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Abstract

Ambient-Oriented Programming (AmOP) languages are especially designed for software
development for pervasive and ambient computing. In this context, reflective abilities are
highly desired to be able to create adaptive software. In this thesis, we propose a reflective
architecture for ambient actors, instantiated in the AmOP language AmbientTalk. Our
architecture is structured according to different levels of abstraction, distinguishing between
the metalevel for regular objects and active objects. The architecture adopts at its core
the concept of mirrors and mirror methods to safeguard object encapsulation even in the
presence of powerful reflective facilities, such as access to the VM.



i

”The ability to use a mirror to introspect parts of oneself is a striking
example of evolutionary convergence.”

- Diana Reiss
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Chapter 1

Introduction

We begin this chapter with an introduction on the domain of this thesis, namely Ambient
Intelligence in section 1.1. We continue with a discussion on reflection in section 1.2. In
section 1.3 we state the problem discussed in this thesis and present the objectives of our
research. Finally we give an overview of the thesis in section 1.4.

1.1 Ambient intelligence

The modern evolution of computing hardware is characterized by an increase in computing
power and a decrease in hardware scale. In unison with the miniaturization of hardware
came the development of mobile hardware. Mobile devices such as portable computers,
smartphones and PDA’s progress in computing power, storage capacity, autonomy and
connectivity. While early mobile hardware such as PDA’s relied on hardwiring for syn-
chronization with a central agenda, new models increasingly incorporate wireless technolo-
gies such as WiFi and Bluetooth. The growth of wireless communication between mobile
devices gave birth to mobile networks. Mobile networks surround mobile devices equipped
with wireless technology and enable them to communicate with other devices in their en-
vironment. This form of pervasive computing is called Ambient Intelligence, named by the
European Council’s IST Advisory Group [15].

Mobile networks surrounding mobile devices have characteristics that distinguish them
from normal networks. Connections are volatile because the communication range of wire-
less technology is limited and the boundaries of the network change as the mobile device
moves. The unheralded emergence and quietus of networks necessitates the use of open
networks. These properties encumber software developers to cope with ad hoc networks
and security issues. As ambient hardware represents an individual computing unit, appli-
cations need a high level of autonomy and have a natural concurrency. Current industrial
programming languages such as Smalltalk [12], Java [14] offer no inherent support for this
kind of pervasive computing. They rely on low-level system software and libraries such as
JXTA [13] or M2MI [16] but development of software for ambient hardware still remains
difficult.

2



CHAPTER 1. INTRODUCTION 3

Within this context of pervasive computing, De Meuter introduces ChitChat [4]. De
Meuter claims that current mainstream programming languages are inadequate for pro-
gramming applications in ambient environments. With ChitChat, a delegation-based,
prototype-based language, he shows that dynamic, self-sufficient objects are more suit-
able for programming in ambient environments. To tackle security issues, inherent from
the openness of ambient networks, he proposes a fundamental language principle to ensure
safety at the level of the language named extreme encapsulation. In [6], De Meuter et al.
show that method attributes as a language feature provide flexible object extension, cloning
and reflection without compromising extreme encapsulation.

Meanwhile, Dedecker and Van Belle, propose another direction to facilitate program-
ming in ambient environments in [8]. The reason that programming concurrent, distributed
software in open distributed environments is best accomplished using actors, based on the
actor model of Agha [1]. But ambient environments stress the actor model from Agha in
that the environments are highly dynamic and less reliable. In [8] Dedecker and Van Belle
propose to extend the Agha’s actor model to what they name the ambient actor model.
They add semantics for explicit message sending and mailboxes management. Using mail-
boxes they add the notion of pattern based communication, a contextual identification
mechanism for actors. The ambient actor model led to a new programming paradigm
named the Ambient-Oriented Programming Paradigm [7] (or AmOP) which consists of
programming languages that incorporate support for the strains of an ambient environ-
ment at the level of the language. Within the context of AmOP, Dedecker et al. present
AmbientTalk in [9] a novel language designed to tackle the characteristics of ambient en-
vironments at the level of the language.

1.2 Reflection

The beginnings of reflection go back to the days where von Neumann introduced a computer
architecture where program instructions are stored alongside with other computational
data on which programs operated. In [30] von Neuman clearly states his fascination for
programs manipulating other programs. However, at that point in time, the distinction
between a computational system, a metasystem and a reflective system were not clearly
defined. Later, the distinction between a program and a computational system is further
clarified by Steyaert in [25]: a program is a representation of the computational system. To
be useful for reflection, the representation must be up-to-date with respect to the domain
and operations on the representation should be effective in the computational system. The
concept of reflection as we know it today was first introduced by Pattie Maes in [19]. Pattie
Maes defines a reflective architecture as,

”A programming language is said to have a reflective architecture if it recognizes
reflection as a fundamental programming concept and thus provides tools for
handling reflective computation explicitly.”
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In [10] Smith mentions two important requirements for a language to be called reflective.
First, the language needs a description of the language from within itself. Second, this
self-representation must be causally connected to the system. These two requirements
translated themselves to structural and behavioral reflection. The existence of an interface
for reflection then led to the concept of metaobject protocols, abbreviated as MOP. Kiczales
et al. define them as,

”Metaobject protocols are interfaces to the language that give users the ability
to incrementally modify the language’s behavior and implementation, as well as
the ability to write programs within the language.” [17]

Meanwhile reflection found its place in programming languages such as 3-Lisp [22], Agora [25,
3], Smalltalk [21], CLOS [17].

Within the context of distributed computing, reflection has been intensively researched
as mechanism to write flexible applications in a highly heterogeneous environments. In [4]
De Meuter criticizes the use of reflection in open networks as dangerous. He distinguishes
between reflection performed on an object using external operators and reflection done
through the object using reflective methods. He considers the first category of reflection as
harmful for an object’s private state since the object has no control over which parts are
reified at its metalevel and how those parts are exposed publicly. He states the principle
of extreme encapsulation and shows that a language must uphold this principle in order
to be considered safe for open networks [4]. Later, in the context of ambient-oriented
programming, AmbientTalk was introduced [7, 9]. AmbientTalk included a small, but
effective reflective mop to operate on its most notable language constructs. However, the
metaobject protocol they introduced was not in accordance with extreme encapsulation.
Even in later designs, extreme encapsulation gave way to flexibility [29]. In a recent
extension of the reflective kernel from AmbientTalk, by Martin [20] , the principle of
extreme encapsulation is not reinstated. In this thesis we state that extreme encapsulation
is a paramount principle of ambient oriented programming and it should be a fundamental
property of a reflective API. We now progress to the problem statement and objective of
this thesis.

1.3 Problem statement and objective

AmbientTalk [9] is a novel language for the Ambient-Oriented paradigm [7]. It incorporates
support for many characteristics of ambient environment at the level of the language. It
also includes a small reflective frame [9], a valuable asset for applications in an ambient
environment. However, the current reflective API offered by AmbientTalk is not in league
with the extreme encapsulation principle proposed by De Meuter [4]. We believe that the
extreme encapsulation principle as demonstrated in ChitChat [4] is a paramount language
principle of the Ambient-Oriented paradigm [7] to solve security problems inherent from
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the language. This contrasts with AmbientTalk’s design to develop programs for Ambi-
ent Intelligence: its reflective framework is a potential security risk, a dangerous property
in an environment based on open networks. Furthermore, its current reflective framework
offers but a limited set of operations, used for reflection in the active layer of AmbientTalk.

The goal of this thesis is to propose and implement a design for a reflective API for
AmbientTalk that supports extreme encapsulation. In [2] Bracha and Ungar have shown a
design technique for reflective API’s called mirrors. While mirrors offer solutions to many
desiderata of a reflective framework, it is in violation with extreme encapsulation. In [27]
Tanter shows how to reconcile extreme encapsulation in the design of mirrors using mirror
methods for ChitChat. We take his interpretation of mirrors as an example and translate
the concepts proposed by Tanter to AmbientTalk. In this way we hope to create a new
reflective API for AmbientTalk that reinstates extreme encapsulation.

1.4 Overview of the thesis

In this thesis we present a design for a reflective API for AmbientTalk. We start with
an overview of previous research on which the concepts of our design are based in chap-
ter 2. We give a short introduction to AmbientTalk, the target language of our design,
in section 2.1. Then we elaborate on extreme encapsulation and which typical language
constructs tend to violate it in section 2.2. We continue our discussion with mirrors in
section 2.3 and explain the benefits of reflective API’s based on mirrors. In section 2.4
we show how mirrors are not in accordance with extreme encapsulation and explain how
mirror methods adapt mirrors to be in league with extreme encapsulation. We end the
chapter with a discussion on the benefits of a reflective API based on mirror methods.

Having explained the fundamental concepts which we try to uphold in our design,
we can concretize the design in chapter 3 for the passive object layer of AmbientTalk.
We explain how mirror methods serve as constructors for mirrors and expatiate on the
elements involved in a mirror (and mirror method) based design. In chapter 4 we give a
technical overview of the internal mechanics of the AmbientTalk interpreter. We identify
the main classes and class hierarchies responsible for evaluating AmbientTalk expressions.
We demonstrate what we have learned by examining the evaluation of a cloning method in
detail.

After revising the technicalities of the AmbientTalk interpreter, we move on to chapter 5
where we implement the design proposed in chapter 3. We explain the design techniques
adopted and problems encountered.

In chapter 6 we reintroduce the concepts of mirrors and mirror methods, but for the
active object layer of AmbientTalk. We list the elements of actors we reflect on and design
active mirrors and active mirror mehods. We implement the design in chapter 7 and
elaborate on implementation choices.

We end our research with an evaluation of the reflective API proposed in this thesis.
We demonstrate our implementation first, in chapter 8. Then we discuss the benefits and
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downsides from the acquired metaobject protocol in AmbientTalk in chapter 9. In that
same chapter, we also shed light on missing elements of our implementation and possible
extensions that could benefit from the design proposed in this thesis.



Chapter 2

Previous Research

We give an overview of previous research which has led to the development of AmbientTalk
and the formulation of the principles on which the metaobject protocol proposed in this
thesis is founded. We begin with an introduction to AmbientTalk, the language in which
we deploy our reflective API, in section 2.1. Then we examine the paramount extreme
encapsulation principle [4, 6] our protocol is subject to in section 2.2. We move on to the
design technique of mirrors in section 2.3, the design technique we applied for our proposed
protocol. Finally, in section 2.4, we explore a proposed design for mirror methods [27], in
ChitChat [4] which we will transmute to AmbientTalk to reflect on passive objects in
chapter 3.

2.1 AmbientTalk

AmbientTalk [9] is a prototype-based, object-oriented programming language designed for
the field of ubiquitous computing, named Ambient Intelligence by the European Council’s
IST Advisory Group [15]. This emerging field of ambient-oriented programming has led to
the Ambient-Oriented Programming Paradigm [7]. It focusses on languages for software
development in the context of mobile devices and their networks. Such mobile networks
consist of a multitude of volatile devices connected through open networks. This poses
extra strains on software developers to cope with inherent problems of ad hoc networks
such as security issues and network failures. AmbientTalk is designed to aid software de-
velopment in the context of mobile (ad hoc) networks. Another characteristic is that it
follows the guidelines for object encapsulation for ambient environments [4, 6] on which we
elaborate further in section 2.2. AmbientTalk is also the target language for the reflective
framework proposed in this thesis. We elaborate on the language’s feature characteristics
in more detail.

One of AmbientTalk’s most prominent features is its double-layered object model, de-
picted in figure 2.1. It discriminates between passive, or normal objects, and active objects
which fulfill the role of actors in the network [7]. We discuss each layer in more detail.

7
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Active Object 
Layer

Passive 
Object Layer

Behavior
Mailboxes

Actor (active object)

Actor message 
communication
Passive object

Passive object 
communication

Figure 2.1: The double-layered object model of AmbientTalk. Passive objects implement
both the behavior and mailboxes of the active objects.

2.1.1 Passive object layer

Passive objects in AmbientTalk are regular prototype-based objects. They can be created
ex-nihilo, by extending other objects or by cloning existing objects using the following
syntax,

anObject:object({

...

cloning.makeClone()::{this};

...

});

extendedObject:extend(anObject,{

...

aMethod()::{...};

...

});

aClone: extendedObject.makeClone();

A representation of these objects in given in figure 2.2. Extending an object results in a
new object, which we name the child. The child keeps a reference to the original object,
which we name its parent. When a field or method is looked up in the child, but not
found, the interpreter searches the field or method in its parent object. This is the default
technique for prototype-based objects to implement code-sharing [24]. Cloning an object
returns an identical copy of the object, including its parent reference. In figure 2.2 we see
that the clone, aClone, of extendedObject shares the same parent as extendedObject.
In AmbientTalk, passive objects can send and receive messages, using call-by-reference.
Following the prototype oriented paradigm, passive objects are entirely self-sufficient [24],
an important feature of objects in an ambient environment [7].

At the level of the interpreter, passive objects in AmbientTalk are a collection of bind-
ings where each binding connects a name to a value. Furthermore, objects have two distinct
repositories to store bindings, one for variables and one for constants. Variables, as the
name says, can change over time while constants have a fixed value. In AmbientTalk,



CHAPTER 2. PREVIOUS RESEARCH 9

anObject

aClone

extendedObject

Parent Parent reference

Passive object

Parent

Figure 2.2: In AmbientTalk passive objects
can be created ex-nihilo, by extending or
cloning an existing object. Cloned objects
share the parent of the original object.

y
1

getX()
{x}

x
2

Variables
Constants

aPoint

Reference 
(to next binding)

End of list

name
value

Binding

Figure 2.3: At the level of the interpreter,
passive objects are represented by a list of
variables and a list of constants.

we can declare a variable using the :-operator, while constants are declared with the ::-
operator. The immutable nature of constants, makes them ideal candidates for public
access. We demonstrate this with the following code,

aPoint:object({

x:2; //variable x

y::1; //constant y

getX()::{x}; // ’constant’ function returning x

});

aPoint.x; // --> error, did not find "x"

aPoint.y; // --> returns "1"

aPoint.y := 3 // --> error, "y" is immutable

aPoint.getX() // --> returns "2"

We create a point with a variable x-coordinate, a constant y-coordinate and a constant
method which returns the value of x. An representation of this object at the level of the
interpreter is given in figure 2.31. The code shows that we cannot access x from outside
the object. To obtain the value of x, we can use the method getX, which is declared as
a constant and therefor publicly available. We can access the constant y, but we can not
modify it. We conclude that modifying the internal state of an object can only be done
through message passing, that is, by implementing a public method which modifies the
private, variable state of the object. The repository of constants represents the object’s
public interface. An extended object has access to its parents internal state. The following
code shows this,

aPoint:object({ ... as before ... });

e:extend(aPoint,{

setX(val)::{x:=val}

})

1Note in figure 2.3 that each binding has a reference to the next binding; the collection of bindings is
implemented as a list.
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e.setX(3)

aPoint.getX() // --> returns "3"

We see that an extended object can modify its parent’s private state.

2.1.2 Active object layer

The second object layer of AmbientTalk contains only active objects. Active objects in
AmbientTalk follow the ambient actor model presented by Dedecker and Van Belle in [8].
It approximates the actor model by Agha in [1] closely, but unlike normal actors, active ob-
jects can be stateful. An actor or active object, is made up of a collection of passive objects.
More specifically, an actor has one unique passive object describing its interface, called its
behavior, which processes incoming messages of the actor. Each actor occupies a unique
thread in the interpreter. Inside the actor, all interactions between its passive objects
are executed sequentially within the actor’s thread. Actors communicate asynchronously
to integrate network delays, failures and thread synchronization. AmbientTalk provides
asynchronous communication primitives between active objects using the #-operator as
follows,

anActor#message(arguments)

Messages between actors may contain passive objects as arguments, which are passed by
copy in accordance with the containment principle [6]. The containment principle states
that a passive object can belong to only one actor. Actors can be created with the object
that represents their behavior as shown below,

anActor:actor(object({

show()::{display("Hello");}

... definition of the actor’s behavior ...

