
Vrije Universiteit Brussel - Belgium

Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes - France

and

University of Twente - The Netherlands

August 2003

V
R

IJ
E

U

N
IV

ERSITEIT BR

U
S
S

E
L

S
C

IE
N

T

IA
VINCERE TE

N

E
B

R
A

S

ECOLE DES MINES DE NANTES

Compose *

A Runtime for the .Net Platform

A Thesis submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

(Thesis research conducted in the EMOOSE exchange)

By: Carlos Francisco Noguera Garćıa

Promotor: Theo D’Hondt (Vrije Universiteit Brussel)

Co-Promotor: Lodewijk Bergmans (University of Twente)

ii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Contents of this Thesis . 2

2 Background and Problem Statement 5

2.1 Aspect Oriented Programming . 6

2.2 Composition Filters . 6

2.2.1 Filters . 7

2.2.2 Previous implementations of Composition Filters 8

2.3 The .Net platform and J] . 11

2.4 Problem Statement . 12

2.5 Related Work . 12

2.5.1 AspectJ . 12

2.5.2 EAOP . 13

2.5.3 Aspect C] . 14

3 The Compose* System 15

3.1 Requirements . 16

3.1.1 Functional Requirements . 16

3.1.2 Non Functional Requirements 17

3.1.3 Challenges . 18

3.2 Design of the Compose* Runtime . 19

iii

iv CONTENTS

3.2.1 The Message Interception Layer 20

3.2.2 The Core Runtime . 22

3.2.3 Specification Interpreter . 25

3.2.4 Challenges . 26

3.3 Implementation of the Compose* Runtime 27

3.3.1 Message Interception Implementation 27

3.3.2 Implementation of the Filters 29

4 Conclusion 33

4.1 Evaluation . 34

4.1.1 Functional Requirements . 34

4.1.2 Challenges . 35

4.2 Conclusion . 36

4.3 Future Work . 37

Bibliography 38

A A Compose* Example 41

A.1 The Locking Filter . 42

B Testing Guidelines 45

B.1 Introduction . 45

B.2 Usage in Compose* . 46

B.2.1 Naming standards . 46

B.3 Configuring and running a project for dotUnit in Visual Studio 47

C Source Code Documentation 49

C.1 Package dotNetComposeStar.runtime.interpreter 50

C.2 Interfaces . 52

C.2.1 Interface ConditionResolver 52

C.2.2 Interface FilterSpecificationInterpreter 52

CONTENTS v

C.3 Classes . 53

C.3.1 Class AND . 53

C.3.2 Class CompoundExpression 55

C.3.3 Class Condition . 56

C.3.4 Class ConditionExpression 57

C.3.5 Class DefaultOperator . 58

C.3.6 Class ExclusionExpression 60

C.3.7 Class FALSE . 62

C.3.8 Class FilterInitializer . 63

C.3.9 Class InclusionExpression 64

C.3.10 Class NOT . 66

C.3.11 Class Operator . 68

C.3.12 Class OR . 69

C.3.13 Class Parameter . 70

C.3.14 Class Pattern . 72

C.3.15 Class PatternExpression 74

C.3.16 Class SequenceExpression 75

C.3.17 Class TRUE . 76

C.4 Package dotNetComposeStar.exception 78

C.5 Classes . 79

C.5.1 Class ComposeStarException 79

C.5.2 Class ErrorFilterException 80

C.5.3 Class FilterException . 82

C.5.4 Class FilterModuleException 85

C.5.5 Class FilterSpecificationException 86

C.5.6 Class InvalidConditionException 88

C.5.7 Class InvalidPatternExpressionException 90

C.5.8 Class MessageNotFilteredException 92

C.5.9 Class SelectorNotFoundException 95

vi CONTENTS

C.5.10 Class TargetNotFoundException 97

C.6 Package dotNetComposeStar.runtime.message 100

C.7 Classes . 101

C.7.1 Class Message . 101

C.7.2 Class ReifiedMessage . 105

C.7.3 Class ReplyMessage . 108

C.8 Package dotNetComposeStar.runtime 111

C.9 Classes . 112

C.9.1 Class ComposeStarObject 112

C.9.2 Class Dispatch . 113

C.9.3 Class ErrorFilter . 116

C.9.4 Class Filter . 119

C.9.5 Class FilterModule . 122

C.9.6 Class LockingFilterModule 126

C.9.7 Class Meta . 130

C.9.8 Class ObjectManager . 133

C.9.9 Class Send . 137

C.9.10 Class Substitution . 139

C.9.11 Class Wait . 141

C.10 Package dotNetComposeStar.runtime.actions 144

C.11 Classes . 145

C.11.1 Class ComposeStarAction 145

C.11.2 Class ContinueToNextFilterAction 146

C.11.3 Class DispatchAction . 148

C.11.4 Class ErrorAction . 150

C.11.5 Class MetaAction . 151

C.11.6 Class WaitAction . 154

C.12 Package dotNetComposeStar.runtime.policy 156

C.13 Classes . 157

CONTENTS vii

C.13.1 Class FilterPolicy . 157

C.13.2 Class PolicyExecutionResult 158

C.14 Package dotNetComposeStar.util 161

C.15 Classes . 162

C.15.1 Class ComposestarStack 162

C.15.2 Class Dictionary . 162

C.15.3 Class FilterSpecFactory 164

C.15.4 Class Invoker . 164

C.15.5 Class List . 165

C.15.6 Class Queue . 166

Chapter 1

Introduction

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

It is a common belief that the research and industrial branches of computer science

are two different and well delimited areas. Usually advances on research take a con-

siderable amount of time before they are adopted by the industrial side; take for

example the Object Oriented programming paradigm, which is just now, with the

advent of Java, starting to permeate the industry, whereas it has been around the

research community for over 20 years. This happens for a variety of reasons, most

of them out of the realm of computer science and well into politics marketing, eco-

nomics, etc. But also because of the fact that some of these advances are difficult to

incorporate into existing solutions.

However, in recent years there has been a renewed interest in accelerating the time

that takes for academic research to reach industrial approach; this is the case for the

development of tools, such as AspectJ, that introduce cutting edge concepts -Aspect

Oriented Programming- on a main stream programming language, Java. This is just

one of the multiple projects that start from the fact that it is not enough for a concept

to be good idea, it must also be easy to incorporate into existing solutions; another

project is the Composition Filters Model.

It is the purpose of this thesis to exploit one of the attributes of Composition

Filters, its language independence, by integrating it with the .Net platform.

1.2 Contents of this Thesis

This thesis is organized as follows. In chapter 2 some background and the problem

statement (2.4) are introduced. A small summary about Aspect Oriented Program-

ming (2.1), an overview of the Composition Filters Model and the previous its im-

plementations (2.2),and some work that is related to this one (2.5) make part of this

background.

In chapter 3 the Compose* System is presented. The requirements of the project

(3.1), its design (3.2), and implementation (3.3). Finally, in chapter 4, the product

1.2. CONTENTS OF THIS THESIS 3

of this project is evaluated (4.1), some concluding remarks (4.2) and proposals for

future work (4.3).

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background and Problem
Statement

5

6 CHAPTER 2. BACKGROUND AND PROBLEM STATEMENT

2.1 Aspect Oriented Programming

Whenever making changes to any non-trivial application, programmers are faced with

a long and error prone process: first they must find the place in which changes must

be applied within a large code base; with some luck, the number of affected modules

is small, which means that the amount of code to understand is equally reduced.

However, these modules may not contain only the code they are interested in, that

is, the module might contain several concerns ; adding the difficulty of understanding

and adapting artifacts that have nothing to do with the original problem to an already

difficult task.

These mixed modules are a common problem in any program, and call for a clear

separation of concerns or “The ability to identify, encapsulate and manipulate only

parts of software that are relevant to a particular concept, goal, or purpose”[TO01].

One of the techniques for separating concerns is known as Aspect Oriented Pro-

gramming (AOP). It deals with crosscutting concerns by defining aspects as modular

units of crosscutting implementations. This permits the programmer to place the

intersecting concern on a different constructs in a reusable manner.

It is important to note that Aspect Oriented Programming is not only a technique

to that can be used to modify existing applications. Currently research is advancing

on development methodologies that include AOP from the start, for example, see

[KJS00]

Various implementations dealing with AOP exist, in order to take advantage of

the current research, some of the most relevant to the Compose* system are treated

in 2.5.

2.2 Composition Filters

The Composition Filters Model (CF) is an extension to the Object Oriented model.

It is closely related to Aspect Oriented Programming, in the sense that with CF it

is possible to model Aspects, but CF’s origins date farther back in time. The base

2.2. COMPOSITION FILTERS 7

concept in CF is that messages that enter and exit an object can be intercepted, and

manipulated in various forms modifying the way in which the object behaves. Also,

in CF it is possible to state on which objects will the filters be placed, and how groups

of modules will interact with each other. Both these characteristics will be discussed

in more details in the following sections. For a more in depth look at the CF model,

see [BA]

2.2.1 Filters

Filters are the atomic unit of the CF model. There are various types of filters, all

sharing a common structure:

• A name that identifies the filter,

• The type of the filter and

• A set of expressions that define the way that messages are to be filtered.

Filters can refer to internal and external objects, as well as to the two types of

methods defined in the model: regular methods and condition methods, referred to

as conditions. Regular methods define the behavior of the object, and conditions

implement side-effect free boolean expressions about the state of the object.

Filters are defined as part of the visible interface of the object in which they are

superimposed. This interface declares the objects that the filters refer to as internals

or externals and methods are declared as regular methods or conditions. In this

interface definition, filters are grouped into filter modules. A simplified representation

of the CF model can be seen in figure 2.1.

The filtering process is described in the figure 2.2. In it, arriving messages are,

one at a time, passed through each of the filters. In each filter, messages are matched

against filter patterns ; if the message does not correspond with any of the patterns

on a filter, it passes to the next filter. If there are no more filters left, an error is

produced. Depending on the filter type messages are transformed when they match

or not.

8 CHAPTER 2. BACKGROUND AND PROBLEM STATEMENT

Instance Variables

Inner

Object

FilterModule 1

Input Filters Output Filters

internals externals condiitons methods

FilterModule 2

Input Filters OutputFilters

internals externals condiitons methods

methods

Figure 2.1: Representation of the CF model

Filter Types

There are various filter types whose behavior is defined by what actions are taken

when it accepts, that is a message matches any of the patterns defined for the filter;

or rejects a message. The most common filter types are dispatch, error, meta, send,

and substitution. Their behavior is explained in table 2.1

2.2.2 Previous implementations of Composition Filters

There have been various implementations for the CF model. Dating back to 1995,

the CF model has been in various platforms (smalltalk, C++, Java) and in various

manners (compile-time and runtime). In the next sections there is a small overview

and their relevance to the Compose*system.

2.2. COMPOSITION FILTERS 9

Figure 2.2: Graphical representation of the filtering process

Sina/ST

This an implementation in Smalltalk of the Sina language which incorporates the

composition filters object model. Sina/ST includes a programing environment, a

compiler and a kernel that provides runtime support. For a more detailed look at

Sina/ST see Piet Koopmans master thesis[Koo95]

Sina/ST uses smalltalk’s message not understood mechanism to intercept messages

sent between Sina/ST objects, and presents them to the language’s kernel. This kernel

performs the filtering process and takes the necessary action. This kernel supports

concurrent messages, input and output filters and five filter types: Dispatch, Error,

Send, Meta and Wait.

Sina/ST is relevant to the Compose* project because it follows the same approach

of a runtime environment, and therefore, Compose* and Sina/ST are every similar

in design. However, since Sina/ST is a language by itself and not an extension to

the smalltalk language, it prevents the interaction between smalltalk objects and Sina

objects; this contradicts one of the goals of the Compose*system: the interoperability

between native .net objects and Compose*objects.

10 CHAPTER 2. BACKGROUND AND PROBLEM STATEMENT

Filter Type Accept Action Reject Action
Dispatch The message is redirected to an-

other object defined in the filter
specification.

The message continues to the next
filter.

Error The message continues to the next
filter.

An exception is raised stating the
error.

Substitution The message is substituted as di-
rected by the parameters of the fil-
ter specification.

The message continues to the next
filter

Meta The message is reified, and dele-
gated to another object.

The message continues to the next
filter.

Wait The message continues to the next
filter.

The message is blocked until the
internal state of the object allows
the filter to accept the message.
During the time when the message
is blocked, the object is free to re-
ceive other incoming messages.

Table 2.1: Definition of the Filter Types

ComposeJ

ComposeJ is an implementation of the CF model on top of Java. It is constructed as

a preprocessor to the Java compiler. It includes a parser for the specification of the

composition filters, and said preprocessor. Since it is a compile time tool it does not

need a runtime kernel. In the current ComposeJ implementation, two filter types are

implemented: Dispatch and Error. For a more in depth look at ComposeJ see J.C.

Wichman’s masters thesis [Wic99].

ComposeJ bases its implementation of the CF model on successive source code

transformations directed by the composition filter specification. The concepts of CF

are then translated into Java statements. This takes away the dynamic nature of

Sina/ST, but it allows for ComposeJ objects to interact with regular Java objects

since there is no difference between them.

ComposeJ is relevant to the Compose* system because it supports the interesting

feature of interaction between CF objects and platform objects. Also it tests the

2.3. THE .NET PLATFORM AND J] 11

CF model against a strongly typed language such as Java, which presents issues that

must also be dealt with in Compose*. However, ComposeJ being a compile time

approach to CF, it is implemented in a very different way than how a runtime system

would be implemented; so lessons learned in it are not translated into Compose* in

a straightforward manner.

ConcernJ

ConcernJ implements concepts of the CF model that are related to superimposition

as a preprocessor to ComposeJ. Because of this, it is similar to ComposeJ. ConcernJ

uses concepts from OCL and UML to define where and how should filters be placed

on top of objects. For more information, see Patricio Salinas’ master thesis [Car01]

ConcernJ does not have much relevance with the current state of Compose* be-

cause no development for superimposition is required; however, as the system evolves,

the need for a clear method for filter superimposition will be present; and the system

must take into account the needs of this in its current design.

2.3 The .Net platform and J]

During the October 2000 Professional Programmers Conference Microsoft launched

its new initiative .Net. Geared towards enabling software as a service, .Net integrates

a number of technologies that emerged from Microsoft during the late 1990’s as well

as new additions: COM+ components, ASP web development, XML, support for new

protocols like SOAP and UDDI; and a general focus on Internet. The .Net platform

consists of four product groups: development tools, specialized servers, web services

and devices.

The most important component of the .Net Framework is the Common Language

Runtime (CLR). It is in essence a virtual machine in charge of activating objects,

perform security checks on them, lay them out in memory, execute them and garbage

collect them. The CLR takes these objects from Portable Executable (PE) files, which

contain the .Net equivalent of bytecode, called Intermediate Language.

12 CHAPTER 2. BACKGROUND AND PROBLEM STATEMENT

The CLR provides one of the features of .Net that is interesting for Compose*:

language interoperability. This feature is derived from the fact that all languages on

the .Net platform (Visual Basic, C++, C], J], etc) are compiled to IL and executed

that way. This means that objects programmed in different languages can communi-

cate without problem since their differences disappeared when they were compiled to

a common language, IL.

2.4 Problem Statement

Design on the Object Oriented paradigm lacks the means for modelling certain as-

pects that often present themselves during development, as well as for accurately

representing modular abstractions, these deficiencies are identified in [KLM+97]. It

is the purpose of this work to enrich the .Net platform by adding CF concepts that

address these issues.

More specifically, the extension to the .Net platform will be composed of a runtime

system for the interpretation of CF specifications. This runtime must be of use when

developing completely new applications, as well as when working with legacy systems.

2.5 Related Work

Aspect Oriented Programming is a popular new topic with many projects currently

developing. Due to AOP’s closeness to CF, most of this projects are related to

Compose*. Below there is a small overview of some of these relevant to Compose*.

AspectJ 2.5.1 is interesting because of its impact on AOP, as well as its .Net port

AspectC] 2.5.3. EAOP is a different approach to AOP, and it is interesting because

of the dynamic nature of its approach.

2.5.1 AspectJ

AspectJ[KHH+01] is an aspect oriented extension to the Java programming language.

It is arguably the most popular approach to AOP, and is geared towards industrial

2.5. RELATED WORK 13

software development.

AspectJ adds the concept of joint-point to Java , that is a well defined point in the

program execution, and advice, that is the code that is executed once a joint-point is

reached. In addition to these, AspectJ introduces inter-type definitions, which allow

the programmer to modify the static structure of classes (methods and relationships

between classes). Aspects in AspectJ are then defined in a similar manner as Java

classes, but they add joint-points, advices and inter-type declarations. They are the

unit in which crosscutting concerns are modeled in AspectJ.

AspectJ places aspect specifications along side the class hierarchy, and therefore

ties specification to classes. In contrast, CF relates aspects to objects by means of

the characteristics of messages it receives. This facilitates class-wide aspect definition

in AspectJ, but grants more expressiveness and reusability to CF. Also, AspectJ’s

semantics are mainly compile-time, whereas CF handles both runtime and compile-

time semantics.

2.5.2 EAOP

Event-based AOP[SD02] (EAOP) is a general framework for AOP in which aspects

are modeled as events. In it, sequences of related events are defined by patterns that

are matched at runtime in order to execute an action. Currently, EAOP provides a

prototype tool implemented in Java.

In EAOP, aspects are defined as point-cuts and actions to be carried out when

these point-cuts (and other conditions) are met. Point-cuts correspond to execution

points in the source code (statements such as method invocations); while actions state

what must happen at those point-cuts. The composition of the various aspects that

can occur during the execution of the program is clearly defined by the user through

a configuration file.

This approach to AOP is similar to CF in its interpretation of aspects; for both

processes have a matching and an execution part. This allows for a wider control on

aspect execution than that provided by frameworks in which the matching process is

14 CHAPTER 2. BACKGROUND AND PROBLEM STATEMENT

fixed, like AspectJ 2.5.1.

2.5.3 Aspect C]

Aspect C][Kim02] is a more or less straight forward port of the concepts of AspectJ

to the C] language. It ports the same concepts, although it uses several facilities

provided by the .Net platform, such as XML, for its processing.

