
Vrije Universiteit Brussel - Belgium
Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes - France

2007

VR
IJE
UN

IVER
SITEIT BRUSSEL

S
C
IENTIA VINCERE T

EN

EB
RA
S

ECOLE DES MINES DE NANTES

On aspect-oriented concurrent and distributed patterns

A Thesis submitted in partial fulfilment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange)

By: Diego Fernando Rivera Pardo

Promoter: Prof. Theo D’Hondt (Vrije Universiteit Brussel)
Co-Promoter: Mario Südholt ( Ecole des Mines de Nantes )

Co-Promoter: Wim Vanderperren ( Vrije Universiteit Brussel )



2



Abstract

The implementation and maintenance of distributed and concurrent applications are com-
plex tasks. Part of this complexity is introduced by heterogeneous distributed communi-
cation requirements, and the irregular topology context where they are defined and used.
Distributed and concurrent patterns have been proposed to decrease the complexity and
promote reuse of well proven solutions. However, the specification and implementation
of these patterns have not succeed to handle communication and topology complexity re-
quirements, resulting implementations are most of the time scattered around many classes
and modules. This thesis shows how current state of the art technologies for distributed
and concurrent AOP can improve, partially, modularization and reusability of pattern
implementation.

Based on such study we also propose, AWED Prime, an extension to AWED language.
AWED is an AOP language with explicit support for distribution: it provides remote
pointcuts, remote advices, a/synchronous advice execution and statefull aspects. AWED
Prime extends AWED in order to handle topologies and improve previously defined remote
pointcuts, defining predicates between groups and hosts, these predicates can be used at
pointcut or advice level to support communication and topology requirements. The syntax
and semantics are defined, an implementation strategy and two use cases are described to
show how AWED Prime can be used to implement distributed patterns, in particular the
message group feature of the Apache ActiveMQ application.

3



Acknowledgements

For the realization of this master many people have influenced, helped or supported me
in many ways, that is why I would like to thank them all: to my family, they are always
whenever I need them, giving me love, support and good advices, to Luce for giving me
love, inspiration and motivation, my old friends I would not be what I am without you, to
my new friends, this year would not have been the same without you, to Theo D’Hondt
for turning upside down my object oriented world, to Rubby Casallas for her advices
and guidance, to Rob Davies for his support on Apache ActiveMQ, to the people of The
Ecole des Mines de Nantes and the Vrije Universiteit Brussel for sharing their knowledge
and support, specially to Jacques, Mario, Daniel, Wim, Bruno and Peter, last but most
important to God, I am grateful for everything you give me.

4



Contents

1 Introduction 9

2 State of the Art 11
2.1 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Sequential patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Concurrent patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3 Distributed patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.4 AOP and pattern composition . . . . . . . . . . . . . . . . . . . . . 24
2.1.5 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 AOP and distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 Parallel and distributed programming . . . . . . . . . . . . . . . . . 27
2.2.2 Sequential AOP and Frameworks for distribution . . . . . . . . . . 28
2.2.3 Distributed AOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.4 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Pattern Implementation with distributed AOP 37
3.1 Concurrent Pattern implementation . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Synchronization mechanism . . . . . . . . . . . . . . . . . . . . . . 37
3.1.2 One way pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.3 Waiting Guards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.4 Active object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.5 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Distributed Pattern implementation . . . . . . . . . . . . . . . . . . . . . . 45
3.2.1 Model Viewer Controller . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.2 Data Access Object . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.3 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 AWED Prime language 52
4.1 Motivation for AWED language extensions . . . . . . . . . . . . . . . . . . 52

4.1.1 Master Slave pattern . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.2 Publish Subscribe pattern . . . . . . . . . . . . . . . . . . . . . . . 53

5



4.2 Overview of AWED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.1 AWED language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 AWED language implementation, DJAsCo . . . . . . . . . . . . . . 56

4.3 AWED Prime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.3 Overview of AWED Prime implementation . . . . . . . . . . . . . . 64

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 AWED Prime application examples 68
5.1 Master Slave pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Apache ActiveMQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Motivation for distributed AOP and overview of application of AWED
Prime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Conclusions 75

A Current AWED syntax 82

6



List of Figures

2.1 Mutual access in mediator pattern. . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Dependencies and code distribution, mediator pattern. . . . . . . . . . . . 14
2.3 Shared-resource pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Active object OO levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Business delegate pattern architecture. . . . . . . . . . . . . . . . . . . . . 22
2.6 JBoss Cache, architectural pattern [7]. . . . . . . . . . . . . . . . . . . . . 24
2.7 Aspect oriented program architecture example . . . . . . . . . . . . . . . . 27
2.8 Object size after serialization . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.9 Gather, Farmer pattern applied to N-Queens problem. . . . . . . . . . . . 35

3.1 One Way pattern example . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Waiting Guards pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Active Object pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Model Viewer Controller Pattern [5] . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Data Access Object pattern . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Master Slave pattern application. . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Publish Subscribe Pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 AWED aspect example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Group extension class diagram. . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5 Topology extension class diagram . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Master Slave pattern AOP application . . . . . . . . . . . . . . . . . . . . 69
5.2 ActiceMQ queue: Publish Subscribe pattern application. . . . . . . . . . . 71
5.3 Sequence diagram to create a Publisher. . . . . . . . . . . . . . . . . . . . 72

7



8



Chapter 1

Introduction

The implementation and maintenance of distributed and concurrent applications are com-
plex tasks. Part of this complexity is introduced by heterogeneous distributed communi-
cation requirements, and the irregular topology context where they are defined and used.
Distributed and concurrent patterns have been proposed to decrease the complexity and
promote reuse of well proven solutions. However, the specification and implementation
of these patterns have not succeed to handle communication and topology complexity re-
quirements, resulting implementations are most of the time scattered around many classes
and modules. This thesis shows how current state of the art technologies for distributed
and concurrent AOP can improve, partially, modularization and reusability of pattern
implementation.

Based on such study we also propose, AWED Prime, an extension to AWED language.
AWED is an AOP language with explicit support for distribution: it provides remote
pointcuts, remote advices, a/synchronous advice execution and statefull aspects. AWED
Prime extends AWED in order to handle topologies and improve previously defined remote
pointcuts, defining predicates between groups and hosts, these predicates can be used at
pointcut or advice level to support communication and topology requirements. The syntax
and semantics are defined, an implementation strategy and two use cases are described to
show how AWED Prime can be used to implement distributed patterns, in particular the
message group feature of the Apache ActiveMQ application.

Patterns are reusable definition of solutions to common problems , they include the
participants, their interaction, the context in which they have to be used and also the im-
plications of using them. Object Oriented implementation of distributed and concurrent
patterns have proven to be complex, not reusable and not sustainable, because of this, the
implementation of patterns using AOP [19] has been investigated, showing improvement
of reusability, (un)plugability and modularity. Distributed pattern implementations are
complex, because the computation takes place on distributed machines, this distribution
has to be managed by the the programmer, using libraries, sockets or frameworks, among
others, as result of this, implementation of distributed patterns are polluted and scattered

9



with concerns of distribution. Research of how distributed AOP can support the imple-
mentation of concurrent and distributed patterns will state current problems, limitations
and new ways to support them.

Languages extensions to support requirements are common, Jonathan Aldrich proposed
the use of types to enforce architectural structures definition [3], as a result of this propose,
developers gained architectural documentation and validation at language level. AWED
was created as an extention common AOP languages in order to support distributed AOP,
and now we propose the extension of AWED, to promote topology use, better distribution
communication requirements, and better deployment, this extension may result in better
understanding, definition and evolution of application that use concurrent and distributed
patterns. Pattern language support is currently being researched by the Computer Science
department at Ecole des Mines de Nantes, this research [7] has achieved a definition of
a pattern language, the foundation of this language are well known distributed patterns
like gather, farm and pipeline and sequences of patterns, the pointcuts and advices can be
applied to one or many hosts and the sequences of the patterns refers to the synchroniza-
tion of the aspectized patterns. We propose the extension to current AWED language in
order to handle previously defined requirements on the implementation of patterns. This
extension is applied on Active MQ [15], this application uses the Publish Subscribe dis-
tributed pattern, one implementation of that pattern is the Message group feature, its code
is scattered around many classes and packages, and tangled with other functionalities, the
proposed solution of this problem uses the topology management extension to modularize
host communication concern in the aspect.

This document is structured as follows: the current state of the art is documented(Chapter
2), focusing on on the design patterns(section 2.1) and on Distributed Aspect Oriented
languages(section 2.2). Main contributions of this master research are: First, experimen-
tation of distributed aspect oriented language to implement concurrent and distributed
patterns(Chapter3), this experiment was done over AWED’s [8] implementation DJAsCo
[41]; Second, an extension to the current Aspect With Explicit Distribution(AWED) lan-
guage is defined, to overcome the current difficulties encountered on the implementation of
the concurrent and distributed patterns, specially irregular topology and communication
requirements, it is called AWED Prime(Chapter4); Third, overview of how the extension
gives support to the Master Slave and Publish Subscribe pattern implementations, the
last pattern, on Apache ActiveMQ [15] message broker framework(Chapter 5); Finally
conclusions and future work(Chapter 6).

10



Chapter 2

State of the Art

This chapter presents the state of the art on aspect oriented programming support for
pattern implementation, first we consider software patterns. In section 2.1 we present
sequential patterns, concurrent, and distributed definitions and examples of patterns, and
how AOP has been used to implement them. In section 2.2, we present the definition
for distributed AOP, some language approaches and examples of its use and section 3
conclusions on the state of the art.

2.1 Patterns

In this section we present sequential(section 2.1.1), concurrent(section 2.1.2) and dis-
tributed(section 2.1.2) patterns, pattern examples, and how AOP has been used to im-
plement them, results of their implementation and lessons learned.

Design patterns were first thought as civil and architectural design concept by Christo-
pher Alexander [4] . In 1987, Kent Beck and Ward Cunningham experimented with the
idea of applying patterns to programming and presented their results at the OOPSLA
conference in 1987, but it was not until 1995 when The Gang of Four(GoF: Erich Gamma,
Richard Helm, Ralph Johnson and John Vliaaides) in Design patterns [17] that Patterns
really encounter acceptance on the software engineering community. Each Pattern de-
scribes the context where it is applied, it also describes the consequences of using it. In
addition, they must balance, or trade off, a set of opposing forces. The way we describe
patterns must make all these things clear. Clarity of expression makes it easier to see when
and why to use certain pattern, as well as when and why not to use these patterns. All
solutions have costs, and pattern descriptions should state the costs clearly. [37]

Another common definition of design pattern is the reuse of high-quality solutions to
commonly recurring problems. The use of patterns can achieve some of the advantages
like: easier code modification, higher level of thinking, it also improves communication

11



because it establishes a common terminology and discover alternatives to large inheritance
hierarchies [1].

On the other hand, architectural patterns express a fundamental structural organization
or schema for software systems. also they provide a set of predefined subsystems, de-
fine their responsibilities, and include rules and guidelines for organizing the relationships
between them[50].

AOP has been used to implement design and concurrent pattern, this study has encoun-
tered that AOP improves modularity, reusability and in some cases decreases complexity.
The study of AOP implementations on sequential design pattern and concurrent, will
give us an idea of how AOP can be applied and what results we can expect of AOP on
concurrent and distributed patterns. The sequential, concurrent and distributed patterns
are presented on this section, including examples of how AOP has achieve modularity,
reusability and decrease of lines of code in some of them.

2.1.1 Sequential patterns

This section presents the definition of sequential design patterns, AOP study on them and
results, that show how AOP has achieved modularity and reusability on their implemen-
tation.

The Gang of Four(GoF) Design Patterns are the most recognized, they have defined 23
design patterns, those first became popular with the wide acceptance of the book Design
Patterns: Elements of Reusable Object-Oriented Software by the GoF. The GoF design
patterns are grouped into three categories behavioural that are those that are specifically
concerned with communication between objects, creational, that are concerned on class-
creation patterns and object-creational patterns, and finally structural design patterns that
are concerned in Class and Object composition.

Design patterns have encountered opposition for many reasons, but one of the main
reasons is that it does not support any reuse, whenever a pattern is implemented in the
traditional OO way the implementation of this is now inside the base code, it cannot
be reused and the implementation code is now scattered around the base code and if
there is composition of patterns there is also tangling of the implementation code of the
patterns. The mediator pattern is a behavioural pattern, the access of the Mediator class
to its mediated classes are found not only in its implementation but also in the mediated
classes, so there is a bidirectional access that works only in this specific case.

Ex: Mediator pattern aims to solve communication needs, between several objects, they
can differ or be from the same class. In the implementation of the Mediator pattern it is
common to see Classes implementing interfaces that have no relation with its functionality

12



Figure 2.1: Mutual access in mediator pattern.

or declaration, the following code and figure shows one of the possible interface declaration
of the pattern that will be translated to code pollution and bidirectional access as shown
in Figure 2.1.

Some of the problems of design pattern OO implementation are: code pollution; Classes
that implement the pattern specific behaviour, then complexity is increased. Design pat-
terns composition will also create patterns code mix scattered around Classes and finally
the patterns will not be localized or identified, making it harder for code evolution and
maintain.

AOP and sequential patterns

Many design patterns have been used to implement and experiment on how they affect the
reusability and modularization, Jan Hannemann and Gregor Kiczales implemented the 23
GoF design patterns and studied the impact of AOP on them.

The method used by them was to implement the 23 GoF patterns using simple Java and
AspectJ also, in many cases multiple implementations could be done to a single design
pattern, the result of that is that at the end they have done 57 implementations. The
result of this research gives that 74% of design patterns where implemented in a more
modular way, and 52% are reusable using the AOP approach [19] . As an example of
better modularization, the Mediator design pattern, the comparison of the OO and AOP
implementation is showed in Figure 2.2 .

Ex: Mediator pattern, the following code defines a reusable aspect definition of the
mediator protocol, it defines a WeakHashMap data structure to associate a colleague with
its mediator, a definition 100% reusable [19] , now that only the general behaviour is specify
on this protocol.

13



Figure 2.2: Dependencies and code distribution, mediator pattern.

1

3 public abstract aspect MediatorProtocol {
/∗∗

5 ∗ Declares the Colleague role.
∗ Roles are modeled as (empty) interfaces.

7 ∗/
protected interface Colleague { }

9
/∗∗

11 ∗ Declares the <code>Mediator</code> role.
∗ Roles are modeled as (empty) interfaces.

13 ∗/
protected interface Mediator { }

15
/∗∗

17 ∗ Stores the mapping between <i>Colleagues</i>s and <i>
∗ Mediator</i>s. For each <i>Colleague</i>, its <i>Mediator</i>

19 ∗ is stored.
∗/

21 private WeakHashMap mappingColleagueToMediator = new WeakHashMap();

23 /∗∗
∗ Returns the <i>Mediator</i> of

25 ∗ a particular <i>Colleague</i>. Used internally.
∗

27 ∗ @param colleague the <i>Colleague</i> for which to return the mediator
∗ @return the <i>Mediator</i> of the <i>Colleague</i> in question

29 ∗/
private Mediator getMediator(Colleague colleague) {

31 Mediator mediator =
(Mediator) mappingColleagueToMediator.get(colleague);

33 return mediator;
}

35 /∗∗
∗ Sets the <i>Mediator</i> for a <i>Colleague</i>. This is a method

37 ∗ on the pattern aspect, not on any of the participants.
∗

39 ∗ @param colleague the <i>Colleague</i> to set a new <i>Mediator</i> for
∗ @param mediator the new <i>Mediator</i> to set

41 ∗/
public void setMediator(Colleague colleague, Mediator mediator) {

43 mappingColleagueToMediator.put(colleague, mediator);
}

45
/∗∗

47 ∗ Defines what changes on <i>Colleague</i>s cause their <i>Mediator</i>
∗ to be notified

49 ∗
∗ @param colleague the <i>Colleague</i> on which the change occured

51 ∗/
protected abstract pointcut change(Colleague colleague);

53
/∗∗

55 ∗ Call updateObserver to update each observer.
∗/

57

14



after(Colleague c): change(c) {
59 notifyMediator(c, getMediator(c));

}
61 /∗∗

∗ Defines how the <i>Mediator</i> is to be updated when a change
63 ∗ to a <code>Colleague</code> occurs. To be concretized by sub−aspects.

