool support, but the implementation is less convincing
compared to .NET. Microsoft .NET is actually in beta 2 phase, while the IBM tool has not
passed the beta 1 phase. Nevertheless, .NET provides a complete implementation and tries to
support development with Web Services and WSDL through automatic generation of WSDL-
based code. IBM does not yet provide many features. WSTK implements only the SOAP
binding, whereas in .NET HTTP POST/GET protocol can be used. WSDL can be used in an
RPC- or message-based style. In its current state, WSTK is only RPC compliant. IBM is very
committed to WSDL as being a party to the specification submission. Hence, it is only a
question of time before IBM WSTK will add the missing features.

As mentioned above, a WSDL document conceptually divides the basic service description
into two parts, which can be denoted as the service interface describing the abstract part of a
Web Service, and a service implementation representing the binding to a concrete protocol
and endpoint. This enables each part to be defined separately and independently, and reused
by other parts. The specification leaves great freedom concerning how it can be interpreted
by implementation parties. The consequence is, that in its current state, the .NET generated
WSDL code and the WSTK one are not compatible. The reason is that the IBM tool reflects the
separation of abstract and concrete description by creating two WSDL files. These two files
are connected via the WSDL’s import mechanism. Dot-NET’s tool does not support the
import statement yet. Further, the WSTK uses type definitions which are part of an older
version of the XML Schema specification.

The next figure sketches the WSDL elements and categorizes them as being part of either the
abstract or concrete description. Notice that the specification does not explicitly promote this
separation. This is our view on how the distinction should be made. The WSTK makes the
binding element part of the interface definition. The reasoning for this is not clear.

Service Interface Definition Service Implementation
Definition

Message
Type
PortType

Service
Port
Binding

A service interface definition is an abstract or reusable service definition that can be
instantiated and referenced by multiple service implementation definitions. A service
interface definition bears a close resemblance to an Interface Definition Language (IDL) or
Java interface. This allows common standard service types to be defined, for instance for
business entities, and implemented by multiple service implementers. This is analogous to
defining an abstract interface in a programming language and having multiple concrete
implementations. In CORBA, service interfaces have been defined by industry standards
organizations, such as HL7 for the health industry. WSDL goes in the same direction.

42

The service interface contains WSDL elements that comprise the reusable, abstract portion of
the service description. These are the binding, portType, message and type elements. The
operations of the Web service are defined in the portType element. The operations define
what XML messages can appear as input and output. An operation maps a method signature
from a programming language into an XML representation. The message element specifies
which XML data types constitute various parts of a message. It is used to define the input
and output parameters of an operation. The use of complex data types within the message is
described in the types element. Due to the usage of namespaces, user defined types can be
imported from external files. The service implementation definition describes how a
particular service interface is implemented by a given service provider. A Web service is
modeled as a service element. A service element contains a collection of port elements. A port
associates an endpoint, for example, a network address location or URL with a binding
element from a service interface definition. The binding element describes the protocol, data
format, security and other attributes for a particular service interface.

The service provider would develop a service implementation definition document that
describes the WSDL service, port and address location elements that describe the network
address of the provider’s Web service and other implementation-specific details. The service
interface definition together with the service implementation definition makes up a complete
WSDL definition of the service. This pair contains sufficient information to describe to the
service requestor how to invoke and interact with the Web service. The service requestor can
require other information about the service provider’s endpoint. This information is provided
by the complete Web service description of the service.

A WSDL document is very verbose and contains all the information needed to access Web
Service endpoints. In the bridge chapter we shall use Microsoft .NET generated WSDL
documents to harness the provided meta-data to generate Java interfaces and proxies to
prove its capabilities to provide a type-safe means to describe services.

3.3 Defining Web Services with WSDL

The following, very simple, Java class is used as an example to show what a WSDL document
looks like. The Java class is going to be exposed as a Web Service. The service provides two
operations.

publ i c c l ass Weat her {
 publ i c f l oat get Temp(St r i ng c i t y) {
 f l oat t emp = Weat her Ser vi ce. get Temp(ci t y)) ;
 r et ur n t emp;
 }

 publ i c voi d set Temp(St r i ng c i t y , f l oat t emp) {
 Weat her Ser vi ce. set Temp(ci t y, t emp) ;
 }
}

43

The class is going to be represented as a Web service and both methods are exposed as
operations on that service. It is the decision of the developer which methods will be exposed.
It should be noticed, that the development steps of a class which is going to be exposed as a
Web Service, are the same as the steps involved in a local implementation.
The following parts present the WSDL document representing the above shown Java class.
The <ser vi ce> element defines a physical location for a communication end-point. It uses
the port type and binding specified earlier, and basically gives the Web address or URI for a
particular provider of the described service.

To describe this service, you use the WSDL <def i ni t i ons> element. All WSDL elements
belong to the WSDL namespace, which is defined as ht t p: / / schemas. xml soap. or g/ wsdl / .
As an example, consider a service that you call weatherService; the service would be defined
using WSDL as follows:

<def i ni t i ons name =' weat her ser v i ce'
 xml ns=' ht t p: / / schemas. xml soap. or g/ wsdl / ' >
 <ser v i ce name=' Weat her Ser vi ce' >
 ……
 </ ser vi ce>
</ def i ni t i ons>

The <def i ni t i ons> element is the root element of the WSDL document. The whole XML
structure is enclosed in the <def i ni t i ons> element that describes a set of related services.
The WSDL namespace is declared as the default namespace for the document. So all elements
belong to this namespace unless they have another namespace prefix. WSDL relies heavily on
XML namespaces. The XML namespaces given in the <def i ni t i ons> element's target
namespace attribute is by default attached to all the names used for the other top-level WSDL
elements. Developers can use qualified names to refer to these elements using prefixes from
the particular namespace declarations in scope. This is the usual way to use namespaces in an
XML document. The XML namespaces mechanism is used for the same purpose as in SOAP
documents - that is for disambiguating names in the character data of XML specifications.
XML namespaces are also used to connect WSDL elements to the data-typing provided in the
<t ypes> element. The <t ypes> element allows the specification of low-level data-types for
the message or procedure contents. Different mechanisms are permitted through namespace
extensibility, but XML schemas are likely to be the choice for most users. WSDL provides a
system for importing data-type specifications located as separate resources. The current
implementations use XML Schemas as a mechanism to define types. There could be several
such resources in cases of complex messages in multiple usage domains. In the current
situation, we are not aware of a better means to provide XML datatype definitions. Since the
last version change the XML Schema specification has been quite robust and provides a
mature technology.

44

Each service is defined using a service element. Inside the service element, you specify the
different ports on which this service is accessible. A port specifies the service address, for
example, ht t p: / / l ocal host : 8080/ soap/ r pcr out er The port definition would be like this:

<por t name=' Weat her _Ser vi ceBi ndi ng' bi ndi ng=' Weat her _Ser vi ce' >
 <soap: addr ess
 l ocat i on=' ht t p: / / l ocal host : 8080/ soap/ r pcr out er ' / >
</ por t >

Each port has a unique name and a binding attribute. The binding element is part of the
service implementation definition and explained later in this section. When using SOAP as
the communication protocol, the port element contains a <soap: addr ess/ > element with the
actual service address. Here, the SOAP namespace prefix refers to the namespace
ht t p: / / schemas. xml soap. or g/ wsdl / soap/ . This namespace is used for SOAP-specific
elements within WSDL. Such elements are also known as WSDL SOAP extension elements.
There are different SOAP specific elements used in this WSDL document, which will be
introduced when necessary.

The communication protocol does not have to be SOAP. WSDL allows for different bindings,
such as SOAP and HTTP. For instance, if your Web service is exposed via HTTP GET, the
port element would contain an <ht t p: addr ess/ > element similar to this:

<ht t p: addr ess
l ocat i on=" ht t p: / / l ocal host / demos/ wsdl / devxper t / weat her GET. asp" / >

A Web service may be accessible on many ports. For example, you might make your service
available via SOAP and HTTP GET and possibly even via SMTP. For this Web service, you
would have three ports each one with a different name. Microsoft .NET provides this
flexibility. It is possible to add different port bindings, hence providing different access
points for clients. The IBM WSTK is very restricted with respect to port binding definitions.
They provide only one port for all deployed Web Services. This port hosts a process which
dispatches Web Service requests to the specific implementing Java class/method. Further, as
already mentioned above, only the SOAP binding is provided.

3.3.1 Defining Request and Response Messages

The next step is to define the service’s request and response messages. A message is
described in a protocol independent manner, that is to say, a message may be used with
SOAP, HTTP GET, or any other protocol. To use Web services in a remote procedure call
(RPC) model, two messages must be described. There is the input or request message, which
is sent from the client to the service. The server then sends the output or response message.
In the case of SOAP, the message refers to the payload of the SOAP request or response. That
is, the message does not include the SOAP envelope, or the headers. In the WSDL
specification there is no naming convention for messages specified. Messages can be named
arbitrarily using their name attribute. Usually WSDL documents are generated automatically
by a tool that will probably follow its own naming convention for messages.

45

The <message> element defines the data format of each individual transmission in the
communication. In our example, this is a simple statement that the body of the message is a
particular element from the schema in the types section. The breaking of a transmission into
message parts depends on the logical view of the data. For instance, if the transmission is a
remote procedure call, the message might be divided into multiple parts, one of which is the
procedure name and meta-data and the rest being the procedure parameters. In an RPC call
two message have to be provided.

To describe the message structures, you use the WSDL <message> element. Each <message>
contains zero or more <par t > elements. A <par t > corresponds to a parameter or a return
value in the RPC call. The request message will contain all in/out parameters and the
response message will contain all out parameters as well as the return value if the service
returns something. The part name order reflects the parameter order. Each <par t > must have
the same name and data type as the parameter it represents. This is a SOAP predefined
naming rule which is part of the SOAP specification and not WSDL specific. For example, the
get Temp method would correspond to two messages. A request message sent from client to
service and a response message sent back to the client:

 <message name=' I nget TempRequest ' >
 <par t name=' ci t y ' t ype=' xsd: st r i ng' / >
 </ message>
 <message name=' Out get TempResponse' >
 <par t name=' Resul t ' t ype=' xsd: f l oat ' / >
 </ message>

The naming of the parameters names and method names are not specified. That means, that
different tools will generate different outputs. Notice that the data types are prefixed with the
xsd namespace prefix, as it was declared earlier in the document. As already mentioned in a
previous section, XML Schema defines many data types that can be used to define the
message parts. The extensive list of XSD types is usually sufficient for all simple data types
needed. However, if a service uses user defined types, those types have to be defined in
WSDL. These new defined types have to be added in the <t ypes> section.

3.3.2 Port Types and Operations

If using the RPC model, the messages have to be tied together to represent a request-response
pair corresponding to the specific method call they are representing. For this purpose, WSDL
provides the operation element. Operations are defined using the <oper at i on> element. An
operation specifies which message is the input and which message is the output like this:

 <oper at i on name=' get Temp' par amet er Or der =' ci t y ' >
 <i nput message=' I nget TempRequest ' / >
 <out put message=' Out get TempResponse' / >
 </ oper at i on>

Inside the <oper at i on> element <i nput > and <out put > elements are defined. Each refers to
the corresponding message by its fully qualified name, for instance I nget TempRequest . The

46

<oper at i on> element groups messages that form a single logical operation. For instance, in
our case, we can have an get Temp request which triggers an get Temp response, or in case of
error or exception, a fault response. This particular exchange is grouped together into a
WSDL port type. As you can see, the relationship to messages is made by qualified name
reference. A port type element is the abstract representation of all methods of a class which
are going to be exposed as part of a Web Service. The collection of all operations exposed by
your service is called a portType and is defined using the WSDL <por t Type> element like
this:

 <por t Type name=' Weat her SoapPor t ' >
 <oper at i on name=' get Temp' >
 <i nput message=' I nget TempResponse' / >
 <out put message=' Out get TempResponse' / >
 </ oper at i on>
 <! - - ot her oper at i ons woul d go her e - - >
 </ por t Type>

So the <oper at i on> element is a child of <por t Type>. The portTypes name can be chosen
arbitrarily. There are four forms of operations with built-in support in WSDL. These are one-
way, request-response, solicit-response, and notification. The latter two are simply the
"inverse" of the first two, the only difference being whether the end point in question is on
the receiving or sending end of the initial message. Basically, WSDL supports unidirectional
and bi-directional, such as request-response port types. Faults are only supported in the bi-
directional port types.

3.3.3 Transition from Abstract to Concrete

The WSDL document moves now from the abstract and logical, represented through
messages and port types, to the concrete and physical, with some reference between the two.
The <bi ndi ng> element content is the connection between the logical and physical model. A
binding definition takes the operation defined through the abstract port type and connects it
to a concrete description of how it is transmitted through SOAP. Here is where the earlier
mentioned SOAP extensions to WSDL are used. For instance, SOAP needs to know how the
data is going to be encoded. The SOAP specification contains predefined rules for encoding
which must be added to the WSDL document. WSDL also provides bindings to HTTP and
MIME, and full extensibility to other protocols.

The example binding specifies the Weat her _Ser vi ceBi ndi ng as having the SOAP RPC style
as the transport mechanism. The style can be RPC or Document, the former indicating a more
procedural communication pattern and the latter is a message-based model. Further, the
binding also specifies the network transport as HTTP. SOAP can be transmitted by other
means, such as SMTP. The <soap: oper at i on> elements maps the individual messages in the
port type to definition of SOAP endpoints running on the server side. It is also important to
define a SoapAct i on parameter, required for SOAP over HTTP. The given value must be
used in the HTTP headers of the actual messages in order to be identifiable as SOAP
messages.

47

The following code extract shows the transition occurring from abstract data types, messages,
and operations to concrete physical representation of messages bound to a transport protocol.
To define the concrete aspects of operations, the WSDL <bi ndi ng> element is used:

 <bi ndi ng name=' Weat her _Ser vi ceBi ndi ng' t ype=' Weat her _Ser vi ce' >
…

 </ bi ndi ng>

The name of the binding can be chosen arbitrarily. However, the standard defines that the
same name as for the binding attribute on the <por t > element has to be used. The <bi ndi ng>

element contains a WSDL SOAP extension element called <soap: bi ndi ng> which is used to
specify the transport protocol. As already mentioned above, SOAP can be used over HTTP,
SMTP, or possibly other transport bindings will be defined soon. For example:

 <soap: bi ndi ng st y l e=' r pc '
 t r anspor t =' ht t p: / / schemas. xml soap. or g/ soap/ ht t p' / >

Then for each operation that this service exposes, the value of the SOAPAct i on HTTP header
is specified. The SOAPAction is an HTTP header that the client sends when it invokes the
service. The SOAP server uses this header to determine the service. The SOAPAction value is
specified like this:

 <bi ndi ng name=' Weat her _Ser vi ceBi ndi ng' t ype=' Weat her _Ser vi ce' >
 <soap: bi ndi ng st y l e=' r pc '
t r anspor t =' ht t p: / / schemas. xml soap. or g/ soap/ ht t p' / >
 <oper at i on name=' get Temp' >
 <soap: oper at i on
soapAct i on=' ur n: weat her _ser vi ce' / >

 </ oper at i on>
 </ bi ndi ng>

Basically, an <oper at i on> element is added with the same name as the operation you
defined earlier. Within this <oper at i on> you add a <soap: oper at i on> with the soapAct i on
attribute. Finally, the encoding of the input and output messages of this operation is attached,
the complete binding looks like this:

 <bi ndi ng name=' Weat her _Ser vi ceBi ndi ng'
t ype=' wsdl ns: Weat her _Ser vi ce' >
 <soap: bi ndi ng st y l e=' r pc '
t r anspor t =' ht t p: / / schemas. xml soap. or g/ soap/ ht t p' / >
 <oper at i on name=' geTemp' >
 <soap: oper at i on
soapAct i on=' ur n: weat her _ser vi ce' / >
 <i nput >
 <soap: body use=' encoded' namespace=' ur n: weat her _ser vi ce'

encodi ngSt yl e=' ht t p: / / schemas. xml soap. or g/ soap/ encodi ng/ ' / >
 </ i nput >
 <out put >
 <soap: body use=' encoded' namespace=' ur n: weat her _ser vi ce'

48

encodi ngSt yl e=' ht t p: / / schemas. xml soap. or g/ soap/ encodi ng/ ' / >
 </ out put >
 </ oper at i on>
 </ bi ndi ng>

Within the <oper at i on> you add an <i nput > and an <out put > element and use a
<soap: body> element within each to specify how the data is encoded. The URI
ht t p: / / schemas. xml soap. or g/ soap/ encodi ng/ indicates the SOAP encoding style as
described in the SOAP 1.1 specification.

Overall this example is quite simple. It describes communication consisting of short SOAP
transmissions, with one input string and one output in each operation. WSDL could just as
easily define multiple port types consisting of a myriad of messages.

3.4 Conclusion

WSDL is a very important building-block in the realm of Web Services. Above all, the
combination with an XML messaging protocol, such as SOAP, makes it an indispensable
mechanism for providing run-time information of services. Without a description language
like WSDL, Web Services would loose their dynamic nature. Because Web Services are based
on the idea of run-time binding of components there is the requirement of an standardized
description language.