The Aspect C] model makes a clear distinction between the “business” code and

the “aspect” code by placing the latter in a separate file in the form of an XML

document. It also supports the AspectJ model of joint-points, as well as static (inter-

type definitions) and dynamic (advices) crosscutting.

Aspect C] compares with CF in the same way as AspectJ. One notable difference

is that due to Compose*’s runtime implementation, it is applicable to all languages

that run in the .Net platform; whereas the Aspect C] implementation relies on a

preprocessor that acts on the source code, thereby binding it to the C] language.

Chapter 3

The Compose* System

15

16 CHAPTER 3. THE COMPOSE* SYSTEM

3.1 Requirements

At the beginning of the Compose* Runtime project, certain features and character-

istics were expected from it. Which filter types were to be implemented and how,

and how should the runtime interact with the underlying platform. These features

are translated into the functional and non functional requirements specified in the

following two sections.

Its important to note what falls out of the scope of the Compose* Runtime. It

will not implement the weaving part of CF and it will not implement a message

interception mechanism. It must, however, be designed in a manner that facilitates

these foreseeable evolutions.

3.1.1 Functional Requirements

• The runtime must permit the addition and removal of filter modules

at runtime.

This ties Compose* to a runtime design and rules out a compile time approach.

This makes Compose* more similar to the previous implementation of Sina/ST

than to ComposeJ (see 2.2.2).

• The filters to be implemented are:

– Dispatch,

– Send,

– Wait,

– Error and

– Meta

There are other kinds of filters, such as the Real-Time filter[ABvSB94], but

these are the most common.

• The runtime must provide support for Filter Modules.

3.1. REQUIREMENTS 17

There is no support for the concern construct and superimposition features such

as the ones presented in ConcernJ [Car01]

• .Net objects must be able to interact with Compose*.net objects by:

– receiving messages from compose*.net objects

– sending messages to compose*.net objects.

This assures that the Compose* system will integrate well with legacy code.

• All .Net objects are suitable for imposition, provided that they con-

form with the given filter interface.

3.1.2 Non Functional Requirements

• The runtime must be developed within the .Net framework, using j]

as a language.

These permits a possible port to the Java platform.

• The runtime architecture will be implemented as an interpreter.

By implementing the runtime as an interpreted a dynamic design in which the

functional requirements (in particular the addition and removal of filter modules

in runtime) are easily fulfilled.

• The Compose*.net runtime must maintain dependencies with the

framework libraries at a minimum to facilitate the porting of the

source code to the Java platform. In order to do this, the design

must me both modular and explicit.

This also facilitates the possible port to the Java platform by placing a wrapper

around the platform-specific library objects (such as data types and reflection

facilities) so that can be easily replaced when changing platforms.

18 CHAPTER 3. THE COMPOSE* SYSTEM

3.1.3 Challenges

Several challenges present to the development of the Compose* runtime. Some are

related to the platform, others to the requirements stated before, while others from

the CF model itself. All these must be addressed if the project is to be successful.

• Behaviour Injection

As discussed in 2.2, the original name of composition filters was interface pred-

icates. This is because the appliance of filters on top of objects changes their

interface. For example, given a logging filter L, when applied to an object A,

can change the interface by adding a isLogging() method. This operation will

change the declared interface of object A, altering the type of the object.

In compile time based implementations of the Composition Filters such as

ComposeJ[Wic99] and ConcernJ [Car01] this poses no problem. When a fil-

ter is imposed over an object, this is compiled again, as are all other objects

referencing to A, therefore adjusting to the interface changes.

The runtime implementation of Composition Filters done in the past, Sina/st

[Koo95]also avoided this problem because it was implemented on top of a dy-

namically typed language (Smalltalk). By employing the messageNotUnderstood

mechanism, objects can handle messages that do not correspond to methods

they implement. This allows the transparent mutation of the interface of the

object.

However, the type system that exists within the .Net platform is static. This

is enforced at IL (bytecode) and cannot be bypassed without modifying the

Common Language Runtime. This presents the problem of how to implement

dynamic interfaces in a static typed language. Even if the Common Language

Runtime is fooled into allowing dynamic types, the problem of how to use these

dynamic types from statically typed languages such as C] remains, because the

compiler must be aware of the dynamic nature of the Compose* objects, and

forego checking on method calls to those objects.

3.2. DESIGN OF THE COMPOSE* RUNTIME 19

• Message Interception

Message interception is one of the main issues to deal with when implementing

the CF model, because it is the most natural way of implementing the concept of

filtering messages. This can be achieved in various ways, for example modifying

the platform’s CLR so that it catches method invocations; weaving either at

source code level or IL level.

However, taking into account the functional requirement that states that all

Compose* objects can receive messages from any other object in the platform,

not all alternatives are viable. Source code weavers are discarded because they

are language dependant, and they are not useful on pre-compiled libraries whose

source code is not known. The useful approaches left are IL weaving and CLR

modification.

• Platform Independence

One of the non functional requirements states that the dependency between the

Compose* runtime and the underlying platform must be kept to a minimum.

Nevertheless, for the Compose* runtime to work, facilities such as message

reflection and dynamic invocation must be used. This, of course, hampers the

desired feature of platform independence.

3.2 Design of the Compose* Runtime

The architecture of the Compose* Runtime is composed of three main parts: the

message interception layer, the filter specification interpreter and the core runtime.

All these parts communicate through well defined interfaces in the manner described

in figure 3.2. In it, an object A sends a message m to a Compose* object B who has

a filter module attached to it. The message is caught by the message interception

layer, and delegated to the core runtime. The core runtime, depending on the nature

of the filter module attached to B, uses the filter specification interpreter, and access

20 CHAPTER 3. THE COMPOSE* SYSTEM

a variety of objects which may or not include the original intended B object. Finally,

the message is returned to the message interception layer, and back to A.

Message Interception Mechanism
Compositon
Filter
Runtime

A

B C

D

Filter
Specification
Interpreter

Figure 3.1: Simplified architecture of Compose*Runtime

3.2.1 The Message Interception Layer

While the development of the message interception layer was not one of the original

requirements of the project, it proved necessary for the correct implementation of

the runtime. The message interception layer must provide means to catch method

invocations at some point between the sender and the receiver object as transparently

as possible while offering information about the invocation. At minimum, for the

filtering process to be performed, this information must include:

3.2. DESIGN OF THE COMPOSE* RUNTIME 21

• message identifier

• argument list

• target object

Other information such as return type expected and sender the instance, can be

of use, but are not required.

Given these features, an interface was created to serve as entry point to the core

runtime. Viewed in figure 3.2.1a, the MessageInterceptionListener interface is im-

plemented with in the Runtime by a class that takes care of receiving intercepted

messages and provides a return value. In this way, the Runtime is isolated from the

particular message interception mechanism.

MessageInterceptionListener

+ deliverMessage(receiver : Object, selector : String, args : Object[]) : Object

<<Interface>>

a.

b.

Runtime

MessageInterceptionListener

Message

Interception Lay er

Figure 3.2: a. Message interception interface b. Usage of interface

As mentioned in section 3.1.3, there are various alternative ways in which to imple-

ment the message interception component. However, given that message interception

is not part of the scope of this project, an interception feature found in the .Net

platform was chosen. This will be discussed in detail in section 3.3.1.

22 CHAPTER 3. THE COMPOSE* SYSTEM

3.2.2 The Core Runtime

The general design of the core of the runtime is very similar to the CF model. In it

a class, ObjectManager, controls messages incoming to the ComposeStarObject as

defined by a FilterPolicy. This policy states how to pass the message through the

various FilterModules and Filters within them. See figure 3.2.2.

Fil ter

ComposeStarObject

Object

Fil terModule

1..*1..*

Object

internals externals

ObjectManager

0..*0..*

11 Fil terPolicy

(from policy)

Figure 3.3: Simplified layout of the Runtime

The Object Manager

Each object whose messages can be filtered has an object manager assigned. This

object manager is responsible for receiving and providing a return value for the mes-

sages that are sent to its inner object; also it is the point of contact between the

Runtime and the Message Interception Layer.

The Object Manager holds the filter modules that are attached to its inner object.

It passes each message through the filter modules one by one checking that each

accepts the message. If one of the filter modules rejects a message, an exception is

3.2. DESIGN OF THE COMPOSE* RUNTIME 23

thrown. The Object Manager is not responsible, however, for how the message is

passed through an individual filter module; that task is delegated to a Filter policy.

Filter and Filter Modules

Filter Modules implement aspects in the CF model. They contain filters and objects;

as well as define a number of methods and conditions referenced by the filters they

contain. The FilterModule class defines the common behaviour for the concrete Fil-

terModules; such as the resolution of conditions and methods. The responsibility of

resolving conditions is specified in the ConditionResolver interface.

Concrete subclasses of FilterModule, only need to specify the code relevant to the

aspect they model. For example, in figure 3.4 a filter module that locks a certain

object is modeled by the LockingFilterModule class. This class contains methods

specific to the locking concern, lock,unlock and isLocked. Lock and unlock are

mapped to regular methods of the FilterModule, whereas isLocked is mapped to a

condition. This corresponds to the implementation part of the CF model.

ConditionResolver

+ resolve(cond : String) : boolean

(from interpreter)

<<Interface>>

FilterModule

name : String

+ FilterModule()

+ addMethod()

+ addCondition()

+ addExternal()

+ addInternal()

+ getInternals()

+ getExternals()

+ getName()

+ handleInputMessage()

+ getFilters()

shouldNotFilter()

selfDispatch()

+ handleOutputMessage()

+ addInputFilter()

+ removeInputFilter()

+ getInputFilters()

+ resolve()

LockingFilterModule

- lockedState : boolean

+ LockingFilterModule()

+ lock()

+ unlock()

+ isLocked()

Figure 3.4: FilterModule class definition

24 CHAPTER 3. THE COMPOSE* SYSTEM

As mentioned in section 2.2.1, the types of filters are differentiated by the action

taken when a message is accepted or rejected. Therefore, new concrete filter classes

need only to implement what action to take in case of rejection or acceptance of

a message in the methods acceptAction and rejectAction see figure 3.5. These

actions are modeled as instances of the Command pattern in the ComposeStarAction

hierarchy so that they can be executed as defined by the Filter Policy.

If the filters actions are simple, like throwing an exception, it is sufficient to

implement those methods; however, for more complex behaviour, such as the one

given by the meta filter, changes to the way filter modules are necessary. For this

reason a Filter Policy mechanism is provided.

Dispatch

+ Dispatch()

+ acceptAction()

+ rejectAction()

DummyFilter

+ DummyFilter()

+ acceptAction()

+ rejectAction()

ErrorFilter

+ ErrorFilter()

+ acceptAction()

+ rejectAction()

FilterSpecificationInterpreter

+ interpret()

(from interpreter)

<<Interface>>

Filter

- name : String

Filter()

+ Filter()

+ acceptAction()

+ rejectAction()

+ handleMessage()

+ getConditionResolver()

+ canAccept()

+ getName()

-specification

Meta

+ Meta()

+ acceptAction()

+ rejectAction()

Substitution

+ Substitution()

+ acceptAction()

+ rejectAction()

Figure 3.5: Filter class definition

Filter Policy

Filter policies dictate how are the messages passed through the filters within a filter

module. They are modeled as a strategy pattern, which is invoked by the ObjectMan-

ager. The Policy at the end of the execution return a PolicyExecutionResult Object

that contains information such as if the message was accepted by any of the filters in

3.2. DESIGN OF THE COMPOSE* RUNTIME 25

the filter module, or if the message should be returned to the sender because a return

value has been produced.

The FilterPolicy is used, in conjunction with the Filter and ComposeStarAction

classes to add new filter types to the system without breaking the existing code.

3.2.3 Specification Interpreter

The Specification of the Filter module, is an instance of the Interpreter pattern which

both contain and interpret the specification for a given instance of a filter. In figure 3.6

The two main parts of the specification, condition and pattern, are connected by a

FilterInitializer. Every class in the specification contains a method interpret

that gives a value to the sub-expression that the class represents.

CompoundExpression

NOT OR

Pattern Parameter
Operator

DefaultOperator

PatternExpression

InclusionExpression ExclusionExpression

FilterSpecificationInterpreter

+ interpret()

<<Interface>>

TRUEFALSECondition

next

-parameter

AND

ConditionExpression

SequenceExpression

FilterInitializer

#condition

#pattern

Figure 3.6: Specification Structure (some associations removed for convenience)

26 CHAPTER 3. THE COMPOSE* SYSTEM

3.2.4 Challenges

In this section some of the challenges identified in section 3.1.3 are solved at a design

level.

Integration of CF to .Net

To reduce the coupling between the .Net platform and the Compose* Runtime, wrap-

per classes to the platform specific libraries used are provided. These include wrappers

for Data Types (queues, lists and dictionaries) as well as to the reflection and dynamic

invocation classes.

The dynamic Interface problem - Behavior Injection

In order to resolve the dynamic interface issue produced because of the requirement

to be able to change filter modules at runtime, several approaches were evaluated.

Looking closer at the problem, there are two main issues to deal with: how to

compile classes that reference to filter module methods, and how to add and remove

this methods from filtered objects. The second problem is easily solved with the help

of the Message Interception System. Since the message is stopped on the way to the

object, any other method can be invoked without the sender realizing the change.

In this way, an object can appear to have many methods whose implementation can

reside somewhere else 1.

However, defeating the compiler can be more difficult. One approach could be

to modify the compiler into allowing for the calls to be made; nevertheless, since

there are many languages that compile to the .Net platform, this approach is not

viable. Another approach is to use the Metadata embedded into each .net library

to fool the compiler into linking to non existing methods. This would be possible

by statically analyzing the specification of the filters in the system, and altering the

1Given that the runtime implements this kind of behaviour only for FilterModules, there are
restrictions that avoid problems with the self binding. In principle, the FilterModule methods do
not reference inner object’s instance variables; they can only reference the FilterModule internal and
external objects.

3.3. IMPLEMENTATION OF THE COMPOSE* RUNTIME 27

library’s metadata. This can be troublesome due to the fact that unexpected changes

to the internal structure of the libraries (caused, for example, by a new .net platform

version) would break the system.

An intermediate solution is provided. A class containing the union of the interfaces

defined by the filter modules in the system is created with a default implementation for

each method (the throwing of a runtime exception, a sort of message not understood).

All objects that are to be filtered must extend this class. When a method belonging to

a filter module placed on an object is invoked, the message interception layer catches

the message, invokes the correct method in the filter module, and returns. If a method

belonging to a filter module not placed on an object is invoked, a runtime exception

is thrown.

3.3 Implementation of the Compose* Runtime

3.3.1 Message Interception Implementation

A provisional implementation of a Message Interception Layer for the Compose* Run-

time is provided. It is based on the .Net component model, and uses undocumented

features of the platform. For this reason, other alternatives should be researched.

The current implementation of the provides transparent, receiver-side message

interception. This has as an advantage that no modifications to the sender object

are necessary. The interception mechanism presents information about the target

of the message, the name of the message and its arguments. It also allows for the

interception of public instance variables (attributes) as well as constructor calls.

.Net Component Framework Contexts

The base of the message interception implementation lies in the COM framework

provided by .Net. Different components in an application can request runtime ser-

vices from the COM, for example synchronization, or transactions. Components with

compatible service requirements are grouped by in contexts. As each class in the sys-

tem can require different services, within a single process there can be several context

28 CHAPTER 3. THE COMPOSE* SYSTEM

separating incompatible components from each other.

Objects inside a same context can communicate freely with each other. But

when cross-contexts reference are needed, lightweight proxies are constructed by the

platform to handle the change from one contexts requirement to the next.

In the .Net platform, objects can be defined within property-based context; this

means that objects with the same properties are placed on the same context. These

properties may be COM attributes (such as synchronized). Objects that do not use

COM attributes at all reside in the default context.

In .Net, the cross context communication is implemented through the principle

of channels used for remote method invocation. In it, a message that is sent to a

remote object is passed through a series of sinks in an implementation of a chain of

responsibility. Each sink does a part of the process, for example marshaling of the

arguments of the message.

Context-based interception

By using the undocumented classes ContextAttribute and IContextProperty it is

possible to insert custom message sinks in the channel used to manage cross-context

communication. To illustrate how this is done, suppose that it is needed to intercept

messages that enter the class A. In order to do this, the following

1. a custom InterceptAttribute must be created by subclassing ContextAttribute.

2. a custom InterceptProperty must be created by implementing the IContextProperty.

Also it must implement the IContributeObjectSink

3. the class A must subclass the ContextBoundObject class, and it must be an-

notated to have the Intercept attribute defined above in the class’ metadata.

Once this is done, each time an instance of the class A is created, the platforms

asks the InterceptAttribute if the current context is ok for the new instance. If its

not, the platform asks the attribute to provide the properties of the instance. The

3.3. IMPLEMENTATION OF THE COMPOSE* RUNTIME 29

Attribute returns an instance of the Intercept Property that is also a Object Sink

contributor; the platform then asks the property for a custom message sink, and

inserts it in the cross-context channel for that object. From then on, all messages

sent to the object from outside the context will pass by the message sink provided

by the property. Figure 3.7 illustrates how this is used in the Compose* system by

encapsulating each ComposeStarObject in a different context.

A

Platform Message Sinks Custom
Message
Sink

Compose*
Runtime

Figure 3.7: Message interception chain

3.3.2 Implementation of the Filters

Filters, as designed, are defined by the actions they take when accepting and rejecting

a message. However, some of the actions affect the control flow of the filtering of the

other filters; for example a meta filter can reify a message, and send it to complete the

filtering process, only to reify it again when the return value is to be sent back to the

original sender object. These filters also require changes in the policy by which they

are executed. The particular implementation of the three filters is discussed below.

30 CHAPTER 3. THE COMPOSE* SYSTEM

Dispatch Filter

The dispatch filter upon acceptance, redirects the message received to a different

object. This is carried out when the DispatchAction that is generated by the filter

is executed. When this action is executed, it terminates the filtering process.

Upon rejection, the dispatch filer produces a ContinueToNextFilterAction.

Error Filter

The error filter upon acceptance produces a ContinueToNextFilterAction. Upon re-

jection, the error filter produces a ErrorAction that when executed throws a Runtime

exception that contains information about the expression that rejected the message.