};

anActor#show(); //--> "Hello"

The interaction between actors is characterized by a set of mailboxes. The actor holds
four mailboxes, inbox, rcvbox, outbox and sentbox, which contain the messages received,
processed, sent and delivered respectively. Incoming messages are taken from the inbox,
processed in the behavior, then put in the rcvbox. Messages to other actors are put in
outbox and moved to sentbox when the message was successfully delivered. AmbientTalk’s
virtual machine is responsible for sending and delivering the messages. We demonstrate
how actors communicate based on the following code, and corresponding figure 2.4,

// actor1

actor1:actor(object({

sendAMessageTo(anActor)::{

anActor#aMethod(...args...)}};

// actor2
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actor2:actor(object({

aMethod(...args...)::{

... process message ...}}));

// make actor1 send a message to actor2

actor1#sendAMessageTo(actor2);

In the first phase actor1 wants to send a message to actor2. It places the message in
outbox. The interpreter takes the message from outbox (actor1) and sends it to actor2.
Any message an actor receives is placed in inbox, so the interpreter places the received
message from actor1 in the inbox from actor2. If the message was successfully received,
phase two begins.

In phase two, there may be a time discrepancy between actor1 and actor2 since both
operate independently in a separate thread. actor1 consideres the message send as com-
pleted and moves the message to sentbox. actor2 removes the message from its inbox

and places it on its evaluation stack to process the message. When the message is fully
evaluated, actor2 places the message in rcvbox and we continue to phase three.

In phase three, the message send was successfully processed on both sides. Note that
both actors, actor1 and actor2, have a copy of the message in their mailboxes, sentbox
and rcvbox respectively. Actor embody exactly one thread and race conditions apply at
the inbox access. This is solved by the interpreter.

Non-blocking communication between actors makes synchronization between actors
difficult. However, synchronization may be be required between collaborating parties to
ensure a consistent state. By storing the complete communication history in the mailboxes,
actor’s possess a reified communication tree. When an inconsistent state is detected,
they can navigate backwards over the reified communication tree to recover to a previous,
consistent state.

In addition to the four mailboxes for communication, active objects keep four other
mailboxes for ambient service discovery. An actor can offer services by adding a pattern
in a mailbox named providedbox. The contents of this mailbox describes the services
an actor provides and the interpreter is responsible for broadcasting this service to the
ambient environment. Additionally an actor may request a service by placing a pattern in
the requiredbox. When two actors in an AmbientTalk environment encounter each other,
they exchange the patterns from the provided and required services. If a matching service
and request is found, the actor requiring the service is notified. The notification transpires
by moving the pattern of the relevant service from the requiredbox to the joinedbox. In
ambient environments, network failures or drops between actors is common. The actor re-
quiring the service can be notified if the provider leaves the network by placing the service
pattern from the joinedbox to its disjoinedbox. This alerts the actor that the service
is no longer or temporarily unavailable. The actor can then choose to wait till the service
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sentbox inbox rcvboxoutbox
actor1 actor2

sentbox inbox rcvboxoutbox
actor1 actor2

inbox rcvboxoutbox
actor1 actor2

sentbox

mailbox

message

phase 1
phase 2

phase 2
phase 3

Figure 2.4: A message is sent from the outbox of to sending actor to the inbox of the
receiving actor. Upon successful delivery, the sender moves the message in the sentbox

mailbox. Meanwhile the receiver may start processing the message. When the message is
evaluated, the receiver moves the message from inbox to rcvbox.

rejoins the ambient environment or request the service anew.

Now that we have introduced AmbientTalk, we can move to a fundamental principle of
ambient-oriented programming, named extreme encapsulation.

2.2 Extreme encapsulation

The principle of extreme encapsulation was first introduced by De Meuter in [4] and later
explored in [6]. De Meuter argues that language constructs, fundamental to object-oriented
languages such as extending objects, do not involve the object in the process. The object
has no control over the operation which may disable the object’s ability to protect its
private information. This may lead to security problems. As a resolution for the security
issues inherent from the language, he proposes the extreme encapsulation principle,

An object can designate some of its internal state and operations to be private
and enforce this property. To be able to uphold this principle, language operators
which manipulate an object or class without its explicit intervention are to be
prohibited.
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As a solution, De Meuter promotes a system of method attributes, based on the Agora
model [5]. Method attributes allow objects to give special evaluation semantics to their
methods, replacing typical language constructs by special methods in objects. Language
constructs are then reduced to message passing to objects. Using method attributes De
Meuter states his principle as follows,

The principle of extreme encapsulation states that objects should be subject to
message passing and message passing alone.

As motivation, he identifies three language constructs which often breach extreme en-
capsulation,

1. inheritance, or the extension of objects,

2. the cloning of objects and

3. reflection on objects.

We now elaborate on these examples of language constructs, and show how they violate
extreme encapsulation.

2.2.1 Conflict by extension

Prototype based languages such as Self [28] and even AmbientTalk (cfr. section 2.1.1)
have an inherent encapsulation problem with extension. This stems from the ability to
dynamically extend objects and that the extended objects obtain access to the private
state of parent objects. We show this with the following example code2,

LoginSession:object({

password: "code"

...

});

PasswordHacker: extend(LoginSession, {

showPassword()::{display(password)}

});

PasswordHacker.showPassword(); // --> displays "code"

A diagram corresponding to the code is shown in figure 2.5. We have an object LoginSession
representing the login session for a secure login program. The program creates a login ses-
sion for each user. The session stores or has access to important user information, such
as the password, represented by the variable password. In most prototype based lan-
guages, one can dynamically extend such an object. A hacker extending LoginSession

with PasswordHacker can supply a method for displaying the password of the parent ob-
ject. Because PasswordHacker has access to the private state of its parent object, it has
access to the user’s password, and can expose this.

2This is AmbientTalk code. It clearly shows that the encapsulation breach by extension has not been
resolved in AmbientTalk yet.
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parent
showPassword()

PasswordHacker
password:code
LoginSession

code

displays

reference

Figure 2.5: In prototype-based languages, objects can be dynamically extended and child
objects gain access to the private state of their parent. This is a breach of encapsulation.

It is clear that extension is a possible breach of encapsulation for prototype-based
languages. Class-based languages with support for visibility attributes on its members,
such as private in Java [14], allow a class to explicitly restrict access to those members.
In this case, only instances of the class have access to their own copy of that member.
Even extended classes do not gain access to fields or methods declared as private in its
superclass.

2.2.2 Conflict by cloning

Cloning is one of the most fundamental operations in prototype-based languages [24], yet
it poses a possible encapsulation breach. As an example, we use again the LoginSession

object of section 2.2.1 in the following code,

LoginSession:object({

... as before ...

});

SessionHacker(userSession):object({

session: clone(userSession);

accessSystemWithSession()

});

aSessionHacker:SessionHacker(LoginSession);

If an external cloning operator is defined, an external client can duplicate an object un-
hindered. An object SessionHacker can then duplicate a user’s session (LoginSession).
While this does not grant SessionHacker direct access to private information on LoginSession,
he has now access to any system using the identity of the user from LoginSession.

Prototype-based languages, such as Self [28], resolve this by integrating a default cloning
operation in the object. An object can then disable cloning on itself by overriding the clone
method. However, a default clone operator does not allow customization of initial values of
an object’s private state. This means public operations must be provided to set the internal,
private, state of an object, breaching encapsulation. We show this with an example (using
AmbientTalk syntax) of a bank account in the code below,

BankAccount:object({
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accountNumber
balance
clone()
setNumber()
setBalance()

newBankAccount
accountNumber
balance
clone()
setNumber()
setBalance()

BankAccount
setNumber(...)

setBalance(0)
clone()

produces

invocation

Figure 2.6: Supporting only a default cloning operation in a prototype object forces the
inclusion of setters for the internal state of an object so that it may be initialized properly.
This can be a breach of encapsulation of an object’s private state.

owner: "Alice";

accountNumber: 100-12345689-24;

balance: 1.000.000;

clone()::{... makeCloneOfThis ...};

setAccountNumber(number):{accountNumber:=number};

setBalance(amount):{balance:=amount};

setOwner(aName):{owner:=aName}};

newBankAccount:BankAccount.clone();

newBankAccount.setAccountNumber(101-12345689-24);

newBankAccount:setBalance(0);

newBankAccount:setOwner("Bob");

This is depicted in figure 2.6. We see that cloning not only needs explicit interaction with
the cloned object, but that a stronger mechanism is required to safely initialize the internal
state of the new clone.

AmbientTalk resolves this breach of encapsulation using cloning methods as proposed
by De Meuter in [4] for ChitChat. Cloning methods are methods with the method attribute
cloning and a special evaluation semantics. When a cloning method is invoked, a clone
of the object is created. Additionally, the body of the cloning method is evaluated within
the context of the clone. In the body, the private state of the clone can be set, depending
on parameters or desired default values. We revise the previous example to include cloning
methods,

BankAccount:object({

owner: "Alice";

accountNumber: 100-12345689-24;

balance: 1.000.000;

seeBalance()::{balance}};

cloning.newAccountFor(aPerson)::{

accountNumber := aNumber+1;

balance := 0;

owner := aPerson;
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}

newBankAccount:BankAccount.newAccountFor("Bob");

newBankAccount.seeBalance() // --> returns 0

Note that we were able to set the internal state of the new object in the body of the cloning
method. We do not want the user or creator of the account to simply choose the number or
set the balance. Upon creation, however, the name of the owner of the account is required
and we can pass that as an argument to the cloning method. This safely imports any ex-
ternal values we require for creating a clone without exposing the private state of the object.

Class based languages such as Java and C++ solve this conflict by having special con-
structors, and in the case of C++ also with explicit copy constructors. This allows the
programmer to explicitly denote how objects can be created and duplicated.

We conclude that an external cloning operator or a fixed cloning operator in an object
can breach extreme encapsulation. We have shown that cloning methods allow us to create
clones of objects safely without exposing their private state. Cloning methods therefor
preserve extreme encapsulation.

2.2.3 Conflict by reflection

The final language operation identified by De Meuter in [4] to typically breach encapsu-
lation is reflection. The breach originates from the reflective operations permitting to see
more of an object at its metalevel than at its baselevel. Furthermore the object is seldom
involved in controlling the meta-facilities offered by the language. For example in Self [28]
the reflective API is based on a technique called mirrors [2]. As we explain in more detail
in section 2.3, reflection in Self is achieved by external operators which do not necessarily
involve the object directly. In fact, their design support the implementation of a different
reflection system which may yield more information on objects than originally permitted.
This is clearly in violation with the extreme encapsulation principle.

2.2.4 Conclusion

We have shown that important language constructs in prototype-based languages, such
as object extension, object cloning and reflection are possible threats for the extreme
encapsulation principle. De Meuter [4] claims the breaches stem forth from the lack of an
object’s involvement in those language constructs. We have seen with cloning methods how
methods with special evaluation semantics, give control over the language operation to the
object. Method attributes are a convenient way to hand out special evaluation semantics
to a method. Using method attributes, language operations such as cloning, can be solved
without breaching extreme encapsulation.
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Figure 2.7: In Self, reflection on an object is done through mirrors. Such a mirror can offer
access to individual slots by returning a mirror to that slot.

2.3 Mirrors

We now discuss the concept of mirrors, a design technique for reflective API’s in object
oriented languages, introduced by Bracha and Ungar in [2]. The design proposed by Tanter
in [27] is based on mirrors as proposed by Bracha and Ungar in [2], which in turn is the
starting point for the design of the metaobject protocol proposed in this thesis. Because of
the mirror’s significance to our design, we discuss the concept of mirrors in more detail and
show how they comply with the design principles of Bracha and Ungar. Bracha and Ungar
identify three fundamental design principles which any reflective API should obey: encap-
sulation, stratification and ontological correspondence. Furthermore they propose a design
technique for reflective API’s, named mirrors. Mirrors are a special kind of objects that
offer meta-level functionality over base-level objects. In a sense, they encapsulate meta-
level facilities over a language element, separating meta-level functionality from base-level
functionality. Finally, they argue that mirror-based designs support the three fundamental
design principles they identified. We discuss encapsulation, stratification and otological
correspondence in further detail in the subsections 2.3.2, 2.3.3 and 2.3.4 respectively, but
first we examine the concept mirrors and a mirror-based reflective API.

2.3.1 A mirror-based reflective API

Mirrors were introduced primarily in Self [28] as a reflection mechanism for objects and
their slots. The implementation of Self did not support references to slots or methods. The
paramount principle of the language is communication between objects, solely by message
sends. To support method referencing and invocation, they created objects referring to
slots containing methods. These objects could then invoke the method they refer to. This
led to the concept of mirrors. Mirrors are objects that allow to reason on objects at their
meta-level. In Self, a mirror on an object provides access to the slots of that object. Rather
than a direct reference to the slot of the object, a mirror referring to the slot is returned.
This slot mirror then offers an interface for introspection and intercession on its slot (cfr.
figure 2.7). From the example of Self, Bracha and Ungar elaborated on the design of mir-
rors in [2].
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Figure 2.8: In class-based object-oriented languages, the class represents the metalevel of
an object and is usually accessible through a message send to the object.

In class-based object-oriented languages, the metalevel of an object is usually accessed
via a message to its class such as in Java [12] and Smalltalk [14]. The class of an object
is usually accessible through the object using a message send, as depicted in figure 2.8.
Reflective operations on classes and their instances are defined at the (meta)class level and
coexist with base-level operations side-by-side. Bracha and Ungar deplore this approach
and propose the design of mirrors to separate meta-level functionality from the base-level
functionality.

We example how mirrors work in a class-based language with the following pseudo-code,
taken from [2],

class Object{

// no reflective methods

...

}

class Class{

// no reflective methods

...

}

interface Mirror{

String name();

...

}

class Reflection{

public static ObjectMirror reflect(Object o){...}

}

interface ObjectMirror extends Mirror{

ClassMirror getClass();

...

}

interface ClassMirror extends Mirror{

ClassMirror getSuperClass();

...

}

We have an object, anObject of type Object, on which we reflect. First, we obtain a mirror
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Figure 2.9: Mirrors offer metafacilities on an object, its class and superclass.

to this object using Reflection.reflect(anObject). The object’s mirror offers access to
the object’s class, Object. However, it does not return the class itself but a mirror on the
class, an instance of ClassMirror. The instance of ClassMirror in turn offers reflective
functionality on the class of the object, such as getting its superclass. This is depicted in
figure 2.9.

As we can see, we can access and operate on the metalevel of objects through mirrors.
Mirrors control the access to this metalevel, but note that this depends on the implementa-
tion of the mirror and that the mirror is defined externally (independently) from the base
object. They can offer access to the metalevel of an object’s elements, but only through a
new mirror. This ensures all reflective operations are done with messages to mirrors. We
now elaborate on the design principles, which Bracha and Ungar identified as essential.

2.3.2 Encapsulation

Bracha and Ungar claim that metalevel facilities must encapsulate their implementation.
This makes it possible to rely on different implementations of the reflective API trans-
parently. Mirrors separate the interface of meta-operations from the implementation of
objects. This reduces the interdependence of objects and their reflective facilities. Also,
mirrors capture metalevel operations in a separate subsystem. Mirrors propose an interface
for reflection inside a language. This allows different reflective systems to be implemented
and used transparently. The actual implementation of the mirrors decides how to mir-
ror objects of a given kind, rather than having a fixed reflective system embedded in the
language. This is the essence of the first principle in [2], stating that the separation of
mirrors, at the meta-level, and classes or objects, at the base-level, is necessary to support
the encapsulation of the reflective API.
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2.3.3 Stratification

When reflective systems are embedded in the infrastructure of objects and classes, it is
difficult to filter out this functionality for applications that do not require reflection. For
example, the operations for compiling methods in Class in SmallTalk-80 [12] can not be
removed since some objects require this functionality and all objects depend on Class.
The mirror design proposed in [2] separates reflective functions clearly from ordinary func-
tionality. It allows reflection to be loaded or unloaded as an independent subsystem and
can thus be deployed depending on the application’s requirements. This mitigates an ap-
plication’s footprint, a vital element in an ambient environment, where small platforms are
the norm [15].

2.3.4 Ontological correspondence

The principle of ontological correspondence of a reflective API can be split in two parts,
structural correspondence and temporal correspondence. To satisfy structural correspon-
dence, the reflective API must reflect on all structural elements of the language. In an
object-oriented language, this includes objects and may go as deep as methods and method
bodies. Temporal correspondence states that the API must distinguish between static and
dynamic properties of the underlying language. Some elements of the language only exist
dynamically, such as a message send to an object or the invocation of a function. A com-
plete reflective API should reify such elements and allow metalevel operations on them.
As a design suggestion, Bracha and Ungar state that a separable API should be avail-
able for reflection on the structural and dynamic or behavioral elements of the language.
Using mirrors, the reflective API can be partitioned to offer separate interfaces for struc-
tural and behavioral reflection in accordance with structural and temporal correspondence
respectively [2].