∗
65 ∗ @param c the <i>Colleague</i> on which a change of interest occured

∗ @param m the <i>Mediator</i> to be notified of the change
67 ∗/

protected abstract void notifyMediator(Colleague c, Mediator m);
69 }

The following concrete code of the general definition of the Mediator pattern.

1

3 public aspect MediatorImplementation extends MediatorProtocol {
/∗∗

5 ∗ Assigns the <i>Colleague</i> role to the <code>Button</code>
∗ class. Roles are modeled as (empty) interfaces.

7 ∗/
declare parents: Button implements Colleague;

9 /∗∗
∗ Assigns the <i>Mediator</i> role to the <code>Label</code>

11 ∗ class. Roles are modeled as (empty) interfaces.
∗/

13 declare parents: Label implements Mediator;
/∗∗

15 ∗ Defines what changes on Colleagues cause their <i>Mediator</i> to be
∗ notified (here: Button clicks)

17 ∗
∗ @param cs the colleague on which the change occured

19 ∗/
protected pointcut change(Colleague c):

21 (call(void Button.clicked()) && target(c));

23 /∗∗
∗ Defines how the <i>Mediator</i> is to be updated when a change

25 ∗ to a <i>Colleague</i> occurs. Here, the label’s text is set
∗ depending on which button was clicked. The appropriate button’s label

27 ∗ is also updated.
∗

29 ∗ @param c the colleague on which a change of interest occured
∗ @param m the mediator to be notified of the change

31 ∗/
protected void notifyMediator(Colleague c, Mediator m) {

33 Button button = (Button) c;
Label label = (Label) m;

35 if (button == Main.button1) {
label.setText(”Button1 clicked”);

37 } else if (button == Main.button2) {
label.setText(”Button2 clicked”);

39 }
button.setText(”(Done)”);

41 }
}

The previous code examples are taken from the study made by Jan Hannemann and
Gregor Kiczales [19]. It shows the reusability of the pattern, its aspect definition can be
extended in order to be applied as needed in any other case.

The concrete example of the Mediator pattern has two colleagues: two buttons and
a label that is the mediator, the Mediator aspect has the task to communicate changes
between these buttons and the label, whenever a button is clicked the label changes, the
concrete aspect resolves the needs of this example, but the general Mediator aspect can be
used in any case.

The results of improvements were defined in terms of locality, reusability, dependency
inversion and transparent (un)pluggability. Locality defines how well localized a design

15



pattern implementation is, this is how easy is to find it and how modularized is, the result
showed that 17 of the 23 GoF patterns were localized. Reusability defines if there is the
possibility of using part or all the code for different specific implementation of the design
pattern, the research gave as a result that 12 of the 17 localized GoF patterns were reusable
[19], reusability is achieve by means of defining a global aspect where general behaviour
of the pattern is specified and then a concrete aspect to the specific behaviour where the
concrete case is implemented.

Dependency inversion states that the pattern code depends on the participants and
not the other way around; the result is such that all the dependencies between pattern
and participants were localized at the pattern implementation, now that aspects depend
on the base code and not the other way around, this characteristic is achieved implicitly
by means of AOP specification. On the other hand, (un)plugability establish that there
is no need to have code from the pattern implementation at the base code, in such a way
that it can be added or removed , this was possible on the participants that have did not
have any other responsibility inside the system.

The counterpart of the aspectization of design patterns was studied in Modularizing
Design Patterns with Aspects: A Quantitative Study [18] , they have done a study of
the 23 GoF patterns LOC(Lines of Code), WOC(Weighted Operations per Component)
between other, they have found some interesting results: the use of generic abstract aspect
did not always achieve reusability, they mention the cases for The Flyweight, Command,
CoR, Memento, Prototype, Singleton, those were ranked as reusable in the study made by
Jan Hannemann and Gregor Kiczalest(HK), contrary to defined by HK on this study the
LOC and WOC on the AO implementations were higher than in the OO implementations,
on the other hand, the Memento pattern implementation showed some bad results were
found on the AO implementation like higher complexity in terms of coupling , inheritance
complexity and also more lines of code.

2.1.2 Concurrent patterns

Concurrent programming addresses the following problems: several accesses to resource
from different programs or processes of the same program and partial calculation in several
machines. This section presents the definition of concurrent patterns, AOP study on
them and results that show how AOP has achieved modularity and reusability on their
implementation. The presented examples are: The shared resource pattern, which is one of
the first proposed patterns for concurrency; Active object patterns, a non-trivial pattern;
Waiting guards pattern, widely used.

A concurrent design pattern is a small grouping of tasks and protected units that is useful
in many applications [36]. Whenever someone wants to define a design pattern, there is
the need to express with words the pattern, then translate it to the language specific

16



Figure 2.3: Shared-resource pattern

support for concurrency, diagrams are not good enough to express concurrency due to its
two-dimensional limitation, sequence diagrams in UML do not achieve to express the full
context of the concurrent design pattern, its participants and their collaboration, so in
order to overcome this limitation a mix between the description and figures is used.

Ex: The Shared-Resource pattern [36], this pattern is applicable in all concurrent pro-
grams where multiple tasks or threads need exclusive access to one or more resources,
Figure 2.3 shows this patern.

Participants

• U1 - Un are resource users

• RI - Rm are resources

Interactions

• Ui operates on Rj as indicated by the direction of the arrow. For each resource Rj,
the exclusive access can be either hidden or public.

• With hidden exclusive access, the operation, Op, contains the critical section where
Rj is manipulated, i.e., each caller Ui has exclusive access to Rj while executing Op.
The exclusive access is then hidden inside Op.

• With public exclusive access,Op0 stands for one operation to acquire exclusive access
to the resource and one to release the exclusive access. An Acquire operation returns
control to Ui with Ui having exclusive access to Rj. The exclusive access now occurs
in Ui. More complex interactions between resource users and resources than Acquire.
Ui may acquire exclusive access to Rj then proceed to acquire Rk before releasing
Rj. This is simultaneous exclusive access.

17



The Results show that when implementing patterns for concurrent programming it is
crucial to have some support to the concurrent operations by the language(as synchronized
in Java) or in other cases libraries(C++), there are also extensions for languages to support
concurrency µ C++ [35] for C++, Concurrent Smalltalk [49] for Smalltalk [38] , so it is true
to admit that even when the design patterns are defined as text and meta algorithms their
implementations are dependant to the language chosen and their support for concurrency.
Concurrent programming is not only dependant to the context of the language or the
libraries available, but its code implementation is scattered around the objects that need
to have this concurrent behaviour. [36]

AOP and concurrent patterns

Concurrent programming has been relegated to experts [12] due to its complexity, the con-
currency concern is not an object-oriented composition, then the implementation of con-
current patterns also suffer from the code tangling and scattering phenomena [23]. AOP
was proposed to achieve modularization of cross-cutting concerns. On the other hand
design patterns in concurrent programming were defined in order of reuse practices that
have proven to achieve some improvement on the code in terms of flexibility, but in many
cases they increase complexity and make the understanding more complex. Design pat-
tern implementation in concurrent programming is studied in ”Reusable Aspect-Oriented
Implementations of Concurrency Patterns and Mechanisms” [12].

Ex: The Active Object pattern, showed in Figure 2.4 was created to invoke a thread
per every object, the normal implementation was divided into 3 levels.The first lever is
the object that makes the call, the second level is the behaviour that sends the call to the
specific object and on the third level, there is a thread per running object that waits for
the method calls. The aspect oriented implementation of the Active Object pattern moves
the level 2 and 3 to the aspect, so the original method of the running object can be called
as normal, without any pollution of synchronization and with no coupling with the aspect,
so this object is oblivious to the aspect that implements the pattern. The following is the
implementation of this pattern.

public aspect ActiveObjectA extends ActiveObjectProtocol {
2 declare parents :A implements ActiveObject;

}

The implementation of the ActiveObjectProtocol [12] as follows:

1
public privileged abstract aspect ActiveObjectProtocol {

3
protected WeakHashMap<ActiveObject,MQScheduler> hash = new WeakHashMap<ActiveObject,MQScheduler>();

5
protected interface ActiveObject{};

7 declare parents : @concurlib.annotations.ActiveObject ∗ implements ActiveObject;

9 /∗∗
∗ Defined in aspect subclasses

11 ∗/
protected pointcut create(ActiveObject s) : execution(ActiveObject+.new(..)) && this(s);

18



Figure 2.4: Active object OO levels.

13 protected pointcut callMeth(ActiveObject s) : call(public ∗ ActiveObject+.∗(..)) && target(s);

15 /∗∗
∗ Servant thread creation for each object instantiated

17 ∗/
before(ActiveObject s) : create(s){

19 MQScheduler mqs = new MQScheduler(50);
synchronized(this){ hash.put(s, mqs); }

21 (new Thread(mqs)).start();
}

23
/∗∗

25 ∗ Methods that return values
∗/

27 Object around(final ActiveObject s): callMeth(s){
Message ms = new Message();

29 MethodRequest mr = new MethodRequest(new Callable(){
private Object msg = null;

31 public void call(){ msg = proceed(s); }
public Object getValue(){ return msg; }

33 },ms);

35 sendToQueue(mr,s);
return waitForValue(mr, s);

37 }

39 private Object waitForValue(MethodRequest mr, ActiveObject s)
{

41 Object res = null;
try{

43 res = mr.getResult().getValue();
}catch(Throwable t){

45 throw new ConcernRuntimeException(t);
}

47 return res;
}

49
/∗∗

51 ∗ Send to ActivationList through Scheduler
∗/

53 protected synchronized void sendToQueue(MethodRequest mr, ActiveObject s){
hash.get(s).insert(mr);

55 }
}

Level 2 and 3 of the pattern were modularized into the aspect that implements the active
object concurrent pattern, the aspect can be fully reusable just declaring that a class
implements the ActiveObject interface or if the class has the ActiveObject annotation.
So, Modularization is achieved, reusability is also achieved.

19



Ex: Waiting guards pattern, the execution of a method depends on the state of the
object, if a precondition is not satisfied the waiting guards puts the invocation on waiting
until the condition is satisfied, other threads can change the state of the object so the
condition can be achieve or a time-out can be given to the waiting guard. The Waiting
Guard [12] concrete code and general protocol as follows.

2 public aspect aspect name extends WaitingGuardsProtocol {

4 protected pointcut deblockingOperation(Object targetObject) :<pointcut definition>;
protected pointcut blockingOperation(Object targetObject): <pointcut definition>;

6
protected boolean preCondition(Object ob, Object[] args) {

8 return <precondition validity>;
}

10
//and optionally override method getWaitingTime

12 protected long getWaitingTime(){
return <time in milliseconds>;

14 }
}

16

18 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

20 public privileged abstract aspect WaitingGuardsProtocol{
// private boolean blocked = false;

22 protected abstract pointcut deblockingOperations(Object targetObject);
protected abstract pointcut blockingOperations(Object targetObject);

24
protected abstract boolean preCondition(Object ob, Object[] arguments);

26
protected long getWaitingTime(){ return 0; }

28
after(Object targetObject) : deblockingOperations(targetObject) {

30 synchronized(targetObject){
// state.blocked = false;

32 targetObject.notifyAll();
}

34 }

36 before(Object targetObject) : blockingOperations(targetObject){

38 try{
synchronized(targetObject){

40 while(! preCondition(targetObject, thisJoinPoint.getArgs())){
//blocked = true;

42 targetObject.wait(getWaitingTime());
}

44 }
}catch(InterruptedException c){

46 throw new ConcernRuntimeException(c);
}

48 }
}

The modularization of this concurrent implementation is also achieved, there is also
partial reusability, only preconditions, blocking and deblocking conditions must be spec-
ified for the concrete application of this pattern, then reusability is also achieved, the
complexity of dealing with concurrency is moved into the aspect.

Results Some of the results of the study made by Carlos Cunha, Joao Sobral and Miguel
Monteiro [12] are divided into the four following categories:

Modularization is achieved when implementing a single concurrent design pattern, the
complexity is moved to the aspect and located on it, Java language synchronization is
needed to implement these patterns but there could also implemented by aspects that

20



define monitors, semaphores and so on, it could be really interesting if concurrency support
is implemented with aspects.

Annotations can also be used to mark a class, a method or an instance variable in
order to be able to declare that will be applied to more methods, but then there can be
annotation scattering and also tangling.

Composition, concurrent pattern composition was partially done, but more complex
compositions can appear and then it would be fair to state that there would be the same
problems that composing design patterns for sequential programming plus concurrent com-
plexity.

Reusability, the concurrent design pattern implementations made in the Reusable Aspect-
Oriented Implementations of Concurrency Patterns and Mechanisms [12] paper were all
partially reusable, using the methodology of: aspectize a general design pattern implemen-
tation and then an aspect that extends it to achieve the concrete needs.

2.1.3 Distributed patterns

Distributed computing refers to the process in which different computations take place
and run simultaneously on two or more computers that are connected over a network,
then design patterns for distributed programming are definitions of solutions to problems
that occurs on applications that have different computational parts over a network. This
subsection presents two examples of OO distributed patterns and AOP on distributed
patterns. These design patterns have commonly been defined for specific technology by
the research group of an organization let say JavaEE [29] by SUN, CORBA [34] by OMG
or .NET [28] by Microsoft, so it is not hard to find that a defined pattern is dependant of
the technology that uses. Let it be illustrated by two examples: The Busines delegate, a
J2EE pattern, and Distributed Callback, a CORBA pattern.

Ex: Business delegate, Java EE [5] The problem a client needs to have access to business
services, but a tied API specific access will give the client more problems than benefits,
problems like error handling, object binding, API evolution, high coupling from the client
application to the Business service application, there is no caching mechanism and high
network traffic and as a consequence low performance.

The solution, a Business service abstraction is made and renamed Business delegate(BD),
it is in charge of doing the object binding over the network for the Business service, now the
client access the Business delegate, that hides the implementation of the Business service
and as a consequence the evolution has less impact on the client’s side, the business delegate
also intercepts business service exceptions as java.rmi.Remote exceptions and encapsulates

21



Figure 2.5: Business delegate pattern architecture.

them in application level exceptions, that are user friendly to handle. Figure Figure 2.5
shows the architecture of the business delegate pattern.

The benefits, some of the benefits that this pattern introduces are: application level error
handling, object binding over network, lower coupling with Business service and Caching.

Another approach to manage distribution is defined by the Object Management Group in
CORBA [34], the implementation is commonly known as a midleware that communicates
objects definitions in an Interface Definition Language(IDL) between networks and/or
compilers. Because it has been applied many times, there are patterns for this definition
as well, the following is one of them.

Ex: Distributed Callback, CORBA pattern[30] The distributed callback pattern is likely
one of the most widely used patterns in the CORBA Design Patterns book [30] . Using
a callback, a client can request information from the server and continue processing while
the server handles the request. In a normal call the client is reduced to ”busy waiting”
while the server processes the request. To facilitate the callback, the client passes itself
in as one of the arguments in the call. When the server has finished processing it calls
a method on its client reference passing the results to the client. This CORBA design
pattern is one of the simplest ways to achieve a measure of parallel processing in your
distributed object application. This pattern could be seen as a future value for a client,
the distributed version of the future call concurrent pattern.

22



The previous examples have some dependencies on: Frameworks, they give many non-
functional requirements such as caching, persistence, error handling, objects binding among
others, such concerns are often removed from the design pattern because they are given by
the framework, so the definition of a distributed design pattern is more or less the same
than a sequential local design pattern, there is no need to specify or mention the behaviour
that the framework has. Language, in many cases language dependency was found now
that on the specification of a pattern the uses of a language specific functionality was
needed or desired, such as the IDL of the OMG’s CORBA technology, or in some other
cases the problems they intent to solve came out of the technology itself, in example the
Business delegate pattern which between one of the problem that solves there is the error
handling of the EJB [29] classes.

AOP and distributed patterns

Research to support distributed patterns have been done by the computer science depart-
ment of ”L’Ecole de Mines de Nantes”, an approach based on the AWED(Aspect With
Explicit Distribution) language and its implementation the DJasCo language. They define
the concept of invasive patterns, what means that in order to apply one pattern some data
or tasks have to be done before.