Meta Filter

The meta filter is the most complex of the three because its actions affect how the

rest of the filtering process is carried out. When the Meta Filter accepts a message,

a MetaAction containing the message and the ACT object that will manipulate the

reified message. When this action is executed, the message is reified, and sent to

the ACT. When the ACT returns, the Reified message is queried to see whether the

message was fired, replied or sent. Depending on the action taken on the ACT, the

MetaAction will:

Fire: When a reified message is fired, it is sent to the next filter, and continues its

normal filtering path.

Reply: When the message is replied, a return value is provided for it, and the message

exits the filtering process and its return value sent back to the original sender.

Send: When the reified message is sent, the message continues its normal filtering

path, only that when the filtering process is over, and a return value for the

message has been established, the message must be reified again so that the ACT

can manipulate the return value. This is implemented with the .Net version of

function pointers, delegates. In this way, the ACT provides a callback method

3.3. IMPLEMENTATION OF THE COMPOSE* RUNTIME 31

to be invoked with the reified message as a parameter when the message is on

its way back to the sender. If there are multiple Meta filters in the filter module,

their callbacks are collected in a stack, to preserve the correct invocation order.

32 CHAPTER 3. THE COMPOSE* SYSTEM

Chapter 4

Conclusion

33

34 CHAPTER 4. CONCLUSION

4.1 Evaluation

During the start of the development of the Compose* runtime a set of requirements

were identified. Also, along the design and implementation process, several challenges

were presented. In this section, an evaluation of how well were these goal reached is

made.

4.1.1 Functional Requirements

• Addition and removal of filter modules at runtime

This requirement was met. Filter Modules can be constructed and added to

objects at runtime through the ObjectManager class. Also, existing modules can

change their inner structure at runtime, due to the fact that they are interpreted

on a per message bases.

• Implementation of the Dispatch, Send, Wait, Error and Meta filters

This requirement was partially met. The Dispatch and error filters were imple-

mented directly from the CF model without adaptation. The Meta Filter was

modified so that the send operation on reified messages is implemented through

re-entrant code; however, the semantic difference to the original CF model is

minimal. The Send and Wait Filters were not implemented. The Send filter

could not be implemented due to restrictions of the Message Interception Layer

that prevent the interception of outgoing messages; therefore output filters, such

as the Send filter, cannot be implemented. The Wait filter was not implemented

due to time restrictions.

• Implementation of the Filter Modules

The implementation of the Filter Modules is very close to the CF model. Inter-

nals, externals, conditions, methods and filters are fully implemented; however,

pseudo-variables defined in the CF model were not implemented fully. Only the

inner pseudo-variable was included.

4.1. EVALUATION 35

• Interaction between the .Net platform and Compose*

Thanks to the message interception system, communication to and from Com-

pose* objects is transparent.

• Suitability of filter addition to all .Net Objects

This is partially met. Due to the solution given to the Behaviour Injection

challenge, all objects that are to be filtered must extend a given object. This

represents some inconvenience when programming new applications, but it can

be a big problem when trying to apply filters to legacy code.

4.1.2 Challenges

At the end of the Requirements, in section 3.1.3, some challenges presented by the

development of the tool were identified. In this section, the way in which the were

overcome is evaluated.

• Behaviour Injection

The way in which this challenge was overcome has both advantages and draw-

backs. On one hand, the problem is resolved using object oriented constructs,

and the solution allows for complete behaviour injection for a given set of filter

modules. No modifications are needed on the compiler or CLR. On the other

hand, it requires that all objects extend ComposeStarObject which can difficult

the design of the application, and it can create problems when adapting exist-

ing code to Compose*. Also, since the interface of the ComposeStarObject is

calculated at compile time, the sets of applicable module cannot be changed at

runtime, that is filter modules can only be constructed at compile-time.

• Message Interception

The message interception layer implemented has various advantages. It is trans-

parent from the point of view of the client object, and it does not require com-

plex source code manipulation on the receiver object (it is sufficient to extend

36 CHAPTER 4. CONCLUSION

the ComposeStarObject. The mechanism used provides the basic information

needed for the filtering process that is message name, target object and message

arguments. However, the performance of the application is affected by the use

of this mechanism due to the context-crossing process; which is executed even

when there are no filter modules placed on the object. Also, since the mecha-

nism relies on unsupported features of the .Net platform, it could disappear or

change in future versions of the .Net runtime.

• Platform Independence

To achieve a degree of platform independence, all platform specific references

were enclosed on wrapping classes, and grouped together in a specific names-

pace. Also, the J]language was used to code most of the application so porting

to the Java platform can be achieved. The only platform specific construct used

in the Compose* are function pointers as a way to specify callback methods for

the implementation of the Meta filter(see 3.3.2).

Although no attempt was made to pass the source code through a Java compiler,

Java-specific tools such as Javadoc were successfully used, hinting that, at least

syntactically, the program complies with Java standard.

4.2 Conclusion

A Runtime based implementation of the Composition Filters Model was designed

and implemented on the .Net platform. This implementation takes advantage of the

language independence features present in the .Net platform to offer a single Aspect

framework that provides dynamic crosscutting to all languages that compile to the

.Net framework. By being implemented in the J] language and wrapping platform

dependant references the system eases a future port to the Java platform.

The evaluation of the goals achieved and challenges overcome, shows that the

Compose* runtime, while being a first implementation, is powerful enough to serve as

a starting point for a larger project that cover the next generation of the Composition

4.3. FUTURE WORK 37

Filters. Still, the evaluation also shows that there is much work to be done.

4.3 Future Work

This section describes the open issues and proposed improvements to the Compose*

system.

• Implementation of the lacking filter Wait. In order to do this, the Object

Manager must be made thread safe.

• Support for the remaining pseudo-variables defined in the CFmodel. Ways to

implement this are discussed in [Wic99] from a compile-time approach.

• Due to issues of J]’s implementation of the reflection libraries, there are prob-

lems when handling primitive types in arguments. This restricts the processing

that can be applied inside a Meta filter.

• A more fitting way to solve the behaviour injection problem should be re-

searched.

• A preprocessor that parses the CFdefinitions to Compose* runtime classes is

being developed. This preprocessor must also generate the ComposeStarObject

class containing the methods defined by all the filter modules to implement

behaviour injection.

• Optimization based on custom FiliterPolicies can be researched. These policies

can be used to reorder the filters using runtime information.

• A trial port of the Compose* runtime to the Java platform to take advantages

of the new features of the upcoming Java JSE 1.5, such as generics, would also

be interesting.

38 CHAPTER 4. CONCLUSION

Bibliography

[ABvSB94] M. Aksit, J. Bosch, W. v.d. Sterren, and L. Bergmans, Real-time speci-

fication inheritance anomalies and real-time filters, Proc. ECOOP 1994,

LNCS 821, 1994, pp. 386–407.

[BA] Lodewijk Bergmans and Mehmet Askit, Composing multiple concerns

using composition filters.

[Car01] Patricio Salinas Caro, Adding systemic crusscutting and super-imposition

to composition filters, Master’s thesis, Ecole des Mines de Nantes - France

and University of Twente - The Netherlands, 2001.

[KHH+01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.

Griswold, An overview of AspectJ, Proc. ECOOP 2001, LNCS 2072

(Berlin) (J. L. Knudsen, ed.), Springer-Verlag, June 2001, pp. 327–353.

[Kim02] Howard Kim, Aspect c], Master’s thesis, Trinity College, Dublin, Septem-

ber 2002.

[KJS00] M. Kande, J.Kienzle, and A. Strohmeier, From AOP to UML: Towards

an aspect-oriented architectural modeling approach, Tech. report, Swiss

Federal Institute of Technology Lausanne, 2000.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,

Cristina Lopes, Jean-Marc Loingtier, and John Irwin, Aspect-oriented

programming, Proceedings European Conference on Object-Oriented

39

40 BIBLIOGRAPHY

Programming (Mehmet Akşit and Satoshi Matsuoka, eds.), vol. 1241,

Springer-Verlag, Berlin, Heidelberg, and New York, 1997, pp. 220–242.

[Koo95] Piet S. Koopmans, On the definition and implementation of the sina/st

language, Master’s thesis, Universiteit Twente, 1995.

[SD02] M. Südholt and R. Douence, A model and a tool for event-based aspect-

oriented programming, Tech. report, Ecole des Mines de Nantes, 2002.

[TO01] Pery Tarr and Harold Ossher, Using multidimensional separation of con-

cerns to (re)shape evolving software, Communications of the ACM (2001),

43–50.

[Wic99] J.C Wichman, Composej: the development of a preprocessor to facilitate

composition filters in the java language, Master’s thesis, University of

Twente, December 1999.

Appendix A

A Compose* Example

41

42 APPENDIX A. A COMPOSE* EXAMPLE

A.1 The Locking Filter

This example shows how to use the Compose* runtime to implement a filter that

will block messages that enter an object. One possible application of such a filter

can be seen in drawing applications in which is possible to “lock” figures to prevent

alteration.

The source code for LockingFilterModule is presented in figure A.1. The

LockingFilterModule class contains a method to lock the object, one to unlock it

and one to test the lock. In the constructor of the class, resides the code that defines

the structure of the FilterModule. It is composed of two methods: lock and unlock;

one condition isLocked and two input filters. The first filter is an Error Filter that

uses the isLocked condition so that if the object is locked, all messages are rejected;

while if the object is not locked, all messages are accepted. The second filter is a

Dispatch filter that receives all messages accepted by the ErrorFilter, and executes

them.

To place an instance of LockingFilterModule over a given object, the object’s

manager must be obtained, see figure A.2. Once the filter module is added to the

ObjectManager, all messages will pass through the filter module.

A.1. THE LOCKING FILTER 43

public class LockingFilterModule extends FilterModule {
private boolean lockedState;

public LockingFilterModule(String name) {
super(name);
lockedState = false;
addMethod ("lock ");
addMethod (" unlock ");
addCondition (" isLocked ");

// precondition : Error = {! isLocked = > *}
Filter f =

new ErrorFilter (" precondition",
new InclusionExpression(new NOT(

new Condition (" isLocked ")),
new Pattern ("*")) , this);

// invoke : Dispatch = { true => inner .*}
this.addInputFilter(new Dispatch (" invoke",

new InclusionExpression(new TRUE(),
new Pattern (" inner " , "*")) , this));

this.addInputFilter(f);
}

public void lock () {
lockedState = true;

}

public void unlock () {
lockedState = false;

}

public boolean isLocked () {
return lockedState;

}
}

Figure A.1: LockingFilterModule implementation in J]

44 APPENDIX A. A COMPOSE* EXAMPLE

try {
LockingFilterModule lock = new LockingFilterModule ();
ObjectManager.getObjectManagerFor(superImposee).

addFilterModule(lock);

superImposee.lock ();
superImposee.foo ();

} catch (ErrorFilterException efe) {

superImposee.unlock ();
superImposee.foo();

}

Figure A.2: Imposition of the LockingFilter module on an object

Appendix B

Testing Guidelines

B.1 Introduction

For the development of the Compose* system1, starting with the runtime module, a

Unit Testing strategy must be followed. For this purpose several external libraries

are available, some of them include:

• dotUnit [http://dotunit.sourceforge.net/]

• Nunit [http://nunit.org/default.htm]

• csUnit [http://sourceforge.net/projects/csunit/]

• .NetUnit[http://sourceforge.net/projects/dotnetunit/]

• ...

All of which follow the JUnit [http://www.junit.org/] framework. Since most

of the frameworks do not stray far from the original framework, they are in essence

similar, however subtle differences in the specific APIs prevent easy migration between

them.

For the development of the runtime module of the Compose* system, the dotUnit

was chosen. There is no particular reason for choosing this framework over the rest

1This document was created for the sourceforge web page to try and establish project-wide unit
testing guidelines

45

46 APPENDIX B. TESTING GUIDELINES

other than it is close to the JUnit implementation, and that it is easy to install -not

requiring administrator rights under Win2000-.

For a general introduction to dotUnit, see [http://dotunit.sourceforge.net/tutorial.htm]

B.2 Usage in Compose*

B.2.1 Naming standards

• Tests for a class must be placed in a single file.

The name of the file is ”Test” plus the name of the class that it tests.

• Test files must be grouped in Suites by namespace.

A group of tests fixtures for a given namespace must be placed with in that test

as a sub namespace called tests. For example, all tests for the namespace called

dotNetComposeStar.runtime.interpreter

must be placed on a namespace

dotNetComposeStar.runtime.interpreter.tests

To bind a tests in a Suite see this j snippet:

TestSuite s = new TestSuite (" runtime and sub -package ");
s.AddTestSuite(new TestFilter ("foo "). GetType ());
s.AddTestSuite(new TestFilterModule ("foo "). GetType ());

which binds the Tests for the Filter and FilterModule classes.

• Test suites for each namespace must include the tests for its sub namespaces,

such that the test suite for dotNetComposeStar.runtime must include the one

for dotNetComposeStar.runtime.interpreter. This is accomplished by:

Note that when adding a suite the AddTest method is used, and when adding

a test, the AddTestSuite method is used.

B.3. CONFIGURING AND RUNNING A PROJECT FOR DOTUNIT IN VISUAL STUDIO47

1 s.AddTest(new InterpreterSuite (). get_Suite ());

B.3 Configuring and running a project for dotUnit

in Visual Studio

Once dotUnit is installed, to use it on a project you must include it as a reference.

This is done by

1. With the project open, under the ”Project” menu, select ”add Reference...”

2. Select a ”Browse”, and look for ”dotUnit.dll” under the directory in which

dotUnit was installed

3. Finally, select the library, and add it to the references.

To run a test suite:

1 dotUnit.GUI.GUIRunner.Run(new dotNetComposeStar.
2 runtime.tests.RuntimeTestSuite (). get_Suite ());

48 APPENDIX B. TESTING GUIDELINES

Appendix C

Source Code Documentation

49

50 dotNetComposeStar.runtime.interpreter–

C.1 Package

dotNetComposeStar.runtime.interpreter
Package Contents Page

Interfaces

ConditionResolver . 52

Objects with the responsibility of resolving conditions.

FilterSpecificationInterpreter . 52

Intepreter of Filter Specifications.

Classes

AND . 53

AND operator for the condition part of a filter specification.

CompoundExpression . 55

Super class of compount condition expressions (AND,OR, NOT)

Condition . 56
Terminal expression that contains a String representing a condition in
the current FilterModule specification.

ConditionExpression .57
Parent class of the condition part of Filter Specifications It repre-
sent contidions and the logical expressions AND,OR,NOT,TRUE and
FALSE

DefaultOperator . 58

Sequencing operator for the Pattern part of a FilterSpecification.

ExclusionExpression . 60

Expression that represents the >operation

FALSE . 62

Condition expression FALSE

FilterInitializer . 63

FilterInitializer is the definition of a FilterSpecification.

InclusionExpression . 64

Expression that represents the =>operator.

dotNetComposeStar.runtime.interpreter– 51

NOT . 66

NOT in a logical condition expression

Operator . 68

Operator for patterns.

OR . 69

Or expression on condition expressions

Parameter . 70

Parameter on a Pattern expression.

Pattern .72

Terminal expression that represents patterns in a Filter Specification.

PatternExpression . 74
Expression that represent the pattern sub expression of a Filter specifi-
cation.

SequenceExpression . 75
grouping of two Filter Initialization Expressions so that one is evaluated
before that the other one.

TRUE . 76

True literal for the logic condition expressions.

52 dotNetComposeStar.runtime.interpreter– FilterSpecificationInterpreter

C.2 Interfaces

C.2.1 Interface ConditionResolver

Objects with the responsibility of resolving conditions.

Currently this responsibility lies in the FilterModule

Declaration

public interface ConditionResolver

Methods

• resolve

public boolean resolve(java.lang.String cond)

– Usage

∗ This method should decide if a condition identified by the string

cond evals to true or false.

– Parameters

∗ cond - the string identifing the condition

– Returns - the evaluation of the condition

C.2.2 Interface FilterSpecificationInterpreter

Intepreter of Filter Specifications.

Currently implemented in the FilterInitialization hierarchy as a Interpreter Pattern

instance.

Declaration

public interface FilterSpecificationInterpreter

dotNetComposeStar.runtime.interpreter– AND 53

Methods

• interpret

public boolean interpret(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

– Usage

∗ Interprets a FilterSpecification. It descides if a given message is

accepted or not

– Parameters

∗ m - message that is being filtered

∗ context - context of the interpretation

– Returns - boolean true if the message is accepted, false otherwise

C.3 Classes

C.3.1 Class AND

AND operator for the condition part of a filter specification.

Declaration

public class AND

extends dotNetComposeStar.runtime.interpreter.CompoundExpression

Constructors

• AND

public AND(

dotNetComposeStar.runtime.interpreter.ConditionExpression exp1,

dotNetComposeStar.runtime.interpreter.ConditionExpression exp2)

54 dotNetComposeStar.runtime.interpreter– AND

– Usage

∗ exp1 && exp2

– Parameters

∗ exp1 - ConditionExpression 1

∗ exp2 - ConditionExpression 2

Methods

• interpret

public boolean interpret(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

– Usage

∗ interpretation(expression1) && interpretation(expression2)

– Parameters

∗ m - message being filtered

∗ context - context of the intepretation

– Returns - false if any of the interpretations is false, true otherwise

Methods inherited from class
dotNetComposeStar.runtime.interpreter.CompoundExpression

(in C.3.2, page 55)

Methods inherited from class
dotNetComposeStar.runtime.interpreter.ConditionExpression

(in C.3.4, page 57)
• interpret
public abstract boolean interpret(
dotNetComposeStar.runtime.message.Message m,
dotNetComposeStar.util.Dictionary context)

– Usage
∗ Interpretation of the expression, accord the GoF pattern Interpreter.

The Condition expression is a logical, therefore its interpretation must
return a boolean that contains the evaluation of the logical expression.

dotNetComposeStar.runtime.interpreter– CompoundExpression 55

– Parameters
∗ m - message that is being filtered
∗ context - context of the interpretation

– Returns - boolean the evaluation of the expression.

C.3.2 Class CompoundExpression

Super class of compount condition expressions (AND,OR, NOT)

Declaration

public abstract class CompoundExpression

extends dotNetComposeStar.runtime.interpreter.ConditionExpression

Constructors

• CompoundExpression

public CompoundExpression()

– Usage

∗ Default constructor

since this class is used only to group compound expressions, it is

empty.