2.4 Mirror methods

The design of the mirrors proposed in [2] by Gilad Bracha and David Ungar is not com-
patible with the extreme encapsulation principle [6]. In their design, mirrors on an object
are acquired outside the object, using a mirror factory,

MirrorFactory.getMirror(obj)

With this mirror factory, objects are not directly involved in the creation of the mirror,
i.e. they have no control over what kind of mirror and if a mirror is created. This is in
violation with the extreme encapsulation principle, discussed in section 2.2.

In [27], Eric Tanter proposes an alternative design for mirrors in ChitChat [4], in
accordance with extreme encapsulation by instating the object with mirror creation re-
sponsibility. To achieve this goal, Tanter adapts the technique of cloning methods. In



CHAPTER 2. PREVIOUS RESEARCH 21

section 2.2.2 we have shown how the method attribute cloning denotes a cloning method,
a method which can create a clone of the receiver in a controlled way. Similarly, Tanter
introduces a new method attribute mirror, which denotes a new kind of methods: mirror
methods. A mirror method can a mirror of the receiver in a controlled way. The precise set
of metalevel facilities provided by a mirror is then controlled by the receiver itself, since
the mirror method determines the expressive power of the mirror, i.e. what it has access to.

The proposal of Tanter in [27] involves two new language concepts, mirror methods and
a meta pseudo-variable. We discuss each element in more detail.

2.4.1 The meta pseudo-variable

Tanter introduces a new pseudo-variable meta that refers to the meta-representation of an
object. The metaobject exposes an interface to operate on the metalevel of the object: the
actual metaobject protocol. The virtual machine is responsible for returning the metaob-
ject, and inherently the meta protocol. Because of its involvement, the reflective facilities
depend on the virtual machine. This offers a level of control, a strict virtual machine may
limit the protocol, while a more open virtual machine can offer access to other concerns
such as garbage collection. Tanter also enstates the following rule,

Only mirrors have access to the meta of their creator.

This rule becomes an important element of our design, as we see in chapter 3.

2.4.2 The mirror methods

To give objects the ability to create a mirror, Tanter proposes a new kind of methods named
mirror methods. Similar to cloning methods which are denoted by the method attribute
cloning, mirror methods are denoted by the attribute mirror. Mirror methods too, have
a unique evaluation semantics, just like cloning methods. When a mirror method is in-
voked, it first creates a mirror of the receiver and then evaluates the body of the method
in the context of the mirror. The body of the mirror may declare fields and methods in the
mirror, defining its functionality and interface. Mirror methods are in effect constructors
for mirrors, just as cloning methods are constructors for clones. The mirror has access to
the metalevel of its creator and exposes this using the interface defined by its creator. Since
an object defines the mirror constructor and only mirrors have access to the metalevel of
the object, mirror methods give objects the control over the meta functionality they expose.

We demonstrate this with an example. Figure 2.10 shows a mirror method invoker

on points. When invoked, the mirror method invoker creates a mirror for Point and
evaluates its body in the context of the mirror. This declares the only method methods

in the mirror. The method meta.methods() refers to the method table of the receiver.
Hence, if p is a point, p.invoker().methods() returns the table of all the methods of
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makePoint(aX,aY)::{

x:aX; y:aY;

moveTo(nX,nY)::{ x:=nX; y:=nY; }

mirror.invoker()::{

methods()::{ meta.methods(); }}

}

Figure 2.10: Prototype point object featur-
ing a mirror method.
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a Point p a Point Mirror 
invoker

meta

fields
methods

...
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copy

...
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only via the mirror

methods

Mirror/creator 
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Figure 2.11: Mirror on a point object.

p. One can then use this table to introspect and invoke methods on p reflectively (cfr.
figure 2.11).

2.4.3 A structural reflective API

Along with the proposition for the design of mirror methods, Tanter proposed a reflective
API in [27] which covers both structural (access to methods and fields) and behavioral
(listeners on execution events in the object) aspects.

The structural API offers an interface to reflect on the structure of objects. The func-
tion meta.methods() from section 2.4.2 is an example of a structural reflective function.
However, such a function may not return a direct reference to the methods of the object.
Indeed this results in a breach of extreme encapsulation; once a reference to a structural el-
ement is outside the mirror, the mirror can no longer control the access to it. Consequently,
mirrors must ensure that they return controllable references to structural elements. Tanter
solves [27] this, again with mirrors. Rather than a direct reference to, i.e. a field of an
object, a mirror to that field is returned, controlling the access to the field. On the other
hand, it is undesirable to write a mirror method for each structural element in an object.
To avoid writing mirror methods for objects to the extent of fields and methods, Tanter
proposes that the structural API never returns a reference to a structural element, but a
mirror of that element. For example, the method meta.methods() returns a table of mir-
rors, one mirror for each method. However, different mirrors are possible for a method, i.e.
such a mirror may or may not allow introspection of the method’s body. To give objects
control on the kind of mirror returned, Tanter proposes a number of values which describe
the level of access a field or method mirror offers to its structure element. The structural
API is then a collection of mirror constructors. We list the suggested functionality,

• meta.method(name, rights): returns a mirror to the method with name name and
with the access rights described by rights.

• meta.methods(rights): returns a table of mirrors, one for each method, and all
with the access rights rights.
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• meta.field(name, rights): returns a mirror to a field with name name and access
rights rights.

• meta.fields(rights): returns a table of mirrors, one for each field, with access
rights rights

The variable rights denotes the access rights on its element the mirror grants. Tanter
proposes the following values,

• meta.read: the mirror can read the value and name of the field.

• meta.write: the mirror may write the value of the field. This right includes the
rights of meta.read.

• meta.signatureRead: the mirror may read the signature of the method.

• meta.signatureWrite: the mirror may read and write the signature of the method.

• meta.invoke: the mirror may invoke the method reflectively.

• meta.bodyRead: the mirror can inspect the body of the function.

• meta.bodyWrite: the mirror can inspect the body as well as insert code before or
after any instruction.

• meta.bodyOverwrite: the mirror can inspect the body, insert any code before or
after any instruction and replace any instruction.

We demonstrate the use of rights with the following code,

// a Point defintion

makePoint(aX,aY)::{

x:aX; y:aY;

moveTo(nX,nY)::{ x:=nX; y:=nY; }

mirror.inspector()::{

fieldX()::{meta.field("x",meta.read)}}}

// create a Point

aPoint:makePoint(1,2);

// create a Mirror on the Point

aMirror: aPoint.inspector();

// request a Mirror on the Point’s field named "x"

aMirrorOnX: aMirror.fieldX();

// operate on "x"

aMirrorOnX.readValue() // --> returns 1, the value of "x"

aMirrorOnX.setValue(3) // --> error! this is not possible

The method meta.field("x",meta.read) returns a mirror on the field x of the point.
Because the mirror was given the permission to read the value but not set it, the mirror
will not set the value of the field x.



CHAPTER 2. PREVIOUS RESEARCH 24

2.4.4 A behavioral reflective API

The behavioral API proposed by Tanter serves to introspect the behavior of an object.
Reflection on the behavior of objects is done through the form of a listeners. A mirror can
attach (and detach) a listener on language events like field accesses and method invocations.
Additionally, they can attach a function to the listener which can be evaluated before or
after the event, depending the kind of listener the mirror used. We explain the following
code example,

createPoint(aX, aY)::{

... as before ...

mirror.moveListener(action())::{

do()::{action();}

on()::{meta.before([moveTo], do());}

off()::{meta.unbefore([moveTo]);}

on()

}}

We have inserted a mirror method in the point objects, which registers itself on method
invocations of moveTo. Before the method is invoked, the mirror calls the function do,
which is bound a given parameter. This allows us to create a tracer, like given in the
following code,

createTracer(point)::{

print()::{println("before move");

point.moveListener(print());

}

p: createPoint(2,3); t: createTracer(p);

p.moveTo(1,1); // this prints "before move"

t.off();

p.moveTo(2,3); // listener is detached, hence no trace

t.on();

p.moveTo(4,5); // listener is attached, this prints "before move"

Mirrors can thus activate and deactivate from listening and trigger a callback function on
language events. He proposes the following API,

• meta.before(methods,callback): registers the mirror to activate the callback func-
tion callback before invocations of the methods given in methods.

• meta.before(fields, callback); registers the mirror to call callback before ac-
cesses to the fields given in fields.

• meta.after(methods, callback): registers the mirror to call callback after mes-
sage sends to the methods in methods.
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• meta.after(fields, callback): registers the mirror to call callback after ac-
cesses to the fields in fields.

• meta.unbefore(methods): unsubscribes the mirror to events from methods in methods,
to which it was registered with meta.before(methods,callback).

• meta.unbefore(fields): unsubscribes the mirror to events from fields in fields,
to which is was registered with meta.before(fields,callback).

• meta.unafter(methods): unsubscribes the mirror to events from methods in methods,
to which it was registered with meta.after(methods, callback).

• meta.unafter(fields): unsubscribes the mirror to events from fields in fields, to
which it was registered with meta.after(fields, callback).

Tanter further proposes to include context exposure to enable mirrors to return information
of the event to the callback function. Like the structural API, no direct reference may be
returned to the callback. Instead, a mirror to the elements on the context is returned and
again, a parameter describing the access rights is used. Each element can either be read,
or written, thus the rights are limited to meta.read and meta.write. For the context
exposure he proposes the following API for method calls,

• meta.call(right): returns a mirror of a reification of the call.

• meta.access(right): returns a mirror to a reification of the field access.

• meta.call().receiver(rights): returns a mirror to the receiver of the call.

• meta.call().sender(rights): returns a mirror to the sender of the call.

• meta.call().method(rights): returns a mirror to the method.

• meta.call().args(rights): returns a mirror to the argument table.

• meta.call().result(rights): returns a mirror to the result. This is only available
after the call.

We demonstrate this API with the following code,

createPoint(aX, aY)::{

... as before ...

mirror.moveListener(action(receiver, method))::{

do(r,m)::{action();}

on()::{meta.before([moveTo],

do(meta.call().receiver(meta.read),

meta.call().method(meta.signatureRead)));}

off()::{meta.unbefore([moveTo]);}
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on()

}}

createTracer(point)::{

print(receiver, method)::{println("before calling", method.name(),

" on ", receiver);};

point.moveListener(print(receiver, method));

}

p: createPoint(2,3); t: createTracer(p);

p.moveTo(1,1); // this prints "before calling moveTo on 2@3"

t.off();

p.moveTo(2,3); // listener is detached, hence no trace

t.on();

p.moveTo(4,5); // listener is attached

// this prints "before calling moveTo on 1@1"

2.4.5 Concluding remarks

The designed proposed by Tanter in [27] reconciles extreme encapsulation for a reflective
API based on mirrors. By using mirrors, we have acquired a reflective design with,

• Encapsulation: the mirror methods encapsulate the reflective functionality an object
uses3. This is not entirely in accordance with the encapsulation principle proposed
by Bracha and Ungar in [2] which promote complete separation between an applica-
tion and reflection. But the complete separation is in direct violation with extreme
encapsulation.

• Stratification: The mirror methods allow to dynamically generate mirrors when
needed. An application using mirror methods will therefor only deploy reflective
functionality when used. An application without mirror methods will never deploy
mirrors. This is in accordance with the stratification principle but also strengthens
the encapsulation from above.

• Ontological correspondence: The mirror methods proposed by Tanter allow reflection
on every language element, such as objects, fields, methods and even method bodies.
Also behavioral language constructs such as a method invocation can be reified using
mirrors in ChitChat.

• Extreme encapsulation: Above all, the principle of extreme encapsulation is respected
in the design proposed by Tanter.

3With encapsulation we refer to the encapsulation of the reflective API. This is in no way related to
extreme encapsulation.
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2.5 Summary

In this chapter we reviewed previous research on which we can base the design for a metaob-
ject protocol presented in this thesis. In section 2.1 we have learned that AmbientTalk is
a language designed for ambient-oriented programming, which discriminates between two
kinds of objects, passive and active objects. Passive objects are regular prototype based
objects while active objects follow the ambient actor model presented in [8]. The principle
of extreme encapsulation states that objects should be subject only to message passing. In
section 2.2 we have shown that this principle is often violated by typical language constructs
such as extension, cloning or reflection. We have explained how AmbientTalk solves this
conflict for cloning using cloning methods in section 2.2.2. Mirrors are a design technique
for reflective API’s introduced by Bracha and Ungar in [2]. We elaborated on how reflec-
tive API’s based on mirrors have desirable properties for reflections such as encapsulation,
stratification and ontological correspondence in section 2.3. In section 2.4 we explain the
design approach to mirrors by Tanter in [27]. Tanter shows that the design of mirrors
proposed by Bracha and Ungar in [2] violates the extreme encapsulation principle and
solves this conflict by introducing mirror methods. While mirror methods do not separate
the implementation of reflection from an object, Tanter shows that his approach preserves
extreme encapsulation and still gains benefits from the mirrors such as stratification and
ontological correspondence.
With the information from the previous research presented in this chapter, we can conclude
that the design of mirror methods for reflection is a good approach to provide a metaobject
protocol that preserves extreme encapsulation. Based on this conclusion we will transmute
the design of mirror methods proposed by Tanter to AmbientTalk in the following chapter.
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Chapter 3

Design Of Passive Mirrors

In chapter 2 we have learned that mirror-based reflection using mirror methods preserves
extreme encapsulation and still inherits benefits of the mirror approach to reflection such as
stratification and ontological correspondence. We have also seen that AmbientTalk distin-
guishes between passive and active objects. Consequently we split the metaobject protocol
presented in this dissertation into a passive and active layer. In this chapter, we focus on
the passive layer. We translate the design for a reflective API, proposed by Tanter in [27],
to the passive object layer in AmbientTalk.

We start with the design of mirror methods for passive objects, which we call passive
mirror methods in section 3.1. Subsequently we explain the design of mirrors in the passive
object layer, named passive mirrors in section 3.2. Finally we give a detailed discussion
about reflection on both structural and behavioral aspects of AmbientTalk in sections 3.3
and 3.4 respectively.

3.1 Passive mirror methods

Passive objects in AmbientTalk provide support for cloning operations using cloning meth-
ods. Cloning methods are methods with a cloning attribute and special evaluation se-
mantics. Similarly, passive objects can provide mirroring facilities using mirror methods.
Much like cloning methods, mirror methods are functions that require special treatment
when declared and evaluated. In fact, we may regard mirror methods as constructors of
passive mirrors. Upon invocation, the method body of the mirror method is executed in
the context of the passive mirror such that variable and constant declarations in the body
are stored in the mirror. In this sense, they differ from the evaluation of cloning methods,
since cloning methods do not store constants and variables from the method body in the
clone. Furthermore, formal parameters of the passive mirror methods become variables in
the passive mirrors and are initialized to their corresponding call value.

Passive mirror methods are denoted by their method attribute, namely mirror. Other

29
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than the method attribute, a passive mirror method resembles a normal method as shown
below,

mirror.methodname(...arguments...)::{...body...}

This declares a mirror method named methodname with arguments ”...arguments...”
and body ”...body...”. To explain how we design passive mirror methods, we are first
required to describe how its method attribute gives the mirror method its unique evaluation
semantics in the AmbientTalk interpreter. However, we will not go into all the details of
this evaluation here. We elaborate on that subject in section 4.8. For now we explain the
functionality of method attributes at a higher level. A typical method declaration has the
following form,

methodname(...arguments...)::{...body...}

A method attribute, attribute, is added before the method declaration as shown below,

attribute.methodname(...arguments...)::{...body...}

In AmbientTalk, such a declaration undergoes a transformation. The complete transforma-
tion is explained in section 4.8. For now, it suffices to know the result of the transformation
is the following,

methodname :: attribute(methodname(...arguments...)::{...body...})

The name of the method is stored, and its value is the result of applying the function
named attribute on the method. Similarly, the declaration of a passive mirror method
with the following form,

mirror.methodname(...arguments...)::{ ...body...}

is transformed to,

methodname :: mirror(methodname(... arguments...)::{...body...})

Thus the interpreter binds the name of the mirror method to the result of applying the
operator mirror on the method. This requires us to implement a special function called
mirror which transforms a method into a passive mirror method. We elaborate further on
the operator mirror in section 3.1.2.

3.1.1 Design of passive mirror methods

The evaluation semantics of passive mirror methods differ from normal or cloning methods.
We are required to extend the current function model in AmbientTalk to include passive
mirror methods. The functionality of a mirror method does not entirely stray from a
regular method. In fact, we can break down the invocation process of a mirror method
into the following steps,
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Figure 3.1: A mirror methods is a decorator of a method in AmbientTalk.

1. create a mirror for the current object,

2. bind the actual parameters to the formal parameters in the mirror,

3. evaluate the method body in the mirror,

4. return the mirror.

