
Vrije Universiteit Brussel
Faculty of Sciences

In Collaboration withÉcole des Mines de Nantes
2001-2002

Applying Prototype-Based Programming
Techniques for the Organization of Mobile

Systems

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange

project funded by the European Community)

By: Boris Mej́ıas

Promotor: Prof. Theo D’Hondt (VUB)
Advisor: Wolfgang De Meuter (VUB)

Abstract

Agents succeeded as mobile entities that properly solved problems on mobile
systems. They can move around the network in a transparent way, and communi-
cate with other agents by sending messages. But the relationship between agents
does not have a strong structure, and big multi agent systems become hard to
maintain and to understand. The primary aim of this work is to provide a way to
organize agents in mobile systems.

Objects help us to have a structured way of programming, but if we want ob-
jects moving around different address spaces, we need them to be self-supporting.
When objects depends on a class, we also need to move the class everywhere the
object goes, and to have a sophisticated system for type checking. We decided
to use Prototype-Based Programming, a paradigm to program without classes,
which has a proper way of reasoning about sharing, an important property for our
purpose to organize the system.

We extend Borg, a language to implement autonomous agents in a wide area
network. The extension provides methods to create prototypes that can move and
be extended through the network. The objects and their extensions use distributed
delegation to share behavior and state, having a clear hierarchy and structure,
helping us to maintain and evolve the systems.

Keywords: Prototypes, delegation, sharing, distribution, distributed delegation,
organization, mixin-methods, network-mixin-methods, agents, mobile agents, Borg.

Acknowledgments

First of all I want to thank Wolfgang De Meuter, for all the advice, good ideas,
time, music sharing, patience to explain me everything, and all the things I learned
during this thesis period. Sincerely, Thanks Wolf!

I would like to thank Prof. Theo D’Hondt and people at Prog Lab of the Vrije
Universiteit Brussel, for the support, equipment and the good environment. Thank
to Johan Fabry for being always available helping me in the distributed topics and
Borg. I want to specially thank Isabel Michiels for helping us in living in Brussel
and coordinate everything related with the EMOOSE program, for the support and
the friendship.

I also want to thank all the EMOOSE students for the nice time we shared dur-
ing the master. Thanks to Michaël Vernaillen for helping us to arrive to Brussel
and during the first week. Specially thanks to Sebastián Gonźalez, for the support
and all the discussions we had about prototypes. I would also like to thank Ed-
uardo Miranda for all the nice time in Nantes, and the support from the distance,
and Rhodrigo Meza for printing this thesis at Nantes.

I want to thank and dedicate my thesis to my parents, Jorge and Mary, and to
my sister Ḿonica, for all the emotional background and the distributed support.
Thanks a lot!

I also want to thank my friends, specially Saartje for supporting me and help
me with my English.

Finally, I want to thank the organizers of the EMOOSE, Annya Romanczuck,
Theo D’Hondt and Jacques Noyé, for make this program possible.

Contents

1 Introduction 6
1.1 Motivation . 6
1.2 How to read this thesis . 8

2 Prototype-Based Programming 10
2.1 Some philosophical and historical observations 10
2.2 Classes vs. Prototypes . 13

2.2.1 Creating a new object . 13
2.2.2 Sharing behavior . 13
2.2.3 Sharing state . 14
2.2.4 The “self” variable . 14

2.3 Advantages and Disadvantages 16
2.4 Objects with extensions . 17

2.4.1 Split Objects . 17
2.4.2 Agora . 19

2.5 Summary . 21

3 Distributed Programming and Mobile Systems 23
3.1 Taking distribution seriously . 23

3.1.1 Latency and Memory Access 24
3.1.2 Partial Failure and Concurrency 24

3.2 Java RMI and CORBA . 25
3.2.1 Java RMI . 26
3.2.2 CORBA . 29

3.3 Obliq . 31
3.3.1 Basic operations . 32
3.3.2 Other features . 33
3.3.3 Object Migration . 35

3.4 Borg: Agents and Mobility . 36
3.4.1 Borg architecture . 36
3.4.2 Programming in Borg 37

2

3.5 Summary . 41

4 Applying Distributed Delegation 42
4.1 Extending a language . 42

4.1.1 Macros and Procedures 42
4.1.2 Macros in Pico . 44
4.1.3 Using Meta Programming 45

4.2 First Analysis . 47
4.2.1 Delegation with Local and Distributed Mixin Methods . . 48
4.2.2 Sharing or not address space 50

4.3 P-Borg . 51
4.3.1 Only Network Mixin Method 51
4.3.2 Implementing Distributed Delegation 52
4.3.3 Theusandyield pseudo variables 55
4.3.4 Sending messages to the objects 57
4.3.5 Cloning . 58

4.4 Summary . 58

5 Validation 61
5.1 The Role Object Pattern . 61

5.1.1 Intent and motivation . 62
5.1.2 Structure . 64
5.1.3 Implementation . 66

5.2 Chat . 67
5.2.1 Java RMI . 68
5.2.2 Borg . 70
5.2.3 P-Borg . 72
5.2.4 Using Mobility . 76

5.3 A simple database . 77
5.4 Summary . 81

6 Conclusion and Future Work 82
6.1 Conclusions . 82
6.2 Future Work . 83

A P-Borg Implementation 88

3

List of Figures

2.1 The “self” variable. 15
2.2 Joe represented as a split object. 18

3.1 Java RMI Components at runtime. 26
3.2 Class and Interface hierarchy. 27
3.3 The OMA architecture. 30
3.4 The CORBA invocation architecture. 31

4.1 The difference betweencloneandclone2agent. 51
4.2 Distributed Split Objects. 52
4.3 The definitive model. 53
4.4 Sending ”setr” to a netcircle. 54
4.5 Sending ”setx” to a netcircle. 55
4.6 The “us” variable. 56
4.7 The “yield” variable. 56
4.8 The three kind of sending message to an object. 58
4.9 The cloning observation. 58

5.1 Customer hierarchy in a banking environment 63
5.2 An object diagram of the Role Object Pattern 63
5.3 The Customer object and its extensions in a banking environment 64
5.4 Structure diagram of the Role Object Pattern 65
5.5 Structure of the prototype-based approach 65
5.6 The Java RMI chat room. 68
5.7 Components of the Java RMI chat room at Run Time. 69
5.8 The Borg chat room. 73
5.9 The structure of P-Borg chat room. 74
5.10 The P-Borg chat room. 76
5.11 Data Base. 80

4

List of Tables

2.1 Comparison of the Two Paradigms 14

4.1 Elements of the table of a function in Borg 46
4.2 Elements of the table of an object in Borg 47
4.3 Methods of the extension of Borg 49
4.4 P-Borg grammar . 60

5

Chapter 1

Introduction

A mobile multi agent system is one of the best approaches to apply the advantages
and virtues of Mobile Computing. Agents can move around the network in a
transparent way, and communicate with other agents by message sending. But
multi agent systems have a lack of structure and organization in the relationship
between agents, and big programs in this area become hard to maintain and to
understand.

Objects are good to structure programming via encapsulation, and we claim
they can be useful to organize mobile systems. But first we must ensure that we
will use self-supported objects, because in other case it will be more complex to
deal with mobility. If we use a class-based approach in mobile computing, as ob-
ject depends on a class we must move the class wherever the object goes, needing
complicated type-checking mechanisms to ensure correctness. For this reason we
decided to used a prototype-based approach, and also because prototypes are good
at reasoning about sharing, a property largely required in distributed systems with
common data resources.

The primary aim of this work is to provide a way of organizing mobile sys-
tems. Our small contribution toward this aim will be focus in two goals: (1) Pro-
duce a conceptual language to study how prototype-based concepts can help us in
order to organize mobile systems, and (2) Find uses, applications and advantages
of distributed and mobile prototypes to validate our concepts.

1.1 Motivation

With the popularity gained by wireless connections in portable devices such as
laptops, mobile phones and PDA’s, Mobile Computing is becoming an important
research area, having in mobile multi agent systems one of the best approaches to
show how powerful and useful can be. The basic concepts largely studied in Dis-

6

tributed Computing become fundamental to build a good architecture to support
multi agent systems. Problems such as fault tolerance, balancing and replication,
take big part of the attention in the building of this kind of architecture, but from
the organizational point of view, they are a little bit simplistic in their designs. In
current day systems, agents know about each other through the “acquaintance”
relationship, and this relationship is the only one currently used to structure such
systems. As a consequence, it becomes difficult to understand why an agent be-
longs to a location, or which agents are allowed to see other particular agents.

Objects help us on having well structured programs, but if our desire is to
have objects moving around different address spaces, we need them to be self-
supported. When objects depends on a class, we also need to move the class
everywhere the object goes, and we have to implement sophisticated systems only
for type checking, like skeletons and stubs in Java RMI, or wrapped objects in
middlewares such as CORBA and Voyager. We decided to use Prototype-Based
Programming, a paradigm to program without classes, and where objects support
themselves, making mobility easier to handle. This is the first reason to choose
prototypes.

The dispute between classes and prototypes has a long history in philosophy,
starting with Plato and his definition of the real world as instances of the world
of ideas, continuing with Aristotle and his attempt to classify the entities of the
world to its small details. But finally, philosophers concluded in a prototypical ap-
proach to conceive a representation of the world, based on the concepts presented
by Wittgenstein and Rosh in the last century. In computer science, meanwhile
classes have practically monopolized the object-oriented programming with suc-
cessful languages such as SmallTalk, C++ and the popular Java, prototypes were
popularized at OOPSLA’96 by Henry Lieberman, presenting an alternative way
of sharing.

Prototypes are good at reasoning about sharing. Theories like Split Objects
help us on defining structures to organize parent-child relationships to share be-
havior and properties between objects. As sharing common data resources is an
important topic within distributed and mobile computing, we claim that proto-
types is the best alternative to chose when the decision of using objects to model
mobile systems is taken. The advantage on sharing is the second reason to choose
prototypes instead of classes.

A common paradigm followed by many distributed applications is the client-
server model, where a machine that plays the role of a server provides several
services to different clients that are continuously making requests. The delegation
relationship between prototypes appears as an analogy of this paradigm, where a
“client” object delegates a service on its parent “server” object. We try to apply
these concepts to distributed and mobile systems, trying to find advantages of
mobility reducing network traffic.

7

Even when it is not our aim studying problems of the distribution scope such
as partial failure, latency or balancing, we can not avoid them from our analysis.
We strongly take them into account to design a realistic approach to be considered
in future works. We include in our design concepts introduced in previous object-
oriented distributed works such as Emerald and Obliq, but our work is mainly
based on Borg.

Borg is a language designed to implement autonomous agents in a wide area
network, presenting a very good architecture to support mobile computing. It
provides transparency to the programmers in a distributed environment, and it has
a very well design on strong and weak mobility, as one of its main features.

To get the first goal of this thesis, we are going to extend Borg, having a
distributed prototype-based language as a result. We are going to name it P-Borg.
With this conceptual language, we will be able to program objects with distributed
extensions, moving around the network and delegating behavior and properties to
other objects. The mobility and distributed features will be inherited from Borg,
and the design will be inspired in the mixin methods of Agora, a prototype-based
language with similarities with Split Objects.

For the second goal, the validation of our concepts, we are going to analyze
and discuss three case studies, trying to have different points of analysis of the ap-
proach. First, we take a conceptual case presenting the Role Object Pattern, and
how we can attack the problem from a prototypical point of view. As a second ex-
ample, we compare three different implementations of a Chat Room, a well known
problem in distributed computing, using Java RMI, Borg and P-Borg. Finally, we
analyze a simple database to further exploit the features of our language.

We would like to remark that this work is about organization. We are not trying
to extend the delegation mechanism of sharing to a distributed environment. We
are trying to apply delegation and other concepts of the prototype-based theory, to
help us on organizing agents in mobile systems.

1.2 How to read this thesis

In the present chapter we have introduced the motivation of the thesis, the problem
we try to solve, and the goals of our work, giving a first idea about how we are
going to attack the problem.

In chapter 2 we introduce the concepts of the prototype-based theory, includ-
ing some philosophical and historical observations. We introduce the Split Objects
theory, concluding the chapter with Agora, a prototype-base language that present
similarities to the previous approach, but with some features that finally inspire
our work.

The background in distributed and mobile computing is presented in chapter

8

3. We review the basic concepts on distribution, and some important approaches
like Java RMI and Obliq. Finally, we focus on Borg, an experimental language
that deals very well with mobile multi-agent systems, providing strong mobility
and transparency to the programmers.

Our main contribution is presented in chapter 4. We start presenting a first
analysis with important consequences for future works, and for the decisions we
have taken to produce our definitive design of P-Borg. We describe the language,
giving the semantics of the method and concepts implemented to help us in the
aim of organizing mobile systems.

The validation of the concepts introduced in our approach is made in chapter 5,
where three case studies are presented. First, we analyze the Role Object Pattern
from a prototypical point of view. Then, we make a comparison between three
implementations of a chat room, using Java RMI, Borg, and P-Borg, and finally,
the design of a simple database, showing how the features of our extension can
help to model and control a data resource distributely shared.

The dissertation finish in chapter 6 with the conclusions and future work.

9

Chapter 2

Prototype-Based Programming

Object-Oriented Programming can be seen from two different point of views.
Class-based programming, the most popular one having in SmallTalk, C++ and
Java its main languages. And Prototype-based programming, a way of program-
ming without classes, and sometimes also named Object-based, because only ob-
jects exists in this approach

Prototypes were popularized at ECOOP ’86 as an alternative object-oriented
paradigm, when Henry Lieberman [Lie86] presented a different way of sharing
behavior between objects, that later on motivates The Treaty of Orlando [SLU89],
a Treaty two compare advantages and disadvantages between the way that class-
based object and prototype-based object share behavior and properties. However,
the basic concepts come from a long history of a philosophical discussion about
the representation of abstractions.

We consider the philosophical arguments pretty relevant to reason about the
advantages of prototypes, and in section 2.1 we present a brief introduction to that
subject. In the rest of the chapter we focus on the comparison at the level of the
languages concept, and finally we present an organized way of sharing thereby
describing Split Objects and Agora.

2.1 Some philosophical and historical observations

Going out of the technical concepts that make the difference between class-based
and prototype-based systems, we can find an old philosophical dispute concern-
ing the representation of abstractions. In the early history, categories were used
to model the objects of the real world; meanwhile prototypes appear in the last
century as an alternative to solve the limitations of the classification.

10

Classes

Plato (428-347 BC) was the first philosopher in making an explicit distinction be-
tweenforms– “ideal” description of things, abstraction – andinstancesof these
forms. The world of ideas conceived by Plato is the analogue of a class model.
Due to the explicit use of classes to represent similarities among objects, lan-
guages such as Smalltalk, C++, Java or Simula can be considered Platonic

Aristotle(384-322 BC), a student of Plato, did a research into biological clas-
sification of the world, trying to understand and organize it to its small details.
A category was defined bycommon propertiesthat a group of objects share. To
define categories based on other categories, it is necessary that the new ones have
at least the same properties (“genus”) of the base one. Thus, theessenceof a cat-
egory is itsgenuscombined with itsdifferentia. The same concept is presented
in the class-based programming, where a class is defined as an extension of a
superclass (genus), plus additional behavior (differentia).

Aristotle realized that his model was not completely satisfying, because he
found many objects presenting “accidental” properties. These accidents took
those objects out of any classification, so it was not possible to represent the com-
plete spectrum of objects using categories. Nowadays, while we are designing a
class model, it is not difficult to encounter an object that does not match any of
the classes of the model, and then necessarily a new class arises. Due to those
“special” objects, the actual substance of concepts can be defined in terms of its
essenceand itsaccidents.

Prototypes

In the 20th century,Ludwig Wittgensteinobserved that it is difficult to say in
advance exactly what characteristics are essential for a concept. He defined what
can now be seen as the origin of prototype-based programming: the notion of a
family resemblance, where the meaning of the concepts can not be determined
by definition. They can be defined only in terms of similarity and representative
“prototypes”.

A classical example is the concept of game. There are some games where there
are no winners or losers, like ring-around-the-rosy. Sports like basketball, football
or volleyball are games with different rules and number of players among other
differences. Some games like board games involve luck, and some others involve
skill, like chess. Poker is a game that involves luck and skill. All these examples
belong to the category of games, even when they do not share a common behavior
or definition. As we can see, its very difficult to define the essential characteristic
that an object must has to belong to a class. The example illustrate that games are
a sort offamily resemblance.

11

Later on, in the mid-1970s,Eleanor Roshobserved and demonstrated that
categories have best examples, what we call “prototypes”. One of the principal
arguments is the following: “If categories are defined only by properties that all
members share, then no members should be better examples of the category than
any other members”. Then we can say that categories with best examples are not
well defined.

In the real world there are categories with fuzzy boundaries implicating grad-
uation and confusion. Thus, categories such as tall men, short distance or blue
color have better examples. Even more, some people will consider a particular
objectp within a category, but some other people will not. Here comes again the
argument that categories are not the best way to represent the knowledge of the
objects that we want to model.