Methods inherited from class
dotNetComposeStar.runtime.interpreter.ConditionExpression

(in C.3.4, page 57)
• interpret
public abstract boolean interpret(
dotNetComposeStar.runtime.message.Message m,
dotNetComposeStar.util.Dictionary context)

– Usage
∗ Interpretation of the expression, accord the GoF pattern Interpreter.

The Condition expression is a logical, therefore its interpretation must
return a boolean that contains the evaluation of the logical expression.

56 dotNetComposeStar.runtime.interpreter– Condition

– Parameters
∗ m - message that is being filtered
∗ context - context of the interpretation

– Returns - boolean the evaluation of the expression.

C.3.3 Class Condition

Terminal expression that contains a String representing a condition in the current

FilterModule specification.

Declaration

public class Condition

extends dotNetComposeStar.runtime.interpreter.ConditionExpression

Constructors

• Condition

public Condition(java.lang.String selector)

– Usage

∗ Constructs a condition based on its name.

This name must be meaningful for the condition resolver that is

selected at runtime. If not, an Invalid Condition Exception will be

thrown.

– Parameters

∗ selector - the name of the condition

Methods

• interpret

public boolean interpret(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

dotNetComposeStar.runtime.interpreter– ConditionExpression 57

– Usage

∗ Intepretation of the Condition

This results on the invocation of a method that will return a

boolean. this boolean will be the return value of this method. The

invocation, however, is delegated to a ConditionResolver that is

expected to be in the context of the interpretation under the key

”ConditionResolver” (case sensitive)

– Parameters

∗ m - message that is being filtered

∗ context - that must contain the key specified before.

– Returns - the result of the condition evaluation.

Methods inherited from class
dotNetComposeStar.runtime.interpreter.ConditionExpression

(in C.3.4, page 57)

• interpret
public abstract boolean interpret(
dotNetComposeStar.runtime.message.Message m,
dotNetComposeStar.util.Dictionary context)

– Usage

∗ Interpretation of the expression, accord the GoF pattern Interpreter.

The Condition expression is a logical, therefore its interpretation must
return a boolean that contains the evaluation of the logical expression.

– Parameters

∗ m - message that is being filtered
∗ context - context of the interpretation

– Returns - boolean the evaluation of the expression.

C.3.4 Class ConditionExpression

Parent class of the condition part of Filter Specifications It represent contidions and the

logical expressions AND,OR,NOT,TRUE and FALSE

58 dotNetComposeStar.runtime.interpreter– DefaultOperator

Declaration

public abstract class ConditionExpression

extends java.lang.Object

Constructors

• ConditionExpression

public ConditionExpression()

– Usage

∗ Constructs a Condition expression

Methods

• interpret

public abstract boolean interpret(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

– Usage

∗ Interpretation of the expression, accord the GoF pattern Interpreter.

The Condition expression is a logical, therefore its interpretation

must return a boolean that contains the evaluation of the logical

expression.

– Parameters

∗ m - message that is being filtered

∗ context - context of the interpretation

– Returns - boolean the evaluation of the expression.

C.3.5 Class DefaultOperator

dotNetComposeStar.runtime.interpreter– DefaultOperator 59

Sequencing operator for the Pattern part of a FilterSpecification.

When interpreted, the default operator evaluates the first pattern, if there is no match, it

evals the second pattern.

Declaration

public class DefaultOperator

extends dotNetComposeStar.runtime.interpreter.Operator

Constructors

• DefaultOperator

public DefaultOperator(

dotNetComposeStar.runtime.interpreter.PatternExpression exp1,

dotNetComposeStar.runtime.interpreter.PatternExpression exp2)

– Usage

∗ Constructor of the default sequence operator.

– Parameters

∗ exp1 - first expression

∗ exp2 - second expression.

Methods

• interpret

public boolean interpret(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

– Usage

∗ intepretation(exp1) —— interpretation(exp2)

– Parameters

∗ m - message that is being filtered

60 dotNetComposeStar.runtime.interpreter– ExclusionExpression

∗ context - context of the interpretation.

– Returns - the evaluation of the two expressions.

Methods inherited from class
dotNetComposeStar.runtime.interpreter.Operator

(in C.3.11, page 68)

Methods inherited from class
dotNetComposeStar.runtime.interpreter.PatternExpression

(in C.3.15, page 74)

• interpret
public boolean interpret(dotNetComposeStar.runtime.message.Message
m, dotNetComposeStar.util.Dictionary context)

– Usage
∗ empty

– Parameters
∗ m -
∗ context -

– Returns - boolean

C.3.6 Class ExclusionExpression

Expression that represents the >operation

Declaration

public class ExclusionExpression

extends dotNetComposeStar.runtime.interpreter.FilterInitializer

Constructors

• ExclusionExpression

public ExclusionExpression(

dotNetComposeStar.runtime.interpreter.ConditionExpression cond,

dotNetComposeStar.runtime.interpreter– ExclusionExpression 61

dotNetComposeStar.runtime.interpreter.PatternExpression pattern

)

– Usage

∗ Constructs a new Exclusion Expression

– Parameters

∗ cond - The condition part of the expression

∗ pattern - The message pattern part of the expression.

Methods

• interpret

public boolean interpret(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

– Usage

∗ Interprets the exclusion

That is, for the expression to accept the message, the condition

expression must evaluate to TRUE, and the message must not match

the pattern expression.

– Parameters

∗ m - message being filtered

∗ context - the context of the intepretation.

– Returns - if the message is accepted by the expression

Methods inherited from class
dotNetComposeStar.runtime.interpreter.FilterInitializer

(in C.3.8, page 63)

• interpret
public abstract boolean interpret(
dotNetComposeStar.runtime.message.Message m,
dotNetComposeStar.util.Dictionary context)

– Usage

62 dotNetComposeStar.runtime.interpreter– FALSE

∗ Interprets the message in the given context
– Parameters

∗ m - Message to interpret
∗ context - context

– Returns - boolean

C.3.7 Class FALSE

Condition expression FALSE

Declaration

public class FALSE

extends dotNetComposeStar.runtime.interpreter.ConditionExpression

Constructors

• FALSE

public FALSE()

– Usage

∗ Constructs a new false condition

Methods

• interpret

public boolean interpret(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

– Usage

∗ Allways evals to FALSE

– Parameters

∗ m - the message being filtered.

∗ context - the context of the interpretation

– Returns - FALSE

dotNetComposeStar.runtime.interpreter– FilterInitializer 63

Methods inherited from class
dotNetComposeStar.runtime.interpreter.ConditionExpression

(in C.3.4, page 57)
• interpret
public abstract boolean interpret(
dotNetComposeStar.runtime.message.Message m,
dotNetComposeStar.util.Dictionary context)

– Usage
∗ Interpretation of the expression, accord the GoF pattern Interpreter.

The Condition expression is a logical, therefore its interpretation must
return a boolean that contains the evaluation of the logical expression.

– Parameters
∗ m - message that is being filtered
∗ context - context of the interpretation

– Returns - boolean the evaluation of the expression.

C.3.8 Class FilterInitializer

FilterInitializer is the definition of a FilterSpecification.

it represents the expression between {} in a Filter

Declaration

public abstract class FilterInitializer

extends java.lang.Object

implements FilterSpecificationInterpreter

Constructors

• FilterInitializer

protected FilterInitializer()

– Usage

∗ Default constructor.

64 dotNetComposeStar.runtime.interpreter– InclusionExpression

• FilterInitializer

public FilterInitializer(

dotNetComposeStar.runtime.interpreter.ConditionExpression cond,

dotNetComposeStar.runtime.interpreter.PatternExpression pattern

)

– Usage

∗ Constructs a filter initializer with its condition and pattern.

– Parameters

∗ cond - condition part

∗ pattern - pattern part

Methods

• interpret

public abstract boolean interpret(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

– Usage

∗ Interprets the message in the given context

– Parameters

∗ m - Message to interpret

∗ context - context

– Returns - boolean

C.3.9 Class InclusionExpression

Expression that represents the =>operator.

Declaration

public class InclusionExpression

extends dotNetComposeStar.runtime.interpreter.FilterInitializer

dotNetComposeStar.runtime.interpreter– InclusionExpression 65

Constructors

• InclusionExpression

public InclusionExpression(

dotNetComposeStar.runtime.interpreter.ConditionExpression cond,

dotNetComposeStar.runtime.interpreter.PatternExpression pattern

)

– Usage

∗ Constructs a new Inclusion Expression out of the condition and

pattern.

– Parameters

∗ cond - Condition part

∗ pattern - Pattern part

Methods

• interpret

public boolean interpret(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

– Usage

∗ Interprets the InclusionExpression.

That is, it interprets the logical condition part, and it matches the

message against the pattern part. If both evaluate to true, the

Inclusion Expression will evaluate to true also, otherwise, it will

return false.

– Parameters

∗ m - Message that is being filtered

∗ context - of the interpretation

– Returns - if the InclusionExpression accepts the message.

66 dotNetComposeStar.runtime.interpreter– NOT

Methods inherited from class
dotNetComposeStar.runtime.interpreter.FilterInitializer

(in C.3.8, page 63)

• interpret
public abstract boolean interpret(
dotNetComposeStar.runtime.message.Message m,
dotNetComposeStar.util.Dictionary context)

– Usage

∗ Interprets the message in the given context

– Parameters

∗ m - Message to interpret
∗ context - context

– Returns - boolean

C.3.10 Class NOT

NOT in a logical condition expression

Declaration

public class NOT

extends dotNetComposeStar.runtime.interpreter.CompoundExpression

Constructors

• NOT

public NOT(

dotNetComposeStar.runtime.interpreter.ConditionExpression exp)

– Usage

∗ Constructs a NOT

– Parameters

∗ exp - expression to negate

dotNetComposeStar.runtime.interpreter– Operator 67

Methods

• interpret

public boolean interpret(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

– Usage

∗ Interprets the expression by negating the value of the sub expression.

– Parameters

∗ m - Message that is being filtered

∗ context - of the interpretation

– Returns - a negation of the evaluation of the subexpression.

Methods inherited from class
dotNetComposeStar.runtime.interpreter.CompoundExpression

(in C.3.2, page 55)

Methods inherited from class
dotNetComposeStar.runtime.interpreter.ConditionExpression

(in C.3.4, page 57)

• interpret
public abstract boolean interpret(
dotNetComposeStar.runtime.message.Message m,
dotNetComposeStar.util.Dictionary context)

– Usage

∗ Interpretation of the expression, accord the GoF pattern Interpreter.

The Condition expression is a logical, therefore its interpretation must
return a boolean that contains the evaluation of the logical expression.

– Parameters

∗ m - message that is being filtered
∗ context - context of the interpretation

– Returns - boolean the evaluation of the expression.

68 dotNetComposeStar.runtime.interpreter– OR

C.3.11 Class Operator

Operator for patterns.

Introduced to keep the door open for operator other than the default operator ” , ”.

Declaration

public abstract class Operator

extends dotNetComposeStar.runtime.interpreter.PatternExpression

Constructors

• Operator

public Operator(

dotNetComposeStar.runtime.interpreter.PatternExpression exp1,

dotNetComposeStar.runtime.interpreter.PatternExpression exp2)

– Usage

∗ Constructs the binary operator.

– Parameters

∗ exp1 - expression 1

∗ exp2 - expression 2

Methods inherited from class
dotNetComposeStar.runtime.interpreter.PatternExpression

(in C.3.15, page 74)
• interpret
public boolean interpret(dotNetComposeStar.runtime.message.Message
m, dotNetComposeStar.util.Dictionary context)

– Usage
∗ empty

– Parameters
∗ m -
∗ context -

– Returns - boolean

dotNetComposeStar.runtime.interpreter– OR 69

C.3.12 Class OR

Or expression on condition expressions

Declaration

public class OR

extends dotNetComposeStar.runtime.interpreter.CompoundExpression

Constructors

• OR

public OR(

dotNetComposeStar.runtime.interpreter.ConditionExpression exp1,

dotNetComposeStar.runtime.interpreter.ConditionExpression exp2)

– Usage

∗ Constructs an OR from the two subexpressions

– Parameters

∗ exp1 - expression 1

∗ exp2 - expression 2

Methods

• interpret

public boolean interpret(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

– Usage

∗ expression 1 —— expression 2

– Parameters

∗ m - message that is being filtered

70 dotNetComposeStar.runtime.interpreter– Parameter

∗ context - context of the interpretation

– Returns - the or of the interpretation of the two expressions.

Methods inherited from class
dotNetComposeStar.runtime.interpreter.CompoundExpression

(in C.3.2, page 55)

Methods inherited from class
dotNetComposeStar.runtime.interpreter.ConditionExpression

(in C.3.4, page 57)

• interpret
public abstract boolean interpret(
dotNetComposeStar.runtime.message.Message m,
dotNetComposeStar.util.Dictionary context)

– Usage

∗ Interpretation of the expression, accord the GoF pattern Interpreter.

The Condition expression is a logical, therefore its interpretation must
return a boolean that contains the evaluation of the logical expression.

– Parameters

∗ m - message that is being filtered
∗ context - context of the interpretation

– Returns - boolean the evaluation of the expression.

C.3.13 Class Parameter

Parameter on a Pattern expression.

Declaration

public class Parameter

extends dotNetComposeStar.runtime.interpreter.PatternExpression

Constructors

dotNetComposeStar.runtime.interpreter– Parameter 71

• Parameter

public Parameter(java.lang.String messageElement,

java.lang.String identifier)

– Usage

∗ Constructs a parameter

– Parameters

∗ messageElement - Key of the parameter

∗ identifier - value of the parameter

• Parameter

public Parameter(java.lang.String messageElement,

java.lang.String identifier,

dotNetComposeStar.runtime.interpreter.Parameter nextParameter)

– Usage

∗ Constructs a list of parameters.

– Parameters

∗ messageElement - Key of the parameter

∗ identifier - value of the parameter

∗ nextparameter - next parameter in the list

Methods

• getIdentifier

public String getIdentifier()

– Usage

∗ Returns the value of the parameter

– Returns - the identifier

• getMessageElement

public String getMessageElement()

– Usage

∗ Returns the key of the parameter

72 dotNetComposeStar.runtime.interpreter– Pattern

– Returns - the messageElement

• interpret

public boolean interpret(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

– Usage

∗ Interprets the Parameter element

It adds the (messageElement, identifier) pair to the context and,

interprets the next node in the list.

– Parameters

∗ m - Message that is being filtered

∗ context - of the interpretation

– Returns - true

Methods inherited from class
dotNetComposeStar.runtime.interpreter.PatternExpression

(in C.3.15, page 74)

• interpret
public boolean interpret(dotNetComposeStar.runtime.message.Message
m, dotNetComposeStar.util.Dictionary context)

– Usage
∗ empty

– Parameters
∗ m -
∗ context -

– Returns - boolean

C.3.14 Class Pattern

Terminal expression that represents patterns in a Filter Specification.

It desides if a message matches with the pattern, and it tries to bind the target and

selector of the message to actual objects (pseudo variables, internals or externals)

dotNetComposeStar.runtime.interpreter– Pattern 73

Declaration

public class Pattern

extends dotNetComposeStar.runtime.interpreter.PatternExpression

Constructors

• Pattern

public Pattern(java.lang.String selector)

– Parameters

∗ selector -

• Pattern

public Pattern(java.lang.String selector,

dotNetComposeStar.runtime.interpreter.Parameter p)

• Pattern

public Pattern(java.lang.String target, java.lang.String

selector)

– Parameters

∗ target -

∗ selector -

• Pattern

public Pattern(java.lang.String selector, java.lang.String

target, dotNetComposeStar.runtime.interpreter.Parameter p)

Methods

• interpret

public boolean interpret(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

74 dotNetComposeStar.runtime.interpreter– PatternExpression

Methods inherited from class
dotNetComposeStar.runtime.interpreter.PatternExpression

(in C.3.15, page 74)
• interpret
public boolean interpret(dotNetComposeStar.runtime.message.Message
m, dotNetComposeStar.util.Dictionary context)

– Usage
∗ empty

– Parameters
∗ m -
∗ context -

– Returns - boolean

C.3.15 Class PatternExpression

Expression that represent the pattern sub expression of a Filter specification.

Declaration

public abstract class PatternExpression

extends java.lang.Object

Constructors

• PatternExpression

public PatternExpression()

– Usage

∗ Default Constructor

Methods

• interpret

public boolean interpret(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

dotNetComposeStar.runtime.interpreter– SequenceExpression 75

– Usage

∗ empty

– Parameters

∗ m -

∗ context -

– Returns - boolean

C.3.16 Class SequenceExpression

grouping of two Filter Initialization Expressions so that one is evaluated before that the

other one.

Declaration

public class SequenceExpression

extends dotNetComposeStar.runtime.interpreter.FilterInitializer

Constructors

• SequenceExpression

public SequenceExpression(

dotNetComposeStar.runtime.interpreter.FilterInitializer exp1,

dotNetComposeStar.runtime.interpreter.FilterInitializer exp2)

– Usage

∗ Constructs a new sequence expression.

– Parameters

∗ exp1 - expression 1

∗ exp2 - expression 2

Methods

76 dotNetComposeStar.runtime.interpreter– TRUE

• interpret

public boolean interpret(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

– Usage

∗ Interprets the sequence

It first evals the exp1, and if it does not accept the message, it evals

the second one.

– Parameters

∗ m - Message

∗ context - of the interpretation

Methods inherited from class
dotNetComposeStar.runtime.interpreter.FilterInitializer

(in C.3.8, page 63)

• interpret
public abstract boolean interpret(
dotNetComposeStar.runtime.message.Message m,
dotNetComposeStar.util.Dictionary context)

– Usage
∗ Interprets the message in the given context

– Parameters
∗ m - Message to interpret
∗ context - context

– Returns - boolean

C.3.17 Class TRUE

True literal for the logic condition expressions.

Declaration

public class TRUE

extends dotNetComposeStar.runtime.interpreter.ConditionExpression

dotNetComposeStar.runtime.interpreter– TRUE 77

Constructors

• TRUE

public TRUE()

– Usage

∗ Constructs a true literal

Methods

• interpret

public boolean interpret(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

– Usage

∗ Interprets True

– Parameters

∗ m - message that is being evaluated.