Using the SOAP protocol without the means of publishing a service description, a client-
service interaction would have been carried out statically. The client needs to know the
address of the service and its unique identifier. Further, to construct the SOAP call, the client
needs to know the signature of the operation to be invoked. With WSDL, a service client can
discover a Web Service dynamically.

Moreover, WSDL is an important part in ensuring SOAP interoperability. For instance, the
Web Service-to-Jini bridge built in the scope of this thesis can dynamically generate SOAP
calls using Apache SOAP. The Apache SOAP client is calling Web Services using Microsoft
SOAP. The bridge is using the metadata provided in the WSDL file.

The interoperability problem between the two SOAP implementation is due to the fact that
Apache SOAP is building its SOAP calls and response, providing type information for all
parameters used in an operation. In contrast, Microsoft SOAP is not adding type information
to its generated SOAP constructs. Rather, the type information provided on the WSDL
document generated automatically, when implementing a Web Service. Hence, this
implementation is tightly connected to WSDL. Apache SOAP does not support WSDL, and
hence has to provide the type information, resulting in larger documents. A further
investigation of this issue will be provided later.

The WSDL specification succeeds in keeping the language quite simple. Like the other
technologies involved with the Web Service model, it is easy to use. Because WSDL

49

documents contains a thorough description of interfaces to Web Services they can be used to
automatically generate access code to the services. A developer of Web Services does not
have to be concerned about how to write or consume Web Service descriptions, there will be
provided tools for doing that.

WSDL is a good example for how companies, in this case Microsoft, IBM, and Ariba, can
combine their effort and submit a standard, without trying to compromise the standard. The
WSDL specification borrows thoughtfully from other efforts trying to reuse already existing
technologies, like the Service Description Language (SDL) defined by Microsoft.

50

Part B The Road to Jini

4 Introduction

This chapter introduces the Jini model. It will examine Jini’s approach to a service-based
architecture. The purpose is to compare the Web Service model and the Jini model
throughout this chapter. Though, both models have from an architectural and conceptual
point of view a lot of concepts and mechanisms in common, they are based on two different
paradigms. Jini is a Java-centric model, hence tightly coupled to an object-oriented
environment, whereas the Web Service model is built on an document or text-based
approach, adhering to open standards. The idea is to describe Jini and its functionality, so
that it allows to compare to the Web Service model.

4.1 Jini’s View on Networking

This section describes the driving forces behind Jini. These forces are fundamental for
understanding the Jini architecture and infrastructure which are explained in a later section.
The analysis below elaborates why Jini is not only another distributed environment, but
rather introduces a new kind of distributed paradigm.

4.1.1 Jini’s Approach to Distributed Computing

Jini’s vision is “to turn the network into the client’s computer by supplying the client with a
federation of remote “plug and play” devices and services in a dynamic configuration that is
personalized for each client” [WALDO2]. The principle of “plug and play” devices and
services yields to a system of spontaneous and decentralized networking. Such distributed
systems require a new way of thinking in contrast to centralized systems that promote a
more static networking model. Programs built according to the Jini idea are provided the
means to function and survive in highly dynamic network environments. This entails the
ability to adapt their behavior to the requirements of the current context.

Jini assumes the network is unreliable. Building a system on realistic expectations of the
infrastructure is a straightforward concept to explain to developers but may cause doubts to
customers who do not completely understand the ideas behind this approach. The creators of
Jini argue that the problem with current system architectures, which are built on a distributed
client/server model, is that they are often built on the assumption that network failure is not
taken into consideration resulting in unreliable systems. The result is, if one system breaks, a
chain reaction is caused affecting other systems, too. [WALDO]

Moreover, the Jini creators see the technology progressing towards a system, where each
participant, can communicate with other participants in a network, and discover dynamically
services. This decentralized organization of the network requires a design that allows
updates and changes to individual components without the requirement to shutdown the

51

whole network. Unlike a single machine, a large network cannot be shut down without great
difficulty, and updating the entire network is more difficult still. So the Jini system allows
upgrades and updates to be installed and used by the components being networked without
requiring that the network be shut down or all individual components to be updated. In a
client/server system, when a server has to be changed or taken from the network, the whole
system will stop to work.

Hence, Jini is built on the assumption that the components which are part of the system are
changing, as are their interactions. Moreover, a part of the Jini vision is that everybody can be
part of a Jini network, resulting in Jini being a very open system allowing a lot of different
devices and services to participate. Anything with a processor, some memory, and a network
connection can be part of the Jini environment. That encompasses devices like printers and
other peripherals, and the community of wireless devices, becoming more important, such
as cell phones.

The programming model introduced reflects another credo of the Jini vision. It is believed
that it is difficult to develop large pieces of reliable software. The suggestion is instead to
work on making small pieces of software reliable and then assemble them into a system that
is resilient when one of the smaller pieces fails. “In this way we can build reliable systems out
of non-reliable parts” [STEIN]. Jini allows for this approach.

The Jini infrastructure, combined with the Java environment’s ability to move code safely,
allows the system to represent this kind of spontaneous networking. Services and clients can
join or leave a network federation anytime. More important, new and enhanced services can
be introduced to extend the functionality of the networked federation.

4.1.2 Federation and Centralized Control

Jini introduces the notion of a federated systems in contrast to the commonly used
centralized system, such as the client/server approach. A Jini federation entails, broadly
spoken, all the services registered with a particular set of lookup services and the clients
using these lookup services to find registered services. The term federation was chosen
consciously, because it denotes a system that empowers the clients to be self-dependent and
self-contained. There is no central entity on which the clients are dependent. That means that
the purpose of the Jini system is to provide a minimal set of rules to allow clients and services
to find each other and interact. The Jini system imposes only a small set of conventions to
make this kind of loosely coupled model possible.

The mechanisms a Jini federation provides to achieve this aim are the lookup service and the
discovery protocol. These mechanisms dictate how its members join, leave, and find one
another. Also by dictating the use of the Java language type system, the Jini federation
defines how services are identified. The Jini programming model codifies certain common
styles of object interaction. Finally, by requiring that the proxy code for a service be
downloadable, the Jini federation dictates how the services and their clients manage change
in their implementations and the way they are extended. The usage of a federated model

52

instead of a usual centralized model reflects the ideas expressed in the Jini vision. Using a
federated model instead of the usual model of centralized control, as in distributed operating
systems, was a conscious decision by the Jini designers. While centralized systems can be
optimized for some cases, changing them over time is difficult. More importantly, centralized
systems do not scale well, and as Jini federations begin to emerge, they have to scale to very
large numbers. The federated approach allows such scaling in ways not available to
centralized systems. Jini’s architectural model supports peer-to-peer communication with
variable size clients and variable size services.

4.1.3 What Makes Jini Different

The Jini vision entails consequences which are mapped to its architecture and programming
model. One important point is that, as already mentioned above, Jini is built on the
assumption that the network is unreliable.

As investigated in [WALDO], distributed computing is fundamentally different from non-
distributed computing. The usually mentioned four differences include latency, memory
access, partial failures, and concurrency. Most of the current distributed systems, such as
CORBA or DCOM, attempt to hide some of these problems, whereas the Jini approach is
aware of the possibility of failures. Rather, it aims at preventing these failures by providing
the necessary tools and methods for effectively building software that adequately addresses
these differences and is able to survive in the face of problems caused by distribution. The
problem will become even worse considering the future changes in networking Jini is
envisioning. The involvement of ad hoc networks and other loosely coupled systems that are
distributed and decentralized, put a heavy burden on the distributed models existing today.
The lack of centralized control implies that services be created on the fly without
intervention of a central point of control.

In such a federated system the client has the capabilities to configure and manage itself,
without human intervention. The services can automatically enter the network and
communicate with other devices or services. These networks are also self-healing in that
devices that leave the network for any reason do not affect the remaining devices’ operation.
A Jini client that loses contact with a server can recover and continue processing. This notion
of self-healing is a very important part of the Jini system.

The reliability of a server process is another important factor in distributed computing.
Clients are dependent on the functionality a server exposes. Reliability measures how well a
device or network performs in the presence of disturbances. It is quite common that a process
may start and stop, or crash completely. Because Jini is aware of this kind of problem the Jini
technology can handle these failures because it expects devices to randomly move in and out
of the network.

The Jini architecture parallels the way machines communicate over the Internet. On the
Internet, any two machines will have multiple communication routes between them, and the
Internet hides the exact path from the user. If a problem occurs with one path, Internet

53

routing protocols select and use another path. When a server becomes unavailable, it disrupts
the client communication with that server process. When this happens in a Jini-based system,
the client automatically goes looking for an alternate server. Once it locates another server
process, the Jini client can reconnect. If no server is available, the Jini client waits or informs
the user. This functionality is built into Jini technology and remains transparent to users.

4.2 Architectural Overview

This section does not provide a programming tutorial. Rather, an overview is given, focusing
on the architectural aspects and technical requirements. The constituent parts of Jini are
introduced. This introduction provides a knowledge base for better understanding the
following sections. Further, some Jini specific terms are explained.

The Jini technology infrastructure is built around the notion of services. Services are entities
that provide some specific functionality, which can be looked up by clients. A service in the
Jini architecture is required to be defined in terms of a data type for the Java programming
language. A data type can be implemented in various ways. Moreover, a service can
represent an implementation of different types, hence providing a variety of functionality to
clients. Types are a standard concept in object-oriented software techniques. Jini brings these
object-oriented techniques seamlessly onto the network. Other distributed object
technologies, such as RMI or CORBA, promise a similar object-oriented approach for
distributed systems. We will show that Jini goes beyond these approaches.

Programmatically services are defined through a Java interface. Clients of a service need only
know this interface to use it. An implementation of such an interface is called proxy in Jini
parlance. Implementation details of the service are hidden completely from the client. Most
of the network related issues are handled, transparently to the client, by the Jini technology
infrastructure. Obviously, there must be at some point a way where the Jini client has to
make a call to a network object, but we will see that in Jini this need is much less pervasive
than in other current-day middleware.

Jini technology is built upon the Java platform. The most important point here is that the Java
platform enables dynamic loading of code written in Java, that is sourcecode, as well as
bytecodes. The Jini system does not only establish a remote procedure call mechanism, like in
other client-server strategies, such as RMI or DCOM. Jini goes beyond simply moving
messages by moving objects through the wire. A client of a Jini service receives a proxy,
which represents an object with data and behavior. The proxy, which is downloaded into the
client, makes the interaction with the service possible. Proxies are “real” implementations of
the service interface, thus supporting all the Java language features a local implementation
would provide. Clients holding such proxies can use the Java programming language’s
reflection capability, for example, to inspect the object. Proxies hide the implementation
details of the protocol used for client-service communication and provide a simple method-
call interface to the remote service, simplifying considerably the work necessary for a
service’s integration into a client.

54

To organize interactions between clients and services lookup services are necessary. The Jini
lookup service is the central component of Jini's runtime infrastructure. Locating Jini services
is carried out by using services provided by the Jini infrastructure. It enables service
providers to publish their services and enables clients to locate and use services. Services are
required to register with all available lookup services, and clients should utilize all available
lookup services for their search. The Jini specification dictates this because running multiple
lookup services provides the system with redundancy and some resilience against failure. As
already mentioned in a prior section the notion of failure is a natural part of Jini. Jini’s
runtime environment is built around the awareness that partial failure is quite common in a
network environment.

To summarize the core ideas, the Jini system exploits the Java environment to construct
federations of services that can be accessed by clients. The definition of services is carried out
through Java interfaces. The implementing objects are called proxies. This service-specific
implementation needs to be written in the Java programming language, or at least the Java
bytecodes are necessary. The service client will only know the interface of the service, hence
being independent from implementation issues. Further, the Java environment’s capability to
move objects across distributed Java Virtual Machines (JVM) is used to a great extent. Proxies
will be uploaded into a lookup service by a service provider. Service implementations will
then be downloaded into a requesting client. This short introduction to some of the important
parts of Jini, serves as starting point to a more detailed look at Jini.

4.3 Components Making Up the System

This section describes the different components making up the system. The focus of the
system is to make the network a more dynamic entity that better reflects the dynamic nature
of the federation by enabling the ability to add and delete services flexibly, hence supporting
an ad hoc network. The technologies to support this idea of spontaneous networking are part
of the Jini infrastructure and programming model.

The Jini specification defines a set of components that are supposed to built up the system.
These components are the building blocks that constitute Jini’s vision of a distributed
environment. These components can be segmented into three categories. The first component
is the infrastructure for federating services in a distributed system. Second, the programming
model that supports and enables the production of distributed services. Finally there is the
service component that can be made part of a federated Jini system and offers functionality to
any other member of the federation.

The infrastructure provides the means to publish reliable services in Jini, hence making them
available to clients. An important part of the Jini infrastructure is the discovery and join
protocol. These protocols allow services to publish themselves, and enables clients and
services to discover other services. Another major part of the infrastructure is the lookup
service, which serves as a repository of services. The lookup service acts as a global storage
mechanism for “Jini objects”, thus working as a resource manager for service objects. These
objects represent the proxies to the service that placed the code into the lookup service. They

55

can be downloaded to a client as part of a lookup operation. The notion of reliability requires
an infrastructure that can assure that only safe code is transmitted to clients. Therefore the
security system of the Java environment is extended to a distributed security system. This
security system is integrated into RMI, thus extending the Java platform’s security model to
encompass distributed systems. The mechanisms introduced here can be seen as the
backbone of the Jini system. In a later section the security mechanisms are explained in more
detail and examined if they are sufficient for an Jini environment.

The programming model represents another component in the Jini system. The model
provides a programmatic access to the Jini environment functionality. The Jini system is,
compared to the base Java environment, enhanced with different concepts and mechanisms.
They are mainly introduced to constitute the aforementioned vision of a flexible, distributed
system. One enhancement is the event and notification interface, which is an extension of the
Java Beans event model, to the distributed environment that enables event-based
communication between Jini services. Further, services can use functionality provided in the
leasing interface, which defines a way of allocating and freeing resources using a model
which is based on duration. The leasing concept is very important in the scope of the self-
healing approach. Moreover, it also provides a transaction interface to ensure data integrity.

The third category comprises services. Services, as already mentioned above, appear
programmatically as objects written in the Java programming language, perhaps made up of
other objects. A service has defined a contract which describes the operations that can be
requested by an application or another service. The type of the service determines the
interfaces that make up that service and also define the set of methods that can be used to
access the service. A single service may be composed by using other services to achieve a
specific task.

The Jini specification defines these three different categories of component for the Jini system.
They all can be seen as the building blocks to realize Jini’s vision of an ad hoc network. Some
of the key concepts that are part of the three components mentioned above, are described in
more detail in the following:

• Service. The most important concept within the Jini architecture is that of a service. A
service is an entity that can be used by a variety of other entities, such as another service
or a client program. A Jini system is not built on the assumption that there are sets of
clients and servers communicating. Instead, a Jini system consists of services that can be
composed dynamically to perform a particular task. Services may make use of other
services, and a client of one service may itself be a service with clients of its own. The
dynamic nature of a Jini system enables services to be added or withdrawn from a
federation at any time, yielding in an ad hoc networking approach. Jini systems provide
mechanisms for service construction, lookup, communication, and use in a distributed
system. Services in a Jini system communicate with each through a predefined service
protocol. This protocol is represented as a set of interfaces written in the Java
programming language. The base Jini system defines other protocols that define other
important service interactions.

56

• Lookup Service. Services are found and resolved by a lookup service. The lookup service is
the central bootstrapping mechanism for the system and provides the major point of
contact between the system and users of the system. A service client needs to get access
to a lookup service, in order to find an appropriate service. A lookup service maps
interfaces indicating the functionality provided by a service to sets of objects that
implement the service, hence acting like a method call broker. In addition, descriptive
entries associated with a service allow more fine-grained selection of services. Of course,
references to a Jini Lookup service may be placed in these other naming and directory
services, providing a means for clients of those services to gain access to a Jini system. A
service is added to a lookup service by a pair of protocols called discovery and join. The
discovery protocol enables to find the lookup service, and the join protocol provides the
functionality to join a lookup service.

• Java Remote Method Invocation (RMI). Communication between services can be
accomplished using Java RMI[SUNRMI]. The infrastructure to support communication
through RMI is a part of the Jini technology infrastructure. RMI is a distributed
mechanism that provides the functionality to find, activate, and garbage collect remote
objects groups. Fundamentally, RMI is a Java-programming-language-enabled extension
to traditional remote procedure call mechanisms. The RMI system not only allows data to
be passed through the wire but full objects, including code. Much of the simplicity of
the Jini system is enabled by this ability to move code around the network in a form that
is encapsulated as an object.

• Security. The design of the security model for Jini technology is built on RMI security
extensions. RMI, being an RPC system does not provide the right mechanisms to ensure
security in an Jini environment.

• Leasing. A lease-based model is introduced to manage access to services. A lease
empowers a client to access a service over a certain time period. Each lease is negotiated
between the user of the service and the provider of the service as part of the service
protocol. A client can prevent the expiration of a lease by renewing it, if he wants to use
the service after the lease expires. If the is not renewed in time the resource is being freed.
There can be different reasons for not extending a lease, perhaps the resource is no longer
needed, the client or network fails, or the lease is not permitted to be renewed. A lease
can be defined as exclusive to insure that no one else may take a lease on the resource
during the period of the lease. Non-exclusive leases allow multiple users to share a
resource. Leases can be seen as the resource manager of the system. They take care that
unused resources are freed and returned to the resource pool.