This research [7] has achieved a definition of a pattern language, the foundation of this
language are well known distributed patterns like gather, farm and pipeline and sequences
of patterns, the pointcuts and advices can be applied to one or many hosts and the se-
quences of the patterns refers to the synchronization of the aspectized patterns. In that
approach, some advices are executed at source pointcuts first and their synchronization
done before applying a target advice in a target pointcut

The example used in this study was JBoss cache [21], the Cache is done in order to
increase performance in distributed applications, the JBoss Cache framework architecture
can be defined in patterns like pipeline, gather and farmer. JBoss Cache abstract architec-
ture is shown in 2.6, its substructures are: a pipeline pattern for transaction control (whose
parts are represented by the dashed circles) and farm patterns (dotted circles) for repli-
cation actions [7]. Their analysis of the JBoss Cache code showed that the TreeChache
Class(the main class for the Cache concern) has 2802 LOC and 280 of those related to
transactions and 137 LOC of 5099 of package that is related to transaction. The scattered
is later on, modularized in an implementation of this new pattern sequence definition.

Some results of this research are: the definition of the grammar for the pattern language,
the definition of ”invasive patterns”, also with the study done called ”Patterns-based grip
programming with aspects” the evaluation of the language vs the NAS Grid language gave
AWED a better and simpler form of constructing groups of host and running sequences
intentions(Synchronization of aspects). The AWED implementation showed a small over-
head of the performance, but comparing the 93 LOC of AWED against the 3993 of the

23



Figure 2.6: JBoss Cache, architectural pattern [7].

experiment realized and futures optimizations to the AWED language performance, it is
fair to say that AWED is a really good option to start the research of AOP support for
distributed patterns.

2.1.4 AOP and pattern composition

This subsections first presents the problems encountered when composing aspects and then
describes pattern composition on AOP approaches.

When many aspects are applied to a large scale software application, there is need
for composing aspects, this composition can be done by means of precedence, functional
transformations [26] and kernel operators and visibility of structural changes [42] . The
precedence mechanism is one of the most used, because it comes with the AspectJ im-
plementation, in order to use it in AspectJ it is just necessary to declare an aspect that
declares the precedence. The following code exemplifies this case.

1 public aspect Precedences {
declare precedence : Aspect1, Aspect2.Aspect3, Aspect4;

3 }

What means that whenever there is a pointcut collision the aspects are going to be applied
in the defined order. This solution can get us to a circularity problem or to not being able
to express all composition orders, due to just order precedence is going to be applied to all
contexts, limiting the composition.

Functional composition [26], declares that the result of weaving a sequence of aspects
into a program equals the weaving of advice in weaving order into the program, this
approach gives us quantification into unbounded base code, i.e. using wildcard patterns
this approach will still be applicable.

24



On the other hand, some other solution to solve this conflict between aspects was pro-
posed defining kernel operators and the visibility of structural changes [42]. On the first
approach used in Reflex [44], operators are defined in order to deal with the composition of
aspects. In the study done Erick Tanter defines sequence and wrap operators as low level
operators that can be seen as a precedence operator and a cflow mechanism, then, this
mechanism is extended to proceed high level operators that depend upon the execution
context of the program. As an example, he defines a DWrap that is only applied if the
extended Wrap is not active, so it depends on it.

The second approach, visibility of structural changes, describes the code that is viewed
by the cuts, which means that if any changes are done the cuts are still applied by default
to the original code, or in the case of a declarative visibility definition, the visibility of the
code will include the changes made by other aspects.

Whenever multiple patterns have to be related to be implemented there is a pattern
composition, AOP could have some good results on such composition due to locality,
reusability and less dependency inversion of the pattern implementation code. Simon
Dernier, Herv Albin Amiot and Pierre Cointe [13] did a research on this expression and
composition of patterns with aspects.

Their study was based on design properties to evaluate aspectization of design patterns,
locality, decoupling, traceability and understanding [13]. A result on these properties is
”Locality and decoupling promote traceability and evolution and partially easy understand-
ing” [13], meaning that whenever an aspectization of a design pattern can be done without
coupling with the base code and in a localized part, their code is more easily understand
and by means of consequence more easily maintain, traced and evolved.

Problems composing patterns can emerge if there is a strong coupling between patterns
[10]. There are needs for composition configuration, ordering aspects and stronger pointcut
language. The first need will make the aspects dependent on an order, the role of deciding
the order and the constraints to take into account are still need to be defined, the second
need is because of fragile pointcut definition on the AspectJ actual implementation, there
is not enough expressiveness, the expression of the poincut is based on the name of the
classes and methods and not in the functionality where an aspect wants to be inserted.
Other results from composition of design patterns showed that the results from composing
aspectized design patterns depends upon the patterns involved and also the requirements
of the application, It has to be globally reasoned in order to take into account the con-
text of the whole system implementation, its dependencies and the design options when
implementing the design patterns [9].

25



2.1.5 Lessons learned

The full 23 GoF design pattern have been successfully implemented using AOP, the results
from this research depend on the metrics and mechanism used to measure, there are some
differences between results of reusability and base code obliviousness. When implementing
concurrent pattern, the AOP language has to have mechanism to manage the concurrency,
like the java reserved work synchronized or concurrent libraries, but the need for man-
aging the concurrent has to be taken part of the approach, by extending a language or
using a library. On the other hand, the research done using AOP to implement distributed
patterns have shown the benefits of its use. AOP has been research in order to implement
patterns, these implementation have encountered a critical need for pattern composition,
this composition has to take into account dependencies and coupling between patterns.

Looking at the pattern implementations, many of the pattern protocols(the reusable
part of the pattern implementations) are basically aspects that define mechanism to com-
municate the roles of the patterns using interfaces, they also define abstract methods that
are implemented at the application of the aspect that introduces the pattern protocol to
the specific application(this is not reusable), 75% of those ”introductions” are inter type
declaration over objects, so it is proven that those type of declarations support pattern
desinition in an AOP way.

AOP has not been used to implement architectural patterns, neither for patterns defined
by the the technologies presented before, it appears that current research on AOP on
distributed patterns is not enough to measure whether AOP can or not support them, and
if it supports, which support it would be.

2.2 AOP and distribution

This subsection presents AOP, how AOP has been used in frameworks for distribution
and distributed AOP. First AOP is briefly explained, subsection 2.2.1 describes parallel
and distributed programming, it is the distributed AOP context. Section 2.2.2 presents
sequential AOP and frameworks for distribution and section 2.2.3 describes distributed
AOP and current language approaches.

Aspect Oriented Programming(AOP) aims to improve code modularization by doing
separation of concerns, concerns like login, persistence, and security, just to to mention
some. The Figure 2.7 shows one example of how an aspect oriented application could be
structured.

The AOP architecture defined in Figure 2.7 shows in the middle a base OO(object
Oriented) code and two concerns, security(in example authentication) and persistence, the
interception of the OO model and the concern implementation are oblivious from the base
code[23].

26



Figure 2.7: Aspect oriented program architecture example

The base code is intercepted by pointcuts, in other words the pointcuts are localiza-
tions of code or behaviour to be intercepted in order to perform some required concern at
that point(s), the introduced code or behaviour is called advice, this is the implemented
behaviour of the required concern at the pointcut.

2.2.1 Parallel and distributed programming

Parallel programming refers to the application programmed in order to conduct compu-
tation in different processors, this computation can take place into different processor of
a single machine or different machines over a network(Distributed computing). Whether
the computation is done on a single or many machines the program have to take into ac-
count the synchronization between the processors, the communication and the complexity
of handling the computation of different processors or machines.

In order to handle the communication of different machines over a network, there are
several proposes, some of these are: remote method invocation(RMI) and the .NET frame-
work. Because of the need to make remote available objects, there are some performance
implications. A study of performance implications of the implementation of design pattern
using RMI and the counterpart dotnet showed an overhead of up to 40 percent, that study
was made of the implementation of three design patterns over the framework before men-
tioned, the patterns implementred were Facade, Command[17] and Combined Command.

The table of the Figure 2.8 is taken from the paper Performance Implications of Design
Pattern Usage in Distributed Applications Case Studies in J2EE and .NET [17]. The
performance is not only decreased by means of the network delay by also the conversion
and deconversion of the objects in order to made them available over the network.

27



Figure 2.8: Object size after serialization

This overhead of the performance can be reduced using some mechanism of code mobility[2].
Two of these mechanisms are : First mechanism, called code aggregation, encapsulates the
call of many methods into one entity that is transferred into the server or client side of
the application. The second mechanism, called server forwarding [2] , it relies in faster
connections that server to server have. The previous two mechanisms presented have some
problems to solve, the first is found if passing an object that has a large hierarchy it is pos-
sible to introduce overhead instead of solving it and the second problem refers to mutual
calls and object sharing, if the code of a method is optimized to be passed to the server
it is also possible that the server can have the need to call the client, then this kind of
optimization is not applicable.

Those approaches attempt to solve problems of communication overhead due to dis-
tribution, but as stated before there are problems arising from the complexity of syn-
chronizing different computations, for those problems some approaches like libraries and
code generators have been proposed. SkeTo[27] is a C++ library based on constructed
algorithmic(these are algorithmic derived from specification by calculation)[47] [27]. The
previous attempts to deal with some of the numerous obstacles of distributed or parallel
programming can be defined only in a static way, it definitely reduces the complexity by
code generation, but it exposes the programmer to the generated code and relies on the
programmer knowledge in order to include change to improve performance. Nevertheless
the foundations of this approach are used worldwide, a basic conceptual structure used to
solve a complex issue or better know as frameworks.

2.2.2 Sequential AOP and Frameworks for distribution

A software framework is a re-usable design for a software system/subsystem. A software
framework may include support programs, code libraries, a scripting language, or other

28



software to help develop and glue together the different components of a application. This
subsection presents the current impact of AOP in frameworks, how it has been used on
them, how it is integrated with them, JBoss AOP proposal, differences with distributed
AOP and use cases. First case, the IBM Websphere[20] application server is refactored
using AspectJ. Second case, JBoss AOP[22] is an AOP approach that is tightly with JBoss
application server.

JBoss AOP

JBoss application is a J2EE platform for developing and deploying enterprise Java applica-
tions, Web applications, and Portals, it provides server clustering, caching, and persistence.
JBoss AOP[22] is a 100% Pure Java aspected oriented framework usable in any program-
ming environment or as tightly integrated with JBoss application server.

JBoss AOP is not only a framework, but also a prepackaged set of aspects that are applied
via annotations, pointcut expressions, or dynamically at runtime. Some of these include
caching, asynchronous communication, transactions and security. Links between aspects
and pointcuts are defined in extended Markup Language (XML). Aspects are defined in
two flavours, interceptors and normal aspects. The interceptors are aspects with a single
method(advice) called invoke, the normal aspects are defined as a normal class and the
defined methods are the advices, then the link is made from the method of the pointcut
to the method of the aspect. Poincuts are defined in regular expressions of wildcards over
methods, class names and packages. JBoss AOP permits to do hot deployment of aspects,
introductions of interfaces to classes where the behaviour is later implemented in mixing
classes. The Visualization of an aspect is the first code box and the second is the binding
between the aspects and the base code, the concurrent OneWay concurrent pattern
implemented using JBossAOP:

1 public OnewayAspect
{

3 private static class Task implements Runnable
{

5 private MethodInvocation invocation;

7 public Task(MethodInvocation invocation)
{

9 this.invocation = invocation;
}

11
public void run()

13 {
try { invocation.invokeNext(); }

15 catch (Throwable ignore) { }
}

17 }

19 public Object oneway(MethodInvocation invocation) throws Throwable
{

21 MethodInvocation copy = invocation.copy();
Thread t = new Thread(new Task(copy));

23 t.setDaemon(false);
t.start();

25 return null;
}

27 }

1 <aop>
<aspect class=”org.jboss.aspects.OnewayAspect”/>

3 <bind pointcut=”execution(void ∗−>@org.jboss.Oneway(..))”>

29



<advice name=”oneway” aspect=”org.jboss.aspects.OnewayAspect”/>
5 </bind>

</aop>

The previous code shows the way of declaring and binding an aspect, but it leaves outside
the instantiation model of JBoss AOP, it is possible to create a bind between the aspect
and the pointcuts, it is possible to declare instantiation defining the scope of the aspect,
it can be per java virtual machine, per jointpoint and per instance. Even when this AOP
approach is one of the most useful, used and well defined that I could found it still not suffice
the need for distributed AOP, let me explain. First all mechanism previously defined are
applied into the base code in a single machine, even when applied in the JBoss application
server its domain still a local domain, there are no remote pointcuts, no remote advices
and not even the notion of distributed aspects, then it is fair to state that only when those
mechanism are included in the aspect model of JBoss AOP this approach can be included
in the Distributed Aspect Oriented Languages definition, the following subsection presents
some of the distributed AOP language approaches.

Websphere case

One of the biggest use of AOP in a framework was done by Adrian Colyer and Andrew
Clement, the task was to separate the support for Enterprise JavaBeans(EJB) from the
rest of the websphere application server[11], this application contains approximately 15.500
source files and many concerns are implemented, one of them is the EJB container. The
research, first conducted refactoring in the OO way, then the AOP counterpart was also
implemented, the result of this approach was a smaller solution for the AOP approach, but
they also encountered need for visibility of private state or methods to the aspect, then
they could refactored or monitored, this is probably why AspectJ[6] have now privileged
aspects included. The refactoring achieved better modularity but also found problems as
for example using reflection in the EJB container original code would result in an invisible
call for the AspectJ pointcut model.

An interesting result of this large scale refactorization to the websphere framework is
that 74% of the declarations inside the refactorization were inter-type declarations, and
only 26% advice [11]. Each piece of advice affected only a single joinpoint, this is a common
result to the one achieve in the implemetation of sequential design patterns [19] by Jan
Hannemann and Gregor Kiczales.

2.2.3 Distributed AOP

Distributed Aspect Oriented Programming has to take into account three main concepts
[44], distributed cut that describes execution of methods on one or many hosts. Distributed
action, the behaviour could be executed at a remote host, it can be done at the same host
that the cut was match or any other wanted host. Distributed binding : the specification

30



of the binding between the cut and the action of an aspect may be done in any host. The
following language approaches match the previous concepts.

DjCutter [33]

DjCutter is a distributed aspect oriented language, that extends AspectJ [6], it introduces
the concept of host in the pointcuts, this language uses an aspect server in order to run
the advices, it is in this aspect server host where the executions take place, than all the
predefined fields can be accessed by many advices at the aspect server, the hosts pointcut
predicate can define several hosts to match by separating them with commas, there is also
the gethost predicate in order to do reflection of identifier of the matched host, it is also
possible to call aspect’s methods by doing a Casting with a logical name and a the library
of DJCutter.

AWED(Aspects With Explicit Distribution)

AWED was proposed by The Ecole des Mines de Nantes in conjunction with the Vrije
Universiteit Brussel, this language is design to make AOP explicitly distributed not only on
the remote pointcuts but also remote advices and remote aspects. The language can locate
one or many hosts( by grouping them), the execution of the advices can be synchronous or
asynchronous between some other features that will be explained. AWED language is going
to be explained and extended(Chapter 4) for that reason the focus on the implementation
level called DJAsCO on this section.

AWED’s implementation was made over Java Aspects and Components(JAsCo)[41] ,
this last is an aspect oriented programming language, it has a high reusability of aspects
and a strong definition for aspects composition. The reusability is achieved by separating
the implementation of the aspect and the definition of the pointcut, a connector is defined
in order to define where the aspect has to be introduced, it is also possible to define a
method of an aspect as refinable what means that the implementation has to be done on the
connector code, achieving partial reusability of the aspect. On the other hand, combination
strategies or precedence can be used as mechanism to achieve aspect compositions.

AWED and remote pointcuts, pointcuts are evaluated on every host but then pointcuts
conditions filter where pointcuts occur, the filters separate groups, localhost or defines a
specific host. On the pointcuts it is also possible to get information or to pass it to the
matched objects, the pointcuts can be combined using logical operators.
class Logs {

2
hook log {

4
starLog(startmethod(..args1)) {

6 execution(startmethod) && joinpointhost(”LOG”) && executionhost(localhost);
}

8 before {
System.out.println(”logJ: ” +

10 (String) thisJoinPoint.getArgumentsArray()[0]);
}

12 }

31



}

The code before defines a Log aspect that logs(prints out) the first argument of the
matched method on the localhost before the method is executed on the hosts declared to
belong to the LOG group., the following code defines the connector that defines the specific
pointcut case(that matches all methods).

