
Vrije Universiteit Brussel - Belgium
Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes - France

2003

V
R

IJ
E

UNIVERSITEIT BRUSSE
L

S
C

IE
N

TIA VINCERE TENEBR
A

S

ECOLE DES MINES DE NANTES

Component Generators:
Towards Adaptable and Efficient

Software Components

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange)

By: Diego Hernán De Sogos

Promoter: Prof. Theo D’Hondt (Vrije Universiteit Brussel)
Co-Promoter: Jacques Noyé (Ecole des Mines de Nantes)

To Cintia

Abstract

The notion of Software Component offers to developers a possibility to deliver
self-contained executable pieces of program that can be integrated into a system. Us-
ing components, the software industry can create a market of interchangeable parts
as in many other industries like hardware, automobile, etc. Adaptability is vital in
this kind of markets. However, the type of adaptability offered in existing compo-
nent models relies on customizing components by setting some parameterized values,
keeping unchanged the structure and operation of the component. This superficial
adaptation of software results in inefficient components. Specialization techniques
like partial evaluation or slicing cannot be straightforwardly applied to software com-
ponent implementations, just because the adaptation is done at consumption time,
when implementation is in most cases unavailable.

We propose a software component development process that integrates specializa-
tion techniques while preserving a black-box model of composition. In order to do
that, we extend the definition of a component to include specialization opportuni-
ties as part of its interface. To avoid breaking the black-box model, we replace the
delivery of a single component by the delivery of a component generator, which will
be in charge of producing specialized versions for each of the published specializa-
tion opportunities (this kind of generator can be conceived as a generating extension,
widely studied in the field of partial evaluation). Specialization can be automatically
triggered when the consumer, instead of connecting components, put component gen-
erators together and provides the concrete values for specialization.

This work differentiates from previous efforts in the sense that specializable com-
ponents can be delivered without determining static dependencies with other compo-
nents (i.e. required services).

Keywords: software component, adaptation, program specialization, efficiency,
partial evaluation, component generator, generating extension, black-box model.

v

Acknowledgements

Firstly, a big thank you to both my supervisors for their time, effort, support, advice
and guidance over this work: Jacques Noyé for his constructive criticism and helpful
suggestions; Gustavo Bobeff for helping me in everything and always trusting me.

Thanks to the rest of the students and professors of the Ecole de Mines de Nantes
that have permit me to be part of their lives.

Special thanks to Gustavo Bobeff’s family, for their solidarity and support of every
day.

Thank you to Gustavo Rossi for his support and trust. Thanks to all the staff of
excellent people that form the LIFIA.

Thank you to my family for their moral support, and for putting up with me
during the whole year. Heartfelt thanks to my mother for always being there when I
needed and for their unfailing faith in me. Thank you to Miguel for always trusting
us. To my brother, Pablo, for daring to follow his dreams. To Flabio, to hold us
always in his heart.

Words cannot express my gratitude to my fiancee, Cintia, who frequently knows
me better than I know myself, I could not do anything without her.

I am grateful also to all the other friends who have repeatedly told me that I can
do it. A special word of thanks to great friend and colleague Federico Naso, who
motivated me to make this Master.

Thanks to all of you.

Diego De Sogos
Nantes, France
August 22, 2003

vii

Table of Contents

Abstract v

Acknowledgements vii

Table of Contents ix

List of Figures xiii

1 Introduction 1
1.1 Contribution . 2
1.2 Standpoint . 3
1.3 Overview . 4

2 Software Components 7
2.1 Introduction . 7
2.2 A Background . 7
2.3 Component Orientation . 8

2.3.1 Benefits . 10
2.3.2 Differences with Objects and Modules 11

2.4 Building Components . 12
2.4.1 Granularity . 12
2.4.2 Interface Specification . 13
2.4.3 Compositional Model . 14
2.4.4 Independent Extensibility . 15

2.5 Component Life Cycle . 15

3 Producing Adaptable Software Components 19
3.1 Introduction . 19
3.2 Degrees of Adaptation . 20
3.3 Efficiency–Adaptability Trade-off . 21
3.4 Dealing with Efficient Components 21

ix

4 Program Specialization 25
4.1 Introduction . 25
4.2 Partial Evaluation . 26

4.2.1 Binding-Time Analysis . 27
4.3 Generating Extensions . 29

5 A Component Declaration Language 33
5.1 Introduction . 33
5.2 Component Declaration Language (CDL) 34

5.2.1 Syntax . 35
5.2.2 Example . 37
5.2.3 Static Architecture . 38
5.2.4 Component Instantiation . 38

5.3 Component Implementation . 39
5.3.1 Example . 40

6 Specialization Scenarios 43
6.1 Introduction . 43
6.2 Independence of Specialization Opportunities 44
6.3 Declaring Specialization Scenarios . 45

6.3.1 Syntax . 46
6.3.2 Example . 49

7 Component Generators (CG) 51
7.1 Introduction . 51
7.2 CG Philosophy . 52

7.2.1 Advantages and Drawbacks 54
7.3 CG Declaration . 55

7.3.1 Syntax . 55
7.3.2 Example . 56

7.4 Composing CGs . 57
7.5 Interaction Between CGs . 57

7.5.1 CG Interfaces . 60
7.5.2 Concrete and Declared Specialization Scenarios 61

8 Putting the Pieces Together 63
8.1 Introduction . 63
8.2 Production and Delivery of CGs . 63

8.2.1 Example of CG Implementation 65
8.3 Building a CG Generator . 68
8.4 Verification, Analysis and Deployment 70

x

8.4.1 CDL Verification and Code Generation 70
8.4.2 Binding-Time Analyzer . 71
8.4.3 Deployment Unit . 71

8.5 The Proposed Model . 71
8.6 The CG Generator Prototype . 72

9 Conclusion 77
9.1 Related Work . 77
9.2 Future Work . 78
9.3 Conclusions . 79

Bibliography 85

xi

List of Figures

1.1 Working with self-specializable and independently deployed components 4

2.1 Graphical representation of a component 9
2.2 A compound component consisting of two subcomponents 14
2.3 Component life cycle . 16

3.1 No specification of required services during component deployment . . 23

4.1 A partial evaluator . 26
4.2 Annotated abstract syntax tree for power function 28
4.3 Annotated AST complemented with action annotations 29
4.4 A generator of program generators 30

5.1 A compound component connecting two subcomponents 37
5.2 A component declaring two subcomponents of the same type 39

6.1 Dependencies between independently produced components 44
6.2 Dependencies in compound components 45

7.1 Propagation of adaptation information and component generation . . 53
7.2 Interaction between CGs . 59

8.1 Producer’s perspective: CG generation 64
8.2 Consumer’s perspective: CG execution 65
8.3 CG for the Pow component . 69
8.4 Software component specialization model 72
8.5 The CG generator plugin . 74
8.6 The generated CG . 75

xiii

Chapter 1

Introduction

How to produce adaptable software components without sacrificing neither efficiency
nor adaptation? We try to offer an answer to this problem focusing on components
as adaptable software delivered in a real black-box fashion at consumption time but
prepared for specialization at production time. There are similar approaches pro-
posed, however, to our knowledge, none of them cover the components perspective
we are interested in: they are limited to deal with software components as modules
or libraries.

Nowadays, the software industry is devoted to producing highly adaptable (cus-
tomizable)1 software systems, usually built from components. We can see a software
component as a unit of deployment. Producers deliver components having as basic
and fundamental premise reuse, and therefore generic functionality. But these ad-
vantages do not come for free. Delivering flexible, easy to adapt, and maintainable
pieces of software is typically accompanied by a loss of efficiency. This inefficiency is
due to two main characteristics of this kind of architectures. The first one has to do
with the adaptation and flexibility: because of the many execution contexts that a
component has to manage, it has to anticipate any possible variation and provide the
appropriate functionality in such a context. The second one has to do with the com-
ponent architecture itself: communication between components must follow explicit
contracts and computations often traverse component connectors, constant verifica-
tions of parameters types, etc. that slow down the whole system in comparison with
straight connections between them.

Specialization techniques like partial evaluation [14, 28, 11, 43] and slicing [41,
48] cover this issue but they enforce a strong relationship between the component
producer and its consumers. These techniques commonly take a complete system
implementation and static information (usually configuration information to work in
a specific context) as input and produce a specialized version for the input values.

1During the rest of the work, we will refer to the terms adaptation and customization indistinctly.

1

2 CHAPTER 1. INTRODUCTION

Nevertheless, when deploying a component, there is not a whole system to specialize,
but fragments of it. Efficient specialization can be done by the producer once she
knows how her component will be used. However, in a component market, one of the
key aspects is that the producer does not know where and how the component will
be used. In fact, it is only at component instantiation within a complete application
that it can be specialized.

A promising solution is the usage of generating extensions [21]. Basically the idea
is as follows: the producer can deliver a generating extension for a given compo-
nent instead of the component itself. Then, when a consumer combines and applies
the generating extension in a concrete situation, it is the generating extension by
itself which will produce (once the necessary information has been collected) the final
specialized component.

The existing literature about generating extensions [8, 20, 30, 21, 25, 6] considers
a generator as an independent piece of software that produces a single final product
(unrelated to other software pieces). In terms of components it is not possible to do
that, the generating extension is built by the producer and at that time the rest of the
components involved is not known, therefore the resulting generating extension cannot
operate in a stand-alone way. We can say that a component generating extension is
not autonomous, it requires to interact at specialization time with other generating
extensions (possibly developed by different producers) in order to generate the final
specialization of a component.

1.1 Contribution

This thesis proposes a model that adapts generating extensions so that they can be
used as component generators. We focus our work on the construction of a compo-
nent generator generator, that is, a program that automatically builds a special kind
of generating extension from a source component. As far as we know, none of the
existing specialization models can be applied to a pure component system, unlike the
one proposed in this work. As we argued above, most of the current models for adapt-
able components fall short of a complete decoupling of production and consumption
time in the component life cycle, an important issue when thinking of a component
market and the delivery of real black-box components to the user. We follow the po-
sition stated in [7] attacking this weakness by combining the adaptation techniques
of declaring specialization opportunities as part of the component interface with the
idea of component generators forming the core of the delivered final product.

The presented model is not intended to be complete but to offer a minimal core
to make it easy to reason about component specialization in the presented context.
This work gives a conceptual point of view of the proposed model without neglecting

1.2. STANDPOINT 3

some details on a possible implementation of it.

We have explored the feasibility of the approach by working on a prototypical
version of a code generator generator (one of the core parts of our model). We have
used the Eclipse [26] platform which is delivered with a full featured Java [4] integrated
development environment (IDE). Eclipse provides a Java development tooling (JDT)
that allows users to write, compile and edit programs written in the Java programming
language, specially by programmatically manipulating the Java source traversing its
abstract syntax tree, one of the main activities tied to the construction of a program
generator generators.

Although it is not indispensable, the reader should have some knowledge of Java
in order to better understand the cases exposed. Even if our model is conceived in
a more abstract way, the material presented in this thesis is tied to the way we have
chosen to implement the prototype and almost all the examples as well as any new
syntactic construction use a Java-like syntax.

Nevertheless, the reader should note that the present work is only a first step
towards a concrete implementation of the proposed model. Its focus is on the concepts
as well as the main design issues behind the proposal.

1.2 Standpoint

Let us consider the figure 1.1. The figure shows our point of view about working with
adaptable components2. The difference with other component models relies on the
way the components are acquired, combined, and how the specialized version of each
of them is obtained. A specializable component is able to produce specialized versions
of itself according to the context where it will be executed. Producers deliver special-
izable components requiring some functionality without specifying which component
will provide it (this is the case of producer A in the figure, neither A nor B know
each other). The common ground between different producers that permits that their
components communicate together are the published interfaces (in the figure, there
is an interface X, which declares the functionality required by A and provided by
B). A consumer acquires specializable components produced from different sources
and combine them, binding required and provided functionality. Once combined, the
consumer runs the specializable component with the customized values as input. The
specialized component is generated automatically as a result of the combination of
the specialization of both A and B.

There are several concepts behind the proposed architecture like the common pub-
lished interface, component market, their participants (consumers and producers), the

2In fact, adaptation is achieved through a specialization of the component to the usage context,
according to the possibilities offered by the producer (and its target market).

4 CHAPTER 1. INTRODUCTION

Figure 1.1: Working with self-specializable and independently deployed components

component model (a declaration language and its implementation), the specification
of the specialization opportunities, generation of specializable components, the com-
bination and execution processes, etc. Those are the issues that will be addressed
and discussed during the rest of this work.

1.3 Overview

This work is organized as follows:

The next three chapters present the main concepts, give background about what
components and specialization are about, offering our point of view on terms like
components or adaptation. In chapter 2, we introduce the notion of software com-
ponents, and give some definitions used in the rest of the thesis. Chapter 3, states

1.3. OVERVIEW 5

the problem facing adaptable but efficient software component development. Our
solution is related to building automatized program specializers, the corresponding
concepts and terminology are explained in chapter 4.

The rest of the work is dedicated to explaining our proposal to deal with adaptable
and efficient software components. Chapter 5 introduces a basic component declara-
tion language that can be used to implement software components in any language,
however in our work we have focused our attention to a possible Java implementa-
tion of it (in fact, we have chosen Java to show a prototypical version of part of our
proposal). The next chapter, 6, introduces specialization scenarios, offering a syntac-
tic description explicitly declaring specialization opportunities over a given software
component. Chapter 7, about component generators (CG), covers the main concept
behind our model. We explain how CGs can be used to obtain adaptable components,
we define a language to describe the relationships between them, and we discuss about
how they can interact with each other to produce a specialized version of a compo-
nent. In chapter 8, we present some examples and we also give some guidelines about
how a CG generator can be built, that is, a program that automatically generates a
component generator from a component implementation. We also offer an overview
of the whole model, describing briefly the rest of the pieces that are beyond the scope
of this work. Finally, we present some details about the prototype of a CG generator
that we have made.

Last, chapter 9 comments related work as well as possible future work. A conclu-
sion ends the dissertation.

Chapter 2

Software Components

This chapter defines the term software component and give some definitions about
several concepts related to it, such as interfaces, contracts, compositional model, and
life cycle.

2.1 Introduction

Software components have become common words in modern software developments.
However, their meaning is quite varied. In some cases components are abstractions
and appear only at design level, as in most of architectural description languages
(ADL). In some development tools, components are graphic user interface (GUI) ele-
ments like buttons or windows. We are interested in software components as building
blocks of complete software system (not only of GUI aspects), and more precisely in
their conception as executable and independently developed pieces of software. In this
chapter, we present the concepts around software components widely accepted in the
software community, and introduce our point of view of what a software component
is about.

2.2 A Background

Historically, development of software products started with building software pieces
dedicated to a specific domain and highly tied to it. These pieces presented a mono-
lithic structure that made hard (or impossible) any attempt of reuse (beyond of
copying and pasting pieces amongst programs with similar domains).