A typical argument in favor of prototypes is that people seem to be a lot bet-
ter thinking first about examples, than conceiving abstract sets to represent a con-
cept. This is the way that Henry Lieberman [Lie86] introduce the prototype-based
paradigm with the example of the elephants. If we meet an elephant named Clyde,
when we think about elephants we immediately think about Clyde, because is the
only concrete example we have of an elephant. Then, if we meet another ele-
phant, say named Fred, but with a different color than Clyde, we conceive the
idea of Fread saying that is like Clyde but with a different color. Thus, the main
idea behind prototype-based paradigm is going directly to the concrete example to
represent objects of the real world, and then use cloning and adding new behavior
to represent new knowledge of the model.

The limitations of the Aristotelian model of categorizing objects are inherited
by the class-based programming. A class model needs a lot of iterations before
being good enough to represent the real model. But considering the fact that
there is no “optimum” class hierarchy, and the “perfect” design does not exist, the
offering of the class-based languages ofbeing good enough, satisfies enormously
the requirements of software developers, being largely selected as the option to
implement the solution.

One of the problems of the prototype-based paradigm is that its languages are
not well developed yet, making them less famous and less attractive.

Summarizing, we can find the conceptual bases of the class-based program-
ming in the ideas of Plato, and principally in the work of Aristotle. In the other
hand, the prototype-based programming has its inspiration in the works of Wittgen-
stein and Rosch. There are other philosophers that have worked on these topics,
but we consider these as the most important ones. More details can be found in
[Tai96].

The technical concepts and the discussion about advantages and disadvantages
between these two paradigms are presented deeper in section 2.2 and 2.3. The aim

12

of this historical introduction is not to bore the reader, nor to take him out of the
subject. What we try to present here is that there is an important background
that supports the prototype-base paradigm. Even though, the prototype-based lan-
guages still need to evolve a lot to be considered as a good alternative to develop
software, and until now, the class-based concepts have dealt quite good modeling
object-oriented system.

2.2 Classes vs. Prototypes

Now, going into the technical part, we will introduce the principal concepts of
the prototype-based paradigm, identifying the differences with the class-based
orientation. The main concept is that in this paradigm there are no classes, just
objects, and each one of them is consider a prototype that can be cloned.

2.2.1 Creating a new object

As we know, in class-based languages, objects are the result of instantiating a
class. Thus, an object can not exist without a class that defines its behavior and its
way to represent its state. Furthermore, once an object is instantiated its behavior
and state can not be extended anymore.

In a prototype-based language, objects support themselves and do not need a
class to exist. An object can be created Ex Nihilo and-or bycloningan existing
one. New behavior and additional state information can be added to the object
after its creation. Thus, the clone will have at least the same behavior and state
information of itsparent prototype, plus its extension.

Depending on the language design, when the object is created Ex Nihilo, there
are two possibilities: A new empty object, what is only useful when the language
allows to modify dynamically its structure; or and object with initial information
than can be passed as an argument.

To clone an object, we can also use two techniques. Deep copy, where the
values of the attributes are also copied to the new object. Shallow copy, where
only the attributes and the pointers of the values are copied. Most of the time the
cloning take a shallow copy of the behavior, and a deep copy of the state.

2.2.2 Sharing behavior

Inheritanceis the methodology used by in class-based languages to share behavior
between objects. A class ‘A’ inherits the behavior of a class ‘B’ if ‘A’ is a subclass
of ‘B’ - we say that ‘B’ is the superclass of ‘A’. Then, all the instances object of
class ‘A’ can access the behavior of instances of class ‘B’.

13

In prototypes, the way of sharing behavior between objects is bydelegation.
When a message is sent to an object, and this one does not know how to handle
it, it delegates the message to its list of prototypes. In this point we want to make
clear the difference between message passing and delegation. In delegation, all
the environment of the object is sent to the parent prototype, then, the method is
evaluated in the context of the original receiver of the message. In message pass-
ing, the message will just be re-sent to the parent object, performing the message
in the context of the parent.

We can make delegation implicit or explicit. When delegation is implicit, the
interpreter will automatically delegate the message to the parent objects, follow-
ing the parent-links. Sometimes it is possible to modify dynamically the parent
link, but some others this is not allowed. The explicit delegation is completely
controlled by the programmer, but keeping the difference with message passing.

2.2.3 Sharing state

The instances variables defined in a class are shared by all instances object of that
class. Nevertheless, each instance object has a copy of these variables that can not
be shared by any other object. Then, the state of the objects can not be shared.

To share state in prototypes, an object can delegate a message to set variable
attribute to another object. If the parent object change the value of the variable, it
will have an effect in the object that delegates the variable. Then, objects are able
to share their states.

The table 2.1 presents a comparison of the two paradigms.

Classes Prototypes
Creating Objects new(instance of a class) Ex Nihilo and-orclone
Sharing Behavior Inheritance (superclass)Delegation (parent object)
Sharing State No Yes

Table 2.1: Comparison of the Two Paradigms

2.2.4 The “self” variable

One of the arguments used to compare the two paradigms is the expressive power
of the languages. In [Lie86], Lieberman showed that prototypes can simulate class
inheritance, but classes can not simulate delegation. To demonstrate that, he used
the “self” problem of the classes but focused on instance objects, instead of using
an approach at the level of classes, as it is done in [Ste87]. In that approach, they

14

demonstrate that both paradigm can simulate each other. Then, both are equivalent
in the expressive power.

In this report, we will not go deeper into the demonstration of expressive
power, but we will review how the “self” variable works. The difference lay
on where the “self” variable is bound. In classes, the “self” is bound on the ob-
ject where the message is defined, meanwhile in prototypes, the “self” returns to
the original receiver of the message, executing the method in the context of the
objects that inherit the method. Figure 2.1 depicts the difference.

Figure 2.1: The “self” variable.

Let us suppose we have an objectb that belongs to the classclassB, that in-
herits fromclassA. The definition of the class is as follows

classA {
variable x;
method get(){ print(x); };
method m(){ self.get(); };

}

classB extends classA{
variable y;
method get(){ print(x + y);};

}

If we send the messagem to the objectb, as it inherits the method fromclassA
it will be executed but in the context of the supper class. Means that the methodget
that is invoke from methodm corresponds to the one defined inclassA, printing
only the variable x.

Now if we have two objectsa andb, with a similar definition as the example
with the classes, and withb delegating toa as follows.

15

a{ variable x;
method get(){ print(x); };
method m(){ self.get(); };}

b{ parentlink a;
method get(){ print(x + y); };}

If we send the messagem to the objectb, it will be delegate to the objecta,
and it will be executed in the context ofb. Then, as the self variable remain being
theb object, the methodget that is invoke from methodm corresponds to the one
defined in objectb, printing x + y

2.3 Advantages and Disadvantages

In addition to the conceptual advantages of the prototypes over classes presented
in 2.1, here we go more into the comparison between these two paradigms at the
level of languages concepts. The reader might disagree with some of the points
listed in this section, what is understandable since the discussion is still open and
lot of research can be made in this area.

Advantages

• Objects do not need a class to exist. They support themselves. Sometimes
there are systems with classes that just have one instance of them, e.g., in
Smalltalk, the objectstrue and false need a classTrue and a classFalse
respectively to exist, being the only instances of each class.

• Objects can share the state. We already had the discussion in section 2.2

• As a shallow copy of the behavior is made in a cloning, prototypes save
memory space.

• Prototypes can change the behavior dynamically, and extend it.

• Prototypes deal better with software evolution, because the model can be
extended instead of change it, moving code to superclasses, creating new
abstract classes, and using other techniques to evolve class-based systems.

• The dynamicity of prototypes helps to deal with mobility in distributed com-
puting, and principally with agent programming. This will be clearer in
chapter 3

16

• Prototypes are simpler. People deal better in the generation of models hav-
ing first concrete examples than conceiving abstractions.

• As all the objects are in the same layer, prototypes are better for doing re-
flection, because they do not have the complicated metacircularity of classes
and metaclasses.

Disadvantages

• The delegation methodology save memory space but implies a reduction of
the speed of the program, because of the chain that is built delegating over
a prototype that also delegates.

• Some prototype-based languages do not make the distinction between in-
heritors and clients. Then, as it is explain in [Ded01], all the objects can
breach the encapsulation, what is one of the merits of the object-oriented
paradigm.

• Some concepts are not easy to be expressed with a prototypical example,
for instance an integer. Other kind of concepts where the boundaries are
well defined seems to be easier to be modeled with classes.

• The dynamism of prototypes makes the checking of correctness at compile
time harder. This is easier with the static typing system of classes, adding
safety to programs.

Maybe the stronger advantages of prototypes lay on the basic concepts of the
philosophical area, on the simplicity of its concepts, and on its dynamism. Even
though, we are not trying to say that prototypes are “the” solution for our prob-
lems. As we can note, the disadvantages that presents make us realize that some-
times is better to use classes to design our solution.

Abstraction is powerful and classes are useful, but they present several limita-
tions that can be solved in many cases by using prototypes. Finally, the character-
istic of the problem domain will lead us to decide between the two paradigms to
design our solution.

2.4 Objects with extensions

2.4.1 Split Objects

Split objects were designed to clarify and characterize the kind of sharing achieved
by delegation. The theory concludes that delegation can be used to achieve a

17

per-viewpoint representation of a single entity of the real world. A viewpoint of
an entity can be seen for instance, as a role that a person can play in a certain
moment. Taking the example of a person named Joe, a viewpoint of Joe will
be Joe as a sportsman. Then, if we define the object JoeSporstman to represent
this viewpoint, it will share common properties with the object Joe. In this case
delegation is clearly a good mechanism to share behavior or state between objects.

The basic model for split objects consists in the representation of an entity of
the real world as an object with different viewpoints represented by pieces. Pieces
are organized within an object in a delegation hierarchy. Note that a split object
represents a single entity of the real world, and its pieces are just viewpoints of
the same single entity. Thus,pieces do not have an object status, whereas split
objects do. A representation of Joe as an split object is depicted in figure 2.2
containing five pieces in a delegation hierarchy.

Note that delegation in split object is usedinside the objects to express prop-
erty sharing between different viewpoints. We consider this kind of delegation a
good methodology of organization, and we are going to use it in our conceptual
language.

Figure 2.2: Joe represented as a split object.

Naming and accessing

Split objects are first class entities of the model. Then, they are directly accessible
by its name. In the case of pieces, as they are not objects of the model, they are

18

only accessible within the objects by its name. They can not be accessed from out
of the hierarchy of delegation.

Creation and cloning

All the objects are created by cloning mechanism. To create an object ex-nihilo,
one may clone theempty split objectpredefined by the language, and then add the
require pieces. Cloning an existing split object results on a new split object with
the same set of pieces and properties. The entire pieces hierarchy is cloned using
deep copy, meanwhile every piece is clone by using shallow copy.

Message sending

The way to communicate split objects is by message sending. As variables and
methods are owned by the pieces, one may identify the piece that we want to refer.
Then, the method-lookup will start in the piece identified by the sender, and if the
method or the variable is not found, it will delegate the message to the parent link.

In the following section we will review Agora, a prototype-based language
that use a similar approach having objects with extensions. The difference lay on
the possibility in Agora of accessing the extensions as individual objects.

2.4.2 Agora

Among prototype-based languages, SELF [US87] is maybe the most emblematic
one, but there are some others such as NewtonScript [SLS+94], Cecil [Cha92],
Obliq [BC95, Car94], Pic% [D’H] and Agora [Meu98a, Meu98b] where impor-
tant research has been done. For the aim of this thesis we will focus on Obliq,
presented in section 3.3. We will also review Pico [D’H] in section 4.1, which is a
functional language where Pic% and Borg [Lab] are based on. In this section we
want to introduce Agora, taking its mixin-methods as an inspiration to build our
distributed inheritance system.

The Language

Instead of consider Agora as just one language, we shall say that it is a language
family, due to the fact that Agora is a framework for building prototype-based
languages. Now, we will just focus on the common features of the language.

Agora has a dynamic typing system and a syntax similar to Smalltalk. Only
objects exist and the only thing you can do with them is sending messages. Like
Self, Agora isslot-based, and has the distinction between local and public at-
tributes. Thelocal concept has no relation with distributed programming, it is

19

used to define attributes that are encapsulated into the object and are only avail-
able by itself. Meanwhile public attributes become the interface of the object.
This is like private and public in Java.

Creation and Delegation

Respecting the basic concepts of the paradigm, objects are created Ex Nihilo or
by cloning. To extend the behavior of the object, Agora provides mixin-methos,
that will be explained bellow.

The language useimplicit delegation. Thus, as the parent link is not available,
the parent of an object cannot be modified once it is created.

Features

There are some interesting and useful features in Agora such usReifier Messages.
We can send ordinary messages to objects that perform as normal messages and
reifier messages that are not necessarily evaluated, and that are sent to the abstract
grammar tree, allowing the programmer to extends the language.

The meta object protocol is really simple, because it just consist on the send-
message. To extend Agora is quite desirable to use reifier messages rather that
expanding the MOP.

Agora has a reflective architecture that allows to move objects from the base
level to the Agora language by sending them the messageup. The messagedown
take the objects in the other direction.

But the principal feature that we want to explore with more details is the mixin-
methods.

Mixin-Methods

To modify the structure of an object at runtime, Agora provides mixin-methods
that allow to override methods and variables, and to add new ones. The extension
is performed when the mixin message is sent to the object.

It exist two kind of mixin-method,functionalandimperative(or destructive).
The functional, identified in Agora98 [Meu98b] by the keyboardview, extends
the object adding a new frame where the new methods and variables are installed.
The receiver of the message does not change, but it is extended. In the imperative,
created by using the keyboardmixin, the receiver of the message destructively
change. That is the difference between both.

We can define new mixin-method within previous one, obtaining extensions
of the extensions of the object, creating a hierarchy of mixins.

20

For our distributed system we will focus on the functional mixins, looking for
extending the objects through the net. The following code shows a simple example
in Agora98 to extends a point into a circle, with the respective getters and setters.
In chapter 4 we will do the same but in a distributed way.

point VARIABLE: [

x VARIABLE: 0;
y VARIABLE: 0;

getx METHOD: x;
gety METHOD: y;
setx nux METHOD: x: nux;
sety nuy METHOD: y: nuy;

circle: aR VIEW:
{ r VARIABLE: aR;

getr METHOD: r;
setr nur METHOD: r: nur}

];

Once the structure is defined, the way of creating objects, its extensions, and
sending messages to them, it is shown in the following code:

aPoint VARIABLE: (Self Point) clone;
aPoint setx: 3;
aPoint sety: 5;

aCircle VARIABLE: aPoint circle: 7;
aCircle setx: 0;
aCircle setr: 9;

2.5 Summary

During this chapter we have presented the main concepts of the prototype-based
paradigm. We started in section 2.1 with some philosophical and historical obser-
vation that help us to reason about the conceptual importance of this paradigm.

In section 2.2 and 2.3, we made an overview of the principal concepts of the
prototype-based languages, making a comparison with the class-based languages,

21

listing the advantages and disadvantages, concluding that prototypes are not “the”
solution for our problems, but it is a very good alternative to deal with the limita-
tion of classes.

Finally we presented Agora and its mixin-methods, that will take relevance
in chapter 4, when we present how we can delegate and extend an object in dis-
tributed computing.

22

Chapter 3

Distributed Programming and
Mobile Systems

Important concepts such as latency and partial failure, have not been taken into ac-
count by several distributed approaches, causing that many applications built with
these approaches fail. We consider, and we are definitively not the first ones, that
distributed computing have to be taken seriously, because it is scenically different
from local computing.

In section 3.2.2 we introduce CORBA [Sie00], and we explain why we dis-
like the vision of unified objects for distributed computing. In section 3.2.1 we
briefly describe Java RMI [Mic], concluding that classes make distribution more
complex, and such a approach is not good for mobile computing.

Among well designed languages for distributed computing such as Emerald
[Hut96, NCRB+87], Obliq [Car94] and VisualObliq [BC95], we describe Obliq
in section 3.3, presenting its features and concepts that can be useful for our goal
in this thesis.

Finally we describe Borg [Lab, BFVD00], a well designed experimental lan-
guage that supports mobile multi-agent systems. Together with Borg, we describe
the concepts on mobile computing that we are going to use to extend this language
to generate P-Borg.

3.1 Taking distribution seriously

In this section we want to introduce the main concepts that make distributed com-
puting different from local computing. Concepts that have to be taken into account
when we want to apply a prototypical approach in a distributed and mobile system.

Considering objects as the entities of our programs, we consider local com-
puting when all the objects share a single address space. We mean by distributed

23

computing objects in different address spaces on the same machine, and objects
in different address spaces on different machines, and maybe with different archi-
tectures.

We are going to review the four main concepts that differentiate this two kind
of computing, finding in the partial failure problem the most conceptual difference
between both.