Steps 2 and 3 are exactly the same as a normal method invocation, except that the
method is executed in the environment of the mirror. Furthermore, the content of the
mirror method, that is the list of formal parameters and its body, are the same as that of
a normal method. We can consider the evaluation of a mirror method as the evaluation
of a normal method, with some addition steps. This lends to a decorator pattern [11],
where a mirror method wraps around a normal method and delegates its functionality to
the method it contains, adding steps 1 and 4 to the invocation process of the method. This
relationship is shown in figure 3.1, where aMirrorMethod wraps aMethod and apply refers
to the invocation of the method.

3.1.2 Mirror as native function

The function mirror is called for every mirror method declaration (cfr. 4.8 and 3.1.1). Its
purpose is to transform a method into a passive mirror method. Since all objects must
have access to the function mirror, we implement it as a native function, and place it in
the native dictionary of AmbientTalk.

3.2 Passive mirrors

The design of passive mirrors is based on mirrors [2], as proposed by Eric Tanter in [27]
and discussed in section 2.4. From the elaboration in section 2.4 we conclude that passive
mirrors are normal objects, except that they share the same metalevel as their creator on
a conceptual level. A conceptual schema of passive mirrors in AmbientTalk is presented in
figure 3.2.

The functionality of mirrors contains two essential elements, the metaobject and the
mirror itself. We now explain each element in detail.
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Figure 3.2: A conceptual schema of passive mirrors.

3.2.1 The metaobject

Within the spirit of communicating with objects through message passing, operations on
the base object are not done by operating on its metaobject but through its metaobject us-
ing regular message invocation. This approach shares the original vision on mirrors in [2].
The interface offered by the metaobject then forms the actual metaobject protocol. We can
see the metaobject as a normal object offering (meta-)functions to reflect on the base ob-
ject. The metaobject holds all metafunctions which operate on an object at the metalevel.
While the metafunctions of the metaobject are special, we can regard the metaobject itself
as a normal object. However, the construction of the metaobject involves the declaration of
many meta functions. We conveniently structure its creation using a factory pattern [11].
Furthermore, we offer the same complete metaobject protocol to all mirrors. We leave it
to the mirrors (and the base objects creating the mirrors with mirror methods) to choose
which elements of the metaobject protocol are exposed.

The methods in the metaobject operate on the base object it represents at the metalevel.
This base object must be visible to the metafunctions when invoked. To make the base
object visible to these functions, we can use simple scoping rules by declaring a variable
base in the metaobject. Any mirror has access to a metaobject, which holds the actual
metaobject protocol. But in which sense do metaobjects of different objects vary? They
offer exactly the same interface; only the base object they operate on differs. Without
sacrificing our scoping solution, we want to share this common interface. To include the
reference to the base object in our metaobject, we simply extend the metaobject with a
new frame and define the reference in the extended metaobject. This leads to the design
in figure 3.3 which shows us how metafunctions are shared between different metaobjects.

With this design we create a new metaobject for each mirror using a simple extension.

3.2.2 Meta as pseudo-variable

Mirror methods and the mirrors they create offer a mechanism for reflection which pre-
serves extreme encapsulation by exposing the metalevel of objects in a controlled way (cfr.
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Figure 3.3: The relationship between metaobjects and their shared metafunctions.

section 2.4). Now, we want to void meta exposure, or uncontrolled access to the metalevel
of objects. In other words, we want to enforce mirrors and mirror methods as reflection
mechanism. To accomplish this, we forbid any other access to the metalevel but through
the mirror (and mirror methods). To offer access to the metaobject, we create a fixed ref-
erence meta in a mirror. Section 2.4.1 argues that only mirrors have access to the meta of
their creator; that is, not even the creator of the mirror has access to meta except through
a mirror. We accomplish this control over meta in two steps.
First, we do not define meta in every object. Only mirrors need access to meta, thus only
mirrors need a reference to meta. They can, for example, acquire this reference at creation
time.
Second, we turn meta into a pseudo-variable and allow only message sends to meta. This
second step requires modifications in the AmbientTalk parser to treat meta as a keyword.

3.2.3 Design of passive mirrors

Passive mirrors are normal objects, except that they share the metalevel of their creator
(cfr. section 2.4). The meta level of their creator is represented by the metaobject with a
reference to their creator. Creating a mirror is then creating an object with a reference to
the metaobject of its creator. The concept of sharing the metalevel insinuates the creator
and its mirrors to have a common reference to the same metaobject. However, to enforce
the use of mirrors as a reflection mechanism, we allow only mirrors to use the meta variable
(cfr. sections 2.4.1, 3.2.2). We accomplish this, by giving only mirrors a reference to the
metalevel of their creator. We can then concretize the conceptual schema of figure 3.2 to
the UML-diagram in figure 3.4.

3.2.4 Mirrors on mirrors

At a conceptual level, we consider mirrors as sharing their creators metalevel. If we follow
our original concept all the way, a mirror created by another mirror, will share the meta of
the original base object. It is another mirror of the original object. However, we want the
ability to introspect a mirror itself (e.g.: to check which facilities it offers). We rephrase
our conceptual design to,
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Mirrors have access to the metalevel of their creator.

This definition allows a mirror to reflect on another mirror. A conceptual schema is depicted
in figure 3.5.

But a mirror then has two metareferences, from itself and from its creator. The design
presented in 3.2.3 resolves this by allowing a mirror only access to the meta of its creator
and not the meta of itself. This means a mirror has only one metaobject, the metaobject of
its creator. The UML diagram in figure 3.6 concretizes the conceptual drawing in figure 3.5
and shows how our design supports mirrors on mirrors.

3.3 Structural reflection

We have seen in section 2.4 that we reflect on fields and methods. We elaborate on each
element separately.

3.3.1 Field mirrors

In section 2.4.3 we introduced an API to reflect on fields. Like reflection for objects, we
reflect on a field using a mirror, a field mirror. In section 2.1.1 we explained that in
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Figure 3.6: UML diagram of a mirror on a mirror.

AmbientTalk, an object is a repository of bindings. Bindings represent the fields on which
we wish to reflect. It contains the following attributes,

• name: the name of the field.

• value: the value of the field.

The metaobject of a field, holds thus a reference to the binding which it represents at
the metalevel. Also, the metaobject of a field offers the following operations on the field,

• Read the name of the field.

• Read the value of the field.

• Set the value of field.

The mirror, on the other hand, does not necessarily expose all this operations. We want
an object to control the access to its bindings. On the other hand, writing a mirror method
for each field we wish to expose is undesirable. In section 2.4.3 we discuss the proposition
to include functions such as meta.field(name,rights) which generate a field mirror for
the binding with name name. To control the access rights this mirror offers to clients, the
second parameter rights describes the access rights the mirror has. We distinguish two
policies,

1. a read policy offers read access to the name and value of the field,

2. a write policy offers write access to the value of the field as well as read access to
both the name and the value of the field.

3.3.2 Method mirrors

To reflect on methods, we have introduced a similar mechanism as field mirrors to cre-
ate mirrors on methods. We call a mirror on a method a method mirror. Rather than
mirroring the binding of the method, the mirror operates on the method implementation
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itself. At the metalevel, a method has a name, a table of arguments and a method body.
The metaobject of a method should offer read and write operations for these attributes.
Again, the functionality exposed by mirrors should be controlled by the object owning the
methods. We provide multiple policies to control the read and write access,

• a readParameters policy offers read access to the formal parameters of the method,

• a writeParameters policy offers read and write access to the formal parameters of
the method,

• a readBody policy offers read access to the body of the method,

• a writeBody policy offers read access and allows to add statements to the body of
the method,

• a overwriteBody policy offers read access, allows insertions of statements to the body
and allows to remove statements from the body.

The policies of parameters and the method body are independent. To hand-out access to
both parameters and body, the object must explicitly note a policy for both parameters
and body.

3.3.3 Permissions for mirrors

We have discussed a system of permissions in section 2.4 to describe what a field or method
mirror can do. Permissions control the metafunctionality a mirror exposes. This can be
accomplished in two ways,

1. Dynamically: The field or method mirror stores the given permissions. On each
invocation of its methods it checks if its permission allow the invoked method. In case
of a violation, it can return either a void value or throw an error. The advantage of
this approach is that it is easy to support dynamic changes to the permissions of the
field or method mirror. The downside is that at every call a check must be made and
the permissions must be stored. Note that to be allowed to change the permissions
dynamically, the field or method mirror must be returned to the creator since only
the creator can decide which permissions are given.

2. Statically: The field or method mirror gets an interface in correspondence to its
permissions. For example, if the field mirror does not have the right to write the
field, the corresponding method for writing fields is not included in the mirror. The
advantage of this approach is that no dynamic permission check is needed. If the
permission was not granted, the method to perform the operation is not included. To
request new permissions, the client must ask a new mirror with the new permissions.

Permissions can only be handed out by the creator, in accordance with extreme encap-
sulation and the concept of the mirrors as proposed in this thesis. Dynamic permissions
can thus only change inside the mirror’s creator. This devaluates the approach of dynamic
permissions. Hence we opt for the cleaner design technique of the static permissions.
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3.4 Behavioral reflection

To reflect on the behavior of objects, we are mainly concerned with accesses to fields and
invocations of methods. Field accesses and method invocation are computational events in
our language, and using a form of listeners, we can intercept these actions and reflect on
them. In section 2.4.4 we introduce the notion of callback functions, the actions performed
on such events. Before we dive into design details, we examine the nature of callback
functions in more detail.

3.4.1 Mirrors as listeners

Callback functions can be deployed on events such as a field access using the following
semantics,

meta.before(name, callback)

This deploys a listener on the field name which triggers the callback function callback

before the access to the field is executed. Additionally, we may give reified elements of the
event to the callback function as arguments. This gives us a first list of requirements,

1. The function representing the callback must be evaluated within the scope of the
mirror that deployed the callback.

2. The arguments reifying elements of the event in the interpreter must be evaluated
dynamically in the context of the event. The access to these elements is predefined
in the mirror deploying the callback function.

3. We must be able to attach listeners to events such as a field access or a method
invocation.

4. We must be able to retract any listener previously deployed.

The evaluation of the callback function in the context of its mirror can be solved using
a closure. The closure captures the environment of the mirror that deployed the callback
function and as such the closure invokes a correct evaluation of the callback function. Ar-
guments passed to the closure are evaluated in the context where the closure is applied.
In this context we must offer metafacilities that can return a reification of the event. This
requires us to modify the interpreter’s evaluation semantics of field accesses and method
invocations. The interpreter is required to halt the normal evaluation, check for listeners
to the event, place any listeners in the context of the evaluation and trigger their attached
closure. A naive approach would be to attach the closures holding the callbacks. If the
interpreter offers a context with the required metafacilities for the closure’s arguments, this
would result in a successful evaluation of the callback. However this discards our ability
to retract the callback functions! Once wrapped in a closure, we need to keep a reference
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to the closure to ensure a safe detachment of the callback function. This brings additional
requirements as to where the references to callbacks must be stored. We propose to reuse
the technique of mirrors.

The function meta.before(name,callback) creates and returns a mirror holding the
callback function. This mirror can be deployed as a listener to events on the field (or
method) denoted by name. We call such a mirror a listening mirror. When an event on
name occurs, the interpreter places a reification of the event on the stack and invokes the
callback functions of any listening mirrors. Since meta.before(name,callback) returns a
listening mirror for the callback, we have our desired reference on the callback to ensure a
safe detachment. The listening mirror offers an interface to dynamically deploy and retract
its callback function. We explain listeners on field accesses and method invocations in more
detail.

3.4.2 Behavioral reflection on field accesses

A mirror listening to field accesses holds a metaobject offering facilities to the mirror to
attach and detach itself from a field. The metaobject is in fact a reification of the met-
alevel of the field the mirror listens to. In a sense, a mirror listening to field events is a
special field mirror. Unlike its structural counterpart, the behavioral field mirror offers an
interface to deploy and retract a predefined callback function.

At the metalevel of a field access event, we want a reification of all elements involved in
the field access, namely the sender, the receiver and the field being accessed. These can be
made accessible by the mirror deploying the callback using parameters for the callback as
described in section 2.4.4. Since the callback functions reifies these elements and exposes
them to the callback function, the mirror prohibits changing the callback function dynam-
ically, in accordance with the encapsulation principle.

3.4.3 Behavioral reflection on method invocations

For behavioral reflection on methods we apply a similar technique as for behavioral re-
flection on fields. The function meta.before(methodName, callback) deploys a listening
mirror with the given callback on events of the method methodName. The callback func-
tions can be triggered before, or after the invocation of the method. Parameters reifying
elements of the method invocation can be passed as arguments to the callback function as
discussed in section 2.4.4.
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3.5 Summary

In this chapter we have presented the design for a metaobject protocol in the passive
layer of AmbientTalk, based on our findings from previous research in chapter 2. To
properly structure the reflective API without breaching extreme encapsulation we used
mirror methods to create mirrors (cfr. section 2.4). Mirrors can offer reflective functionality
on their creator in a controlled way. In section 3.1 we showed that passive mirror methods
are new kind of methods in AmbientTalk which require a special evaluation semantics:
upon invocation a mirror method creates a new mirror for the receiver of the invocation
and evaluates the method body in the context of the mirror. We also explained in that
section that passive mirror methods are created by applying the native functions mirror to
a method (the mirror method without mirror attribute). Then we moved on to section 3.2
where we described that the design of passive mirrors comprises two parts: the design of
the metaobject and the design of the mirrors. We chose to model the metaobject as a
normal passive object which contains native meta functions. We also designed mirrors
as regular passive objects with a unique reference to the metalevel of their creator. In
sections 3.3 and 3.4 we elaborated on the metaobjects corresponding to each language
construct we reified, such as fields, methods, field accesses and method invocations. We
concluded that each metaobject offers a unique set of metafunctions. In the same sections
we explained how we need a different mirror for each of the reified language constructs. We
explained how they can be seen as normal objects, whose interface is be determined by a
set of values describing the access rights the mirror offers on the language construct. Now
we can continue to the implementation of passive mirrors and passive mirror methods in
AmbientTalk, but first we examine the AmbientTalk interpreter in the following section.



Chapter 4

The AmbientTalk Interpreter

Before we implement the design for passive mirrors proposed in chapter 3, we examine the
implementation and internal workings of the AmbientTalk [9] interpreter which is currently
written in Java [26]. We begin by identifying the main classes and class hierarchies in sec-
tion 4.1. Then we explain the most fundamental hierarchies in more detail, such as the
AbstractGrammar hierarchy in section 4.2, the value hierarchy of AGValue in section 4.3
and the hierarchy of functions in AmbientTalk in section 4.4. Subsequently we explain
some other fundamental classes in the interpreter: continuation frames, represented by
ContinuationFrame, in section 4.5 and native functions in section 4.6. With this infor-
mation we explain briefly the principle idea of the read-eval-print-loop in section 4.7. We
conclude this chapter with an example; we evaluate a cloning method and observe how it
is processed inside the interpreter in section 4.8.

4.1 The main hierarchies

The internal mechanics of the AmbientTalk interpreter are characterized by the following
classes or class hierarchies,

• Parser: is the parser for AmbientTalk expressions. It can parse a Java String rep-
resenting an AmbientTalk expression and returns an abstract syntax tree where Ab-
stractGrammar is the common superclass of all the tree’s elements.

• AbstractGrammar: is the abstract superclass of all grammar objects in the inter-
preter. All instances of this class are first-class citizens in a running AmbientTalk
application.

• ContinuationFrame: is the abstract superclass of all continuation frames in the
interpreter. They embody the continuation stack. Each continuation frame defines
an order of evaluation on its elements, which are instances of AbstractGrammar.

• Process: is an abstract superclass for all processes in the interpreter such as the main
process of the local virtual machine and the process controlling the actor threads. It
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keeps a reference to all information describing a process’s state like the current active
environment, continuation stack etc.

• ProcessEvalThread: represents a Java thread and defines the evaluation cycle of
an AmbientTalk expression. It also offers some rigid control over the evaluation
process such as killing the process with the killEvaluation method.

• PicoCallBack: is responsible for returning information to the user, which can be
text, grammar objects or notifications.

When working at the level of the interpreter, it is important to keep the interactions of
these different classes in mind. Some of the class hierarchies states above will require mod-
ification when we implement our metaobject protocol. We examine the class hierarchies,
most relevant to our design, in more detail below.