One of the disadvantages of traditional custom-made software is its maintenance
cost and lack of inter-operability in a world of continuous changes (even when the

7

8 CHAPTER 2. SOFTWARE COMPONENTS

software was designed for a specific domain, the rapid changes in its environment
made obsolete any possible adaptation before it could be productive).

By looking at the hardware industry where the reuse of electronic pieces (pre-
built blocks) had proved to be a very useful technique, it turned out that the same
reasoning about creating reusable piece can be applied to the software development
helping to deal with the constant development of new software that becomes more
complex and bigger day-to-day.

With object-oriented technologies this kind of development is even more natural.
The reuse usually practiced within this technology is the reuse of concrete classes.
This kind of reuse presupposes implementations (classes) of well-defined and elabo-
rated concepts without making assumptions about collaborations with other classes
(that are not part of the same system). One main disadvantage here is that prefab-
ricated code can only be used by new code and not vice versa (the case of legacy
systems), which would be very useful in order to make larger structural concepts or
frameworks reusable.

With the idea of factoring out as much as possible from the implementations in or-
der to get more reusable classes, abstract classes together with frameworks appeared.
Reusable groups of collaborating abstract classes and concrete classes that define a
common behavior and structure of various possible applications (within a defined do-
main) are called application frameworks [50]. One purpose of frameworks is to factor
out as much common code as possible into reusable classes, frameworks provide a
skeleton that developers can specialize in different ways. It works well as long as the
applications share similar structures. However, if we need to alter such a structure it
becomes significantly difficult because it is embedded in the framework (the advantage
of a provided skeleton becomes a disadvantage from this point of view). Moreover,
frameworks are inherently complex, which requires a lot of expertise in order to mas-
ter them. Even very elaborated frameworks became inflexible when requirements
grow along the time. This kind of deficiencies in the object-oriented paradigm lead
us to the next step in the research of reusable piece of software: components.

2.3 Component Orientation

A possible definition about what a component is:

A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component
can be deployed independently and is subject to composition by third par-
ties.

Szyperski and Pfister. ECOOP’96, Workshop on Component-Oriented Programming

2.3. COMPONENT ORIENTATION 9

This definition covers technical aspects like compositional model, interfaces and
independent deployment but it also implies the existence of a component market given
by third parties composition.

For a component to be independently deployed it has to be well separated from
its environment and from other components. This is achieved by defining explicit
contracts between the components. We can say that a component can interact (can be
combined) with another one, if both respect a published contract. Usually, contracts
involve the definition of provided and required services.

We will call service a functionality provided or required by a component. It is
defined by a set of method, procedure or function signatures (or any other way of
modularizing a functionality). For example, a component that work with images
could provide the service Rendering (with functions like render(image)), and it
may require a service Math (including functions like multiply(matrix)).

Explicit context dependencies determine what the deployment environment will
require so that the component works properly. Components have a compositional
nature, they are units that can be combined following certain rules to obtain more
complex units. The explicit context dependencies may include rules of composition
(rejecting compositions that satisfy required-provided services but do not obey the
rule), deployment, installation and activation of the component. Those context de-
pendencies are part of the component specification.

Because a component must be able to interact in many different contexts it has to
provide very general contracts, it must deal with generic provided services. Therefore,
a component requiring a service provided by another component has to be prepared
to work with any kind (at least a wide variety) of different implementations of those
required services.

Figure 2.1 shows how we represent graphically a component. A component is
represented by a shadowed box. The outgoing provided services (grey figures in the
right side of the box) can be connected to the required services of another component
(filling the space outlined by white figures drawn in the left side of the box).

Figure 2.1: Graphical representation of a component

10 CHAPTER 2. SOFTWARE COMPONENTS

Required and provided services of a component contracts are usually specified with
interfaces (see below 2.4.2). An interface specifies a set of named operations with
associated semantics: two interfaces may provide an operation of the same name
(receiving the same parameters and producing the same type of output), however,
they might produce a different value as output because the meaning assigned to the
operation is different.

Interfaces do not only connect components but also allow the communication of
two different actors in the life of the component, the producer and the consumer. In a
component setting, providers and consumers are ignorant of each other, so interfaces
that allow proper configurations become the common ground between them.

Producers and consumers are the participants of a component market where in-
terfaces are published and components are delivered and acquired. The success of a
component market will depend on how well defined and standardized are the inter-
faces that allow producers and consumers to use and to compose the components. If a
component offers a lot of services, but it provides such services through non standard
or well known interfaces, then that component has no market (it will not be used by
any third party because it cannot be successfully composed with other components).

2.3.1 Benefits

Software components help to fulfill two key premises of the software engineering pro-
cess:

• to decrease production costs reusing existing, software

• to enable easier maintenance of delivered systems.

Components have been quite successfully in producing reusable pieces that evolve
with time and in dealing with increasing complexity. Component-based software de-
velopment consists of assembling systems using independent but plugable parts (the
components). The key difference between composing classes and component is pre-
cisely the independence of the components, a part makes no assumptions about which
other part will be plugged into it. Of course, there must be some kind of configuration
of the component in order to be able to communicate with the other parts and to get
proper interaction between the assembled parts. This generic behavior as well as the
capability for configuration (and adaptation) are essentials in a world of components.

The upgrade cycle of software affects any traditional system. Fully integrated
systems require periodic upgrades (migration of old databases, new hardware, com-
patibility between existing pieces of software, etc). Software components replace the
maintenance based on changes in software and architecture implementation, by a
maintenance based on software evolution. If a new version of a component is avail-
able then the system can evolve just by unplugging the old version and re-plugging

2.3. COMPONENT ORIENTATION 11

the new one (because it is the same component, it must respect established contracts).
In some cases, where there is a major evolution of the system, it may be necessary to
also modify the architecture. In traditional environments, a change in the architec-
ture might be done implicitly during a change in the implementation, making future
maintenance harder. Using components, a change in the architecture is forced to be
done in an explicit way, it implies adding different contracts and relationships (oth-
erwise components will not be able to interact each other and the system will stop
working), again helping maintenance.

2.3.2 Differences with Objects and Modules

The high-level specification of functionality and encapsulation of the implementation
may lead us to think of a component as an object. Components differ from objects
in the sense that a component encompass a complete functionality in an autonomous
fashion. Their main advantages are genericity (and consequently reusability) and in-
dependency. If we also consider that the implementation of a component is completely
independent from its declaration and configuration, then we can put components and
objects on different levels: components are associated to an architectural view of the
system, while objects are strongly associated with the implementation level. Note
that a complete decoupling of architecture and implementation could not be very
healthy for system evolution, it may allow inconsistencies, causing confusion, violat-
ing architectural properties, and making the system hard to understand1.

Although object-oriented programming is not a prerequisite for components, most
of the modern component models are implemented by means of one or more classes.
A component encapsulates the implementation and makes the services accessible
through public interfaces. Components and objects are orthogonal concepts, and
by taking the object-oriented perspective we can benefit of their advantages within
the component field.

So far, it seems that components are closer to what modules are. Modules have
always been used to package multiple entities, such as abstract data types or indeed
classes, into one unit. Unlike classes (which normally cannot be deployed as indepen-
dent units of execution), modules can be seen as minimal components, for example, a
graphic library which provides services implemented in a functional or object-oriented
way. However, some of the key aspects of components are adaptability and configu-
ration, which are not allowed with modules. Modules tend to depend statically on
implementations of other modules, those imports are hardwired as constants in the
code (for example, module inter-dependencies), it makes impossible to adapt it with-
out rebuilding the module: components can be deployed declaring some services as

1ArchJava [2] is one of the approaches trying to keep closer architecture specification and imple-
mentation.

12 CHAPTER 2. SOFTWARE COMPONENTS

required, without the need to explicitly hard-code the component that will provide
such a service. Obviously, modularity is a desired property and it must be part of
what a component is.

2.4 Building Components

Often single object-oriented classes or white-box frameworks are hard to reuse be-
cause many internals have to be understood before the white box can be reused.
The characteristics of self-contained units with explicit interfaces for connecting ele-
ments naturally leads us in a black-box component model approach. This is the view
adopted for most of the existing component models like Enterprise JavaBeans [33] or
CORBA [5].

Decisions about what should be a component (what things can be encapsulated
and treated as a unit) and how it can be built (contract declaration, composition,
implementation) involves the following issues:

1. Granularity, how small or big should it be.

2. Interface specification, that is, its provided and required services.

3. Composition model, how to compose components, what are the rules for com-
posing components.

4. Independent extensibility, a deployed unit should be extensible with other units
independently deployed.

Next, we explain in more detail each of these issues.

2.4.1 Granularity

What are the elements inside each black-box component? Because in most cases, we
will end up with an object-oriented implementation, it can be hard to think about
what parts of our object model can be encapsulated as a component. In [47], Szyper-
ski lists some aspects to be taken into account when determining the appropriate
granularity of a component such as common reuse, releasability, reusability and local
changeability.

To decide what things can be grouped and considered as a component is it neces-
sary to understand better what we are talking about when we say self-contained units.
An important aspect of self-contained components is the common reuse that we can
do with such a unit: the computational parts present in a component should be used

2.4. BUILDING COMPONENTS 13

together. Common reuse is the basic rule to select the granularity for a component.
An important part of common reuse is the notion of coupling and cohesion [37].

A self-contained component should be a releasable and reusable entity. These
issues are related to the granularity as well. We can ensure version compatibility
quite easily for a self-contained black-box component, but it is hard for a single class
or a complex framework. Therefore, releasability and reusability can help us to decide
if some degree of granularity is appropriate or not: if reuse/release equivalence does
not hold, we may have chosen the wrong granularity.

Another important aspect is local changeability, that is, components should be
designed in a way such that changes only apply locally to the component, but are
unlikely to affect other components (this is mainly acquired by strictly allowing the
communication between components by means of required or provided interfaces).
Local changeability is another restriction to find self-contained entities: computa-
tional structures forming together a similarity group in their expected changes are
good candidates for forming a component.

2.4.2 Interface Specification

Interfaces define the access points of a component. Technically an interface is a set
of named operations that can be invoked by clients (typically other components).
Normally a component can define several interfaces corresponding to different kinds
of services.

The semantics of an operation specification can involve declaration of several
elements like type definition, protocol specification, invariants, etc. This information
needs to be declared in the interface. It serves both providers to implement the
interface and clients to use it.

Because a component and its clients are developed separately, it is the contract
provided by the interface that forms a solid basis for a successful interaction.

In an object-oriented implementation, interfaces are specified as method signa-
tures, and the implementation associated is late bound during method invocation. In
a component system, it is necessary to introduce more control to ensure the right con-
nectivity of components declared in the architecture of the system: as we say above,
interfaces may contain other information beyond a method signature, like invariants
or pre and post conditions. With components, most of component composition re-
lies in parts deployed by third parties, designers cannot make assumptions about the
components beyond the information published in the interfaces.

In a component setting, interfaces are part of the component contracts declaring
what the clients need to do to use it and what the provider has to implement to fulfill
the services it includes. In terms of a single operation declaration, these specifications

14 CHAPTER 2. SOFTWARE COMPONENTS

correspond to pre- and post-conditions for the operation. Clients have to meet the pre-
conditions before calling the operation, and providers have to ensure post-conditions
before returning to the client.

Having interfaces as contracts between components, it is straightforward to define
the substitutability of components: a component A can be safely substituted for
another component B, if B provides at least the same interfaces as A and if B requires
at most the interfaces required by A.

2.4.3 Compositional Model

Compound components can be built by composing atomic components and other
compound components. This distinction should be transparent for clients. This
is a very basic principle for building component-based systems. If components are
built from other components, they should be usable in the same way as the atomic
components in the system. Thus a component concept has to be scalable to be usable
for larger component frameworks. That is, there should not be different interfaces for
using atomic or compound components. A client of a compound component should
not have to be aware of the component construction details.

In most of the existing component models, the composition relationship forms a
directed, acyclic graph. Cyclic component dependencies mean that all parts, involved
in a cycle, have to be released simultaneously. Thus there is a strong dependency in
all members of the cycle. Regarding reliability this means that we may end up with
a system in which nothing works until everything works [38]. It also means that the
developers of different component have to interfere with each other to make changes
to their own code. This breaks local changeability2.

Figure 2.2: A compound component consisting of two subcomponents

2However, some recent proposals, like Jiazzi [34], consider the possibility of cyclic references.
They use techniques like the open class pattern and mixins to keep the local changeability and to
be able to release independently part of the nodes that forms a cyclic graph.

2.5. COMPONENT LIFE CYCLE 15

In figure 2.2 we can see how a compound component can be represented graph-
ically. The subcomponents form the internal structure of the component, which is
hidden to the user. The enclosing component declares two required services (that
are delegated to the left internal subcomponent), and provides one service (the one
really provided by the internal component at the right). Lines between services of
the same kind denote delegation of the service. Within a compound component, all
required or provided services should be connected between them or connected to a
service declared in the enclosing component.

2.4.4 Independent Extensibility

A system is independently extensible if it is extensible and if independently developed
extensions can be combined [46]. There are many examples of this kind of systems,
where the extensions are usually called plugins (maybe one of the first examples can
be the internet browser Netscape Navigator). Most of the time this kind of systems
is one level extensible, in the sense that plugins are not themselves independently
extensible. Components take this property as a recursive construction principle: a
component accepts an extension that (because it is a component) can accept other
extensions and so on.

Thinking this way, we can end up with many small components resulting in a
completely partitioned system. Even if it maximizes reuse, it conflicts with efficiency
and robustness.

Why performance is affected can be easily answered if we think about how expen-
sive is a cross-context call. Having a system partitioned in plenty of subsystems each
of them respecting explicit contracts and consequently constant checking of compat-
ibility and connectivity introduces a prohibitive overhead during service dispatching.
Here, the key to extensible, independent, and efficient system can be to choose the
right granularity for components. We will go back to the discussion about the prob-
lems related to efficient and flexible components in chapter 3.

2.5 Component Life Cycle

Several stages can be recognized in the life cycle of a component [1, 17]; they usu-
ally include implementation, deployment (and assembly), acquisition, configuration
(adaptation), and run time. Though selection of concrete components for subcom-
ponents is usually done at the assembly stage, in different models, for example when
considering third-party components, the component selection may be postponed to
later stages, like the configuration for execution, or also at the run-time stage, in case
of dynamic environments.

16 CHAPTER 2. SOFTWARE COMPONENTS

Component deployment means making the component available for reuse. Com-
ponents are deployed with a specification that typically includes a set of required/pro-
vided interfaces (as mentioned before it composes the contract of the component).
Sometimes a specification of usage can be necessary (which services can be combined
with which others, or a sequence of services that must be followed to obtain the
desired functionality).

With respect to the implementation of a component there are two main different
alternatives: the first one, where the specification and the implementation are inte-
grated in one single language; and the second one (the model chosen in this work),
where the specification is written in a declaration language and the implementation
can be performed in any other programming language. In this last approach, compo-
nents can be implemented by means of one or more classes or even by conventional
procedures.

The implementation of a component forms a self-contained unit of execution that
can be acquired by a consumer (for example through a global component repository,
where each component can be classified by its specification) to combine it with other
components to build a final application or to produce a new component (the consumer
is the producer of a new component).