∗ context - of the evaluation

– Returns - true

Methods inherited from class
dotNetComposeStar.runtime.interpreter.ConditionExpression

(in C.3.4, page 57)
• interpret
public abstract boolean interpret(
dotNetComposeStar.runtime.message.Message m,
dotNetComposeStar.util.Dictionary context)

– Usage
∗ Interpretation of the expression, accord the GoF pattern Interpreter.

The Condition expression is a logical, therefore its interpretation must
return a boolean that contains the evaluation of the logical expression.

– Parameters
∗ m - message that is being filtered
∗ context - context of the interpretation

– Returns - boolean the evaluation of the expression.

78 dotNetComposeStar.exception– TRUE

C.4 Package dotNetComposeStar.exception
Package Contents Page

Classes

ComposeStarException . 79

General Exception for the composeStar runtime.

ErrorFilterException . 80
This exception models the error that comes from the rejection of a mes-
sage by the Error Filter.

FilterException .82

General filter exception.

FilterModuleException . 85

Exception at the filter module level.

FilterSpecificationException . 86
Represents an exception occurred when interpreting the specification of
a filter.

InvalidConditionException . 88

Exception that deals with calls to invalid conditions (that is, conditions
that are not defined in the enclosing FilterModule).

InvalidPatternExpressionException . 90

Exception occurred while interpreting a pattern expression.

MessageNotFilteredException . 92
Exception thrown when a message traverses all the filters within a filter
module and is not filtered by any of them.

SelectorNotFoundException . 95
Exception thrown while interpreting a pattern when the pattern specifies
a selector not existing in the type definition of the current target.

TargetNotFoundException . 97
Exception thrown when a pattern calls for a target - selector pair not
existing within the enclosing filter module at the time of interpretation
(for example *.messageNotImplementedByInnerInternalOrExternal)

dotNetComposeStar.exception– ComposeStarException 79

C.5 Classes

C.5.1 Class ComposeStarException

General Exception for the composeStar runtime.

Declaration

public class ComposeStarException

extends java.lang.RuntimeException

Constructors

• ComposeStarException

public ComposeStarException()

– Usage

∗ Default constructor

• ComposeStarException

public ComposeStarException(java.lang.String message)

– Usage

∗ Constructs a new ComposeStarException carrying a String as a

message

– Parameters

∗ message - General message to send

Methods inherited from class java.lang.RuntimeException

Methods inherited from class java.lang.Exception

80 dotNetComposeStar.exception– ErrorFilterException

Methods inherited from class java.lang.Throwable

• fillInStackTrace
public synchronized native Throwable fillInStackTrace()

• getCause
public Throwable getCause()

• getLocalizedMessage
public String getLocalizedMessage()

• getMessage
public String getMessage()

• getStackTrace
public StackTraceElement getStackTrace()

• initCause
public synchronized Throwable initCause(java.lang.Throwable)

• printStackTrace
public void printStackTrace()

• printStackTrace
public void printStackTrace(java.io.PrintStream)

• printStackTrace
public void printStackTrace(java.io.PrintWriter)

• setStackTrace
public void setStackTrace(java.lang.StackTraceElement [])

• toString
public String toString()

C.5.2 Class ErrorFilterException

This exception models the error that comes from the rejection of a message by the Error

Filter.

It is meant to be thrown during the message filtering process

Declaration

public class ErrorFilterException

extends dotNetComposeStar.exception.FilterException

dotNetComposeStar.exception– ErrorFilterException 81

Constructors

• ErrorFilterException

public ErrorFilterException()

– Usage

∗ Default constructor

• ErrorFilterException

public ErrorFilterException(java.lang.String m)

Methods inherited from class
dotNetComposeStar.exception.FilterException

(in C.5.3, page 82)

• getFilter
public Filter getFilter()

– Usage
∗ Returns the filter in which the exception occurred.

– Returns - Filter

• setFilter
public void setFilter(dotNetComposeStar.runtime.Filter filter)

– Usage
∗ Sets the filter in which this exception occurred for later retrieval.

– Parameters
∗ filter - The filter in which the exception occurred.

Methods inherited from class
dotNetComposeStar.exception.FilterModuleException

(in C.5.4, page 85)

Methods inherited from class
dotNetComposeStar.exception.ComposeStarException

(in C.5.1, page 79)

82 dotNetComposeStar.exception– FilterException

Methods inherited from class java.lang.RuntimeException

Methods inherited from class java.lang.Exception

Methods inherited from class java.lang.Throwable

• fillInStackTrace
public synchronized native Throwable fillInStackTrace()

• getCause
public Throwable getCause()

• getLocalizedMessage
public String getLocalizedMessage()

• getMessage
public String getMessage()

• getStackTrace
public StackTraceElement getStackTrace()

• initCause
public synchronized Throwable initCause(java.lang.Throwable)

• printStackTrace
public void printStackTrace()

• printStackTrace
public void printStackTrace(java.io.PrintStream)

• printStackTrace
public void printStackTrace(java.io.PrintWriter)

• setStackTrace
public void setStackTrace(java.lang.StackTraceElement [])

• toString
public String toString()

C.5.3 Class FilterException

General filter exception.

Contains information about the filter that generated the exception.

dotNetComposeStar.exception– FilterException 83

Declaration

public class FilterException

extends dotNetComposeStar.exception.FilterModuleException

Constructors

• FilterException

public FilterException()

– Usage

∗ Constructs a Filter Exception.

• FilterException

public FilterException(java.lang.String caption)

– Usage

∗ Constructs a Filter Exception with an accompanying message

– Parameters

∗ caption - the message that goes with the exception

Methods

• getFilter

public Filter getFilter()

– Usage

∗ Returns the filter in which the exception occurred.

– Returns - Filter

• setFilter

public void setFilter(dotNetComposeStar.runtime.Filter filter)

– Usage

84 dotNetComposeStar.exception– FilterException

∗ Sets the filter in which this exception occurred for later retrieval.

– Parameters

∗ filter - The filter in which the exception occurred.

Methods inherited from class
dotNetComposeStar.exception.FilterModuleException

(in C.5.4, page 85)

Methods inherited from class
dotNetComposeStar.exception.ComposeStarException

(in C.5.1, page 79)

Methods inherited from class java.lang.RuntimeException

Methods inherited from class java.lang.Exception

Methods inherited from class java.lang.Throwable

• fillInStackTrace
public synchronized native Throwable fillInStackTrace()

• getCause
public Throwable getCause()

• getLocalizedMessage
public String getLocalizedMessage()

• getMessage
public String getMessage()

• getStackTrace
public StackTraceElement getStackTrace()

• initCause
public synchronized Throwable initCause(java.lang.Throwable)

• printStackTrace
public void printStackTrace()

dotNetComposeStar.exception– FilterModuleException 85

• printStackTrace
public void printStackTrace(java.io.PrintStream)

• printStackTrace
public void printStackTrace(java.io.PrintWriter)

• setStackTrace
public void setStackTrace(java.lang.StackTraceElement [])

• toString
public String toString()

C.5.4 Class FilterModuleException

Exception at the filter module level.

This exception can occur, for example, when a call to a non existing condition is made.

Declaration

public class FilterModuleException

extends dotNetComposeStar.exception.ComposeStarException

Constructors

• FilterModuleException

public FilterModuleException()

– Usage

∗ Default constructor

• FilterModuleException

public FilterModuleException(java.lang.String message)

Methods inherited from class
dotNetComposeStar.exception.ComposeStarException

(in C.5.1, page 79)

86 dotNetComposeStar.exception– FilterSpecificationException

Methods inherited from class java.lang.RuntimeException

Methods inherited from class java.lang.Exception

Methods inherited from class java.lang.Throwable

• fillInStackTrace
public synchronized native Throwable fillInStackTrace()

• getCause
public Throwable getCause()

• getLocalizedMessage
public String getLocalizedMessage()

• getMessage
public String getMessage()

• getStackTrace
public StackTraceElement getStackTrace()

• initCause
public synchronized Throwable initCause(java.lang.Throwable)

• printStackTrace
public void printStackTrace()

• printStackTrace
public void printStackTrace(java.io.PrintStream)

• printStackTrace
public void printStackTrace(java.io.PrintWriter)

• setStackTrace
public void setStackTrace(java.lang.StackTraceElement [])

• toString
public String toString()

C.5.5 Class FilterSpecificationException

Represents an exception occurred when interpreting the specification of a filter.

for example a message pattern pointing to a non existing internal or external.

dotNetComposeStar.exception– FilterSpecificationException 87

Declaration

public class FilterSpecificationException

extends dotNetComposeStar.exception.ComposeStarException

Constructors

• FilterSpecificationException

public FilterSpecificationException()

• FilterSpecificationException

public FilterSpecificationException(java.lang.String message)

Methods inherited from class
dotNetComposeStar.exception.ComposeStarException

(in C.5.1, page 79)

Methods inherited from class java.lang.RuntimeException

Methods inherited from class java.lang.Exception

Methods inherited from class java.lang.Throwable

• fillInStackTrace
public synchronized native Throwable fillInStackTrace()

• getCause
public Throwable getCause()

• getLocalizedMessage
public String getLocalizedMessage()

• getMessage
public String getMessage()

88 dotNetComposeStar.exception– InvalidConditionException

• getStackTrace
public StackTraceElement getStackTrace()

• initCause
public synchronized Throwable initCause(java.lang.Throwable)

• printStackTrace
public void printStackTrace()

• printStackTrace
public void printStackTrace(java.io.PrintStream)

• printStackTrace
public void printStackTrace(java.io.PrintWriter)

• setStackTrace
public void setStackTrace(java.lang.StackTraceElement [])

• toString
public String toString()

C.5.6 Class InvalidConditionException

Exception that deals with calls to invalid conditions (that is, conditions that are not

defined in the enclosing FilterModule).

Contains information about the condition resolver used.

Declaration

public class InvalidConditionException

extends dotNetComposeStar.exception.FilterSpecificationException

Constructors

• InvalidConditionException

public InvalidConditionException()

– Usage

∗ Constructs a new Invalid Condition Exception

• InvalidConditionException

public InvalidConditionException(java.lang.String message)

dotNetComposeStar.exception– InvalidConditionException 89

– Usage

∗ Constructs a new Invalid Condition Exception along with the

accompanying message

– Parameters

∗ message - the caption of the exception

Methods

• getConditionResolver

public ConditionResolver getConditionResolver()

– Usage

∗ Retrieves the Condition resolver that generated the error

– Returns - the condition resolver

• setConditionResolver

public void setConditionResolver(

dotNetComposeStar.runtime.interpreter.ConditionResolver

cndResolver)

– Usage

∗ Places the condition resolver that generated the error

– Parameters

∗ cndResolver - a class that resolves the Conditions

Methods inherited from class
dotNetComposeStar.exception.FilterSpecificationException

(in C.5.5, page 86)

Methods inherited from class
dotNetComposeStar.exception.ComposeStarException

(in C.5.1, page 79)

90 dotNetComposeStar.exception– InvalidPatternExpressionException

Methods inherited from class java.lang.RuntimeException

Methods inherited from class java.lang.Exception

Methods inherited from class java.lang.Throwable

• fillInStackTrace
public synchronized native Throwable fillInStackTrace()

• getCause
public Throwable getCause()

• getLocalizedMessage
public String getLocalizedMessage()

• getMessage
public String getMessage()

• getStackTrace
public StackTraceElement getStackTrace()

• initCause
public synchronized Throwable initCause(java.lang.Throwable)

• printStackTrace
public void printStackTrace()

• printStackTrace
public void printStackTrace(java.io.PrintStream)

• printStackTrace
public void printStackTrace(java.io.PrintWriter)

• setStackTrace
public void setStackTrace(java.lang.StackTraceElement [])

• toString
public String toString()

C.5.7 Class InvalidPatternExpressionException

Exception occurred while interpreting a pattern expression.

dotNetComposeStar.exception– InvalidPatternExpressionException 91

Declaration

public class InvalidPatternExpressionException

extends dotNetComposeStar.exception.FilterSpecificationException

Constructors

• InvalidPatternExpressionException

public InvalidPatternExpressionException()

– Usage

∗ Default constructor

• InvalidPatternExpressionException

public InvalidPatternExpressionException(java.lang.String

message)

Methods inherited from class
dotNetComposeStar.exception.FilterSpecificationException

(in C.5.5, page 86)

Methods inherited from class
dotNetComposeStar.exception.ComposeStarException

(in C.5.1, page 79)

Methods inherited from class java.lang.RuntimeException

Methods inherited from class java.lang.Exception

92 dotNetComposeStar.exception– MessageNotFilteredException

Methods inherited from class java.lang.Throwable

• fillInStackTrace
public synchronized native Throwable fillInStackTrace()

• getCause
public Throwable getCause()

• getLocalizedMessage
public String getLocalizedMessage()

• getMessage
public String getMessage()

• getStackTrace
public StackTraceElement getStackTrace()

• initCause
public synchronized Throwable initCause(java.lang.Throwable)

• printStackTrace
public void printStackTrace()

• printStackTrace
public void printStackTrace(java.io.PrintStream)

• printStackTrace
public void printStackTrace(java.io.PrintWriter)

• setStackTrace
public void setStackTrace(java.lang.StackTraceElement [])

• toString
public String toString()

C.5.8 Class MessageNotFilteredException

Exception thrown when a message traverses all the filters within a filter module and is not

filtered by any of them.

It contains information about the message that was being filtered.

Declaration

public class MessageNotFilteredException

extends dotNetComposeStar.exception.FilterModuleException

dotNetComposeStar.exception– MessageNotFilteredException 93

Constructors

• MessageNotFilteredException

public MessageNotFilteredException()

• MessageNotFilteredException

public MessageNotFilteredException(java.lang.String caption)

Methods

• getComposeStarMessage

public Message getComposeStarMessage()

– Usage

∗ Gets the message that was not filtered

– Parameters

∗ aMessage - the message that fell of the other side

• getMessage

public String getMessage()

• setComposeStarMessage

public void setComposeStarMessage(

dotNetComposeStar.runtime.message.Message aMessage)

– Usage

∗ Sets the Message that was not filtered

– Parameters

∗ aMessage - the message that fell of the other side

Methods inherited from class
dotNetComposeStar.exception.FilterModuleException

(in C.5.4, page 85)

94 dotNetComposeStar.exception– SelectorNotFoundException

Methods inherited from class
dotNetComposeStar.exception.ComposeStarException

(in C.5.1, page 79)

Methods inherited from class java.lang.RuntimeException

Methods inherited from class java.lang.Exception

Methods inherited from class java.lang.Throwable

• fillInStackTrace
public synchronized native Throwable fillInStackTrace()

• getCause
public Throwable getCause()

• getLocalizedMessage
public String getLocalizedMessage()

• getMessage
public String getMessage()

• getStackTrace
public StackTraceElement getStackTrace()

• initCause
public synchronized Throwable initCause(java.lang.Throwable)

• printStackTrace
public void printStackTrace()

• printStackTrace
public void printStackTrace(java.io.PrintStream)

• printStackTrace
public void printStackTrace(java.io.PrintWriter)

• setStackTrace
public void setStackTrace(java.lang.StackTraceElement [])

• toString
public String toString()

dotNetComposeStar.exception– SelectorNotFoundException 95

C.5.9 Class SelectorNotFoundException

Exception thrown while interpreting a pattern when the pattern specifies a selector not

existing in the type definition of the current target. (For example

inner.nonExistingMethod)

Declaration

public class SelectorNotFoundException

extends dotNetComposeStar.exception.InvalidPatternExpressionException

Serializable Fields

• private String selector

– Name of the method to which the message was directed

Constructors

• SelectorNotFoundException

public SelectorNotFoundException()

– Usage

∗ Default Constructor

• SelectorNotFoundException

public SelectorNotFoundException(java.lang.String message)

Methods inherited from class
dotNetComposeStar.exception.InvalidPatternExpressionException

(in C.5.7, page 90)

96 dotNetComposeStar.exception– TargetNotFoundException

Methods inherited from class
dotNetComposeStar.exception.FilterSpecificationException

(in C.5.5, page 86)

Methods inherited from class
dotNetComposeStar.exception.ComposeStarException

(in C.5.1, page 79)

Methods inherited from class java.lang.RuntimeException

Methods inherited from class java.lang.Exception

Methods inherited from class java.lang.Throwable

• fillInStackTrace
public synchronized native Throwable fillInStackTrace()

• getCause
public Throwable getCause()

• getLocalizedMessage
public String getLocalizedMessage()

• getMessage
public String getMessage()

• getStackTrace
public StackTraceElement getStackTrace()

• initCause
public synchronized Throwable initCause(java.lang.Throwable)

• printStackTrace
public void printStackTrace()

• printStackTrace
public void printStackTrace(java.io.PrintStream)

• printStackTrace
public void printStackTrace(java.io.PrintWriter)

dotNetComposeStar.exception– TargetNotFoundException 97

• setStackTrace
public void setStackTrace(java.lang.StackTraceElement [])

• toString
public String toString()

C.5.10 Class TargetNotFoundException

Exception thrown when a pattern calls for a target - selector pair not existing within the

enclosing filter module at the time of interpretation (for example

*.messageNotImplementedByInnerInternalOrExternal)

Declaration

public class TargetNotFoundException

extends dotNetComposeStar.exception.InvalidPatternExpressionException

Serializable Fields

• private String target

– Name of the internal, external or pseudo variable that was not found

Constructors

• TargetNotFoundException

public TargetNotFoundException()

– Usage

∗ Default constructor

• TargetNotFoundException

public TargetNotFoundException(java.lang.String message)

98 dotNetComposeStar.exception– TargetNotFoundException

Methods inherited from class
dotNetComposeStar.exception.InvalidPatternExpressionException

(in C.5.7, page 90)

Methods inherited from class
dotNetComposeStar.exception.FilterSpecificationException

(in C.5.5, page 86)

Methods inherited from class
dotNetComposeStar.exception.ComposeStarException

(in C.5.1, page 79)

Methods inherited from class java.lang.RuntimeException

Methods inherited from class java.lang.Exception

Methods inherited from class java.lang.Throwable

• fillInStackTrace
public synchronized native Throwable fillInStackTrace()

• getCause
public Throwable getCause()

• getLocalizedMessage
public String getLocalizedMessage()

• getMessage
public String getMessage()

• getStackTrace
public StackTraceElement getStackTrace()

• initCause
public synchronized Throwable initCause(java.lang.Throwable)

• printStackTrace
public void printStackTrace()

dotNetComposeStar.exception– TargetNotFoundException 99

• printStackTrace
public void printStackTrace(java.io.PrintStream)

• printStackTrace
public void printStackTrace(java.io.PrintWriter)

• setStackTrace
public void setStackTrace(java.lang.StackTraceElement [])

• toString
public String toString()

100 dotNetComposeStar.runtime.message– TargetNotFoundException

C.6 Package

dotNetComposeStar.runtime.message
Package Contents Page

Classes

Message . 101
Models the Message as it is being Filtered

Keeps the name and arguments of the message.
ReifiedMessage . 105

Models a Reified message

It is handled by ACT methods called when a Meta Filter accepts a
message.