3.1.1 Latency and Memory Access

The most obvious difference between local and distributed computing, is the la-
tency of a remote call compare with the latency of a local call. Even though, sev-
eral systems ignore this difference arguing that in the near future this difference
will be minimal without being necessary to consider it. But ignore the different
of latency is to ignore one of the major design areas of an application. Using
objects, it is important to design what objects can be remotely called, and what
objects must clustered together. Moreover, objects in non-distributed environment
are programmed considering that answers and the returning of values are imme-
diately performed, what is not true in distributed systems.

Being the latency problem the most obvious difference, several systems get
blind and consider it the only difference between local and distributed computing.
But this is not the only and not a fundamental difference. In the following section
we explain the problem of partial failure and concurrency, but memory access is
another important point to take into account.

The difference accessing memory of a remote data resource and a local access
is presented majority in pointers. Pointers in a local address space are not valid in
another remote address space. To solve the problem we have two alternatives: We
delegate the control of memory accesses by underlying system, or the programmer
must be aware of the difference.

Unifying the programming model, making remote access behaves as local ac-
cess; the total control of the memory access is done by the underlying mechanism.
With this decision, programmers who start with this style of programming will
never know about address-space-relative pointers. For pedagogical reasons, and
also industrial training, it is better to make programmers aware about distribution.
An aware programmer will not use pointers for cross-address space access

3.1.2 Partial Failure and Concurrency

Meanwhile latency and memory access are problems that could be masked satis-
factorily, partial failure can not. The partial failure problem represents the most
conceptual difference between local and distributed computing.

24

In local computing, a fail means either the entire system fails, or there is a
central control (such us the operative system) that detects the fail and handle it.
In distribution, one component (machine, network link) can fail while the other
components continue running, and there is no common agent to detect the fail,
nor a global state to determine where the error occurred. It is not even possible to
distinguish when the failure occurred in a machine or in a network link.

As we can see, the partial failure problem is enough to conclude that dis-
tributed computing is different to design than local computing. Furthermore, there
are similar arguments to make the distinction in the way of attack the problems in
concurrency between local and distributed computing.

Because of the nature of distributed systems, components have to deal with
concurrent method invocations. In local computing, we find in multi-threads the
same situation. The problem is that in distribution, there is no single point of
resource allocation, synchronization, or failure recovery, but in local computing
there is. Moreover, distributed computing introduces truly asynchronous opera-
tion invocations, meanwhile in local computing programmers can deal deciding
the sequences of concurrent method invocations.

3.2 Java RMI and CORBA

There are several approaches in class-based programming to implement distributed
applications. In this section we present Java RMI, that provides to Java program-
mers to do Remote Method Invocation, as its acronym indicates. We also present
CORBA, a very popular architecture provided by the Object Management Group
(OMG) which aim is unify the objects in a distributed environment. As both ap-
proaches are very well known, we are just going to introduce them briefly, without
going into details of their features and services.

We discard a class-based approach for our aim, because we consider class-
based objects not good for mobile computing. Even though, we decided to in-
cluded Java RMI as a point of comparison for our reasoning. In chapter 5, we
compare three different implementations for a chat room, and one of them is im-
plement with Java RMI.

Instead of give a detail presentation about what CORBA is, after a brief intro-
duction we will focus on the reasoning why we do not think that unifying objects
are good for our purpose of organizing mobile systems. The reasoning is based
on the article [WWWK97].

25

3.2.1 Java RMI

One of the possibilities that Java provides to implement distributed applications is
Java RMI, a mechanism with similarities with the Remote Procedure Calls (RPC),
giving a high-level communication abstraction. RMI allows Java programmers to
have control transfer between caller object and called object.

The general idea to provide communication between a server object with a
client object, is the following: There is a name service calledRegistry. When a
server object is created, the object publishes its reference on theRegistry. Then,
a client object can get the reference to the server from theRegistry. To perform
a remote method invocation from the client to the server, aStubof the server is
placed in the location of the client to receive the call. The message is sent to the
Skeletonof the server throw the socket that communicate client with server. The
Skeletonis placed on the server location, connecting the server with the socket.
Then, the server receive the message to perform it. The structure of components
at runtime is depicted in figure 3.1.

Figure 3.1: Java RMI Components at runtime.

Note that this sophisticated structure ofskeletonsandstubsis only designed to
have the types of the objects right. We do not need such a structure to communi-
cate two objects in a prototype-based approach. Moreover, classes need to respect
an hierarchical model showed in figure 3.2. We can see that every class that im-
plements objects using RMI, must extend the classUnicastRemoteObject ,
and implements its own interface. That interface always have to extends from the
Java Interface namedRemote .

Let us review a very small example using Java RMI. We have a server named

26

Figure 3.2: Class and Interface hierarchy.

Calendar providing adate for the clients. The interface will be as follows1.

// file iCalendar.java
// specifies a date server interface

import java.rmi.* ;

public interface iCalendar
extends Remote

{
java.util.Date getDate ()
throws RemoteException ;

}

Then, the implementation of this interface is the following. Note that there is a lot of
bureaucracy in the code, in the real implementation is the methodgetDate . Themain
method does the publishing on theRegistry. The stub and theskeletonare generated
automatically with the RMI compilerrmic .

// file CalendarImpl.java
// the date server implementation

import java.util.Date;
import java.rmi.*;
import java.rmi.registry.*;

1The example is taken from the course of Distributed Objects, EMOOSE, November 2001

27

import java.rmi.server.*;

public class CalendarImpl
extends UnicastRemoteObject

implements iCalendar {

public CalendarImpl()
throws RemoteException {}

public Date getDate ()
throws RemoteException {
return new Date ();
}

public static void main(String args[]) {
CalendarImpl cal;
try {

cal = new CalendarImpl();
LocateRegistry.createRegistry(1099);
Naming.bind("rmi:///CalendarImpl", cal);
System.out.println("Ready !");

}
catch (Exception e) {

e.printStackTrace();
}

}

Now let us review the client object. The client does not know anything about the im-
plementation of theCalendar , the only thing important for the client is the interface of
the server. The reference to the server is get in themain , set in the variableremoteCal .
Note that the object classDate provides the methodgetTime .

// file CalendarUser.java

import java.util.Date;
import java.rmi.*;

public class CalendarUser {
// constructor
public CalendarUser() {}

public static void main(String args[])

28

{
long t1=0,t2=0;
Date date;
iCalendar remoteCal;
try {

remoteCal = (iCalendar) Naming.lookup
("rmi://some.host.com/CalendarImpl");

t1 = remoteCal.getDate().getTime();
t2 = remoteCal.getDate().getTime();

}

catch (Exception e) {
e.printStackTrace();

}

System.out.println
("This RMI call took "

+ (t2-t1) + " milliseconds");
} // main

} // class CalendarUser

We already argued that classes are not good for mobile code, because objects depend-
ing on a class need to carry the class with the, everywhere they goes. Using Java RMI, we
can see in the code and in the structure concept, that a complete system for type-checking
must be implement. We prefer prototypes because they are simpler and self-supported.
In chapter 5, we are going to compare a chat room implement with Java RMI, against an
implementation with Borg, and with our extension of Borg.

3.2.2 CORBA

The Common Object Request Broker Architecture is designed to support distributed object-
oriented programming with the aim of integrate diverse applications in a heterogeneous
environment. We are not going to detail its structure, but we want to analyze why we
consider the CORBA philosophy not good for distributed programming, in the sense that
CORBA unify all the objects without making a clear distinction between local and dis-
tributed objects.

Let us briefly review the general concepts. The main architectural aspects are defined
in the Object Management Architecture (OMA) depicted in figure 3.3.We can see that
all the communications and services in CORBA are performed through a middleware,
the Object Request Broker (ORB), supporting remote method invocations and making

29

the remote object references transparent. The middleware communicate the applications
objects with the CORBA domain, facilities and services.

Figure 3.3: The OMA architecture.

The CORBA services include basic system-level services such as naming, event con-
trol. The facilities include high level functions, user interfacing, information management,
etc. We mean by CORBA domains, functions in a specific domain such as telecommuni-
cation, finances, manufacturing, etc. We are going into detail of these services of CORBA,
but is clear that its aim is unify the World Wide Web.

The ORB, locating the target object and marshalling parameters and result transpar-
ently manages the remote method invocation. It offers transparency of languages inte-
grating, Java, C++, SmallTalk and others. The location of the objects is also transparent,
and the object references are resolved by the ORB, unifying all the objects, and using the
same technique as Java RMI, communicating objects though their stubs and skeletons.
The invocation architecture is depicted in figure 3.4.

All the architecture is designed to have unified objects to integrate diverse applica-
tion. What we do not like of CORBA, is the methodology that they promote to program
distributed applications with all this concepts. The methodology of unified object can be
described in three phases.

• Build as a local application: Write the application without worrying about where
objects are located and how their communication is implemented. This is possible
while having a correct interface between objects.

• Tune performance: Concretize object locations and communication methods. This
could be made by several ways, using tools to analyze communication patterns
between objects, or taking the decisions manually.

• Test with “real bullets”: We mean by real bullets failures such as machines go-
ing down, networks being partitioned, etc. Only the experience will be useful to
determine how to test the system to debug it.

30

Figure 3.4: The CORBA invocation architecture.

Unfortunately these concepts male several applications fail because of the four con-
cepts we already describe in section 3.1. ORB can mask successfully the differences on
latency and memory access between local and distributed objects, but the problems with
partial failure and concurrency are still unsolved, and if the programmers are not aware of
these concepts, applications will not be able to handle these failures.

Unifying objects as local objects, partial failure will be fragile and non robust, because
object can not rid of those failures. The other possibility is unifying objects considering
them all as distributed objects. Then, all the forms of distributed indeterminacy are forced
to be dealt with on all object invocations, making local computing as complex as dis-
tributed computing.

In the following sections we will present Obliq and Borg, two distributed languages
that from our point of view, are better dealing with the basic concepts of distributed pro-
gramming, and presenting better features to deal with mobility, compare with class-based
approach in distribution like Java RMI.

3.3 Obliq

Obliq is defined as “lexically-scoped, untyped, interpreted language that supports dis-
tributed object-oriented computation”. It has important concepts that will be useful for
our aim, having a distributed lexical scoping as the key mechanism to deal with distributed
computing. Obliq structure distributed computations using objects.

Obliq objects are self-supported because they do not depend on a class, and then,
can deal better with migration. They are defined as collections of named fields. As they
are untyped, communication between them does not need complicated structure for type
checking as in Java RMI. Objects are just known bynetwork references, keeping the

31

communication transparent throw the net.
One of the important features is that every object is potentially and transparently a

network object. An object become accessible either using a naming server, or as an argu-
ment or result of a remote method. What is missing in Obliq is a way of share behavior
or state between objects. It can be considered as a prototype-based language, but is not
delegation-based. The notion of asuperit does not exist. All the methods and value fields
are embedded in the object itself.

3.3.1 Basic operations

Objects have four basic operations apart from the creation. They are described bellow.

Selection (and Invocation)

There are two ways for selection and invocation of method, using parameters or not. In
the following examples, the first one represent a selection of the fieldx of the objecta,
and the second one is the invocation of a methodx supplying parameters.

a.x
a.x(b1, . . ., bn)

Updating (and Overriding)

The same operation is used to update a field or to override a method. It will depends on
which kind of concepts is behind the variable we are updating.

a.x:b

In the example, ifx is a field of the objecta, it will be updated will the value ofb.
And if x is a method, it will be override byb. Note that we could mix method and fields,
meaning that ifx is a field andb is a method,x become a method, and ifx is a method but
b, x become a field. We will see in the following section that Borg, based on Pico, used
the same semantics for the assignments.

Cloning

For cloning objects we have three possibilities. The first one is clone from one object,
which is given as a parameter of the operator.

clone(a)

The clone operator can receive multiple parameters, then, we have two new options:
we can clone from several objects, inheriting all its fields and methods. And, we can clone
and add new fields that are not defined in other objects, as it is shown in the example
when we clone from an objecta giving new field in the second argument. An error will
be generated if there are name conflict in the multiple cloning.

32

clone(a1, . . . , an)
clone(a, { . . . })

Redirection

Redirection is the replacement of fields with aliases. To make clear the difference with
aliases, the following example describe howx is an aliasy of b.

{ x => alias y of b end, . . .}

The redirection assigns aliases to existing fields of objects. The syntax is similar to
updating, but the semantic is completely different. The following example means that the
field or methodx of a is redirected to the field or methody of b.

a.x := alias y of b end

To redirect every field and method of an objecta1 to every method and field of an
objecta2, the following operation is provided by the language.

redirect a1 to a2 end

3.3.2 Other features

Apart from creation and the four basic operations already described, Obliq provide other
interesting features. For instance, with the aim of safeguard the internal invariance of ob-
jects, Obliq provides a keyword to protect objects. Then, we could protect server objects
from clients overriding methods. Objects are declared protected as follows.

protected, x1 => a1, . . ., xn => an

To deal with concurrency problems, objects can be serialized to use the often tech-
niques of serialization. Obliq also provides a way to install guards. In the following
example we can see how to serialize objects, and to install a guard.

serialized, x1 => a1, . . ., xn => an

watch c until guard end

The watch statement, evaluated the conditionc (created by usingcondition()
and signaled bysignal(c)), and, if guard evaluate to true, terminates leaving the
lock.

33

Example

The following example, taken from [Car94] illustrate a pocket calculator, and how to use
it.

let calc =
{

arg => 0.0, (the visible argument display)
arc => 0.0, (the hidden accumulator)

enter => (entering a new argument)
meth(s, n)

s.arg := n;
s

end,

add => (the addition button)
meth(s)

s.acc := s.equals;
s.equals := meth(s) s.acc+s.arg end;
s

end

sub => (the subtraction button)
meth(s)

s.acc := s.equals;
s.equals := meth(s) s.acc-s.arg end;
s

end

equals => (the result button)
meth(s) s.arg end,

reset => (the reset button)
meth(s)

s.arg := 0.0;
s.acc := 0.0;
s.equals := meth(s) s.arg end;
s

end };

An example of the usage of the calculator is as follows.

34

calc.reset.enter(3.5).equals;
(3.5)
calc.reset.enter(3.5).sub.enter(2.0).equals;
(1.5)
calc.reset.enter(3.5).add.equals;
(7.0)
calc.reset.enter(3.5).add.add.equals;
(10.5)

3.3.3 Object Migration

The migration of objects is one of the good features of the language. But it is not made
directly, and it is supported as weak mobility. Weak mobility means in this case that an
object can move to other site only if it is idle,i.e., not while it is executing an operation.
Strong mobility mean that objects can migrate while they are busy in an execution, con-
tinuing the execution in the new placement. To achieve migration in Obliq, we do it in
two phases: (1) by causing the engine to remote clone the object, and (2) by aliasing the
original object to its remote clone. In the following code the methodology is illustrated.

let migrateProc =
proc(obj, engineName)

let engine =
net_importEngine(enginName, Namer);

let remoteObj =
engine(proc(arg) clone(obj) end); (1)

redirect obj to remoteObj end; (2)
remoteObj;

end;

As it is critically that the two phases of the migration be executed automatically, it
is recommended to serialize the object, invoking themigrateProc as it is done in the
following code.

let obj1 =
{ serialized, protected,

. . . (some fields)
migrate =>

meth(self, engineName)
migrateProc(self, engineName);

end };

let remoteObj1 = obj1.migrate("Engine@site1")

35

We saw that in Obliq we can “migrate” an object by cloning and then updating its
reference. In the following section we review Borg, a distributed language that works
using agents for mobile computing, and provides weak and strong mobility, offering to us
the best option to create our conceptual language by extending it.

3.4 Borg: Agents and Mobility

Borg is a mobile multi agent platform built on top of Pico [D’H, DM00], a functional
language developed by Prof. Theo D’Hondt at the Programming Technology Lab of Vrije
Universiteit Brussel. Borg is mainly developed for Linux, but can be easily portable to
other operative systems. Several versions for different platform can be found in its web
site: http://borg.rave.org

3.4.1 Borg architecture

Borg consists on two parts described bellow, the Borg core and the user interface.

• The Borg core: It mainly consists in three parts: the virtual machine, the router,
and the natives sockets. The virtual machine translates Borg code to machine code
to execute the agents. The router uses TCP/IP functionality, allowing communica-
tion between two different Borg platforms. The router uses a name server to keeps
all agent current locations, ensuring that two agent will communicate using the
shortest path. The native sockets allow to communicate Borg platforms with other
non Borg platforms, using TCP/IP sockets, allowing communication with servers
of mail, web, ftp, etc.

• The Borg UI: The user interface of Borg is not portable, and it is specific platform
implement. For pur research we used the UI developed for Linux using KDE1. The
UI provides an environment were new agent can be created, and agent interfaces to
communicate with Borg agents.

The current Borg architecture features are described bellow.

• Strong Mobility : Borg agents are able to migrate to another address space in the
middle of its execution. This is thank to the ability of Borg to reify the complete
computational state of a running process, including its runtime stack. Some other
multi agent system can only migrate objects when they are idle, what is call weak
mobility.

• Communication: Agents always communicate asynchronously, unless the pro-
grammer force synchronization. It is important that agents are designed autonomous,
then, message sending shall be asynchronous. In other case it would transfer the
control flow to another agent.