Figure 2.3: Component life cycle

2.5. COMPONENT LIFE CYCLE 17

These deployed components come with a certain set of configurable aspects3, com-
monly represented by attributes (adaptation information), which are specified at con-
figuration time (when the components are integrated into a running system). Usually,
once the configuration attributes are fixed during the component configuration pro-
cess, they are not allowed to be changed during the rest of the component life. This
restriction guarantees future substitutability of a component for another respecting
the same contract (2.4.2) (otherwise there may be relationships in the system that
could depend on some specific component attribute, because is not part of its config-
uration it could not be provided by a different component when replacing it).

Configuring and executing components is often done in composition environments
by means of scripting and direct linking. We can also consider a top-level compo-
nent (which is a composition of components) as a program by itself (this top level
component encapsulates a given configuration).

So far, we had to distinguish between component configuration attributes and
just component attributes. The first ones are concerned with the specification of
some adaptation of the component during system configuration time, that is, when
components are combined and linked, before runtime. The second ones refer to prop-
erties of a component already adapted to a given context and that may change during
the system execution, this kind of attributes is related to systems where components
are instantiated and consequently different instances can have different internal states.
It is a more pragmatic vision of what components are, closer to object-orientation.
For some authors, components can only exist at configuration level, as elements de-
scribing the architecture of the system; once the system is running, what one really
instantiates and executes are just objects. Note that if we want even more flexible
system where configuration can be changed on the fly (during system execution), com-
ponents should survive the system architecture (they must exist as first-class citizens
at runtime level), otherwise architecture and implementation will not evolve together
making maintenance and system evolution hard (a change of a component property
in execution would not be reflected in the component specification).

3We are using this word in a general sense here, although a link could be drawn to the aspect-
oriented programming.

Chapter 3

Producing Adaptable Software
Components

Components enable software industry to produce reusable and easy to maintain el-
ements. Adaptation plays a main role in these aspect of software industry. Most of
the time adaptation is obtained by delivering quite generic components that, even
when adaptable, become too big as they try to cover all the possibilities. In other
cases, adaptation is reached at the cost of increasing execution time. In both cases,
the efficiency (in terms of required space or runtime execution) is affected.

In this chapter we discuss about the kind of adaptation we are looking for in a
component and why it is hard to obtain efficient and adaptable software components.

3.1 Introduction

Component have to be generic enough to be reusable and therefore to be deliverable
to a wide variety of clients (to have a place in the component market), covering
many different contexts. Most of the time, a component consumer only wants a few
parts of the whole functionality provided by a component (resulting from the needed
genericity). In other cases, the customer will use some service but always applied to
a same subset of values. Components should provide consumers a way to adapt (or
customize) the functionality provided.

We will talk about an adaptable software component as one that uses information
provided by a consumer (or indirectly received from a consumer through other com-
ponents) to configure itself (or through an external tool) in a more convenient way.
We say that the component is adaptable to its execution context.

The genericity required in a component leads to build a piece of software pre-
pared to deal with any possible variant. Usually, components deal with adaptation

19

20 CHAPTER 3. PRODUCING ADAPTABLE SOFTWARE COMPONENTS

restricting their provided services to some configuration values. But this adaptation
falls short of taking advantage of these values to optimize the implementation of the
component, in fact it will contain useless code to handle all the possibilities.

3.2 Degrees of Adaptation

One of the key issues in software industry is reuse. How much a component can be
reused depends of the ability of the component to be adapted (customized) to work
in different contexts.

Adaptation refers to the ability of a component to satisfy requirements related
to the context in which it is used. Most of the modern component architectures
offers component consumers some ways of adapting components. For example, Jav-
aBeans [45, 33] offer the possibility to explicitly declare some attributes (called prop-
erties) as parameters to customize the software component (called bean). This kind
of adaptation relies on setting some execution values and maybe restricting specific
behavior. We can call it functional or behavioral adaptation1.

Reuse concerns can be satisfied with behavioral adaptation, however it is not a
solution to obtain efficient component systems, another important issue within this
industry. If your component is highly customizable and can be adapted to almost any
environment but its average performance is not so good, you still will have problems
to find satisfied consumers.

With behavioral adaptation, the component code remains unchanged. It means
that if the component has to be prepared to work in many different contexts, then its
code has to be generic enough. The result is that the component spends more time
checking contexts and parameter values2 than doing real work.

A second kind of adaptation can be addressed at code level. Code adaptation
aims to take advantage of parameterized values by eliminating unnecessary checking
of such values. It eliminates the generality and consequently produces smaller and
faster programs. However this kind of adaptation is not straightforwardly applicable
to components. It has to do mainly with the way components are delivered, but to
better understand this problem let us start talking about efficient deployment in a
non-component software development.

1Do not confuse this kind of adaptation with the one that consists of changing the functionality
of a component. In this work we are not considering such a kind of adaptation, we focus on how to
adapt a provided functionality to work properly (and more efficiently) in a given context.

2In terms of programming: conditional clauses, switches, double dispatching or many extra pro-
cedure or method calls to solve how to process a service.

3.3. EFFICIENCY–ADAPTABILITY TRADE-OFF 21

3.3 Efficiency–Adaptability Trade-off

When a software is built for a specific context and usage, the software developer
can produce an optimal code for it. Even when at design level there can exist some
concepts and patterns that are applied in order to obtain a piece of software easy
to maintain and to evolve, the final product can be improved in terms of efficient
execution, for example using compiler optimizations such as elimination of dead code
(because of a known execution context). In terms of traditional software development
where the producer and the consumer belong to the same team, there is no problems
to combine efficient software with very flexible and adaptable pieces.

This approach works well until the producer decides that she does not want to
spend time and money developing a part of its product that was already made (and
tested that it works) by other producers (third-party producers). And this is precisely
what components are about: pieces of software produced by third-party developers
that any other developer can use without caring about the details about how they
were built. Using this kind of software implies to obey the contracts published by
their developers (this is the way the producer can guarantee that the component will
work).

Back to the idea of delivering a final optimal product (in terms of execution and
hardware requirements, low execution time, and low memory usage), it is more com-
plicated to get such an efficiency with third-party components. The problem is that
third-party components are delivered in a black-box fashion (and that is precisely the
advantage, developers do not care about implementation issues, just about function-
ality), however, to know how to optimize such a component implies to get into details
about how it is implemented. An objection here could be: why do not third-party
producer already deliver optimized components? The answer lies in that the com-
ponent producers are creating pieces of software that target a wide range of possible
consumers. They even do not know who their clients are and therefore cannot deliver
us specialized software. Moreover, opening the black box and performing some kind
of optimization over it does not make any sense if we think that these components
can be at the same time composed by other third-party development.

On the one hand, a component cannot succeed (in terms of competitive product,
if we think about a component market) if it cannot be used efficiently. On the other
hand, producing an efficient component implies to reduce its scope of usage, which
leads again to a not so useful component.

3.4 Dealing with Efficient Components

Faced to this perspective of component optimization, what are the possibilities?
To improve performance, a component can be manually specialized (which relies

22 CHAPTER 3. PRODUCING ADAPTABLE SOFTWARE COMPONENTS

on the usage of a white-box model, adapting domain specific behavior by eliminating
generic code, for example, that checks for certain conditions, etc). But applying
these systematic modifications of source code could lead to a nightmare in a huge
system. Moreover, this kind of actions are error-prone and lead to maintenance
overheads. As we said before, in terms of software component, it implies that each
time a consumer acquires a component it has to contact the producer to tell her about
how the component will be used, which is of course unrealistic.

The alternative to manual specialization is automatic program specialization [3,
13, 21, 41, 15, 44], a well known technique for removing overheads that are due to
genericity3. The problem with automatic program specialization is that it is not
completely automatic, it needs to be driven by an application developer familiar
with the structure of the program being specialized (in this sense we can say that
automatic program specialization is a white-box technique). This approach relies on
the programmer to code how to customize a program. This presents several problems.
First, the development process continues to be error prone because the programmer
has to take care of both normal computation and code generation; second, testing and
debugging tools rarely deal well with programs that generate programs, which results
in more responsibility on the programmer; and finally, programs are less readable
because they are cluttered with compilation directives and other optimizations for
code generation. Moreover, talking specifically about software components, we face
the same problem of consumer-producer knowledge cited before.

Black-box program specialization [42] deals with this issue by including special-
ization opportunities as part of the component interface. In this way the information
about what are good specializations can be delivered together with the component to
the consumer (this approach emphasizes what to optimize instead of how to do it).
The idea is that once components have been composed and integrated in a system,
the configuration is completed with a step of automatic specialization driven by the
published adaptation opportunities declared in each component. This mechanism is
formalized by Le Meur et al. in a framework to build adaptable software compo-
nents [31]. However, the position taken by Le Meur relies on a modular composition
and declaration of software rather than components. The programmer groups spe-
cialization declarations in a specialization module, as the component code is being
developed. Once the components and their associated specialization modules have
been developed and the consistency between the implementation and the declared spe-
cializations have been checked, they are delivered together. A component consumer
links the components together and specify the concrete specialization values for each
component. Finally a transformation engine takes as input both the adaptable com-
ponent (the component code and its specialization modules) and the user-provided
values, and automatically generates the adapted component ready to be integrated

3This technique will be discussed in more detail in the next chapter.

3.4. DEALING WITH EFFICIENT COMPONENTS 23

in a complete system. Note that this approach considers a reduced view of compo-
nents as modules: any required service is fixed at deployment time, once an adaptable
component is built by the producer (linking implementation and specialization mod-
ules), any dependency with other module is already bound. In fact, the user receives
an adaptable module instead of a component, where she cannot decide which other
components to connect but only specify some parameterized values. What happens
if you want to produce and deliver a component C which provides some service X
and requires a given service Y, where the provider of Y cannot be determined during
deployment of C (figure 3.1)? This approach is not suitable to produce such compo-
nents. All required services need to be bound before the specializable component is
deployed.

Figure 3.1: No specification of required services during component deployment

This last approach to specialization can be modified to adapt it to a component-
based programming model by changing the responsibilities involved in the gener-
ation of the specialized component: instead of having a global configuration step
that produces the specialized version, we can delegate this responsibility to each
component itself, more precisely to what is called the generating extension of the
component [21, 29], which is basically a dedicated component generator (it produces
a specialized version of the initial component4). Back to the example of having a
component with provided service X and required service Y, we can build the gener-
ating extension of this component, which will not fix any specific component for the
required Y, but will be able to connect with other generating extension that provides
Y as services (that it, whose specialization provides such a service). This is the ap-
proach taken in this thesis to deal with this efficiency-adaptation problem. In the
following, we will introduce a basic component model and will propose a model that
allows the automatic creation of this kind of component generators.

4The general concept of generating extension is explained in section 4.3 in next chapter.

Chapter 4

Program Specialization

This chapter presents background information about program specialization, and ex-
plains the concepts of generating extensions and program generators generator, which
are the basis for our model of adaptable software component.

4.1 Introduction

The purpose of program specialization is to automatically transform a generic pro-
gram (or program fragment) into a specialized (and hopefully optimized) version of it
based on information about the context where the program will be executed [29, 41].
In object-oriented environments, specialization can be carried out at a class level by
specializing the methods of the class. The context information can include values of
parameters, constant fields, type information or even properties (e.g. the value of
integer variable x is restricted to positive values). In terms of adaptable components,
the context is composed by the adaptation that a component consumer can apply to
the component in order to integrate it in a bigger system (probably another compo-
nent). A component must be prepared to deal with a range of values, but once such
values are fixed by the consumer, the generic code introduce unnecessary overhead
that can be removed by this technique. We can think about a program specializer as
a function that takes a generic program P and some context information S (part of
input of P, or desired output, etc.) as input and returns a specialized (optimized)
implementation of P for such a S context.

The classic example is the specialization of the function power (using a functional
notation):

power n x = if n=1 then x
else x ∗ power (n − 1) x

We can specialize this function by fixing n to the value 3 (in this case, n will be

25

26 CHAPTER 4. PROGRAM SPECIALIZATION

the static context information S). Which would lead to:

power3 x = x ∗ (x ∗ x)

Which is obviously a better version of power for those cases, where power is always
applied with n fixed to 3.

There are several approaches to program specialization, such as partial evalua-
tion [29], program slicing [41, 48] and some complementary techniques like program
fission and fusion. In this dissertation we focus on partial evaluation as the technique
used to build generating extensions (therefore, component generators).

4.2 Partial Evaluation

Partial evaluation is one of the specialization technique most widely studied overall
in functional [10], logic [32] and imperative [13] environments. In last years there
have been some results in object oriented languages such as C++ [49] and Java [43]
as well.

Partial evaluation is a special form of program specialization where the context in-
formation provided to the specializer consists of part of the input data of the program
to be specialized.

A partial evaluator is a program that takes a source code program P and part
of P input data (sIn, what is called the static data), and produces as result a new
program PsIn (the residual program), which given finally the rest of the input of P
(the dynamic data dIn), will be able to produce the same output than the original P.

Figure 4.1: A partial evaluator

4.2. PARTIAL EVALUATION 27

In figure 4.1, we have represented with rounded boxes the input and output data,
and with shadowed boxes the programs. Note that PsIn can be seen as output data
from the side of the partial evaluator and as a program itself receiving the dynamic
remaining information.

In this way, one could write a highly parameterizable but inefficient program
and afterwards use a partial evaluator to automatically obtain an adapted efficient
version1.

4.2.1 Binding-Time Analysis

Partial evaluation is often staged in two phases: analysis and specialization2. During
analysis, binding-time information is collected and such information is used to guide
the second specialization phase, which consist of the specialization itself: the partial
evaluator takes the static input and the analyzed program and generates a specialized
version for that input.

Binding time analysis is the process of determining at what time the value of
a variable can be computed, that is, the time when the value can be bound to the
variable [29]. We can distinguish two specific binding times: compilation time (static
binding time) and execution time (dynamic binding time). Static inputs of a program
have by definition static binding time, while the remaining input information of the
residual program is classified with dynamic binding time.

Generalizing the concept to nodes of an abstract syntax tree (AST) of the program,
we may call binding time the degree of availability of some part of a program (a
node) during program specialization. A node annotated as static, implies that the
information necessary to compute such a node(and its corresponding children) will be
fixed at specialization time. Computations involving static nodes can be calculated
at specialization time and therefore, removed from the final specialized component
(the residual program). A node annotated as dynamic, means that it is part of a
computation that involves unknown values at specialization time, this kind of nodes
involves a deeper study to determine whether it will be reduced or rebuilt in the
residual program: a node is dynamic as soon as one of its sub-nodes is dynamic;
depending on its type (if it is a loop, a conditional, a variable or whatever), and
the annotation of its sub-nodes, it can be either rebuilt (it will be present in the
residual program) or reduced (it will be replaced by a new node in the residual
program). Binding-time information is propagated throughout the program structure
resulting in a complete annotated program; propagating binding-time information is
often made automatically by what is called a binding-time analyzer (BTA). The input

1The specialized version can be more efficient due to the fact that the computations depending
on static inputs are compiled away by the partial evaluator.