1 static connector LogCon {

3 test.Logs.log hook0 =
new test.Logs.log(∗ ∗.∗(∗));

5
}

The separation of connector and aspects makes also possible to dynamically deploy or
undeploy aspects, this is achieved using the Jutta (Just-in-time combined aspect compila-
tion) system, that is a real time weaver, whenever a new connector is deployed the Jutta
system weaves again the code and the aspects are applied. In other words there is the
possibility of deployment of aspects at run time.

Advices, the advices are those of AspectJ plus some extra needed for distribution. For
example the proceed statement (that continues with the original call) has a counterpart
localproceed that continues with execution on the matched joinpoint host rather than
in the advice host. The advice execution can be also synchronous or asynchronous, giving
the possibility for parallel execution of computation also, so futures can be used also, as
an example an extension of the previous code.

class Logs {
2 @DistributedAdvice (executionType = DistributedAdvice.Type.ASYNCEX)

hook log {
4

starLog(startmethod(..args1)) {
6 call(startmethod) && joinpointhost(localhost);

}
8 around() {

String ilog= ”logJ: ” +
10 (String) thisJoinPoint.getArgumentsArray()[0]);

return localproceed ilog;
12 }

}
14 }

The code showed before returns as String the first argument of the intercepted method
in an asynchronous way, the returned object is updated when the execution of the code in
the joinpoint has finished then the String is returned locally to the executing code

The AWED language benefits from the JAsCo implementation. When several aspects
want to be applied, several advance composition techniques can be applied. For example,
a precedence of aspects or defining combination strategies between aspects.

public class AdminCombinationStrategy implements CombinationStrategy
2 {

private Object validationAspect, loggin;
4

public AdminCombinationStrategy(Object a,Object b) {
6 validationAspect = a;

loggin = b;

32



8 }

10 public HookList validateCombinations(HookList hlist) {

12 if (hlist.contains(loggin)&&!hlist.contains(validationAspect)) {
hlist.remove(loggin);

14 }
return hlist;

16 }
}

static connector ShoppingProccessControl {
2

perobject aspects.Validation.ProductOrder validation =
4 gunew aspects.Validation.ProductOrder(∗ ∗.ShoppingBasket.∗ProductOrder(∗))

{
6 ...

};
8 log.around();

validation.around();
10 logInside.around();

addCombinationStrategy(new AdminCombinationStrategy( validation,logInside));
12 }

This code defines a precedence between the aspects and also a combination strategy,
the first code box defines a combination strategy and the second defines an execution
precedence and then adds the combinationStrategy previously defined. This approach
clearly solves composition of aspects made by one connector and having a completed view
of the aspects and their implication, but there are now problems on the composition of
connectors and/or in aspects deployed in different machines. For example, mutual exclusion
of aspects in different machines could cancel their behaviour.

AWED’s has been applied to mane use cases, I briefly describe two of them, the first
Aspect Oriented Toll System(ATOLL)[31] , the implementation of a charging system for
motorways usage using Global position System(GPS) as the input, the AWED imple-
mentation prove to be more flexible to variability of the implementation and also more
modularized, it managed the distribution using AWED’s distributed definition.

The second case of use was Web Service Management Layer(WSML)[32] , this manager is
in charge of error handling(i.e. need for rollback in an unfinished transaction), performance
optimization(i.e. redirect service calls to avoid bottlenecks) and business evolution(i.e.
new or improved requirements of service). The separation of the clients core system and
web services decrease the dependency, the AWED language was extended with chains of
a/synchronous executed remote advices, in order the composition of Web Services and
error handling. The result of this application of AWED was increase modularization of
crosscutting web services compositions.

ReflexD [44]

ReflexD is an approach by the Universidad de Chile, it is build over Reflex [43] and use
of Remote Consistency Framework to handle the distributed calls. Reflex can be briefly
described as a library for structural and behavioural reflection in Java[44]. It also implies
that changes on metaobjects affect the actual state of the objects that it describes.

33



ReflexD defines a hookset that is in charge of selecting the class type and method to
be intercepted, then a link is used to determine what action to take, this link is used
to associate metaobjects created in ReflexD with the methods matched by the hookset
extended, this last contains the notion of host introduced by a RHost.

public class Logger{
2 public void log (Object aThis , RHost aHost ){

i f ( ”log”.equals(aHost.getProperties().get(”type”)))
4 // log

else
6 // do not log

}
8 }...

10 RHost host = RHosts.get ( ”172.1.2.3:5555”, ”log”);
Link linklog = Links.get( methodOne,

12 new MODefinition.Class( ”ClassA”, new ExecHost(host));
trace.setCall(”Logger” , ”log” , this, Parameter.HOST) ;

The previous code is an example of how to use ReflexD, it creates an aspect Logger
that logs whenever the host of execution is done at the log type host, the last part of
the code creates a alink with the execution of the method methodOne at class ClassA in
host 172.1.2.3:5555 that belongs to the type log. ReflexD permits to define remote cuts by
introducing the Rhost class, it also allows to describe where to make the advice is going
to be executed; ExecHost.THIS, at the link host. ExecHost.APP at the pointcut host or
new ExecHost(host) any arbitrary hosts as showed in the previous example.

Distributed AOP in ReflexD is achieved over the Remote Consistency framework(RCF),
this framework maintains consistency between remote calls and remote objects. The con-
sistent declaration of a class is done by implementing the Consistent interface, then a
Distributed policy has to be declared. The principal components of the RCF are: (1) the
consistency metaobject and (2) the consistency manager. The consistency metaobject is
the one in charge of intercepting the method calls in a consistent object. Once it has taken
the control of the execution, it connects to a consistency manager and through RMI invokes
a method to notify the method call occurrence. The role of the consistency manager is to
be a remote access point to the local host and therefore, a net bridge for notifications of
method calls. Notice that this bridge is bi-directional as each host has its own consistency
manager.

ReflexD was build over Reflex, so it has the open facilities to extend as reflex does,
the openness refers to how ReflexD can be extended o changed in order to introduce
new functionality or improve them. Reflex uses a declarative composition in order to be
extended via a Syntax Definition Formalism(SDF), the new statements can be defined as
also new operators.

Case of use, The N-Queens problem[45] consists in finding the number of ways N queens
can be positioned on a NxN board without attacking each other, the complexity of this
problems is O(nn) making it impossible to solve. The problem was then divided into
subproblems(tasks) performed by workers and the results of those subproblems are joint

34



Figure 2.9: Gather, Farmer pattern applied to N-Queens problem.

by a single manager, this is a composition of the farmer and gather distributed patterns,
the architecture is showed in Figure 2.9 .

The Figure 2.9 describes the necessary steps in order to solve this problem, ReflexD
was used in order to create an independent module to manage the distribution of tasks
in different workers across the network. The RFC of ReflexD is used to manage the
consistency and the communication between the workers and the manager, the result is
a better transparent modularized version of the algorithmic with increased performance
than the sequential counterpart.

2.2.4 Lessons learned

The context of distribution and concurrent programming is more complex than sequential
one, for this reason, frameworks were created in order to manage this complexity, AOP
showed improvements in the implementation of concerns in frameworks also. An aspect
oriented language applied to a framework for distribution is not distributed aspect oriented.
The performance is a critical part of distributed and concurrent programming, it increases
complexity because it has to be inside the implementation of distributed aspect oriented
languages, the management of communication between distributed objects and remote
binding, have to be taken into account, irregular topologies have not been taken into

35



account on any of the distributed AOP approaches.

2.3 Conclusions

AOP has showed improvements of modularization, in sequential and concurrent pattern
implementations. The modularization and reusability of pattern implementations are at
least, partially achieved. On the context of concurrency, the synchronization mechanism
is fundamental, no matter if it comes from the base language of the AOP language, or
from libraries. Composition of patterns is a difficult task, it has to be carefully managed,
in order not to have aspect interference. Distributed AOP has not managed to implement
reusable distributed architectural patterns, neither it has taken into account the irregular
topologies in which they are deployed and used.

The refactorization of large middleware as Websphere, has proven the power of AOP of
solving real life crosscutting concerns. The research done in concurrent and distributed ap-
plication of AOP, has shown improvements to the modularization of crosscutting concerns,
motivating this research to continue.

The result of applying AOP to frameworks for distribution is not distributed AOP. The
complexity of distributed programming is due to communication mechanisms, irregular
topologies, and synchronization of the processes on different machines, so distributed AOP
is proposed to manage at language level previous mention difficulties, then developers are
focused on the business problem and not on the distributed concern. One of the aims
of AOP is to make code more understandable. In order to make distributed patterns
implementation more comprehensible distributed AOP provides support at language level
for those needs. AWED and ReflexD are the languages that manage better distribution
concerns.

36



Chapter 3

Pattern Implementation with
distributed AOP

This chapter presents the implementation of concurrent and distributed patterns using
AWED’s system/implementation DJAsCo, the section 3.1 presents the concurrent pattern
implementations, section 3.2 the distributed pattern implementation and in section 3.3 the
conclusions.

3.1 Concurrent Pattern implementation

Concurrency occurs at the systems where various computational processes execute at
the same time, these processes can be interacting with each other. The concurrent pattens
are well defined programming mechanism that have proven to solve efficiently needs for
concurrency, i.e. better performance in distributed programming and parallel programing.
This section shows the implementation of some concurrent patterns, their descriptions, the
problems found, some possible solutions and the leasons learned from their implementation.

3.1.1 Synchronization mechanism

Pattern description

This mechanism better known as monitor is done in order to restrict the access of two or
more processes to a single resource, a lock is used in order to exclude access from multiple
processes, only one process has the lock at a given moment in time and when the lock is
released the processes compete to adquire the lock.

Solution using DJAsCo

class Synchronization {
2 HashMap annotationLocks = new HashMap(); //<String, Object>

4 hook synchronizedUsingSharedLock {
synchronizedUsingSharedLock(method(..args)) {

6 execution(method) && joinpointhost(”synchronized”);

37



}
8 around() {

synchronized(this){
10 return proceed();

}
12 }

}
14

hook synchronizedUsingCapturedLock {
16 synchronizedUsingCapturedLock(method(..args)) {

execution(method) && joinpointhost(”synchronized”);
18 }

around() {
20 synchronized(thisJoinPoint.getCalledObject()){

return proceed();
22 }

}
24 }

26 hook synchronizedUsingAnnotations {
synchronizedUsingAnnotations(method(..args)) {

28 execution(method) && joinpointhost(”synchronized”);
}

30 around() {
Object lock = thisJoinPoint.getCalledObject();

32 Annotation[] annotations=thisJoinPoint.getAnnotations();
Synchronized parameters=(Synchronized)annotations[0];

34 if(! parameters.id().equals(”default”))
lock = global.mapId2Lock(parameters.id());

36
synchronized(lock){

38 return proceed();
}

40 }
}

42
protected synchronized Object mapId2Lock(String id){

44 Object ob;
ob = annotationLocks.get(id);

46 if(ob == null) annotationLocks.put(id, new Object());
return ob;

48 }
}

This aspect extends the synchronization mechanism of java in order to define new rules
to synchronize, these rules refer to the lock used to synchronize, the first is the aspect
object itself, the second is the matched object at the pointcut and the last is an object
created from an annotation defined in the matched method. The implementation of this
mechanism was straight forward due to Java synchronization level support, no problems
were found.

3.1.2 One way pattern

Pattern description

This pattern improves performance by running method that does not return a value in
a different thread. A thread is created in order to run a single void method and then it
is destroyed or not used any more. The application of this method using aspect can be
done by extending or instantiating a reusable One Way Aspect or by using metadata(i.e.
annotations) in order to mark the methods where the pattern should be applied.

One example of what this pattern use is described in the following diagram, where there
is a class that Class that contains three void messages, the user calls the three messages

38



Figure 3.1: One Way pattern example

on and object Object of type Class, then a thread is created on order to run each of the
methods’ calls. Figure 3.1 shows this example.

39



Solution using DJAsCo

1 class OneWay {
protected WeakHashMap threads = new WeakHashMap();

3
hook onewayMethodExecution {

5
onewayMethodExecution(method(..args), callable(..args)) {

7 execution(method)&&!cflow(callable) && joinpointhost(localhost)&& executionhost(localhost);
}

9
around(){

11 //Setting the call Builder Object
RunnableMethodExecution methodThread = new RunnableMethodExecution();

13 methodThread.setObject(thisJoinPoint.getCalledObject());
methodThread.setParameters(thisJoinPoint.getArgumentsArray());

15 methodThread.setMethodSignature(thisJoinPoint.getName());
methodThread.setParameterTypes(thisJoinPoint.getFormalArgumentTypes());

17 Thread t = new Thread(methodThread);
t.start();

19 return null;
}

21 }
...

23 }

The previous code defines a single joinpoint with two input methods, the callable method
is used as wrapper in order not to fall into an infinite loop because of introspective calls
and the pointcut of the aspect. All necessary parameters in order to execute the call are set
in the RunnableMethodExecution and then called by introspection, the original behaviour
is canceled using the return null statement.

Problems encountered

The main problem encountered here was that in order to execute the pointcut method in
a new thread class specification, the aspect language has to be fully integrated with the
base code language, in this particular example, the proceed() call cannot be executed in
java statements defined inside the advice body like at an inner class, but it has to be call
from the first level of the advice body.

Possible solutions

I used an instrospective thread call, it is stored in a object called RunnableMethodExecu-
tion and executed when needed, the initial behaviour of the pointcut is canceled in order
not to duplicate behaviour.

Complete language integration of JAsCo [40] with Java would solve this problem, as
AspectJ has with Java, the problems behind this proposal in JasCo are not part of the
domain of this research, it is just mentioned to donate ideas and motivation to implement
this complete language integration.

40



Figure 3.2: Waiting Guards pattern.

3.1.3 Waiting Guards

Pattern description

In the case that method executions depend on preconditions, in many cases this precon-
dition is link to the state of the object, two different path can be taken, first is to rise an
exception or to wait until the preconditions are satisfied. In concurrent programming the
state of the object can be changed by another thread accessing the object, the Waiting
Guard pattern defines that a thread that executes methods with not satisfied preconditions
has to block until some action changes the state of the object and triggers the precondition
evaluation again or at least a given amount of time to re-evaluate.

In order to apply this pattern three things have to be defined for each pattern application,
a blocking method that could send the object to a non-satisfying state, a deblocking method
that could return the object to a satisfying state and the definition of the precondition to
be satisfied. The Figure 3.2 presents the pattern after the execution of a blocking method.

Solution using DJAsCo

class WaitingGuard {
2

hook deblockingOperations {
4 deblockingOperations(method(..args)) {

execution(method) && joinpointhost(localhost) && executionhost(localhost);
6 }

after() {
8 Object jpObject=thisJoinPoint.getCalledObject();

synchronized(jpObject){
10 jpObject.notifyAll();

}
12 }

}
14

hook blockingOperations {
16

blockingOperations(method(..args)) {
18 execution(method) && joinpointhost(localhost)&& executionhost(localhost) ;

}

41



20
before() {

22 Object jpObject=thisJoinPoint.getCalledObject();
Object[] params=thisJoinPoint.getArgumentsArray();

24 try{
synchronized(jpObject){

26 while(! preCondition(jpObject, params)){
jpObject.wait(getWaitingTime());

28 }
}

30 }catch(InterruptedException c){
throw new Exception(c);

32 }

34 }
public refinable synchronized boolean preCondition(Object ob, Object params ){

36 return false;
};

38
public refinable synchronized long getWaitingTime(){

40 return 1000;
};

42 }
}

44 ...
//Apllication of the pattern to a Water tank, where the overflow is not permited.

46 static connector OverFlowWaitingGuardConnector {

48 waitingguards.WaitingGuard.deblockingOperations hookOverFlowDebloking =
new waitingguards.WaitingGuard.deblockingOperations(∗ waitingguards.example.WaterTank.removeWater(∗));

50
waitingguards.WaitingGuard.blockingOperations hookOverFlowblock =

52 new waitingguards.WaitingGuard.blockingOperations(∗ waitingguards.example.WaterTank.addWater(∗)){

54 public refinable synchronized long getWaitingTime(){
return 1000;

56 }

58 public refinable synchronized boolean preCondition(Object targetObject, Object params){
waitingguards.example.WaterTank wt = (waitingguards.example.WaterTank) targetObject;

60 Object[] parameters=(Object[]) params;
Float amount = (Float) parameters[0];

62 return (wt.getCurrentVolume() + amount) <= wt.getCapacity();
}

64
};

66
hookOverFlowDebloking.after();

68 hookOverFlowblock.before();
}

This code defines the two method advices, one to be executed before a blocking method is
executed and the second when a deblocking method is executed, because of the ”refinable”
declaration of the last two methods, those can be implemented as needed by the specific
connector application where these are to be defined(in example the second part of the
code). The precondition(..) defines when a blocking method can be executed and the
getWaitingTime() method for how long the thread should be waiting to re-evaluate the
condition.