4.2 The AbstractGrammar hierarchy

The AbstractGrammar class is the common superclass for all first-class objects that make
up an AmbientTalk application. While every subclass embodies another element of the
application, AbstractGrammar shows us some common functionality used throughout the
program,

• the evaluation interface, eval(), which requests the grammar object to evaluate itself,
possibly pushing new ContinuationFrames on the stack,

• basic type checking, i.e.: isDictionary(),

• basic type conversion, i.e.: asDictionary() which is also used to cast an object’s class
in a controlled way.

It is important to note that every language construct we will reify in our reflective API
will be a subclass of AbstractGrammar. In chapter 6, where we introduce reflection on the
active layer of AmbientTalk, we will encounter the one exception to this rule, namely an
actor’s thread. We discuss that is more detail in chatpers 6 and 7.

4.3 The AGValue hierarchy

One subclass of AbstractGrammar we are particulary interested in is AGValue. It is the
superclass for all grammar objects we work with in the AmbientTalk language,

• passive objects (AGDictionary),

• active objects (AGActor),

• primitive types such as numbers (AGNumber), texts (AGText) and void (AGVoid),
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• functions (AGFunction), which we discuss in more detail in 4.4,

• native functions (AGNative).

Subclasses of AGValue are values which can be returned in AmbientTalk. It is evident that
our mirrors, metaobjects and even the metafunctions will be subclasses of AGValue, but
not necessarily direct subclasses as will become clear in chapter 5.

4.4 Function implementation

In the AmbientTalk interpreter, functions are represented by AGFunction grammar ob-
jects, a subclass of AGValue. Each subclass of AGFunction represents a different kind of
function and function evaluation, 1

1. AGFunctionImpl: represents normal functions of AmbientTalk,

2. AGCloningFun: represents cloning methods.

Instances of AGFunction function in two steps. Firstly, the function object is created
with all its static information (formal parameters, body, name). This object is the result
of a function definition and can be passed around in AmbientTalk (ie. can be assigned to a
reference). Secondly, the object can be activated with all the dynamic information (actual
parameters, dynamic environment) using the apply(...) method. This corresponds to an
invocation of the function in AmbientTalk.

4.5 Continuation frames

Continuation frames represent frames on the continuation stack. Each frame has a number
of grammar objects and the frame defines an order of evaluation on these grammar objects.
The common superclass ContinuationFrame provides the following,

• the methods cntContinue, cntPoke, cntProceed, cntPush, cntReturn for the basic
continuation stack behavior,

• a value holding an AbstractGrammar object which is evaluated at creation time of
the ContinuationFrame, and can be passed to the next continuation frame the result
of the ContinuationFrame,

• the execute() interface, which triggers the continuation frame to execute.

1In fact, we extend AGFunction once for passive mirror methods, once for active mirror methods as
explained in sections 5.2 and ?? respectively.



CHAPTER 4. THE AMBIENTTALK INTERPRETER 43

4.6 Native functions and thunks

Native functions in AmbientTalk are written in the native language of the interpreter
(Java [26]) and require a special evaluation. A single grammar object, namely AGNative,
is used to wrap any native function and represent it in AmbientTalk. The implementation
of native functions involves three classes. We explain their role,

• AGNative: Wraps and represents a native function in AmbientTalk. It can be
called like a function, with all dynamic information (actual parameters, dynamic
environment) for the evaluation. It passes this information to the Native object
which it wraps.

• Native: is the superclass of native functions inside the interpreter. It does not
belong to the grammar hierarchy. The Native class provides common functions for
counting and evaluating the arguments. Subclasses of Native can directly evaluate
their function (i.e. if no arguments need to be evaluated) or request the evaluation
of their arguments and send the resulting parameters to a Thunk.

• NativeMetaThunk: is the superclass of all thunks. Thunks are used for all func-
tions that expect their arguments to be fully evaluated. These thunks are called when
all arguments are evaluated and used to avoid having a specialised continuation frame
for all natives, that now use thunks.

4.7 The Read-Eval-Print loop

The read-eval-print loop is defined by ProcessEvalThread, Parser, AbstractGrammar, Con-
tinuationFrame and PicoCallBack following these steps,

1. ProcessEvalThread receives the request to evaluate a String and passes this to Parser.

2. Parser parses the String and returns an AbstractGrammar object representing the
AmbientTalk expression.

3. ProcessEvalThread initializes the continuation stack with the bottom continuation
frame CFEnd and places the AbstractGrammar object on the continuation stack.

4. ProcessEvalThread requests the AbstractGrammar object to evaluate itself.

5. The grammar object evaluates, thereby (possibly) pushing new continuation frames
on the stack to evaluate subexpressions.

6. ProcessEvalThread requests the top frame of the continuation stack to execute its
evaluation (in a loop).

7. When ProcessEvalThread receives a signal that the evaluation is complete, it outputs
the obtained result to PicoCallBack.
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AGReference
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AGReference
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Figure 4.1: The parse-tree returned from parsing a cloning method.

4.8 Example: declaring and evaluating a cloning method

To show how the interpreter works, we observe an example. As example we take the
declaration of a cloning method. We feed the interpreter the following code,

cloning.demomethod( ... arguments ... )::{

... body ...

}

Parser parses the String which and returns a declaration object (AGDeclaration). This
represents the parse-tree depicted in figure 4.1. The body of the function is considered an
application of the function begin on the table (AGTable) containing the statements of the
body.2 Note that the declaration binds an application (AGApplication) to a message send
(AGMessage). This is because code of the form object.message(parameters) is considered
a message send. Why the parser allows this kind of declaration becomes more apparent as
we continue the evaluation process.

ProcessEvalThread initializes the continuation stack with the bottom frame (CFEnd)
and the top node of parse-tree is evaluated,

topOfStack = new CFEnd(parseTree);

parseTree.eval();

The sequence diagram of the above steps is shown in figure 4.2
A sequence diagram of the following steps is given in figure 4.3. The declaration object

(AGDeclaration) evaluates by propagating the request to the left hand of the declaration.
In our example the message (AGMessage) receives that request. If the left-hand expres-
sion of the declaration is a normal reference, this would result in a normal declaration but
AGMessage treats this differently. It puts a special continuation frame (CFEvalMsgDe-
clReceiver) on top of the continuation stack which evaluates the receiver, that is cloning.
cloning is implemented as a native function. Thus we have,

2Begin is a native function which evaluates a table of expressions.
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Figure 4.2: The initial steps for evaluating the declaration of a cloning method.

AGDeclaration AGMessage
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(cloning)

CFEvalMsgDeclReceiver

new(AGReference)

CFEnd
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getExpression

AGReference
eval
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return value
constructs

setValue(
      AGNative)

Figure 4.3: The evaluation of the cloning attribute in the declaration.

• NATCloning: as subclass of Native, which implements the native function cloning,

• AGNative: representing NATCloning in the native dictionary.

Searching cloning yields the native (AGNative) holding the cloning function.

Since the evaluation stopped, ProcessEvalThread requests the top continuation frame
(CFEvalMsgDeclReceiver) to execute. The application (AGApplication) representing de-
momethod(...arguments..) is required to handle the declaration. However, the application
knows it has to declare a message of the form,

attribute.message(...arguments..)::{...body...}

And it will transform this expression in to the following,

message :: attribute(message(...arguments...)::{...body...})

In short, the function demomethod is bound to the result of applying the native function
cloning to it. Naturally, cloning transforms a function into a cloning function. This process
is shown in the sequence diagram in figure 4.4. The final steps of the evaluation are quite
trivial,
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Figure 4.4: The sequence of evaluating the cloning method.

• the application inserts a continuation frame (CFMessageDeclaration) which will bind
the result of the cloning function to the reference demomethod.

• the function cloning asks Native to evaluate the given function implementation.

• Native puts a continuation frame (CF NATEvalUnary) on the stack to evaluate the
function.

• the top continuation frame (CF NATEvalUnary) evaluates the function, asks cloning
to process the function (into a cloning function) and puts the result on the stack.

• the next (top) continuation frame binds the cloning function to demomethod.

• the remaining bottom continuation frame (CFEnd) signals the end of the evaluation.

• ProcessEvalThread returns the result to the user.

4.9 Summary

In this chapter we have seen an overview of the implementation of the AmbientTalk in-
terpreter in section 4.1. We have identified and elaborated on the hierarchy of abstract
grammar objects in section 4.2, of values in AmbientTalk in section 4.3 and of functions
in 4.4. In the latter we have seen how all functions in AmbientTalk have a common in-
terface AGFunction and every kind of method is a subclass of AGFunction. With a kind
of method, we refer to the different kinds of evaluation semantics. At this moment, the
AmbientTalk has only two kinds, normal methods and cloning methods. In section 4.5 we
have shown that continuation frames define an evaluation order on the grammar objects
and in section 4.6 we explained the implementation of native functions. Native func-
tions are subclasses of a non-grammar object Native. Such a subclass of Native is then
wrapped in the abstract grammar object AGNative which represents native functions in
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the language. Also we have identified thunks. Thunks are small functions which accept
evaluated arguments an return the value of the function they implement. Many native
functions are reduced to thunks. Subsequently, we explained the read-eval-print-loop of
the AmbientTalk interpreter inb section 4.7 and example how the interpreter functions by
observing the interpreter when evaluating a cloning method declaration. We have seen how
the interpreter transforms an expression of the form,

attribute.methodname(...args...)::{...body...}

to an expression of the form,

methodname::attribute(methodname(...args...)::{...body...})

As a consequence, cloning methods are created by applying the native function cloning

to a method declaration.

Now that we have seen the essential elements of AmbientTalk’s interpreter, which play
an important role in the evaluation and declaration of methods with attributes, we can
progress to the implementation of passive mirrors and passive mirror methods. We elab-
orate on the implementation in the following chapter, based on the design proposed in
chapter 3.



Chapter 5

Implementation Of Passive Mirrors

In chapter 2 we have examined preceding research which have led to a set of design prin-
ciples on which we based the design proposed in chapter 3. In chapter 4 we have studied
the interpreter of AmbientTalk and the evaluation semantics of method attributes. We are
ready to implement the proposed design of chapter 3. We begin with the implementation
of the method attribute mirror, which denotes a mirror method, in section 5.1. We explain
how the mirror attribute enables the creation of passive mirror methods. The implemen-
tation of passive mirror methods is discussed in section 5.2 and we show how they generate
passive mirrors. We elaborate on the implementation of a mirrors meta variable in sec-
tion 5.3 and show how we transform meta into a pseudo-variable. In section 5.4 we show
that the metalevel of different language entities, such as fields and methods, can actually
benefit from a similar design. We then apply this common design for the metalevel of each
language construct in the subsections of section 5.4. To fully support the reflective API
as described in chapter 3, we need a more powerful system to search fields or methods in
an object, which we introduce in section 5.5. Finally in section 5.6 we give an overview
of the possible passive mirrors that can be created using passive mirror methods and the
reflective API implemented in this chapter.

5.1 The native function mirror

From section 3.1.2 and the elaboration in section 4.8 we know that mirror methods are
created by applying the native function mirror on a normal method. This transforms the
given method into a mirror method. Since mirror is native, we implement it as a subclass
of Native, called NATMirror. Any native function (or subclass of Native) is called using
apply and the following arguments,

1. arguments: a table of arguments (AmbientTalk elements) passed to this function.
For the native function mirror, it should hold one argument, the method to be
transformed.

2. evalDct: the dictionary in which to evaluate the function. In the case of a mir-
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ror method declaration, this corresponds to the object in which the passive mirror
method is declared.

3. thisDct: the currently active environment. Again, for mirror, this is the object in
which the passive mirror method is declared.

Only one argument is required for mirror, the method that must be transformed. The
method is not yet evaluated when mirror is called; NATMirror must ensure the method’s
evaluation. NATMirror calls Native to evaluate the argument and pass the result to the
thunk THKMirror, which executes the transformation,

public class NATMirror extends Native {

...

public void apply(AGTable arguments, AGDictionary evalDct, AGDictionary thisDct)

throws PicoException, Signal {

Native.evalOneArgument(arguments, THKMirror._instance);

}

...

}

THKMirror, given a method, returns the corresponding passive mirror method using
the following code extract,

if (method.isFunction()) {

return new AGMirrorFun(method.asFunction());

} else if (method.isClosure()) {

return new AGMirrorFun(method.asClosure().getFunction());

} else throw new NativeException(

"mirror expects a function or a closure as argument");

where AGMirrorFun represents a mirror method, as we explain in the following section.

5.2 Implementation of passive mirror methods

Passive mirror methods introduce a new kind of function. We subclass the abstract super-
class of all functions, AGFunctions (cfr. section 4.4), with AGMirrorFun. Normal functions
in AmbientTalk bind their formal parameters to the corresponding actual parameters and
allow declarations of variables and constants. Passive mirror methods differ only in the en-
vironment in which the function is evaluated, namely the mirror. This lends to a decorator
pattern for implementing mirror methods: AGMirrorFun accepts a normal function, adds
some behavior to the apply method before it forwards the call to the function it holds. In
this manner, AGMirrorFun regulates the environment for the normal function it invokes.
The resulting function hierarchy is shown in figure 5.1.
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apply(args,evalDct,thisDct)
AGFunction

AGFunction fun;
apply(args,evalDct,thisDct)

AGMirrorFun
AGFunction fun;
apply(args,evalDct,thisDct)

AGCloningFun
apply(args,evalDct,thisDct)

AGFunImpl

reference

subclasses

Figure 5.1: Passive mirror methods decorate a normal function in AmbientTalk.

A call in the interpreter to the method apply of AGMirrorFun corresponds to a method
invocation of the passive mirror method in AmbientTalk. It requires the following steps,

1. Creating the passive mirror.

2. Evaluating the function arguments, binding them in the mirror. Any required refer-
ences not defined in the mirror should be looked up in its creator.

3. Force the mirror as return value of the mirror method instead of the last result of
the method.

The code from AGMirrorFun.apply for these steps is given below,

// create the mirror

AGDictionary mirror = MirrorFactory.newMirrorFor(creator);

// evaluate the function arguments, bind them in the mirror,

// search in the mirror’s creator: the receiver of the method.

call(arguments, formalParameters, method, mirror, creator, superDct);

// return value of the mirror is always the mirror itself

topOfStack.insert(new CFForceReturn(mirror,

currentDictionary,

thisDictionary,

superDictionary));

Note that in the code we use a mirror factory. This does not correspond to the mirror
factory technique proposed by Bracha and Ungar in [2]. Their approach was built in the
language, while our technique is at the level of the interpreter and our language constructs
are safe.

In the AmbientTalk interpreter, the binding of the actual parameters to the formal
parameters and the evaluation of the body is the responsibility of AGTable.call. This
method’s first step is to extend the current dictionary with a new frame, the function’s en-
vironment. However, in mirror methods we have already created our mirror environment
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and don’t want the environment to be extended1. We implement a new version of this
method as AGMirrorFun.call.

Binding parameters and evaluating the method body is executed by the continuation
frame CFStartBindings. AGMirrorFun.call pushes this continuation on the stack,

topOfStack.poke(new CFStartBindings(

actuals,

formals,

mirror, // without extending the environment!

methodBody,

creator,

supDct,

0));

5.3 Implementation of meta as pseudo-variable

To offer access to the metaobject, we create a fixed reference meta. Section 2.4.1 argues
that only mirrors have access to the meta of their creator; that is, not even the creator
of the mirror has access to meta except through a mirror. We accomplish this control
over meta in two steps. First, we do not define meta in every object. Only mirrors need
access to meta, thus only mirrors receive a reference to meta. They acquire this reference
at creation time, shown in section 3.2. Second, we turn meta into a pseudo-variable and
allow only message sends to meta, as explained below.

Avoiding exposure of meta

Mirrors enable a safe means to expose and operate on the meta-level of an object. We
enforce this mechanism by making meta a pseudo-variable, in accordance to proposed de-
sign of section 2.4.1. Also, we allow only message sends to meta. AmbientTalk offers no
support for such restrictions so we extend the language to treat meta as a keyword.

We change the scanner of AmbientTalk (Scanner) to recognize meta as a keyword and
return the new token Token.MET. We disallow any operation on meta but message sends.
In Parser, we force this by parsing a message send when a meta-token is received. The
code for this operation is given below,

private static AbstractGrammar readOperand() throws ReadException {

switch (_currentToken) {

// added to restrict meta usage to message sends.

case (Token.MET) : { return readMetaInvocation(); }

1If we would, after the evaluation of the method, the extended (function’s) frame would be removed
and all the defined variables and constants with it. This would leave us with an empty mirror.
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... same as before ...