2This kind of partial evaluators is called off-line partial evaluator.

28 CHAPTER 4. PROGRAM SPECIALIZATION

of a BTA analyzer is the static data and the result of a BTA analysis is a binding-
time tree structurally identical to the source AST, but annotated with binding-time
information.

if n=1
then x
else

x ∗ power (n − 1) x

Figure 4.2: Annotated abstract syntax tree for power function

The figure 4.2 shows the annotated AST for the body of function power, having
made an analysis that starts taken n with static binding time. Nodes labelled with
S have static binding time, and nodes labelled with D have dynamic binding time.
Note that the node if (the root in the example) has dynamic binding-time (because
even though the condition can be determined during specialization time, its sub-nodes
have dynamic binding-time), however it could be desirable to eliminate the node if

during specialization (because the condition is static). To handle cases like this, it
is possible to add an intermediate step between the BTA and the partial evaluator,
which consists of taking advantage of other information like the type of node (in this
case a node if), and including annotation action in the nodes. An annotation action
states whether the node must be reduced or rebuilt (all static nodes will have a reduce
annotation action, but dynamic nodes may have either reduce or rebuild annotation
action, see the nodes labelled as static but with different actions in the figure 4.3).

Binding-time analysis is the first and most important step in the specialization pro-
cess, it constitutes the base for the rest of the stages. The accuracy of the binding-time
information impacts directly over the quality of the specialization. There are many
techniques to perform binding-time analysis, such as dataflow analysis or constraint-
based analysis [36]. We will not look at the details of BTA. Our objective is to obtain
adequate component specializers beyond of what kind of analyzer is used.

4.3. GENERATING EXTENSIONS 29

if n=1
then x
else

x ∗ power (n − 1) x

Figure 4.3: Annotated AST complemented with action annotations

4.3 Generating Extensions

When we specialize a program we do that for a group of concrete values that appears
in a given situation (the context information used by the specializer). It could be
very tedious if we had to build a specialized version of our general program each
time a different context appears, even if it can be done automatically using a partial
evaluator. Moreover, working with such a general partial evaluator (that takes any
component as source) would be very slow. Instead, what we can do is to build
specialized versions of this partial evaluator (specializing the specializer) [29].

If we call P the original program, and mix a partial evaluator that takes P and
context information x as input, we can get the specialized version Px of P for x by:

mix P x = Px

If mix and P are written in the same language, we can build the specialized version
of mix for P, called mixp by running something like (assuming a functional-like curried
function):

mixp = mix mix P

That is, a partial evaluator that, given some context information x, produces a
specialized version of the original P

If we parameterize the previous program, to be able to use it with any other P,
what we obtain is what is called a program generator generator (in the literature it
is called cogen [19, 25]).

Figure 4.4 (borrowed from [29]) shows this situation. We introduce another level
of indirection: the generic program P is taken by the cogen, which builds a special-
ized partial evaluator P-gen (called the generating extension of P). Finally, P-gen,
receiving the static information behaves like described in figure 4.1.

30 CHAPTER 4. PROGRAM SPECIALIZATION

Figure 4.4: A generator of program generators

To obtain such a generator, the so called direct approach (applying mix to itself)
is unrealistic. We have to deal with problems like double-encoding, huge constructed
expressions (or worse, infinite code explosion), unreadable functions, unnecessary
tagging and un-tagging operations in the generated program, etc. Instead of using
the indirect approach for building generating extension, a more feasible alternative is
the idea of handwriting a program generator generator. This idea was presented by
Birkedal and Welinder in [6], they showed that building this kind of program not only
is possible but it is easier and more efficient than optimized self mix applications. It
turns out that generating extensions have a very simple and natural structure. Besides
some house keeping code for keeping track of which constructs have been specialized,
with which values, they present a structure almost symmetric to the one of the original
program: for each function f in P, there is a function rd-f that creates a specialized
version of f [18]. In the body of rd-f, the computations annotated as static remain
unchanged (copied as is from P), while dynamic ones are replaced by operations to
build abstract syntax trees.

Applied to the power function mentioned above, the generating extension for n

static could look like:

power n = "powern x = " + rd −power n
rd −power n = if n == 1 then "x"

else "x ∗ " + rd −power (n −1)

where + is assumed to be a primitive to concatenate strings. Variable n is static,
therefore expression n = 1 has static binding time and with a static condition, we

4.3. GENERATING EXTENSIONS 31

can compute the if branch during specialization.
This approach is simpler because the cogen only does syntax manipulation of the

program’s annotated AST.

Chapter 5

A Component Declaration
Language

There are two possibilities to program software components: by providing a single im-
plementation language that natively support component declarations (as ArchJava [2]
does, extending Java syntax); or by decoupling system architecture (component dec-
laration) from the implementation.

We have chosen the second one, mainly because our aim is to offer a model for
building specializable components and we want to keep it sufficiently abstract to be
applicable over existing component technologies (like CORBA [22] or JavaBeans [35]).
We define the CDL as an architectural description language. The language is intended
to be simple and a starting point to reason about component generators. Java is used
as the implementation language.

5.1 Introduction

Software Component is an ambiguous term and it has been interpreted in many
different ways sometimes contradictories. This chapter defines a terminology and
gives a formal syntax to be used as a component declaration language. The presented
language is not intended to be the ultimate component language but a basic language
that allow reasoning about component generators.

The semantics of the component declaration language is informally described by
a mapping between the component description and its implementation using Java in
section 5.3. Strong and static type checking of Java programs facilitate automatic
verification of the implementation with respect to the architecture. Because Java is
an object-oriented language, the mapping between component declaration and class
implementation can be easily visualized considering that a component is implemented
by a single class.

33

34 CHAPTER 5. A COMPONENT DECLARATION LANGUAGE

Note that everything related with efficiency and specialization opportunities is left
aside in this model. In this way we clearly separated any aspect concerning imple-
mentation issues1 from our component architecture. In particular, we do not need
to think about how components will be specialized when defining their architecture.
Even during the implementation stage of such a defined architecture, we do not think
about how but about what can be specialized while implementing the component.

5.2 Component Declaration Language (CDL)

Following the definition given in 2.3 we define a component as a unit deployed inde-
pendently and declaring an explicit contract of required/provided functionalities. A
component declaration must be attached to an implementation in order to be deliv-
ered to the client.

We call service a set of logically related functions provided or required by a com-
ponent2. A component can provide or require more than one service, each of those
services will be associated to a variable definition (with the service as type) which
is called port. Declaration of services is given by Java interface declarations [4], we
associate the type of a Java interface to a provided or required service. In order to
provide a clearer analysis about how components and their specialization interact
between them, we forbid passing a component as parameter in a method declaration.
In some sense this restriction also helps to keep clean communications between com-
ponents from an architectural point of view. We always know what components are
interacting together by looking at the connection of provided and required services.
It ensures that the architecture represented in this language accurately represents
communications between components. This idea of clean and explicit communication
through component interfaces is known as communication integrity and it is present
in other component models like ArchJava.

The contract of a component is given by the set of required and provided services
(ultimately, a set of interfaces).

A component definition cannot appear inside another component definition. How-
ever components can be compound (a component can declare variables containing
other components, called subcomponents). We refer to a primitive component as one
that does not include any internal reference to another component.

A primitive component declaration only exposes its contract. For compound com-
ponent, there can be a connection clause, which binds or delegates provided and
required functionality to their subcomponents. A binding is valid when it connects

1We will define a mapping between declaring and implementing components to provide a better
idea of our concepts and to be able to associate specialization opportunities with concrete examples.

2Function in terms of computational unit, it can be a procedure, a method, a logic predicate. . .

5.2. COMPONENT DECLARATION LANGUAGE (CDL) 35

a provided service with a required service, or when a service declared in the com-
pound component is connected to a service of the same kind (provided or required)
of some of its subcomponents(in this case we say that such a binding is a delegation
of service). Informally, a compound component is well-defined (in terms of valid dec-
laration) if for each of its subcomponents, all required services are bound with some
proper provided services.

The matching between provided and required services is given by a correspondence
of type names in the declaration. If component C provides X, and component D
requires Y (even when X and Y denote structurally equivalent services), these services
cannot be connected. The usage of structural compatibility remains as a subject
of discussion. The problem of structural compatibility is that behind an interface
declaration there is associated a semantic meaning. Even when the structure is the
same, if this meaning is not, the components will not work properly together.

Components deployed for further utilization by another producer or a consumer
only publish part of its CDL specification: the required and provided interfaces. The
internal structure (subcomponents and their connections) are not published. On
this way, we preserve the encapsulation and we hide implementation details from
the client. Note that for a person that acquires a new component, the fact that a
component is primitive or compound is transparent (we preserve the characteristics
of the object-oriented software deployment).

5.2.1 Syntax

A component specifies its required and provided services declaring the corresponding
interfaces for them in the component declaration. Next, we introduce the grammar
for the component declaration language using the concepts presented in the previous
section.

Conventions:

Program text (keywords and program separators) are in bold
Meta-variables are in italic

[x] means optional occurrence of x (zero or only one occurrence of x)

x | y means either x or y

Domains:

identifier ∈ Identifier

Syntax:

36 CHAPTER 5. A COMPONENT DECLARATION LANGUAGE

component def ::= component component name {
component interface
component structure

}

component interface ::= [requires clause]
[provides clause]

component structure ::= [contains clause]
[connects clause]

requires clause ::= requires requires list;

requires list::= requires def |
requires def, requires list

requires def ::= interface name input port

provides clause ::= provides provides list;

provides list::= provides def |
provides def, provides list

provides def ::= interface name output port

contains clause ::= contains variable def list;

variable def list ::= variable def |
variable def, variable def list

connects clause ::= connects connects def list;

connects def list::= connects def |
connects def, connects def list

connects def ::= var input port access to var output port access |
output port to var output port access |
input port to var input port access

variable def ::= component name variable

var input port access ::= variable.input port

5.2. COMPONENT DECLARATION LANGUAGE (CDL) 37

var output port access ::= variable.output port

Auxiliary definitions (only to help comprehension of part of the semantics)

component name ::= identifier

interface name ::= identifier

input port ::= identifier

output port ::= identifier

variable ::= identifier

5.2.2 Example

Let us consider the architecture described in figure 5.1 for a component that could
be part of a calculator: ComputationUnit provides two services, the addition pro-
vided ultimately by the Adder subcomponent, and the multiplication provided by the
Multiplier subcomponent.

Figure 5.1: A compound component connecting two subcomponents

Internally Multiplier requires that somebody provides the service IAdder. The
component ComputationUnit connects the required service with the component Adder.
Note that the service provided by Adder is shared by two components: the enclosing
ComputationUnit and the subcomponent Multiplier.

Moreover, the service IAdder is shared in different ways. A filled line indicates the
delegation mechanism used with the enclosing component (ComputationUnit), while
a dashed line indicates a connection of a provided service with a required one, in this
case Adder with Multiplier. This is the reason why we draw in a different way the
composition, instead of putting required services with provided services together as
we have shown in previous figures.

Using our CDL we can describe this architecture as follows:

38 CHAPTER 5. A COMPONENT DECLARATION LANGUAGE

interface IAdder {
int add(int x , int y) ;

}

interface IMultiplier {
int multiply(int x , int y) ;

}

component Adder {
provides IAdder adder ;

}

component Multiplier {
requires IAdder helper ;
provides IMultiplier multiplier ;

}

component ComputationUnit {
provides IAdder add , IMultiplier mult ;
contains Adder adder , Multiplier multiplier ;
connects multiplier . helper to adder . adder ,

mult to multiplier . multiplier ,
add to adder . adder ;

}

5.2.3 Static Architecture

Having a look at the proposed CDL, the reader can easily identify that it allows
only static connection of components. The clause connect and contains only accept
static arguments either a single value or a list. We chose a static environment be-
cause it is the simplest scenario to show our principles of component specialization.
Slightly relaxing some of the clauses and providing more flexible data structures (like
semi-dynamic arrays) could be added to this model without inconveniences, however
dynamic structures introduce other complexities at the level of binding-time analysis
and code generation that we prefer to ignore in this initial model.

5.2.4 Component Instantiation

Provided and required services are declared using ports, which consist of an interface
type and a variable name. In this way, we use such a variable instead of a type when
connecting compound components and provided or required services. It not only
promotes homogeneity in the connections but also allows reasoning about component
instances, for example, the component ComputationUnit could declare two internal
components of type Adder, which means that two different instances of the Adder

component will exist during system execution. By connecting the variables instead

5.3. COMPONENT IMPLEMENTATION 39

of the type, we can describe different architectures. Modifying the example shown in
figure 5.1, we get the architecture described in figure 5.2.

Figure 5.2: A component declaring two subcomponents of the same type

Of course, in this example, it makes no sense to declare two Adders instead of
connecting the service of one Adder to both Multiplier and ComputationUnit re-
quired interfaces. Having shared services, extending our CDL, should be considered
to allow synchronization or pre and post conditions to satisfy properties in a concur-
rent or asynchronous system. In this kind of systems, sharing of a component could
be prohibitive because of some of the system properties (e.g. multiple access to a
same variable). In the presented work, we have omitted this kind of extension to keep
the model simple.

Again, we decided if an element should be present or not in our basic initial model
depending if it obscures (or not) the model and the way of reasoning about it. In
this case, adding variables in the declarations does not complicate the model but
facilitates the mapping into a component implementation, each variable becomes a
field of the component implementation.

5.3 Component Implementation

In this section we introduce one possible implementation for a component described
in our CDL. Note that the model we are describing is implementation independent,
but to give concrete examples and show how CG3 look like, we need to refer to a
concrete implementation4.

3Component Generator, this concept is explained in chapter 7.
4Another approach such as defining a completely new language of components, which integrates

architecture declaration and component implementation is naturally a valid alternative as well (most
models apply this approach, for example, ArchJava [2], or Java Layers [9]).

40 CHAPTER 5. A COMPONENT DECLARATION LANGUAGE

We have chosen Java [4] as our implementation language (in fact we have chosen
a syntax similar to Java for our CDL in order to facilitate the mapping between the
description and the implementation of a component).

The following conventions must be followed to provide an implementation that
satisfy the CDL proposed in this chapter:

• Interface definitions directly correspond to Java interfaces.

• There is a Java class per component declaration called the component class.

• A component class may extend any other Java class.

• A component class must implement every interface declared as provided service.

• Each variable in requires declaration generates a private field in the component
class of the same Java type that the required interface. Those fields must be
initialized through a Java constructor (which ensures that the component is
bound to every of its required services after its instantiation).

• Each variable declaring a subcomponent in a contains clause generates a private
field in the component class with the same type as the subcomponent class5.
Initialization of those fields is done taking into account the connects declara-
tions.

• A connects clause is straightforwardly translated to instantiate internal sub-
components, component instantiation gives to each subcomponent their corre-
sponding required parts.