Problems encountered

The use of Java support for synchronization and thread management was helpful for the
implementation of this pattern, without those mechanisms the implementation of this
pattern would have been a lot more complex, because the synchronization and waiting
mechanism of the thread had to be implemented.

42



Figure 3.3: Active Object pattern

Possible solutions

In order not to depend on the Java language concurrent features, a library could be imple-
mented and reuse if wanted, but in my case I decide to reuse what was available.

3.1.4 Active object

Pattern description

This pattern improves performance by running every object instance in a different thread,
for every instance of a class there is a thread in charge of executing the calls to its methods.

The invocation and execution of methods are decoupled, in order to achieved this be-
haviour an association between a new Thread and an instance is created, then a Method
scheduler retrieves every call to objects and dispatch then to the respective associated
thread. Figure 3.3 represents the Active Object pattern.

Solution using DJAsCo

1 class ActiveObject {
protected WeakHashMap hash = new WeakHashMap();//<ActiveObject,MQScheduler>();

3
hook create {

5 create(method(..args),callable(..args2) ) {
execution(method) && !cflow(callable) && joinpointhost(localhost) && executionhostlocalhost) ;

7 }

9 boolean appliedAlready=false;

11 isApplicable() {
return !appliedAlready;

13 }

15 before() {
appliedAlready=true;

17 MQScheduler mqs = new MQScheduler(50);
System.out.println(”Instantiation of object: ” + thisJoinPoint.getCalledObject().toString());

19 synchronized(this){
global.hash.put(thisJoinPoint.getCalledObject(), mqs);

21 }
(new Thread(mqs)).start();

23 }
}

43



25
hook callMeth {

27 callMeth(method(..args), callable(..args)) {
execution(method)&&!cflow(callable) && joinpointhost(localhost)&& executionhost(localhost) ;

29 }

31 around(){
Message ms = new Message();

33 Object msg;
CallableMethodExecution callable = new CallableMethodExecution();

35 callable.setObject(thisJoinPoint.getCalledObject());
callable.setParameters(thisJoinPoint.getArgumentsArray());

37 callable.setMethodSignature(thisJoinPoint.getName());
callable.setParameterTypes(thisJoinPoint.getFormalArgumentTypes());

39 MethodRequest mr = new MethodRequest(callable,ms);
sendToQueue(mr,thisJoinPoint.getCalledObject());

41 return waitForValue(mr, thisJoinPoint.getCalledObject());
}

43
public Object waitForValue(MethodRequest mr, Object activeObject)

45 {
Object res = null;

47 try{
res = mr.getResult().getValue();

49
}catch(Throwable t){

51 t.printStackTrace();
}

53 return res;
}

55
public synchronized void sendToQueue(MethodRequest mr, Object activeObject ){

57 ((MQScheduler) global.hash.get(activeObject)).insert(mr);
}

59 }
}

The complexity of this pattern is the biggest of all implemented patterns, it has the
need for a new introspective call executor that returns a value, also a data structure that
associates the object with a thread, also a queue for the calls for each object and the
concurrency of these executions.

The first part is the pointcut definition to associate the object with a thread, it is in-
stantiated perobject but only once. The second pointcut is used whenever a call is done
to the method of the previously associated objects, it is wrapped into a CallableMethod-
Execution(introspective method execution that returns the value) object and send to the
queue of the object, finally it is returned when the result of that execution is done, the
executions are done in the First In First Out(FIFO) way. The whole code is not included
because of size limitations.

Problems encountered

Two problems I found implementing this pattern, the first, in order to execute the pointcut
method in a the thread of the object the arguments needed to perform an introspective
execution had to be store in the wrapper, it is the same problem encountered in the One
Way pattern implementation.

The second and more complex problem is that JAsCo pointcuts are not defined to match
object creation, the following code illustrates the wanted pointcut definition that it is not
yet available at the current version.

44



1 protected pointcut create(ActiveObject s) : execution(ActiveObject+.new(..)) && this(s);

Possible solutions

The first problem was solved defining an object that can be set to perform introspective
calls and return the value, this is the wrapper for the method executions, that is linked
to the object thread. Like I said in One Way section, this could be overcome by having
cmplete integration of the aspect language and the base code language.

I found my way on the second problem by doing a perobject instantiation of the pointcut
that associates the object with a thread, this association is done at the first call to a
method of an object, but the pointcut is done to every call to every object, as seen this is
not an optimized solution, because for every call to any method of the class to introduce
this pattern there is a pointcut method that checks whether this object has been associated
before or not. The obvious optimized solution is to take into account that a new(..) message
is a class message that has to be part of the pointcut language definition.

3.1.5 Lessons Learned

In order to implement concurrent patterns using AOP there is the need for synchronization
mechanism, concurrent library or base language support as in the case of the previous
implementations, if Java language support was not present the implementation complexity
of these patterns would have been increased, because of he need to manage concurrency.

It is good to have full integration with the language in order not to introduce overhead
in a pattern that is meant to increase performance. The solution I defined in order to
overcome this limitation may have introduce overhear by doing introspective executions,
future performance tests have yet to be done in order to state whether this is true or not.
On the other hand object instantiation is important, pointcut languages need to support
it, the new(..) message is a class message and it possible definition as pointcut is needed.

3.2 Distributed Pattern implementation

This section shows the implementation of some distributed patterns, their descriptions, the
problems found, some possible solutions and the leasons learned from this implementation.

3.2.1 Model Viewer Controller

Pattern description

Application presents content to users in numerous interfaces containing various data. The
Model Viewer Controller(MVC)[5] is composed by the model, controller and viewer roles.

45



Figure 3.4: Model Viewer Controller Pattern [5]

The model represents enterprise data and the business rules that govern access to and
updates of this data. Often the model serves as a software approximation to a real-world
process, so simple real-world modeling techniques apply when defining the model.

The view renders the contents of a model. It accesses enterprise data through the model
and specifies how that data should be presented. It is the view’s responsibility to maintain
consistency in its presentation when the model changes. This can be achieved by using a
push model, where the view registers itself with the model for change notifications, or a
pull model, where the view is responsible for calling the model when it needs to retrieve
the most current data.

The controller translates interactions with the view into actions to be performed by
the model. In a stand-alone GUI client, user interactions could be button clicks or menu
selections, whereas in a Web application, they appear as GET and POST HTTP requests.
The actions performed by the model include activating business processes or changing the
state of the model. Based on the user interactions and the outcome of the model actions,
the controller responds by selecting an appropriate view.

Solution using DJAsCo

1 class MVC {

3 hook MVCModel implements Model {
MVCModel(method(..args)) {

5 execution(method);
}

7 private Vector <Viewer> viewers = new Vector<Viewer>();

9 public void addViewer(Viewer view) {
viewers.addElement(view);

11 view.setModel(this);
}

46



13 public void removeViewer(Viewer view) {
viewers.removeElement(view);

15 view.setModel(null);
}

17 public Vector getViewers() {
return viewers;

19 }
public Object getData(){

21 return null;
}

23 public Object performeTask(Task task){
return null;

25 }
}

27
hook MVCViewer implements Viewer {

29
MVCViewer(method(..args)) {

31 execution(method);
}

33
private Model model = null;

35
public void setModel(Model mod)

37 { model = mod;
}

39 public Model getModel(){
return model;

41 }
public void update(){

43
}

45 public void eventPerformed(Event event){

47 }
}

49 }

51 ...

53 perobject mvc.aspect.ToDoMVC.TODOMVCModel mixmodel = new mvc.aspect.ToDoMVC.TODOMVCModel(∗ ∗.ToDoList.∗(∗));
perobject mvc.aspect.ToDoMVC.TODOMVCViewer mixViewer = new mvc.aspect.ToDoMVC.TODOMVCViewer(∗ ∗.ToDoDelegator.∗(∗));

55 ..

The previous code defines a reusable aspect that mix base code with the partial imple-
mented and reusable Model and Viewer roles of the MVC, a second specific aspect extends
this partially reusable aspect and implements the application specific methods, the last
two lines are the wildcards needed in order to introduce the mixing with the base code
classes.

Problems encountered

The cross-cutting of model and viewer concerns could possible impact every graphical in-
terface that interacts human clients and business objects that represent important data
on the system. Without means to group these different models and viewers, the aspect
implementation of MVC patterns becomes heterogeneous problem that needs one on one
implementation and specific application aspect definition, in others words for every mod-
el/viewer association there is an aspect that implements the model viewer specific needs.

On the other hand the controller roll is not reusable at all, the events(interactions) and
tasks(takss) to perform are different for every viewer/model type of association. Another
possible problem arises from the composition of viewers and models, there would be no
way to express to with hosts the association belongs to.

47



Possible solutions

The declarative group statement of AWED’s pointcuts(host(..)) and advicesexecution(on(..))
can be extended in order to be more expressive, in example if two different groups of viewers
are applied to the same model, the pointcut and advice declarations can be defined as the
interception between the specific viewer and model groups, the following code illustrates
this example.

1 //pointcut 1 execution(∗ ∗method(..))&& host(”ModelA) && executionhost(”ModelA $ \cap$ JSPViewer);

3 //pointcut 2 execution(∗ ∗method(..))&& host(”ModelA) && executionhost(”ModelA $ \cap$ JavaClient);

On the composition problem the order in which the pattern task are implemented can
be defined in a graph, each node is a task to be made and the edges are the events, the
transition path of tasks to perform and events performed can be solved. Research done on
dynamic crosscuts are commonly understood and defined in terms of an event-based models
[48, 24] but they leave open the composition of large systems because the whole system
has to be taken in mind when defining this kind of event base rules, so the applicability of
this solutions is limited to small systems or at least small parts of a large system.

3.2.2 Data Access Object

Pattern description

In computer software, a Data Access Object (DAO) is a software component that provides
a common interface between the application and one or more data storage devices, such
as a database or file. The term is most frequently applied to the Object design pattern.
The purpose of DAOs is to uncouple the database logic so that any changes in database
related activities (like change in database) will become simpler. The logic to access the
database is abstracted and changes in data access logic will be easier to implement. Figure
3.5 shows the relationships between the DAO objects.

Solution using DJAsCo

1 class DBDAO {
String login;

3 String password;
String dbpath;

5 String dridb;
java.sql.Connection dbcon;

7
hook initiate {

9 initiate(method(..args)) {
execution(method)&& joinpointhost(”neigh:DAO”) && executionhost(localhost);

11 }
before() {

13 Properties defaultProps = new Properties();
InputStream in;

15 try {
in = getClass().getClassLoader().getResourceAsStream(

17 ”dao.properties”);
defaultProps.load(in);

19 ...
}

21 }

48



Figure 3.5: Data Access Object pattern

1 class ToDoDAO extends DBDAO{

3 public Collection getToDos() {
Vector<ToDo> todos = new Vector<ToDo>();

5 try {
dbcon = DriverManager.getConnection(dbpath, login, password);

7 Statement state = dbcon.createStatement();
ResultSet rs = state

9 .executeQuery(”select priority,description,date from todos”);
ToDo temp;

11 while (rs.next()) {
temp = new ToDo(rs.getString(2), rs.getInt(1), rs.getDate(3)

13 .toString());
todos.add(temp);

15 }
...

17 return todos;
}

19 ...

21 hook getToDos {

23 getToDos(method(..args)) {
execution(method)&& joinpointhost(”neigh:DAO”) && executionhost(localhost);

25 }

27 around() {
return global.getToDos();

29 }
}

31 }

The first piece of code gets the database properties from a property file, then creates
the connection, the application specific DAOs aspect extend from this DBDAO aspect the
connection, then it implements the specific application needs as in example the second
piece of code, an application that manages ”to do” tasks that uses this aspect to gather
the tasks of the database.

49



Problems encountered

First problem encountered was the lack of expression to determine if a node was suppose
to use a database or any other type of source storage, so for every type of source storage a
new DAO specific implementation has to be done. The simples way to solve this limitation
was to asume only data base source storage and in order to have an aspect more reusable I
separated the properties to a file and use pure Statement Query Language(SQL) statements
without any Database Management System(DBMS) dependant queries, so the properties
file and database driver can be change and reuse the aspect with other databases.

The static definition of groups of hosts at the aspect do not resemble the pattern inde-
pendence of source storage or business objects, as in example if a new source storage is
created and it is used by a single business object, there is no way to express this modifica-
tion at run time, the only solution would be to re-implement the aspect and include this
modifications on it.

Possible solutions

The association of a machine process(Node) with some properties like type of storage,
localization of the source storage or other information needed, the definition of host as an
entity is used in the ReflexD[44] approach to get important data out of the system where
a virtual machine is running, it is used to enable or disable hosts pointcuts at runtime.

3.2.3 Lessons Learned

Current declaration of AWED’s group declaration do not have enough expressiveness to
abstract group interactions, as found in the model viewer aspect pattern implementation,
this limitation do not enable to define well reusable aspects pattern implementation, that
is extended by another aspect in order to add the application specific behaviour. like in
the Data Access Object aspect implementation,

The topology of a distributed system can be used in order to know where to apply
patterns, it can also be used in order to compose event between hosts and actions as seen
at the implementation of the model viewer pattern, this example is just one case of the
topology use, this extension would work fine in other cases as remote binding, database
replication topology, grid definitions and in any distributed application where the topology
management takes an important roll.

3.3 Conclusions

In order to implement concurrent patterns using AOP, it is necessary to have synchro-
nization mechanisms, like concurrent libraries or base language support. In absense of
concurrent mechanisms, the implementation complexity of these patterns would have been

50



increased, because of the need to manage concurrency, turning aside the attention from
the main idea: implement and support the concurrent patterns.

It is good to have full integration with the language in order not to introduce overhead
in a pattern that is meant to increase performance. The solution I defined in order to
overcome this limitation may have introduce overhear by doing introspective executions,
future performance tests have yet to be done in order to state whether this is true or not.
On the other hand object instantiation is important, pointcut languages need to support
it, the new(..) message is a class message and it possible definition as pointcut is needed.

AWED’s system implementation DJAsCo has helpful features, like separation of the
aspect from connectors, stateful aspects, reifinable methods, mixin classes and definition
of host groups at pointcut and advice level, just to mention some of them. But when it
comes to define or describe irregular topologies or application communication structures,
the group declaration is not enough. The distributed AOP support for distribution needs,
to be general enough to support the dynamic distributed context, but explicit enough to
be useful.

Current AWED syntax defines the body of an advice as a Java statement, because of this
the proceed() aspect statement is not integrated inside all java statements(in example an
inner class definitions) and this is why the implementation of the concurrent patterns at
DJAsCo may introduce overhead because of the introspective calls. At the DJAsCo level
it is necessary to take into account the distributed implementation, because some thread
are created in order to replicate behaviour around hosts and the concurrent pattern or
mechanism introduced could not be valid anymore.

51



Chapter 4

AWED Prime language

This chapter presents the extension of AWED language, to improve support for concurrent
and distributed patterns implementation, this is achieved by introducing topology concepts
and improving the expressiveness of group predicates. Section 4.1 presents two examples to
motivate this extension, at section 4.2 the current AWED is briefly described, including its
current implementation system DJAsCo, some important features and section 4.3 presents
the extension of the language, called AWED Prime.

4.1 Motivation for AWED language extensions

In this section I present two possible uses of the group and topology extensions to the
AWED language, this two examples and the pattern implementations showed on chapter
3 motivated this extension, those are briefly described in order to show the need and the
utility of the extensions.

4.1.1 Master Slave pattern

This subsection describes the master slave pattern, the possible use of AWED Prime on it
and how it is used to improve the pattern implementation.

The Master Slave pattern [14] declares a computational resource to be the principal entity
that processes tasks to one or many clients, called the Master, there are other entities that
caches the functionality and data of the Master, called the Slave(s), if the Master system
resource is not available, one of the slave resources can replace it, in the ideal case this
replace must be as short as possible.

