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Abstract

While designing applications with multiple crosscutting concerns, implemented as aspects,
interactions can occurs among these aspects. To resolve these interactions, aspects need
to be composed.

Admittedly, a crucial part in aspect composition lies in the detection of the interactions. As
a matter of fact, aspects typically use intensional definitions of their cuts, so the developer
can have trouble foreseeing the possible interactions between a given aspect and the base
code, and between several aspects. It is therefore crucial that the aspect-oriented system
detects and reports on interactions.

Once the interactions have been detected and identified, they shall be resolved using declar-
ative composition mechanisms. A common example of such mechanism is tools for ordering
the aspects at a shared join point.

In this report, we propose a solution for detection of interactions among structural aspects,
that is to say aspects modifying the structure of classes, in Reflex. This solution is based
on a logic engine connected to Reflex and which is used to reason about the aspects and
how they interact. We also propose some advanced tools for interaction resolution.
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Nomenclature

AOP Aspect-Oriented Programming

AOSD Aspect-Oriented Software Development

BLink Behavioral Link

DSL Domain Specific Language

Mutex Mutual Exclusion

SLink Structural Link

SoC Separation of Concerns

VM Virtual Machine
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Chapter 1

Introduction

Aspect-Oriented Programming (AOP) has be designed to achieve separation of concerns
in object-oriented languages. Each concern is modularized by an aspect which defines the
appropriate behavior independently from the base program (i.e. business logic). Yet, at
some point, the aspects and the base program have to be weaved together so as to build
the final application.

These aspects are designed independently from each other, and possibly by different pro-
grammers. Therefore possibilities of interactions and conflict appear, leading to errors or
bad or unwanted behavior. To resolve these interactions, aspects need to be composed
thanks to declarative composition tools. Composing the aspects allows to resolve the in-
teractions and to ensure proper behavior of the application.

However, in order to resolve the interactions, one must first be aware of their existence.
This means that tools should be provided for detection of the interactions. These tools
should detect the interactions independently from the base program used and shall report
the interactions found the the programmer. Afterwards, the interactions can be resolved
by declaring composition rules among the interacting aspects.

In the context of Reflex, a versatile kernel for multi language AOP, the issue of composing
structural aspects have been studied. We propose detection tools based on a logic engine
connected to Reflex and on detection rules previously defined to detect all kinds of inter-
actions between structural aspects. Yet this study is limited to the scope of structural
aspects adding structural elements (i.e. classes, methods, fields, annotations, etc.) The
aspects which modify the existing elements, such as modifying the class hierarchy or a
method access modifier, are left for future study.

We also propose a set of composition mechanisms that one could expect from a comprehen-
sive system truly supporting structural aspects. These mechanisms are sometimes inspired

1



CHAPTER 1. INTRODUCTION 2

from existing mechanisms in other domains, such as from traits, while other are original
to Reflex, such as the ability to control the visibility of the structural modifications done
by structural aspects.

In a first part, we review the state of the art of aspect composition and approaches. We
review in particular several well known AOP approaches, such as AspectJ, or approaches
which propose advanced mechanisms for interaction detection and/or aspect composition,
such as JAsCo and Compose*. We also review in details the Reflex AOP kernel as the
background for this study. In a second part, we introduce our proposal for interactions
detection and resolution. We first identify and classify the different kinds of interactions
possible between structural aspects and list the resolution mechanisms which would be ex-
pected for each kind. We then present the composition process used in Reflex. This process
is iterative and is based on succession of detections and declarations of composition rules.
Afterwards, we describe our proposal for automatic detection of interactions among struc-
tural aspects, based on a logic engine. After that, we describe the composition mechanisms
introduced in Reflex. Then follows a description of the implementation details concerning
the detection tools and the aspect composition process. Then, in a third part, we open
discussions about related works and possible future extensions and ameliorations. We also
discuss about the value and limits of our proposal. Finally we end with a conclusion on
the present proposal.



Part I

Concepts and Context
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Chapter 2

State of the art

Composition of aspects is a wide and complex topic and has been studied a lot over the
past few years. We here review what has been done so far.

In a first part, we introduce the concept of aspects and the problems caused when several
co-exist in a single program. Then in a second part we study some of the different existing
systems for AOP so as to build the context of this study.