• A connection between provided services or required services as delegation mech-
anism) must be translated into delegation of methods calls. In case of provided
services, each method call will be forwarded to the corresponding subcompo-
nent. In case of a required service, each method call of a subcomponent will be
forwarded to the field declared with the type of the required service.

5.3.1 Example

Next, we show how a component implementation in Java looks like for the declarations
specified in 5.2.2, following the mapping presented in the previous section.

5Note that it is not an interface, but a concrete component class with its associated Java type.

5.3. COMPONENT IMPLEMENTATION 41

interface IAdder {
int add(int x, int y);

}

interface IMultiplier {
int multiply(int x, int y);

}

class Adder implements IAdder {
int add(int x, int y) {

return x + y;
}

}

class Multiplier implements IMultiplier {
private IAdder helper;

public Multiplier(IAdder adder) {
helper = adder;

}
/ ∗∗implemented in terms of add operations ∗/
public int multiply(int x, int y) {

//assumes that (+) and (−)are unavailable for Multiplier
if (x < 0) return multiply(helper.add(0, −x), y);

else if (x == 1) return y;
else

return multiply(helper.add(x, −1),
helper.add(y, y));

}
}

class ComputationUnit implements IAdder, IMultiplier {
private Adder adder;
private Multiplier multiplier;

//initialize internal components
//and connect them together
public ComputationUnit() {

adder = new Adder();
multiplier = new Multiplier(adder);

}

//delegation method for IAdder
public int add(int x, int y) {

return adder.add(x, y);
}

//delegation method for IMultiplier
public int multiply(int x, int y) {

return multiplier.multiply(x, y);
}

}

42 CHAPTER 5. A COMPONENT DECLARATION LANGUAGE

In this work we have not studied the possibility of building any tool to check
automatically that an implementation obeys a defined architecture, instead, we have
related as much as possible the Java implementation language and our proposed CDL,
taking care of not loosing generality in our model. In the future, a formalized mapping
between CDL and the implementation language should be considered in order to build
such a tool.

Chapter 6

Specialization Scenarios

Specialization scenarios are declared during component implementation. The special-
ization opportunities must be identified according to provided services of the compo-
nent1. When a programmer identifies a specialization opportunity for a given compo-
nent, she writes a specialization scenario for the interface through which a component
publishes such a service. In this chapter we propose a syntactic notation for declaring
the specialization opportunities.

6.1 Introduction

Software components are defined to be used in a variety of situations (they have to be
able to adapt and respond according to a given context). Typically, the component
producer allows the component consumer to adapt a component through a certain
set of parameters. This parameterizations relies most of the times on data structures
declarations and global static definitions.

In terms of provided services, these adaptation parameters are sometimes mixed
with the rest of the service parameters. According to the usage context, a parameter
will be considered as either an adaptation parameter or a normal parameter. We
consider that adaptation parameters are associated with static information that does
not change during the rest of the component life cycle, therefore, they represent a
possible specialization scenario. In other words, a specialization scenarios encapsulate
the adaptation opportunities offered by a component. However it is the programmer
who decides whether a given static parameter is useful for specialization purposes or
not, by defining a specialization scenario including this parameter.

The declaration of those specialization opportunities is done during component

1Actually, we will show later that the specialization may include assumptions over the required
services as well.

43

44 CHAPTER 6. SPECIALIZATION SCENARIOS

implementation. It consists of explicitly defining what is the context of usage (that
could be benefit from specialization) for a given service. Since adaptation aspects are
defined in a separate declaration and not in the component implementation, they do
not clutter component source code and they can be easily modified.

Explicit declaration of specialization opportunities was introduced by Le Meur
et al. [31] and a formal description was presented in terms of a declaration mod-
ule language: a declaration is associated to a given source program, and there is the
possibility to create dependencies between modules by importing and exporting mod-
ule declarations (a module requires explicitly a definition of another module). See
section 3.4 for further details.

6.2 Independence of Specialization Opportunities

From our point of view of component orientation, explicit dependencies between spe-
cialization modules are not possible, because this would produce dependencies be-
tween the associated components. Let us assume a component C requiring a service
X and providing a service Y. In our CDL we make no assumptions about which com-
ponent will provide the required service X to C. Now let us suppose that during the
implementation stage we identify some adaptation opportunities for the provided ser-
vice Y and because of how Y is implemented we realize that required service X is
involved. The problem is that we do not know which component will provide X, it
could be Z, or W or any other component providing the service X (see figure 6.1), there-
fore we cannot determine which specialization declarations will be available for X: It
is not possible to include a dependency between the specialization scenario declared
by C and the one declared by Z because Z is not known while implementing C!

Figure 6.1: Dependencies between independently produced components

Instead of making imports and inter-module declarations we propose to declare

6.3. DECLARING SPECIALIZATION SCENARIOS 45

assumed scenarios for specializations that depend on the availability of other scenarios
in required services. Because we cannot be sure that those assumed scenarios will be
really available when the components have been connected, we always have to provide
a safe (default) scenario that applies if such an assumed scenario2 does not exists.

Note that, compared with figure 6.1 an entirely different situation is introduced
if C does not requires the service X but contains a subcomponent Z that implements
X (figure 6.2)

Figure 6.2: Dependencies in compound components

In this case, when implementing C, we will know Z as well, and in our definition
of a specialization scenario for Y we could include explicit references to some special-
ization scenarios published by Z (this is the case of existing component specialization
proposals such as Le Meur’s).

6.3 Declaring Specialization Scenarios

A specialization scenario is bound to an interface definition rather than to the com-
ponent itself. We do that just to present the concepts involved in a clear way3.

Specialization scenarios declare the availability of fixed values4 of service param-
eters that can be used to specialize the associated component implementation.

Service declarations can be seen as method signatures, and the values that can
affect the binding time of the method statements (the implementation of a service)
are given by the binding time of the parameters. We define a specialization scenario

2Note that an assumed scenario is declared as a result of some dependency between X and Y
that affects how they can be specialized.

3With the definitions introduced in chapter 7, the reader will see that a specialization can be
defined together with the component generator declaration.

4Static binding time, see 4.2.1.

46 CHAPTER 6. SPECIALIZATION SCENARIOS

as a tuple of binding-time values associated with the return value and each of the
parameters.

A scenario declaration represents a possible context of execution of the method,
in terms of binding time information associated with its return value (if not void) and
its parameters.

A specialization declaration is defined over a given Java interface. A specializa-
tion declaration groups scenario declarations over the methods corresponding to the
given Java interface. Each method signature can be associated with any number of
scenarios. A specialization may include one or more assumes declarations which al-
lows to make hypotheses about context information of methods in other interfaces
(usually interfaces declared as required by the component). Assumes declarations
can be seen as internal specialization declarations used by some of the scenarios to
make assumptions about the availability of some scenario for a method that is not
part of the same interface.

A scenario declaration (part of a specialization declaration) may include a clause
assumes specifying the assumed context for a method belonging to an external inter-
face (this assumed context must be declared in the specialization declaration using an
assumes declaration). This declaration can be referenced inside a scenario declaration
in order to make explicit that such a context information is dependent on another
method.

The information about which will be the concrete components providing some
services declared as required is not available during the deployment of the component
(actually of its component generator). The assumptions made using assumes clauses
and declarations are the only way to take advantage of specialization opportunities
that could depend on how other components can be specialized. An assumes clause
limits the use of a specialization scenario, imposing a strong condition: instead of
only considering the binding time of the parameters, the availability of the assumed
scenario in another component must be checked (see the example in section 6.3.2).

Specialization scenarios will be chosen during component specialization to deter-
mine the right binding time to be used in a service implementation. A specialization
scenario is part of the input value that a binding time analyzer receives to calculate the
binding time of a service implementation. Specialization scenarios allow alternative
binding time annotations over the nodes that form part of a service implementation,
in fact, the specializer does not work with one single annotated syntax tree but several
of them (each one corresponding to different specialization scenarios).

6.3.1 Syntax

Here is the syntax to describing the elements mentioned above:

Conventions:

6.3. DECLARING SPECIALIZATION SCENARIOS 47

Program text (keywords and program separators) are in bold
Meta-variables are in italic

[x] means optional occurrence of x (zero or only one occurrence of x)

x | y means either x or y

x* means zero or more occurrences of x

x+ means one or more occurrences of x

Domains:

identifier ∈ Identifier

type ∈ Java Class Type | Java Primitive Type

bt ∈ {S, D, void}

Syntax:

spec def ::= specialization spec name specializes interface name{
assumes def*
method scenario def+

}

assumes def ::= assumes spec name specializesinterface name{
single method scenario def+

}

method scenario def ::= method signature{
scenario def+

}

single method scenario def ::= method signature{
single scenario def+

}

method signature ::= type method name parameter list

parameter list ::= () |
(not empty parameter list)

48 CHAPTER 6. SPECIALIZATION SCENARIOS

not empty parameter list ::= var def, no empty parameter list |
var def

var def ::= type var name

scenario def ::= scenario return bt scenario name bt list
[assumes scenario assumed list];

single scenario def ::= scenario return bt scenario name bt list

bt list ::= () |
(bt not empty list)

bt not empty list ::= bt var def, bt list |
bt var def

scenario assumed list ::= scenario name |
scenario name, scenario assumed list

bt var def ::= bt var name

Auxiliary definitions (only to help comprehension of part of the semantics)

spec name ::= identifier

scenario name ::= identifier

interface name ::= identifier

method name ::= identifier

var name ::= identifier

return bt ::= bt

We are considering only completely static or dynamic data (the binding times
proposed are S, D or void). This is only a first approach, if we would like to include
references as parameters or as return value (it would be the case of objects), we need
to provide binding times for partially static data. Moreover, including references
implies to take into account aliasing information as well.

6.3. DECLARING SPECIALIZATION SCENARIOS 49

6.3.2 Example

Following example of Multiplier and Adder components, below there are some pos-
sible scenarios definition

specialization AdderSpec specializes IAdder {
int add (int x , int y) {

scenario S addsc1 (S x , S y) ;
scenario D addsc2 (D x , S y) ;

}
}

specialization MultiplierSpec specializes IMultiplier {
assumes AssumedAdderSpec specializes IAdder {

int add (int x , int y) {
scenario S dep1add (S x , S y) ;

}
}
int multiply (int x , int y) {

scenario S sc1mult (S x , S y) assumes dep1add ;
}

}

Notice that when the component producer develops the Multiplier component,
she may not have much information about the Adder component. The only available
information that she knows is the interface IAdder. This is why MultiplierSpec

needs to define assumed scenarios. An assumed scenario allows assumptions about
scenarios defined over other interfaces. Those other assumed specialization are inter-
nally declared using the clause assumes (instead of specialization). In this case
we have called AssumedAdderSpec the assumed specialization for services declared in
IAdder).

The example cited can be interpreted in the following way: if dep1add for the
method add on IAdder is available then the component is able to provide the scenario
sc1mult for the method multiply. Otherwise, the only scenario available is the
default (which is implicit).

We are considering unique scenario names, again this is a restriction to help keep
the model simple. This restriction can be easily solved including identifier containing
name spaces references like Java does with types and packages.

Variable names following a binding time declaration in a scenario definition (such
as x and y in scenario S sc1mult (S x, S y)) just appear to make the scenario
more readable, they could be omitted and the order of the method parameters can be
used to determine to what parameter corresponds a given binding time. For example,
a shorter notation including the return value as first parameter in the list could be

scenario sc1mult = (S, S, S).

Chapter 7

Component Generators (CG)

In this chapter we describe the main notion of our approach for building adaptable and
efficient software components. Generating extensions (described in 4.3) are extended
in order to consider different specialization scenarios as part of their definition. We
call component generators(CG) those enhanced generating extensions.

7.1 Introduction

Following our approach, a producer deploy component generators instead of the com-
ponents. Component generators are a special kind of generating extensions, it can
be made automatically using what is called a program generator generator (histor-
ically called cogen, see 4.3). This program receives the annotated abstract syntax
tree (AST) of the component source code (annotated in terms of binding times)1 and
uses this information to produce a specialized component generator of the original
component. The relationship between components (required and provided services
and internal connections) are transformed into relationships between component gen-
erators. Instead of composing and connecting components the consumer combines
component generators [7]. Once combined, a component generator can produce a
specialized final component being provided the custom values (the static data).

A component generator can be seen as the factory for a family of specialized
components2. Each of the generated components provide and require the same func-
tionality, but optimized (specialized) to work in a different context (the specified for

1The input data of the component generators generator is a bit more complex that the one used
in an ordinary cogen. A component generators generator has to deal with multiple annotations for
each node, depending of the declared specialization opportunities, see section 8.3.

2It is the main difference with ordinary generating extensions, where there is only one possible
way of specialize the component

51

52 CHAPTER 7. COMPONENT GENERATORS (CG)

the selected specialization scenario). How wide is a family depends on how many
specialization opportunities were declared, and how can be combined together.

7.2 CG Philosophy

In a software component setting we have two main roles: the producer, who im-
plements and delivers a component; and the consumer, who acquires a component
(possibly from a market or component repository) and integrates it into a system to
get a complete application.

It could be possible, that a consumer becomes also in producer if instead of build-
ing a final application, she builds a new component (using the acquired component
as a subcomponent of the new one).

Introducing CGs implies that the product delivered by a producer (and therefore,
acquired by a consumer), will not be the component itself, but its corresponding CG.

The distinction between a component and its CG is transparent at architectural
level. In fact, we can see a component generator as a meta-component, in the same
sense that we have classes and meta-classes in some object-oriented environments;
the CGs form a parallel web with respect to the web of components. A component
consumer acquires CGs instead of the components and combines them following the
same architecture as the one she defined with components. With standard compo-
nents, the component consumer has to configure and insert the components into the
complete system. Using, CGs, the process is the same, except that is not the CG
which is inserted into the system but the specialized component produced by the CG
after having specified some custom values.

In order to run the specialization process, the consumer has to determine the spe-
cialization scenario (see section 7.5) according to the adaptation information that the
component offers, and run the CG with the static values associated with each sce-
nario. This process can be partially automatized providing a tool that constructs the
specialization scenario declaration according to the values entered by the consumer.

Note that in the case where the consumer is at the same time a producer of a
new component, the acquired CGs do not need to be executed but just combined to
form a new CG. Only when a final consumer decides to use the new CG, will it be
necessary to run it, in order to produce the desired specialized component (as a result
of the generation of the specialization of its internal components).

CGs component specialization combines two activities:

In a first activity, there is a gathering of specialization information, the CG will au-
tomatically propagate the context information related to each specialization scenario
throughout their internal service implementations and sub CGs (which will construct
the internal subcomponents).

7.2. CG PHILOSOPHY 53

In the second activity, every CG generates a specialized component, using the
collected information, which consists of decisions about what is the specialization to
be applied for each service together with the static values provided. The result of this
stage is a set of specialized components prepared to interact together using the more
efficient version of each service in terms of the context where they will be executed.