ReplyMessage . 108
Models the reified message that is handed over to the ACTcallbacks

It allows for the replacement of the return value of the message

dotNetComposeStar.runtime.message– Message 101

C.7 Classes

C.7.1 Class Message

Models the Message as it is being Filtered

Keeps the name and arguments of the message. It also keeps some of the pseudo variables

necessary during filtering (for example internals and externals). Finally it is responsible

for producing a Reified message of itself for the ACT’s in the meta filter.

Declaration

public class Message

extends java.lang.Object

Constructors

• Message

public Message(java.lang.String selector)

– Usage

∗ Constructs a Message from its selector

It is supposed that no arguments are set.

– Parameters

∗ selector - selector of the message

• Message

public Message(java.lang.String selector, java.lang.Object []

args)

– Usage

∗ Constructs a message with arguments

– Parameters

102 dotNetComposeStar.runtime.message– Message

∗ selector - selector of the message

∗ args - arguments of the message

Methods

• addFilterParameter

public void addFilterParameter(java.lang.String messageElement,

java.lang.String identifier)

– Usage

∗ Sets a new filter parameter

– Parameters

∗ messageElement - the name of the parameter

∗ identifier - the value of the parameter.

• externals

public Dictionary externals()

– Usage

∗ Returns a dictionary containing all the externals

– Returns - the current externals

• externals

public void externals(dotNetComposeStar.util.Dictionary

externals)

– Usage

∗ Replaces all the externals.

– Parameters

∗ externals - new set of externals.

• getArguments

public Object getArguments()

– Usage

∗ Returns the arguments of this message

dotNetComposeStar.runtime.message– Message 103

– Returns - an array of objects containing the arguments

• getExternals

public Object getExternals(java.lang.String name)

– Usage

∗ Returns an external by its name

– Parameters

∗ name - name of the desired external

– Returns - the object bound to the name.

• getFilterParameter

public String getFilterParameter(java.lang.String

messageElement)

– Usage

∗ Returns the value associated with the message element.

– Parameters

∗ messageElement - key

– Returns - the identifier associated with it

• getInner

public Object getInner()

– Usage

∗ Returns the object bound to inner

• getInternal

public Object getInternal(java.lang.String name)

– Usage

∗ Returns an internal by its name.

– Parameters

∗ name - name of the internal

– Returns - the object bound to that name.

104 dotNetComposeStar.runtime.message– Message

• getSelector

public String getSelector()

– Usage

∗ Returns the selector of this message

– Returns - current selector

• internals

public Dictionary internals()

– Usage

∗ Returns a dictionary containing all the internals.

– Returns - all the internals

• internals

public void internals(dotNetComposeStar.util.Dictionary

internals)

– Usage

∗ Sets (replaces) the internals of the message

– Parameters

∗ internals - new set of internals

• reify

public ReifiedMessage reify()

– Usage

∗ Reifies this message.

It produces a version of this message that is fit for manipulation

inside a ACT.

– Returns - Reified version of this message

• setInner

public void setInner(java.lang.Object inner)

dotNetComposeStar.runtime.message– ReifiedMessage 105

– Usage

∗ Binds the object to the inner pseudo var.

– Parameters

∗ inner - new inner

C.7.2 Class ReifiedMessage

Models a Reified message

It is handled by ACT methods called when a Meta Filter accepts a message. The reified

message can offer information about the message, and fire, reply or send itself.

Declaration

public class ReifiedMessage

extends java.lang.Object

Fields

• public static int FIRED

– State of the reified message - message was fired

• public static int REPLIED

– State of the reified message - message was replied

• public static int SENT

– State of the reified message - message was sent

Methods

• fire

public void fire()

– Usage

106 dotNetComposeStar.runtime.message– ReifiedMessage

∗ Fires this message

• getArgs

public Object getArgs()

– Usage

∗ Returns the arguments of the message

– Returns - an array containing the arguments of the message

• getCallBack

public ACTcallBackMethod getCallBack()

– Usage

∗ Returns the callback

This method is only valid if the state of the ReifiedMessage is SENT.

– Returns - the act callback method, if the state is SENT, null otherwise

• getReturnValue

public Object getReturnValue()

– Usage

∗ Returns the return value of the message

Only valid if the state of the ReifiedMessage is SENT

– Returns - the return value of the message if state is SENT, null

otherwise.

• getSelector

public String getSelector()

– Usage

∗ Returns the selector of this message

– Returns - the selector

dotNetComposeStar.runtime.message– ReifiedMessage 107

• getState

public int getState()

– Usage

∗ Returns the current state of the ReifiedMessage

– Returns - ReifiedMessage.FIRED, ReifiedMessage.REPLIED or

ReifiedMessage.SENT

• reply

public void reply(java.lang.Object content)

– Usage

∗ Replies this message with a given object

If the original method had a void return type, the content parameter

is ignored

– Parameters

∗ content - the object to return to the original sender

• send

public void send(ACTcallBackMethod actCallback)

– Usage

∗ Sends this message.

The actCallback is invoked on the return trip of the message once

the return object is sent.

– Parameters

∗ actCallback - method to invoke

• setSelector

public void setSelector(java.lang.String s)

– Usage

∗ Sets a new selector for this message

108 dotNetComposeStar.runtime.message– ReplyMessage

– Parameters

∗ s - the new selector

C.7.3 Class ReplyMessage

Models the reified message that is handed over to the ACTcallbacks

It allows for the replacement of the return value of the message

Declaration

public class ReplyMessage

extends dotNetComposeStar.runtime.message.ReifiedMessage

Constructors

• ReplyMessage

public ReplyMessage(dotNetComposeStar.runtime.message.Message

m, java.lang.Object returnValue)

– Usage

∗ Constructs a new ReplyMessage out of a message and its return value

– Parameters

∗ m - message to reify

∗ returnValue - return value of the message

Methods

• setReturnObject

public void setReturnObject(java.lang.Object o)

– Usage

dotNetComposeStar.runtime.message– ReplyMessage 109

∗ Replaces the return value with a new one.

No checks are done to see if the new return value fills the interface

requirements of the message (that is, if it is a valid type)

– Parameters

∗ o - new return value

Methods inherited from class
dotNetComposeStar.runtime.message.ReifiedMessage

(in C.7.2, page 105)

• fire
public void fire()

– Usage
∗ Fires this message

• getArgs
public Object getArgs()

– Usage
∗ Returns the arguments of the message

– Returns - an array containing the arguments of the message

• getCallBack
public ACTcallBackMethod getCallBack()

– Usage
∗ Returns the callback

This method is only valid if the state of the ReifiedMessage is SENT.
– Returns - the act callback method, if the state is SENT, null otherwise

• getReturnValue
public Object getReturnValue()

– Usage
∗ Returns the return value of the message

Only valid if the state of the ReifiedMessage is SENT
– Returns - the return value of the message if state is SENT, null otherwise.

• getSelector
public String getSelector()

– Usage

110 dotNetComposeStar.runtime.message– ReplyMessage

∗ Returns the selector of this message
– Returns - the selector

• getState
public int getState()

– Usage
∗ Returns the current state of the ReifiedMessage

– Returns - ReifiedMessage.FIRED, ReifiedMessage.REPLIED or
ReifiedMessage.SENT

• reply
public void reply(java.lang.Object content)

– Usage
∗ Replies this message with a given object

If the original method had a void return type, the content parameter is
ignored

– Parameters
∗ content - the object to return to the original sender

• send
public void send(ACTcallBackMethod actCallback)

– Usage
∗ Sends this message.

The actCallback is invoked on the return trip of the message once the
return object is sent.

– Parameters
∗ actCallback - method to invoke

• setSelector
public void setSelector(java.lang.String s)

– Usage
∗ Sets a new selector for this message

– Parameters
∗ s - the new selector

dotNetComposeStar.runtime– ReplyMessage 111

C.8 Package dotNetComposeStar.runtime
Package Contents Page

Classes

ComposeStarObject . 112

Summary description for ComposeStarObject.

Dispatch . 113
Dispatch Filter

This filter redirects messages that accepts to the objects (internals or
externals) defined in its specification.

ErrorFilter .116
Model the error filter

This filter will create an ErrorAction when rejecting a message.
Filter . 119

Models all the filters in the system.

FilterModule . 122

Models the Filter modules.

LockingFilterModule . 126

Example of a concrete Filter Module.

Meta . 130
Models the Meta filter

If a message is accepted, it is reified and offered to a method defined in
the filter specification.

ObjectManager . 133

This class manages the filtering process for each object.

Send .137
Models the Send filter

Not implemented because it is an output filter, and those are not imple-
mented.

Substitution . 139

...no description...

Wait . 141

Not Implemented

112 dotNetComposeStar.runtime– ComposeStarObject

C.9 Classes

C.9.1 Class ComposeStarObject

Summary description for ComposeStarObject.

Base class of all objects that are to be superimposed. This class must contain the union of

all the interfaces of the classes that are to be superimposed in order for the polymorphism

to work.

Declaration

public class ComposeStarObject

extends ContextBoundObject

Constructors

• ComposeStarObject

public ComposeStarObject()

Methods

• bar

public void bar()

• getCallLog

public String getCallLog()

• getKey

public String getKey()

– Usage

∗ returns a string that identifies each object uniquely.

The string is derived from the hashcode of the object.

dotNetComposeStar.runtime– Dispatch 113

– Returns - a unique string for this object.

• getLastReturn

public Object getLastReturn()

• handleMouse

public String handleMouse()

• isLocked

public boolean isLocked()

• lock

public void lock()

• one

public int one()

• setState

public void setState(int s)

• unlock

public void unlock()

Methods inherited from class ContextBoundObject

C.9.2 Class Dispatch

Dispatch Filter

This filter redirects messages that accepts to the objects (internals or externals) defined in

its specification.

Declaration

public class Dispatch

extends dotNetComposeStar.runtime.Filter

114 dotNetComposeStar.runtime– Dispatch

Constructors

• Dispatch

public Dispatch(java.lang.String name,

dotNetComposeStar.runtime.interpreter.FilterSpecificationInterpreter

interpreter,

dotNetComposeStar.runtime.interpreter.ConditionResolver resolver

)

– Usage

∗ Constructs a Dispatch filter

– Parameters

∗ name - name of the filter.

∗ interpreter - Specification of the filter (conditions and parameters)

∗ resolver - Condition resolver for this filter.

Methods

• acceptAction

public ComposeStarAction acceptAction(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

– Usage

∗ Accept action

The accept action is a DispatchAction

– Parameters

∗ m - Message accepted

∗ context - in which it was accepted

– Returns - Action to dispatch the message

– See Also

∗ dotNetComposeStar.runtime.actions.DispatchAction (in

C.11.3, page 148)

dotNetComposeStar.runtime– Dispatch 115

• rejectAction

public ComposeStarAction rejectAction(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

– Usage

∗ Reject action

The reject action is a ContinueToNextFiliterAction

– Parameters

∗ m - message rejected

∗ context - in which it was rejected

– Returns - action to continue to the next filter

Methods inherited from class dotNetComposeStar.runtime.Filter

(in C.9.4, page 119)
• acceptAction
public abstract ComposeStarAction acceptAction(
dotNetComposeStar.runtime.message.Message m,
dotNetComposeStar.util.Dictionary context)

– Usage
∗ Produces the action to carry out of the message is accepted by the filter

– Parameters
∗ m - Message being filtered
∗ context - context of the interpretation

– Returns - an action

• canAccept
public boolean canAccept(dotNetComposeStar.runtime.message.Message
m, dotNetComposeStar.util.Dictionary context)

– Usage
∗ desides if the filter will accept or reject the message

– Parameters
∗ m - the message to accept
∗ context - of the interpretation

– Returns - true if the message is accepted, false otherwise

• getConditionResolver
public ConditionResolver getConditionResolver()

116 dotNetComposeStar.runtime– ErrorFilter

– Usage
∗ Returns the condition resolver

– Returns - the object that is evaluating the conditions

• getName
public String getName()

– Usage
∗ Name of the filter

– Returns - the name of the filter

• handleMessage
public ComposeStarAction handleMessage(
dotNetComposeStar.runtime.message.Message m)

– Usage
∗ Passes the object by the specification to see if the filter will accept the

message or not and returns the corresponding action
– Parameters

∗ aMessage - message being filtered
– Returns - boolean action to carry out.

• rejectAction
public abstract ComposeStarAction rejectAction(
dotNetComposeStar.runtime.message.Message m,
dotNetComposeStar.util.Dictionary context)

– Usage
∗ Produces the action to carry out if the message is rejected by the filter

– Parameters
∗ m - Message being filtered
∗ context - context of the interpretation

– Returns - an action

C.9.3 Class ErrorFilter

Model the error filter

This filter will create an ErrorAction when rejecting a message. When executed, the error

action is to throw an exception

Declaration

public class ErrorFilter

extends dotNetComposeStar.runtime.Filter

dotNetComposeStar.runtime– ErrorFilter 117

Constructors

• ErrorFilter

public ErrorFilter(java.lang.String name,

dotNetComposeStar.runtime.interpreter.FilterSpecificationInterpreter

interpreter,

dotNetComposeStar.runtime.interpreter.ConditionResolver resolver

)

– Usage

∗ Constructs a new Error filter

– Parameters

∗ name - name of the filter.

∗ interpreter - Specification of the filter (conditions and parameters)

∗ resolver - Condition resolver for this filter.

Methods

• acceptAction

public ComposeStarAction acceptAction(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

– Usage

∗ Accepts the message

Continues to the next filter

– Parameters

∗ m - Message accepted

∗ context - in which it was accepted

– Returns - action to continue to the next filter

• rejectAction

public ComposeStarAction rejectAction(

118 dotNetComposeStar.runtime– ErrorFilter

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

– Usage

∗ Rejects the message.

– Parameters

∗ m - Message rejected

∗ context - in which it was rejected

– Returns - action to throw an exception

Methods inherited from class dotNetComposeStar.runtime.Filter

(in C.9.4, page 119)
• acceptAction
public abstract ComposeStarAction acceptAction(
dotNetComposeStar.runtime.message.Message m,
dotNetComposeStar.util.Dictionary context)

– Usage
∗ Produces the action to carry out of the message is accepted by the filter

– Parameters
∗ m - Message being filtered
∗ context - context of the interpretation

– Returns - an action

• canAccept
public boolean canAccept(dotNetComposeStar.runtime.message.Message
m, dotNetComposeStar.util.Dictionary context)

– Usage
∗ desides if the filter will accept or reject the message

– Parameters
∗ m - the message to accept
∗ context - of the interpretation

– Returns - true if the message is accepted, false otherwise

• getConditionResolver
public ConditionResolver getConditionResolver()

– Usage
∗ Returns the condition resolver

– Returns - the object that is evaluating the conditions

• getName
public String getName()

dotNetComposeStar.runtime– Filter 119

– Usage

∗ Name of the filter

– Returns - the name of the filter

• handleMessage
public ComposeStarAction handleMessage(
dotNetComposeStar.runtime.message.Message m)

– Usage

∗ Passes the object by the specification to see if the filter will accept the
message or not and returns the corresponding action

– Parameters

∗ aMessage - message being filtered

– Returns - boolean action to carry out.

• rejectAction
public abstract ComposeStarAction rejectAction(
dotNetComposeStar.runtime.message.Message m,
dotNetComposeStar.util.Dictionary context)

– Usage

∗ Produces the action to carry out if the message is rejected by the filter

– Parameters

∗ m - Message being filtered
∗ context - context of the interpretation

– Returns - an action

C.9.4 Class Filter

Models all the filters in the system.

Handles the naming, keeps the condition resolver, and interprets the filter specification to

decide if a filter accepts or rejects a message.

Declaration

public abstract class Filter

extends java.lang.Object

120 dotNetComposeStar.runtime– Filter

Constructors

• Filter

protected Filter()

– Usage

∗ Constructor of Filters

• Filter

public Filter(java.lang.String name,

dotNetComposeStar.runtime.interpreter.FilterSpecificationInterpreter

interpreter,

dotNetComposeStar.runtime.interpreter.ConditionResolver resolver

)

– Usage

∗ Constructs out of a name, a specification and a condition resolver

– Parameters

∗ name - the name of the filter

∗ interpreter - Specification of the filter

∗ resolver - condition resolver

Methods

• acceptAction

public abstract ComposeStarAction acceptAction(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

– Usage

∗ Produces the action to carry out of the message is accepted by the

filter

– Parameters

∗ m - Message being filtered

∗ context - context of the interpretation

dotNetComposeStar.runtime– Filter 121

– Returns - an action

• canAccept

public boolean canAccept(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

– Usage

∗ desides if the filter will accept or reject the message

– Parameters

∗ m - the message to accept

∗ context - of the interpretation

– Returns - true if the message is accepted, false otherwise

• getConditionResolver

public ConditionResolver getConditionResolver()

– Usage

∗ Returns the condition resolver

– Returns - the object that is evaluating the conditions

• getName

public String getName()

– Usage

∗ Name of the filter

– Returns - the name of the filter

• handleMessage

public ComposeStarAction handleMessage(

dotNetComposeStar.runtime.message.Message m)

– Usage

∗ Passes the object by the specification to see if the filter will accept

the message or not and returns the corresponding action

– Parameters

122 dotNetComposeStar.runtime– FilterModule

∗ aMessage - message being filtered

– Returns - boolean action to carry out.