}

}

// added for meta invocations

private static AbstractGrammar readMetaInvocation() throws ReadException {

AGReference meta = new AGReference(TextPool.allocate("meta"));

skip();

switch(_currentToken){

case (Token.PER):{ return readInvocation(readQualification(meta)); }

default: {

throw new ParseException("meta can only accept message sends.");}

}}

This successfully restricts the use of meta to message sends. Also, it avoids that the
meta object can be returned as a value. In fact, it cannot be referenced in any way but
through message sends inside the mirror. This is exactly the kind of safety we desire.

5.4 The family of metaobjects

In chapter 3 we described a whole family of metaobjects. Before describing each of them,
we identify their common structure and consequently their common design.

5.4.1 Parents and their children

While the metafunctions of the metaobjects are special, the metaobjects themselves behave
as normal objects and are used with message sends. We implement meta objects as normal
passive objects. The construction of the metaobjects involves the declaration of many
native functions. To conveniently structure its creation we use a factory pattern [11].
In section 3.2.1 we discussed how to use extension as code-sharing mechanism between
metaobjects of the same kind. We also identified a kind of metaobject for each of the
following entities,

• basic objects,

• fields,

• methods,

• field listeners,

• method listeners.

Each kind of these metaobjects can use the code-sharing technique we described. The
different kinds of metaobjects differ only in the interface they contain. Therefor we write a
common abstract factory class that singles out the instantiation of a kind-specific factory
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class to an initialization method, the method for loading the interface of the metaobject.

We call the abstract superclass MetaFac. It provides the following common interface,

public abstract class MetaFac {

...

abstract protected void initMeta()

throws DictionaryException;

public AGLocalDictionary getSharedMeta()

throws DictionaryException{

...

}

public AGDictionary getNewMeta()

throws GrammarException, DictionaryException{

...

}

public AGLocalDictionary newMetaFor(AbstractGrammar obj)

throws GrammarException, DictionaryException{

...

}

public AbstractGrammar getBaseFrom(AGDictionary meta)

throws DictionaryException{

...

}

}

5.4.2 The meta of objects

The functions in the metaobject operate on a base object. This is the object the metaobject
represents at a metalevel. It offers the following interface,

• field(name,rights): returns a field mirror of the field with name name and with
the permissions rights.

• fields(rights): returns a table of field mirrors with the permissions rights, one
for each field in the base object.

• fields(namepattern, rights): returns a table of field mirrors with the permissions
rights, one for each field in the base object that matches the pattern namepattern.

• method(name,rights): returns a method mirror on the method with name name

and permissions rights.
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• methods(rights): returns a table of method mirrors with the permissions rights,
one for all the methods in the base object.

• methods(namepattern, rights): returns a table of method mirrors with the per-
missions rights, one for each method with a name matching the pattern namepattern.

• before(namepattern,callback): returns a table of listening mirrors with callback
function callback, one for each field with a name matching the pattern namepattern.
The field mirrors are attached to their field, and listen to accesses on the field.

• before(tableofnames, callback): returns a table of listening mirrors with call-
back function callback, one for each name in the table tableofnames. The field
mirrors are attached to their field, and listen to accesses on the field.

• unbefore(tableofmirrors): detaches every listening mirror in the table, tableofmirrors,
that was deployed using before.

• unbefore(mirror): detaches the listening mirror, mirror, that was deployed using
before.

• after(namepattern, callback):returns a table of listening mirrors with callback
function callback, one for each field with a name matching the pattern namepattern.
The field mirrors are attached to their field, and listen to accesses on the field. The
callback is invoked after the field access.

• after(tableofnames, callback):returns a table of listening mirrors with callback
function callback, one for each name in the table tableofnames. The field mirrors
are attached to their field, and listen to accesses on the field.

• unafter(tableofmirrors):detaches every listening mirror in the table, tableofmirrors,
that was deployed using after.

• unafter(mirror):detaches the listening mirror, mirror, that was deployed using
after.

The parameters that can be passed to the callback functions are described below.

5.4.3 The meta of field accesses

The meta of field accesses is rather slim. It offers the following interface,

• access.sender(rights) returns a field mirror on the reference to the sending or
querying object of the field access, with the rights described by rights.

• access.receiver(rights) returns a field mirror on the reference to the receiving
object of the field access, with the rights described by rights.

• access(rights) returns a mirror with access to both the sender and the receiver of
the field access. The permission on the object are set by rights
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5.4.4 The meta of method invocations

The meta of method invocations offers the following interface,

• call().sender(rights) returns a field mirror on the reference to the sender or
querying object of the method invocation, with the rights described by rights.

• call().receiver(rights) returns a field mirror on the reference to the receiving
object of the method invocation, with the rights described by rights.

• call().method(rights) returns a method mirror on the method being invoked,
with the rights described by rights.

• call().args(rights) returns a table of mirrors on the actual arguments of the
method invocation, with the rights for all fields described by rights.

• call().result(rights) returns a field mirror on the result of the method invoca-
tion, with the rights described by rights.

• meta.call(right) returns a mirror offering access to all elements of the invocation
with permissions rights.

5.4.5 The meta of fields

The metaobject of fields holds all the meta-operations for fields. This includes,

• readName() returns the name of the field.

• readField() returns the value of the field.

• writeField(value) sets the value of the field to value

5.4.6 The meta of methods

The metaobject of methods holds the following metafunctions,

• readName() returns the name of the method.

• readParameters(): returns a copy of the parameter table of the method.

• writeParameters(parameterTable): sets the parameter table of the method to
parameterTable.

• readBody() returns a copy of the table of expressions of the method.

• writeBody(newBody) sets the body of the method to newBody.
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5.4.7 The meta of field listeners

• before() attaches the mirror to the field to trigger the callback before evaluating
the field access.

• unbefore() retracts the mirror from the field if registered with before.

• after() attaches the mirror the field to trigger the callback after evaluating the field
access.

• unafter() retracts the mirror from the field if registered with after.

5.4.8 The meta of method listeners

• before() attaches the mirror to the method to trigger the callback before evaluating
the method invocation.

• unbefore() retracts the mirror from the method if registered with before.

• after() attaches the mirror to the method to trigger the callback after evaluating
the method invocation.

• unafter() retracts the mirror from the method if registered with after.

5.5 Filtered searching

The reflective API in section 2.4 describes functions creating mirrors of methods or fields.
While fields can hold any value, from function to integer, a method is always a function.
Note that a field holding a function is actually a method. To find a method, we must not
only check the name of the field but also its value. The search functions in dictionaries
provide only support for name-based searching. We create a new class FilterSearch which
can scan the bindings of dictionaries and store any binding that validates according to a
validation function. The validation function is abstracted using a strategy pattern. Since
a validation function operates on the binding, or field, of an object, we can create different
semantical searches. In our implementation we provided the following,

• fields

• methods

• fields corresponding to a name query

• methods corresponding to a name query

For name queries or name patterns we allow strings with the following syntax,

• a letter in the string represents exactly the same letter,
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• a ? represents any letter,

• a * represents any amount of any letter,

• a . denotes a method attribute. We can write a name pattern on each side of the ..

This allows us to search on fields with name queries as demonstrated below,

meta.fields("var*")

This returns a table of mirrors on all fields with a name that begins with var. Another
example,

meta.methods("mirror.*")

This returns a table of mirrors, one for each mirror method.

5.6 The family of passive mirrors

From the elaboration in section 3.2 we conclude that passive mirrors are normal objects,
except that they hold a reference to the metalevel of their creator. The metalevel of their
creator is represented by the metaobject with a reference to their creator. Thus creating a
mirror is creating an object with a reference to the metaobject of its creator. Some mirrors
have a default implementation while the interface of other depends on the rights granted
for the mirror. We find that different kinds of mirrors differ only in the metaobject they
hold and their interface. Similar to the metaobjects, we create an abstract factory class to
facilitate the implementation of mirrors using factories.

5.6.1 Passive mirrors for objects

Passive mirrors are normal object, except that they keep a share the meta level of their
creator (cfr. section 2.4). We extend the abstract factory for mirrors to return empty
mirrors with only a reference to the meta of their creator. The following code excerpt
shows the method for creating a new mirror,

... in MirrorFactory ...

public static AGDictionary newMirrorFor(AbstractGrammar base)

throws GrammarException, DictionaryException{

AGDictionary mirror = newDictionary();

mirror.addVariable(MetaFactory._textForMeta, MetaFactory.newMetaFor(base));

return mirror;

}

where MetaFactory. textForMeta represents the textual reference used for meta in the
interpreter. We obtain the design shown in figure 3.4. The final step of creating a mirror
is evaluating the mirror method’s body in the context of the mirror, so that variables and
the interface of the mirror can be declared, cfr. section 5.2.
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5.6.2 Field mirrors

In section 2.4.3 we introduced an API to reflect on fields. To protect a fields baselevel and
metalevel, we want to reflect over the field using mirrors, which we call field mirrors. Field
mirror allows operations on the field, through the metalevel, in a controlled way. Possible
operations a field mirror can offer are,

• name(): returns the name of the field.

• read(): returns the value of the field.

• write(value): sets the value of the field to value.

Field mirrors are created using the field mirror factory.

5.6.3 Method mirrors

To reflect on methods, we have introduced a similar mechanism to create a mirror on a
method. We call a mirror on a method a method mirror. Rather than mirroring the binding
of the method, the mirror operates on the method implementation itself. At creation time,
we give the method mirror the following interface,

• name(): returns the name of the function.

• readParameters(): returns a copy of the list of parameters for this function.

• writeParameters(listOfParameters): sets the method’s list of parameters to listOfParameters.

• readBody(): returns a copy of the method’s body.

• writeBody(newBody): sets the method’s body to the closure newBody.

5.6.4 Listening mirrors for fields

We discriminate between two kinds of field listeners, those that apply their callback with
before and those that apply their callback with after. The first kind has the following
interface,

• name(): returns the name of the field they listen on,

• before(): if the callback function is not deployed, it will now deploy the callback to
react before access to the field is made,

• unbefore(): if the callback function is deployed, it is now retracted from the field.

Field listeners created with the meta.after method offer the following interface,

• name(): returns the name of the field they listen on,
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• after(): if the callback function is not deployed, it will now deploy the callback to
react after an access to the field is made,

• unafter(): if the callback function is deployed, it will be retracted from the field.

5.6.5 Listening mirrors for methods

Similar to listening mirrors for fields, we distinguish between the listeners created with
meta.before and the ones created with meta.after. They offer exactly the same interface
as the listening mirrors made with meta.before or meta.after respectively.

5.7 Summary

We implemented the method attribute mirror as a native function which transforms a
method declaration into a mirror method declaration (cfr. section 5.1). We extended the
function hierarchy of AmbientTalk with mirror methods. Mirror methods add some extra
functionality to a normal method and are therefor implemented as a decorator for a normal
method (cfr. section 5.2). Mirror methods create passive mirrors, which keep a reference to
the metalevel of their creator. This reference is not publicly accessible. We have restricted
all access to meta by declaring it as a pseudo-variable in section 5.3. In section 5.4 we
showed that the metalevel of all language elements we reflect on can be represented by
normal objects, although they contain native metafunctions depending on the language
element they represent. subsequently we have defined a new means of searching for fields
and methods in an object in section 5.5. By using a strategy pattern to qualify matching
bindings, we are capable of evaluating matching fields or methods on more than just their
name, for example we showed the use of a name pattern. Finally in section 5.6 we elabo-
rated on the interface a mirror can have for each language element we offer reflection on.

The implementation presented in this chapter realizes the proposed design of chapter 3.
We evaluate the implementation in chapter 8. This completes the metaobject protocol
for the passive layer proposed in this thesis, however this is not necessarily a complete
metaobject protocol. AmbientTalk has other language elements which we have not reified
in the metalevel yet, and offered no mirrors for. We discuss possible extensions of this
metaobject protocol as future work in section 9.2.
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Chapter 6

Design Of Active Mirrors

In this chapter we propose our design for reflection in the active object layer of Ambi-
entTalk [9]. We have seen in section 2.1.2 that the active object layer of AmbientTalk
is populated by actors. We identified the three main characteristics of an actor to be its
behavior, mailboxes and unique thread. In our metaobject protocol we want to reflect
on these elements using the design techniques of mirrors, presented by Bracha and Ungar
in [2], and mirror methods, presented by Tanter in [27].

We begin by identifying the properties of actors on which we reflect in section 8.2. In
section 6.2 we show how we adapt the technique of passive mirror methods from section 3.1
to a similar kind of methods for active objects, called active mirror methods. We continue
with the design of mirrors in the active layer, which we call active mirrors, in section 6.3.
Finally, we describe a reflective API for both structural and behavioral aspects of active
objects in sections 6.4 and 6.5.

6.1 Reflection in the active layer

In section 2.1.2 we explained that the active layer of AmbientTalk is populated by actors
that communicate via asynchronous message passing as opposed to synchronous method
invocation occurring at the passive object layer. Passive objects expose their meta facilities
through passive mirrors. Similarly we want active objects to expose their meta facilities
through active mirrors. Active mirrors follow the same design principles of mirrors, pro-
posed in [2], but exist in the active object layer. This means they are active objects, or
actors. Like passive mirrors for passive mirror methods, active mirrors can only be created
by invoking active mirror methods on an actor. This allows an actor to selectively hand
out different kinds of active mirrors on itself.

We now explore which metafacilities an active mirror can offer by examining the struc-
ture of actors. In section 2.1.2 we have identified the following three characteristics of
actors,

61
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• actors have a unique passive object which defines its behavior

• actors posses four mailboxes for communication purposes and four mailboxes for the
service discovery mechanism

• actors occupy exactly one thread.

When designing the reflective API for actors, it is important that we reify those three
characteristics at the structural and behavioral level. We discuss reflection on each of these
elements in more detail below.

6.1.1 Behavior

The behavior of an actor is defined by a single passive object (cfr. section 2.1). An active
object should be able to offer structural information of its behavior object in the metaobject
protocol. Because the behavior is a passive object, reflection on the behavior can partially
be accomplished in cooperation with passive mirrors. The behavior is, however, relevant
to reflection in the active layer and we need a mechanism to make the behavior accessible
in active mirrors. By exposing the behavior object in the metalevel of an actor, an actor
can offer reflection on its behavior in the mirror.

6.1.2 Mailboxes

An actor contains eight mailboxes, four for communication purposes and four for the ser-
vice discovery mechanism (cfr. section 2.1.2). By keeping a history of their communication,
actors have a reified communication tree. When actors have a joint operation, such a com-
munication tree allows them to recover from, for example, an inconsistent state between
them. Inspecting the communication tree means introspecting the mailboxes. This is a
crucial application of reflection on the mailboxes. In a similar way, reflection on the service
mailboxes allows actors to introspect their own or another’s services. Also, introspection
of service mailboxes may greatly facilitate the service discovery mechanism. For example,
an actor requiring a communication service may place the pattern "communication" in his
requiredbox. When an actor offering "communication" is in the ambient environment,
the requesting actor is notified. But there is a potential problem with this strategy. The
pattern "communication" is a rather vague description which can be interpreted in differ-
ent ways. For example one could offer a communication service over a WiFi or BlueTooth
network. How does the actor requiring a communication service decide which service to
select? At best, he can request a service for each variant of the communication service
and decide which to select when at least one service is connected. It is clear that a unique
name for each of these services could make the program overly complex. Introspection of
an actor’s service mailboxes allows an actor to check and decide dynamically if the target
actor offers an interesting service and place a matching pattern in his requiredbox to
acquire that service.
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In the metalevel of actors, we include a reficiation of the meta of its mailboxes. The
actor can then offer introspection on, for example, what services an actor provides or
requires. Typical operations on the metalevel of mailboxes are,

• introspection of its contents,

• adding or removing messages in communication mailboxes,

• adding or removing patterns in service mailboxes.

We include a reification of the metalevel of mailboxes and the above operations in our
metaobject protocol.

6.1.3 Thread

An actor embodies a unique thread (cfr. section 2.1.2). A reification of the thread at
the metalevel of an actor would offer control over the execution process of an actor. For
example, we could ask the thread to pause, continue or to evaluate a single message. This
can serve as basis to support extensive debugging, for example by forcing a step-by-step
execution of the thread. With a step we refer to a computational step at the actor level, or
the processing of a single message from the inbox of the actor. Consequently, operations
on an actor’s thread at the metalevel should offer,

• pausing the thread,

• continuing the thread,

• evaluating the next message in the inbox of the actor.

We now have identified what elements of an actor we reflect on and which facilities on
these elements we desire. We begin the design of our metaobject protocol in the active
object layer below.