2.1 Introduction to aspects

In software engineering, aspect-oriented programming (AOP) and aspect-oriented software
development (AOSD) paradigms attempt to aid programmers in the separation of concerns,
specifically crosscutting concerns, as an advance in modularization. AOP does so using
primarily language changes, while AOSD uses a combination of language, environment,
and methodology.

Separation of concerns (SoC) is the process of breaking a program into distinct features
that overlap in functionality as little as possible. A concern is any piece of interest or focus
in a program. Typically, concerns are synonymous with features or behaviors.

In this section we present the different kinds of aspects that exist and introduce the problem
of composition of aspects.

4



CHAPTER 2. STATE OF THE ART 5

2.1.1 Model and types of aspects

AOP languages usually follow the pattern of pointcut/advice. Pointcuts allow a program-
mer to specify join points (well-defined moments in the execution of a program, like method
call, object instantiation, or variable access). All pointcuts (aka cut) are expressions (quan-
tifications) that determine whether a given join point matches. Advice (aka action) allows
a programmer to specify code to run at a join point matched by a pointcut. The actions
can usually be performed before, after, or around the specified join point. The result is
commonly called a behavioral aspect as it adds, or modify, some behavior to the base
program.

Another kind of aspect exists, usually known as inter-type declaration(AspectJ), structural
aspect or introductions. Inter-type declarations allow a programmer to add structural
elements (i.e. methods, fields, interfaces, annotations, etc.) to existing classes from within
the aspect.

2.1.2 Composition of aspects

Aspects can interact when they are applied on a program. Two aspects are said to interact
if they apply at a common join point or if one aspect modifies the behavior or the scope of
another aspect. Modifying the scope of another aspect can be done by adding new members
which are possibly part of its cut. Then, from a semantic point of view, interacting aspects
can be conflicting or non-conflicting depending whether the interaction is semantically
correct or not.

Using the example of [8]: the loggingAspect prints the arguments of designated method
calls, while the encryptionAspect encrypts and decrypts communications between distant
objects. Both aspects apply to the methods sendData(String) and receiveData(String)

which are part of the protocol for communication between distant objects. The two as-
pects interact in the sense that the data sent between the distant objects are logged and
encrypted. Depending on the programmers will, this interaction can be conflicting or not.
Let’s assume the wanted and correct behavior for the application is to log the encrypted
data and not to log the clear data. Then, encrypting the data and then logging it is a
non-conflicting interaction. On the contrary, logging the clear data and then encrypting it
is a conflict as it is against the programmer’s design/will.

Besides, there is a specification dimension: has the interaction been resolved or not? We
say that an interaction is resolved if resolution mechanisms have been specified for this
interaction, and unresolved otherwise. An interaction can therefore be resolved and con-
flicting if, by mistake, the opposite order is defined for the resolution. In the above example,
this would be specifying that logging should happen before the encryption: the interaction
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is resolved but conflicting semantically.

Douence et al [7] advocate a general approach for automatic detection and explicit resolu-
tion of aspect interactions. They state that aspects should be written independently from
each other, then automatic tools shall detect and report the aspects’ interactions to the
user and finally the interactions shall be resolved using dedicated composition language.
Treatment for the interactions shall also be separated from the aspects themselves.

In the case of behavioral aspects, interactions may occur when several aspect apply at the
same join point at the same time. In that case, aspects can be composed using sequencing.
This sequencing can be simple, like for instance a simple ordering (”one aspect applies
prior to the other”), or more elaborated, using a mix of ordering and nesting (”one aspect
surrounds the other”) for example.

For structural aspects, the problem is more simple as join points are classes: the aspects
have a set of classes which cut their specifications and on which they are to bring structural
modifications. A basic analysis is to say that two aspects interact if the intersection of the
sets of their classes is not empty. This is not fine-grained enough as modification can be
orthogonal and therefore don’t create any conflict at all. Sequencing is also more simple as
there is no possible nesting: only ordering, using precedences, is possible due to the nature
of such aspects.

2.2 Existing systems

Many approaches for AOP exist and it would be impossible to review them all here. Still, we
review some of them, the most famous and/or interesting for this report. We specifically put
the accent on aspect composition and interactions detection as it is what this contribution
is all about.