• rejectAction

public abstract ComposeStarAction rejectAction(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

– Usage

∗ Produces the action to carry out if the message is rejected by the

filter

– Parameters

∗ m - Message being filtered

∗ context - context of the interpretation

– Returns - an action

C.9.5 Class FilterModule

Models the Filter modules. Filter modules are a collection of inputfilters, conditions,

methods, internals and externals.

Declaration

public abstract class FilterModule

extends java.lang.Object

implements dotNetComposeStar.runtime.interpreter.ConditionResolver

Constructors

• FilterModule

public FilterModule(java.lang.String name)

– Usage

∗ Constructs a filtermodule by a given name.

dotNetComposeStar.runtime– FilterModule 123

– Parameters

∗ name - name of the filtermodule

Methods

• addCondition

public void addCondition(java.lang.String name)

– Usage

∗ Defines a new condition in the filter module

• addExternal

public void addExternal(java.lang.String name, java.lang.Object

value)

– Usage

∗ Defines a new external in the filter module

– Parameters

∗ name - of the external

∗ value - object bound to the name.

• addInputFilter

public void addInputFilter(dotNetComposeStar.runtime.Filter in

)

– Usage

∗ Adds a new input filter

This is added ON TOP of existing filters

– Parameters

∗ in - inputfilter

• addInternal

public void addInternal(java.lang.String name, java.lang.Object

value)

124 dotNetComposeStar.runtime– FilterModule

– Usage

∗ Defines a new internal in the filtermodule

– Parameters

∗ name - name of the internal

∗ value - object bound to the name.

• addMethod

public void addMethod(java.lang.String selector)

– Usage

∗ Defines a new method in the filtermodule

– Parameters

∗ selector - name of the new method

• getExternals

public Dictionary getExternals()

– Usage

∗ Gets the externals defined in the filtermodule

– Returns - a dictionary containing the externals

• getFilters

public List getFilters()

– Usage

∗ Gets a list with the inputfilters of the module

– Returns - inputfilters

• getInputFilters

public List getInputFilters()

– Usage

∗ Returns the input filters

– Returns - a list containing the inputfilters

dotNetComposeStar.runtime– FilterModule 125

• getInternals

public Dictionary getInternals()

– Usage

∗ Gets the internals defined in the filtermodule

– Returns - a dictionary containing the internals

• getName

public String getName()

– Usage

∗ gets the name of the filter module

– Returns - a string with the name of the module

• handleInputMessage

public List handleInputMessage(

dotNetComposeStar.runtime.message.Message aMessage)

– Usage

∗ Handles a message that is on the way IN the filter.

The FilterInterface takes care of passing the message through each of

its inputFilters. If the message is not filtered by any of the filters, it

returns false; it return true otherwise.

If the message is meant for one of the declared methods of the filter,

it is dispatched, and true is returned.

This is now handled by the policy package

– Parameters

∗ aMessage - the message to handle.

– Returns - true if the message is handled by any of the filters, false

otherwise.

126 dotNetComposeStar.runtime– LockingFilterModule

• handleOutputMessage

public boolean handleOutputMessage(

dotNetComposeStar.runtime.message.Message aMessage)

– Usage

∗ Not implemented due to limitations of the message interception

– Parameters

∗ aMessage -

• removeInputFilter

public void removeInputFilter(java.lang.String name)

– Usage

∗ removes an inputfilter identified by its name.

– Parameters

∗ name - name of the inputfilter

• resolve

public boolean resolve(java.lang.String cond)

– Usage

∗ Resolves a condition.

– Parameters

∗ cond - Name of the condition to resolve

– Returns - the evaluation of the condition

– See Also

∗ dotNetComposeStar.runtime.intepreter.ConditionResolver

C.9.6 Class LockingFilterModule

Example of a concrete Filter Module.

dotNetComposeStar.runtime– LockingFilterModule 127

Declaration

public class LockingFilterModule

extends dotNetComposeStar.runtime.FilterModule

Constructors

• LockingFilterModule

public LockingFilterModule(java.lang.String name)

Methods

• isLocked

public boolean isLocked()

• lock

public void lock()

• unlock

public void unlock()

Methods inherited from class dotNetComposeStar.runtime.FilterModule

(in C.9.5, page 122)
• addCondition
public void addCondition(java.lang.String name)

– Usage
∗ Defines a new condition in the filter module

• addExternal
public void addExternal(java.lang.String name, java.lang.Object
value)

– Usage
∗ Defines a new external in the filter module

– Parameters
∗ name - of the external
∗ value - object bound to the name.

128 dotNetComposeStar.runtime– LockingFilterModule

• addInputFilter
public void addInputFilter(dotNetComposeStar.runtime.Filter in)

– Usage
∗ Adds a new input filter

This is added ON TOP of existing filters
– Parameters

∗ in - inputfilter

• addInternal
public void addInternal(java.lang.String name, java.lang.Object
value)

– Usage
∗ Defines a new internal in the filtermodule

– Parameters
∗ name - name of the internal
∗ value - object bound to the name.

• addMethod
public void addMethod(java.lang.String selector)

– Usage
∗ Defines a new method in the filtermodule

– Parameters
∗ selector - name of the new method

• getExternals
public Dictionary getExternals()

– Usage
∗ Gets the externals defined in the filtermodule

– Returns - a dictionary containing the externals

• getFilters
public List getFilters()

– Usage
∗ Gets a list with the inputfilters of the module

– Returns - inputfilters

• getInputFilters
public List getInputFilters()

– Usage
∗ Returns the input filters

– Returns - a list containing the inputfilters

dotNetComposeStar.runtime– LockingFilterModule 129

• getInternals
public Dictionary getInternals()

– Usage
∗ Gets the internals defined in the filtermodule

– Returns - a dictionary containing the internals

• getName
public String getName()

– Usage
∗ gets the name of the filter module

– Returns - a string with the name of the module

• handleInputMessage
public List handleInputMessage(
dotNetComposeStar.runtime.message.Message aMessage)

– Usage
∗ Handles a message that is on the way IN the filter.

The FilterInterface takes care of passing the message through each of its
inputFilters. If the message is not filtered by any of the filters, it returns
false; it return true otherwise.

If the message is meant for one of the declared methods of the filter, it is
dispatched, and true is returned.

This is now handled by the policy package
– Parameters

∗ aMessage - the message to handle.
– Returns - true if the message is handled by any of the filters, false otherwise.

• handleOutputMessage
public boolean handleOutputMessage(
dotNetComposeStar.runtime.message.Message aMessage)

– Usage
∗ Not implemented due to limitations of the message interception

– Parameters
∗ aMessage -

• removeInputFilter
public void removeInputFilter(java.lang.String name)

– Usage
∗ removes an inputfilter identified by its name.

– Parameters
∗ name - name of the inputfilter

130 dotNetComposeStar.runtime– Meta

• resolve
public boolean resolve(java.lang.String cond)

– Usage
∗ Resolves a condition.

– Parameters
∗ cond - Name of the condition to resolve

– Returns - the evaluation of the condition
– See Also

∗ dotNetComposeStar.runtime.intepreter.ConditionResolver

C.9.7 Class Meta

Models the Meta filter

If a message is accepted, it is reified and offered to a method defined in the filter

specification. if the message is rejected, it is passed on to the next filter.

Declaration

public class Meta

extends dotNetComposeStar.runtime.Filter

Constructors

• Meta

public Meta(java.lang.String name,

dotNetComposeStar.runtime.interpreter.FilterSpecificationInterpreter

interpreter,

dotNetComposeStar.runtime.interpreter.ConditionResolver resolver

)

– Usage

∗ Constructs a new meta filter

– Parameters

∗ name - name of the filter.

dotNetComposeStar.runtime– Meta 131

∗ interpreter - Specification of the filter (conditions and parameters)

∗ resolver - Condition resolver for this filter.

Methods

• acceptAction

public ComposeStarAction acceptAction(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

– Usage

∗ Generates the appropriate action when the filter accepts a message

The action returned is a MetaAction.

– Parameters

∗ m - Message accepted

∗ context - in which it was accepted

– Returns - action to reify the message an pass it to a method.

• rejectAction

public ComposeStarAction rejectAction(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

– Usage

∗ Generates the appropriate action when the filter rejects a message

– Parameters

∗ m - Message accepted

∗ context - in which it was accepted

– Returns - action to continue to the next filter

Methods inherited from class dotNetComposeStar.runtime.Filter

(in C.9.4, page 119)

132 dotNetComposeStar.runtime– Meta

• acceptAction
public abstract ComposeStarAction acceptAction(
dotNetComposeStar.runtime.message.Message m,
dotNetComposeStar.util.Dictionary context)

– Usage
∗ Produces the action to carry out of the message is accepted by the filter

– Parameters
∗ m - Message being filtered
∗ context - context of the interpretation

– Returns - an action

• canAccept
public boolean canAccept(dotNetComposeStar.runtime.message.Message
m, dotNetComposeStar.util.Dictionary context)

– Usage
∗ desides if the filter will accept or reject the message

– Parameters
∗ m - the message to accept
∗ context - of the interpretation

– Returns - true if the message is accepted, false otherwise

• getConditionResolver
public ConditionResolver getConditionResolver()

– Usage
∗ Returns the condition resolver

– Returns - the object that is evaluating the conditions

• getName
public String getName()

– Usage
∗ Name of the filter

– Returns - the name of the filter

• handleMessage
public ComposeStarAction handleMessage(
dotNetComposeStar.runtime.message.Message m)

– Usage
∗ Passes the object by the specification to see if the filter will accept the

message or not and returns the corresponding action
– Parameters

∗ aMessage - message being filtered
– Returns - boolean action to carry out.

dotNetComposeStar.runtime– ObjectManager 133

• rejectAction
public abstract ComposeStarAction rejectAction(
dotNetComposeStar.runtime.message.Message m,
dotNetComposeStar.util.Dictionary context)

– Usage
∗ Produces the action to carry out if the message is rejected by the filter

– Parameters
∗ m - Message being filtered
∗ context - context of the interpretation

– Returns - an action

C.9.8 Class ObjectManager

This class manages the filtering process for each object.

The an object’s objectManager is obtained by with the static method

getObjectManagerFor. Subsequent calls to the method return the original object

manager; this means that it exists a single object manager for each object.

It is the responsibility of the objectManager to receive intercepted messages from the

MessageInterceptionLayer. And to start the filtering process. The Object manager is

NOT thread safe.

Finally, the object manager also manages the filtermodules that are imposed on the object

that manages.

Declaration

public class ObjectManager

extends java.lang.Object

Fields

• public Object theObject

– The Object that is being managed

134 dotNetComposeStar.runtime– ObjectManager

Constructors

• ObjectManager

public ObjectManager()

– Usage

∗ Constructs a new Object Manager - made public for testing purposes.

Methods

• addFilterModule

public void addFilterModule(

dotNetComposeStar.runtime.FilterModule newModule)

– Usage

∗ Adds a new filter module on top of the existing ones

– Parameters

∗ newModule - the new filter module

• deliverMessage

public Object deliverMessage(java.lang.Object receiver,

java.lang.String selector, java.lang.Object [] args)

– Usage

∗ Delivers a message to the object that is being managed.

This is the point of contact with the Message Interception Layer.

The message is filtered and a return value is given.

– Parameters

∗ receiver - of the message

∗ selector - name of the method

∗ args - array containing the arguments of the message

– Returns - the return value of the message, if the method’s return type is

void return null.

dotNetComposeStar.runtime– ObjectManager 135

• getFilterModule

public FilterModule getFilterModule(java.lang.String moduleName

)

– Usage

∗ Retrieves a Filtermodule by its name.

– Parameters

∗ moduleName - the name of the desired filtermodule

– Returns - the filter module if it is imposed on the managed object, null

otherwise

• getFilterModules

public List getFilterModules()

– Usage

∗ Returns a listing of the filter modules in the order in which messages

are passed

– Returns - a list containing the modules

• getObjectManagerFor

public static ObjectManager getObjectManagerFor(

dotNetComposeStar.runtime.ComposeStarObject o)

– Usage

∗ Retrieves the Object Manager associated with the object o. If there

is none, a new one is created.

– Parameters

∗ o - The object whose manager is needed.

– Returns - the manager of the object o

• receiveMessage

public Object receiveMessage(

dotNetComposeStar.runtime.message.Message aMessage)

– Usage

136 dotNetComposeStar.runtime– ObjectManager

∗ Receives a message and filters it, returning the appropriate value

This method passes the received message through each of the filter

modules attached to the managed object.

The way the message is treated by each filter module is given by a

policy

– Parameters

∗ aMessage - the message received

– Returns - the return value of the message, if the method’s return type is

void return null

– See Also

∗ dotNetComposeStar.runtime.policy.FilterPolicy (in C.13.1,

page 157)

• removeFilterModule

public void removeFilterModule(

dotNetComposeStar.runtime.FilterModule mod)

– Usage

∗ Removes a module

– Parameters

∗ mod - module to remove

• removeFilterModule

public void removeFilterModule(java.lang.String moduleName)

– Usage

∗ Removes a filter module given its name

– Parameters

∗ moduleName - the name of the module

• reset

public static void reset()

dotNetComposeStar.runtime– Send 137

– Usage

∗ Resets the bindings of the objects - managers

This method is provided for testing purposes

C.9.9 Class Send

Models the Send filter

Not implemented because it is an output filter, and those are not implemented.

Declaration

public class Send

extends dotNetComposeStar.runtime.Filter

Constructors

• Send

public Send()

Methods

• acceptAction

public ComposeStarAction acceptAction(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

• rejectAction

public ComposeStarAction rejectAction(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

138 dotNetComposeStar.runtime– Send

Methods inherited from class dotNetComposeStar.runtime.Filter

(in C.9.4, page 119)

• acceptAction
public abstract ComposeStarAction acceptAction(
dotNetComposeStar.runtime.message.Message m,
dotNetComposeStar.util.Dictionary context)

– Usage
∗ Produces the action to carry out of the message is accepted by the filter

– Parameters
∗ m - Message being filtered
∗ context - context of the interpretation

– Returns - an action

• canAccept
public boolean canAccept(dotNetComposeStar.runtime.message.Message
m, dotNetComposeStar.util.Dictionary context)

– Usage
∗ desides if the filter will accept or reject the message

– Parameters
∗ m - the message to accept
∗ context - of the interpretation

– Returns - true if the message is accepted, false otherwise

• getConditionResolver
public ConditionResolver getConditionResolver()

– Usage
∗ Returns the condition resolver

– Returns - the object that is evaluating the conditions

• getName
public String getName()

– Usage
∗ Name of the filter

– Returns - the name of the filter

• handleMessage
public ComposeStarAction handleMessage(
dotNetComposeStar.runtime.message.Message m)

– Usage
∗ Passes the object by the specification to see if the filter will accept the

message or not and returns the corresponding action
– Parameters

dotNetComposeStar.runtime– Substitution 139

∗ aMessage - message being filtered
– Returns - boolean action to carry out.

• rejectAction
public abstract ComposeStarAction rejectAction(
dotNetComposeStar.runtime.message.Message m,
dotNetComposeStar.util.Dictionary context)

– Usage
∗ Produces the action to carry out if the message is rejected by the filter

– Parameters
∗ m - Message being filtered
∗ context - context of the interpretation

– Returns - an action

C.9.10 Class Substitution

Declaration

public class Substitution

extends dotNetComposeStar.runtime.Filter

Constructors

• Substitution

public Substitution()

Methods

• acceptAction

public ComposeStarAction acceptAction(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

• rejectAction

public ComposeStarAction rejectAction(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

140 dotNetComposeStar.runtime– Substitution

Methods inherited from class dotNetComposeStar.runtime.Filter

(in C.9.4, page 119)

• acceptAction
public abstract ComposeStarAction acceptAction(
dotNetComposeStar.runtime.message.Message m,
dotNetComposeStar.util.Dictionary context)

– Usage
∗ Produces the action to carry out of the message is accepted by the filter

– Parameters
∗ m - Message being filtered
∗ context - context of the interpretation

– Returns - an action

• canAccept
public boolean canAccept(dotNetComposeStar.runtime.message.Message
m, dotNetComposeStar.util.Dictionary context)

– Usage
∗ desides if the filter will accept or reject the message

– Parameters
∗ m - the message to accept
∗ context - of the interpretation

– Returns - true if the message is accepted, false otherwise

• getConditionResolver
public ConditionResolver getConditionResolver()

– Usage
∗ Returns the condition resolver

– Returns - the object that is evaluating the conditions

• getName
public String getName()

– Usage
∗ Name of the filter

– Returns - the name of the filter

• handleMessage
public ComposeStarAction handleMessage(
dotNetComposeStar.runtime.message.Message m)

– Usage
∗ Passes the object by the specification to see if the filter will accept the

message or not and returns the corresponding action
– Parameters

dotNetComposeStar.runtime– Wait 141

∗ aMessage - message being filtered

– Returns - boolean action to carry out.

• rejectAction
public abstract ComposeStarAction rejectAction(
dotNetComposeStar.runtime.message.Message m,
dotNetComposeStar.util.Dictionary context)

– Usage

∗ Produces the action to carry out if the message is rejected by the filter

– Parameters

∗ m - Message being filtered
∗ context - context of the interpretation

– Returns - an action

C.9.11 Class Wait

Not Implemented

Declaration

public class Wait

extends dotNetComposeStar.runtime.Filter

Constructors

• Wait

public Wait()

Methods

• acceptAction

public ComposeStarAction acceptAction(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

142 dotNetComposeStar.runtime– Wait

• rejectAction

public ComposeStarAction rejectAction(

dotNetComposeStar.runtime.message.Message m,

dotNetComposeStar.util.Dictionary context)

Methods inherited from class dotNetComposeStar.runtime.Filter

(in C.9.4, page 119)

• acceptAction
public abstract ComposeStarAction acceptAction(
dotNetComposeStar.runtime.message.Message m,
dotNetComposeStar.util.Dictionary context)

– Usage

∗ Produces the action to carry out of the message is accepted by the filter
– Parameters

∗ m - Message being filtered
∗ context - context of the interpretation

– Returns - an action

• canAccept
public boolean canAccept(dotNetComposeStar.runtime.message.Message
m, dotNetComposeStar.util.Dictionary context)

– Usage

∗ desides if the filter will accept or reject the message
– Parameters

∗ m - the message to accept
∗ context - of the interpretation

– Returns - true if the message is accepted, false otherwise

• getConditionResolver
public ConditionResolver getConditionResolver()

– Usage

∗ Returns the condition resolver
– Returns - the object that is evaluating the conditions

• getName
public String getName()

– Usage

∗ Name of the filter
– Returns - the name of the filter

dotNetComposeStar.runtime– Wait 143

• handleMessage
public ComposeStarAction handleMessage(
dotNetComposeStar.runtime.message.Message m)

– Usage
∗ Passes the object by the specification to see if the filter will accept the

message or not and returns the corresponding action
– Parameters

∗ aMessage - message being filtered
– Returns - boolean action to carry out.