6.2 Active mirror methods

In section 3.1, we show how passive mirror methods allow the creation of passive mirrors in
accordance with extreme encapsulation [4]. Similarly to passive mirrors method for passive
objects, we design active mirror methods for active objects. Active mirror methods create
active mirrors, an active object which has access to the metalevel of its creator. Active
mirror methods allow an actor to expose its metalevel in a controlled way. We discuss
active mirrors in more detail in section 6.3.3. Now we examine how they can be created
using active mirror methods.
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6.2.1 Design of active mirror methods

Active mirror methods are methods (of an actor) with the method attribute amirror.
When such a method is invoked, it creates a new active mirror of the receiver which
contains a reference to the metalevel of the receiver. The body of the method defines the
behavior of the active mirror. In this manner, actors can selectively expose their metalevel
using active mirror methods. This approach resembles passive mirror methods greatly but
there are some important differences,

• an active mirror method does not produce a passive, but an active mirror,

• the active mirror is an actor and must be deployed in the ambient environment
correctly.

Like passive mirror methods, active mirror methods have unique evaluation semantics.
We describe their evaluation procedure as follows,

1. Upon invocation, a new object must be created. This object will become the behavior
object of the active mirror.

2. The behavior object obtains a reference to the meta level of the receiver of the
invocation.

3. The actual parameters of the active mirror method are bound to the formal param-
eters of the active mirror method, in the new behavior object.

4. The method body of the active mirror method is evaluated in the context of the
behavior object. This ensures that variable and method declarations in the method
body are declared in the mirror’s behavior.

5. The behavior object is returned as a result from the mirror method.

6. An actor must be created and deployed with the constructed object as its behavior.

We design active mirror methods as a new kind of functions in the interpreter with these
evaluation semantics. Equivalently to passive mirror methods, active mirror methods wrap
a normal method and extend only the behavior of the method application. We design them
as decorator of a normal method as shown in picture 6.1

6.2.2 The native function amirror

In sections 3.1.1 and 4.8 we have seen how a declaration of the form,

amirror.methodname(...args...)::{...body...}

is transformed to,

methodname:: amirror(methodname(...args...)::{...body...})
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Figure 6.1: An active mirror method wraps a normal method and extends only the behavior
of the method application. Active mirror methods follow the decorator pattern for methods.
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Figure 6.2: The different layers of AmbientTalk objects and their mirrors.

Like mirror for passive mirror methods, amirror is a function which transforms a
normal method into an active mirror method. The function amirror is available to all
actors in the interpreter, so we design amirror as a native function and place it in the
native dictionary of AmbientTalk.

6.3 Active mirrors

Mirrors operate on the same level as their creators. Passive mirrors are deployed in the
passive object layer and likewise we deploy active mirrors in the active object layer of
AmbientTalk. This gives us the conceptual representation of the different layers and their
corresponding mirrors in figure 6.2

Active mirrors are in effect normal actors in AmbientTalk, except that they contain a
reference to the metalevel of their creator, called the meta actor. The key elements of our
active mirror design are the reference to the meta actor and the active mirrors holding this
reference. We discuss each element in detail below.

6.3.1 The metaobject of actors

The metaobejct of an actor offers the interface to operate on the actor at its metalevel. In
section 8.2 we have explained the metalevel of an actor includes its behavior, mailboxes and
thread. On each of these elements, the metaobject protocol should offer operations. But
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where should the operations on the metalevel be executed? The behavior and mailboxes
are passive objects in the actor. In correspondence with the encapsulation principle, these
may only be accessible in the context of the actor to which they belong [6]. Furthermore,
an actor embodies a thread which exists only in the context of the actor. We conclude that
the operations on the metalevel of an actor are evaluated within the context (and thread)
of the actor itself. We explain two possible approaches to achieve this,

1. We create the metaobject of the actor in the context of its mirror and the metaobject
keeps a reference to the base actor. This design is similar to the design for metaobjects
in the passive object layer and looks attractive at first but there is a problem with this
approach. The base actor is a different actor than the active mirror. All operations
provided by the metaobject correspond to a metaoperation on the base actor. These
functions must communicate asynchronously with the base actor, operate on the
metalevel in the context of the base actor, and return the result to the mirror. This
forces us to implement futures at the level of the interpreter. Furthermore, each
function offered by the metaobject must regulate its communication with the base
actor. If several operations on the metalevel must be performed sequentially, the
active mirror waits between each operation for the previous to complete and return
a result. This can cause a time and communication overhead.

2. We create the metaobject in the context of the actor. Functions offered by the
metaobject of the actor operate on the metalevel of the local actor. But then, an
active mirror must communicate asynchronously with the metaobject of the actor.
When a series of operations must be performed, the mirror can send a block of code
in the form of a function to the metalevel of the base actor. The base actor can then
evaluate this function in its meta context. If the mirror desires a result, it can attach
a statement to send a message to itself with the desired result.

We have opted for the second approach for its simplicity and to avoid problems like
time and communication overhead. We allow mirrors to send codeblocks in the form of
functions to the metalevel of the base actors. They are evaluated in a context with access
to the metalevel of the actor. The code blocks a mirror can create depends on its behav-
ior, and its behavior is described by the base actor in the mirror method. This preserves
extreme encapsulation.

In our design, we make a distinction between the metalevel of the actor inside the actor
and access to this metalevel inside the mirror. This is accomplished with two different
metaobjects. The first metaobject represents the metalevel of the actor in the context
of the actor. It is a passive object that offers operations on the actor at its metalevel.
An active mirror can refer to this metaobject in the code blocks using meta. The second
metaobject is an actor reference. It refers to the metalevel of an actor inside the context
of the actor; that is the context in which the first metaobject is accessible. Mirrors gain a
unique reference to this metalevel, named metaActor.
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6.3.2 The metaActor pseudo-variable

Active mirrors hold a reference to the meta of their creator, named metaActor. Equiva-
lently to passive mirrors, we enforce active mirrors as a reflection mechanism by limiting the
use of metaActor to (asynchronous) message sends. We accomplish this with the following
steps,

1. We transform metaActor into a pseudo-variable.

2. We allow only asynchronous message sends to metaActor.

3. Only active mirrors obtain a reference to metaActor.

Note that message sends to metaActor are asynchronous. This is because active mirrors
are independent active objects, just like their creator.

6.3.3 Design of active mirrors

Active mirrors are, in the first place, active objects. They differ from normal actors in the
sense that they are created by active mirror methods and have access to the metalevel of
their creator. A conceptual representation of the relation between an active mirror and its
creator is shown in figure 6.3.

In section 6.3.1 we explained that the metaobject of an actor is actually local to the
actor. We show this in figure 6.4. An active mirror does not hold a reference to the
metaobject, but accesses it through the meta actor. The meta actor keeps a reference to
the metaobject of the base actor. The UML diagram in figure 6.5 shows this relation.

In this way, the active mirror can execute operations at the metalevel of an actor.

6.4 Structural reflection for actors

We now describe the metalevel facilities we offer for each element of the actor.
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Figure 6.5: The meta actor is an environment wrapped around the base actor.

6.4.1 Behavior mirrors

The behavior of an actor is described by a unique passive object. We can access this
behavior object in the metalevel of the actor using the following operation,

meta.behavior()

Unlike most meta functionalities, we do not return a mirror here but the behavior object
itself. Because the behavior is a passive object, it can only be used with its public interface.
Further reflection on the object can be offered using passive mirrors and passive mirror
methods in the object itself.

6.4.2 Mailbox mirrors

Mailboxes of actors are first-class citizens of the AmbientTalk interpreter. All eight mail-
boxes are instances of the same class in Java. This means that we can offer the same
metaobject to operate on all mailboxes of the actor. Mailboxes can be obtained in the
metalevel of the actor using the following command,

meta.getMailbox(name,rights)

This returns a mirror on the mailbox, name, with the rights policy denoted by rights.
The name can be any of inbox, rcvbox, outbox, sentbox, providedbox, requiredbox,
joinedbox or disjoinedbox.

The rights policy can be any of the following,

• meta.read : allows to introspect the contents of the mailbox

• meta.add : allows to add messages or patterns to the mailbox

• meta.delete : allows to remove messages or patterns from the mailbox.

• meta.modify : allows to modify messages or patterns from the mailbox.

Messages can be added using the command,
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mailboxMirror.addMessage(sender, method, arguments)

which adds the message to execute method with the arguments denoted by arguments.
For service mailboxes we can add patterns using,

mailboxMirror.addPattern(actor, pattern)

6.4.3 Message mirrors

Reflection on a mailbox never returns a message itself. It returns a mirror on the message,
which has access to the message on its metalevel. The metalevel of a message offers the
following methods,

• getReceiver(): returns the receiver of the message,

• getSender(): returns the sender of the message,

• setSender(actor): sets the sender of the message,

• getMessage(): returns the name of the method the message will execute,

• setMessage(method): sets the name of the command the message will execute,

• getArguments(): returns the table of arguments from the message,

• setArguments(arguments: sets the table of arguments from the message

6.4.4 Thread mirror

A mirror on the thread of an actor can be obtained using the command,

meta.getThread()

We not include a policy for thread manipulation. This is because the operations on the
thread are limited to the essential operations such as pausing and continuing the actor’s
thread. The interface of a thread’s mirror offers the following,

• pause(): pauses the current actor. Only messages to the metalevel of the actor are
still processed. This guarantees that mirrors will still be able to tell the actor to
continue its normal execution.

• eval(): if paused, this operation enables a mirror to eval the next message in the
actor’s inbox. This is required for step-by-step execution

• continue(): This command will tell the actor to continue its normal execution.
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6.5 Behavioral reflection for actors

Behavioral reflection on the actor can be accomplished in two ways, by introspecting its
behavior object or by listening to actions on its mirrors. Listening to actions on the actor’s
behavior object is done with the passive mirrors techniques from chapter 3. We now explain
how we can listen to actions on the mailboxes.

6.5.1 Behavioral reflection on mailboxes

We distinguish two kinds of actions, the addition of a message or pattern to the mailbox
and the removal of a message or pattern from the mailbox. We offer the following interface,

• onAddition(mailbox, callback): returns a listening mirror that will trigger the
callback function callback when an item is added to the mailbox.

• onRemoval(mailbox, callback): returns a listening mirror that will trigger the
callback function callback when an item is removed from the mailbox.

The interface of listening mirrors on mailboxes is similar to listening mirrors on fields
and methods. They offer the following interface,

• name(): returns the name of the mailbox they listen on,

• start(): if the listening mirror is not deployed, it will now be attached to listen to
actions on the mailbox,

• stop(): if the listening mirror is deployed, it will now be retracted from the mailbox.

6.6 Summary

In this chapter we explained reflection on active objects in AmbientTalk. Active objects
have three prime characteristics on which we reflect, their behavior, their mailboxes and
their thread. At the metalevel of actors, we reify those three characteristics. To properly
structure the reflection without breaching extreme encapsulation we proposed active mir-
ror methods to create active mirrors (cfr. section 6.2). Like passive mirror methods, active
mirror methods are a decorator of a normal method. In the interpreter, an active mirror
method is created using the native function amiror which transforms a normal method into
an active mirror method. Active mirror methods allow the construction of active mirrors
in a controlled way. Active mirrors are actors which have access to the metalevel of their
creator. However, unlike passive mirrors, active mirrors can not posses a direct reference
to the metalevel of an actor as this would be in violation with extreme encapsulation.
As a workaround we store the metalevel of an actor in the actor itself. An active mirror
is then given unique access to this metalevel through a reference called the meta actor,
denoted metaActor. The metaActor lets an active mirror execute code blocks in the form
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of functions at the metalevel of its creator asynchronously (cfr. section 6.3). The kind of
functions it can execute is entirely dependent on its behavior and thus the creator’s mirror
method. This solution preserves extreme encapsulation. Other than their unique access to
their creator’s metalevel, active mirrors are considered normal active objects.

In sections 6.4 and 6.5 we elaborated on the metaobjects corresponding to each ele-
ment of an actor we made accessible in the metalevel. This includes the actor’s behavior,
mailboxes and thread. We concluded that each metaobject offers a unique set of meta-
functions. Also, for each element of the actor we defined a systematic way to constructs
mirrors for the element. This allows us to expose the metalevel of an actor’s characteristics
in a controlled way. We now continue and explain the implementation of the reflective API
we have proposed in this chapter.



Chapter 7

Implementation Of Active Mirrors

In chapter 6 we have presented a design for reflection on actors based on active mirrors
and active mirror methods. In this chapter we elaborate on the implementation of the
designed. We start with the native function amirror in section 7.1, and explain how it
actually transforms an implemented method into and implemented active mirror method
from section 7.2. We show how we restrict access to the meta actor reference in section 7.3.
In section 7.4 we elaborate on the metaobjects for actors, their behavior, their mailboxes
and their threads. Finally, in section 7.5, we explain the implementation of the different
mirrors, active or passive, we created to safely expose the metaobjects of section 7.4.

7.1 The native function amirror

When an active mirror method is declared, the native function amirror is called to trans-
form the declared method into an active mirror method. We explain the implementation
of the active mirror method in section 7.2. Now we explain how they are created using the
operation amirror. Since amirror is available to all actors, it is stored as a native function
in the native dictionary of AmbientTalk. We implement it as a subclass of Native called
NATAMiror. It is invoked at the level of the interpreter with the method apply and the
following arguments,

1. arguments: a table of arguments passed to the function. In the case of amirror this
contains one argument, the method to be transformed into an active mirror method.

2. evalDct: the evaluation dictionary of the arguments. For amirror it contains the
actor’s behavior object.

3. thisDct: the current active environment. Again, this is the actor’s behavior object
for the function amirror.

The only argument amirror requires is the method that must be transformed into an
active mirror method. Firstly, this method must be evaluated, so NATAMirror asks Native
to evaluate the method and send the result to the thunk THKAMiror,
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public class NATAMirror extends Native {

...

public void apply(AGTable arguments, AGDictionary evalDct, AGDictionary thisDct)

throws PicoException, Signal {

Native.evalOneArgument(arguments, THKAMirror._instance);

}

...

}

THKAMirror, given the method, transforms it into an active mirror method as follows,

if (method.isFunction()) {

return new AGAMirrorFun(method.asFunction());

} else if (arg.isClosure()) {

return new AGAMirrorFun(method.asClosure().getFunction());

} else {

throw new NativeException("active mirror expects

a function or a closure as argument");

}

where AGAMirrorFun represents an active mirror method as explained below.

7.2 Implementation of the active mirror methods

Active mirror methods are a new kind of functions in AmbientTalk. They have a unique
evaluation semantics, so that they create active mirrors. Consequently, we implement them
in a new class named AGAMirrorFun which we make a subclass of AGFunction, the abstract
superclass for all functions in AmbientTalk. In section 6.2.1 we have shown the different
steps of the evaluation semantics of an active mirror. Active mirror methods differ from
normal methods in the environment in which the method body is evaluated, namely the
behavior object of the active mirror. Next, they are responsible for creating an actor with
the behavior object created by the method. They can be seen as decorators of normal
methods as we see in picture 7.1.

Invoking an active mirror method requires the following steps,

1. Creating the behavior object of the active mirror.

2. Evaluating the function arguments, binding them to the formal parameters in the
behavior.

3. Evaluating the method body in the behavior, allowing the declaration of methods
and variables.

4. Adding the metaActor reference.
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apply(args,evalDct,thisDct)
AGFunction

AGFunction fun;
apply(args,evalDct,thisDct)

AGMirrorFun

AGFunction fun;
apply(args,evalDct,thisDct)

AGCloningFun

apply(args,evalDct,thisDct)
AGFunImpl

reference

subclasses

AGFunction fun;
apply(args,evalDct,thisDct)

AGAMirrorFun

Figure 7.1: Active mirror methods are decorators of a normal AmbientTalk function.

5. Creating an actor with the behavior object, the actual active mirror.

6. Returning the active mirror as result from the function.

This is accomplished with the following code excerpt from AGAMirrorFun.apply,

// create a new (behavior) object

AGDictionary behavior = new AGLocalDictionary(rootDictionary);

// evaluate the function and its arguments, bind them in the mirror,

// search in the mirror’s creator: the receiver of the method.

call(arguments, formalParameters, method, behavior, receiver, supDct);

// add reference to metaActor

behavior.addVariable("metaActor",metaActor);

// initialize the actor

AGActor amirror = new AGActor(behavior, Device.DEVICE, true);

amirror.initializeActor(true);

// return the actor

topOfStack.insert(new CFForceReturn(amirror,

currentDictionary,

thisDictionary,

superDictionary));

Similar to passive mirror methods, calling the function in the behavior object does not
require the environment to be extended. We use the same call function used for passive
mirror methods.