• Transactions. A series of operations, either within a single service or spanning multiple
services, can be wrapped in a transaction. The Jini Transaction interfaces supply a service
protocol needed to coordinate a two-phase commit. How transactions are
implemented—and indeed, the very semantics of the notion of a transaction is left up to
the service using the interfaces.

• Events. The Jini architecture supports distributed events. An object may allow other
objects to register interest in events in the object and receive a notification of the
occurrence of such an event. This enables distributed event-based programs to be written

57

with a variety of reliability and scalability guarantees. A service can leave an event object
on another service. If this service subsequently encounters a situation the service was
interested in, the client will be notified.

4.4 Fallacies of the Network and Self-Healing Approach.

What makes Jini fundamentally different is that it is built on the assumption that networks
are not reliable and partial failures can occur. Distributed systems are different from non-
distributed systems. There are situations in which different parts of a cooperating group are
unable to communicate, either because the connection between the members in the group has
failed or because one of the members of the group has crashed. This partial failure can
happen at any time and can be intermittent or long-lasting.

The possibility of partial failure makes the construction of distributed systems difficult and
error-prone. In such a system components of the system provide resources or other services
to each other. In many of the non-distributed systems resources and services are granted
until explicitly freed or given up, others, such as Java, provide automatic memory
management mechanisms. Systems, which are not providing such mechanisms are open to
failures if there is no means provided to successfully make the explicit calls that cancel the
use of the resource or system. This kind of failure can result in resources never being freed, in
services being delivered long after the recipient of the service has forgotten that the service
was requested, and in unnecessary high resource consumption.

To avoid these problems, as already mentioned in the previous section, the notion of a lease
is introduced. From the fault tolerance point of view, the concept of leases is perhaps the
most important concept of the ones promoted in Jini. A lease represents a dynamic
reservation of a remote resource. By adding the lease approach into the Jini specification, the
Jini system establishes itself as a self-healing system. Rather than granting services or
resources until that grant has been explicitly cancelled by the party to which the grant was
made, a leased resource or service grant is time based. When the time for the lease has
expired, the service ends and the resource is freed, hence preventing unnecessary resource
consumption. The time period for the lease is negotiated between the client and the service
when the lease is first granted. A request/response form of communication between the
client and the service is established. Leases may be renewed or cancelled before they expire
by the holder of the lease, but in the case of no action taken by the lease holder, which
includes the case of a network or participant failure, the lease simply expires. When a lease
expires, both the holder of the lease and the grantor of the lease know that the service or
resource has been reclaimed.

Although the notion of a lease was originally brought into the system as a way of dealing
with partial failure, the technique is also useful for dealing with another problem faced by
distributed systems. Distributed systems tend to be long-lived. In addition, since distributed
systems are often providing resources that are shared by numerous clients in an
uncoordinated fashion, such systems are much more difficult to shut down for maintenance
purposes than systems that reside on a single machine. Hence, if a system has to be shut

58

down because of a maintenance issue, the lease-based approach enables a much easier way to
shut down the system temporarily.

Like other service distribution architectures, Jini has the concept of events. However, in Jini a
registration for receiving events is considered to reserve resources at the event source.
Consequently, acting according to the Jini resource reservation principle, the event source
creates a lease that is given to the event receiver. In this way Jini assures that the event source
will eventually stop sending events to parties that have crashed or gone away.

As Waldo argues in [WALDO], most distributed computing approaches have aimed at
simulating centralized systems by trying to “hide” faults and errors caused by the underlying
network. For example, a typical distributed system, such as DCOM or CORBA, attempts to
recover from communication errors by automatically resending messages and retrying the
requested operation a number of times. Usually this happens below the programming API,
and the situation is reported back to the application only after the recovery has failed.
Furthermore, in such situations it is not necessarily clear what the state of the communicating
peer is nor whether it has detected the network disruption at all.

4.5 Java’s Language Environment as Requirement

The Jini system relies heavily on the Java environment. The system is Java technology-
centered, assuming and requiring that the communication between a client and services used
by that client are accomplished through a Java interface. This is because Jini builds on the
existing Java environment and because it requires features that are available only with the
Java environment. The Jini architecture simplicity and functionality, is based on the
assumption that the Java programming language is the implementation language for
components. The portable source code, the ability to dynamically download and run code,
and the object-based approach are central to a number of the features of the Jini architecture.
This tight coupling with the Java environment is subject to most of the misunderstandings
concerning Jini. The common understanding is, that Jini is tied to the Java programming
language, and the communication has to be carried out using Java RMI. The following
sections will show, that Jini provides a much more flexible system.

4.6 The Importance of the Interface Type

The type of a service determines the interfaces that make up that service and also defines the
set of methods that can be used to access the service. The type represents the contract
between the service and its environment. A single service may be implemented by using
other services. A client locates an appropriate service by its type, that is, by its interface
written in the Java programming language. Additionally, to describe a service and facilitate
the lookup, attributes can be added which provide more information on the service.
Programmatic interfaces are identified by the type system of the Java programming
language, and services can be found in a lookup service by asking for those that support a
particular interface. Finding a service this way ensures that the program looking for the

59

service will know how to use that service, because that use is defined by the set of methods
that are defined by the type.

To ensure that downloaded code from other machines is not malicious, the environment has
built-in security, to allow the confidence to run code downloaded from another machine.
Strong typing in the Java application environment enables identifying the class of an object to
be run on a virtual machine even when the object did not originate on that machine. The
result is a system in which the network supports a flexible configuration of objects which can
move from place to place as needed and can call any part of the network to perform
operations. The Jini architecture exploits these characteristics of the Java application
environment to simplify the construction of a distributed system. The Jini architecture adds
mechanisms that allow for mobility and management of all components in a distributed
system, extending the easy movement of objects around the entire networked system.

4.7 Mobile Code

The Jini system and its flexibility is based on Java’s mobile code ability which allows it not
only to Transmit remote references, but “real” objects, entailing behavior and state. In order
to understand this important mechanism of the Java environment some technical background
is presented.

The Java Virtual Machine's (JVM) job is to execute Java bytecodes. Bytecode is stored in Java
class files, which are loaded into the JVM via a class loader. The class loader mechanism is the
part of the JVM implementation which takes care of finding and loading types. Loading a
class means locating a class file that contains the desired type, based on the type's name, and
then creating the class from that file [SUNJVM]. Once a class is loaded into a VM, it is linked
into the VM's execution state, which means that it becomes part of the program's execution.
Finally, the VM initializes the class by calling a special initialization method, which
essentially corresponds to static initialization of the class.

Another crucial part concerning Java’s code mobility capabilities is the Java object serialization
mechanism [SUNSERIAL]. The JVM is able not only to load classes, but also to load objects
from the network by employing the Java object serialization facility together with the class
load mechanism. Object serialization maps a Java runtime object into a stream in such a way
that a Java program can reconstruct the object at a later time. The serialized form must
contain enough information to be able to identify and verify the Java class from which the
contents of the object were saved and to restore the contents to a new instance. The binary
stream representing the serialized object can be made persistent by storing it in, for instance,
in a file or in a database management system.

The combination of these two mechanisms, the class loader and object serialization, enables
the capability to dynamically download object instances from JVMs across the network. The
JVM's class loaders are able to find and load classes from their codebases, if the class name is
known. And, in addition, using object serialization, objects can be written to a stream and

60

transported across VMs. Object streams contain instance data to recreate the object as well as
a descriptor of the object's class.

To make the dynamic downloading of objects across distributed JVMs possible, there is a
requirement to tell the VM where it can locate the object's class . The strategy used is to add
the code location for the class onto the serialized object stream. This is done by annotating the
serialized object with the codebase URL . This method facilitates dynamic code mobility,
because the VM can decide at runtime where it should download the classes from. This is
also the fundamental technique used by Java RMI [SUNRMI]. Jini uses exactly this method to
down- and upload service proxies to the lookup service and to clients. The key is to specify
the correct service codebase, and then to make sure that you can actually download the
classfiles needed from these specified locations. Specifically, what is happening is that the
runtime system is annotating the correct codebase to serialized objects inside so called
Ser vi ce I t ems before a service registers with lookup services.

The conclusion is that object mobility on the network is the cornerstone of Jini technology.
Jini exploits the JVM's ability to dynamically download and link code from anywhere on the
network, and takes advantage of object serialization to transport objects between Java VMs in
a distributed Jini federation. To allow both objects and classfiles to independently traverse
the network, Jini builds on the codebase annotation technology employed by Java RMI. This
is achieved by annotating the codebase URLs for an object's class to the object's serialized
stream. It is these techniques together that requires a client to have only a well-known Java
language interface type locally available. The Jini discovery protocols can find lookup
services and retrieve any object that guarantees the contract specified by the service interface.
Classes required to interact with the service are then dynamically downloaded to the client
from the service's codebase URLs.

4.8 Architecture Independence

The idea of providing services accessible through a lookup server, being delivered on
demand to a client, leads to a very flexible architecture. The ability to move objects and code
from the service provider to the lookup service and from there to the client of the service
gives the service provider great freedom in the communication patterns between the service
and its clients. This flexibility is in contrast to other middleware approaches, where the
client/server relationship represents a static collaboration and the client receives the stub
from a directly accessed server.

Since the server provides the stub code to the client on the fly and on demand, that code can
change. In particular, an RMI-based server can implement an extension of a previously
supported interface without there needing to be any change on the part of the clients. The
extension means there is new stub code for the client to use, but the client will receive that
new stub code the next time it receives a reference to the service. This allows the service to
change, and the clients to automatically update themselves on an as-needed basis. No central
coordination is needed to update clients. This code movement also ensures that the service
object held by the client and the service for which it is a proxy are always synchronized,

61

because the service object is supplied by the service itself. The client only knows that it is
dealing with an implementation of an interface written in the Java programming language, so
the code that implements the interface can do whatever is needed to provide the service.
Because this code came originally from the service itself, the code can take advantage of
implementation details of the service known only to the code.

Putting these features together, a Jini service provider has great freedom in implementing an
interface. A service interface may be implemented, for instance, by providing to the client an
RMI reference to the remote object that implements the service. Or, the proxy could act as a
local computation that provide all of the service locally to the client. Further, a combination
of these two approaches can be used, implementing some of the functions of a service locally
and the remainder through remote calls to a centralized implementation of the service.

Following from that, one architectural choice could be to move all the service code to the
client, hence the service is running entirely within the client. The server’s job is to expose the
service to clients. This entails the registration of the proxy with service locators. The server
manages the service leases. This fat proxy approach does not involve communication back to
the server at all. The opposite extreme to this is where all of the processing is done on the
server side. The proxy redirects calls from the client, by invoking the respective method in
the service on the server, and returns the result to the client. This is the approach Java RMI
takes for doing distributed networking. Distributed programming is kept transparent to the
programmer. The RMI stub delivered to the client is essentially invisible to the programmer.
The server code is written to export the implementation, but the RMI runtime component of
Java recognizes this and actually exports the stub instead. This structure is useful when the
service needs to do no processing on the client side, but the application logic is located on the
server. Further, a combination of these “fat” and “thin” client approaches can be used. Parts
of the processing are done in the client side and the rest on the server. This approach does not
specify particular communication protocols between client and server. Usually copies of the
client have to be distributed out to all machines. If there is a problem with the client, they all
have to be updated which is often impossible. Worse, if there is a change to the protocol, then
the server must be rebuilt to handle old and new versions while attempts are made to update
all the clients. When changes occur, the service and its proxy can be updated together, and
there is no need to make changes to the all the clients out on all the various machines because
they will download the changes proxy dynamically.

4.9 Protocol Independence

Following from the last section it becomes clear that the used protocol between the client and
the service is not mandated by the Jini system. Because a proxy can be uploaded to a client,
the proxy can then use whatever protocol it prefers. This is possible because the proxy code,
encapsulates the communication protocol to the service, is a dynamically loaded and
executed piece of code rather than something that has been associated with the client.

The only requirement that a Jini proxy object has to fulfill is to be an implementation of an
interface, which will be used to identify the object in the Jini lookup service. This allows the

62

client of the service to know what operations a service is supporting. But how the proxy
communicates with the service itself is completely up to the proxy and the service from
which it comes. As mentioned in the section before, the proxy does not even have to speak to
the server at all. The proxy can be an RMI reference, an object that communicates using some
other common and well known protocol, such as CORBA's IIOP protocol. Further, the proxy
can use a specialized protocol known only to the proxy and the service itself, or a full
implementation of the service that runs locally in the client's address space. The point is, that
all this is transparent to the client, who only sees the Java interface. The protocol used
between a proxy and a service is a private matter between those two objects. They could open
up a socket connection, for example and exchange messages using a message structure only
they understand. Or they could communicate using a well-known protocol, such as HTTP for
example. The proxy could make HTTP requests, and the service could act as an HTTP server
handling these requests and returning documents. Client-server applications often
communicate using a specialized protocol between the client and server. Jini can simulate
this kind of protocol and make the client/server processes part of the Jini system.

The strategy used here is to associate the proxy with the service and dynamically load the
proxy on demand. In effect, the proxy and the service can be seen as a single object, which is
itself distributed. One part of the object is living in the address space of the client and part of
the object living at the location of the service. This approach gives great flexibility to what
protocol is actually used. Services can use their own specialized protocols that are optimized
for that particular pair of proxy and service. Protocols can evolve over time as new needs
emerge. The need for this tightly coupled relationship explains why the Jini system access to
the network is Java environment-centric. The feasibility of this approach is dependent on the
facility to dynamically download code from the service to the client-code that the client can
safely load into its address space and call. Java technology provides this kind of environment
and mechanisms to satisfy both RMI and Jini.

4.10 Language Independence

Because of the Java environment-centric access to the network, many have concluded that Jini
requires all components in a Jini system must be written completely in Java. Moreover, it is
common thinking that all the communication amongst those components is carried out by
using the Java Remote Method Invocation system. While this is a common case with Jini
services and clients, thinking that this is required misses a central point of the Jini approach
to distributed computing.

For an Jini environment, all that is required is a Java environment running to allow the
exportation of the Java classes that are the implementation of the services to the lookup
service or to the client. That object can be implemented in any language that can be called by
the Java Virtual Machine, using the Java Native Interface (JNI) mechanisms. All that is
needed is a simple JNI wrapper, not a complete conversion. That is to say, the Java
technology-centered nature of the Jini architecture depends on the Java application
environment rather than on the Java programming language. Any programming language

63

can be supported by a Jini system if it has a compiler that produces compliant bytecodes for
the Java programming language.

To summarize, there are at least to ways to avoid to use the Java language, that is through the
JNI mechanism, or by providing a compiler that can translate a language to Java bytecodes.

64

4.11 Some Thoughts on Jini

The Jini system promises a new distributed network approach that fits better the needs of the
new paradigm of a service-based model and peer-to-peer networking. The previous sections
have shown that the Jini specification provides the means to build such systems in a reliable
way, by focusing on partial failure and self-healing mechanisms. It is odd that the Jini
technology is supported by very ambitious people or companies, who recognize the real
power of Jini, but that there are quite a lot people who still have a wrong view on what the
Jini technology really is. When Jini first appeared, it was promoted as a system, which
enables to dynamically add devices, such as a printer or a digital camera, to a network.
Resulting in the Jini system loading automatically the appropriate drivers. Usually, Jini is
seen as a system, that enables the plug and play of hardware devices. In addition, compared
to other middleware approaches, Jini has not gained much attention in enterprise related
computing. For instance, the Enterprise Java Beans (EJB) [SUNEJB] technology has gained
much more momentum in industry. The following sections try to elaborate the reasons for
this lack of success.

4.12 Community-Based Evolvement

Sun originally released the Jini technology with a unique license, a “community source
license” in which Sun makes both the source and binary code for the sample implementation
available for use, inspection, and experimentation by developers who wish to join the Jini
community. The rules imposed on the community work are few, and mostly entail keeping
the type-space clean and publishing sharing profits from commercial applications of the
technology with its originators. This model lets developers use the source and ideas behind
the Jini technology for research without obligation or limit. The idea behind the license was
to give developers the possibility to deal directly with the Jini source code, expanding the
number of developers who would try the technology. Sun Microsystems expected a rapid
feedback on the feasibility and usefulness of the Jini approach in different environment.

It is Sun’s opinion that this kind of licensing model proved effective, resulting in interesting
contributions from the users. Using the contributions of the community members a new
release of the technology was issued. The Jini community can be seen as an ongoing
experiment in trying to mix open source development techniques with industrial engineering
development. The fact that Sun Microsystems is taking this approach may be a hindrance for
companies to adopt Jini as their middleware backbone for business application development.
Because there is no direct support from Sun’s part. The Jini model is presented by Sun more
like a work still in process, instead of promoting it as an architecture, which provide the
capabilities to be used in a “mission-critical” environment. In contrast, in the case of
Enterprise Java Beans a specification was issued with the support of many important vendors
from different areas, such as BEA, Oracle, or IBM.