Figure 7.1: Propagation of adaptation information and component generation

In figure 7.1, we can see these two activities (presented in a sequential way al-
though, in parctice, they could happen concurrently). User adaptation information
is given to the top-level CG GenA. GenA processes the information3 and sends the
results (a and a’) to the internal CGs, GenB and GenC, which continue with the
propagation process. GenB sends the information b to GenC, and finally GenC prop-
agates the result of processing a’ and b (labelled as c and c’) to GenD and GenE.

3In simple terms, to process the information means to create the appropriate specialization sce-
narios and compute required static values for interacting with some service of another CG.

54 CHAPTER 7. COMPONENT GENERATORS (CG)

After all the CGs have received the appropriate adaptation information, each of them
generate the final specialized components.

7.2.1 Advantages and Drawbacks

The CG approach enables fully automatic specialization. One of the problem with
fully automatic program specialization is that the user can get a program less efficient
that the non-specialized version (the case of over-specialization). Or it could be that
the automatic specialization does not cover all the specialization opportunities, we
may obtain a better version but not the optimal one (it is called under-specialization),
both problems are cited in [16]). In our proposal, specialization scenarios are defined
by the component producer, who is able to analyze if a given specialization is con-
venient or not. However, it could be very complicated to identify the quality of the
produced specialization, in particular, because of the many possible combinations of
scenarios. This problem could be tackled by building a tool that presents (like a
preview) some kind of abstract view of all the possible specialization that would be
generated by the CG. The component producer can evaluate the result instead of run
the CG every time she wants to measure the impact of defining some specialization
scenario.

CGs preserve the architectural structure of the components that they generate.
Therefore, there is no additional effort introduced by composing and linking CGs in-
stead of components. In other words, the user (component consumer) has to compose
CGs and provide adaptation information for each service in a similar way she would
have to do with standard adaptable components.

In our model, component declarations and linking define a static architecture.
Consequently, the CGs generate static structures of specialized components. These
structures are highly tied (a consequence of eliminating indirections, offering efficient
code). If a user wants to replace one component by another, she has to stop the
system, replace the old CG from the linked CGs that built the previous system with
the CG of the new component, and re-run the code generation for all components
in the system. It may be an expensive and perhaps prohibitive procedure and it
needs to be done carefully because it could lead to incompatibilities with information
managed for previous components (for example, cache or temporary data, etc). This
happens, because there is no explicit separation between the two activities described
above. A way of gathering and recording useful specialization information, in order
to speed up specialization if the component is replaced, could be considered. Of
course, this persistence of information would not be useful in some context where the
new component may introduce radical changes to the way the rest of its interacting
partners can be specialized. It is necessary to study in more detail this suggestion.

7.3. CG DECLARATION 55

7.3 CG Declaration

A CG declaration binds the definitions of specialization scenarios with component
declarations. This declaration is the input for our cogen (the CG generator).

Note that the cogen needs also to receive as input each of the inner CG (which
should be previously generated) for those components that are composed.

7.3.1 Syntax

This is the syntactic declaration of a CG:

Conventions:

Program text (keywords and program separators) are in bold
Meta-variables are in italic

x | y means either x or y

Domains:

identifier ∈ Identifier

Syntax:

genspec def ::= genspec genspec name component component name{
spec clause
inner genspec clause

}

spec clause ::= specialization spec list;

spec list ::= spec def |
spec def, spec list

spec def ::= spec name for component variable

inner genspec clause ::= genspec genspec list;

genspec list::= genspec def |
genspec def, genspec list

genspec def ::= genspec name for inner component variable

56 CHAPTER 7. COMPONENT GENERATORS (CG)

Auxiliary definitions (only to help comprehension of part of the semantics)

genspec name ::= identifier

spec name ::= identifier

component variable ::= identifier

inner component variable ::= identifier

7.3.2 Example

A declaration that specifies the specialization scenarios of a component ComputationUnit,
and the component generator of its subcomponents (Adder and Multiplier)

genspec GenComputationUnit component ComputationUnit {

/ ∗∗ publishes specialization scenarios for
∗ provided services ∗/
specialization AdderSpec for add ,

MultiplierSpec for mult ;

/ ∗∗ defines the component generator
∗ (already existing ones) to be used
∗ by internal components of ComputationUnit ∗/

genspec GenAdder for adder ,
GenMultiplier for multiplier ;

}

A component generator provides and requires the same services as the component
being specialized. Therefore the connections between component generators is given
implicitly by the connections declared in the component.

To summarize, the creation of a CG for a given component involves the following
steps:

1. To write specialization scenario specifications for provided services (AdderSpec
and MultiplierSpec declarations).

2. To define the generator for the component, as well as for each of the subcom-
ponents (the genspec clause inside the genspec declaration).

7.4. COMPOSING CGS 57

7.4 Composing CGs

With this model, composing components is turned into composing CGs. How does
it affect the generated specialized versions? How is the specialized version of a com-
pound CG generated?

Each component, whether a primitive or a composed one, has an associated com-
ponent generator. A component generator of a component is an object that can be
instantiated being provided the corresponding instances of the component genera-
tor of each of its sub-component as well as each of its required components. The
connects clauses used in component configuration apply also for component genera-
tors, but replacing a component type by its corresponding component generator. In
this way, component generators can be composed and code generation fired in a top
level component will be propagated through the sub-component generators provided
during the instantiation of the top-level component generator. Consequently, the spe-
cialized components will be adapted to the current configuration (the combination of
component generators).

Due to the acyclicity of the dependency graph obtained from component com-
position, there should be a component generator that corresponds to each primitive
component. This primitive component only provides services (requiring nothing).

7.5 Interaction Between CGs

CGs interact toegether to obtain the static information needed to fulfill the declared
services of the specialized component. A CG contains all the variants of a method de-
fined according to the associated specialization scenarios. Once the service is required
by another CG, it will provide the associated specialized code to the final component.

Let us consider a CG for the Adder component (described in section 5.2.2), it
will have two variants for the method add according to the defined scenarios, called
sc1add and sc2add (we use the name of the scenario to identify each variant of add).
Then, when GeAdder is connected to another CG, let us say GeMultiplier, they
interact in the following way: suppose a call to multiply(int x, int y) (where
both parameters are static, and Multiplier has defined a scenario which can return
a static result.

In this case, it means that the call should be solved when executing GeMultiplier

component generator.

GeMultiplier m = new GeMultiplier(new GeAdder());

// defines a spec for multiply where
//both x and y are static s = (S, S): S
SpecializationScenario s =...

58 CHAPTER 7. COMPONENT GENERATORS (CG)

//we suppose 3 and 4 are Objects for simplicity
Object[] statics = {3, 4 };
//no dynamic parameters:
String[] dynamics = {};
m.multiply(s,dynamics,statics);

The body of multiply will dispatch the more appropriate specialization for s.

// method dispatcher of GeMultiplier :
public String multiply(SpecializationScenario s,

Object[]params, String dynamics) {
SpecializationScenario anotherS;
//...finds a matching declared scenario
if (matches(s, anotherS)) {

//method variant for anotherS:
//suppose it matches scenario (S D):S then
//executes method variant, obtaina specialized code
String codebody = sc1multiply(dynamics[0], params[0]);
//writes method code given by sc1multiply into the
//specialized component. Simplifying:
//e.g. "public multiplySD(int y) { return " + codebody + " }"
String call = "multiply(" + dynamics[0] + ")";
return call;

}else //look for another anotherS...
...

}

We call method variant each of the different methods existing for specializing a
method like multiply (there is one method variant for each specialization scenario
defined, in this case, over the method multiply). In this case, the method add of
GeAdder4 must be called.

In this case it need to call the method add of Adder’s component given as param-
eter in the constructor:

//In some place inside the method variant sc1multiply :
//remember that this method is call if scenario (S D):D is selected
//then, first param is static and second dynamic:
private String sc1multiply(int x, String y) {

SpecializationScenario s =...
...
String[] dynamics = {y};
Object[] statics = {x};
helperAdder.add(s, statics, dynamics);
...

}

4Note that the CG GeAdder is received as parameter in the constructor of the CG of Multiplier
(GeMultiplier).

7.5. INTERACTION BETWEEN CGS 59

Figure 7.2: Interaction between CGs

GeMultiplier receives a message like multiply(s, params), where s is a sce-
nario declaring both x and y statics (we call it concrete scenario, see 7.5.2, and
params is an array with the static values for those variables. GeMultiplier matches5

s with some of its defined scenarios and executes the method variant associated with
it, in this case, calls sc1multiply(x, y). In this method variant, GeMultiplier

needs to interact with another CG, GeMultiplier sends a message of the kind
helperAdder.add(ss, params). GenAdder follows the same process, by executing
in this case the method variant called sc1add and finally returning the result of x +

y. This is the situation described in figure 7.2.

Note that method variants are private (sc1multiply or sc1add): they are not
published by the component. In fact, only the dispatcher, which executes internally
one of those private variants(multiply(s, params) or add(s, params)), is known
as part of the interface that allows CGs to interact.

Section 8.2.1 shows a more detailed example with code that interacts with those
specializations of Multiplier.

5This “matching” is defined later, in section 7.5.2.

60 CHAPTER 7. COMPONENT GENERATORS (CG)

7.5.1 CG Interfaces

So far we have outlined what CGs are, and how they need to interact in order to
propagate the static information provided to the top level CG, in order to generate
the specialized components.

However, we have omitted type information in the example of GeAdder and
GeMultiplier. When a component declares a required element, as happens with
Multiplier requiring IAdder service, this requirement is translated into the gener-
ator GeMultiplier as a field that must contain an object (another CG) that can
answer to the CG service call for the services declared in IAdder. Just declaring that
the CG of Adder implements the IAdder interface will not work. If we come back
to the example of the previous section, the message that the Multiplier will invoke
over that field is

helperAdder.add(sc, params, dynamics)

This message is the result of a statement present in the Multiplier component
implementation, and calling the service add defined in IAdder. But where is this
add(sc, params) declared? And what is the type of helperAdder variable? Note
that when building the CG GeMultiplier, the component that will provide the ser-
vice IAdder is not know (as a consequence, its CGs are not available), therefore we
do not have any known type for the variable helperAdder, implementing the method
add as described.

This problem can be easily solved by defining CG interfaces. If we have a look at
the kind of interface we need for solving such a call, we can see that every method
signature in the interface will produce a call to a method with the following signature:

String methodName(SpecializationScenario sc,

Object[] statics, String dynamics)

That is, the return value is replaced by the type String, which will be the answer that
the CG will include in the residual code generated,of course, instead of String it can be
another object that provides more information about the returned value(is someone)
and the code(if exists) to be residualized by the caller. The first parameter contains
an object instance of SpecializationScenario (the representation of specialization
scenario declarations, it is explained in next section). The array of Object will contain
any static value that the CG must pass to the other CG6. The argument dynamics,
contains an array of parameters dynamics (the String code of those parameters when
the method is invoked, e.g. ”x” or an expression like ”x+1”).

6By doing that we loose information about parameter types and quantity and overloaded methods
would not work, however it can be solved using some renaming conventions that ensure unique
method names, avoiding overloading in the CG interfaces, we have omitted this part for the sake of
simplicity.

7.5. INTERACTION BETWEEN CGS 61

In the same way that we have an analogy between CG and component, we can have
pairs of public interfaces to be used by the component (the original one, with their
normal parameters and return type), and the CG (a version automatically deduced
form the original interface following the given convention). Each provided service
means that the CG must implement the CG interface corresponding to the type of the
provided interface, and for each required service specified in a component declaration,
there will be a field declared with the type of the corresponding CG interface.

In pseudo code, a CG implementation using CG interfaces can be:

class GeMultiplier extends GeneratingExtension
//an implemented CG interface per provided interface
//declared in Multiplier
implements IGeMultiplier {

//a field for each required service in Multiplier
private IGeAdder helperAdder;
...

}

In this code, we have chosen to start each CG interface with IGe. Then, for the
user interface IAdder, we have the corresponding CG interface called IGeAdder.

We have discussed CG interfaces here to provide a better description about how
CGs work and to complete the mentioned example. The reader should notice that
CG interfaces are transparent to the producer or consumer (note that they are not
present in any of the syntactic languages that we have defined), they are a part of
our proposed implementation for the cogen and the CGs.

7.5.2 Concrete and Declared Specialization Scenarios

We can distinguish between two kinds of scenarios with different purposes:
A declared specialization scenario is the one defined by the component developer

(the producer), and it states the specialization opportunities for a given service (in
particular, scenarios for each method). This information is provided to the cogen in
order to generate the CG for a component.

A concrete scenario is the one that declares the usage context for a given service
of a component. This information is provided to the CG to generate the specialized
component. It includes the concrete values for each of the static parameters. This
is the kind of scenarios that the consumer provides to the top-level CG to start the
propagation of context information.

A CG will match the concrete scenario with some of the declared scenarios. For
example, a simple rule for matching scenarios can be: given the concrete scenario A
and the declared scenario B, A matches B if for each parameter in A, its binding time
is lower than or equals to the binding time of the same parameter in B (considering
that static is lower than dynamic).

62 CHAPTER 7. COMPONENT GENERATORS (CG)

The algorithm could match the first one that satisfies this condition or it can
be smarter by looking up for the matching scenario with as many static values as
possible.

In order to specialize the component, the CG will use the matching declared
scenario. A necessary condition here is that a CG always has a matching scenario for
any concrete scenario (it is easy to achieve this condition, it is enough to include a
declared scenario which states that every attribute is dynamic).

Chapter 8

Putting the Pieces Together

In this work we have introduced the fundamental pieces for a software component
development based on the creation and distribution of interacting component genera-
tors. This chapter presents a global vision of the approach, including some guidelines
about the construction of a CG generator. Even though we have focused our work on
the existence of CGs as component generators, there are some other parts involved
in our proposal that are also discussed in this chapter.

8.1 Introduction

We have defined a component model for delivering black-box adaptable components
stressing the necessity of efficient execution. The difference with other approaches
relies on the degree of independence with respect to the required services that we
propose. Our proposal replaces the core component implementation with a compo-
nent generator, a special kind of generating extension of the component (CG, defined
in chapter 7). It allows automatic component specialization without breaking com-
ponent encapsulation [7]. Producers deliver to the client a CG that can be composed
with other CGs in a way similar to what would happen with ordinary components.

In the following, we give an overview of the whole process, involving the building
and delivery of a CG. We offer some guidelines about the construction of the CG
generator and finally we describe briefly other tools and pieces that may be part of
the model.

8.2 Production and Delivery of CGs

So far, we have described a component model (in chapter 5), specialization scenarios
(in chapter 6), and CGs in chapter refCGs. Now, let us have a look at the whole

63

64 CHAPTER 8. PUTTING THE PIECES TOGETHER

proposal, involving annotated component implementations, specialization scenarios
and generated components and how they can be delivered and integrated into a
system.

As we said before, a component consumer can become a producer as well, if
she acquires a component to integrate into a new component instead of using the
component to build a final application. For us, a component producer actually builds
a component generator and a component consumer use this generator.