7.3 Implementation of metaActor as pseudo-variable

To give an active mirror access to the metalevel of its creator we give it a fixed reference
named metaActor. Similar to meta for passive mirrors, we want to avoid exposure of this
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reference and limit the use of metaActor to (asynchronous) message sends. As with meta

we change Scanner to recognize metaActor as a keyword and we modify Parser to allow
only message sends.

The variable metaActor needs some additional computation. Message sends to metaActor
have to be translated to message sends to the metalevel of the mirror’s creator. We accom-
plish this by regarding message sends to metaActor as meta message sends. Meta message
sends are processed differently in the interpreter,

• when evaluated in the interpreter, they operate in the metalevel of the actor, rather
than the actor’s behavior,

• they get priority over normal messages in the inbox of the actor.

A normal actor message is processed using the native function execute. For meta
messages, we need a different function, which we name executeMeta. executeMeta changes
the environment of the application to the metalevel of the actor and then executes the
message as normal.

7.4 The familiy of metaobjects for actors

In chapter 6 we have identified the objects on which we reflect in the active layer of
AmbientTalk. We distinguish three different kinds of metaobjects,

• the meta actor

• the behavior of an actor

• the metaobject for mailboxes and threads

Metaobjects for mailboxes and threads only differ in their interface, so we can reuse the
factory pattern from the passive layer for metaobjects. The metalevel of the actor and its
behavior require a different approach. Reflection on the behavior object of an actor is done
using passive mirror methods and passive mirrors. This allows an actor to fully control the
reflective facilities offered on its behavior. The metalevel of the actor is discussed below.

7.4.1 The meta of an actor

The meta of the actor is accessed by an active mirror using the reference metActor. This
reference enables the mirror to invoke reflective operations on its creator. In chapter 6
we discussed that active mirrors invoke such operations using code blocks in the form of
functions which they can send to the metalevel of the actor. For this, we include the
function metaActor#eval(codeblock) in the metaActor reference. Code blocks executed
with this method are evaluated in a context with access to the metalevel of the actor. This
metalevel offers,
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• getMailbox(name, rights): returns a mirror on the mailbox with name name and
the given rights as a policy,

• getBehavior() returns the behavior object,

• getThread() returns a mirror on the thread of the actor.

7.4.2 The meta of mailboxes

At the metalevel mailboxes offer the following operations,

• getMessages(): returns a table of mirrors to the messages from the mailbox,

• addMessage(sender, message, arguments): adds the message to the mailbox,

• removeMessage(message): removes the message from the mailbox.

7.4.3 The meta of threads

Metaobjects for threads have the following interface,

• pause(): pauses the current actor. It will only execute messages at the metalevel.

• continue(): continues the normal execution of the actor.

• eval(): will force the evaluation of a single message from the inbox of an actor, even
if the actor’s thread is paused.

7.5 The familiy of mirrors for actors

Active mirrors have an interface determined by their active mirror method and their con-
struction has been explained in section 7.2. For mailboxes and threads, mirrors have an
interface that depends on the rights policy given to them. We can reuse the technique of
a mirror factory, which we used in the passive layer for objects, fields and methods. The
only specification left for mirrors on mailboxes and threads is their interface which we have
discussed in section 6.4.

7.6 Summary

We have implemented the native function amirror which can be used as method attribute
to transform a declared method into an active mirror method in section 7.1. To support
active mirror methods, we have extended the current function hierarchy in AmbientTalk
with AGAMirrorFun in section 7.2. Upon invocation, active mirror methods create special
actors called active mirrors. Active mirrors have a reference to the metalevel of their
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creator named metaActor. We limited the use of metaActor to asynchronous message
sends in section 7.3. In section 7.4 we elaborated on the different metafacilities for each
element we reflect on in the active object layer. In section 7.5 we explained how we reused
the techniques for reflection in the passive layer to implement the different kind of mirrors
we can make for reflection in the active object layer.

Now that we have discussed the full implementation of our metaobject protocol, we
are ready to evaluate it. We do this in chapter 8 and we draw our conclusion which we
formulate in chapter 9.



Part IV

Conclusions And Future Work
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Chapter 8

Evaluation Of The MOP

We now put our implementation to the test. We show the functionality of our metaobject
protocol with some examples.

8.1 Reflection in the passive layer

In the passive layer we can now reflect on the structure of passive objects, as shown in this
example,

helloObject:object{

string: null;

mirror.reflect()::{

show(contents)::{display(contents.getValue())};

stop()::{listener.unafter()};

start()::{listener.after()};

listener:=meta.after("string",show(meta.access(read));

};

init()::{reflect(); string:="Hello World"};

init()

}

// --> "Hello World"

Upon construction, the object will call the method init() on itself. This triggers the
construction of a passive mirror whom on creation attaches a listening mirror to the field
string. Then the original object continues and sets its internal variable string to Hello

World. This triggers the newly placed listener and will print out the value of string.
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8.2 Reflection in the active layer

With the reflection in the active object layer, and the ability to passively attach listeners,
we can create a logging mirror. First we construct a passive mirror method for the logging,
then we construct an active mirror method to safely expose the passive mirror method to
the active mirrors. Our code looks something like this,

anActor::actor({

mirror.logg()::{

on(action(name, args))::{

meta.before("*", action(meta.call().method(read),

meta.call().arguments(read)));

}}

....

amirror.logger(){

remoteAction(name, args)::{

thisActor#showAction(name,args)}

showAction(name, args)::{display("invoking ",name, " with ", args)};

metaActor#eval({

meta.behavior().logg().on(remoteAction)});

}});

8.3 A remote debugger

We can, quite easily, build a remote debugger. The debugger can pause the actor, and
order a step by step execution of the messages in its inbox. An example code for such a
program is given below,

anActor::actor({

... operations ...

amirror.makeDebugger()::{

pause()::{metaActor#eval({meta.thread().pause()})};

continue()::{metaActor#eval({meta.thread().continue()})};

step()::{metaActor#eval({meta.thread().eval()})};

showNextStep()::{metaActor#eval({

mbox: meta.getMailbox("inbox",meta.read);

thisMirror.printout(mbox.getMessages()[0]);

})};

printout(step)::{display(step.getMessage(),step.getArguments())}}

....
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});

The debugger has an interface of four methods, pause(), continue(), step() and
showNextStep(). With these operations the debugger can introspect every step, using
shotNextStep() and control the thread execution using pause(), continue() and step().

Our program examples have shown the basic functionality offered by our metaobject
protocol. Based on that, and the design discussions from chapters 3 and 6 we can formulate
our conclusions in the following chapter.



Chapter 9

Conclusions And Future Work

Based on the evaluation of our metaobject protocol in chapter 8 we can now formulate
our conclusions in section 9.1. Then, in section 9.2 we discuss continuations on the design
proposed in this thesis. We identify which parts the metaobject protocol presented did not
cover but are of interest in a complete reflective protocol. Also, we discuss some research
topics that may benefit from the approach presented in this thesis.

9.1 Conclusions

We have designed and implemented a metaobject protocol for AmbientTalk [9] based on de-
sign techniques presented in preceding research from chapter 2. In section 2.3 we discussed
a design technique for reflective API’s called mirrors, introduced by Bracha and Ungar
in [2]. The benefits of mirrors can be summarized to three design principles, encapsula-
tion, stratification and ontological correspondence. While these are desirable properties, as
explained in section 2.3, the design proposed by Bracha and Ungar is in violation with the
extreme encapsulation from De Meuter, introduced in [4]. In section 2.4, we elaborate on a
proposal by Tanter from [27] to reconcile extreme encapsulation in mirror based reflection,
using mirror methods. The proposal from Tanter sacrifices a part of encapsulation to re-
store extreme encapsulation in mirror based reflection for ChitChat [4]. In chapters 3 and 6
we transmuted the design technique proposed by Tanter to AmbientTalk. We proposed to
reflect on the following language elements,

• passive objects,

• fields of passive objects,

• methods of passive objects,

• the behavior of passive objects, that is, by listening to language events on its mem-
bers,

• active objects,
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• mailboxes of active objects,

• the behavior object of active objects,

• the thread of active objects,

• messages between active objects

For each of the above language elements we have defined a metaobject which represents
the element at the metalevel and offers operations on the element at the metalevel. To
expose the metalevel in a controlled way for each of these metaobjects, we created mirrors.
Passive objects, fields, methods, behavioral reflection, mailboxes, messages and threads
were mirrored with a passive mirror. A passive mirror is a passive object with a reference
to the metalevel of the object it mirrors. Active objects were mirrored with active mirrors.
Active mirrors are active objects who keep a reference to the meta actor of the actor they
mirror. The reference to the meta actor allows active mirrors to execute operations on the
metalevel of the base actor. These operations on the metalevel of an actor are executed
locally (cfr. section 6.3).
A crucial part of our design was to create mirrors in a controlled way, to preserve extreme
encapsulation. For this we used the technique of mirror methods, proposed by Tanter
in [27]. To incorporate the double object layer of AmbientTalk, we defined seperate kinds
of mirror methods, one for passive objects named passive mirror methods and one for active
objects named active mirror methods. We showed in sections 3.1 and 6.2 that following
this technique, we preserved the extreme encapsulation principle. The designs described in
chapters 3 and 6 were implemented and discussed in chapters 5 and 7 respectively. Finally
we evaluated our implementation in chapter 8. We can conclude from our results that our
metaobject protocol successfully offers reflection on the language elements stated above.

We now discuss the benefits of our proposed design. Our reflective API respects the
stratification principle from mirrors. Stratification means that the reflective API can be
loaded and unloaded dynamically depending on the application’s requirements. In our
design, no reflective system is loaded until an object (passive or active) creates a mirror
(passive or active) to offer reflective facilities on itself. If an application uses no reflection,
then in our design no object, passive or active, invokes a passive or active mirror method.
Our reflective API can be neglected fully if an application does not require reflection. This
strengthens the concept of encapsulation. Our design also upholds the ontological cor-
respondence to some degree. Our design offers reflection on most structural elements of
the language as stated above. In temporal correspondence, our metaobject protocol offers
reflection on an object’s (active or passive) behavior. One of the primary goals we have
achieved is that our design upholds the extreme encapsulation principle. We have chosen
to model active mirrors as active objects. The benefit of this approach is that mirrors
have their own thread, own state and life. They can be moved to another ambient host.
The mirror can store meta information collected from the base actor and offer controlled
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reflection on this information to clients of the mirror, independently, or updates its informa-
tion only when needed. This approach has some downsides as well, which we discuss below.

We now elaborate on the downsides of our design and implementation. The encapsu-
lation principle of mirrors is not fully obeyed. To follow this principle would require us
to remove reflection completely from the elements on which we reflect, which is in direct
violation with the extreme encapsulation principle. We have opted to sacrifice a part of en-
capsulation in favor of extreme encapsulation. Our metaobject protocol offers no reflective
API for tables, nor the virtual machine. The structural correspondence is thus incomplete.
On the other hand, our design does offer reflection on most structural elements of our
language as stated above. The behavioral correspondence is not complete either. We have
no behavioral reflection for events on threads, tables or the virtual machine. There is also
no reification of ambient events such as an actor moving from one ambient host to another.
Another downside, and probably the most notable, comes from choosing active mirrors to
be active objects. Active mirrors have their own evaluation thread and must communicate
with their creator asynchronously. This means that there is a time discrepancy between a
mirror and its creator. When pausing an actor’s thread through its mirror, the response
between the mirror and the actor is not immediate. Therefor our active mirrors are not
good candidates for reifying the thread of the actor. A solution to this problem would
be to implement active mirrors inside the actor and make the active mirrors and actors
share the same thread. This, on the other hand has another downside. We must change
the object model of AmbientTalk to some extent. Apart from the reified thread of an
actor, there is little benefit in making a mirror share the thread of its creator. Clients
communicate asynchronously with the mirror, which makes remote control over the thread
asynchronous as well. Furthermore, active mirrors sharing the thread of their creator can
not move independently from their creator. In section 9.2.2 we discuss reflection on the
virtual machine. Within the context of reflection on a virtual machine, it is better to have
active mirrors live independently in the ambient environment.

9.2 Future work

We have completed our implementation and drawn our conclusion. Before we turn the
lights off, we first shed our light on some topics for future work or research that can build
on top of the implementation presented in this thesis.

9.2.1 More reflection on AmbientTalk

The metaobject protocol in this thesis offers structural and behavioral reflection of passive
objects, their fields, their methods, on active objects, their threads, their mailboxes and
their behaviors. However, there are other language elements and constructs in AmbientTalk
which have not been included in the reflection API presented in this dissertation such as
tables. An extension of the metaobject protocol could also provide more low-level facilities
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such as the following,

• A statistics model reifies technical information on an object, such as the amount of
resources it requires or its state in the virtual machine. Especially for active objects,
this may be an interesting feature.

• A distributed environment model reifies the actual location of an object in the ambient
environment.

• A migration model describes how objects may migrate to other hosts. In case of
passive objects, the host may refer to both virtual machines or active objects.

• The lookup strategy of fields and methods in the object could be reified in the met-
alevel. An object could use this to change its lookup behavior (i.e. forbid lookups
in the parent). In section 5.5 we implemented a more flexible lookup strategy than
the native behavior. Offering control over such lookup strategies allows an object
to choose one of the strategies we have implemented (or other ones) as its default
lookup strategy.

There a lot more events one could reflect on. We not claim this list is complete. The
list stated above are but a selection of the topics we considered interesting.

9.2.2 A reflective virtual machine

An interesting topic for future work is reflection on the virtual machine. The current
AmbientTalk interpreter abstracts hardware details such as the type of machine and the
network protocols used by the virtual machine. It has been noted in [18] that applications
may want to access this information inside mobile networks because of the heterogeneity
of software and hardware aspects in such networks. For example an application may wish
to notify the owner of an ambient device of an event. Depending on the hardware charac-
teristics the application may choose to notify the user using a visual notification or a sonic
notification.

But we can go a step further. Imagine we have an extensible virtual machine where we
can extend the virtual machine with a form of plugins. For example, such a plugin may be a
controller for additional hardware such as a WiFi or bluetooth card. The plugin is written
in the native code of the virtual machine. Still, we need to expose these new facilities in
the AmbientTalk layer so that actors may use the new plugin. We need a mechanism to
bring plugin functionality in AmbientTalk. For this we propose a special kind of actors,
named virtual machine actors (VM actors). VM actors are written in AmbientTalk and
bound to a specific virtual machine (or plugin).They can offer services from the plugin in
the virtual machine. In our example of a network card, the new communication service
can he exposed in a VM actor named Comm which has control over the WiFi and Bluetooth
card at its metalevel. It allows actors to communicate with the ambient environment using
either the Bluetooth or WiFi network. At its metalevel, it has facilities that give direct
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Figure 9.1: Exposing VM facilities with VM actors residing at the active object layer.

control over the corresponding hardware. Of course, not all actors should have access
to such metalevel facilities. This is where our proposed design comes into play. Using
active mirror methods in the VM actors, the virtual machine has selective control over
which metafacilities are exposed. In the example of our Comm actor, an active mirror may
offer limited control over the network for normal actors (e.g. a CommUser), while a virtual
machine configuration actor (e.g. VMSetup) can have complete access over the plugin. This
idea is represented in figure 9.1.

We list some of the typical metafacilities of virtual machines we could expose safely
using VM actors and the mirror method-based reflection we proposed in this thesis,

• Hardware/Software profiling: this service reifies all facilities a VM has to its disposal
(hardware or software). Using reflection, an actor may introspect or control the
facilities a VM offers.

• Network profiling: this service reifies the identity, position etc. of the VM in the
network.

• Communication layer: this resembles the comm service we used as an example above.
It may allows control over the connection type (IPX, TCP/IP , ...) or network
protocols like Bluetooth and WiFi.

• Distributed garbage collection: this facility offers actors control over the memory
reclamation of actors.

• Resource management: a service to control the amount of memory and CPU time
used by an actor.

• Discovery protocol: the discovery protocol is currently abstracted from actors. We
could reify this at the metalevel of the VM and offer actors control over it. For exam-
ple an actor may be interested in the frequency with which its required and provided
services are broadcasted. He may increase this frequency for urgent situations or
lower the frequency to, for example, save energy.
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• Message delivery system: this system is also abstracted from the actors. Reification
of this service would allow an actor to chose a suitable delivery policy, ensure quality
of service, etc.

Not all facilities of the virtual machine are comprised in the list above. We investigated
these topics as a point of interest, not with the ambition to offer a complete classification
of a VM’s facilities. Readers interested in a more detailed discussion on the cooperation
between our design and reflection on the virtual machine are referred to [23].
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