36

• Hierarchical naming system: Every agent has a human readable name to be ref-
erenced. Then, we can do late binding between agent at runtime.

• Garbage Collection: Borg incorporate in its system this feature based on the Pico’s
garbage collector, which is highly performed.

• Synchronization of agents: Agents are synchronized using rendez-vous. In the
following subsection we describe how to synchronize agents.

3.4.2 Programming in Borg

Basics

Borg is dynamically typed, and using the same syntax of Pico we can use numbers, text,
tables, functions and references to agents. A variable containing a number can change to
a text variable, or to a table during execution. The following code describes definition and
assignment of variables.

(definition)
a:7
:7
(assignment)
a:="hello"
:hello
(definition of a table)
t[5]:0
:[0 0 0 0 0]
(assignment of a cell in the table)
t[4]:=7
:[0 0 0 7 0]

To declare a function it has to be done as follows.

(definition of the function)
sum(a, b)::a+b :<function sum>
(invocation of the function)
sum(3, 4) :7

The references to the object will be review bellow in the naming system.

Objects

Borg does not use classes to create objects; it is a prototype-based language in that sense.
Objects created in the same agent share the address space, and they are not able to move
independently. They belong to the agent where they are created. An example of a point
object in Borg is illustrated in the following code. Note that it is possible to use mixins
like in Agora. In the example we can extend the point to a circle.

37

point(x, y)::{
getx()::x;
gety()::y;
setx(nux)::x:=nux;
sety(nuy)::y:=nuy;
show()::display("x: ",x," y:",y);

circle(r)::{
getr()::r;
setr(nur)::r:=nur;
clone();

}
clone()

}

Note the usage of theclone() operator at the end of the definition of point, and
circle. It means that when we invoke point, clone will be the value returned. To create a
point, we do it by executingp:point(1,1) . Then, to get a circle extended from point
p, we do it by invokingc:p.circle(7) .

Naming

Most of the current mobile systems use an internet name to refer an agent, but if the
agent move to another location, then, the name of the agent also change. This is highly
undesirable in mobile computing. We want to have a name to refer an agent, and if
the agent migrate we still want to refer it with the same name, having transparency, and
allowing the agent to move without informing us. Thus, naming system in Borg follow
these two rules.

1. An agent has a name, which is unique.

2. The name does not change wherever the agent migrate.

To get a reference to an agent namedmachine/agentpong, we use the primitive
agent as follows

a:agent("machine/agent pong")
:<reference machine/agentpong>

Creating and moving agents

There are two ways to create agents in Borg. One is using the graphic user interface
clicking on thenew button. This action will create two agents. The computing agent

38

(standard Borg agent) and the user interface agent window2 connected to the computing
agent. The other way is by using the Borg primitives. We are going to reviewagentclone
andclone2agent.

• agentclone(ag, where)make a complete copy of the environment of the agentag ,
and put it in a new agent namedwhere . As the name of the agents are unique, if
an agent namedwhere already exist, thenagentclonereturns void.

• clone2agent(where)make a complete copy of the current agent environment, and
put it a new agent namedwhere . If an agent namedwhere already exist, then
a random number is assigned as a concatenation ofwhere creating an agent with
that name. Theclone2agentoperator will iterate assigning random numbers until
find a named that is not in use to ensure the success of the cloning.

In the following example, we get the references of two existing agent namedmachine/ag1
andmachine/ag2 . We clone the first one in a third one namemachine/ag3 . Then,
we clone the current agent to a new clone namemachine/ag2 , but as this not possible,
we get a new name.

a:agent("machine/ag1")
:<reference machine/ag1>
b:agent("machine/ag2")
:<reference machine/ag2>
c:agentclone(a, "machine/ag3")
:<reference machine/ag3>
d:clone2agent("machine/ag1")
:<reference machine/ag1-777>

To migrate an object to a different address space, Borg provides theagentmoveopera-
tor. In the following code, we get a reference of an existed agent namedmachine/ag1 ,
and we migrate the current object to the address space of that agent.

a:agent("machine/ag1")
:<reference machine/ag1>
agentmove("machine/ag1")

Synchronization

To synchronize two or more agents, Borg provides a primitive with the syntaxsync(ag,
tag), synchronizing the agentag , with the tagtag . This will stop the execution of the
current agent that invokes this primitive, until the agentag synchronize with it. The
following example shows how synchronization works.

2Screenshots of the window can be found in the Chat implementation using P-Borg in section
5.2.3

39

Agent1 Agent2
a2:agent("Agent2") a2:agent("Agent2")

sync(a2, "tag") . . .
. . . sync(a2, "tag")

continues continues

Message Sending

The main instruction to send a message to an agent is the arrow- >. It sends the messages
asynchronously and automatically returnsvoid, then, the current agent can continue its
execution without waiting for the reception of the message in the other agent. In this way
we can deal with problems like latency and partial failure without stopping the execution
of the agent that sends the message. The arguments of the- > operator are evaluated in
the environment of the sender of the message. We use it as follows.

a:agent("machine/agent pong")
:<reference machine/agentpong>
a->display("Hello Mr. Pong")
:<void>

As we always getvoid with this instruction, if we need a result of the message, we
need to use thecallback technique. In the following code we define a callback to the
sender in the agent namedmachine/agent pong .

callback(ag, msg)::ag->display(msg)
:<function callback>

Then, we execute in our current agent the following code.

a:agent("machine/agent pong")
:<reference machine/agentpong>
a->callback("Hello Mr. Pong")
:<void>
Hello Mr. Pong

Borg also provides other primitives to send and receive messages:send(ag, msg)send
asynchronously the messagemsg to the agentag , returning the message immediately
and the current agent can continue its execution;recv(ag, pattern)receive a message from
the agentag with a particularpattern . It returns the message sent byag . But if no
message was sent, it returnsno message. We can use the wildcardanyas it is shown in
the following example.

40

Agent1 Agent2
a2:agent("Agent2") . . .
send(a2, "hello") . . .

:hello . . .
continues recv(any, any)

:hello
recv(any, any)

:<nomesg>

Borg also provides synchronized message sending with the syntax:send(ag, msg)and
recv(ag, pattern). The semantics is equivalent tosendandrecv, but this primitives will
stop the execution of the agent as it was described with thesyncoperator. Indeed, the
implementation of these two primitives is as follows.

ssend(to, msg):: { srecv(from, pattern) :: {
send(to, msg); sync(from, pattern);
sync(to, msg) recv(from, pattern)
} }

In this section we have reviewed the Borg language presenting its principal features,
and how program with it. We can see that Borg deal very good with agents, but they do
not have another relationship between them than a reference. Thus, big programs become
very hard to maintain, having agents moving through the network and referencing each
other in an unstructured way.

In the next chapter we are going to extend the language to get P-Borg, a concep-
tual language to apply the prototype-based programming techniques, to reason about how
prototype-base concepts can help us to organize agents in a mobile multi agent system.

3.5 Summary

In this chapter we have reviewed the background in distributed and mobile computing
that we are going to use to produce our conceptual language. First, we presented the main
concepts that call us to take distribution seriously. We used that concepts in section 3.2.2,
to argue about why we do not use an approach like CORBA and others that have the vision
of unifying distributed objects. We saw in section 3.2.1 how complicated is the structure
of Java RMI to handle type checking in a distributed environment, and why we do not use
classes for our purposes.

We consider Obliq a good object-oriented language for distributed computing, and we
present it in section 3.3. As we are going to extend Borg, a very good language to program
mobile systems using agents, in section refborg we reviewed its architecture, features, and
how to program with it.

In the next chapter we are going to present P-Borg, our conceptual language that
extends Borg, adding prototypes in a way that can be applied to organize agents, providing
a hierarchy of objects with extensions that can migrate through the network.

41

Chapter 4

Applying Distributed Delegation

In this chapter we present P-Borg, our conceptual language to apply prototype-based pro-
gramming techniques, in order to organize mobile systems. We extended Borg using the
features provided by the language and by Pico, the base language of Borg. The method-
ology of the extension is explained in section 4.1.

In section 4.2 we present our first analysis of the problem, having important conse-
quences that finally guide us to the definitive model of P-Borg, and that generates inter-
esting future work.

P-Borg is described in detail in section 4.3, given the syntax of the grammar and the
main futures of the language. Apart from theself variable, we introduce the pseudo-
variablesusandyield, that will help us to give more features to our hierarchical structure
of objects.

4.1 Extending a language

As we are going to extend Borg, let us review some concepts about how to extend the
language. There are some decisions that need to be taken when we want to extend a
language, such as the kind of functions that will be used. In this section we present a brief
analysis comparing procedures and macro functions, choosing the one that helps us better
in the implementation of our system. Then, we present how Pico provides these functions,
and how its structure allows us to do meta programming.

4.1.1 Macros and Procedures

When we want to extend a language, we can do it by using macros or procedures1. It
is important to identify the distinction between both, and, depending on why we want to
extend the language, make the right decision. There are two main differences between
macros and procedures: evaluation order of the arguments, and scoping.

1We are not making a distinction between procedures and functions, as some languages such
as Pascal do. For us they are the same.

42

Evaluation order

In a procedure, the arguments are evaluated when the procedure is called. In a macro,
the arguments are not evaluated, and the programmer decides when the evaluation will
happen. That feature of macros allows us among other things, to return a function and
then, when the new function is called, evaluate the arguments.

Let us take the example of anif(condition, then, else)function to prevent a division
by zero.

if (z=0, error, 1/z)

If the functionif was a procedure, all the arguments will be evaluated when theif is
called. Then, the third argument:1/z, will also be evaluated generating an error in case
of z equal to0. In this case it is necessary to use a macro to implementif, because in
that way we can decide when to evaluate thethenor elseargument, depending on the
conditionargument. Thus, just in case ofz not equal to0, we evaluated1 divided byz,
preventing the division by zero.

Scoping

Calling a macro, the arguments are evaluated in the context of usage of that macro. For
instance in Scheme, the expressions thatif received as arguments, are evaluated in the
context where theif appears.

Procedures are lexically scoped, i.e., calling a procedure, the arguments are evaluated
in the context where the procedure is defined. In thefibonacci function, every call to
the function will evaluate the arguments in the context wherefibonacciis defined. Thus,
then value of the recursive calls tofibonacci, will correspond to the value received as a
parameter of the function.

fibonacci(n) :
if (n>1,

fibonacci(n-1) + fibonacci(n-2),
1)

Summarizing, procedures evaluate their arguments when the procedure is called. Macros
do not evaluate the arguments. Procedures make the evaluation in the context where the
procedure is defined. Macros evaluate in the context where the macro is used. We are
going to use mainly macros to develop our system, due to the fact that we need to build
methods which arguments will be only evaluated when they are sent to the objects as mes-
sages. For instance,methodwill be a macro that will receive the body of the method as an
argument without evaluating it, but generating the method as a result of the calling. When
we send a message to an object for applying the method, then the body of the method will
be evaluated while executing the method.

43

The other reason to use macros is to implement delegation. We need to bind theself
variable of the object to the original receiver of the message. Thus, when the message is
performed and the body of the method is evaluated, we need to evaluate it in the context
of the receiver of the message, even when the message is delegated to another object. This
will be clearer in the following sections of the chapter.

4.1.2 Macros in Pico

Pico2[D’H, DM00] is a very small functional language and also very powerful. Borg is
an agent language developed on top of Pico. As we want to extend Borg, we will present
in this section how macros work in Pico, and how we can do meta-programming in it.

In Pico, there are no special keywords to define procedures or macros. The evalua-
tion of the arguments depends on how we define their reception. A function defined as
fun(arg1, arg2, ...) behaves as a procedure, and the arguments will be evaluated when
the function is called. Meanwhile, a function defined asfun(arg1(), arg2(), ...) behaves
as a macro, where the arguments will not be evaluated. We can even have functions like
fun(arg1, arg2()), where thearg1 will be evaluated when the function is called, butarg2

will not.
Let us look at the example of the boolean functions. The following two expressions

correspond to a definition of the method. Both are macros, then, they do not evaluated
the arguments when they receive them. True function ignores the second argument, and
returns by calling the first argument. False function returns the second argument, calling
it and ignoring the first argument.

true (x(), y()) : x()
false(x(), y()) : y()

This two boolean functions allow us to create the logic functionsand, or andnot. The
and function evaluates the preposition p. If p is true, then, evaluates the preposition q,
returning its value. If the value of p is false, we do not need to evaluate q, then, we return
false. Theor function works similar. If the proposition p is true, we immediately return
true without the necessity of evaluating q. We just evaluate q if preposition p is false. The
not function evaluates p, and then, if p is true return false, and vice versa.

and(p, q()) : p(q (), false)
or(p, q()) : p(true, q())
not(p) : p(false, true)

A very interesting example is the formal definition in Pico of the functionwhile, that
receives two arguments: a condition and a expression. This macro function has only

2Pico stands for10−12 and hence very small; the name has no other meaning.

44

two expressions. The first one is the definition of a new procedure namedloop, and the
second one is the first calling of theloop method with void as a value, and the condition
as a predicate.

while(cond(), express()) : {
loop(value, pred) :

pred(loop(express(), cond()), value);
loop(void, cond()) }

As we can see in the code, loop receives a value and a predicate as arguments. If
the predicate is true, the loop continues because the procedure is called again with the
evaluation of the expression as a value, and the condition as a predicate. The loop stops
when the predicate is false and the value is returned. The code presents a procedure (loop)
into a macro (while). The condition and the expression are just evaluated when becoming
the parameters of the loop procedure. Notice again that the difference between macro and
procedure is just terminological. Technically they are just Pico functions.

4.1.3 Using Meta Programming

We are going to use the macro function of Pico, but we will also need to manipulate special
variables to organize the objects, and to implement the distributed delegation. Then, we
will need to do meta programming.

Meta programming is a technique that allows us to reason about and manipulate an-
other program. To be able to do this, we need to have access to the construction level of
the language, and modify the program when we need it. With the structure of Pico we can
have this access. Now we will explain what we are going to need from Pico to do meta
programming to implement our system.

In Pico there are values, variables, functions, tables, dictionaries, etc. For the purpose
of our thesis, we need to access mainly the dictionaries and functions. The dictionaries
will represent our objects. To implement delegation between objects, we will set our
special variables in the functions. We must consider that there are different versions of
Pico and Borg. The explanation goes according the version we used for the experiment of
the thesis.

Functions are represented with a table of three elements. The first element has the
reference to the function. The second element is a table with the arguments of the function.
The body of the function can be accessed in the third element of the table. We will
concentrate on the body of the functions, because we are going to install our variables
there. More details about our way of proceeding will be given in the following sections
with the correspond reasoning. The following example will help us to understand how
functions are structured on tables.

fun(x, y) : {
z : x+y;

45

display(z)
}

The code corresponds to the definition of the functionfun, receiving two arguments,
x andy, that will be stored in a table. That table will be in the second element of the table
that stores the function. The body offun is a begin application (with the curly brackets).
The begin application is built with two elements. The first one is the reference tobegin,
and the second one is the body of the application.

In table 4.1, we can see the three elements of the table of the functionfun. The
second column corresponds to the evaluation of the elements of the first one, and the third
column corresponds to the meaning of the element. Remember that this representation
corresponds to the version of Borg that we use for the experiments, and it is possible to
find other versions of Pico with a different representation.

Element Evaluation Meaning
fun <function fun> The function fun
fun[1] <reference fun> Reference to the function
fun[2] <table> Table of arguments
fun[3] <application begin> Body of the function

Table 4.1: Elements of the table of a function in Borg

As we said in the previous paragraph, an object is a dictionary in Pico, therefore in
Borg. The table in Borg will be very similar to the one of the function, but it will take four
elements. The fourth one will be the environment where the object is created. In Borg,
the environment will be the agent where the object is placed. The first three elements are
the references to the dictionary name, the initial arguments of the object, and the body.

The following example presents the definition of a counter object, and thencounter
will be a counter object. Note the cloning function at the end of the definition of the
object. It is like it was explained in section 3.4.

{
make_counter():: {

c : 0;
increment() :: c:=c+1;
getC() :: c;
clone()

};

counter:make_counter()
}

As in the function, table 4.2 details the structure of the object table on Borg. Note that
the second element is void, because the counter does not receive arguments to be created.

46

Element Evaluation Meaning
counter <dictionary> Counter is a dictionary
counter[1] <reference [dctname]> Reference to the dictionary name
counter[2] <void> Table of arguments
counter[3] <dictionary> Body of the object
counter[4] <dictionary machine/Agent> Environment of the object

Table 4.2: Elements of the table of an object in Borg

In section 2.2, we explained that in delegation, the whole dictionary of the original
receiver of the message is passed to the parent object. This is done because we need to
bind theself variable to the receiver of the message, and not to the object on which we
are delegating, executing the message in the context of the receiver. As in Borg we can
find the body of the object in the third element of the table of its representation, we use it
to pass the dictionary of the object to the parent object.

In the following section we present the first model of our system, explaining how and
why we evolve to the definitive system presented in section 4.3.