65

4.13 Lack of Marketing Support

Sun Microsystems itself put much less effort in promoting Jini than it puts in Enterprise Java
Beans. The technology is introduced as a system intended for small, plugable devices and not
suited for enterprise computing. By examining the specification, there is no reason why Jini
should not be able to be used in mission-critical applications. Jini allows the implementation
of distributed, self-healing systems. Jini is not restricted by its component model, as in the
case with EJB, where for instance it is not allowed to use concurrency or threading
mechanisms. Further, the Jini implementation provides an implementation of a transaction
manager.

It seems, that Sun perceives the EJB model as the better approach to capitalize on. Because
there were a lot of companies involved in submitting the specification, they are committed to
this approach.

4.14 Security Issues

After having elaborated the more business related reasons for the lack of support for Jini, we
will focus on technical related flaws. The most important issue emerging here is the absence
of a security system which is appropriate for a distributed, decentralized system like Jini.

Jini is an infrastructure built on top of the mobile code facilities of the Java programming
language enabling clients and services to spontaneously engage in arbitrary usage scenarios.
This seems to work quite well in a closed infrastructure, but for mission-critical applications
it lacks essential security properties. The dynamic nature of locating and using services is one
of Jini’s major strengths. It is the base for the creation of “plug and play” devices and
services. It provides an infrastructure that allows clients to find services independent of both
party’s location. It is this major strength which makes Jini vulnerable in an untrusted
environment, because it is not possible to know who is providing a certain service and what
the service is doing. A problem may arise if one wants to use services via an open network
like the Internet. Unfortunately, this area is currently untouched by Jini. There are no
provisions for data encryption or authentication beyond the abilities of Java 2 and RMI.

4.14.1 Problems that Might Occur

Downloading foreign objects and classes must always be considered a dangerous activity.
Amongst other things, the foreign code could export secrets, corrupt data, or prevent other
code from operating correctly. Malicious code is a major problem in distributed systems,
above when they are connected to the Internet.

Java was designed to cope with downloaded code, and has a fine-grained system of security
management. Access to methods is granted on a class-by-class basis, and a call from an
untrusted class will result in a security exception. For instance, Java applets were the first
Java applications to become well known. One of the main issues with applets is to protect the

66

underlying operating system from attacks. This is achieved by using the “sandbox approach”
which imposes restrictions on the execution of a Java applet inside a browser.

However, the existing implementation of security management is not enough to guarantee
the security of Jini-enabled devices. The procedures for downloading objects and classes
require extension and modification. Any system that admits downloaded code into its run-
time environment is vulnerable to attack. The security mechanisms in Java are intended to
minimize the possible effects, imposing restrictions upon the access available to downloaded
objects and classes. Jini inherits these mechanisms. Different research efforts in this area, such
as [HAKE], have investigated, that it turns out that the security mechanisms introduced with
the new RMI extension framework [SUNSEC] are not sufficient for the special needs of a Jini
environment.

Usually, the possibility of granting network access to untrusted code should be reduced to a
minimum. But in a Jini environment there are ways in which this might occur and which are
not obvious at first sight. In [CRICHT] some typical scenarios in a Jini environment in which
clients are looking for services were examined. The result was that there are quite a lot of
situations where problems might occur. To show how easy it is to compromise a Jini system
the results are summarized in the following lines. A client who is searching for a particular
service that is not available on the local network, might be tempted to look elsewhere.
Because this is happening automatically, the client does not know were the service is coming
from. Lookup services can advertise their presence widely, hence are accessible from outside
a local network. An external lookup service might be registered as service and offered by a
lookup service inside the firewall. To use a lookup service, a client must first obtain a proxy
to the lookup service, and give the deserialized proxy access to the local network. The lookup
proxy uploaded to the client might be the one from outside the firewall. This could result in
using an untrusted service registrar and is one way of granting network access to a piece of
untrusted code. Untrusted code with local network access can scan local ports. If the code is a
proxy implementing a lookup service, or a stub of a different kind, it can send this
information through the firewall. Another problem can appear if a stub for remote objects is
checked against another stub using an equals methods. Such a check may give a piece of
untrusted code a reference to another remote object. It can then make a serialized copy, and
send this copy to an untrusted host.

Especially vulnerable remote objects that can be exported in this fashion include the lookup
service proxy, lease objects, and event listener objects. In each case, the consequences could
be disastrous. A stolen lookup service proxy can give an untrusted host access to an internal
lookup service. The lookup service can then be used to provide untrusted services access to
the local network. Its clients may be misdirected and misinformed. A stolen lease stub gives
an untrusted host an opportunity to use a protected, internal resource. It may also be able to
interfere with any other leases that the client holds and misusing them. A stolen event
listener stub can be used to send a variety of messages to the recipient's event listener. The
event mechanism is intended to allow one device to coordinate the actions of a number of
others, so a significant degree of manipulation is possible.

67

The existing mechanism of security policies, if used properly, can ensure that untrusted code
has no direct access to the network, hence avoiding the aforementioned problems. However,
there are other ways in which untrusted code can subvert the behavior of the virtual
machine.

An untrusted lookup service proxy, denied network access by a access control system, may
still be asked to provide services. It may then create an instance of the service being
requested, based on trusted code, but with its own implementation of the service. If the
request was for a printer service, for example, then the lookup service could create a service
item whose codebase points to trusted class file, hence making the requesting entity believe
this is a safe service. But the original content, when deserialized, turns out to be replaced by a
stub for an untrusted remote object. This stub could redirect a print job to a host outside the
firewall, or subvert the printing service in other ways.

On a Jini-enabled device, the environment of the virtual machine will include an RMI
security manager. Once this manager is present, any piece of code can attempt to use the RMI
class loader by creating a marshaled object and attempting to deserialize it. This can be done
by first creating an array of bytes that looks just like a serialized, marshaled object, and
turning the buffer into a stream. Calling the readObject method, which is part of the
serialization API, on the resulting stream will produce a marshaled object of our own design.
The codebase may be set to point to an untrusted host, and encode any data that it is wished
to send as the class name of the serialized contents. If a method is called on the marshaled
object, the RMI class loader will send a request to the untrusted host containing the encoded
data. In this way, a piece of untrusted code may export any information that it has access to.
For example, a downloaded stub may serialize and send any stubs that it can reference.

A Jini service may need to call another service in order to satisfy its client. If it passes this
second service a reference to itself, then it may be giving untrusted code access to its
protected members. This is possible whenever the classes associated with the two services are
stored in separate Jar files, containing the service classes in a packaged format, and the Jar file
for the first service is accessible to an untrusted party. In [CRICHT] is explained how this
might occur by considering the example of a database service that calls a graphing service in
order to present data to its client. Only an own version of the classes has to be added,
implementing the graphing service to the Jar file for the database service, together with an
additional class that claims to be in the same package as the database classes. If the database
service passes the graphic service a reference to an object that it has defined, the additional
class can be loaded. It may then access the protected members of that object. Even if the
database classes are package-sealed, this will not deter the class loader, because the
additional class has been stored in the same Jar file. Eronen describes in [ERONEN] the
solution of all the problems by outlining that they can be solved with a simple modification
to the class loader mechanism. Only those files that have been signed by a trusted party
should be loaded, anything else should be ignored. This should apply to all files, and not
simply those recognized as classes.

If untrusted code is denied access to the local machine, then all of the problems described
above are eliminated. However, it is still possible to affect the behavior of a client by

68

tampering with the marshaled objects that it downloads. If an untrusted host has access to a
lookup service on the internal network, then it may substitute its own service for one of those
offered. It has only to register a new service with the same service id. The service id is stored
in a lookup service to uniquely identify a service. The lookup service will then assume that
the original service has moved. The new service item can have the same codebase as the
original, that means every class file downloaded will be properly signed and trusted.
However, the contents of the service item may be different. When deserialized, they might
produce a stub for a remote object on an untrusted host. Note that it is not necessary to
substitute for an existing service, simply adding a new service will make it available to clients
on the internal network. If more than one service matches a request, then a lookup service
may provide any of those available, the choice is randomized to provide a degree of load-
balancing. Thus, the lookup service can decide to which service the request is sent. The client
is absolutely unaware of this.

4.14.2 Requirements for a Secure Jini Environment

Taking the above mentioned scenarios into consideration some requirements arise. This
requirements are absolutely necessary to support a secure Jini environment.

One major difference in the Jini architecture compared to traditional client/server systems
like CORBA or the world-wide Web is the relationship between the client and the server. In
the traditional approach the client permanently contains the code for communicating with a
server. The protocol code is part of the client and therefore part of the client’s trusted
computing base. Hence, the client/server relationship is very tight. If a client needs some
kind of security, such as authentication or encryption, it can choose to use any protocol that
provides the required security properties, for instance the Secure Socket Layer (SSL). The Jini
approach is fundamentally different. Jini clients do not implement any network protocol at
all. It the service’s proxy object’s task to perform the communication with the server and to
decide which protocol to use. As mentioned before, proxy objects originate from some source
on the network which is usually untrusted. This includes the download and execution of
code from that source. Clients know the interface of these objects but they can not know what
these objects are effectively doing. The usual approach to secure the platform which is
suggested in the Jini specification, is achieved by the Java sandbox model and appropriate
security policies provided by Java. The problem here is that a client does not and cannot
know what a proxy object is doing with supplied data. These means would be sufficient for a
traditional client/server system. Jini requires a security approach that is different from those
of traditional client/server systems. Because the supplied proxy is not in the scope of the
client but rather associated with its service, the service should know which kind of security is
appropriate for its application domain. The client has therefore to trust the proxy to enforce
the correct security constraints. This is not solving the problem of mobile proxies. The
problem is not how to establish trust in proxy objects, but rather how to ensure trust in the
service provider that supplied the proxy. The problem is shifted from the proxy to the service
provider.

69

[ERONEN] and [HAKE] are expressing ideas and designs for a secure Jini environment. Even
if their approach is different they agree on several steps that are necessary to guarantee a
secure Jini environment. One step is to ensure proxy integrity. To establish trust the object
should not be changed on its way from the service to the client. As said before, an object
consists of the two parts state and code. Both parts’ integrity must be ensured. It is therefore
necessary to digitally sign the code as well as the state. As we do not want anybody to
observe the in-traffic service descriptions, the connections between the lookup service and its
clients should be encrypted.

As shown above, trusting the proxy is not enough. Even if the communication is encrypted
and authentic objects are provided, there is still the need to trust the lookup service. Even if a
lookup service provides the Jini client with untampered objects, it might decide to deliver not
the most appropriate service, but rather the services preferred by the service provider. From
a service provider’s view even the knowledge of a service’s existence might be considered a
valuable asset that must be protected. In a trusted infrastructure it is still possible to have
malicious services registered with secure lookup services. The requirement is therefore is that
services have to authenticate themselves to the lookup service. Likewise, clients too are
required to authenticate themselves to the lookup service. This is an obvious requirement as
it is important to make sure that only authorized people access somebody’s bank account.

Sun Microsystems is aware of the problems and is currently working on an extension to RMI
that is supposed to allow secure interaction with RMI-based servers including the
establishment of trust in downloaded proxies. The specification is currently in draft status. It
allows fine-grained control of different security properties. While the extension is currently
only aimed at RMI it is supposed to be possible to use the same methods and interfaces for
other middleware architectures as well. The most interesting part of the specification deals
with the establishment of trust in downloaded proxies. The basic method used here is to
allow only trusted code to be run. Further security properties, for instance authentication and
encryption are then guaranteed by the trusted code. Trusted code includes dynamically
generated RMI stubs. If a proxy is not an instance of a trusted class, it is asked to present
another object which is trusted. The associated server is then asked if it trusts the original
object.

4.14.3 Drawbacks of the Proposed Security Approaches

Some groups are working to find a solution for the security problem, such as [NIKAN]. The
right solution has not been found yet. Their methods do, on the one hand, ensure security,
but on the other hand restrict spontaneous networking which is a major strength of Jini. The
Java approach expressed through the RMI security extension framework is only partially
appropriate for the Jini system. A few problems that can be regarded as essential are not
addressed. First, objects are instantiated before establishing trust. Malicious code could
therefore be executed in the constructor of the proxy. Secondly, the specification is aimed at
RMI in general and does not address Jini in particular. Services are therefore still visible to
everybody. Different security levels can only be enforced after downloading the service’s
proxies and depend on their enforcement by every client and server. Missing parts are a

70

class loader which loads only those classes that are signed and certificated by a trusted party.
Uncertificated classes are refused. To solve the problem of malicious objects, a class loader is
necessary in which serialized contents of a marshaled object can be signed and certificated.

The result is that even in the examined architecture, a few questions are still open. Most of
them assume that there is a central certification instance. In a dynamic environment, a
distributed architecture would probably be a more favorable solution. Despite the obvious
advantages of a secure service infrastructure, they do not come for free. The drawback is the
partial loss of “spontaneity” of client/service interactions, which was said to be one of the
main advantages of Jini. Plugging devices and services into the network, spontaneously
finding these devices via the lookup service, and using them are easily done. Establishing
trust relationships in such spontaneous environments seems to be a task that results in a
decrease of spontaneity, since prior to actual use administrative processes, for instance
distributing keys, must take place first. Open is the question whether the trade-off between
trust and spontaneity can be avoided by additional means that take the mobility of users and
devices into account. The gist is expressed by Eronen “without a suitable set of extensions,
the Jini system is not ready for adoption in a supposedly-secure environment. The Jini
version of plug and play is based around the free exchange of code; without some system of
certification, a Jini-enabled device will be forced to trust in the good intentions of others.”
[ERONEN]

71

Part C The Web Service-to-Jini bridge

5 The Bridge

5.1 Overview

This section describes a set of facilities enabling a Web Service be translated into a Jini
service. The goal of the prototype is to evaluate the promises made by the Web Service
paradigm. Above all, the promise of SOAP interoperability, which is the major reason for
SOAP’s existence, and the ability of SOAP and WSDL in conjunction with XML Schema, to
provide a type-safe description of classes and objects in a text-based form. The purpose of the
Web Service-to-Jini bridge is to enable the automatic generation of a Jini service, which can
access a Web Service created in Microsoft .NET. The bridge does not only provide a SOAP
proxy but also generates a Jini interface, to support Jini’s way to describe a service. The
construction of the bridge entails the usage of Web Service technologies and current-day
development tools. Hence, the bridge implementation is used as an approach to evaluate the
promises made by the Web Service model, and the maturity of existing tools. The promises
and the Web Service technologies were described in the previous parts of this document. The
evaluation will be carried out by making heavy use of the points made before.

5.2 The Purpose of the Bridge

The Web Service model claims to be platform and language independent. Moreover, being
based on open standards, the model promotes interoperability and the capability to integrate
heterogeneous systems. Hence, the purpose of the bridge implementation is to use Web
Service technologies from two different platforms and evaluate if they really provide
interoperability. The investigation in section on SOAP (14) has shown that interoperability is
one of the main issues which will influence the success of the Web Service model.

Further, the combination of SOAP and WSDL supports the means to dynamically access
exposed Web Services. The bridge makes use of the service description, to generate
automatically Java classes and SOAP calls. This step involves the translation from a text-
based representation in XML to an object-based approach, hence it will be examined, if the
XML representation can provide enough information to be reconstructed into classes and
objects. The intention is to show if the approach is feasible to preserve type information. This
ability is necessary to prove the language independence of the approach. Important here is,
above all, if the type information can be preserved if the translation takes place among two
different languages.

5.3 Requirement Analysis

72

Now that the purpose has been described, the requirements of the bridge can be defined. In
order to provide the functionality needed to carry out a type-safe generation from an XML
document to an object-oriented presentation some specific features are required. The Web
Service-to-Jini bridge enables further the automatic generation of WSDL files, which can be
located everywhere on a network, to Jini services. To provide additional features, the Jini
service can be published automatically into a Jini federation. Hence, the bridge requires
following features:

• Facilities to locate and download an WSDL document from the network. That can be
from the Internet, or from a local network. A local WSDL can be used, too.

• Facilities to analyze service component descriptions. This is carried out by parsing
the WSDL document exposed by a Web Service, using an XML parser which is able
to deal with namespaces and schemas. The necessary information’s have to be
extracted.

• Facilities to harness the extracted information to generate automatically a Java
interface, which provides the same functionality as the Web Service. In the case of
Jini, the functionality is represented as Java interface. The facility provided here must
be able to create Java interfaces from an XML schemas representation.

• Facilities to generate automatically the Jini service implementation. The
implementation code functions as a proxy to the Web Service operations.

• Facilities to call Web Services from a Jini service. A mechanism is needed that can
construct SOAP request messages and handle responses. This SOAP calls are used to
use the functionality provided by the Web Service.

• Facilities to publish automatically the Jini service to a Jini federation. As an
additional feature, it is possible to publish the generated Jini service to a Jini
federation.

5.4 Design and Implementation Criteria

The following will describe the criteria we considered as important. Some of them reflect the
above mentioned requirements, others are resulting from the technologies used.

• Jini service description. One possible solution for a Jini-Web Service bridge would have

been to generate a Jini service, that provides only a proxy to a Web Service. The bridge
goes further. To harness the features provided by the Jini environment, a Web Service is
wrapped into a self-describing Jini service. Jini services gain their flexibility through their
self-describing interface. The interface is published to a lookup server, so every
interesting client can search the service through its type definition. Hence, the bridge
generates a Java interface using the method names and parameter name provided in the
WSDL file, and other service information.