2.2.1 AspectJ

AspectJ extends the Java programming language with a new construction: aspects. It
supports both behavioral and structural aspects, although differently.

Behavioral aspect are known as the dynamic crosscutting concerns as they combine a
dynamic poincut and an advice to be executed before, after or around the pointcut. The
following code gives an example of a package-visible pointcut that exposes an int and an
advice which runs before reading the field int Foo.y, both taken from the AspectJ 5 quick
reference guide:
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pointcut pc(int i) : set(int Foo.x) && args(i) ;

before () : get(int Foo.y) { ... }

In the earlier versions of AspectJ, aspect were woven in the base code at compile time.
With the version 5 of AspectJ which supports Java 5, it is also possible to define load-time
weaving, using a xml file for the configuration.

AspectJ uses precedence (ordering) declarations to deal with conflicts or interactions. Con-
cerning the different advices in a same aspect file, they are applied in the order they are
declared within the file. When around advices are used, AspectJ forces nesting1 and before
and after advices are nested inside as well. The default behavior when several aspects
apply to the same join point is given in [14]:

1. First, any around advice are run, most-specific first. Within the body of an around
advice, calling proceed() invokes the next most specific piece of around advice, or, if
no around advice remain, goes to the next step.

2. Then all before advice are run, most-specific first.

3. Then the computation associated with the join point proceeds.

4. Execution of after returning and after throwing advice depends on how the compu-
tation in step 3 and prior after returning and after throwing advice terminate.

• If they terminate normally, all after returning advice are run, least specific first.

• If they terminate by throwing an exception, all after throwing advice that match
the exception are run, least specific first. (This means after throwing advice can
handle exceptions thrown by less specific after returning and after throwing
advice.)

5. Then all after advice are run, least-specific first.

6. Once all after advice have run, the return value from step 3, if any, is returned to
the innermost call to proceed from step 1, and that piece of around advice continues
running.

7. When the innermost piece of around advice returns, it returns to the surrounding
around advice.

8. When the outermost piece of around advice returns, control continues back from the
join point.

1Nesting is when an around advice surrounds another advice.
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We can see that means for composing behavioral aspects are limited in AspectJ. The
developers cannot define their own ordering and nesting when around and before/after
advices are mixed.

AspectJ does not provides any mean of detection of interactions and conflicts. Still, As-
pectJ on Eclipse (AJDT) provides a view showing the cross references that is to say all the
join points where several aspects apply at the same time, or where around aspects apply
(See Fig. 2.1.)

Figure 2.1: Cross References view in Eclipse

This is how interactions are detected and reported by AspectJ.

AspectJ supports structural aspects by means of intertype declarations (aka introductions).
These are also known as static crosscutting mechanisms as it modifies the static structure
of classes. It allows for example to add some methods and fields to a class or to modify
the hierarchy of classes. The following code example shows how to add a method m to the
class Foo, visible anywhere in the defining package:

int Foo.m( int i ) { ... }

Problems of composition arise when, for example, two aspects try to add fields or methods
with the same signature to a same class, or try to modify the hierarchy of a same class.
Still, AspectJ does not provide any means to resolve this conflict. The only solution for the
programmer is either to remove one of these methods or to rename one of them. Moreover,
intertype declaration do not use pointcuts to define their cut. They instead designated
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directly the class where elements shall be added. As a consequence, the modifications
brought by an aspect cannot affect the cut of another structural aspect, thus preventing
interactions. In fact, AspectJ relies on the compiler and some limited possibilities to detect
conflicts among structural aspects.

2.2.2 JAsCo

JAsCo [19, 24] is another aspect-oriented approach, tailored for component-based devel-
opment. It introduces two concepts: Aspect Beans and Connectors. The Aspect Beans
can be seen as an extension of the actual Java Beans. They describe the crosscutting con-
cerns independently from the actual implementation of the components and define Hooks
which are responsible for capturing the crosscutting behavior. Hooks contain a triggering
condition with both an abstract pointcut definition and a dynamic condition of applica-
tion thanks to a method isApplicable, one or more advice methods and any number
of ordinary Java class members, local to the hook. Connectors connect the aspect beans
to the components together, by instantiating logically related aspect beans hooks, so as
to define behavioral aspects. Figure 2.2 summaries this concept by showing a connector
instantiating two hooks of an aspect bean and connecting them to the base code.