4.2 First Analysis

In the previous section of this chapter, we did a review of macro functions in Pico, and
some features at the construction level of Borg, to do meta programming on it. Together
with the prototype-based programming theory, we introduced the Split Objects and Agora
with the mixin methods. The background in distributed system, and languages such as
Borg and Obliq, were presented in chapter 3. Now, we will present our extension of Borg,
to apply the prototype-based techniques to organize the mobile system.

We consider the approach of Split Object a good way to organize the delegation of
behavior and properties, creating hierarchies as the primary structure of the system. The
delegation is done inside the object, but not between different objects. The delegation
inside the object means that it is done between the extension and the “root” object, as it
is done in Agora between the mixins (views) and the base object. But in Split Object, we
can not access directly the extensions of the object (called pieces). We can only do it from
inside the object. This is because split objects are considered the single entity of the real
world, and then, first class entities. In our approach, we want to access every extension
of the object, because we consider them as individual objects, as in Agora. Then, what
we are going to implement in our extension of Borg, is delegation with distributed mixin
methods.

47

4.2.1 Delegation with Local and Distributed Mixin Methods

We already have saw in section 3.4, how we can create objects and mixin methods in Borg
using thecloneoperator. Now, we want to implement delegation between the extension
of the object, and implement a distributed mixin method. To implement delegation, we
need to add asupervariable to generate a “parent-link” relationship, and implement the
method-lookup mechanism. To deal with distributed mixins, we will use theclone2agent
operator, which will make a clone of the dictionary placing it at a new agent. To explain
the reasoning and the implementation, we will use the example of a point that will be
extended to a circle.

To create an object in Borg, we have seen that we define it as a normal method, but at
the end of it, we add thecloneoperator as the value of the expression. Then, a copy of the
scope of the method will be returned as a dictionary. Now, we must install asupervariable
to generate the relationship with the parent object. Thesuperin the object generated by
invoking the mixin method will refer to the main object, and if the mixin is inside another
mixin, thesuperwill refer to the parent object created with the mixin that contains the
other object.

We need to bind thesupervariable dynamically to the receiver of the message, every
time the mixin method is called. Then, we need to capture the execution of the method,
set thesupervariable, and then continue the execution.

Let us suppose we have a pointp, and we decide to extend it to the circlec. When
the messagecircle is sent top, we bind thesupervariable ofc to p before perform the
message, and then we generate the extension. Asp is the receiver of the message, while
we are executing thecircle method, theself variable corresponds top. Then, we setsuper
asself, and then we continue with the execution of the method.

To create a distributed extension, we use the same mechanism, with the only differ-
ence that instead of using thecloneoperator, we use clone2agent, placing the copy of
the dictionary in a new agent as it was explained in section 3.4. Nevertheless, this small
difference will produce important consequences, taking us into a discussion at the end of
this section, which finally will lead us to the definitive model of our system. The first
consequence lay on the difference of the result of the two cloning operators. Meanwhile
clonereturns a dictionary,clone2agentreturns a reference to the new agent created. This
difference is more that only a technical consequence, because it means that local exten-
sions share the address space of the parent object, while a distributed extension has its
own address space, as it is desired in agents.

In the introduction to Borg, we already reviewed the two different operators to send
messages to a dictionary or to an agent, “.” and “->” respectively. We will avoid this
difference introducingsendo3, an operator that allows us to send messages to agents or
dictionaries (objects).

Thesendooperator will be useful for two purposes. First of all, as we already men-
tioned, it will avoid the difference of sending a message to an object or to an agent. As

3The namesendomeans “send to object”, and we wanted to differentiate it fromsend, a Borg’s
primitive explained in section 3.4

48

our primary aim of this work is to provide a way of organizing mobile system, we will
call “objects” to all of our entities (This is not unifying local with distributed objects, we
will analyze the difference). Second, it will allow us to capture the message sending to
manipulate it. We want to use our own method-lookup, and install the hidden variables to
create the parent-link relationship to implement delegation.

We provide two other operators to send messages:sendoBackandsSendoBack. We
will explain them in detail in section 4.3.4. In this section, we will only usesendoto
explain the model. Its syntax is the following, whereobject is the receiver of the call,
method is the name of the method that will be executed, and the third argument corre-
sponds to the arguments of the method.

sendo(object, method, [arg1, arg2, ...])

Now that we are able to capture the message sending, the delegation works like fol-
lows:

1. Check if the message is intended for a dictionary or an agent, and then continue
the sending. In the case of the agent, we first need to prepare the message before
sending it, but this will be explained deeper in the definitive model.

2. Once we are in the dictionary of the object, we start to look for the method. At this
point it is important to have the notion of two variables:self, that will always be
the original receiver of the message, andme, corresponding to the actual dictionary
where we are looking for the method. At the first searching of the method, these
variables correspond to the same object.

3. If we find the method, we apply it in the context of the original receiver,i.e., with
the dictionary ofself.

4. If we do not find the method, we look for thesuper. If there is no super, we generate
the error message: “Message not understood”. If we find thesuper, we delegate
the message to it, passing the whole dictionary of self, to execute the method in
the context of the original receiver. Thus,self does not change along the method-
lookup, butmebecomes the super variable every time we delegate the message.

Method Description
obj("name", body()) Definition of an object
method(body()) Method, receiving the body as a parameter
mixin("name", body()) Local Mixin-Method
netmixin("name", body()) Network Mixin-Method

Table 4.3: Methods of the extension of Borg

49

Considering we are going to manage the applying of the methods, we provide a new
way to define them in the code. Within themethodwe can use normal Borg code. As
mixins and network mixins are also methods, but with special features, we also provide
the way to define them, eliminating from the programmer the setting of thesupervariable
and the corresponding cloning. We are going to do the same to create objects. The syntax
of the set of methods that we provide in our extension is presented in table 4.3.

4.2.2 Sharing or not address space

More than just a technical consequence the different betweencloneandclone2agent, we
considering the question of sharing address space an important point of analysis. Let us
consider the following code of a point that can be extended to a circle using local and
distributed mixins.

point(x, y) :: obj("Point", {
setx(nx) :: method(x:=nx);
sety(ny) :: method(y:=ny);
show() :: method(display("x : ", x, " - y : ", y));

circle(r) :: mixin("circle", {
setr(nr) :: method(r:=nr);
‘first, send the show message to super
‘then show r
show() :: method({sendo(super, show, []);

display(" - r : ", r)})
});

netcircle(r) :: netmixin("netcircle", {
setr(nr) :: method(r:=nr);
‘first, send the show message to super
‘then show r
show() :: method({sendo(super, show, []);

display(" - r : ", r)})
})

})

Consider we have a pointp, and then we extended to a circlec, and to a netcirclenc.
The result of this execution is depicted in figure 4.1. Only the cloning is occurring in a
distributed way, but not the delegation. This occurs due to the fact that we are setting a
dictionary as the super of an extension, whether is local or distributed, and theclone2agent
operator clones the completely dictionary to a new agent.

Local objects shared the same address spaces, and this is what is occurring between
p andc. But in this way we are not allow to migrate the objects independently. They

50

Figure 4.1: The difference betweencloneandclone2agent.

are attached to the agent, and even when is not the same situation than the dependency
between and class and its instances, we fall in a similar problem on having non-mobile
self-supported objects. If we want to apply prototypes to mobile systems, we must make
them behaves as agents.

Even though, we do not consider this first approach useless, because it also provides a
possible advantage of the deep copy of the dictionary in the new agent, that can help us to
delegate some messages locally, reducing network traffic. It can also be useful in systems
when we want to have a new object independent of the original one, having its own state.

But the most useful application that can be derived from having local and distributed
extensions, it is a sort of “distributed split objects”, where the local extensions become the
pieces of the agent-object, being only accessible within the address space, but not directly
accessible from other agents. The idea is depicted in figure 4.2

4.3 P-Borg

One of the features of Obliq, is that every object is potentially and transparently a network
object. In our system, the local extensions can not be considered as network objects, and
not even their parent object. They are not referenced from other address spaces, and they
just move if the agent where they reside move. To send messages to objects in Obliq, we
usenetwork references. In Borg, only agents are known byreferences, but not the objects.
Thus, to solve the problem presented in the previous section, we are going to encapsulate
every one of our objects in a different agent. Then, having a reference to an agent, we are
having a reference to an object.

4.3.1 Only Network Mixin Method

Considering the previous argument, we take the decision of encapsulate the objects into
independent agents, having only one object per-address space. Technically, in our imple-

51

Figure 4.2: Distributed Split Objects.

mentation we are not going to use thecloneoperator anymore, onlyclone2agent. Even
to create a new object we will generate a new agent where the object will reside. Every
object will be a distributed object known by the reference of the agent where the object
lives, and every extension will be a new object living in a new agent.

As another consequence of this new design, every time we create an extension, we
will consider theagentselfvariable to set thesuper. Even though, the conceptual value
of self in the delegation mechanism does not change. We are consideringagentselfonly
with the purpose of setting an agent as thesupervariable of an extension, instead of set a
dictionary as in the first model. The new system is depicted in figure 4.3.

One of the important advantages of this new model, now that every object resides at its
own agent, is that we can use all the features that Borg provides for agents in our objects.
We can move them through the network in a transparent way using theagentmove, and the
object will always be known by the reference generated with theclone2agentoperator.

The mobility of the agents, whether strong or weak, it is not the merit of this work.
But, we provide a way to organize the agent as prototype objects, delegating behavior and
properties between them, and having a hierarchy derived from the usage of the extensions.
We provide a structure for mobile code that is better maintain, understand and evolve.

4.3.2 Implementing Distributed Delegation

How does the new design of the model modify our delegation system? Principally, it
modify the algorithm in two points, but not critically. First, we said that we capture the
message sending, and then we check if the receiver is a dictionary or an agent. Now
this checking is not longer necessary. We just apply the way of sending a message to an
agent. Second, every time we must delegate the message to the parent object, we must do

52

Figure 4.3: The definitive model.

it as sending a message to an agent, but do not forgetting to send the environment of the
original receiver of the method.

We already have seen the mechanism of sending a message to an agent in the intro-
duction to Borg in section 3.4. In our system, if we send the messagem to an object (that
now is an agent), the only difference is that we are always sending the messagedelegate,
and giving the namem of the method as a parameter, together with other internal vari-
ables of the system. We are doing this by filtering the sending though the our function
delgate2agent, that it is executed in the environment of the sender of the message. The
functiondelegateperforms the delegation method-lookup in the receiver of the message.
If m is not found, we delegate it to thesuper throughdelegate2agent, passing the self
environment. Ifm is found, we apply the method with the arguments given by the sender
of the message.

If we come back to the code of the point extensible to a circle, we can see that for the
programmer it looks the same as the first model, but now we do not have local mixins.
Now, we also add the methodsdown and yesDown, to show that the execution of the
method is made in the context of the receiver of the message

point(x, y) :: obj("Point", {
setx(nx) :: method(x:=nx);
sety(ny) :: method(y:=ny);
show() :: method(display("x : ", x, " - y : ", y));
down() :: method(sendo(self, yesDown, []));

53

netcircle(r) :: netmixin("netcircle", {
setr(nr) :: method(r:=nr);
show() :: method({sendo(super, show, []);

display(" - r : ", r)});
yesDown() :: method(display(super))
})

})

Now we create a pointp, and we extend it to a netcirclenc. In the following code
we usesSendoBackto get the extension. That operator will be explained in detail section
4.3.4. Now, just considered as a way to send a message to an object, receiving the result
back. Both are reference to the new agents where the objects reside. Then, we send two
messages to thenc.

p : point (1, 1)
nc : sSendoBack(p, netcircle, [5])
sendo(nc, setr, [3])
sendo(nc, setx, [0])

The first message will be performed bync without delegating top, meanwhile the
second one will be delegated. The two situations are depicted in figure 4.4 and figure 4.5.

Figure 4.4: Sending ”setr” to a netcircle.

Now if we send the messagedownto nc, the method will not be found in the object.
Then, it will be delegated top. The point will find the method and will execute it in
the context of the receiver,i.e., in the context ofnc. Now the methoddownsends the
messageyesDownto self. If the variableself is bound top, we will get a “Message
Not Understood” error, but asnc is delegating the message,self is bound tonc. Then, the
exection of the method send the messageyesDownto nc, finding the method and returning
super. In the case of the example, returns a reference top. This example show that the
environment of the receiver of the message is passed to the parent object every time we
delegate, to execute the message in the context of the receiver.

54

Figure 4.5: Sending ”setx” to a netcircle.

4.3.3 Theusand yield pseudo variables

We already introduced the notion of the variablesself andsuper, and when we explained
the method-lookup of the delegation in our system, we identify a conceptual variable me
that represents the performer of the method. We can see them in figures 4.4 and 4.5. Now
we are going to introduce two new pseudo variables:usandyield.

• us : This variable represents the set of the first level of the extensions of an object.
If an object does not have extensions, then the variable refers to itself.

• yield : This variable represents the yield of the hierarchy of extensions of an object.
If an object does not have extensions, then, it belongs to the yield.

As the extensions of an object are conceptually different objects, we consider these
two variables useful for our purposes of organization. Theus variable is useful to send
messages to all the first level extensions from the parent object, it is the network analogue
of self. Until know, with the delegation system only the extension knows its parent object,
but with theusvariable, the parent object can send messages to its extensions. We are not
implementing delegation in the other direction, we just provide a way to send messages
explicitly from the parent object to its extensions. Just the first level of the extensions will
be included in this variable. To send messages to different levels, we must refer to theus
variable of the extensions. The variable is depicted in figure 4.6.

The yield variable can be very useful, because allow us to access easily and in a
structured way, the last objects of the hierarchy. For instance, if we are modeling trees,

55

Figure 4.6: The “us” variable.

Figure 4.7: The “yield” variable.

with this variable we can send a message to the entire yield just sending a message to the
variable. Figure 4.7 presents the semantic of the variable.

To implement these two variables, we do the checking before send the message to
the any object. Once we identify if the message is sent tous or yield, we propagate it
to the correspondent objects. Each object becomes the receiver of the message, and the
delegation process is performed independently. Note that these two variables are only
accessible within the objects. We can not send a message tousor yield from out of the
objects, because they will be out of context.

In the chapter of application of the system, in section 5.3, we present a good example
to clarify the advantages of this two variables. In the following section we presents the
operator that we implemented to send messages to the objects.

56

4.3.4 Sending messages to the objects

In the previous sections of this chapter, we already introduce thesendooperator to send
messages to objects. We also mentioned the other two operatorssendoBackandsSendoBack.
In this section we are going to explain them in detail.

The three operators receive the same arguments: the receiver of the sending, the name
of the method, and the arguments of the method in the format of a table. Their syntax is
like follows.

sendo(object, methodName, [arg1, arg2, ...])
sendoBack(object, methodName, [arg1, arg2,...])
sSendoBack(object, methodName, [arg1, arg2, ...])

Thesendooperator is the equivalent of the arrow “->” operator of Borg, it sends the
message asynchronously returning alwaysvoid. Asynchronous messages are important in
distributed systems considering the latency problem. Several times we do not want to wait
for the execution of the method, moreover if we are not interested in capture the result of
the execution, for instance, when we set a variable of an object. Do not use this kind of
sending if you want to get the return of the execution. It will always returnvoid.

ThesendoBacksends the message asynchronously, but asks the receiver to send the
result back, also asynchronously. This operator is useful when we do not want to wait
until the end of the execution of the message we sent, but we are interested on receiving
the result in a certain moment. Then, we need to explicitly ask for the reception of the
message withrecv, a primitive function of Borg. Imaging we want to send a message to
different objects, and we know that every execution will take a long time to finish, but we
need to receive the message later. With this operator we can avoid the idle state in the
sender of the message, while the receiver is executing.

Even when in distributed systems it is recommended to use asynchronous message
sending, sometimes it is necessary to send synchronized messages. Then we use the
sSendoBackoperator. To create extensions of objects, we recommend to use this function
instead ofsendoBack, because we ensure that we will send message to the extension, only
after it is created and we have a reference to it.

It is very important to have consistency in the usage ofsendoBackandsSendoBackin
the same code. If we usesendoBackto send a message to an objecto, and then we use
sSendoBackwith the same objecto, without receiving the first message, we can confuse
the reception of the two execution, depending on which message ofo reply first.

Figure 4.8 presents how this three operators are implemented in the case of delegation.
In the figure, objecto send the message to objectc, that is an extension ofb, delegating
the message tob. The objectb is an extension ofa, and it also delegates the messages.
Finally a execute the message in the context ofc. Note that when you send a synchronized
message, all the objects in the chain of delegation stop its execution until the execution is
performed.

57

Figure 4.8: The three kind of sending message to an object.

4.3.5 Cloning

In our system, we are just cloning objects implicitly. We do it every time an object or an
extension is created, cloning the definition dictionary to a new agent. But we do not offer
a way to clone existing objects. The consideration that has to be taken to implement a
clone operator has relation with the parent object.

Let us suppose we have an objectb delegating on an objecta. If a does not have any
parent link, clone it is not a problem, we just create a copy of the object in a new agent.
The decision comes when we decided to cloneb. The cloneb’ will keep a parent link to
the objecta, or a new objecta’ will be created as is depicted in figure 4.9.