The data base replication is one application of this pattern, some databases(Slaves) that
replicate the data stored in the principal one(Master). In case of failure, a topology is
defined to replace the database access at the clients and server side of the application. In
order to implement this data base replication two alternatives are common, the first is to

52



Figure 4.1: Master Slave pattern application.

program in every client of the databases to be used, and the order in which they are used,
in other words the auto failover recovery system, as shown on the Figure 4.1, the second
is to use a layer that has the previous information and the clients connect to it.

The Figure 4.1 shows one way to achieve the Master Slave pattern in data replication,
every client has the implementation of the failover recovery and an external agent(not
showed) conducts the replication, this is a clear cross-cutting of the data replication con-
cern and the auto failover concern. Heterogeneous implementation of this failover and
replication spread code around host, classes and methods, the functionality is not central-
ized and hardly maintainable.

Topologies between data replication machines are used, defined and needed, but current
AWED does not support them, neither it supports detailed group management, this is why
the AWED Prime language is presented to overcome these previous needs by including
topology definition and management at language level.

4.1.2 Publish Subscribe pattern

This subsection describes the publish subscribe pattern, a pattern used in order to redirect
messages across the network. It also shows the possible uses of AWED Prime on it.

53



Figure 4.2: Publish Subscribe Pattern.

The messages are created by publishers(producers) and received by subscribers(consumers),
this mechanism is called the Publish subscribe pattern. The main idea here is that an
agent, the publisher sends messages to a channel, that later all messages are received by
subscribers(if any), subscribers express interest in one or more channels, and only receive
messages of that channel, without knowledge of what (if any) publishers there are. This
decoupling of publishers and subscribers can allow greater scalability and a more dynamic
network topology. The Figure 4.2 shows the representation of this pattern.

Message brokers like ActiveMQ implement this pattern, he current version of ActiveMQ
supports many other features also, as compatibility with many languages and protocols
among others, but the implementation of those features are tangled in many classes and
packages, to give some numbers the total lines of code are 64218 in 61 packages, this
crosscutting of features increases complexity at maintenance, document and support level
of the system.

AWED Prime is used in chapter 5 to encapsulate message groups feature and use the
topology management and group deployment in order to express the pattern and decrease
the complexity of the implementation.

4.2 Overview of AWED

This section presents features important for the extension of the current AWED and its
implementation system DJAsCo.

54



The current AWED was created at the École des Mines de Nantes and the Vrije Univer-
siteit Brussels, the AWED language supports remote pointcuts constructors, distributed
advices ,distributed aspects, state sharing and distributed deployment. The subsection
4.2.1 describes some important parts of the AWED language and subsection 4.2.2 describes
other features of its system/implementation DJAsCo .

4.2.1 AWED language

The full syntax can be found at Appendix A, but some AWED definitions of a/synchronous
executions, remote pointcuts and advices and statefull aspects are important to the exten-
sion so they are explained in this subsection.

Synchronous and asynchronous executions

Advice executions can be declared as a/synchronous, the asyncex reserved word is added
in front of the advice declaration meaning that the execution at the joinpoint host continues
and the result of the advice execution is done at the advice host, if the syncex is used at
the advice declaration the execution at the joinpoint host waits until the advice execution
is done then the result is send to the joinpoint host and continues there.

This definition and the sharing of arguments and data among hosts is important to
pattern definition because some patterns like the future object pattern [30] need an asyn-
chronous task execution and some other like the MVC [5] need to be executed in order and
synchronously.

Remote pointcuts and advices

Pointcut and advices can be defined to occur at the localhost, jphost(joinpoint host) or in
a group(string identifier of the group) of hosts, this definition is for deployment of aspects
and sharing. The remote poincuts use the host(..) predicate, it means that the pointcut
is going to be matched at specific host, group or locally. Remote advices use the on(..)
predicate, that means that the advice execution take place at the defined host, locally or
a group of hosts. The following code exemplifies the remote poincuts and advices.

2 aspect Log{
pointcut LogAllinLocalHost:

4 execution(∗ ∗.∗.∗(..) && host(localhost);
}

6 before LogAllinLocalHost() && on(Log){
util.Logger.log((thisjoingpoint.getMethodSignature() );

8 }
}

The current AWED definition allows to add or remove the current host to a group or
from a group, this is done with the addGroup(..) and removeGroup(..) predicates that
can be defined in the body of the advice.

55



1
aspect Log{

3 pointcut ThreeHostExecution:
seq(execution(∗ ∗.∗.methodA(..)) && host(”172.16.2.3:2121”),

5 execution(∗ ∗.∗.methodB(..))&& host(”172.16.2.4:2121”) ,
syncex execution(∗ ∗.∗.methodC(..))&& host(”172.16.2.5:2121”) )

7 }
after ThreeHostExecution() && on(localhost){

9 util.Logger.getInstance().logImportant(”∗∗∗2.2∗∗∗ The methods a, b and c of the componentX where called” );
}

11 }

Figure 4.3: AWED aspect example.

In AWED Prime this distributed pointcuts and advices predicates are extended in order
to support topology definitions and group predicates as union or interception.

Statefull aspects

Statefull aspects in AWED are defined as the ordered execution of defined pointcuts, as-
pects that are defined to be statefull are only applied when the execution of pointcuts
is done as declared, the following code illustrates this functionality, the aspect pointcut
Statefull is only matched after the execution of methods a, b and c are done in that order
and finally the advice is executed at the advice host.

The Figure 4.3 presents an example of how an AWED aspect is defined, this example
uses this sequence definition, pointcut sequence notion is extended and used at the trans-
formation done from AWED Prime to current AWED, the sequence hosts identifiers are
taken from the topology definition.

4.2.2 AWED language implementation, DJAsCo

AWED system implementation is called DJAsCo, it is a distributed version of JAsCo
[40],some of the important features of DJAsCo system are a/synchronous executions, two
performance improvements Jutta and Hotswap and the distributed Cflow are described in
this subsection.

Synchronous and asynchronous executions

DJAsCo allow advice execution to be done in a synchronous and asynchronous way, then
the concurrent future pattern is implemented implicitly at language level. This patterns
defines data objects that are blocked if a client tries to use their values before they are
fully completed [25]. The UML showing the 3 most important classes that implement this
feature in DJAsCo.

56



Figure shows the three JAsCo classes.

The current implementation of asynchronous execution is implemented at the the invok-
eRemoteASynchronous method of the jasco.runtime.distribution.DistributedInvoker class,
in order to call this method the hook of the aspect must be annotated with @DistributedAd-
vice (executionType = DistributedAdvice.Type.ASYNCEX). then the execution is done
by creating a wrapper object that later on is transformed in a dynamic Proxy class,
the execution of this wrapped Object is managed by the Future Manager class at the
jasco.runtime.distribution package. The method invokeRemoteSynchronous to invoke syn-
chronous executions is located at the jasco.runtime.distribution.DistributedInvoker class,
this last method is executed by default.

Hotswap

The current DJAsCo implementation allows to introduce dynamically Aspects by adding
connectors to the registry, then a dynamic weaving of the aspect is done and introduced
to the affected classes dynamically, this mechanism is called JAsCo HotSwap [46] .

After Java 1.4 the HotSwap is introduced since Java 1.4 and allows to dynamically
replace the byte code of a loaded class. Whenever an aspect is applied to a Class the byte
code of the class is changed to include traps to the affected methods, this mechanism can
be done doing a prepossessing if possible to classes that are definitely affected by aspects,
but in case that is not the case the mechanism is done at run time. The implementation
methodology of DJAsCo is to deploy every aspects in each of the nodes, so it can be locally
introduced and registered in the connector registry on each JVM, afterwards Jgroups is
used to communicate aspects and objects across the network.

This mechanism has to be used in order to dynamically deploy AWED aspects and
AWED Prime aspects. Two drawback has HotSwap when dealing with distributed AOP,

57



first it can only change the byte code of a loaded class, so in order to do a remote hotswap
the classes that have to be matched with pontcuts, these classes have to be load in every
host, second, in order to know that a new class was loaded the Java Virtual Machine(JVM)
is running in debuggin mode and the Java Debugging Interface (JDI) is used in order to be
notified of these new loaded classes. Because of this use of the JVM is done in JDI there
is performance decrease of about 40%.

Jutta

Just-in-time combined aspect compilation(Jutta)[46] is proposed in order to overcome the
overhead that dynamically deployed mechanism causes, this system allows to generate and
cache code fragment for a given joinpoint. This code fragment directly executes the appro-
priate advices on the applicable hooks in the sequence defined in the connector, the order
of sequences of all applicable hooks for different advice types in order to implement prece-
dence strategies is done just once, JAsCo performance is better than AspectJ, according
to performance tests[16], this is achieved because of the combination of the hotswap and
Jutta systems.

On the other hand, due to dynamic variables like the cflow condition, deployment cannot
be applicable, because dynamic conditions have to be re-evaluated for every execution of
a given joinpoint. This dynamic condition apply to the topology definitions, the topology
can change at runtime and this caching would not be achievable.

Cflow

Each distributed Cflow is managed in a Stack data structure, this stacks are encapsulated
in a list inside an RemoteInfo Object, this serializable Object is distributed to remote
hosts using Remote Method Invocation(RMI). A single thread called JascoThreadCflow
manages in each host the information of the executions. This cflow use in AWED Prime
is necessary, this RemoteInfo definition has to be extended in order to deal with the new
topology definition and group predicates.

4.3 AWED Prime

In the distributed heterogeneous context, in which distributed AOP is, the need for
a better definition of poincuts, deployment and reuse of topology definitions arises as
shown in the Motivation of AWED language extension section. The extension to the
current AWED [8] language approach is defined in order to support those needs. the main
objectives of this extension are:

• To have a better deployment information and declaration. The single and all current
deployment mechanism define an aspect to be deployed only locally or in every host,
group deployment is proposed to overcome this limitation.

58



• To have a more declarative group declaration. Groups predicates are defined in order
to have better expressiveness.

• Reuse topologies definitions, distributed application have topologies predefined, AWED
should be able to manage and use those definitions, introducing the concept of topol-
ogy, node and edge at language level this objective is achieved.

This section presents the AWED Prime language, subsection 4.1 shows the syntax, section
4.2 the semantics and section 4.3 the overview of AWED Prime implementation.

4.3.1 Syntax

The following syntax definition aims to give a more flexible group management, defini-
tion and use. This part of the extension suits the irregular topologies and heterogeneous
communication requirements, as an example the groups can be identifiers of a set of com-
puters that have some functional similarity, like a database service, or hardware capacity
as broadband, or even a relation can be established between roles of the nodes and the
defined groups, but most important, the hosts that interact on the application topology
can change over time.

59



// Aspects

Asp ::= [Depl] [Inst] [Shar] aspect Id ’{’ {Decl} ’}’
Depl ::= single | all | Group

Inst ::= perthread | perobject | perclass | perbinding

Shar ::= local | global | inst | Group

Decl ::= [Shar] JVarD | PcDecl | Ad | graph
PcDecl ::= pointcut Id({Par}) : Pc

// Pointcuts

Pc ::= call(MSig) | execution(MSig)
| get(FSig) | set(FSig)
| cflow(Pc) | Seq
| host(Group) | on(Group[, Select])
| args({Arg}) | args({Arg,Group })
| host(TopoHostPred) | on(TopoHostPred)

| eq(JExp, JExp) | if(JExp)
| within(Type) | target({Type})
| Pc ‖ Pc | Pc && Pc | !Pc

Seq ::= [Id:] seq({Step}) | step(Id,Id)
Step ::= [Id:] Pc [→ Target ]
Target ::= Id | Id Target
Host ::= localhost | jphost | ”ip:port”
GroupId ::= String
Select ::= Jclass

Group ::= group(Group BinGroupOp Group) | group(UnGroupOp Group)

| GroupId | Host

BinGroupOp ::= - | ∪ | ∩
UnGroupOp ::= complement | groupAnd | anyHost

// Advice
Ad ::= [syncex] | Pos({Par}) : PcAppl ’{’ {Body} ’}’
Pos ::= before | after | around

PcAppl ::= Id({Par})

Body ::= JStmt | proceed({Arg}) | TopoPred

| addGroup(Group) | removeGroup(Group)

60



// Topology syntax and predicates
Topology ::= Id | graph | (TId, TopoPred)
TopoPred ::= defaultGraph()

| addNode(node stmt) | removeNode(node stmt)
| addEdge(edge stmt) | removeEdge(edge stmt)

TopoHostPred ::= predecessors(Host) | successors(Host)

graph ::= ’graph’ Id | ’{’ {stmt list} ’}’
stmt list ::= {attr list} | {node stmt} | {edge stmt}
attr list ::= ’[’ {a list} ’]’
a list ::= Id ’=’ Value ’;’
node stmt ::= ’node’ NodeId attr list ’;’
edge stmt ::= ’edge’ EdgeId attr list NodeId → NodeId ’;’

// Auxiliary functions

Type ::= // type expressions
Arg ,Par ::= // argument, parameter expressions (AspectJ-style)
Id ::= // identifier
Ip,Port ::= // integer expressions
JClass ::= // Java class name
JExp ::= // Java expressions
JStmt ::= // Java statement
JVarD ::= // Java variable declaration

4.3.2 Semantics

This subsection presents the definition of the topology predicates and the necessary group
transformation to get an AWED code from the just defined AWED Prime. First, the
informal semantics of the topology and group extension, and second, a transformation into
plain AWED from the AWED Prime group expressions.

Two important things have to be taken into account when defining the semantics of
AWED Prime: First the deployment group of an aspect defines its domain, it should
be interpreted as the Universe group of the aspect being deployed, anything outside this
group is not in the scope of the aspect. Second, irregular topology supports requires
an entity, to store, update and retrieve the current Topology at a given time, this new
entity, called TopologyManager, supports the previous defined requirements, and can be
accessed in order to be use by the topology or group predicates, the implementation of this
TopologyManager is proposed in the subsection Overview of AWED Prime implementation.

61



Group specifications, informally

The binary predicate ”− ” receives two groups as parameters, and the result are the host
that belong to the group one but not to the group two. The predicate ” ∪ ” refers to the
hosts that belong to group one or to the group two and the predicate ” ∩ ” refers to the
host that belong to the group one and to the group two.

The unary predicate complement refers to the host that are in the deployment group
of the aspect but not on the groupid passed as argument, the groupAnd, matches all the
host that belong to a group in a sequence of pointcuts and the anyHost resolves to one
and only one host that belongs to the given group.

Topology specifications, informally

On the topology syntax, the graph definition is straightforward, what must be explained
are its predicates named at the syntax as TopoPred, this predicates can be used at the
advice, the defaultGraph() returns the id of a just created empty graph, the removeN-
ode(NodeId) removes the given node, the addNode(NodeId) adds the given node, the
removeEdge(EdgeId) removes the given edge, the removeEdge(EdgeId) removes the
given edge.

TopoHostPred defines the predicates that can be used at the poincut, the predeces-
sors(Host), resolves a pointcut sequence that contains all the predecessors of the given
Host and the successors(Host) a pointcut sequence that contains all the successors of
the given host.

Group specifications, formally

The transformation from AWED Prime to AWED as follows:

62



TG|[Group, type|] = if isGroupid(Group, type)

generateGroupPredicate(Group, type)

if isHost(Group)

generateHostPredicate(Group, type)

if isBinaryOP(Group)

TBOp|[g1 (Group), g2 (Group), gOp(Group), type|]
if isUnaryOp(Group)

TUOp|[g1 (Group), gOp(Group), type|]

TBOp|[g1, g2, op, type|] = if TBOp|[g1 ∩ g2, type|]
TG|[g1, type|] && TG|[g2, type|]

if TBOp|[g1 ∪ g2, type|]
TG|[g1, type|] || TG|[g2, type|]

if TBOp|[g1− g2, type|]
TG|[g1, type|] && ! TG|[g2, type|]

TUOp|[Group1, op, type|] = if isComplement(op)

! TG|[g1, type|] && TG|[deploymentGroup(), type|]

• generateGroupPredicate(g, type) = if(type == on) then on(g.id) else host(g.id)

• generateHostPredicate(h, type) = if(type == on) then on(h.id) else host(h.id)

// Auxiliary functions

type ::= // can be on(..) or host(..).
isGroupid ::= // determines whether group is a group id or not.
isHost ::= // determines whether group is a host or not.
isBinaryOP ::= // determines whether group definition has a binary operation.
isUnaryOp ::= // determines whether group definition has an unary operation.
isInterception ::= // determines whether group binary operator is interception.
isUnion ::= // determines whether group binary operator is union.
isDifference ::= // determines whether group binary operator is a difference.
isComplement ::= // determines whether group unary operator is a complement.
deploymentGroup ::= // resolves the deployment group of the aspect.