Figure 8.1: Producer’s perspective: CG generation

From a producer perspective, she needs to deliver the CG of the component.
In order to do that, the component implementation together with the specialization
information is pre-processed (verifying the structure and the specialization declaration
with the CDL specification of the component, and finally running a binding-time
analysis). The result is an annotated abstract syntax tree that serves as input to the
cogen, which builds the corresponding CG (figure 8.1). Note that if the component
is a compound component, the internal CGs must be generated before, because they
will be required by the enclosing CG.

From a consumer’s point of view, the consumer acquires a CG, e.g. Gen-P, and
unlike with the producer, she will not create a new CG with Gen-P but run it with
some configuration values and obtain an adapted (dedicated) component that can
be integrated in her system. Configuration and execution of a CG could be a very
complicated task that may require connection with other CGs, however it is a process
that can be automatically done having the CG specifications and information about
the context provided by the user, we call deployment unit the module that connects,
configures and runs a CG in order to obtain a final specialized component. This
process is described in figure 8.2).

8.2. PRODUCTION AND DELIVERY OF CGS 65

Figure 8.2: Consumer’s perspective: CG execution

8.2.1 Example of CG Implementation

Let us have a look to the function power (an example cited in many places to show
a simple case of applying partial evaluation, see chapter 4), in terms of our model.
We recall the definition of the interface IMultiplier (a service provided by the
component Multiplier in the example given in section 5.2.2) to show an interaction
between CGs.

Interface and Component Declarations. Defines component architecture.

interface IMultiplier {
int multiply(int x , int y) ;

}

interface IPow {
int power(int n, int x) ;

}

component Pow {
provides IPow power ;

requires IMultiplier mult ;
}

Specialization Scenario Declaration. Declares a specialization opportunity
for a method published in a interface.

66 CHAPTER 8. PUTTING THE PIECES TOGETHER

/ ∗∗Defines a specialization opportunity for a method in IPow
∗/

specialization PowSpec on IPow {
int power(int n, int x) {

D powern (S n , D x) ;
}

}

CG Declaration. Binds the declared component with the specialization oppor-
tunity defined.

/ ∗∗Associate the declared scenario with the function power
implemented by Pow ∗/
genspec GenPow component Pow{

specialization PowSpec for power ;
}

Component Implementation. The implementation of the declared component.

class Pow implements IPow {
IMultiplier mult;

public Pow(IMultiplier m) {
mult = m;

}

int power(int n, int x) {
if (n == 1) return x;

else return mult.multiply(x, power(n −1, x));
}

}

From those specifications and the component implementation, the cogen should
generate a CG implementation, where IGenPow is the CG interface compatible with
the method power (see section 7.5.1):

/ ∗∗ method dispatcher for power
∗ it returns a call to the proper specialization
∗ and creates specialized method body and
∗ signature in the specialized component
∗/
public String power(SpecializationScenario s,

Object[] statics, String[] dynamics) {
SpecializationScenario scen;
//simplifying SpecializationScenario creation:
scen = (S, D):D;
//test each available scenario, to select
//the appropiate specialization
if (matches(s, scen)) {

//then:
// specialization selected: powerSD

8.2. PRODUCTION AND DELIVERY OF CGS 67

// method variant to call: powern

//retrieves static values
Object param = statics[0]; //e.g. 4
//obtains String code corresponding to
//dynamic param:
String dynparam = dynamics[0]; //e.g. "x"

//calls the method variant powern
//it will answer the specialized code
String codespecialized = powern(param, dynparam);

//generates signature of powerSD
//i.e.: "public int powerSD(int x) {"
//generates method body of powerSD
//using codespecialized
//i.e.: "return " + codespecialized + "; }"
...
//creates the code call to powerSD
//(the specialized function)
//simplifiying:
String code = "powerSD(" + dynparam + ")";
//answer the call, e.g. "powerSD(x)"
return code;

}else
// attempts to match with next scenario
scen = ...;
if matches(s, scen) {

...
}

/ ∗∗ method variant for spec powern:
∗ n is static in specialized final component,
∗ but it remains as a variable in this CG.
∗ Answers the code body of the specialized function
∗/
private String powern(int n, String x) {

if (n==1) return x;
else {

// we have to multiply x ∗ (powern(n −1))
// both params are dynamics
//simplifying SpecializationScenario creation:
SpecializationScenario s = (D, D):D;
String[] dynamics = {x,

powern(n −1, x)
};

//no statics for mult:
Object[] statics = {};
return mult.multiply(s, dynamics, statics);
}

}
}

68 CHAPTER 8. PUTTING THE PIECES TOGETHER

The invocation of multiply returns a String with the code to be inserted into
the specialized method powerSD (it will be an invocation to the specialized version of
multiply, specialized by the CG of the component provided to Pow).

Note that the code for each function variant of the generator(in this case, just
powern(int x)) preserves a structure quite similar to the original function (if we
omit special declarations like arrays used as parameter when the method of the CG
of mult is invoked).

Connecting this CG with the CG of the component Multiplier defined previously
and running them with n = 3 would lead to the next specialized component Pow1:

class Pow{
Multiplier mult;

public Pow(Multiplier m) {
mult = m;

}

public int powerSD(int x) {
return mult.multiply(x, mult.multiply(x, x));

}
}

This is clearly a more efficient version than the original definition of Pow if it is
reduced to the context where n is always 3. It eliminates recursion and applies a
straight multiplication of the argument. Note that in the specialized component, the
implementation of all the participants is known. The type of mult is not an interface
but a class, therefore, the call to multiply can be faster than the original version,
where mult is declared with an interface type.

Figure 8.3 sums up the main parts involved in this example. We omitted the
component Multiplier to simplify the picture and keep the essential parts.

8.3 Building a CG Generator

We have shown how a CG looks like and how it can interact with other CGs to form
a complete system. As we have explained before, if the producer had to build by
hand a CG each time she wanted to deliver a new component, her work would be
very tedious, painful, error prone and would require much more time. The solution is
to have a tool that automatically generates a CG for a given component, the cogen
that we have described in 4.3.

Following direct approach for generating a cogen [18], we can mention the following

1In this case the result of the interaction leads to a call to the default multiply method. There
is no scenario defined for arguments with binding time (D S) in the component Multiplier.

8.3. BUILDING A CG GENERATOR 69

Figure 8.3: CG for the Pow component

requirements in terms of inputs and outputs that can serve as a guide for building
such a tool.

Each component is either a primitive component or is composed of other com-
ponents. In the first case, the cogen will receive only the implementation of the
component and the component generator specification as input, but in the second
case, the cogen needs the other already produced CGs as well.

Source code corresponding to component implementation will be processed by the
cogen, and consequently it does not need to be delivered to the consumer, only the
resulting compiled CG will be delivered.

The CG code must not be very much larger than the component itself. This can
be achieved using a component structure similar to the component implementation.
In fact, the only considerable extra code should correspond to the different variants
for a service defined in specialization scenarios (specialization scenarios avoid code

70 CHAPTER 8. PUTTING THE PIECES TOGETHER

explosion by limiting specialization only to explicitly declared opportunities: the
cogen does not need to consider any possible variant during CG building).

The main input of a cogen is the annotated source code of a component imple-
mentation. This source code can be handled by means of its corresponding abstract
syntax tree (AST). The nodes of this tree are augmented with binding time infor-
mation, indicating the static or dynamic nature of each subtree. Note a different
annotated AST is required for each specialization scenario. Instead, what we can do
is to append, to each node, a binding-time annotation for each specialization scenario.

Given a function (a part of the offered services), there will be as many special-
ization variants as scenarios were defined for it (in the example described in section
8.2.1, powern is one method variant, another one could be powerx for a scenario that
declares x as static and n dynamic).

The building of the component generator for a given function and specialization
scenario consists of producing code to residualize or rebuild the appropriate parts of
the tree as program tex while computing the static parts of the tree. Residualize
consists basically of remaining unchanged the static computations (they will remain
in the code of the CG) and rebuild implies generate code that reconstructs the original
code.

The direct approach for building such a cogen can be simpler because it only does
syntax manipulation of input source code (traversing and rebuilding of syntax trees).

The hard work here is done previously to running cogen, in the example given
above (in section 8.2.1), we do not really give the source of Power to the cogen,
instead we have to build the annotated version (in terms of binding times, and the
given specialization scenarios) of its AST first. However, how to obtain such an
annotated version in an automatic way is a topic by itself and we will not get into
details about binding-time analyzers for object-oriented environments.

8.4 Verification, Analysis and Deployment

This work is mainly focused on the creation of a CG generator, however, our proposal
needs some other pieces in order to produce the appropriate input for the CG as well
as for the cogen itself. In the following, we discuss briefly these other parts of our
model.

8.4.1 CDL Verification and Code Generation

We have defined CDL (see section 5.2) as a declarative way of describing a component
architecture. Given a formal description of how the concepts expressed with CDL
should be mapped in the component implementation language (in our case, we have
defined informally a mapping to Java code), it is possible to build a verifier that checks

8.5. THE PROPOSED MODEL 71

validity of the implementation with respect to a given CDL declaration. A further
step would be to generate the implementation skeleton for the target language. In
this way, the user only fills service method implementations.

On the other hand, it could be a valid alternative to have a complete component
language, instead of separating component declarations (CDL) from implementation
(in this case Java) and providing a mapping between them, it is possible to join both
languages in one single component language. The code written in such a language can
be automatically translated into Java or C code to be able to apply existing binding-
time analysis or code optimizer, before running the cogen to obtain the corresponding
CG.

8.4.2 Binding-Time Analyzer

The quality of a specialized component will depend on the appropriate declaration of
specialization opportunity but also, fundamentally on the correctness and precision
of the binding-time analysis that produces the annotated abstract syntax tree taken
as input by the cogen. In our prototype, we have done this analysis manually, but to
go further, a binding-time analyzer should be provided.

Efficient binding time analysis for object-oriented languages continues is an open
research area. Ther is, for instance, some work in progress using binding-time analysis
based on constraints (BTA analyzer for petitCafé [39]).

8.4.3 Deployment Unit

As explained before, CG generation and execution is a process that involves compo-
nent producers as well as component consumers (see section 8.2). At some point in
the process of deploying and acquiring of CGs, there will be a final consumer that may
want to get the specialized versions generated by the CG (the reason of its existence).
This can be done by a configuration script that instantiates and properly connects
the involved CGs and finally runs the top-level CG with the specialization scenarios
and values defined by the user. This configuration script can be automatically made,
by what we have called a deployment unit. Such a tool can read the CG specifications
and the user defined specializations and, following conventional rules,it can run the
specialization process to instantiate and to connect the CGs.

8.5 The Proposed Model

Combining the elements presented in the previous chapters and the new ones defined
in this chapter, we obtain the architecture described in figure 8.4.

72 CHAPTER 8. PUTTING THE PIECES TOGETHER

Figure 8.4: Software component specialization model

The rounded rectangle means user input information (which can be producer
or consumer data according to the destination process). Shadowed rectangles show
processing units, like cogen, BTA unit and deployment unit. Shadowed rounded
rectangles indicate outputs of a processing unit, CG and specialized components are
represented by rounded rectangle inside a normal shadowed rectangle because they
are output of other processes and at the same time processing unit.

8.6 The CG Generator Prototype

We have made a prototypical version of part of the model presented above. The
implementation covers the code generator generator (cogen) and it is based on a
component model implemented following the guidelines suggested in 5.3 about how

8.6. THE CG GENERATOR PROTOTYPE 73

to get a possible implementation of the given CDL in Java.
In order to interact with it and to generate a CG from a component, we have

used the Eclipse platform [26] to build a plugin that, by starting from a simple
component implementation (corresponding to just one Java class), allows the user to
create specialization scenarios for each of the methods, and permits to mark parts of
code that must be considered static. In this way, we simulate the steps that should
be done through a binding-time analyzer.

Figure 8.5 shows how the plugin looks like when the user open a component class
and add some specialization scenarios and binding-time information into the code.
In this case, the user has defined a specialization scenario called dsd (S D):D, which
assigns static binding time to the parameter x and dynamic binding time to the
parameter y. Static binding times are shown in the code underlined with a squiggly
line.

Having defined some specialization scenarios and selected the static parts for each
of them, the user can activate the CG generation process. It produces a new file with
the Java source code corresponding to the CG generated. With some limitations2,
and only considering simple expressions and basic data types, the CG generated
is compilable and executable, generating specialized components according to the
provided context.

Figure 8.6, shows part of the code of the CG corresponding to the example com-
ponent shown in the figure 8.5. The field containing a subcomponent generated a field
in the CG containing another CG (corresponding to the component AnotherCompo).
For each method in the component there is a dispatcher with the same name as the
original method (mparam), but including specialization scenario information as pa-
rameter. This method will be called by other CGs that need to interact with this
one. When a method dispatcher is called, it returns a String containing the code
that the caller should insert in its specialized component. This code will be a static
value, like an integer, or in case of the mparam, where the return value is dynamic,
it will return a method call of the form scenarioName-mparam(3, var). A method
dispatcher will also call the appropriate method variant, one variant of mparam per
defined specialization scenario. In the figure one can see part of the method vari-
ant called dsd-mparam(int x) according to the specialization scenario received as
parameter and the available scenarios defined in the CG. The purpose of a method
variant is to execute the static parts of the original method body (for example a
computation involving the static value of x) and to generate the residual code into
the specialized component.

2Strong checking of proper context information propagation throughout the sub CGs, other
steps like checking of component composition (proper composition and compatibility checks), and
detecting cycles in the collaboration graph must be considered.

74 CHAPTER 8. PUTTING THE PIECES TOGETHER

Figure 8.5: The CG generator plugin

8.6. THE CG GENERATOR PROTOTYPE 75

Figure 8.6: The generated CG

Chapter 9

Conclusion

This chapter reviews the concepts and objectives covered by this work. We present
some related projects and we offer some perspectives about future work.

9.1 Related Work

Our idea of providing an explicit language (CDL) to separate component architecture
from implementation is not new, in fact it appears in a family of predecessors of mod-
ern software component concepts, the Module Interconnection Languages (MIL) [40].
The main purpose of MILs is to help software engineers during design, evolution and
maintenance of the system, allowing automatic checking of system structure. The
CDL follows the same goals, it can be used to automatically verify the component
implementation, checking composition and binding between provided and required
services, guaranteeing the correct generation of the corresponding CG. However, while
MILs provide a description and verification of the global structure of a software sys-
tem1, a CDL specifies only a part of that system, the component being described.
The CDL allows to declare the required services of a component without connecting
them to other components.

Our aim of obtaining automatic specialization of software component is inspired
by the authors Le Meur and Consel in [31]2. They suggested to use explicit declara-
tion of specialization opportunities during component implementation. Specialization
opportunities are grouped in a “module” associated to a specific “component” imple-
mentation. The process consists of delivering a specializable component (consisting of

1Latest MILs considered separate compilation of modules, however, the interconnection between
the modules remains static. Components declare functionalities as required, but they do not specify
which component will provide such functionalities.

2A proposal about working with program specialization using a black-box model was suggested
previously by Schultz in [43].