Figure 4.9: The cloning observation.

4.4 Summary

In this chapter we have presented our extension to the language Borg, providing a way to
organize mobile agent systems using a hierarchical prototype-based approach, based on
objects that can be extending through the network, delegate behavior and properties to the
parent object.

58

First, we introduced the elements that we decided to use to extend the language. We
explain the macro function, and the way of doing meta programming in Borg, to know
where we must modify the methods to install our variables. More details about the imple-
mentation can be seen in the annex.

In section 4.2, we present the first model of the system and the problems that presents,
but understanding that can provides some alternatives to improve the definitive model, like
implementing local delegation to reduce network traffic, or a new hierarchy of organiza-
tion near to Split Objects.

The definitive model is explained in detail in section 4.3, presenting the solution to
the first model, and going deeper in the explanation of the implementation of the dis-
tributed delegation. All the operator of the language are presented, including the sending
methods, and the variablesusandyield, offering a new organizational feature to the lan-
guage. We explain our considerations to implement the cloning of existing objects, and
the implications that have in the relationship with the extensions of the objects.

Table 4.4 presents the grammar of the extension of Borg, and a small description.

59

Variable/Function Description
me Hidden variable that is only used in the

delegation method-lookup, to represent
the current dictionary of searching.
We can not send message to it

self Conceptual variable that represent the
receiver of a message

super Variable to set the parent-object
us Represent the first level in the hierarchy

of the extensions of an object.
The “first” level depends on the object

yield Represent the yield of the hierarchy.
If an object does not have extension,
belongs to the yield

method(body) Define a method. Receive the body of
the method as a parameter

obj(where, body) Define an object. It will be placed in
a new agent named “where”. The body
of the object it is also a parameter

netmixin(where, body) Define a network mixin method. Receive
the body of the netmixin as a parameter,
and the original name of the new agent

sendo(obj, method,[arg1, ...]) Sends a messagemethodto the
objectobj, in a synchronous way

sendoBack(obj, method,[arg1, ...]) Sends a messagemethodto the
objectobj, in a synchronous way,
asking for an eventual result

sSendoBack(obj,method,[arg1, ...]) Sends a synchronized messagemethod
to the objectobj, returning the
result of the execution

Table 4.4: P-Borg grammar

60

Chapter 5

Validation

To validate the concepts introduced in chapter 4, we present three case studies in the fol-
lowing section. We tried to choose heterogeneous examples to included different aspect
into our study. First, we present an analysis of the Role Object Pattern, to see how dis-
tributed and mobile prototypes can help to design general solutions to recurrent problems.

In section 5.2 we present three different implementations for a very well known prob-
lem in distributed computing: the Chat Room. We first present a solution using Java RMI,
and then implemented in Borg without using our mechanism. The third implementation
correspond to P-Borg, showing how agents can be structured it to build a maintainable so-
lution. Finally we used the advantages of mobility to describe how it is possible to reduce
network traffic migrating the server agent or the clients.

The third example is the design of a very simple distributed database, showing an
alternative and experimental use of our organizational model, enriched with the pseudo
variablesusandyield.

5.1 The Role Object Pattern

The applicability of the Role theory [BT79] is presented in many research areas such
as distributed system management [KM96], collaboration and coordination, agent1 and
robot systems [Rie98, Ken], and web applications where the system must allow users with
different roles to access information, having a different behavior according the role. Let
us think about a web page where users have a personalized way of seeing the information.
Then, we can model all the personal preferences of the users in roles.

When we have taken the decision of using object-oriented programming for designing
role models, the Role Object Pattern [BRSW97] can help enormously to build the system.
In this section, we will make a review of the pattern, presenting how to attack the problem
from the prototypical point of view, using our system to implement the solution. With this

1The agents cited here belong to the Artificial Intelligence area. They are not the same to the
agents of our system.

61

example we want to present how useful our approach can be at the level of design, even
more in distributed systems such as web applications.

5.1.1 Intent and motivation

The intent of the pattern is as follows:

“Adapt an object to different client’s needs through transparently attached
role objects, each one representing a role the object has played in that client’s
context. The object manages its role set dynamically. By representing roles
as individual objects, different contexts are kept separate and system config-
uration is simplified”.

In chapter 2 we have said that one of the advantages of prototypes is the simplicity,
helping us to generate the representation of the problem domain starting from a concrete
example. Let us analyze the case study on the motivation of the pattern, which consists
on developing software for a banking environment. The problem arises with the necessity
of having different clients that need context-specific views on the key abstractions of the
model.

The main key abstraction of the model is the concept ofcustomer. Thinking about
classes, this information easily guides us to have a Customer class. The interface of the
Customer class provides messages to manage the name, number of the account and the
general information of the customer, and also provides messages to manage operations
such as saving or withdrawing money. The problem appears when we want the customer
to handle the possibility to behave as borrower or as an investor, or any different role. The
solution could be to extend the customer by adding the different roles to the Customer, but
if we try to integrate several kinds of behaviors in one class that will be static at runtime,
finally, it will be very difficult to maintain and to understand.

The clever solution proposed by the pattern, is to separate thecore object(our orig-
inal customer) from therole objects, defining an abstract class for customer roles. The
abstract class for customer roles has subclasses that will represent the concrete roles that
the customer can play. Then, it will be possible to add concrete roles dynamically to the
core of the customer. The class diagram is shown in figure 5.1. The object diagram is
presented in figure 5.2.

Thinking now in the way of conceiving a system based on prototypes. First we will
find a good example of an object in the model. Now the customer appears as the first
object (prototype) of our model, and other customers will be created by cloning some of
the existent ones. When the necessity of modifying the behavior of a particular customer
appears, we will extend it by using a mixin method.

In the previous explanation, we can see that at this point of the design, the class-
based approach needs to take a different solution by adding abstract classes to the system
with the only aim of adding dynamic features to the model. In our approach, we can
deal extending the core object dynamically in a well-organized manner. We can continue

62

Figure 5.1: Customer hierarchy in a banking environment

Figure 5.2: An object diagram of the Role Object Pattern

63

Figure 5.3: The Customer object and its extensions in a banking environment

with the first idea of extending the customer by adding different roles. Each kind of new
behavior will be expressed with a new mixin method of the prototype.

The other advantage arises when the message netmixin is sent to a customer at runtime
extending its behavior dynamically, and placing the extension in a different address space
as an agent. Now we can use the features of the agent system, allowing us to move the
role through the net, placing where it is most required reducing network traffic. As the
customer is also a mobile object, we can move both wherever we want. This can be very
useful if the bank-system that we are modeling will work as a web application, or as a
distributed application internal to the bank.

The problem is solved, and even more we are giving extra advantages to implement
the model in distributed systems. The model is presented in figure 5.3, showing the cus-
tomer object and its possible extensions. It looks simpler that the class diagram of figure
5.2, and clearly looks more similar to figure 5.1, which corresponds to the instance objects
of the class diagram of the pattern. The similarity occurs due to the fact that prototype
models are just conformed by objects.

5.1.2 Structure

To get the general structure of the solution, the following figures show the two possible
approaches. The structure of the Role Object Pattern is showed in figure 5.4, and the
figure 5.5 presents the structure of the prototype solution.

In the diagrams, theComponentclass represents the customer in the motivation ex-
ample. TheComponentCoreis theCustomerCore. In the prototype model, we just put
the core of the component and the definition of the component object.

The abstract classComponentRoleis the generality of abstract classCustomerRole,
that is not needed in the prototype approach. TheConcreteRolescan express the roles
of the customer, and in the prototype model they are presented as the extension of the
component object.

64

Figure 5.4: Structure diagram of the Role Object Pattern

Figure 5.5: Structure of the prototype-based approach

65

Meanwhile the Role Object Pattern succeeds in defining concisely the key abstraction
of the problem domain, in the prototype approach we just need to find the object that
represents a good example of the main component of the system. One of the advantages in
favor of prototypes is the capability of modifying the behavior of the objects dynamically,
but in this case, we find good the way which the pattern is able to change dynamically in
a class-based model the behavior of the objects, helping the system to evolve. What we
most appreciate in the alternative way of designing using prototypes, is the simplicity of
the model, and the advantages that help us to build a better distributed system.

5.1.3 Implementation

The following is a sketch implementation of the structure of the prototype system, using
the syntax of our system. The class-based implementation can be found in detail in the
role object patter [BRSW97].

component(state) :: obj("ComponentCore",{

operation()::method(...);

compRoleA(stateA) :: netmixin("RoleA", {
BehaviorA() :: method(...)
});

compRoleB() :: netmixin("RoleB",
BehaviorB() :: method(...)
)

})

In our sketch implementation, we can identify thecomponentobject that receives
the state variables as a parameter. The first argument of the object is the name of the
generic name of the agent that will be created when the component object is created. The
compRoleA andcompRoleBare the extensions of the component, and of course could
be more. We could also create extensions on the extension. The methodsBehaviorA and
BehaviorB are the behaviors that every role adds. We can see that the argument of the
compRoleAwill be the state added by that role.

Once the structure is defined, the way of sending messages to the objects can be seen
in the following code:

{

aComponent : component("aState");

66

sendo(aComponent, operation, []);

aComponent2: sSendoBack(aComponent,
compRoleA, ["aStateA"]);

sendo(aComponent2, addBehaviorA, []);

aComponent: sSendoBack(aComponent compRolB, []);
sendo(aComponent,addBehaviorB, [])

}

What has been done first in the code is the creation ofaComponentobject, residing in
a new agent. After that, we send to theobject the method operation without parameters.

Then,aComponent2is created by using the synchronized callbacksSendoBackto
send the netmixin messagecompRoleA to aComponent. With that expression, we ex-
tend the objectaComponent, placing the extension in a different agent. Then, we are
distributing the cost of processing.

In the next expression the objectaComponent2starts to play the Role A receiving in
the next expression the messageaddBehaviorA.

The objectaComponent changes its behavior by sending to himself the netmixin
messagecompRoleB. Furthermore, the object changes its position, because the extension
will be placed in a new agent, but we can still refer to the object with the same name, mak-
ing the message sending completely transparent for the programmer. In the last expression
of the code, the messageaddBehaviorB is sent asynchronously toaComponent.

Summarizing, we can see how a prototypical approach takes us to a simpler model
for the solution. Moreover, using the distributed delegation, we can reduce the cost of
processing the messages by distributing the extensions of the object. Thinking about a
web application, we could place the role objects in the client site, increasing the speed on
answering messages to the client.

5.2 Chat

One of the very well known case studies in distributed computing is the Chat Room. In
this section we present and compare three different implementations. First, we study a
class-based solution implemented with Java RMI, one of the most popular environment
of development in class-based systems. Then, we present a simple implementation in
Borg, but without using our mechanism, only with the facilities provided by the mobile
multi-agent system. Afterwards, we review a solution implemented in our extension of
Borg, showing how the concepts presented in chapter 4 can help to have a more organized
design. Finally, we apply the advantages of mobility that Borg provides for agents, to
show how powerful can be a solution implemented with a prototypical approach.

67

Figure 5.6: The Java RMI chat room.

5.2.1 Java RMI

To be impartial, we have chosen an implementation from theWeb, taken from [Onl].
The design follows the rules of having right interfaces, and special types for sending the
messages. It has a user friendly graphic interface that can be observed in the screenshot
in figure 5.6, but we are not going to analyze it. We are going to concentrate in the design
and implementation of the server and the client. Nevertheless, remark that the graphic
user interface triggers the execution of sending messages from the client.

The chat design is based on theChatRoomImp class that represent the server, and the
UserImp class that correspond to the user.ChatRoomImp implements the Interface2

namedChatRoom, which mainly provides the following methods:

• enter(User user) : log every user, adding it to a table of users.

• getUserNames() : get the list of users.

• distributeMessage(Message message) : distribute the message to all
the users. This method use the getUserNames to know for whom the message has
to be sent.

UserImp implements the Interface named User that only has two methods:

• getName() : get the nickname of the user. The graphic interface used it to send
the message to the server, adding the nickname.

• receiveMessage(Message m) : receive a particular messagem.

2Make the distinction between the graphic interface, and the Interface of Java to define the
signature of the methods of a class

68

Figure 5.7: Components of the Java RMI chat room at Run Time.

The signature of the User does not have a way to send the message to the server; this is
due to the fact that the graphic interface triggers this action directly to the server when user
click on send button. This is just a decision of the particular design of the implementation.
Not all the models do it like that. For instance, in the following implementations of Borg
and our extension, we provide in the client a method to send the message to the server,
mainly because we will not program the graphics user interface, due to we are going to use
Borg graphic interfaces. Even though, we will see that the following two implementations
have a similar structure, with a server having the list of registered users, and a way to
distribute the messages to all of them. The clients perform the reception of the messages,
and have a nickname as identifier. We are not going to review in details the Java RMI
code because we considered Java well known. In any case, the whole implementation can
be found in [Onl].

Once the code is compiled, as we explained in section 3.2.1, it is necessary to create
the skeletonsandstubsfor the chat room and the user implementation. This is gener-
ated automatically using the RMI features. Now we just need to run thermiregistry for
the naming service, and we are ready to start the server and the clients. But let’s count
how many classes are needed to implement the chat. For the server side we need the
Interface ChatRoom, its implementation ChatRoomImp and its skeleton and stub named
ChatRoomImpSkel and ChatRoomImpStub. For the client we need the Interface User,
its implementation UserImp, with the correspondents UserImpSkel and UserImpStub.
In total, we needeight classesto communicate two objects, plus some other classes for
typing messages and errors. It is even necessary that some of the classes correspondent to
the server, like the skeleton and the interface, must be placed in the client, and vice versa.
The components at runtime are depicted in figure 5.7.

The static typing system of Java can helps on having secure code, but renders much
more complicated the structure for distributed and mobile systems. In the implementation
of a chat, we can see that four classes, two skeletons and two stubs, are just needed for
type checking in the communication between the ChatRoomImp and the UserImp. In the
following sections, we will show how simple the design of chat can be using Borg and
our extension of the language.

69

5.2.2 Borg

The implementation presented in this section is based on the primitive chat application of
the Borg tutorial [Lab]. We have included nicknames to identify the users, and a method
to send private messages to a particular user. There is no object orientation in this design,
only a code base on agents and their capability to send asynchronous remote messages
between them. There is no error-detection, nor detection of agents logging out, but the
same features we analyzed in the Java RMI implementation, are presented in this solution:
a server, clients logging in and sending messages to the chat room. In addition, as we
already mentioned, we also provide a way of sending messages to a particular user.

The application consists in two pieces of code, one for the server and one for the
client. The code for the server has to be present and loaded only in the server agent,
meanwhile the client code, only belongs to the client agents. This is already an advantage
over the Java RMI implementation, because both, the client and the server, can change
their internal implementation at runtime, without notifying the other parties.

The Server

The code that has to be loaded at the server agent is the following.

{

users[10]:void; nicks[10]:void; nbrusers:0;

login(nickname, clientagent):: {
nbrusers := nbrusers + 1;
nicks[nbrusers] := nickname;
users[nbrusers] := clientagent;
chatsend("User" + nickname + " logged in", agentself)

};

chatsend(message, sender):: {
if(sender=agentself, nick:"server",

‘get the nick of the sender
for(i:1,((!is_void(users[i])) | (i<nbrusers)),i:=i+1,

{tmp : users[i];
if(tmp=sender, nick:nicks[i], void)}))

‘distribute the message
for(i:1,((!is_void(users[i])) | (i<nbrusers)),i:=i+1,

{tmp : users[i];
msg:nick + ": " + message;
tmp->chatreceive(msg)})

};

70

chat2nick(message, sender, receiver):: {
if(sender=agentself, nickSender:"server",

‘get the nick of the sender,
for(i:1,((!is_void(users[i])) | (i<nbrusers)),i:=i+1,

{tmp : users[i];
if(tmp=sender, nickSender:nicks[i], void)}))

‘get the reference to the receiver
for(i:1,((!is_void(nicks[i])) | (i<nbrusers)),i:=i+1,

{tmp : nicks[i];
if(tmp=receiver, refReceiver:users[i], void)})

msg:nickSender + ": " + message;
refReceiver->chatreceive(msg)

}

display("server loaded") }

The server uses two tables to register the nicknames and the references to user agents.
Every time an agent loges in, it is added to the tables. The methodchatsend is the
equivalent to the methoddistributeMessage of the Java implementation, distribut-
ing the message to all the users of the table. Note that this message sending is asyn-
chronous, then, the server does not wait until an agent receive the message to send the
message to the next agent. This is a very important feature for distributed systems, be-
cause of the latency problems explained in chapter 3.

The methodchat2nick , first get the nickname of the sender, then get the reference
of the receiver, and finally send the message to the particular agent asynchronously. The
way of registering the clients in tables, or the way of perform the distribution of the mes-
sages using thefor instruction, can be modified at runtime without notifying the clients,
and the chat will continue running. Of course, this have to be done respecting the signature
of the methods. As we can see, the whole code is very simple.