63



The definition of the predecessors and successors functions:

• predecessors(n) = { n′ ∈ Node | n′ ∈ {TogologyManager.getHosts()} ∧
n′ → n ∈ {TogologyManager.getEdges() } }

• successors(n) = { n′ ∈ Node | n′ ∈ {TogologyManager.getHosts()} ∧
n → n′ ∈ {TogologyManager.getEdges() } }

Many more topology predicates can be useful depending on the application context, in
example inmediateSuccesors, inmediatePredecessors, allPredecessors and allPredecessor-
Successors.

Constraints, In the transformation these applied:

• The definition of node contains at least the ”ip:port” and ”group” as attributes of
the node.

• The definition of edge describes a directional relationship from the first to the second
node and an attribute list.

• Topology predicates con only be used when a Topology deployment is used or when
a Topology is later created.

• The body statements addNode(node) and removeNode(node) can only be used when
a topology is defined.

4.3.3 Overview of AWED Prime implementation

This subsection presents an overview of the implementation of the AWED Prime over
current AWED implementation system DJAsCo. The first the group extension and second
the topology extension.

Group extension

The group extension aims to improve group declaration but not to emulate set theory, in
example the pointcut declaration on(Administrators∩Personnel ∪Clients) is valid, but
there is no precedence delcaration using parenthesis(), the declaration on((Administrators∩
Personnel) ∪ Clients) is not valid. Group extension has been defined in order to allow
group predicates, these predicates can be unary or binary operators. Three operators are
defined to be binary group operators: union ∪, intersection ∩ and difference -, the unary
operators are complement, groupAnd and anyHost. My proposal to implement this group
extension is to parser the group definition using the transformation defined in the syntax
subsection, Figure 4.4 shows the class diagram of this proposed solution.

64



Figure 4.4: Group extension class diagram.

The propose is to pass the string from the on(..) or host(..) declarations and return
the complete string transformation, as example is the input pointcut group declaration is
on(Administrators ∩ Personnel ∪ Clients) the output will be: on(Administrators) &&
on(Personnel) || on(Clients).

Topology extension

This extension is defined in order to give management support for distributed application
topologies at language level. the figure Figure 4.5 shows the class diagram of the proposal.
The TopologyManager class is a singleton facade class, it can add and remove groups
and/or hosts to groups, create edges between nodes, adding attributes to nodes and edges,
it also has the responsibility of of managing(storing and returning) the deployment group
of every aspect.

Current AWED implementation system DJAsCo uses a class call the RemoteInfo(found
the jasco.util.distribution) in order to manage the cflow executions, this class is the best
place to add the TopologyManager because it is already distributed to the hosts. The
impact of this modification can be located in classes: RuntimeContext(jasco.runtime pack-
age), DistributedStandarMessage(jasco.runtime.distribution package), JascoInputStream(
jasco.util.distribution), JascoOutputStream( jasco.util.distribution) and JascoThreadCflow(
jasco.util.distribution).

In case of difficulties introducing this extension to the current DJAsCo system, a sec-
ond implementation proposed of this extension is presented, messages are transferred

65



Figure 4.5: Topology extension class diagram

66



between remote or local JVMs, this message distribution could be done by an external
agent(Message broker as ActiveMQ), and the messages are parsered and topology is man-
aged locally in each JVM, the same functionally showed in Figure 4.5 is used and the same
responsibilities apply. The message distribution system is a Star system that is in charge
of distributing the messages across the registered JVM clients.

The first message that just registered JVM will receive would be the current topology
message( using the defined graph of the topology extension syntax), from that moment
the local TopologyManager will get the messages of changes of the topology, so it is locally
replicated by sending messages. This approach reduces to tangled behaviour with the
current RemoteInfo class but increases the complexity of the implementation because a
parser of the messages would be needed.

4.4 Conclusions

This extension chapter, motivates with two examples, the need for Topology management
and more expressive group definitions. This examples showed, the utility for the extension.
On the other hand, current important AWED features were presented, also the implication
of AWED Prime on them, the AWED system implementation features were also presented
and the precautions to have in mind, when implementing the extension on it.

On this chapter, we presented: Syntax, the topology management and better group def-
inition language extensions. Semantics, the definitions for each extension and the trans-
formation to be used for the groups new declaration, with their constraints. Language
extension implementation proposals, one for the group extension and two proposals for the
topology management, defining its impact on current AWED implementation DJAsCo and
possible modules to introduce it.

67



Chapter 5

AWED Prime application examples

This chapter presents two possible uses of the AWED Prime language, section 5.1 presents
the first use case Master Slave pattern, this pattern has been applied in many areas,
like data bases replication and high availability systems(where continuity is crucial to
the system clients). The second use case shown in section 5.2 is the Publish subscribe
pattern, this distributed pattern has been used in the implementation of message brokers
like ActiveMQ.

5.1 Master Slave pattern

The Master Slave pattern defines one computational resource to be the principal entity
to process tasks to one or many clients called the Master, there is a second entity that
replicates the functionality and data of the Master called the Slave, whenever necessary
the slave resource can replace the Master, in example the replacement can be force because
of Master’s failure. This section presents the AWED Prime definition of the Master Slave
pattern applied to Database replication.

The data base replication is one application of this pattern, there are some Database
Management Systems(DBMS) that have database replication feature implemented, it repli-
cates a principal database and the other(s) databases copy data from the Master, in case
of Master’s failure there is a structure(topology) defined to replace the database access at
the clients and server side of the application.

Awed Prime manages the groups and the topology defined in order to replace the Mas-
ter’s data and behaviour in case of failure. In this use case databases hosts are associated to
groups, the Master to the ”Master” group and the Slave(s) to the ”Replicate” and their
topology defined and used in the same aspect, realizing modularization of an commonly
scaterred distributed pattern. The access from the clients to the Master can be done using
AOP[39] also, but it is not part of the pattern.

68



Figure 5.1: Master Slave pattern AOP application

The Figure 5.1 shows two aspects, one is in charge of the persistence concern, it uses
the group Persistence and Master in order to maintain persistency and the second of the
Topology concern, the MasterSlaveAspect monitors the state of the Master data base and
replicates the data to the Replicate group, in case of failure of the Master host, one of the
Replicate databases is to be used to replace it, then it will be deleted from the Replicate
group and added to the Master group.

Another important task to be done at the Master Slave is to continue using the Master
resource if possible, then the Topology of the nodes can be defined in order to give some
nodes precedence. The MasterSlaveAspect uses topology to define the auto fail over re-
covery and ReplicateManager object to manage the replication in this application of the
Master Slave Pattern as shown in the following code:

1 group(”Master” U ”Replicate” ) aspect MasterSlaveAspect{

3 pointcut masterUpdated(ReplicateManager repl):
execution(∗ MasterCommitMethod(∗)) &&

5 host(”Master”) && on(group(”Master” )) ;

7
pointcut masterDown(ReplicateManager repl):

9 execution(∗ MasterDownMethod(∗)) &&
host(”Master”) && on(group(”Master” U ”Replicate” )) ;

11
pointcut masterUp(ReplicateManager repl):

13 execution(∗ MasterUpMethod(∗)) &&
host(”Master”) && on(group(”Master” U ”Replicate” )) ;

15
around() : masterUpdated(ReplicateManager repl) {

17 repl.updateSlaves();
proceed();

19 }

21 around() : masterDown(ReplicateManager repl) {
TopologyManager.addToGroup(TopologyManager.sucessor(repl.getCurrentMaster()), ”Master”);

23 TopologyManager.removeFromGroup(repl.getCurrentMaster(), ”Master”);
cach.setCurrentMaster(sucessor(repl.getCurrentMaster()));

25 proceed();

69



}
27

around() : masterUp(ReplicateManager repl) {
29 TopologyManager.removeFromGroup(TopologyManager.sucessor(repl.getCurrentMaster()), ”Master”);

TopologyManager.addToGroup(repl.getMaster(), ”Master”);
31 proceed();

}
33 }

As showed in the previous code, the implementation of the Master Slave pattern is
modularized and simplified in a single aspect, this is done at language level, with the
help of the new concept/entity of Topology. The group and topology are used in the
aspect definition. On the other hand, this pattern definition is also reusable on databases
replication, the pointcut methods can be replaced by application specific wildcards method
and it will be applicable and functional .

5.2 Apache ActiveMQ

The Apache ActiveMQ is a Message Broker that supports many Cross Language Clients
and Protocols and many advanced features while fully supporting JMS 1.1 and J2EE 1.4, It
is written in Java together with a full JMS client. However Apache ActiveMQ is designed to
communicate over a number of protocols such as Streaming Text Oriented Message Proto-
col(Stomp) and OpenWire(Binary message protocol) together with supporting a number of
different language specific clients like Java, .NET, C/C++, Perl, Python, PHP and Ruby.

The Publish subscribe pattern( said in chapter 4) achieves scalability and improves
the dynamism of the network, by doing asynchronous calls from publishers to unknown
subscriber(s), that can or not reply each other depending on the declaration of both. The
idea was shown in Figure 4.2, a publisher sends a message to a channel and that message
is resend to all channel subscribers if any.

In contrast, when messages are too important to get lost, this pattern has to be extended
in order to define new needs, needs like: Processing : messsages can get lost without having
a subscriber to manage the requirements of the message; Performance: network traffic is
increase by a number of n, being n the number of subscribers; and Exclusivity, it could be
necessary that a type of message is only received by a determined subscriber or subscribers.

Solution objectives, the Apache solution to the previous problems was to create a
queue, inside this queue messages are send to subscribers depending among others of
the speed of the subscribers, subscriber’s exclusivity or message grouping. This queue
stores all messages sent to it and releases messages only when a subscriber gets connected,
processing all messages, a message is send only once, decreasing network traffic and if
needed a selection mechanism can be define to choose to which subscriber the message
should be send, gaining exclusivity. Message Groups is going to be explained and its
AWED’ implementation documented. Figure 5.2 shows the queue mechanism.

70



Figure 5.2: ActiceMQ queue: Publish Subscribe pattern application.

Message groups

In this extension of the publish subscribe pattern, messages are send to a queue, this
messages can be marked to belong to a group, when the message broker finds that a
message sent to the queue have a group mark, it creates an association between a group
mark and a subscriber for every message declared group, afterwards whenever a message
is send to the queue and has a group mark already associated, it sends this message to the
associated subscriber. Now that many groups can be defined in a single queue, parallel
exclusivity can be declared and used, in case that a associated subscriber goes down, a new
association between the group and a subscriber is created. In other words message groups
achieve:

• Ordering of the processing of related messages across a single queue, using the asso-
ciation.

• Load balancing of the processing of messages across multiple consumers, message
group balance.

• High availability / auto-failover to other consumers if a JVM goes down, group re-
association if needed.

5.2.1 Motivation for distributed AOP and overview of applica-
tion of AWED Prime

Message groups features is scaterred around six packages and nine classes at the message
broker, and one extra invokation is matched for every new subscriber and publisher. AWED

71



Figure 5.3: Sequence diagram to create a Publisher.

Prime is applied to re-implement message groups feature, its topology predicates are used
to map from group messages associations to edges between publisher and subscriber nodes,
the AWED Prime group extension is used to add subscribers to ”subscriber” group and
publishers to ”publishers” group. Messages are managed by the MessageGroupAspect, new
nodes are added dynamically to the groups and new edges created every time a message
group is defined, in order to maintain the same functionality whenever a subscriber or a
publisher goes down, the edges and nodes associated to that subscriber or publisher are
removed.

The pointcuts where the group managing have to match is showed in Figure 5.3. The
last part of the sequence diagram is the pointcut where the host is added to the publisher
group, previously the broker has been created and initiated, a relative similar sequence
is done in order to create the subscriber. The Topology of the broker is modeled by the
TopologyAspect that uses a TopologyManager( part of the AWED Prime library) in order
to add host to groups and remove them form them, the TopologyAspect code is shown:

1 all aspect TopologyAspect{

3 pointcut messageBrokerCreation():
execution(∗ org.apache.activemq.broker.BrokerService.addConnector(∗));

5
pointcut publisherCreation(javax.jms.Destination destination):

7 execution(∗ javax.jms.Session.createProducer(∗))
&& args(javax.jms.Destination destination);

9
pointcut subscriberCreation(javax.jms.Destination destination)):

11 execution(∗ javax.jms.Session.createConsumer(∗))
&& args(destination);

13
pointcut publisherDown(org.apache.activemq.command.ProducerId id):

15 execution(∗ org.apache.activemq.broker.TransportConnection.processRemoveProducer(∗)) && on(”Broker”)
&& args(id);

17

72



pointcut subscriberDown(org.apache.activemq.command.ConsumerId id):
19 execution(∗ org.apache.activemq.broker.TransportConnection.processRemoveConsumer(∗)) && on(”Broker”)

&& args(id);
21

after() : messageBrokerCreation(opub){
23 Node nod=TopologyManager.addNode(new node(jpHost));

TopologyManager.addToGroup(nod, ”Broker”);
25 }

27 after(objectType opub) : publisherCreation(opub){
Node nod=TopologyManager.addNode(new node(jpHost));

29 TopologyManager.addToGroup(nod, ”Publishers”);
}

31
after(objectType opub) : publisherDown(id){

33
TopologyManager.removeFromGroup(id, ”Publishers”);

35 TopologyManager.removeNode(id);
}

37
after(objectType opub) : subscriberCreation(opub){

39 Node nod=TopologyManager.addNode(new node(jpHost));
TopologyManager.addToGroup(nod, ”Subscribers”);

41 }

43 after(objectType opub) : subscriberDown(id){
TopologyManager.removeFromGroup(id, ”Subscribers”);

45 TopologyManager.removeNode(id);
}

47 }

After the Topology has been modeled, the MessageGroupAspect models, the message
sending to a Subscriber, there is then a strong precedence strategy needed for these two
aspects, the code of the MessageGroupAspect as follows:

1 group(”Publishers” U ”Subscribers” ) aspect MessageGroupAspect{

3 pointcut messageGroupPossibleDeclaration( Message mess):
execution(∗ javax.jms.TextMessage.setStringProperty(∗)) && host(”Publishers”);

5
pointcut messageSend():

7 execution(∗ javax.jms.MessageProducer.send(∗)) && host(”Publishers”)

9 around(objectType opub) : messageGroupPossibleDeclaration(Message mess) {
if( MessageHandler.isMessageGroup(mess) ){

11 Host ahost=anyHost(”Subscribers”);
String[] attributes=new String[1];

13 attributes[0]=”MessageIdGroup”;
String[] attributesValues=new String[1];

15 attributesValues[0]=MessageHandler.getGroupId(mess);
TopologyManager.addEdge(jphost, ahost, attributes, attributesValues);

17 TopologyManager.removeFromGroup(ahost, ”Subscribers”);
proceed();

19 }
}

21
around() : messageSend() {

23 if( isMessageGroup(mess) ){
if(TopologyManager.nodeHasSuccessor(jphost)

25 MessageGroupManager.sendMessage(mes, successor(jphost, getMessageIdGroup(mes)));
}

27 else{
proceed();

29 }
}

31 }

Strong precedence strategy

On the previous code, the topology is managed dynamically, an edge is created between
the publisher and the subscriber in case that a message has a Group declaration as a
property. This is an invasive enabled aspect, in order to apply the MessageGroupAspect
the topology has to be defined by the TopologyAspect correctness of the implementation,

73



if the topology is not defined the MessageGroupAspect is not correct. The TopologyAspect
has to be applied always before the MessageGroupAspect, and the MessageGroupAspect
should not be applied if the TopologyAspect is not applied, in other words there is not
only a precedence between the aspects but a dependence.

Evaluation

The application becomes more readable and centralized, only two Aspects and one class(
TopologyManager) that belong to the AWED Prime are needed to implement the Mes-
sage Groups functionality of ActiveMQ, compared to the original code that includes code
scaterred around six packages and nine classes. The Message Group feature is located in
only two aspects that clearly resemble its functionality, in resume it is better defined and
better modularized.

5.3 Conclusions

AWED Prime has been motivated with two widely used patterns, the Publish Subscribe
and the Master Slave pattern, each of them with different requirements for distributed
communication, and irregular topology management. AWED Prime extended group defi-
nition, is used in the Master Slave pattern application on Database, to monitor changes on
the Master Database and inform the Slave Databases, the topology is used to implement
the auto-failover recovery, Database hosts moved from the Slave group to the Master group
when needed. This pattern application is done in only one aspect and Two Classes, the
ReplicateManager class and the TopologyManager(part of the AWED Prime library). It
is a reusable distributed architectural pattern definition.