• rejectAction
public abstract ComposeStarAction rejectAction(
dotNetComposeStar.runtime.message.Message m,
dotNetComposeStar.util.Dictionary context)

– Usage
∗ Produces the action to carry out if the message is rejected by the filter

– Parameters
∗ m - Message being filtered
∗ context - context of the interpretation

– Returns - an action

144 dotNetComposeStar.runtime.actions– Wait

C.10 Package

dotNetComposeStar.runtime.actions
Package Contents Page

Classes

ComposeStarAction . 145
Parent class of all Actions

Actions dictate the result of a message passing by a filter.
ContinueToNextFilterAction . 146

Continues to the next filter.

DispatchAction. .148
Models the action to carry out when a Dispatch Filter accepts a mes-
sage.

ErrorAction . 150
Models the action that is produced when a message is rejected by an
Error Filter

The action defined is the throw of a ErrorFilterException.
MetaAction .151

Models the action that comes from the acceptance of a message by a
Meta filter.

WaitAction . 154

Not implemented!!

dotNetComposeStar.runtime.actions– ComposeStarAction 145

C.11 Classes

C.11.1 Class ComposeStarAction

Parent class of all Actions

Actions dictate the result of a message passing by a filter. In particular, an action can just

be to pass on to the next filter

Declaration

public abstract class ComposeStarAction

extends java.lang.Object

Constructors

• ComposeStarAction

protected ComposeStarAction(boolean accepted)

– Usage

∗ Constructs a new ComposeStarAction

Only classes that extend ComposeStarAction can access it.

– Parameters

∗ accepted - if the filter accepted the message

Methods

• execute

public abstract Object execute()

– Usage

∗ Execute this action.

146 dotNetComposeStar.runtime.actions– ContinueToNextFilterAction

Does whatever the action is supposed to do. In case the action

results in the production of a reply for the sender of the message,

this Object is to be returned. If there is no result to return, null.

– Returns - the object that is to be sent to the original sender of the

message, null if there is none.

• getShouldContinue

public boolean getShouldContinue()

– Usage

∗ Says if the message should continue in the filtering process or not.

– Returns - TRUE if it should continue, FALSE otherwise.

• wasAccepted

public boolean wasAccepted()

– Usage

∗ Says if the message was accepted.

Another way to read this is to say that this action is a result of the

message being accepted.

– Returns - boolean TRUE if the message was accepted, False otherwise.

C.11.2 Class ContinueToNextFilterAction

Continues to the next filter.

This action does nothing, and allows for the continuing of the filtering of the message

Declaration

public class ContinueToNextFilterAction

extends dotNetComposeStar.runtime.actions.ComposeStarAction

dotNetComposeStar.runtime.actions– ContinueToNextFilterAction 147

Constructors

• ContinueToNextFilterAction

public ContinueToNextFilterAction(boolean accepted)

– Usage

∗ Constructs a new Continue to Next Filter Action.

– Parameters

∗ accepted - says if the message was accepted by this filter or not.

Methods

• execute

public Object execute()

– Usage

∗ Does nothing

– Returns - always null

Methods inherited from class
dotNetComposeStar.runtime.actions.ComposeStarAction

(in C.11.1, page 145)

• execute
public abstract Object execute()

– Usage
∗ Execute this action.

Does whatever the action is supposed to do. In case the action results in
the production of a reply for the sender of the message, this Object is to
be returned. If there is no result to return, null.

– Returns - the object that is to be sent to the original sender of the message,
null if there is none.

• getShouldContinue
public boolean getShouldContinue()

– Usage
∗ Says if the message should continue in the filtering process or not.

148 dotNetComposeStar.runtime.actions– DispatchAction

– Returns - TRUE if it should continue, FALSE otherwise.

• wasAccepted
public boolean wasAccepted()

– Usage
∗ Says if the message was accepted.

Another way to read this is to say that this action is a result of the
message being accepted.

– Returns - boolean TRUE if the message was accepted, False otherwise.

C.11.3 Class DispatchAction

Models the action to carry out when a Dispatch Filter accepts a message.

When executed, it redirects the message to the target specified during filtering of the

message in the Filter Specification.

Declaration

public class DispatchAction

extends dotNetComposeStar.runtime.actions.ComposeStarAction

Constructors

• DispatchAction

public DispatchAction(boolean accepted, java.lang.Object

target, java.lang.String selector, java.lang.Object [] args)

– Usage

∗ Constructs a Dispatch Action with all the necessary information to

do the invocation.

– Parameters

∗ target - the instance to which the message is to be directed

∗ selector - method to send the message to

∗ args - arguments of the message

dotNetComposeStar.runtime.actions– ErrorAction 149

Methods

• execute

public Object execute()

– Usage

∗ Dispatches the message and returns what comes from the invocation.

This is actually delegated to the Invoker in the util package

– Returns - what ever the message dispatched returned.

– See Also

∗ dotNetComposeStar.util.Invoker.invoke

Methods inherited from class
dotNetComposeStar.runtime.actions.ComposeStarAction

(in C.11.1, page 145)
• execute
public abstract Object execute()

– Usage
∗ Execute this action.

Does whatever the action is supposed to do. In case the action results in
the production of a reply for the sender of the message, this Object is to
be returned. If there is no result to return, null.

– Returns - the object that is to be sent to the original sender of the message,
null if there is none.

• getShouldContinue
public boolean getShouldContinue()

– Usage
∗ Says if the message should continue in the filtering process or not.

– Returns - TRUE if it should continue, FALSE otherwise.

• wasAccepted
public boolean wasAccepted()

– Usage
∗ Says if the message was accepted.

Another way to read this is to say that this action is a result of the
message being accepted.

– Returns - boolean TRUE if the message was accepted, False otherwise.

150 dotNetComposeStar.runtime.actions– ErrorAction

C.11.4 Class ErrorAction

Models the action that is produced when a message is rejected by an Error Filter

The action defined is the throw of a ErrorFilterException.

Declaration

public class ErrorAction

extends dotNetComposeStar.runtime.actions.ComposeStarAction

Constructors

• ErrorAction

public ErrorAction(boolean accepted,

dotNetComposeStar.exception.ErrorFilterException exception)

– Usage

∗ Constructs an error action

The error action takes the exception to be thrown, and throws it

when it’s executed.

– Parameters

∗ accepted - says if the filter accepted the message or not

∗ exception - the exception to throw when the action is executed

Methods

• execute

public Object execute()

– Usage

∗ Executes the action by throwing an exception

– Returns - always return null.

dotNetComposeStar.runtime.actions– MetaAction 151

Methods inherited from class
dotNetComposeStar.runtime.actions.ComposeStarAction

(in C.11.1, page 145)

• execute
public abstract Object execute()

– Usage
∗ Execute this action.

Does whatever the action is supposed to do. In case the action results in
the production of a reply for the sender of the message, this Object is to
be returned. If there is no result to return, null.

– Returns - the object that is to be sent to the original sender of the message,
null if there is none.

• getShouldContinue
public boolean getShouldContinue()

– Usage
∗ Says if the message should continue in the filtering process or not.

– Returns - TRUE if it should continue, FALSE otherwise.

• wasAccepted
public boolean wasAccepted()

– Usage
∗ Says if the message was accepted.

Another way to read this is to say that this action is a result of the
message being accepted.

– Returns - boolean TRUE if the message was accepted, False otherwise.

C.11.5 Class MetaAction

Models the action that comes from the acceptance of a message by a Meta filter.

The execution of this action consists on getting the ACT method and invoking it with the

reified message as a parameter. Once the ACT method returns, the reified method is

checked to see if and how it was activated. Depending on this: if the message was fired, it

continues its normal path; if it was Replied, the return value is saved, and the message

exits the filtering process; and if it was sent, the callback is saved, and the message is

allowed to move on to the next filter.

152 dotNetComposeStar.runtime.actions– MetaAction

Declaration

public class MetaAction

extends dotNetComposeStar.runtime.actions.ComposeStarAction

Constructors

• MetaAction

public MetaAction(

dotNetComposeStar.runtime.message.ReifiedMessage rm,

java.lang.Object act, java.lang.String actSelector, boolean

accepted)

– Usage

∗ Constructs a Meta action.

For this is needed a reified version of the message, a act and a

method in it, and whether or not the message was accepted

– Parameters

∗ rm - the reified version of the message

∗ act - the ACT to handle the reified message

∗ actSelector - the name of the method that handles the reified

message

∗ accepted - says if the message was accepted or not.

Methods

• execute

public Object execute()

– Usage

∗ Executes this MetaAction

This process is explained at the beginning of this class.

dotNetComposeStar.runtime.actions– MetaAction 153

– Returns - depends on the handling of the reified message by the ACT

method

– See Also

∗ dotNetComposeStar.runtime.actions.MetaAction (in C.11.5,

page 151)

• getCallback

public ACTcallBackMethod getCallback()

– Usage

∗ Returns the callback associated with the execution of this action.

– Returns - a delegate for the ACT callback method if the reified message

was sent; null otherwise

Methods inherited from class
dotNetComposeStar.runtime.actions.ComposeStarAction

(in C.11.1, page 145)

• execute
public abstract Object execute()

– Usage

∗ Execute this action.

Does whatever the action is supposed to do. In case the action results in
the production of a reply for the sender of the message, this Object is to
be returned. If there is no result to return, null.

– Returns - the object that is to be sent to the original sender of the message,
null if there is none.

• getShouldContinue
public boolean getShouldContinue()

– Usage

∗ Says if the message should continue in the filtering process or not.
– Returns - TRUE if it should continue, FALSE otherwise.

• wasAccepted
public boolean wasAccepted()

– Usage

154 dotNetComposeStar.runtime.actions– WaitAction

∗ Says if the message was accepted.

Another way to read this is to say that this action is a result of the
message being accepted.

– Returns - boolean TRUE if the message was accepted, False otherwise.

C.11.6 Class WaitAction

Not implemented!!

Declaration

public class WaitAction

extends dotNetComposeStar.runtime.actions.ComposeStarAction

Constructors

• WaitAction

public WaitAction(dotNetComposeStar.runtime.Filter

currentFiliter, dotNetComposeStar.runtime.message.Message m)

Methods

• execute

public Object execute()

Methods inherited from class
dotNetComposeStar.runtime.actions.ComposeStarAction

(in C.11.1, page 145)
• execute
public abstract Object execute()

– Usage
∗ Execute this action.

Does whatever the action is supposed to do. In case the action results in
the production of a reply for the sender of the message, this Object is to
be returned. If there is no result to return, null.

dotNetComposeStar.runtime.actions– WaitAction 155

– Returns - the object that is to be sent to the original sender of the message,
null if there is none.

• getShouldContinue
public boolean getShouldContinue()

– Usage
∗ Says if the message should continue in the filtering process or not.

– Returns - TRUE if it should continue, FALSE otherwise.

• wasAccepted
public boolean wasAccepted()

– Usage
∗ Says if the message was accepted.

Another way to read this is to say that this action is a result of the
message being accepted.

– Returns - boolean TRUE if the message was accepted, False otherwise.

156 dotNetComposeStar.runtime.policy– WaitAction

C.12 Package dotNetComposeStar.runtime.policy
Package Contents Page

Classes

FilterPolicy . 157

Models the Way messages are filtered.

PolicyExecutionResult . 158

Models the Result of the execution of a FilterPolicy.

dotNetComposeStar.runtime.policy– FilterPolicy 157

C.13 Classes

C.13.1 Class FilterPolicy

Models the Way messages are filtered.

This deals with the way messages are handled within a FilterModule.

Declaration

public abstract class FilterPolicy

extends java.lang.Object

Constructors

• FilterPolicy

protected FilterPolicy()

– Usage

∗ Constructs a new FilterPolicy

Methods

• executeFilterPolicy

public abstract PolicyExecutionResult executeFilterPolicy(

dotNetComposeStar.runtime.FilterModule fm,

dotNetComposeStar.util.List filterList,

dotNetComposeStar.runtime.message.Message aMessage)

– Usage

∗ Executes this filter policy on the message given.

– Parameters

∗ fm - current FilterModule

∗ filterList - list of filter within the filtermodule

∗ aMessage - message to filter

158 dotNetComposeStar.runtime.policy– PolicyExecutionResult

• getPolicy

public static final FilterPolicy getPolicy()

– Usage

∗ Returns the default FilterPolicy

Works as a factory method.

– Returns - a FilterPolicy

C.13.2 Class PolicyExecutionResult

Models the Result of the execution of a FilterPolicy.

It says if the message should continue to the next filtermodule, the last action taken, and

a stack of the ACT callbacks collected by the sent messages in the Meta Filters

Declaration

public class PolicyExecutionResult

extends java.lang.Object

Constructors

• PolicyExecutionResult

public PolicyExecutionResult(boolean wasAccepted, boolean

shouldContinue, java.lang.Object actionResult)

– Usage

∗ Constructs a Policy execution result without callbacks

– Parameters

∗ wasAccepted - says if the message was accepted during the filtering

∗ shouldContinue - says if the message should continue to the next

filter.

dotNetComposeStar.runtime.policy– PolicyExecutionResult 159

∗ actionResult - the result of the last action taken

• PolicyExecutionResult

public PolicyExecutionResult(boolean wasAccepted, boolean

shouldContinue, java.lang.Object actionResult,

dotNetComposeStar.util.ComposestarStack stack)

– Usage

∗ Constructs a policy execution result with a stack of callbacks

– Parameters

∗ wasAccepted - says if the message was accepted during the filtering

∗ shouldContinue - says if the message should continue to the next

filter.

∗ actionResult - the result of the last action taken

∗ stack - stack of callbacks

Methods

• getActionResult

public Object getActionResult()

– Usage

∗ Returns the result of the last action;

– Returns - the result of the last action.

• getCallbacks

public ComposestarStack getCallbacks()

– Usage

∗ Returns the callbacks that resulted from the execution

– Returns - the callbacks if there were any, null otherwise

• shouldContinue

public boolean shouldContinue()

– Usage

160 dotNetComposeStar.runtime.policy– PolicyExecutionResult

∗ Tests if the message should continue

– Returns - TRUE if the message should continue

• wasAccepted

public boolean wasAccepted()

– Usage

∗ Tests if the message was accepted

– Returns - TRUE if the message was accepted

dotNetComposeStar.util– PolicyExecutionResult 161

C.14 Package dotNetComposeStar.util
Package Contents Page

Classes

ComposestarStack . 162

Summary description for Stack.

Dictionary . 162
<summary>

Adapter for framework specific Dictionary.
FilterSpecFactory . 164

Summary description for FilterSpecFactory.

Invoker .164
This class exists to concentrate the platform dependant calls to invoke
methods

List . 165

Adapter for framework specific Dictionary.

Queue . 166

Summary description for Queue.

162 dotNetComposeStar.util– Dictionary

C.15 Classes

C.15.1 Class ComposestarStack

Summary description for Stack.

Declaration

public class ComposestarStack

extends java.lang.Object

Constructors

• ComposestarStack

public ComposestarStack()

Methods

• length

public int length()

• pop

public Object pop()

• push

public void push(java.lang.Object o)

• pushAll

public void pushAll(dotNetComposeStar.util.ComposestarStack s)

C.15.2 Class Dictionary

<summary>

dotNetComposeStar.util– FilterSpecFactory 163

Adapter for framework specific Dictionary. In .Net, the default dictionary implementation

is System.Collections.Hashtable

</summary>

Declaration

public class Dictionary

extends java.lang.Object

Constructors

• Dictionary

public Dictionary()

Methods

• get

public Object get(java.lang.Object key)

• hasKey

public boolean hasKey(java.lang.Object key)

• keys

public List keys()

• put

public void put(java.lang.Object key, java.lang.Object value)

• size

public int size()

• values

public List values()

164 dotNetComposeStar.util– Invoker

C.15.3 Class FilterSpecFactory

Summary description for FilterSpecFactory.

Declaration

public class FilterSpecFactory

extends java.lang.Object

Constructors

• FilterSpecFactory

public FilterSpecFactory(java.lang.String path)

Methods

• process

protected Object process(java.lang.Object n)

C.15.4 Class Invoker

This class exists to concentrate the platform dependant calls to invoke methods

Declaration

public class Invoker

extends java.lang.Object

Constructors

• Invoker

public Invoker()

dotNetComposeStar.util– List 165

Methods

• invoke

public static Object invoke(java.lang.Object target,

java.lang.String selector, java.lang.Object [] args)

C.15.5 Class List

Adapter for framework specific Dictionary. In .Net, the default dictionary implementation

is System.Collections.Hashtable

Declaration

public class List

extends java.lang.Object

Constructors

• List

public List()

Methods

• add

public void add(java.lang.Object o)

• addAll

public void addAll(dotNetComposeStar.util.List l)

• addFirst

public void addFirst(java.lang.Object o)

• contains

public boolean contains(java.lang.Object o)

166 dotNetComposeStar.util– Queue

• elementAt

public Object elementAt(int index)

• indexOf

public int indexOf(java.lang.Object o)

• remove

public void remove(java.lang.Object o)

• size

public int size()

C.15.6 Class Queue

Summary description for Queue.

Declaration

public class Queue

extends java.lang.Object

Constructors

• Queue

public Queue()

Methods

• pop

public Object pop()

• push

public void push(java.lang.Object o)

dotNetComposeStar.util– Queue 167

• size

public int size()

• top

public Object top()