• Jini architecture approach. As described in the section on Jini, it is possible to construct Jini

services adhering to different architectural patterns. This provides the possibility to

73

implement Jini services in different shapes. One possibility would be to have a thin client
using RMI. Jini’s proxy has to be uploaded to the requesting client. The proxies task with
this configuration is merely to use remote method invocations to call methods on the
server which is providing the Jini service implementing classes. That entails a call to the
lookup server which uploads the necessary stub to the requesting client. Having the RMI
proxy on the client side the calls can be directed directly to the implementing server. The
Jini service has to create the SOAP calls. That means, that the SOAP generating
mechanisms are stored on the server, where the Jini service is located. This configuration
requires always two calls, from the client to service, and then the service generates the
SOAP call and sends the message to the Web Service. The other possibility would be to
upload the whole proxy into the client. This results in avoiding the Jini proxy-to-Jini
service call across the network, which seems to be a faster solution. The problem here is
that the client needs to upload the Apache SOAP classes, which are providing the SOAP
API and are generating the call, additionally to the service classes. The jar file size is 216
kilobytes. To let the user decide, the bridge allows the choice between one of the two
configuration.

• Creating reusable service description. Through parsing and extracting the necessary
information from a WSDL file, a Java interface is generated. But first, a XML schema
representation is generated, which contains all the necessary information to create an
interface and its implementation. It would have been possible to generate automatically
the interfaces and its implementation. The additional step was chosen, to provide a
reusable representation of the Web Service. The XML schema can be stored and reused
later. This file can be reused, for instance, to generate a object-oriented representation in
another language than Java, without having to download the WSDL again. The
generated XML schema contains only the necessary information, and is therefore smaller
and faster to parse, compared to the WSDL file.

• Type mapping extensibility. The bridge supports in its current version, only the built-in
types defined in the XML schema specification. To provide a flexible design and the
possibility to extend the supported types, a TypeMapper class is defined, which contains
all the supported type mappings from XML schema types to Java types.

5.5 Selection of Technologies

The used technologies reflect the bridge purpose expressed above. To evaluate SOAP’s
interoperability, we have chosen to use Microsoft’s SOAP and IBM’s SOAP to interact. The
bridge uses Apache SOAP’s API to generate the calls to the Web Service.

Moreover, to show that Web Services are platform independent, the bridge is able to use Web
Services implemented, deployed and exposed by Microsoft .NET to generate Jini services,
which are implemented and deployed in a Java environment. Because Java is inherently
platform independent, the bridge works on Linux, or other platforms supporting Java, too.
Hence, we have two platforms using Web Services, that the Java environment using SOAP to
access Web Services, in a Microsoft .NET environment.

74

The bridge is implemented in Java. The generated Jini code is also Java. The Web Service
carried out with the .NET development environment shown in the next section, is
implemented with C#, a language similar to Java. This results in a Jini service using
functionality implemented by an C# application. The Web Service is not directly part of the
bridge, but it is mentioned here, to show the cross-language functionality of SOAP.

Moreover, the bridge uses WSDL to extract the needed information to generate automatically
a Jini interface and an implementation, consisting of SOAP proxy calls to the Web Service.
The bridge uses the Java API for XML parsing (JAXP) in combination with Xalan XML parser
provided by Java API to parse the documents. The parser is able to handle namespaces and
schemas, which is a requirement for the processing of the WSDL file.

5.6 Operational and Functional Description

5.6.1 The Core Classes

• The SchemaMapper class loads WSDL documents. The file can be loaded locally from the
harddrive, or from a network resource, such as an URL. Notice, that WSDL documents
can be directly accessed by adding #service_name to the URL where the Web Service is
provided. (see Appendix A for source code)

• The JavaSchema class parses the XML document and extracts the specific parts of the file.
The idea is to use the metadata provided and to serialize it into a XML schema specified.
This extra step is used so the metadata necessary to generate a language specific
interface can be stored and reused. In this case it is used to generate a Java interface. This
class takes the aforementioned schema to generate a Java interface from it. It uses the
meta information to create a self describing, typed interface. The schema has to provide
enough information to make it possible to extract the names and the type information.
The result is a Java interface which is going to be used as Jini service description. (see
Appendix B for source code)

• The I mpl Code class enables the next step, that is the implementation of the interface. The
interface does not implement the service itself but delegates the requests to the Web
Service. Hence, the interface’s job is to generate SOAP calls to the appropriate service.
Apache SOAP’s API is used to generate automatically the required code. If SOAP
interoperability is working the Web Service will return a SOAP response and the result
will be processed by the Jini service. ImplCode class generates automatically the method
implementations. These implementations consists mainly in generating the appropriate
SOAP calls and handling SOAP responses. (see Appendix C for source code)

• The bridge provides different additional features. The user can configure the bridge. A
feature is, for instance, the possibility to generate the Jini service and automatically
publish the service to a lookup service. these part are not part of the core.

In the appendix of this thesis the core classes can be found.

75

5.6.2 A Walkthrough Scenario

The following description is used to walk through a typical application for generating a Jini
service from a Web Service description, and publishing the Jini service automatically to Jini
lookup services. This will describe the system’s functionality and operational characteristics
in more detail. The Jini service is built using the abstract definition of operations and the
concrete bindings as defined in the WSDL document. Further, the type information provided
in the description document is used to deserialize the XML document into Java entities.
Hence, Jini clients or other services can look up the service using its type.

This example will use a Web Service generated using Microsoft .NET. The Web Service is
implemented with C#. The implementation of the service with .NET is very straightforward.
The application logic is implemented without having to consider that the service is going to
be exposed as a Web Service. After having implemented the application, the developer can
use tools to define the methods which should be exposed to the Internet. The tools generate
automatically the necessary WSDL document and the Web Service can easily be deployed in
a Web Server. The Web Service used provides a simple banking interface. A client can add or
withdraw money from its account. To make use of this service in a Jini environment the user
has to carry out following steps.

• The bridge provides a batch file. The user has only to use this batch file, and configure it
with the functionality the he wants to use. The batch file can be applied as follows:

WSt oJi ni –di r di r ect or y_name –wsdl wsdl _l ocat i on –pr oxy t hi n| f at –
j i ni pub| unub

 The WStoJini batch file provides an easy mechanism for the user, to use the bridge

functionality. The user can define with the –di r option in which directory the generated
files should be saved. This option is not mandatory, if no value is provided the files will
be saved in the current directory. The –wsdl option is mandatory and requires the URL
where the WSDL file can be located. The location can be an Internet address, or a local
file. The –pr oxy option allows the user to chose if the Jini proxy should be generated as a
thin client using RMI calls to the server, as explained in section 4.8 “Architecture
Independence” (60), or a fat proxy, entailing to download the SOAP API. The default
value is thin. The last option provides the possibility to automatically publish the
generated Jini service in a lookup server. If the pub option is chosen, the Jini service will
automatically be published. The default value is unpub. Notice, it is not the purpose of
the bridge, to provide all the necessary Jini configuration. If the user is going to publish
the service, it is his task to provide a configured Jini environment on the system. The next
points will describe what s going behind the scenes

• The provided WSDL location is passed to the SchemaMapper class. Then the class tries to
load the WSDL into memory. If the document is available at the provided URL, it is
parsed and the XML parser creates a Document Object Model (DOM) representation of
the document. The DOM is a standard tree-like representation stored in memory. A user
can traverse this tree, extracting information, or changing the structure of the tree by, for
instance, adding or removing nodes. The mapper class uses this representation of the
WSDL document to extract the needed properties. The mapper class uses the <t ypes>

76

element in the WSDL file, to get all the information about the types used in the service.
These type information are necessary to generate the right method parameters and the
method return values. The following code shows a part of the <t ypes> from the banking
WSDL file. Here, the types passed to an NewAccount operation are specified.
Additionally the target namespace of the document is provided.

<t ypes>
 <s: schema at t r i but eFor mDef aul t =" qual i f i ed"
el ement For mDef aul t =" qual i f i ed"
t ar get Namespace=" ht t p: / / er at os. csse. monash. edu. au/ banki ng" >

 <s: el ement name=" NewAccount " >
 <s: compl exType>
 <s: sequence>
 <s: el ement mi nOccur s=" 1" maxOccur s=" 1" name=" l _name"
ni l l abl e=" t r ue" t ype=" s: st r i ng" / >
 <s: el ement mi nOccur s=" 1" maxOccur s=" 1" name=" l _emai l "
ni l l abl e=" t r ue" t ype=" s: st r i ng" / >
 </ s: sequence>
 </ s: compl exType>
 </ s: el ement >

…
</ t ypes>

Further, the mapper extracts all the information needed to locate and access the Web
Service through an SOAP call from the <ser vi ce> element. That entails the unique
identifier, and the URL, where the service is exposed. The SOAP structure needs this
information, for instance for the SOAPAct i on option in the header. As shown in the next
code snippet the <oper at i on> element provides the SOAPAct i on value which is
necessary to uniquely identify a method. The <ser vi ce> element embraces the <por t >
element, which contains the <soap: addr ess> identifier and the location of the specific
Web Service.

 …

<oper at i on name=" Wi t hdr aw" >
 <soap: oper at i on

soapAct i on=ht t p: / / er at os. csse. monash. edu. au/ banki ng/ Wi t hdr aw
st y l e=" document " / >

…
<ser vi ce name=" Banki ngSer vi ce" >
 <por t name=" Banki ngSer vi ceSoap" bi ndi ng=" s0: Banki ngSer vi ceSoap" >
 <soap: addr ess
l ocat i on=" ht t p: / / er at os. csse. monash. edu. au/ banki ng/ banki ng. asmx" / >
 </ por t >
 …
 </ por t >
 </ ser v i ce>

Additionally, the mapper extracts the service name, the names of the operations, and all
the names of the operation’s parameters. These names can be used to generate a Jini

77

service with aquivalent names. More information on this WSDL file and the generated
code can be found in the Appendix D.

All this information is used to generate an XML schema which then reflects the Web
Service. The defined schema has following structure:

Having the XML representation of the Web Service makes it now possible to generate
actually the Jini interfaces and implementation. The SchemaJava class does this. The class
uses an XML parser to extract the method and type information to generate a Java
interface. Further, the URL address and the URN identifier are added to the interface as
typesafe constants, because this values are true for all the operations, they are inserted in
the interface as global attributes. The SchemaJava class uses the TypeMapper class to map
XML schema types to Java types. See Appendix D for the generated code.

• The missing part is the implementation of the Java interface, which provides the
functionality for the Jini service. The Jini service does not implement the service
functionality, rather it creates a SOAP call to the Web Service implementing the
functionality. That means, the task of the Jini service is to redirect call, by translating the
method invocation on the Jini interface to a SOAP call on the Web Service. The Apache
SOAP API provides a Cal l class, to define the call parameters and automatically
generates the appropriate call. Because each operation which can be called on the Web
Service needs its own call structure, all interface methods have to be implemented by
providing the code necessary to construct the call message. The following code extract
shows a part of the generated code. See Appendix D for the generated code.

5.7 Results

The walkthrough scenario described in the previous section, was carried out in an
environment, which was defined to evaluate the Web Service model and its technologies.
This testbed consists of a Microsoft Internet Information Server (IIS) running on a Windows
2000 machine. On this machine resides the banking Web Service, which is implemented in
C#. The Web Service was deployed and configured using Microsoft .NET and its Web Service
tools. On another machine runs the Web Service-to-Jini bridge. This machine has the Apache
SOAP API and IBM Web Service Toolkit installed and configured. Moreover, the Jini API is
provided. This environment was chosen because it provides all the necessary technologies to
evaluate the Web Service model. It is examined if the promise of language independence
holds, by using Java and C#, both using SOAP calls to communicate. Further, the call crosses
technology boundaries by accessing functionality implemented in an Microsoft environment
from a Java-centric environment.

The WSDL file downloaded can be found in the Appendix D. Further, the generated Jini
interfaces, and the implementation are located there, too. The previous section has already
shown some parts of it. The important part is that the Web Service is responding with the
right SOAP response message. A .NET tool (MSoapT) is used to observe the all the requests
that are sent to the server and all the responses that the server generates. For instance, in the

78

case that the generated Jini service creates a SOAP call to invoke the withdraw operation on
the Web Service the following SOAP response is returned by the server.

<?xml ver s i on=” 1. 0” encodoi ng=” UTF- 8” st andal one=” no” ?>
<SOAP- ENV: Envel ope SOAP-
ENV: encodi ngSt yl e=” ht t p: / / schemas. xml soap. or g/ soap/ encodi ng/ ”
 xml ns: SOAP- ENV=” ht t p: / / schemas. xml soap. or g/ soap/ envel ope/ ” >
<SOAP- ENV: Body>
 <m: bal anceResponse xml ns: m= >
 <Resul t >120</ Resul t >
 </ m: bal anceResponse>
</ SOAP- ENV: Body>
<SOAP- ENV: Envel ope>

Observing this response message, it is possible to see, that the result element is not typed,
and hence causing the interoperability problem with Apache SOAP. This situation is handled
by instructing the generated Apache SOAP client not to expect the type information in the
response received. Rather, the mapping registry, managed by the SOAP implementation,
must be passed explicitly the necessary type information. Apache SOAP uses a mapping
registry to inform its SOAP server which types are supported, and which kind a
deserialization mechanism has to be used for each type. This is done by following lines:

 SOAPMappi ngRegi st r y smr = new SOAPMappi ngRegi st r y() ;
 St r i ngDeser i al i zer sd = new St r i ng() ;
 smr . mapTypes(Const ant s. NS_URI _SOAP_ENC, new QName(" " , " Resul t ") , nul l ,
nul l , sd) ;

The deserializer type has to be changed, if a different type is needed. This is handled by the
bridge. The deserializer is a mechanism provided by Apache SOAP to automatically
deserialize a XML schema type and its value in a Java representation. A serializer is also
provided to map a Java object in a XML schema representation.

The result that can be found here is that SOAP interoperability works, though some minor
changes have to be made. But this can be seen as a problem of the early stage of the
development tools provided. This tool incompabilities will be changed in the close future.
The language independence and platform independence is proved, and further the
integration of heterogeneous systems is possible. This is achieved, without loosing
functionality across system boundaries. The test was not run behind a firewall, hence it is not
possible to make a statement in that case. But, because the SOAP calls are strictly built on
HTTP, the possibility that the calls will pass a firewall barrier is very high.
The step from one object-oriented language, such as C#, to an another language, such as Java,
is possible, without loosing type information. This is achieved by providing a standard
encoding standard based on XML.

79

5.8 SOAP Interoperability with Apache SOAP and Microsoft

The results carried out are true for Apache SOAP release 2.1 or above, and Microsoft SOAP
Toolkit Beta 2 or higher. The investigation shows that these implementations are not
naturally interoperable. The occurring problem is caused by the xsi : t ype attribute which is
based on different views on SOAP. The SOAP specification provides the possibility to define
the types of elements which are part of the SOAP envelope. This information is an optional
part. The SOAP implementer can provide other means to communicate the type information,
they do not have to be included directly in the SOAP message. It is recommended to use the
xsi : t ype attribute only if no other means are supported. As shown in section 2.9 “Critical
look” (35), the size of a SOAP message call is smaller without providing the type information
inside each call, and hence the better solution.

Apache SOAP demands the type attribute to be always added in a SOAP message. Whereas,
Miscrosoft’s SOAP does not require this information. Microsoft’s SOAP implementation has a
built in dependency on an external service description document. This document describes
the data type and can be accessed by requester and provider of the service. Apache’s SOAP
does not understand a description language, such as WSDL. Both implementations adhere to
the specification, but are not compatible. Microsoft’s SOAP was first dependent on the
Microsoft proprietary Service Description Language (SDL), but changed then to support the
open standard WSDL. Hence, Microsoft SOAP requires the use of a WSDL file that describes
the interface and location of the service.

The ILAB mentioned in the SOAP section above revealed the incompatibilities and both
companies are providing a workaround in their newest implementations, proving the
usefulness of the SOAP community and their commitment to SOAP. The bridge makes use of
these enhancements, as shown above, and has evaluated its feasibility in a generic
environment.

Because the Jini service succeeds in calling the Web Service we can deduce from that that this
to SOAP implementations are interoperable. Of course, further investigations are necessary,
for instance the bridge uses only built-in types. But the successful scenario carried out by the
bridge shows, that the SOAP implementers are committed to the idea of platform integration
through SOAP. Further, they have established the right means to track interoperability
issues, in the form of the ILAB. The ILAB has already proven its usability in the case of the
problems emerged in our example.

5.9 Known Limitations and Evolution Path

The bridge is built in that way that it is possible to carry out the necessary evaluation. The
bridge can easily be extended to support further functionality. For instance, the bridge
supports only simple, built-in types in its current status. Other types are rejected. The bridge
can be extended with support for more types by adding the necessary mapping information
into the TypeMapper class, or a mechanism to automatically generate Java types from
complex types, as they are defined in XML schema, can be provided inside the TypeMapper .