On the other hand, AWED Prime is used to implement the Publish Subscribe pattern
application, the Message Groups feature, the topology is first used, to capture the dynamic
changes of publishers and subscribers. Later on, it is used to associate message group
declarations to subscribers, and finally to redirect messages to the associated subscriber.
The AWED Prime implementation uses two aspects that have an important precedence
dependency, it was was explained. This implementation is modularized into two aspects
and one class, the TopologyManager(part of the AWED Prime library), improving its
definition and localization.

AWED Prime has proven to improve distributed architectural patterns definitions and
implementations in these two widely used patterns, more research has to be done, in order
to fully understand the pattern support implications of topology management at AOP
language level.

74



Chapter 6

Conclusions

In order to support concurrent paterns with AOP, It is necessary to have synchronization
mechanisms, like concurrent libraries or base language support. In absense of concurrent
mechanisms, the implementation complexity of these patterns would have been increased,
because of the need to manage concurrency, turning aside the attention from the main
idea: implement and support the concurrent patterns.

The Object Oriented implementation of concurrent and distributed patterns is difficult,
it is because of the added complexity of heterogeneous communication requirements and
irregular topologies. Current pattern implementations have code scaterred and tangled
with other concerns, not only in a local way but around many hosts. We propose an exten-
sion to AWED in order to improve group expressiveness, communication requirements and
provide topology predicates. This report is basically divided in four parts, the research of
the state of the art, the implementation of concurrent and distributed patterns, a proposal
to solve the problems and needs found at the concurrent and distributed pattern imple-
mentation, called AWED Prime. And two examples of the applicability of AWED Prime
on widely used patterns.

AWED Prime is defined to have three primary goals: Better deployment information
and declaration, the group deployment of an aspect bounds its domain to include only
hosts of interest; More expressive group declaration, using group predicates on advices and
poincuts, group declaration achieved better expressiveness and abstraction of patterns;
Topology support, distributed patterns are implemented over irregular topologies. AWED
Prime language level support for topologies was able, to abstract and manage the irregu-
lar topology and communication requirements of the patterns studied. The topology and
group support of AWED Prime were used to implement two widely used patterns. First,
the Master Slave Pattern, in which AWED Prime express the database replication using
topology predicates and group declaration, it also achieved partial reusability and mod-
ularization of the pattern into a single aspect. The second use case is done on Apache
ActiveMQ, AWED Prime separates the extended implementation of the publish subscribe
pattern, called Messages Groups, in which the topology extension provided abstraction

75



and management of the dynamic network, and the association between publishers and
subscribers.

AWED Prime has proven to improve distributed architectural patterns definitions and
implementations in these two widely used patterns, more research has to be done, in or-
der to fully understand the pattern support implications of topology management at AOP
language level. On the other hand, this study leads to several future works: Extend cur-
rent AWED system implementation DJAsCo in order to provide AWED Prime definitions;
Define and implement more concurrent and distributed patterns using the AWED Prime
system implementation; Evaluate AWED Prime, over other distributed areas that require
topology management and distributed communication requirements, like peer-to-peer ap-
plications, grid-base applications and frameworks for distribution.

76



Bibliography

[1] Design patterns explained: a new perspective on object-oriented design. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[2] Alexander Ahern and Nobuko Yoshida. Formalising java rmi with explicit code mo-
bility. In OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN conference
on Object oriented programming, systems, languages, and applications, pages 403–422,
New York, NY, USA, 2005. ACM Press.

[3] Jonathan Erik Aldrich. Using types to enforce architectural structure. PhD thesis,
2003. Chair-Craig Chambers and Chair-David Notkin.

[4] Christopher Alexander. The Timeless Way of Building. Oxford University Press, New
York, 1979.

[5] Deepak Alur, Dan Malks, John Crupi, Grady Booch, and Martin Fowler. Core J2EE
Patterns (Core Design Series): Best Practices and Design Strategies. Sun Microsys-
tems, Inc., Mountain View, CA, USA, 2003.

[6] Eclipse AspectJ. Aspectj. http://www.eclipse.org/aspectj/.

[7] Luis Daniel Benavides Navarro, Mario Südholt, Rémi Douence, and Jean-Marc
Menaud. Invasive patterns: aspect-based adaptation of distributed applications. In
4th International Workshop on Coordination and Adaptation Techniques for Software
Entities (WCAT’07) at the 21st European Conference on Object-Oriented Program-
ming ECOOP’07, July 2007.

[8] Luis Daniel Benavides Navarro, Mario Südholt, Wim Vanderperren, Bruno De Fraine,
and Davy Suvée. Explicitly distributed AOP using AWED. In Proceedings of the 5th
Int. ACM Conf. on Aspect-Oriented Software Development (AOSD’06). ACM Press,
March 2006.

[9] Nelio Cacho, Claudio Sant’Anna, Eduardo Figueiredo, Alessandro Garcia, Thais
Batista, and Carlos Lucena. Composing design patterns: a scalability study of aspect-
oriented programming. In AOSD ’06: Proceedings of the 5th international conference
on Aspect-oriented software development, pages 109–121, New York, NY, USA, 2006.
ACM Press.

77



[10] Siobhán Clarke and Robert Walker. Composition patterns: an approach to designing
reusable aspects. In ICSE ’01: Proceedings of the 23rd International Conference
on Software Engineering, pages 5–14, Washington, DC, USA, 2001. IEEE Computer
Society.

[11] Adrian Colyer and Andrew Clement. Large-scale aosd for middleware. In AOSD ’04:
Proceedings of the 3rd international conference on Aspect-oriented software develop-
ment, pages 56–65, New York, NY, USA, 2004. ACM Press.

[12] Carlos Cunha, Joao Sobral, and Miguel Monteiro. Reusable aspect-oriented implemen-
tations of concurrency patterns and mechanisms. In AOSD ’06: Proceedings of the
5th international conference on Aspect-oriented software development, pages 134–145,
New York, NY, USA, 2006. ACM Press.

[13] Simon Denier, Herv Albin-Amiot, and Pierre Cointe. Expression and composition
of design patterns with aspects. In AOSD ’05: Proceedings of the 4th international
conference on Aspect-oriented software development, 4, rue du Chteau de lraudire,
44324 Nantes France, 2006.

[14] J. Easton et al. Patterns: Emerging Patterns for Enterprise Grids. IBM Redbooks.
IBM, June 2006. http://publib-b.boulder.ibm.com/abstracts/sg246 682.html.

[15] The Apache Software Foundation. Activemq. http://activemq.apache.org/.

[16] B De Fraine, W Vanderperren, D Suvee, and Johan Brichau. Jumping aspects revis-
ited. In DAW 2005, Chicago, USA, 2005.

[17] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Professional, 1995.

[18] Alessandro Garcia, Cláudio Sant’Anna, Eduardo Figueiredo, Uirá; Kulesza, Carlos
Lucena, and Arndt von Staa. Modularizing design patterns with aspects: a quantita-
tive study. In AOSD ’05: Proceedings of the 4th international conference on Aspect-
oriented software development, pages 3–14, New York, NY, USA, 2005. ACM Press.

[19] Jan Hannemann and Gregor Kiczales. Design pattern implementation in java and
aspectj. In OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages 161–173,
New York, NY, USA, 2002. ACM Press.

[20] IBM. Ibm websphere application server. http://www.ibm.com/developerworks/websphere.

[21] JBoss. Jboss cache. http://labs.jboss.com/jbosscache/.

[22] JBoss. Jbossaop. http://labs.jboss.com/portal/jbossaop.

78



[23] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Akşit
and Satoshi Matsuoka, editors, Proceedings European Conference on Object-Oriented
Programming, volume 1241, pages 220–242. Springer-Verlag, Berlin, Heidelberg, and
New York, 1997.

[24] Ralf Lämmel. Declarative aspect-oriented programming. In Olivier Danvy, edi-
tor, Proceedings PEPM’99, 1999 ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-Based Program Manipulation PEPM’99, San Antonio (Texas), BRICS
Notes Series NS-99-1, pages 131–146, January 1999.

[25] Douglas Lea and Doug Lea. Concurrent Programming in Java: Design Principles and
Patterns. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1996.

[26] Roberto Lopez-Herrejon, Don Batory, and Christian Lengauer. A disciplined approach
to aspect composition. In PEPM ’06: Proceedings of the 2006 ACM SIGPLAN sympo-
sium on Partial evaluation and semantics-based program manipulation, pages 68–77,
New York, NY, USA, 2006. ACM Press.

[27] Kiminori Matsuzaki, Hideya Iwasaki, Kento Emoto, and Zhenjiang Hu. A library
of constructive skeletons for sequential style of parallel programming. In InfoScale
’06: Proceedings of the 1st international conference on Scalable information systems,
page 13, New York, NY, USA, 2006. ACM Press.

[28] Microsoft. Microsoft dotnet. http://msdn2.microsoft.com/en-
us/netframework/default.aspx.

[29] Sun Microsystems. Java platform, enterprise edition (java ee).
http://java.sun.com/javaee/.

[30] Thomas J. Mowbray and Raphael C. Malveau. CORBA design patterns. John Wiley
& Sons, Inc., New York, NY, USA, 1997.

[31] Luis Daniel Benavides Navarro, Christa Schwanninger, Robert Sobotzik, and Mario
Südholt. ATOLL: aspect-oriented toll system. In ACP4IS ’07: Proceedings of the 6th
workshop on Aspects, components, and patterns for infrastructure software, page 7,
New York, NY, USA, 2007. ACM Press.

[32] Luis Daniel Benavides Navarro, Mario Sdholt, Wim Vanderperren, and Bart Ver-
heecke. Modularization of distributed web services using Aspects With Explicit Dis-
tribution (AWED), 2006.

[33] M. Nishizawa, S. Chiba, and M. Tatsubori. Remote pointcut – a language construct
for distributed aop, 2004.

[34] Object Management Group OMG. Corba common object request broker architecture.
www.omg.org/corba/.

79



[35] University of Waterloo Programming Languages Group.
http://plg.uwaterloo.ca/%7Eusystem/uC++.html.

[36] Bo I. Sandén. Concurrent design patterns for resource sharing. In TRI-Ada ’97:
Proceedings of the conference on TRI-Ada ’97, pages 173–183, New York, NY, USA,
1997. ACM Press.

[37] Douglas Schmidt. Design patterns, pattern languages, and frameworks, 09 2006.

[38] Smalltalk. Smalltalk. http://www.smalltalk.org.

[39] Sergio Soares, Eduardo Laureano, and Paulo Borba. Implementing distribution and
persistence aspects with aspectj. In OOPSLA ’02: Proceedings of the 17th ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and ap-
plications, pages 174–190, New York, NY, USA, 2002. ACM Press.

[40] Davy Suvée, Wim Vanderperren, and Viviane Jonckers. Jasco: an aspect-oriented
approach tailored for component based software development. In AOSD ’03: Pro-
ceedings of the 2nd international conference on Aspect-oriented software development,
pages 21–29, New York, NY, USA, 2003. ACM Press.

[41] System and Vrije Universiteit Brussel Software Engineering Lab. Jasco.
http://ssel.vub.ac.be/jasco/.

[42] Éric Tanter. Aspects of composition in the Reflex AOP kernel. In Proceedings of
the 5th International Symposium on Software Composition (SC 2006), volume 4089,
pages 98–113, Vienna, Austria, March 2006.

[43] Éric Tanter. An extensible kernel language for AOP. In Proceedings of AOSD Work-
shop on Open and Dynamic Aspect Languages, Bonn, Germany, 2006.

[44] Éric Tanter and Rodolfo Toledo. A versatile kernel for distributed aop. In Proceedings
of the IFIP International Conference on Distributed Applications and Interoperable
Systems (DAIS 2006), volume 4025 of Lecture Notes in Computer Science, pages 316–
331, Bologna, Italy, 2006. Springer-Verlag.

[45] Rodolfo Toledo, Éric Tanter, José Piquer, Denis Caromel, and Mario Leyton. Using
ReflexD for a Grid solution to the n-queens problem. In Proceedings of the CoreGRID
Integration Workshop, pages 37–48, Cracow, Poland, October 2006.

[46] Wim Vanderperren and Davy Suvée. Optimizing JAsCo dynamic AOP through
HotSwap and Jutta. In Robert Filman, Michael Haupt, Katharina Mehner, and Mira
Mezini, editors, DAW: Dynamic Aspects Workshop, pages 120–134, March 2004.

[47] Eric G. Wagner. From algebras to programming languages. In STOC ’73: Proceedings
of the fifth annual ACM symposium on Theory of computing, pages 214–223, New
York, NY, USA, 1973. ACM Press.

80



[48] Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. A semantics for advice
and dynamic join points in aspect-oriented programming. ACM Trans. Program. Lang.
Syst., 26(5):890–910, 2004.

[49] Yasuhiko Yokote and Mario Tokoro. The design and implementation of concurrent
smalltalk. In OOPLSA ’86: Conference proceedings on Object-oriented programming
systems, languages and applications, pages 331–340, New York, NY, USA, 1986. ACM
Press.

[50] Uwe Zdun and Paris Avgeriou. Modeling architectural patterns using architectural
primitives. In OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN con-
ference on Object oriented programming, systems, languages, and applications, pages
133–146, New York, NY, USA, 2005. ACM Press.

81



Appendix A

Current AWED syntax

// Aspects

Asp ::= [Depl] [Inst] [Shar] aspect Id ’{’ {Decl} ’}’
Depl ::= single | all

Inst ::= perthread | perobject | perclass | perbinding

Shar ::= local | globalall | inst | Group

Decl ::= [Shar] JVarD | PcDecl | Ad
PcDecl ::= pointcut Id({Par}) : Pc

// Pointcuts

Pc ::= call(MSig) | execution(MSig)
| get(FSig) | set(FSig)
| cflow(Pc) | Seq
| host(Group) | on(Group[, Select])
| args({Arg}) | passbyval({Id})
| eq(JExp, JExp) | if(JExp)
| within(Type) | target({Type})
| Pc ‖ Pc | Pc && Pc | !Pc

Seq ::= [Id:] seq({Step}) | step(Id,Id)
Step ::= [Id:] Pc [→ Target ]
Target ::= Id | Id Target
Group ::= {Hosts}
Host ::= localhost | jphost | ”ip:port”

| GroupId
GroupId ::= String
Select ::= Jclass

82



// Advice

Ad ::= [syncex] | Pos({Par}) : PcAppl ’{’ {Body} ’}’
Pos ::= before | after | around

PcAppl ::= Id({Par})
Body ::= Jstmt | proceed({Arg}) | | localproceed({Arg})

| addGroup(Group) | removeGroup(Group)

// Standard rules (intensionally defined)

MSig , FSig ::= // method, field signatures (AspectJ-style)
Type ::= // type expressions
Arg ,Par ::= // argument, parameter expressions (AspectJ-style)
Id ::= // identifier
Ip,Port ::= // integer expressions
JClass ::= // Java class name
JExp ::= // Java expressions
JStmt ::= // Java statement
JVarD ::= // Java variable declaration

83


	Introduction
	State of the Art
	Patterns
	Sequential patterns
	Concurrent patterns
	Distributed patterns
	AOP and pattern composition
	Lessons learned

	AOP and distribution
	Parallel and distributed programming
	Sequential AOP and Frameworks for distribution
	Distributed AOP
	Lessons learned

	Conclusions

	Pattern Implementation with distributed AOP
	Concurrent Pattern implementation
	Synchronization mechanism
	One way pattern
	Waiting Guards
	Active object
	Lessons Learned

	Distributed Pattern implementation
	Model Viewer Controller
	Data Access Object
	Lessons Learned

	Conclusions

	AWED Prime language
	Motivation for AWED language extensions
	Master Slave pattern
	Publish Subscribe pattern

	Overview of AWED
	AWED language
	AWED language implementation, DJAsCo

	AWED Prime
	Syntax
	Semantics
	Overview of AWED Prime implementation

	Conclusions

	AWED Prime application examples
	Master Slave pattern
	Apache ActiveMQ 
	Motivation for distributed AOP and overview of application of AWED Prime

	Conclusions

	Conclusions
	Current AWED syntax