The Client

The code that every client agent have to load in their address space is much simpler that
the server one. It only has to provide two methods: one for receiving the messages sent
by the server, and one to send the message to the server. We can see both methods in
the following code. Note that the method for sending messages to the server could be
avoided, because it is just a mask to hide the argument passing of theagentselfvariable.
To check the difference, we are not going to mask thechat2nick function.

{
chatreceive(message):display(eoln, message);

71

chat(server, message):server->chatsend(message, agentself)
}

Once this code is loaded, the client can connect to the server as follows.

server : agent("machine/chatServer")
server->login("mynick", agentself)

First, we get the reference to the agent that serves the chat room, in this example
placed on “machine/chatServer”. Then, we send the message login to the server, giving
the nickname and the reference to our own agent. Then, to send messages to the chat room
and to a particular nick, we do it like follows. Note the difference between the method
that is masked (first), and the one that is not.

chat(server, "Hello, chinese anyone?")
server->chat2nick("liangJing", "ni hao!")

We can see that in both implementation we already reviewed, there are similarities in
the general idea of building a chat room. But, as Borg is a language specially made for
distributed computing, the design is much more simpler than the implementation using
Java RMI, but still a little bit simplistic and unstructured. Figure 5.8 depicts the agent
system of the chat implemented with Borg. We realize this a very small example to show
how complicated it can become to maintain a big system, but in the following section, we
aim to show how to structure a distributed program for a chat room using our extension
of the language.

5.2.3 P-Borg

With the aim of giving an structured design to the chat room, we present in this section
the implementation using P-Borg, already described in detail in chapter 4. The chat room
consists in a server object with extensions. The extensions will be the clients of the chat,
every one residing in a new agent. It is a different way to attack the problem, and we will
see the advantages. Another important difference with the previous two implementations
is that the whole code will be loaded only in one address space, where the server will be
launched.

The implementation of the chat room using P-Borg is the following.

chat()::obj("theChat", {

72

Figure 5.8: The Borg chat room.

talk(msg)::method(sendo(us, showMsg, [nick, msg]));
talkTo(to, msg)::method(sendo(yield, toMe, [self, to, msg]));

client(nickname, address)::netmixin("theClient", {
ui:agent(address);

‘Internal perfoming of messages
showMsg(nick, msg)::

method(sendo(ui, disp, [nick + "> " + msg + eoln]));
toMe(from, to, msg)::method(

if(to=nickname,
sendo(self, showMsg, [from, msg]),
"")

)
})

})

The primary object ischat, and once it is created it will resides in a agent named
theChat. Create the objectchat is the equivalent to launch the server, because the client
extensions can start to be required since the object is created. Three methods are imple-
mented in the server. The first one distributes the message to all the clients, and the second
one sends a message to a particular nick. The third method is anetmixinto create client
extensions. The structure of the chat is presented in figure 5.9.

To distribute the message to the user of the chat room, we are using theusvariable. It

73

Figure 5.9: The structure of P-Borg chat room.

means we are sending the messageshowMsg to all the extensions,i.e. to all the clients,
with the parametersnick and msg. Every client will perform the message as in the
other implementations. What it is different here, is that we can use the advantages of the
usvariable, without having to distribute the message manually, and without using a data
structure to register the users. As we only have one level of extensions, the variableusand
yield have the same meaning. We useyield in the second method. Note that the method
talk andtalkTo are delegated to server.

To send a message to a particular nickname, we just send it to all the users, and then,
every user identifies if the message is for him/her or not. We realize this way to implement
the behavior generates unnecessary network traffic, because we are sending messages to
users that are not the one for whom the message was destined. In this case it would be
better identify the receiver of the message, and then send it.

As we already mentioned, creating extensions of thechat, we get a reference to the
client agent. There are two important observations to say about the code of the client.
First, as the client is a new agent, different to the one who creates the extension, we use
callbacksto display the messages of the client. That is why we use the variableui to
refer the “owner” of the extension. Then, the methodsshowMsg andtoMe can display
the messages in the agent of the user of the chat. Second, we can say that the methods of
the client can be divided in two parts: the interface for the use, and the internal methods
to perform the messages.

What we call the interface for the user, corresponds to the two methods the user will
use to send messages whether to the chat or to a specific nickname,chat andchatTo
respectively. Note that the user interacts only with the client, and the client delegates the
message to the server. We claim this presents a more organizer way to design the system.
Even for the user, this structure represents better, from our point of view, the metaphor of
typing messages in a client window.

The internal communication between the client and the server is implemented in the
last two methods. As these methods are not supposed to be used by the users, we think
about the possibility of having private and public methods. Where the public methods rep-

74

resents the messages that can be sent to an object just having a reference to it, meanwhile
the private methods would be the methods accessible within the hierarchy of objects and
its extensions, but not from outside.

Using the chat

A screenshot of the chat is presented in the figure 5.10. To launched the server of the chat
room, some one creates achatobject with the following expression (lines that starts with
colon “:” represents the result of the evaluation of the expression).

aChat:chat()
:<reference machine/theChat>

Then, users from different agents get a reference to the server to create a client exten-
sion.

server:agent("machine/theChat")
:<reference machine/theChat>
client1:sSendoBack(server,client,["bob","machine/Bob"])
:<reference machine/Bob>

Having the reference to the client object, in the example namedclient1 , to send
messages to the chat or to a nickname, we use the following expressions

sendo(client1, talk, ["hello, chilean anyone?"])
sendo(client1, talkTo, ["Miro", "Hola que tal?!"])

Concluding, we have presented the implementation of a chat room using P-Borg.
From our point of view, as a design it is much more simpler to the implementation of
Java RMI, and give more organization to the code of the implementation using Borg. It
has the advantage that we can centralize the code in one server object, and then distribute
the client extension. Then, the code is centralized but the objects and the execution are
distributed.

Another advantage of our system is the usability of the variablesusandyield, having
an organized control of the extension of the primary object. What we did not exploit in
this example, is the distributed delegation. In section 5.3 we present a better example to
get an idea of the potential use of a distributed delegation, a clearer idea of the different
overheads of the variablesusandyield.

To finish with the chat example, we present the enormous advantage of having mo-
bility in distributed systems, something that is hard to perform in class-based system, and
that Borg does very simple and efficient.

75

Figure 5.10: The P-Borg chat room.

5.2.4 Using Mobility

One of the biggest merits of Borg is how it deals with mobility, offering a transparent
way to do strong and weak mobility, and using the shortest way to communicate two
agents wherever the agents migrate. We are going to add these features of Borg in the
implementation of the chat with P-Borg. Our aim is to present that our extension is able
to use all the good things of Borg, and also to remark that prototypes deal better with
mobile systems than classes.

Imagine we have an expert user of the chat, which is generating more than 50% of the
messages. A good idea to reduce network traffic would be migrate the server where this
expert user is located. Then, the first communication between the user and the server will
be very fast, and then the server will distribute the message to the other user as normal.

To avoid the explanation of an algorithm to control the amount of traffic, let’s consider
we have atrafficGuardto tell the server when and where migrate. We are only encapsu-
lating the algorithm in this sort of guardian, nothing else. To use the guardian, we need to
add three things to the server:

• A reference to the guardian object, to communicate with him.

• Every time we distribute a message, we tell the guardian who is the sender. Thus,
the guardian can have the information of the amount of traffic that every user is
generating. When, the guardian determines that the server has to move, it will send
a message to the server saying where to move.

• We must provide a method that the guardian can use to tell the server where to
move. It will be a simple method using the keywordagentmoveprovided by Borg,
having the agent where to move as a parameter.

Referring to the code of the last section, what we need to add will looks like follows

76

chat()::obj("theChat", {

guardian:trafficGuard(agentself);
talk(nick, msg)::method({

sendo(us, showMsg, [nick, msg]);
sendo(guardian, newMsg, [nick])});

migrate(agt)::method(agentmove(agt));

client(nickname, address)::netmixin("theClient", {
...

}
}

We can also continue adding algorithms to determine the best position for client ob-
jects and any kind of object we are using in the system, because every object is an agent
that contains all the overheads provided by Borg. We can use all the load balancing
and features for agents that Borg provides, because it is orthogonal to the organizational
mechanism we provide.

5.3 A simple database

The next aim is showing the applicability of the distributed delegation, and trying to clar-
ify the usage of the conceptual difference between the variablesusandyield, that we have
introduced in our system, we present in this section a simple database of students. The
example can be related to the analysis of the Role Object Pattern, because in this example
we are going to see the students as entities that can play different roles. The situation is
the following:

During the period of inscription, the students filled in a sheet with their per-
sonal information and some extracurricular activities they perform. In the
sheet, students can put if they are amateur musicians, and furthermore, if
they have a degree in any musical instrument. Another information is about
sports, where they can indicate if they are regular sportsman/sportswoman,
and indicating if they belong to the volleyball or basketball team of the uni-
versity. All this information must be stored in a database that will be con-
sulted via Internet.

With that information, we can create our database object with the correspondent ex-
tensions. The first level corresponds to the student objects. As a student can be a musician
and-or a sportsman/sportswoman, then, we will have twonetmixinsfor the students. Into
the extension that corresponds to a musician, we will have another extension in case the

77

student has a degree in any musical instrument. Note that a musician, even when only
one extension is defined, it can be extended two or more times in case the musician has
a degree in two or more instruments. For the students who practice sports, we have two
possible extensions in case they belong to a team of the university: volleyballPlayer or
basketballPlayer. Note that these two extensions are a little bit different to the exten-
sion when the student has a degree in a musical instrument. If a student belongs to the
volleyball team, will be extended to volleyballPlayer only once, meanwhile the musical
instrument extension can be generated several times for the same musician student.

In this example, we will make two queries in the database. We are going to ask for
the list of players of the basketball team, and then, we will ask the list of all the students
that declared to be musicians. For the basketball team query we will access the yield of
the structure, then, theyield variable will be useful. To get the musicians, we have to go
only until the level of musician, without taking into account if they have or not a degree
in a musical instrument. Then, theusvariable will be useful to descent level by level into
the structure of the data base.

The code presented below it has the minimum methods to answer the two queries of
the example. In a normal system, every mixin should have more behavior and more state
variables.

database()::obj("database", {

showMusicians()::method(sendo(us, musicians, []));
showBasketTeam()::method(sendo(yield, basketInfo, []));

student(name, email)::netmixin("student", {
showInfo():method(

display("Name : ",name,eoln,"email : ",email,eoln));

musicians()::method(sendo(us, musicInfo, []));
musicInfo()::method(void);

basketInfo()::method(void);

showInstruments()::method(sendo(yield, instInfo, []));
instInfo()::method(void);

musician()::netmixin("musician", {
musicInfo()::method(sendo(super, showInfo, []));

instrument(inst)::netmixin("degree",{
instInfo()::method({

sendo(super, showInfo, []);
display("Instr.: ", inst, eoln)})})

78

});

sportPlayer()::netmixin("sports", {
sportInfo()::method(sendo(super, showInfo, []));

basketPlayer()::netmixin("basket",{
basketInfo()::method(sendo(super, showInfo, []))});

volleyballPlayer()::netmixin("volley",{
volleyballInfo()::method(sendo(super, showInfo,[]))

})
})

})

})

The two queries will be the result of sending the messagesshowMusicians and
showBasketTeam . We can see thatshowBasketTeam send the messagebasketinfo
to the yield of the structure. This message is only defined in the netmixinbasketPlayer ,
that sends a message to the super to show the information of the student. All the other
extensions will delegate implicitly the messagebasketinfo to the parent-link, that fi-
nally will stop at the student, where we see thatbasketinfo just returnvoid. Then, all
the rest of the extensions will returnvoid.

In the case ofshowMusicians , the messagemusicians is sent to theusvariable,
in this case, to all the students. We can see that the methodmusicians in the student
will send again a message tous, but now accessing the second level of the structure,i.e.,
sport students and musicians. The musicians will finally show their info, and the rest of
the students will delegate the message to the student extension, returningvoid, in a similar
strategy of the basketball players.

Let’s consider we fill the database with the following expressions:

{

db:database();

miro:sSendoBack(db, student, ["Miro", "miro@vub.ac.be"]);
miroMusic:sSendoBack(miro, musician, []);
miroMusicFlute:sSendoBack(miroMusic, instrument, ["flute"]);
miroMusicGuitar:sSendoBack(miroMusic, instrument, ["guitar"]);

isabel:sSendoBack(db, student, ["Isabel", "isabel@vub.ac.be"]);

79

Figure 5.11: Data Base.

saartje:sSendoBack(db,student,["Saartje","saartje@vub.ac.be"]);
saartjeSport:sSendoBack(saartje, sportPlayer, []);
saartjeSportBasket:sSendoBack(saartjeSport, basketPlayer, []);
saartjeSportVolley:sSendoBack(saartjeSport,volleyballPlayer,[])

tchorix:sSendoBack(db,student,["Tchorix","tchorix@vub.ac.be"]);
tchorixSport:sSendoBack(tchorix, sportPlayer, []);
tchorixSportBasket:sSendoBack(tchorixSport, basketPlayer, []);

wolf:sSendoBack(db, student, ["Wolf", "wolf@vub.ac.be"]);
wolfMusic:sSendoBack(wolf, musician, []);
wolfSport:sSendoBack(wolf, sportPlayer, []);
}

All this information together will generate the tree shown in figure 5.11, wheredb is
the database,si are students,mi are musicians,mii musicians with a degree in a musical
instrument,spi are sportsman/sportswoman,vi are players of the volleyball team, andbi

players of the basketball team.
Why can’t we send the messageshowMusicians to the yield, and why do we need

to descent level by level using the variableus? Because we can get twice the same student.
If the look at the figure 5.11, we can see that Miro plays two instruments, then, that student
has two extensions in the yield that will reply two the query, duplicating the information.
In the case of the basketball team, we are sure that there will be no double extension of
basketball players, then, we can send the messageshowBasketTeam to the yield.

The queries and the answers are the following.

sendo(db, showMusicians, [])
:Name : Wolf

80

:email : wolf@vub.ac.be
:Name : Miro
:email : miro@vub.ac.be
:
sendo(db, showBasketTeam, [])
:Name : Saartje
:email : saartje@vub.ac.be
:Name : Tchorix
:email : tchorix@vub.ac.be
:

With this example, we showed the potential of the variablesus andyield, and how
useful distributed delegation between objects and extensions can be. Remember that all
this objects can move through the network as agents in normal Borg programs, but with
P-Borg we can give them a structure to maintain them and organize them. Our aim is
not to implement distributed delegation in order to perform classic method-lookup over a
network, our contribution applies the delegation and other features of the prototype-based
theory to organize the mobile multi-agent systems.

5.4 Summary

We have presented three case studies in this chapter. First, we showed how our prototyp-
ical approach can be useful in the conceptual design of solutions, taking the Role Object
Pattern as a point of comparison with the class-based programming. In that example we
could see that modeling with prototypes results in a simpler model, and adding the fact
that we are using distributed and mobile objects, our approach present big advantages
when we want to apply the Role Object Pattern to web applications and distributed sys-
tems in general.

The second case is a very well known problem of distributed programming: a chat
room. We present three different implementations to compare them, adding at the end
the power of mobile agents. We presented a Java RMI implementation where we saw
that the static typing obligate to have a hard structure to support type checking. Then,
we saw how simple an implementation is in Borg, a language made to experiment with
mobile computing. The third approach presented is using our extension of the language,
adding structure to the Borg implementation. Finally, we showed that all the advantages of
mobility provided by Borg, can be combined with our extension to have a well organized
multi agent system, with big advantages over classes at the level of implementation, and
reducing network traffic at runtime.

The third example presented demonstrates the usability of the variablesusandyield,
introduced in our approach to group the extensions of the objects, having a better way to
access them. The example also exploits the distributed delegation, in this case to structure
a solution to answer queries in a simple database.

The following chapter presents the conclusions of this thesis, and the future work.

81

Chapter 6

Conclusion and Future Work

6.1 Conclusions

We have presented in this dissertation a first approach to organize mobile multi agent
systems, providing a conceptual language that have named P-Borg, a Prototype-based
extension of Borg.

With P-Borg we have applied the techniques of the prototype-based theory to reason
about how this concepts can help on organizing agents, obtaining interesting results. For
instance, in the chat room we saw how the approach helps us to structure the agents in a
hierarchical way. We also present an experimental way to model a distributed database,
were our structure of objects with extension can be useful on the organization of the data,
presenting how powerful prototypes can be.

But the design of the model has an important background that can be divided in two
focuses: prototypes and distribution. In chapter 2 we introduce the concepts of prototype-
based programming, starting with a philosophical point of view, presenting how strong is
the prototype-based theory. Then, we present the conceptual differences with the class-
based orientation, taking more time to explain the prototype-based concepts, presenting
the advantages and disadvantages of them. As a first approach of organizing objects and
delegation, we introduce the Split Objects, concluding the chapter with Agora and its
mixin methods, important in the inspiration of our work.