80

The first approach is relatively inflexible because the TypeMapper class can only add
mappings about types already known before. Hence, the type mapping will fail, for not
previously known types. In an Internet environment it is quite likely that new types are
appearing. The second approach provides a more dynamic mechanism, and as long as the
types adhere to the type specification in the XML schema, the conversion should not be a
problem. But note, that the SOAP mechanism used, must also be able to understand the types
used. Apache SOAP provides, in its current state, serializer and deserializer for mapping
issues, but does not support a generic mechanism which is able to handle all the types.

The bridge does not generate additional information about a Jini services. To discover a Jini
service dynamically in a lookup service, the client can use the type to do so, or additional
provided metadata. This metadata is encapsulated in, so called, Entry objects. For instance, a
service can provide additional information about some specific functionality it provides. A
client can then search using a pattern matching mechanism to find an appropriate service,
instead of using the type. This information is usually provided by the service implementer.
The bridge can not predict what metadata a service may want to expose. A solution for this
would be to provide a graphical user interface, instead of only the batch file. Here, the user
can add the information he wants to be exposed with the Jini service. Moreover, the user
would have the possibility to specify its own service and message names.

The SchemaMapper can handle only WSDL documents, which are generated with Microsoft
.NET tools. This is not a limitation imposed by the bridge, but rather introduced by the
WSDL tools used. Though, WSDL specifies an open standard, there are still some
incompabilities amongst different tools. In the SOAP section the problems are mentioned.
There are two possibilities to solve this problem. The first is to wait until all the tools are
supporting the same WSDL standard, or to provide an own SchemaMapper class for each
distinct WSDL definition. The same is true for the SOAP call generation. The bridge uses an
extension to provide Microsoft and IBM SOAP interoperability. This extension might cause
problems when trying to access another implementation.

81

6 Conclusion

With the approach we have taken to evaluate the Web Service model we believe that the
model, even if it is still in an early stage, will have a great impact in the future way of
building Web-based applications. Because of performance problems, SOAP is not the best
solution for server-to-server communication, where high-speed communication is necessary.
But the rapid evolution of software and hardware will solve this problem. The advantages of
SOAP can be interesting in every context. Above all the capability to serve as an intermediary
protocol to integrate two different systems, makes SOAP a very powerful mechanism. The
investigation has shown that one major issue for the success of the Web Service model, above
all of SOAP is, that interoperability is guaranteed. The approach that the model has taken,
namely using only open standards as underlying technologies, is an important step to a
standardised component model.

The implementation of the Web Service-Jini bridge has show, that WSDL and SOAP are able
to provide platform- and language-independence. Further, the use of SOAP, as
communication protocol, enables integration of heterogeneous systems. It is possible with the
use of WSDL, SOAP and other XML standards to translate from one object-oriented language
to another, with XML schema as an intermediary language without loosing type information.
The bridge has proved, that calls across technology boundaries are possible. Though, in the
current state there are still some problems to solve, as examined with Microsoft SOAP and
Apache SOAP. But, there is evidence that the involved companies are committed to the Web
Service approach, and tools vendors are working together to enable a seamless integration of
different tools and development environments.

82

References

[AGRAW] Agrawal R., Bayardo R., “Vinci: A Service-Oriented Architecture for Rapid
Development of Web Applications”, IBM Almaden Research Center, http://www.

[BOX] Box, D., “A Young Person's Guide to The Simple Object Access Protocol:
SOAP Increases Interoperability Across Platforms and Languages”, MSDN Magazine, March
2000, http://msdn.microsoft.com

[CRICHT] Crichton C., Davies J., Woodcock J., „When to trust mobile objects: access control
in the Jini Software System“, Oxford University Computing Laboratory

[ERONEN] Eronen, P., Nikander, P., „Decentralized Jini Security“, Helsinki University of
Technology

[FISCO] Fisco D., “IBM’s Web Services arcitecture debuts”, IBM Corp., September 2000,
http://alphaworks.ibm.com

[GISOLFI] Gisolfi, D., “Web services architect, Part 3: Is Web services their reincarnation of
CORBA?”, IBM Emerging Technologies, July 2001,
http://www.ibm.com/developerworks/webservices

[GOVIND] Govindaraju M., Slominski A., “Requirements for and Evaluation of RMI
Protocols for Scientific Computing”, Indiana University, August 2000,
http://www.extreme.indiana.edu/soap/

[HAKE] Hasselmeyer, P., Kehr, R., Voß, M., „Tade-offs in a Secure Jini Service Architecture“,
Departement of Computer Science, Darmstadt, September 2000

[JAVASERIAL] Sun Microsystems, “Java Object Serialization Specification”, Sun
Microsystems, November 1998

[JINI1] Sun Microsystems, “Jini Network Technology”, Sun Microsystems, 2001,
http://www.sun.com/jini/

[JINI2] Sun Microsystems, “Jini Architectural Overview”, Sun Microsystems, 2001,
http://www.sun.com/jini

[KAO] Kao J., “Developer's Guide to Building XML-based Web Services with the Java 2
Platform, Enterprise Edition (J2EE)”, SUN Microsystems, June 2001

[KIRT] Kirtland,K., “A Platform for Web Services”, Microsoft Developer Network, January
2001, http://msdn.microsoft.com

[KREGER] Kreger, H., “ Web Services Conceptual Architecture (WSCA 1.0)”, IBM Software
Group, May 2001, http://www.ibm.com/developerworks/webservices

[MEYER] Meyer, B., “What to Compose”, Software Development Online, March 2000,
http://www.sdmagazine.com

[NIKAN] Nikander P., „Fault Tolerance in Decentralized and Loosely Coupled Systems“,
Ericsson Research Nomadic Lab

83

[ORACLE] Oracle Corp., “Oracle Developing, Deploying, Managing Web Services with
Oracle9i”, An Oracle White Paper, June 2001, http.//technet.oracle.com

[SZYP] Szyperski, C., “Components and Architecture”, Software Development Online”,
October 2000, http://www.sdmagazine.com

[STEIN] Steinberg D., „Jini aims at JavaOne“, IBM Corp, June 2001,
http://www.ibm.com/developerworks/java/

[SUNEJB] Sun Microsystems, “Enterprise Java Beans specification 1.1”, Sun Microsystems,
2000, http://www.javasoft.com

[SUNRMI] Sun Microsystems, “Java Remote Method Invocation Specifcation”, December
1998, http://www.javasoft.com/products/jdk/rmi/

[SUNSEC] Sun Microsystems, “RMI Security Extensions”, Sun Microsystems, 2001,
http://www.javasoft.com

[SUNJVM] Sun Microsystems, “The Java Virtual Machine Specification”, Sun Microsystems,
1999, http://www.javasoft.com/

[WALDO] Waldo, J., Wyant G., “A Note on Distributed Computing”, Sun Micorsystems,
November 1994

[WALDO2] Waldo J., “The Jini Architecure for Network-centric Computing”, Sun
Microsystems, July 1999.

[WSDL] Microsoft Corp., “Web Service Description Language (WSDL) 1.1”, Microsoft Corp.,
January 2001

[XMLSCHEMA0] W3C, “XML Schema Part 0: Primer”, W3C Recommendation, May 2001,
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

[XMLSCHEMA1] W3C, “XML Schema Part 1: Structures”, W3C Proposed Recommendation,
March 2001, http://www.w3.org/TR/2001/PR-xmlschema-1-20010316/

[XMLSCHEMA2] W3C, “XML Schema Part 2: Datatypes”, W3C Recommendation, May 2001,
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

[W3CSOAP] W3C, “Simple Access Protocol (SOAP) 1.1”, W3C Note, May 2000,
http://www.w3.org/TR/SOAP

84

Appendix A – The SchemaMapper class

i mpor t j avax. xml . par ser s. * ;
i mpor t or g. xml . sax. * ;
i mpor t or g. xml . sax. hel per s. * ;
i mpor t or g. w3c. dom. * ;

i mpor t j ava. i o. * ;
i mpor t j ava. net . URL;
i mpor t j ava. ut i l . * ;

publ i c c l ass SchemaMapper {
 / * * f i l e wher e t he schema i s st or ed * /
 pr i vat e Fi l e xml Fi l e = nul l ;

 / * * St or age f or met hods * /
 pr i vat e Map met hods = new HashMap() ;

 / * * St or age f or met hod par amet er s and i t s t ype def i ni t i ons * /
 pr i vat e Map par amet er s = new HashMap() ;

 / * t o i dent i f y speci f i c met hods * /
 pr i vat e St r i ng key = nul l ;

 / * * st or es t he ser vi ce name * /
 pr i vat e St r i ng ser vi ceName = nul l ;

 / * st or es t he ser vi ce l ocat i on * /
 pr i vat e St r i ng l ocat i on = nul l ;

 / * * st or es t he uni que i dent i f i er of a ser vi ce * /
 pr i vat e St r i ng ur i = nul l ;

 / * *
 * <p>
 * <code>SchemaMapper </ code> handl es t he gener at i on of an XML schema f i l e
 * f r om an WSDL document .
 * The const r uct or al l ows t o t he wsdl document t o be suppl i ed as an ur l .
 *
 * @par am wsdl Fi l eUr l <code>URL</ code> wher e wsdl document i s l ocat ed
 * @t hr ows <code>I OExcept i on</ code> when pr obl ems i n l ocat i ng occur s
 *
 * @aut hor Davi d Wuer t h
 * /
 publ i c SchemaMapper (URL wsdl Fi l eUr l) t hr ows I OExcept i on {

 / * * Cr eat es bui l der t o gener at e DOM pr esent at i on of t he WSDL f i l e * /
 Document Bui l der Fact or y dbf = Document Bui l der Fact or y. newI nst ance() ;
 Document Bui l der db = nul l ;

 t r y {
 db = dbf . newDocument Bui l der () ;
 } cat ch(Par ser Conf i gur at i onExcept i on e) { Syst em. er r . pr i nt l n(e) ; }

 Document doc = nul l ;

 / / t r y t o get t he document r oot f r om t he wsdl f i l e
 t r y {
 doc = db. par se(wsdl Fi l eUr l . t oFi l e()) ;

85

 } cat ch(SAXExcept i on ex) {
 Syst em. er r . pr i nt l n(" ex" + ex) ;

 } cat ch(I OExcept i on e) {
 Syst em. er r . pr i nt l n(" e" + e) ;
 }

 El ement el em = doc. get Document El ement () ;

 / / pr ocess st eps necessar y t o gener at e schema
 get URI (el em) ;
 get Locat i on(el em) ;
 get Act i on(el em. get El ement sByTagName(" bi ndi ng") . i t em(0)) ;
 NodeLi st nl = el em. get El ement sByTagName(" t ypes") ;

 pr ocessNode(nl . i t em(0)) ;

 / / cal l s t he met hod t o gener at ed t he whol e schema
 gener at eSchema() ;

 / / wr i t es gener at ed schema i n f i l e
 wr i t eSchema(gener at eSchema() , new Fi l e(ar gs[0])) ;
 }

 / * *
 * <p>
 * Thi s wi l l handl e t he ext r act i on of an ur i f r om t he
 * WSDL document
 * </ p>
 *
 * @par am node <code>El ement </ code> t o ext r act f r om.
 *
 * /
 publ i c voi d get URI (Node node) {
 El ement el ement = (El ement) node;
 NamedNodeMap at t s = node. get At t r i but es() ;

 / / get s t he ur i f r om t he t ar get namespace at t r i but e
 ur i = at t s. get NamedI t em(" t ar get Namespace") . get NodeVal ue() ;
 }

 / * *
 * <p>
 * Thi s wi l l handl e t he ext r act i on of t he ser vi ce l ocat i on f r om
 * t he WSDL document
 * </ p>
 *
 * @par am node <code>El ement </ code> t o ext r act f r om.
 *
 * /
 pr i vat e voi d get Locat i on(Node node) {
 El ement el ement = (El ement) node;
 NodeLi st nl = el ement . get El ement sByTagName(" ser vi ce") ;
 Node ser vi ce = nl . i t em(0) ;
 NodeLi st l i s t = el ement . get El ement sByTagName(" soap: addr ess") ;

 / / ext r act t he ser vi ce name i n t he <ser vi ce> el ement
 ser vi ceName = ser vi ce. get At t r i but es() . get NamedI t em(" name") . get NodeVal ue() ;

 / / ext r act t he l ocat i on f r om i nsi de t he <l ocat i on> el ement
 l ocat i on = l i st . i t em(0) . get At t r i but es() . get NamedI t em(" l ocat i on") . get NodeVal ue() ;

86

 r et ur n;
 }

 / * *
 * <p>
 * Thi s wi l l handl e t he ext r act i on of t he SOAPAct i on f i el d
 * f r om t he WSDL document
 * </ p>
 *
 * @par am node <code>El ement </ code> t o ext r act f r om.
 *
 * /
 publ i c St r i ng get Act i on(Node node) {
 El ement el ement = (El ement) node;

 / / ext r act s t he chi l d el ement s f r om t he <soap: oper at i on> el ement
 NodeLi st l i s t = el ement . get El ement sByTagName(" soap: oper at i on") ;

 / / ext r act s al l t he SOAPAct i on f i el ds pr ovi ded f or t he appr opr i at e oper at i on
 f or (i nt i =0; i <l i st . get Lengt h() ; i ++) {
 NamedNodeMap at t s = l i st . i t em(i) . get At t r i but es() ;
 St r i ng soapAct i on = at t s. get NamedI t em(" soapAct i on") . get NodeVal ue() ;
 }

 r et ur n;
 }

 / * *
 * <p>
 * Hel per met hod t o t r aver se r ecur si vel y t hr ough a t r ee
 * </ p>
 *
 * @par am node <code>node</ code> whi ch i s goi ng t o be t r aver sed.
 *
 * /
 publ i c voi d pr ocessNode(Node n) {
 NodeLi st nl = n. get Chi l dNodes() ;

 f or (i nt i =0; i <nl . get Lengt h() ; i ++) {
 Node node = nl . i t em(i) ;

 echo(node) ;
 pr ocessNode(node) ;
 }
 }

 / * *
 * <p>
 * Exmami nes t he t ype of an speci f i c el ement .
 * El ement s whi ch ar e not necessar y f or t he pur pose ar e di scar ed.
 * </ p>
 *
 * @par am node <code>node</ code> whi ch i s goi ng t o be t r aver sed.
 *
 * /
 publ i c voi d echo(Node node) {
 i nt t ype = node. get NodeType() ;

87

 swi t ch(t ype) {
 / / i f t he node t ype i s el ement , ext r act t he neessar y i nf or mat i on
 case Node. ELEMENT_NODE:
 i f (node. hasAt t r i but es()) {

 NamedNodeMap at t s = node. get At t r i but es() ;

 i f (at t s. get Lengt h() == 1) {
 / / add met hod key and name t o st or age
 key = at t s. get NamedI t em(" name") . get NodeVal ue() ;
 met hods. put (key, new HashMap()) ;
 } el se {
 St r i ng par amName = nul l ;
 St r i ng par amType = nul l ;

 f or (i nt i =0; i <at t s. get Lengt h() ; i ++) {

 / / al l t he par amet er names and val ues ar e ext r act ed
 i f (at t s. i t em(i) . get NodeName() . equal s(" name")) {
 par amName = at t s. i t em(i) . get NodeVal ue() ;
 }

 / / al l t he t ype i nf or mat i on i s ext r act ed
 i f (at t s. i t em(i) . get NodeName() . equal s(" t ype"))
 par amType= at t s. i t em(i) . get NodeVal ue() ;

 / / t he dat a i s st or ed i nsi de a st or age
 i f (par amName ! = nul l && par amType ! = nul l) {
 / / add al l met hod par amet er names and t ypes
 / / t o appr opr i at e met hod
 par amet er s = (HashMap) met hods. get (key) ;
 par amet er s. put (par amName, par amType) ;
 }
 }
 }
 }

 def aul t :
 br eak;
 }
 }

 / * *
 * <p>
 * Met hod whi ch uses t he ext r act ed i nf or mat i on f r om t he WSDL document
 * t o gener at e an XML schema
 * </ p>
 *
 * @r et ur n <code>St r i ng</ code> cont ai ni g t he whol e gener at ed XML schema
 *
 * /
 publ i c St r i ng gener at eSchema() {
 St r i ng i nt er Name = nul l ;
 St r i ng met hodEnd = nul l ;

 / / t emor ar y buf f er cont ai ni ng t he XML schema
 St r i ngBuf f er f i l eBuf f er = nul l ;

 / / adds schema name
 St r i ng schema = new St r i ngBuf f er () . append(" <?xml ver si on=\ " 1. 0\ " ?>") . t oSt r i ng() ;

 / / adds ser vi ce descr i pt i on name

88

 St r i ng ser vi ceDescr = new St r i ngBuf f er () . append(" <Ser vi ceDescr i pt i on name=\ " "
+ser vi ceName + " \ " >") . t oSt r i ng() ;

 / / adds ser vi ce l ocat i on
 St r i ng l ocat i on = new St r i ngBuf f er () . append(" <l ocat i on>" + l ocat i on +
" </ l ocat i on>") . t oSt r i ng() ;

 / / adds uni que i dent i f i er
 St r i ng ur i = new St r i ngBuf f er () . append(" <ur i >" + ur i + " </ ur i >") . t oSt r i ng() ;