77

78 CHAPTER 9. CONCLUSION

the implementation and the declared specialization). Afterwards, when a consumer
acquires this specializable component she has to use a linker that puts the compo-
nents together and applies the specialization process. The user specifies the custom
values (adaptation information) to the linker, obtaining as a result a component spe-
cialized for the user’s application. The process works well when the user wants to
build a top-level component that does not depend on any other component (i.e., any
required service is satisfied)3, but it falls short of satisfying the needs of intermedi-
ate component producers (those who want to deliver a new component integrating
existing ones, eventually leaving some required and provided services unbound). The
proposal of Le Meur and Consel is based on Tempo, a specializer for C code [12].

Schultz et al. extended partial evaluation to object-oriented languages, in partic-
ular for the Java language. The result is a specializer for object-oriented programs
called JSpec [27], based on Tempo4. JSpec uses specialization classes in order to
provide some form of modular specialization [43]. However, there are no precedents
with respect to building component generators (in terms of generating extensions) for
object oriented languages.

We have put together, specialization scenarios with the idea of self specializable
components, using the notion of generating extensions and hand-writing program
generator generators, a concept covered by Heldal and Hughes [25, 18, 24] between
others.

9.2 Future Work

The scope of this work is only preliminary. The implications and feasibility of a
realistic implementation still require a deeper study.

Future work implies the study of a concrete implementation of our component
generator generator. It includes the creation of the tools suggested in chapter 8.

An important issue to be dealt with in an immediate future is the formalization
and implementation of a proper binding-time analysis, it is the only way to obtain
reliable annotated programs that really can be used to test our model. In order
to do so, it may be necessary to restrict the Java language to a simpler subset that
enables an easier reasoning about desirable properties. One subset candidate could be
petitCafé[39], over which a constraint-based binding time analysis is already defined.
This analysis can be improved and adapted without inconveniences to our proposal.

Finally, a study of the benefits of the proposal over a real case (or at least a good
approximation to it) is necessary to verify the capabilities of the whole model.

3We have called final consumer this kind of user.
4Actually, it uses Tempo run-time specialization facilities to at run time generate binary programs

9.3. CONCLUSIONS 79

9.3 Conclusions

We have presented the problem raised when attempting to delivery efficient and
adaptable software components. However, it is not straightforward to capitalize upon
these opportunities while keeping a pure component model delivering independent
and adaptable black-box components.

We claim that specialization techniques, widely applied to traditional software
systems composed basically of modules or libraries, need to be extended and adapted
to work properly with software components.

Potential specialization opportunities are captured in our proposal by allowing
component producer to declare specialization scenarios following the suggestion of Le
Meur[31].

Focusing our work on the notion of generating extensions[21, 29] and Birkedal’s
proposal of hand-writing program generator generators[6], we have presented a model
that consists of deployment of component generators (a special kind of generating ex-
tensions), programs that are able to create specialized versions of a component driven
by the static information available at consumption/assembly time and specialization
scenarios declared at production time.

We have offered some guidelines about how to automatically generate component
generators. To demonstrate the feasibility of our proposal we have built a prototype,
stressing simplicity in order to facilitate reasoning about it and to make implemen-
tation tractable in the short period of time available.

Bibliography

[1] Corba components, OMG TC Document orbos/99-02-05, March 1999, Joint Re-
vised Submission. 15

[2] J. Aldrich, C. Chambers, and D. Notkin, ArchJava: Connecting software archi-
tecture to implementation, Proceedings of the 24th International Conference on
Software Engineering (Orlando, FL, USA), IEEE Computer Society Press, May
2002. 11, 33, 39

[3] L.O. Andersen, Program analysis and specialization for the C programming lan-
guage, Ph.D. thesis, DIKU, University of Copenhagen, May 1994. 22

[4] K. Arnold and J. Gosling, The Java programming language, 2nd ed., Addison-
Wesley, 1997. 3, 34, 40

[5] S. Baker, CORBA distributed objects using Orbix, Addison-Wesley, 1997. 12

[6] L. Birkedal and M. Welinder, Hand-writing program generator generators, Pro-
ceedings of the 6th International Symposium on Programming Language Imple-
mentation and Logic Programming (PLILP ’94) (M. Hermenegildo and J. Pen-
jam, eds.), Springer-Verlag, 1994, pp. 198–214. 2, 30, 79

[7] G. Bobeff and J. Noyé, Component specialization: Towards deeper adaptation,
Systèmes à composants adaptables et extensibles (Grenoble, France), October
2002. 2, 51, 63

[8] M.A. Bulyonkov, Extracting polyvariant binding time analysis from polyvariant
specializer, Proceedings of the ACM SIGPLAN Symposium on Partial Evalu-
ation and Semantics-Based Program Manipulation - PEPM’93 (Copenhagen,
Denmark), ACM, June 1993. 2

[9] R. Cardone and C. Lin, Comparing frameworks and layered refinement, Pro-
ceedings of the 23rd International Conference on Software Engineering (Toronto,
Canada), IEEE Computer Society Press, May 2001, pp. 285–294. 39

81

82 BIBLIOGRAPHY

[10] C. Consel, A tour of Schism: A partial evaluation system for higher-order ap-
plicative languages, Proceedings of the ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation - PEPM’93 (Copen-
hagen, Denmark), ACM Press, June 1993, pp. 66–77. 26

[11] C. Consel, L. Hornof, J. Lawall, R. Marlet, G. Muller, J. Noyé, S. Thibault, and
E.N. Volanschi, Partial evaluation for software engineering, ACM Computing
Surveys 30 (1998), no. 3. 1

[12] C. Consel, L. Hornof, J. Lawall, R. Marlet, G. Muller, J. Noyé, S. Thibault, and
E. N. Volanschi, Tempo: Specializing systems applications and beyond, ACM
Computing Surveys 30 (1998), no. 3. 78

[13] C. Consel, L. Hornof, F. Noël, J. Noyé, and E. N. Volanschi, A uniform approach
for compile-time and run-time specialization, Partial Evaluation, International
Seminar, Dagstuhl Castle (O. Danvy, R. Glück, and P. Thiemann, eds.), Lecture
Notes in Computer Science, vol. 1110, Springer-Verlag, February 1996. 22, 26

[14] C. Consel and S.C. Khoo, Parameterized partial evaluation, Proceedings of the
ACM SIGPLAN ’91 Conference on Programming Language Design and Imple-
mentation (Toronto, Ontario, Canada), ACM, ACM Press, June 1991, ACM
SIGPLAN Notices, 26(6), pp. 92–106. 1

[15] C. Consel and F. Noël, A general approach for run-time specialization and its
application to C, Conference Record of POPL’96: The 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (St. Petersburg,
FL, USA), ACM Press, January 1996. 22

[16] J. Dean, C. Chambers, and D. Grove, Selective specialization for object-oriented
languages, Proceedings of the ACM SIGPLAN ’95 Conference on Programming
Language Design and Implementation, ACM Press, June 1995, ACM SIGPLAN
Notices, 30(6). 54

[17] L.G. DeMichiel, L.Ü. Yalçinalp, and S. Krishnan, Enterprise JavaBeansTM spec-
ification, SUN Microsystems, August 2001, Version 2.0, Final Release. 15

[18] D. Dussart, R. Heldal, and J. Hughes, Module-sensitive program specialization,
Proceedings of the ACM SIGPLAN ’97 Conference on Programming Language
Design and Implementation (Las Vega, NV, USA), ACM SIGPLAN Notices,
32(5), May 1997, pp. 206–214. 30, 68, 78

[19] D. Dussart, F. Henglein, and C. Mossin, Polymorphic recursion and subtype qual-
ifications: Polymorphic binding-time analysis in polynomial time, Proceedings of

BIBLIOGRAPHY 83

the Second International Symposium on Static Analysis, SAS’95 (Glasgow, UK)
(A. Mycroft, ed.), Lecture Notes in Computer Science, vol. 983, Springer-Verlag,
September 1995, pp. 118–135. 29

[20] R. Glück and J. Jørgensen, Efficient multi-level generating extensions for program
specialization, Proceedings of the 7th International Symposium on Programming
Language Implementation and Logic Programming (Utrecht, The Netherlands)
(M. Hermenegildo and S. Doaitse Swierstra, eds.), Lecture Notes in Computer
Science, no. 982, September 1995, pp. 259–278. 2

[21] R. Glück and J. Jørgensen, Efficient multi-level generating extension for program
specialization, Proceedings of the 7 International Symposium on Programming
Language Implementation and Logic Programming (Utrecht, The Netherlands),
no. 982, september 1995, pp. 259–278. 2, 22, 23, 79

[22] Object Management Group, CORBA components, Adopted Specification
formal/02-06-65, OMG, June 2002, Version 3.0. 33

[23] R. Guerraoui (ed.), Ecoop’99 - object-oriented programming - 13th european
conference, Lecture Notes in Computer Science, vol. 1648, Lisbon, Portugal,
Springer-Verlag, June 1999. 84

[24] R. Heldal and J. Hughes, Partial evaluation and separate compilation, ACM SIG-
PLAN Symposium on Partial Evaluation and Semantics-Based Program Manip-
ulation (Amsterdam, The Netherlands), ACM Press, June 1997, ACM SIGPLAN
Notices, 32(12), pp. 1–11. 78

[25] R. Heldal and J. Launchbury, Handwriting cogen to avoid problems with static
typing, Draft Proceedings, Fourth Annual Glasgow Workshop on Functional Pro-
gramming (Skye, Scotland), Glasgow University, 1991, pp. 210–218. 2, 29, 78

[26] IBM, http://www.eclipse.org. 3, 73

[27] INRIA/Compose, http://compose.labri.fr/prototypes/jspec. 78

[28] N.D. Jones, An introduction to partial evaluation, ACM Computing Surveys 28
(1996), no. 3, 480–503. 1

[29] N.D. Jones, C.K. Gomard, and P. Sestoft, Partial evaluation and automatic
program generation, International Series in Computer Science, Prentice Hall,
1993. 23, 25, 26, 27, 29, 79

[30] J. Jørgensen and M. Leuschel, Efficiently generating efficient generating exten-
sions in Prolog, Report CW 221, Department of Computing Science, Katholieke
Universiteit Leuven, February 1996. 2

84 BIBLIOGRAPHY

[31] A.F. Le Meur, C. Consel, and B. Escrig, An environment for building customiz-
able software components, IFIP/ACM Working Conference - Component Deploy-
ment (Berlin, Germany), Springer-Verlag, 2002, pp. 1–14. 22, 44, 77, 79

[32] J. Lloyd and J. Shepherdson, Partial evaluation in logic programming, Journal
of Logic Programming 11 (1991), 217–242. 26

[33] V. Matena and M. Hapner, Enterprise JavaBeansTM , SUN Microsystems, March
1998, Version 1.0. 12, 20

[34] S. McDirmid, M. Flatt, and W.C. Hsieh, Jiazzi: New-age components for old-
fashioned Java, OOPSLA’01, Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, ACM Press, 2001. 14

[35] R. Monson-Haefel, Enterprise JavaBeans, 2nd ed., O’Reilly, March 2000. 33

[36] F. Nielson, H.R. Nielson, and C. Hankin, Principles of program analysis,
Springer-Verlag, 1999. 28

[37] D. Parnas, On the criteria for decomposing systems into modules, Communica-
tions of the ACM 15 (1972), no. 12, 1053–1058. 13

[38] D. Parnas, Designing software for ease of extension and contraction, IEEE Trans-
actions on Computers (1979), 128–138. 14

[39] L. Ponisio, A binding-time analysis for petitCafé, Master’s thesis, Vrije Univer-
siteit Brussel and École des Mines de Nantes, August 2002. 71, 78

[40] R. Prieto-Diaz and J. M. Neighbors, Module Interconnection Languages, The
Journal of Systems and Software 6 (1986), 307–334. 77

[41] T. Reps and T. Turnidge, Program specialization via program slicing, Partial
Evaluation, International Seminar, Dagstuhl Castle (O. Danvy, R. Glück, and
P. Thiemann, eds.), Lecture Notes in Computer Science, vol. 1110, Springer-
Verlag, February 1996, pp. 409–429. 1, 22, 25, 26

[42] U.P. Schultz, Black-box program specialization, in Guerraoui [23]. 22

[43] U.P. Schultz, Object-Oriented Software Engineering Using Partial Evaluation,
Ph.D. thesis, Université de Rennes I, December 2000. 1, 26, 77, 78

[44] U.P. Schultz, J. Lawall, C. Consel, and G. Muller, Towards automatic specializa-
tion of Java programs, in Guerraoui [23], pp. 367–390. 22

[45] SUN Microsystems, JavaBeansTM , July 1997, Version 1.01. 20

BIBLIOGRAPHY 85

[46] C. Szyperski, Independently extensible systems- software engineering potential
and challenges, Proceedings, 19th Australasian Computer Science Conference,
Australian Computer Science Communication, 1996, pp. 203–212. 15

[47] C. Szyperski, Component Software, 2nd ed., Addison-Wesley, 2002. 12

[48] F. Tip, A survey of program slicing techniques, Tech. Report CS-R9438, CWI,
1994. 1, 26

[49] T.L. Veldhuizen, C++ templates as partial evaluation, ACM SIGPLAN Sympo-
sium on Partial Evaluation and Semantics-Based Program Manipulation (San
Antonio, TX, USA), ACM Press, January 1999, pp. 13–18. 26

[50] A. Weinand, E. Gamma, and R. Marty, An object-oriented application framework
in C++, Special Issue of SIGPLAN Notices, 1988. 8

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	Contribution
	Standpoint
	Overview

	Software Components
	Introduction
	A Background
	Component Orientation
	Benefits
	Differences with Objects and Modules

	Building Components
	Granularity
	Interface Specification
	Compositional Model
	Independent Extensibility

	Component Life Cycle

	Producing Adaptable Software Components
	Introduction
	Degrees of Adaptation
	Efficiency--Adaptability Trade-off
	Dealing with Efficient Components

	Program Specialization
	Introduction
	Partial Evaluation
	Binding-Time Analysis

	Generating Extensions

	A Component Declaration Language
	Introduction
	Component Declaration Language (CDL)
	Syntax
	Example
	Static Architecture
	Component Instantiation

	Component Implementation
	Example

	Specialization Scenarios
	Introduction
	Independence of Specialization Opportunities
	Declaring Specialization Scenarios
	Syntax
	Example

	Component Generators (CG)
	Introduction
	CG Philosophy
	Advantages and Drawbacks

	CG Declaration
	Syntax
	Example

	Composing CGs
	Interaction Between CGs
	CG Interfaces
	Concrete and Declared Specialization Scenarios

	Putting the Pieces Together
	Introduction
	Production and Delivery of CGs
	Example of CG Implementation

	Building a CG Generator
	Verification, Analysis and Deployment
	CDL Verification and Code Generation
	Binding-Time Analyzer
	Deployment Unit

	The Proposed Model
	The CG Generator Prototype

	Conclusion
	Related Work
	Future Work
	Conclusions

	Bibliography