The distributed and mobile computing theory was presented in chapter 3.We gave a
brief introduction to the basic concepts that lead us to take distribution seriously. We con-
tinue the chapter presenting some of the most popular environment to develop distributed
application, like Java RMI and CORBA. Then, we reviewed Obliq, a very well devel-
oped prototype-based language for distributed computing. At the end of the chapter we
presented Borg thereby explaining its main features.

Chapter 4 was dedicated to describe our contribution. Considering we are extending
a language, we start the chapter introducing macro functions, and giving some keys at the
level of construction of Borg. Then, we present a first analysis where we concluded that
objects could not share address space if we want them to live in a distributed environment,

82

moving around the network. We need autonomous and self-supported objects. Prototypes
are self-supported, and for that reason we chose them instead of class-based objects, but
we needed to adapt them to agents to be autonomous within the mobile environment.

Once defined P-Borg, we gave the semantics of the functions and concepts imple-
mented in the language. Among those concepts, we introduce the pseudo variables ”us”
and ”yield”, to help us in the aim of organization of multi-agent systems. These pseudo
variables offer features that could be applied very well in a distributed scope, dealing with
considerations of latency, partial failure and other basic concepts of distributed comput-
ing. At the end of the chapter we discussed some limitations and considerations to take
into account to continue evolving the system.

To demonstrate the applicability and validation of the concepts introduced with P-
Borg, we present three case studies in chapter 5. First, using the Role Object Pattern, we
saw how helpful our approach can be to design general solutions. After the analysis of the
Role Object Pattern, we can realize that conceptually prototypes appear as a very good
alternative to model systems that need dynamic behavior. Nevertheless, the role object
pattern show us that being clever in the decisions of design, class-based approach can
finally deal with the dynamicity required, but with a sophisticated solution.

The second example goes more into the level of implementation, but without for-
getting the main concepts at the moment of the analysis and comparison. This second
example consists in the comparison of three implementations of a chat room, using Java
RMI, Borg, and P-Borg, presenting the advantages of mobile code for distributed appli-
cations. With the chat room we also showed that all the well developed features of Borg
can be incorporate to the prototype objects, allowing them to move around the network to
reduce network traffic.

The last example is the design of a simple database, showing how the features of our
extension can help to model and control a common source of information, for distributed
queries.

We consider that the goals presented in the beginning of this dissertation are satisfac-
tory achieved, but this is just a small contribution toward the primary aim of having a very
well organized mobile multi agent system. Prototypes are indeed a helpful approach to
structure agents, being able to migrate through the network using the features of agents.
We believe that prototypes are promising in the aim of organizing mobile multi-agent sys-
tems, but as we already said, this is just a glimpse of a very long research track as we will
see in the future work section.

6.2 Future Work

During analyses made in the chapters 4 and 5, we already gave some key ideas about
future work. In this section, we are going to mention those ideas explicitly. From the list
presented bellow, we consider the study of distributed split objects, and cloning with deep
copy the two most interesting future works, with several consequences that potentially
would generate new future work.

83

• Implement cloning: Until now, we are using the cloning operators provided by
Borg to generate the objects and their extensions. But we are not providing a way
to clone existing objects. In order to do that, we have to take the decision about
the parent-link. We have two possibilities: the new agent gets a reference to the
parent of the object we are cloning, or, we can also clone the parent object as it is
explained in section 4.3.5.

• Code debugging: There is still some debug to do in the implementation of P-Borg,
and adding new features we will probably need to modify some existing implemen-
tation. Initially, we would focus on the implementation of synchronized messages.

• Private in public method: Implementing some examples like the chat room appli-
cation presented in section 5.2.3, we realized that objects have some methods that
are only used for internal communication between them within the hierarchy of ex-
tensions, and some methods corresponding to the interface of the objects, received
as messages sent from out of the hierarchy during the execution of the application.
In this case, it could be useful to implement private and public method to ensure
unwanted requested to the objects.

• Cloning with deep copy: To implement the distributed delegation, we forced the
parent link to refer the agent where the parent object resides. But the cloning
operator of Borg makes a deep copy of the dictionaries to the new agent to keep
agent autonomous. Even when we are not saving space with this decision, it could
be very useful to reduce networking traffic, but missing the sharing of common
properties. It is also possible to think about having some methods distributed, and
some others only locals, like proxies when methods are frequently requested. The
aim of this future work is to reduce network traffic.

• Distributed Split Objects: In the first analysis made in chapter 4, we mention the
possibility of using local mixin methods to implement distributed split objects. The
idea is to have local extensions sharing the same address space than the primary
object, as it is usually done with objects in non distributed computing. Then, these
local extensions would be only accessible by the primary object, being this one,
the only object possible to refer from out of the address space. Adding this kind of
split objects to P-Borg, we can have distributed hierarchies composed by objects
having local hierarchies, moving around the entire network, but with a well define
structure!!

84

Bibliography

[BC95] K. Bharat and L. Cardelli. Distributed applications in a hypermedia setting,
1995.

[BFVD00] Werner Van Belle, Johan Fabry, Karsten Verelst, and Theo D’Hondt. Ex-
perience in mobile computing: The cborg mobile multi-agent system. Pro-
gramming Technology Lab, Vrije Universiteit Brussel, 2000.

[BRSW97] D. Baumer, D. Riehle, W. Siberski, and M. Wulf. The role object pattern,
1997.

[BT79] B. J. Biddle and E. J. Thomas. Role theory: Concepts and research, 1979.

[Car94] Luca Cardelli. Obliq A language with distributed scope. Technical Report
122, 1994.

[Cha92] Craig Chambers. Object-oriented multi-methods in cecil. In Ole Lehrmann
Madsen, editor,Proceedings of the 6th European Conference on Object-
Oriented Programming (ECOOP), volume 615, pages 33–56, Berlin, Hei-
delberg, New York, Tokyo, 1992. Springer-Verlag.

[Ded01] Jessie Dedecker. Prototype-based languages and their programming id-
ioms. Capita selecta, Vrije Universiteit Brussel, Ecole des Mines de Nantes,
2001.

[D’H] Theo D’Hondt. The pico website.http://pico.vub.ac.be.

[DM00] Theo D’Hondt and Isabel Michiels. Combating the paucity of paradigms
in current oop teaching. Programming Technology Lab, Vrije Universiteit
Brussel, 2000.

[Hut96] Norman C. Hutchinson. An emerald primer, 1996.

[Ken] Elizabeth A. Kendall. Role models for agent system analysis, design, and
implementation.

[KM96] Bent Bruun Kristensen and Daniel C. M. May. Activities: Abstractions for
collective behavior.Lecture Notes in Computer Science, vol. 1098, 1996.

85

[Lab] Prog Lab. The borg website.http://borg.rave.org.

[Lie86] H. Lieberman. Using prototypical objects to implement shared behavior
in object-oriented systems. In Norman Meyrowitz, editor,Proceedings of
the Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), volume 21, pages 214–223, New York, NY, 1986.
ACM Press.

[Meu98a] Wolfgang De Meuter. Agora: The story of the simplest mop in the world -
or - the scheme of object-orientation. 1998.

[Meu98b] Wolfgang De Meuter. Agora98 language manual. 1998.

[Mic] Sun Microsystems. The java remote method invocationRMI homepage.
http://java.sun.com/j2se/1.3/docs/guide/rmi/index.html.

[NCRB+87] Hutchinson Norman C, Rajendra K. Raj, Andrew P. Black, Henry M. Levy,
and Eric Jul. The Emerald programming language. Technical Report 87-
10-07, Seattle, WA (USA), 1987.

[Onl] Internet Computing Online.http://www.computer.org/internet/v5n1/rmitut.htm.

[Rie98] Dirk Riehle. Bureaucracy. In Robert Martin, Dirk Riehle, and Frank
Buschmann, editors,Pattern Languages of Program Design 3, pages 163–
185. Addison Wesley, 1998.

[Sie00] J. Siegel.Corba 3 Fundamentals and Programming. John Wiley & Sons,
January 2000.

[SLS+94] R.B. Smith, M. Lentczner, W.R. Smith, A. Taivalsaari, and D. Ungar.
Prototype-based languages: object lessons from class-free programming
(panel). InConference Proceedings (Portland, Oregon, October 23-27)
OOPSLA’94, volume 29, pages 102–112. ACM, 1994.

[SLU89] L. A. Stein, H. Lieberman, and D. Ungar. A shared view of shar-
ing: The Treaty of Orlando. In W. Kim and F. H. Lochovsky, edi-
tors,Object-Oriented Concepts, Databases and Applications, pages 31–48.
ACM Press/Addison-Wesley, Reading (MA), USA, 1989.

[Ste87] Lynn Andrea Stein. Delegation is inheritance. In Norman Meyrowitz, edi-
tor, Proceedings OOPSLA’87 Coference (Orlando, Florida, October 4-8),
volume 29, pages 138–146. ACM, 1987.

[Tai96] Antero Taivalsaari. Classes vs. prototypes - some philosophical and histor-
ical observations. april 1996.

[US87] D. Ungar and R. Smith. Self: The power of simplicity. In Norman Mey-
rowitz, editor,Proceedings OOPSLA’87 Coference (Orlando, Florida, Oc-
tober 4-8), volume 22, pages 227–241. ACM, 1987.

86

[WWWK97] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. A note on dis-
tributed computing. InMobile Object Systems: Towards the Programmable
Internet, pages 49–64. Springer-Verlag: Heidelberg, Germany, 1997.

87

Appendix A

P-Borg Implementation

{

comment(IdontCare()):void;

obj_slots(obj):obj[3];
dct_name(dct):text(dct[1]);
dct_val(dct):dct[2];
dct_next(dct):dct[3];

ref_tag:1;
comment("This is the tag of a reference to a variable");

app_tag:2;
comment("This is the tag of a function application");

msg_tag:4;
comment("This is the tag of a message expression");

comment("There is a primitive -tag- to get the tag");
comment("There is a primitive -make- to make a tree");

comment("The types to send messages to agents");
sendoType::1;
sSendoType::2;
comment("do not use this sSendoType.");
comment("As we have sSendoBack, having this one it will be like");
comment("making distintion between procedures and functions");
sendoBackType::3;
sSendoBackType::4;

comment("Types of delegation"); selfType::1; yieldType::3;

88

equivalent@args:˜@args;

obj(_where_ , exps(_where_)):{
comment("We will build a new tree for the object");
beginTree:make(app_tag);
beginTree[1]:=begin[1];
beginTree[2]:=[

comment("Install the super variable"),
read("super:void"),
comment("To get the reference to us"),
read("we:empty"),
read("addNetMixin(ag)::we:=cons(ag, we)"),
read("cleanUs()::we:=empty"),
comment("add the body of the object"),
exps[3],
comment("cloning the object placing it into a agent"),
read("me:clone2agent(_where_)"),
comment("initializing us"),
read("me->addNetMixin(me)"),
comment("return the reference to the clone agent"),
read("me")];

exps[3]:=beginTree;
comment("we get a lambda function with the object");
lam(_where_):exps(_where_);
comment("we apply the lambda function");
lam@[_where_]};

method(exps(self,me, us, yield)):{
lambda(Aself,Ame, Aus, Ayield):exps(Aself,Ame, Aus, Ayield)};

netmixin(_where_, exps(self,me, us, yield, _where_)):{
comment("We will create a Tree");
beginTree:make(app_tag);
beginTree[1]:=begin[1];
beginTree[2]:=[

comment("Install the super variable"),
read("super:agent(text(agentself[2]))"),
comment("To get the reference to us"),
read("we:empty"),
read("addNetMixin(ag)::we:=cons(ag, we)"),
read("cleanUs()::we:=empty"),
comment("add the body of the object"),
exps[3],

89

comment("cloning the object placing it into a agent"),
read("me:clone2agent(_where_)"),
comment("updating super.us"),
read("super->addNetMixin(me)"),
comment("initializing us"),
read("me->addNetMixin(me)"),
comment("return the reference to the clone agent"),
read("me")];

exps[3]:=beginTree;
lambda(Aself,Ame, Aus, Ayield):

exps(Aself,Ame, Aus, Ayield, _where_)};

BApply(me,m,args,self, caller, stype):{
comment("arguments filled in");
lam:m@args;
blabla("going for some self now");
res:lam@[self,me, "us", "yield"];
if(stype=sendoType,

res,
if(stype=sendoBackType,

send(caller, res),
if(stype=sSendoBackType,

ssend(caller, res))))
};

hasM(dct,m):{
comment("looking for m within dct");
if((is_void(dct_name(dct))) |

(dct_name(dct)="[frame]") |
(dct_name(dct)="[dctname]"),
false,
if(dct_name(dct)=m,

dct_val(dct),
hasM(dct_next(dct),m)))};

hasSuper(dct):{
comment("lookig for super within dct");
if((is_void(dct_name(dct))) |

(dct_name(dct)="[frame]") |
(dct_name(dct)="[dctname]"),
false,
if(dct_name(dct)="super",

!is_void(dct_val(dct)),

90

hasSuper(dct_next(dct))))};

hasWe(dct):{
comment("lookig for we within dct");
if(dct_name(dct)="we",

dct_val(dct),
hasWe(dct_next(dct)))};

send2Yield(m,args,self, caller, stype)::{
comment("me becomes the dictionary of agentself");
me:obj_slots(agentself);
theWe:hasWe(obj_slots(me));
if(equivalent(cdr(theWe), empty),

{comment("I am one of Them");
delegate(m,args,self, caller, stype)
},
while(!equivalent(cdr(theWe), empty),

{comment("Broadcast to my extensions");
blabla("BC from ", self,eoln);
delegate2agent(

car(theWe), m, obj_slots(me),
args, self, caller, stype,
yieldType);

theWe:=cdr(theWe)
})

)
};

delegate(m,args,self, caller, stype):{
comment("me becomes the dictionary of agentself");
me:obj_slots(agentself);
res:hasM(obj_slots(me),m);
if(equivalent(res,false), {

comment("no method... looking harder...");
res:=hasSuper(obj_slots(me));
if(equivalent(res,false),

error("Message not understood "+m), {
if((stype=sendoType) | (stype=sendoBackType),

delegate2agent(me.super, m, obj_slots(me),
args, self, caller,
stype, selfType),

{
comment("if is synchronized, I become the caller");

91

delegate2agent(me.super, m, obj_slots(me),
args, self, self,
stype, selfType);

res:=srecv(me.super, any);
ssend(caller, res)
}

)
}) }, {
comment("ahaa... found... going to apply it");
BApply(me,res,args,self, caller, stype)})};

delegate2agent(rec, app, dct, args, self, caller, stype, dtype):{
unevaluated_args:args;
evaluated_args:void;
comment("going to evaluated the arguments");
if (is_symbol(unevaluated_args),

evaluated_args:=eval(unevaluated_args,dct),
{
siz:size(unevaluated_args);
tbl[siz]:void;
evaluated_args:=tbl;
idx:1;
while(idx<=siz,

{
evaluated_args[idx]:=eval(unevaluated_args[idx],dct);
idx:=idx+1
})

});
comment("Preparing message to be send");
if(dtype=selfType,

refDel:delegate[1],
if(dtype=usType,

refDel:send2YouAndYours[1],
refDel:send2Yield[1]));

comment("arguments of delegate");
argsDel[5]:void;
argsDel[1]:=app;
argsDel[2]:=evaluated_args;
argsDel[3]:=self;
argsDel[4]:=caller;
argsDel[5]:=stype;
tosend:async_msg(rec, refDel, argsDel);
comment("call in the caller’s environment =>");

92

tocall:eval(quote(=>),dct);
tocall(rdc_agtname(rec),tosend)};

sendoFilter(rec, nam, dct, args, stype)::{
caller:agentself;
if(!is_ref(rec),
{

comment("The receiver is self, us or yield");
if(is_text(rec),{

comment("The receiver is us or yield");
me:obj_slots(agentself);
theWe:hasWe(obj_slots(me));
if(equivalent(cdr(theWe), empty),

delegate2agent(car(theWe), nam, dct,
args, car(theWe), caller, stype,
selfType),

if(rec="us",
while(!equivalent(cdr(theWe), empty), {

delegate2agent(car(theWe), nam,
dct, args, car(theWe), caller,
stype, selfType);

theWe:=cdr(theWe)
}),
while(!equivalent(cdr(theWe), empty), {

delegate2agent(car(theWe), nam, dct,
args, car(theWe), caller, stype,
yieldType);

theWe:=cdr(theWe)
})

)
)},{
comment("Calling Self");
delegate2agent(dct_val(rec),nam, dct,

args, dct_val(rec), caller, stype,
selfType)

})
},
{
comment("sending the message to the agent");
delegate2agent(rec, nam, dct, args, rec,

caller, stype, selfType)
})

};

93

sendo(rec,m(),args):{
nam:text(m[3]);
dct:m[4];
sendoFilter(rec, nam, dct, args, sendoType);
""

};

sendoBack(rec,m(),args):{
nam:text(m[3]);
dct:m[4];
sendoFilter(rec, nam, dct, args, sendoBackType);
""

};

sSendoBack(rec,m(),args):{
nam:text(m[3]);
dct:m[4];
sendoFilter(rec, nam, dct, args, sSendoBackType);
srecv(rec, any)

}

}

94