 / / adds t he end t ag of t he document
 St r i ng ser vi ceEnd = new St r i ngBuf f er () . append(" </ Ser vi ceDescr i pt i on>") . t oSt r i ng() ;

 / / ext r act i nt er f ace name and add i t
 i nt i ndex = ser vi ceName. i ndexOf (" Ser vi ce") ;
 i nt er Name = new St r i ngBuf f er () . append(" <I nt er f aceDescr i pt i on name=\ " " +
ser vi ceName. subst r i ng(0, i ndex) +" \ " >") . t oSt r i ng() ;

 / / cr eat e schema
 f i l eBuf f er . append(schema + " \ n")
 . append(ser vi ceDescr + " \ n")
 . append(l ocat i on + " \ n")
 . append(ur i + " \ n")
 . append(ser vi ceEnd + " \ n")
 . append(i nt er Name + " \ n") ;

 / / i t er at e t r ough t he st or age cont ai ni ng al l t he met hod and par amet er i nf or mat i on
 I t er at or i t er = met hods. keySet () . i t er at or () ;
 whi l e(i t er . hasNext ()) {
 St r i ng key = (St r i ng) i t er . next () ;

 / / add met hod name t o schema
 f i l eBuf f er . append(" <met hod name=\ " " + key + " >") ;

 HashMap t mp = (HashMap) met hods. get (key) ;

 / / i t er at es t hr ough t he par amet er l i s t t o get al l t he met hod ar gument s
 f or (I t er at or i = t mp. keySet () . i t er at or () ; i . hasNext () ;) {
 St r i ng t xt = (St r i ng) i . next () ;
 St r i ng t ype = (St r i ng) t mp. get (t xt) ;
 i nt i ndex2 = t ype. i ndexOf (" : ") ;

 / / add par amet er names and t ypes t o schema
 f i l eBuf f er . append(" <par am name=\ " " + t xt + " t ype=\ " "
+t ype. subst r i ng(i ndex2+1, t ype. l engt h()) + " \ " / >") ;
 }

 / / i ndi cat es t he end of an met hod def i ni t i on
 met hodEnd = new St r i ngBuf f er () . append(" </ met hod>") . t oSt r i ng() ;
 f i l eBuf f er . append(met hodEnd) ;
 }

 / / i ndi cat es t he end of a ser vi ce descr i pt i on
 St r i ng i nt er NameEnd = new St r i ngBuf f er () . append(" </ I nt er f aceDescr i pt i on>") . t oSt r i ng() ;
 f i l eBuf f er . append(i nt er NameEnd) ;

 r et ur n f i l eBuf f er . t oSt r i ng() ;
 }

 / * *
 * <p>
 * Thi s wi l l wr i t e t he gener at ed schema i nt o a f i l e.
 * </ p>

89

 *
 * @par am schema <code>St r i ng</ code> cont ai ni ng t he schema
 * @par am f i l e <code>Fi l e</ code> t o wr i t e t o.
 * @t hr ows <code>I OExcept i on</ code> - when out put er r or s occur .
 * /
 publ i c voi d wr i t eSchema(St r i ng schema, Fi l e f i l e) t hr ows I OExcept i on {
 Fi l eWr i t er wr i t er = new Fi l eWr i t er (f i l e) ;

 wr i t er . wr i t e(schema) ;
 wr i t er . f l ush() ;
 wr i t er . c l ose() ;
 }

 publ i c st at i c voi d mai n(St r i ng[] ar gs) {
 SchemaMapper t est = new SchemaMapper (ar gs[0]) ;
 }
}

90

Appendix B - The JavaMapper class

i mpor t j avax. xml . par ser s. * ;
i mpor t or g. xml . sax. * ;
i mpor t or g. xml . sax. hel per s. * ;
i mpor t or g. w3c. dom. * ;

i mpor t j ava. i o. * ;
i mpor t j ava. net . URL;
i mpor t j ava. ut i l . * ;

publ i c c l ass SchemaJava {
 st at i c f i nal St r i ng out put Encodi ng = " UTF- 8" ;
 pr i vat e Fi l e xml Fi l e = nul l ;

 / / st or age f or t he met hods t o be mapped
 pr i vat e Map met hods = new HashMap() ;

 / / st or age f or t he met hods par amet er s
 pr i vat e Map par amet er s = new HashMap() ;

 / / st or es al l t he necessar y i nf or mat i on f or t he descr i pt i on
 pr i vat e St r i ng key = nul l ;
 pr i vat e St r i ng ser vi ceName = nul l ;
 pr i vat e St r i ng l ocTmp = nul l ;
 pr i vat e St r i ng ur i Tmp = nul l ;
 pr i vat e St r i ng ur i = nul l ;
 pr i vat e St r i ng i nt er f aceName = nul l ;

 / * * st or es t he I nt er f ace code t o gener at ed * /
 pr i vat e Set i nt er f aceCode = new HashSet () ;

 / * * t he I mpl Code cl ass gener at es t he i mpl ement at i on code * /
 pr i vat e I mpl Code i code = new I mpl Code() ;

 / * *
 * <p>
 * <code>SchemaJava</ code> handl es gener at i on of Java i nt er f aces and cl asses
 * f r om a speci f i c XML Schema, cont ai ni ng a ser vi ce descr i pt i on.
 *
 * </ p>
 *
 * @aut hor Davi d Wuer t h
 * /
 publ i c SchemaJava(URL schemaUr l) {

 / / cr eat es bui l der t o gener at e DOM docuemnt r oot f r om t he wsdl f i l e
 Document Bui l der Fact or y dbf = Document Bui l der Fact or y. newI nst ance() ;
 Document Bui l der db = nul l ;

 t r y {
 db = dbf . newDocument Bui l der () ;
 } cat ch(Par ser Conf i gur at i onExcept i on e) { Syst em. er r . pr i nt l n(e) ; }

 Document doc = nul l ;

 / / t r y t o get t he document r oot f r om t he xml schema f i l e
 t r y {
 doc = db. par se(xml Fi l e) ;
 } cat ch(SAXExcept i on ex) {

91

 Syst em. er r . pr i nt l n(" ex" + ex) ;
 } cat ch(I OExcept i on e) {
 Syst em. er r . pr i nt l n(" e" + e) ;
 }

 El ement el em = doc. get Document El ement () ;

 / * * pr ocess st eps necessar y t o gener at e t he Java i nt er f aces and i mpl ement at i ons * /
 get I nt er f aceAt t r i but es(el em) ;
 get Met hods(el em. get El ement sByTagName(" I nt er f aceDescr i pt i on") . i t em(0)) ;
 wr i t eCode() ;

 / / cal l met hods i n I mpl Code cl ass t o gener at e i mpl ement at i on code
 i code. gener at eI mpor t Code(i nt er f aceName, ur l) ;
 i code. gener at eMet hodCode(" st r i ng" , ur i , " Logi n" , par am)) ;
 }

 / * *
 * <p>
 * Ext r act s t he i nt er f ace at t r i but es f r om t he xml schema.
 * </ p>
 *
 * @par am node <code>El ement </ code> t o ext r act f r om.
 *
 * /
 publ i c voi d get I nt er f aceAt t r i but es(Node node) {
 El ement el ement = (El ement) node;
 NamedNodeMap at t s = node. get At t r i but es() ;

 ur i = at t s. get NamedI t em(" name") . get NodeVal ue() ;
 Syst em. out . pr i nt l n(ur i) ;

 NodeLi st l oc = el ement . get El ement sByTagName(" l ocat i on") ;
 NodeLi st ur i = el ement . get El ement sByTagName(" ur i ") ;

 / / get s t he ser vi ce l ocat i on
 St r i ng l ocat i on = l oc. i t em(0) . get At t r i but es() . get NamedI t em(" ur l ") . get NodeVal ue() ;

 / / get s t he ser vi ce uni que i dent i f i er
 St r i ng ur i Name = ur i . i t em(0) . get At t r i but es() . get NamedI t em(" name") . get NodeVal ue() ;

 l ocTmp = new St r i ngBuf f er () . append(" f i nal st at i c St r i ng ur l = \ " " + l ocat i on +
" \ " ") . t oSt r i ng() ;
 ur i Tmp = new St r i ngBuf f er () . append(" f i nal st at i c St r i ng ur i = \ " " + ur i Name +
" \ " ") . t oSt r i ng() ;
 }

 / * *
 * <p>
 * Ext r act s t he met hods f r om t he xml schema.
 * Adds t he met hod par amet er s and t ypes
 * </ p>
 *
 * @par am node <code>El ement </ code> t o ext r act f r om.
 *
 * /
 publ i c voi d get Met hods(Node node) {
 El ement el ement = (El ement) node;
 NamedNodeMap at t s = node. get At t r i but es() ;

92

 St r i ng r et ur nPar am = nul l ;
 St r i ng met hod = nul l ;
 St r i ngBuf f er buf f er = nul l ;

 / / get s i nt er f ace name
 i nt er f aceName = at t s. get NamedI t em(" name") . get NodeVal ue() ;

 / / adds i nt er f ace name t o t he gener at ed i nt er f ace
 St r i ng i nt er f aceSt ar t = new St r i ngBuf f er () . append(" publ i c i nt er f ace
") . append(i nt er f aceName + " { ") . t oSt r i ng() ;

 i nt er f aceCode. add(i nt er f aceSt ar t) ;

 NodeLi st nl = el ement . get El ement sByTagName(" met hod") ;

 f or (i nt i =0; i <nl . get Lengt h() ; i ++) {
 St r i ng name = get NamedVal ue(nl . i t em(i) , " name") ;
 St r i ng[] par t = new St r i ng[nl . get Lengt h()] ;
 buf f er = new St r i ngBuf f er () ;

 NodeLi st l i s t = get Li st (nl . i t em(i) , " par am") ;

 / / i t er at es t hr ough al l met hods and par amet er i nf or mat i on pr ovi ded i n t he xml
schema document
 f or (i nt j =0; j <l i st . get Lengt h() ; j ++) {
 St r i ng par amName = get NamedVal ue(l i st . i t em(j) , " name") ;
 St r i ng par amType = get NamedVal ue(l i st . i t em(j) , " t ype") ;

 / / checks i f par amet er i nf or mat i on i s a met hod ar gument or a r et ur n val ue
 i f (name. endsWi t h(" Response")) {
 r et ur nPar am = new St r i ng(par amType) ;

 i f (r et ur nPar am==nul l)
 r et ur nPar am=" voi d" ;
 br eak;
 }
 / / adds par amet er s t o met hod
 el se {
 par t [j] = new St r i ngBuf f er () . append(par amType + " " +
par amName) . t oSt r i ng() ;

 i f (l i s t . get Lengt h() ==1 | | j ==l i st . get Lengt h() - 1) {
 buf f er = buf f er . append(par t [j]) ;
 }
 el se {
 buf f er = buf f er . append(par t [j]) . append(" , ") ;
 }
 }
 }

 / / adds met hod si gnat ur es t o an met hod
 met hod = new St r i ngBuf f er () . append(" publ i c " + r et ur nPar am + "
") . append(name) . append(" (" + buf f er . t oSt r i ng() + ") ; ") . t oSt r i ng() ;

 / / adds al l t he ext r act ed met hods t o t he gener at ed i nt er f ace code
 i nt er f aceCode. add(met hod + " } ") ;
 }

 NodeLi st l i s t = get Li st (nl . i t em(0) , " par am") ;
 }

 / * *
 * <p>

93

 * Hel per met hod t o get named val ues f r om a node.
 *
 * </ p>
 *
 * @par am node <code>El ement </ code> t o get val ue f r om.
 * @par am name <code>St r i ng</ code> cont ai ni ng node name.
 *
 * @r et ur n St r i ng cont ai ni ng a named val ue.
 * /
 publ i c St r i ng get NamedVal ue(Node node, St r i ng name) {
 r et ur n node. get At t r i but es() . get NamedI t em(name) . get NodeVal ue() ;
 }
 / * *
 * <p>
 * Hel per met hod t o get a node l i st .
 * </ p>
 *
 * @par am node <code>El ement </ code> get l i s t f r om.
 * @par am name <code>St r i ng</ code> cont ai ns name of t he node.
 *
 * @par am NodeLi st cont ai ni g nodes f r om a speci f i c el ement
 * /
 publ i c NodeLi st get Li st (Node node, St r i ng name) {
 El ement el ement = (El ement) node;

 r et ur n el ement . get El ement sByTagName(name) ;
 }

 / * *
 * <p>
 * Ext r act s t he r et ur n val ue of a met hods f r om t he xml schema.
 * </ p>
 *
 * @par am node <code>El ement </ code> t o ext r act f r om.
 *
 * /
 publ i c voi d get Ret ur nVal ue(Node node) {
 El ement el ement = (El ement) node;

 NodeLi st l i s t = el ement . get El ement sByTagName(" par am") ;
 Syst em. out . pr i nt l n(l i st . get Lengt h()) ;
 }

 / * *
 * <p>
 * Wr i t es t he gener at ed code on t he st andar d out put
 * </ p>
 *
 *
 *
 * /
 publ i c voi d wr i t eCode() {
 Syst em. out . pr i nt l n(" \ n\ n\ n") ;

 f or (I t er at or i =i nt er f aceCode. i t er at or () ; i . hasNext () ;)
 Syst em. out . pr i nt l n((St r i ng) i . next ()) ;

 }

 / * *
 * <p>
 * Thi s wi l l wr i t e t he gener at ed code i nt o a f i l e.

94

 * </ p>
 *
 * @par am schema <code>St r i ng</ code> cont ai ni ng t he schema
 * @par am f i l e <code>Fi l e</ code> t o wr i t e t o.
 * @t hr ows <code>I OExcept i on</ code> - when out put er r or s occur .
 * /
 publ i c voi d wr i t eSchema(St r i ng code, Fi l e f i l e) t hr ows I OExcept i on {
 Fi l eWr i t er wr i t er = new Fi l eWr i t er (f i l e) ;

 wr i t er . wr i t e(schema) ;
 wr i t er . f l ush() ;
 wr i t er . c l ose() ;
 }

 publ i c St r i ng gener at eI mpl Code() {
 St r i ngBuf f er code = new St r i ngBuf f er () ;

 / / cal l s t he I mpl Code met hod t o gener at e code
 code. append(i code. gener at eI mpor t Code(i nt er f aceName, l ocat i on)) ;
 code. append(i code. gener at eMet hodCode(" st r i ng" , ur i , " Logi n" , par am)) ;

 r et ur n code. t oSt r i ng() ;
 }

 publ i c st at i c voi d mai n(St r i ng[] ar gs) {
 t r y {
 SchemaJava Test = new SchemaJava(new Fi l e(ar gs[0]) . t oURL()) ;
 } cat ch(Except i on e) { Syst em. er r . pr i nt l n(e) ; }
 }
}

95

Appendix C – The I mpl Code class

i mpor t j ava. ut i l . * ;

publ i c c l ass I mpl Code {

 / * *
 * <p>
 * Thi s c l ass gener at es t he i mpl ement at i on code f or
 * a pr ovi des i nt er f ace.
 * </ p>
 *
 * @par am di r ect or y <code>Fi l e</ code> t o wr i t e t o (shoul d be a di r ect or y) .
 * @t hr ows <code>I OExcept i on</ code> - when out put er r or s occur .
 * /
 publ i c I mpl Code() {

 }

 / * *
 * <p>
 * Gener at es i mpl ement at i on code f or a speci f i c i nt er f ace.
 * Adds necessar y i mpor t st at ement s and i mpl ement s keywor d.
 * </ p>
 *
 * @par am name <code>St r i ng</ code> cont ai ns name of t he i nt er f ace t o be i mpl ement ed.
 * @par am ur l <code>St r i ng</ code> cont ai ns t he l ocat i on of t he ser vi ce.
 *
 * @r et ur n St r i ng cont ai ns t he gener at ed code
 * /
 publ i c St r i ng gener at eI mpor t Code(St r i ng name, St r i ng ur l) {
 St r i ng code = nul l ;

 / / gener at es t he i mpl emenat i on code f or t he i nt er f ace
 code = new St r i ngBuf f er () . append(" i mpor t j ava. i o. * ; \ n")
 . append(" i mpor t j ava. ut i l . * ; \ n")
 . append(" i mpor t j ava. net . * ; \ n")
 . append(" i mpor t or g. w3c. dom. * ; \ n")
 . append(" i mpor t or g. apache. soap. ut i l . xml . * ; \ n")
 . append(" i mpor t or g. apache. soap. * ; \ n")
 . append(" i mpor t or g. apache. soap. encodi ng. * ; \ n")
 . append(" i mpor t or g. apache. soap. encodi ng. soapenc. * ; \ n")
 . append(" i mpor t or g. apache. soap. r pc. * ; \ n")
 . append(" i mpor t or g. apache. soap. t r anspor t . ht t p. SOAPHTTPConnect i on; \ n")
 . append(" \ npubl i c c l ass SOAP" + name + " Cl i ent i mpl ement s " + name + " { \ n")
 . append(" pr i vat e URL ur l = new URL(" + ur l + ") ; \ n")
 . append(" \ n publ i c SOAP" + name + " Cl i ent () t hr ows Except i on { \ n")
 . t oSt r i ng() ;

 r et ur n code;
 }

 / * *
 * <p>
 * Gener at es i mpl ement at i on code f or a speci f i c met hod.
 * Mai n t ask i s t o add t he SOAP cal l const r uct i on.
 * </ p>
 *
 * @par am r et ur nType <code>St r i ng</ code> cont ai ns t he r et ur n t ype.
 * @par am ur i <code>St r i ng</ code> cont ai ns t he uni que i dent i f i er f or t he ser vi ce.

96

 *
 * @r et ur n St r i ng cont ai ns t he gener at ed code.
 * /
 publ i c St r i ng gener at eMet hodCode(St r i ng r et ur nType, St r i ng ur i , St r i ng met hodName, Vect or
par am) {
 St r i ng met hod = nul l ;
 St r i ngBuf f er par amsTmp = nul l ;
 St r i ng par ams = nul l ;
 St r i ng f aul t = nul l ;
 i nt count er = 0;

 / / gener at es t he SOAP cal l usi ng t he ext r act ed i nf or mat i on f r om t he xml schema
 met hod = new St r i ngBuf f er () . append(" SOAPMappi ngRegi st r y smr = new
SOAPMappi ngRegi st r y() ; \ n\ n")
 . append(" " + r et ur nType + " Deser i al i zer sd = new " + r et ur nType + " () ; \ n")
 . append(" smr . mapTypes(Const ant s. NS_URI _SOAP_ENC, new QName(\ " \ " , \ " Resul t \ ") ,
nul l , nul l , sd) ; \ n")
 . append(" \ n SOAPHTTPConnect i on st = new SOAPHTTPConnect i on() ; \ n")
 . append(" \ n Cal l cal l = new Cal l () ; \ n")
 . append(" cal l . set SOAPTr anspor t (st) ; \ n")
 . append(" cal l . set SOAPMappi ngRegi st r y(smr) ; \ n")
 . append(" \ n cal l . set Tar get Obj ect URI (\ " " + ur i + " \ ") ; \ n")
 . append(" cal l . set Met hodName(\ " " + met hodName + " \ ") ; \ n")
 . append("
cal l . set Encodi ngSt yl eURI (\ " ht t p: / / schemas. xml soap. or g/ soap/ encodi ng/ \ ") ; \ n")
 . t oSt r i ng() ;

 par amsTmp = new St r i ngBuf f er () . append(" \ n Vect or par ams = new Vect or () ; \ n") ;

 / / gener at es SOAP cal l par amet er s
 Enumer at i on enum = par am. el ement s() ;
 whi l e(enum. hasMor eEl ement s()) {
 Vect or t mp = (Vect or) enum. next El ement () ;
 / / Syst em. out . pr i nt l n(" Si ze " + par am. si ze()) ;
 St r i ng t ype = (St r i ng) t mp. get (0) ;
 St r i ng val ue = (St r i ng) t mp. get (1) ;

 par amsTmp. append(" par ams. addEl ement (new Par amet er (\ " Val ue" + (count er ++))
 . append(" \ " , " + t ype + " . c l ass, \ " " + val ue + " \ " , nul l)) ; \ n") ;
 }
 par amsTmp. append(" cal l . set Par ams(par ams) \ n") ;

 par ams = par amsTmp. t oSt r i ng() ;

 / / gener at es f aul t r eponse
 f aul t = new St r i ngBuf f er () . append(" \ n i f (r esp ! = nul l && ! r esp. gener at edFaul t ())
{ \ n")
 . append(" Par amet er r et = r esp. get Ret ur nVal ue() ; \ n")
 . append(" Obj ect val ue = r et . get Val ue() ; \ n")
 . append(" } el se { \ n")
 . append(" Faul t f aul t = r esp. get Faul t () ; \ n")
 . append(" Syst em. er r . pr i nt l n(f aul t . get Faul t Code()) ; \ n")
 . append(" } \ n} \ n} ")
 . t oSt r i ng() ;

 r et ur n met hod + par ams + f aul t ;
 }
}

97

Appendix D - Test Walkthrough and Generated Code

Parts of the WSDL file of the Web Service used in the test scenario. Missing parts are denoted with
“…”.

<?xml ver si on=" 1. 0" encodi ng=" ut f - 8" ?>
<def i ni t i ons xml ns: s=" ht t p: / / www. w3. or g/ 2001/ XMLSchema"
xml ns: ht t p=" ht t p: / / schemas. xml soap. or g/ wsdl / ht t p/ "
xml ns: mi me=" ht t p: / / schemas. xml soap. or g/ wsdl / mi me/ "
xml ns: t m=" ht t p: / / mi cr osof t . com/ wsdl / mi me/ t ext Mat chi ng/ "
xml ns: soap=" ht t p: / / schemas. xml soap. or g/ wsdl / soap/ "
xml ns: soapenc=" ht t p: / / schemas. xml soap. or g/ soap/ encodi ng/ "
xml ns: s0=" ht t p: / / er at os. csse. monash. edu. au/ banki ng"
t ar get Namespace=" ht t p: / / er at os. csse. monash. edu. au/ banki ng"
xml ns=" ht t p: / / schemas. xml soap. or g/ wsdl / " >

 <t ypes>
 <s: schema at t r i but eFor mDef aul t =" qual i f i ed" el ement For mDef aul t =" qual i f i ed"
t ar get Namespace=" ht t p: / / er at os. csse. monash. edu. au/ banki ng" >

 <s: el ement name=" NewAccount " >
 <s: compl exType>
 <s: sequence>
 <s: el ement mi nOccur s=" 1" maxOccur s=" 1" name=" l _name" ni l l abl e=" t r ue"
t ype=" s: st r i ng" / >
 <s: el ement mi nOccur s=" 1" maxOccur s=" 1" name=" l _emai l " ni l l abl e=" t r ue"
t ype=" s: st r i ng" / >
 <s: el ement mi nOccur s=" 1" maxOccur s=" 1" name=" l _count r y" ni l l abl e=" t r ue"
t ype=" s: st r i ng" / >
 <s: el ement mi nOccur s=" 1" maxOccur s=" 1" name=" l _pwd" ni l l abl e=" t r ue"
t ype=" s: st r i ng" / >
 </ s: sequence>
 </ s: compl exType>
 </ s: el ement >

 <s: el ement name=" NewAccount Response" >
 <s: compl exType>
 <s: sequence>
 <s: el ement mi nOccur s=" 1" maxOccur s=" 1" name=" NewAccount Resul t " ni l l abl e=" t r ue"
t ype=" s: st r i ng" / >
 </ s: sequence>
 </ s: compl exType>
 </ s: el ement >
 <s: el ement name=" Logout " >
 <s: compl exType>
 <s: sequence>
 <s: el ement mi nOccur s=" 1" maxOccur s=" 1" name=" l _i d" ni l l abl e=" t r ue"
t ype=" s: st r i ng" / >
 <s: el ement mi nOccur s=" 1" maxOccur s=" 1" name=" sessi on_pwd" ni l l abl e=" t r ue"
t ype=" s: st r i ng" / >
 </ s: sequence>
 </ s: compl exType>
 </ s: el ement >

…

 </ s: schema>
 </ t ypes>

 <message name=" NewAccount SoapI n" >

98

 <par t name=" par amet er s" el ement =" s0: NewAccount " / >
 </ message>
 <message name=" NewAccount SoapOut " >
 <par t name=" par amet er s" el ement =" s0: NewAccount Response" / >
 </ message>
 <message name=" Logout SoapI n" >
 <par t name=" par amet er s" el ement =" s0: Logout " / >
 </ message>
 <message name=" Logout SoapOut " >
 <par t name=" par amet er s" el ement =" s0: Logout Response" / >
 </ message>

 …

 <por t Type name=" Banki ngSer vi ceSoap" >
 <oper at i on name=" NewAccount " >
 <i nput message=" s0: NewAccount SoapI n" / >
 <out put message=" s0: NewAccount SoapOut " / >
 </ oper at i on>
 <oper at i on name=" Logout " >
 <i nput message=" s0: Logout SoapI n" / >
 <out put message=" s0: Logout SoapOut " / >
 </ oper at i on>
 <oper at i on name=" Logi n" >
 <i nput message=" s0: Logi nSoapI n" / >
 <out put message=" s0: Logi nSoapOut " / >
 </ oper at i on>
 <oper at i on name=" Wi t hdr aw" >
 <i nput message=" s0: Wi t hdr awSoapI n" / >
 <out put message=" s0: Wi t hdr awSoapOut " / >
 </ oper at i on>
 <oper at i on name=" Deposi t " >
 <i nput message=" s0: Deposi t SoapI n" / >
 <out put message=" s0: Deposi t SoapOut " / >
 </ oper at i on>
 <oper at i on name=" Bal ance" >
 <i nput message=" s0: Bal anceSoapI n" / >
 <out put message=" s0: Bal anceSoapOut " / >
 </ oper at i on>
 </ por t Type>

 <bi ndi ng name=" Banki ngSer vi ceSoap" t ype=" s0: Banki ngSer vi ceSoap" >
 <soap: bi ndi ng t r anspor t =" ht t p: / / schemas. xml soap. or g/ soap/ ht t p" st y l e=" document " / >
 <oper at i on name=" NewAccount " >
 <soap: oper at i on soapAct i on=" ht t p: / / er at os. csse. monash. edu. au/ banki ng/ NewAccount "
st y l e=" document " / >
 <i nput >
 <soap: body use=" l i t er al " / >
 </ i nput >
 <out put >
 <soap: body use=" l i t er al " / >
 </ out put >
 </ oper at i on>
 <oper at i on name=" Logout " >
 <soap: oper at i on soapAct i on=" ht t p: / / er at os. csse. monash. edu. au/ banki ng/ Logout "
st y l e=" document " / >
 <i nput >
 <soap: body use=" l i t er al " / >
 </ i nput >
 <out put >
 <soap: body use=" l i t er al " / >
 </ out put >
 </ oper at i on>

99

 <oper at i on name=" Logi n" >

 …
 </ bi ndi ng>

 <ser vi ce name=" Banki ngSer vi ce" >
 <por t name=" Banki ngSer vi ceSoap" bi ndi ng=" s0: Banki ngSer vi ceSoap" >
 <soap: addr ess l ocat i on=" ht t p: / / er at os. csse. monash. edu. au/ banki ng/ banki ng. asmx" / >
 </ por t >
 </ ser vi ce>
</ def i ni t i ons>

Generated XML instance document by the SchemaMapper class, see Appendix D for the schema class

<?xml ver si on=" 1. 0" ?>

<Ser vi ceDescr i pt i on name=" Banki ngSer vi ce" >
 <l ocat i on>ht t p: / / er at os. csse. monash. edu. au/ banki ng/ banki ng. asmx</ l ocat i on>
 <ur i >ht t p: / / er at os. csse. monash. edu. au/ banki ng</ ur i >

<I nt er f aceDescr i pt i on name=" Banki ng" >
 <met hod name=" Wi t hdr aw>
 <par am name=" sessi on_pwd t ype=" st r i ng" / >
 <par am name=" l _amount t ype=" deci mal " / >
 <par am name=" user i d t ype=" st r i ng" / >
 </ met hod>
 <met hod name=" Wi t hdr awResponse>
 <par am name=" Wi t hdr awResul t t ype=" st r i ng" / >
 </ met hod>
 <met hod name=" NewAccount >
 <par am name=" l _emai l t ype=" st r i ng" / >
 <par am name=" l _name t ype=" st r i ng" / >
 <par am name=" l _pwd t ype=" st r i ng" / >
 <par am name=" l _count r y t ype=" st r i ng" / >
 </ met hod>
 <met hod name=" NewAccount Response>
 <par am name=" NewAccount Resul t t ype=" st r i ng" / >
 </ met hod>
 <met hod name=" Logout >
 <par am name=" sessi on_pwd t ype=" st r i ng" / >
 <par am name=" l _i d t ype=" st r i ng" / >
 </ met hod>
 <met hod name=" Logout Response>
 <par am name=" Logout Resul t t ype=" bool ean" / >
 </ met hod>
 <met hod name=" Deposi t >
 <par am name=" sessi on_pwd t ype=" st r i ng" / >
 <par am name=" l _amount t ype=" deci mal " / >
 <par am name=" user i d t ype=" st r i ng" / >
 </ met hod>
 <met hod name=" Deposi t Response>
 <par am name=" Deposi t Resul t t ype=" st r i ng" / >
 </ met hod>
 <met hod name=" Logi n>
 <par am name=" l _passwor d t ype=" st r i ng" / >
 <par am name=" l _i d t ype=" st r i ng" / >
 </ met hod>
 <met hod name=" Logi nResponse>
 <par am name=" Logi nResul t t ype=" st r i ng" / >
 </ met hod>
 <met hod name=" Bal ance>
 <par am name=" sessi on_pwd t ype=" st r i ng" / >
 <par am name=" user i d t ype=" st r i ng" / >

100

 </ met hod>
 <met hod name=" Bal anceResponse>
 <par am name=" Bal anceResul t t ype=" st r i ng" / >
 </ met hod>
 </ I nt er f aceDescr i pt i on>
</ Ser vi ceDescr i pt i on>

Generated Java interface by the SchemaJava class.

publ i c i nt er f ace Banki ng {
 publ i c st at i c f i nal Sr i ng ur l = " ht t p: / / er at os. csse. monash. edu. au/ banki ng/ banki ng. asmx" ;
 publ i c st at i c f i nal ur i = " ht t p: / / er at os. csse. monash. edu. au/ banki ng" ;

 publ i c St r i ng wi t hdr aw(St r i ng sessi on_pwd, i nt l _amount) ;
 publ i c St r i ng newAccount (St r i ng l _emai l , St r i ng l _name, St r i ng l _pwd, St r i ng l _count r y) ;
 publ i c bool ean l ogout (St r i ng sessi on_pwd, St r i ng l _i d) ;
 publ i c St r i ng deposi t (St r i ng sessi on_pwd, i nt l _amount , St r i ng user i d) ;
 publ i c St r i ng l ogi n(St r i ng l _passwor d, St r i ng l _i d) ;
 publ i c St r i ng bal ance(St r i ng sessi on_pwd, St r i ng user i d) ;
}

Generated interface implementation by the SchemaJava class. Only the implementation for the
bal ance method is shown.

i mpor t j ava. i o. * ;
i mpor t j ava. ut i l . * ;
i mpor t j ava. net . * ;
i mpor t or g. w3c. dom. * ;
i mpor t or g. apache. soap. ut i l . xml . * ;
i mpor t or g. apache. soap. * ;
i mpor t or g. apache. soap. encodi ng. * ;
i mpor t or g. apache. soap. encodi ng. soapenc. * ;
i mpor t or g. apache. soap. r pc. * ;
i mpor t or g. apache. soap. t r anspor t . ht t p. SOAPHTTPConnect i on;

publ i c c l ass SOAPBanki ngCl i ent i mpl ement s Banki ng {
 pr i vat e URL ur l = new URL(" ht t p: / / er at os. csse. monash. edu. au/ banki ng/ banki ng. asmx") ;

 publ i c SOAPBanki ngCl i ent () t hr ows Except i on {
 }

 publ i c St r i ng bal ance(St r i ng sessi on_pwd, St r i ng user i d) {

 SOAPMappi ngRegi st r y smr = new SOAPMappi ngRegi st r y() ;
 St r i ngDeser i al i zer sd = new St r i ng() ;
 smr . mapTypes(Const ant s. NS_URI _SOAP_ENC, new QName(" " , " Resul t ") , nul l , nul l , sd) ;

 SOAPHTTPConnect i on st = new SOAPHTTPConnect i on() ;

 Cal l cal l = new Cal l () ;
 cal l . set SOAPTr anspor t (st) ;
 cal l . set SOAPMappi ngRegi st r y(smr) ;

 cal l . set Tar get Obj ect URI (" ht t p: / / er at os. csse. monash. edu. au/ banki ng") ;
 cal l . set Met hodName(" bal ance") ;
 cal l . set Encodi ngSt yl eURI (" ht t p: / / schemas. xml soap. or g/ soap/ encodi ng/ ") ;

 Vect or par ams = new Vect or () ;

101

 par ams. addEl ement (new Par amet er (" Val ue0" , St r i ng. cl ass, " sessi on_pwd" , nul l)) ;
 par ams. addEl ement (new Par amet er (" Val ue1" , St r i ng. cl ass, " user i d" , nul l)) ;
 cal l . set Par ams(par ams)

 Response r esp = nul l ;
 t r y {
 r esp = cal l . i nvoke(ur l , " ht t p: / / er at os. csse. monash. edu. au/ banki ng") ;
 } cat ch(SOAPExcept i on e) {
 Syst em. er r . pr i nt l n(e) ;
 }

 i f (r esp ! = nul l && ! r esp. gener at edFaul t ()) {
 Par amet er r et = r esp. get Ret ur nVal ue() ;
 Obj ect val ue = r et . get Val ue() ;
 } el se {
 Faul t f aul t = r esp. get Faul t () ;
 Syst em. er r . pr i nt l n(f aul t . get Faul t Code()) ;
 }

 r et ur n (St r i ng) r esp;
 }

 …
}