Figure 2.2: Schematic overview of JAsCo

When a connector instantiates several hooks, the default behavior is to apply them in
the order they are declared if several are applicable at the same joint point. However, it
is possible to define a precedence strategy to define a specific order in which associated
advices are executed, leading to fine-grained control. Still, this is only available for hooks
instantiated within the same connector. If one wants to order hooks which are declared
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in different connectors, the only solution is to move these declarations within a single
connector. Moreover, JAsCo provides means to define precedences among connectors.
There are therefore two distinct levels of ordering: among connectors and among hooks
within a same connector. Regarding around advices, JAsCo forces a nesting relation, like
AspectJ.

JAsCo provides another advanced composition mechanism known as the Combination
Strategies. This works as a filter on the list of applicable hooks at a certain point of
the execution. It allows to define simple composition behavior such as Mutual Exclusion
(”If A applies then exclude B”), also known as ”mutex”, and Implicit Cut (”If A applies,
then apply B as well”), as well as more complex one. It is then possible to define advanced
behavior so as, for instance, to remove hookB from the applicable hooks at a certain join
point whenever hookA is not applicable. The following example defines a combination
strategy TwinCombinationStrategy which states that if a hook hookA is not applicable,
then hookB shall not be applied either:

class TwinCombinationStrategy implements ICombinationStrategy

{

private Object hookA, hookB;

TwinCombinationStrategy(Object a,Object b)

{

hookA = a;

hookB = b;

}

HookList verifyCombinations(HookList hlist)

{

if (!hlist.contains(hookA))

hlist.remove(hookB);

return hlist;

}

}

Although this tool is powerful and interesting, it remains dangerous as unexpected behavior
may occur. For instance, if a first combination strategy CoS1 defines that if hookA and
hookB are applicable, then hookC shall be removed, and if another strategy CoS2 states
that if hookD is applicable then hookC shall be added. Then there is an obvious conflict
when hookA, hookB, and hookD are applicable at the same time: if hookC is applied, it
conflicts with the first rule, while if it does not, it conflicts with the second rule.
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JAsCo does not support structural aspects, most probably because they do not fit with
the component-based model.

2.2.3 Compose*

Compose* is a aspect-oriented approach based on the concept of Composition Filters [2].
Composition Filters model is an extension of the Object-Oriented model whose base idea
is to surround every object, referred as the kernel object, with an interface layer which
intercepts entering and out-going message so that they can be modified. Using this concept,
Compose* is able to do an aspect-like language. (See Fig. 2.3)

Figure 2.3: The components of the composition-filters model.

Compose* supports both structural (syntactical) and behavioral (semantic) aspects. Be-
havioral aspects are done using the composition filter introduced above, while the structural
aspects are done by declaring syntactical introductions.

Pascal Durr et al [9, 8] propose a language independent technique to detect behavioral
conflicts among aspects that are superimposed on the same join point. Their base idea is
that some resource must be shared among advices for them to conflict. They are therefore
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limiting their study to the -most relevant- case of conflicts on shared join points. They
identify operations that can be done on resources and use detection rules to detection
conflicts. These rules are created by the programmer and can be an assertion pattern, a
combination of operations that must occur on a resource, or as conflict pattern, a combi-
nation of operations that must not occur. Then, at a certain join point, they can generate
the tree of possible execution traces and select one that is not conflicting with the rules.
If this is not possible, they report a warning to the user and continue the compilation
process. This system therefore acts both to help the compiler to weave the aspects in a
suitable order and as a conflict detection mechanism.

They use as an example the case of two aspects applied on communications between distant
objects: one which does logging and one which does encryption and decryption. Both
aspect apply on the same join points, for instance when messages are sent and received
between the distant objects. There is therefore an obvious interaction which can create
unwanted behavior. Indeed, if logging is applied before encryption, the clear message will
be logged, enabling debugging but creating an obvious hole in security. In the other case,
the message is logged encrypted, which is bad for debugging as the message is no longer
available but better in terms of security. Depending on the choice of the developer, rules
to detect conflicts can be specified. For instance, the rule ”if a read (logging) operation
occurs after an encrypt operation on the same resource, then it is considered as a conflict.”
Then, by specifying multiple rules like this one, the developer can detect semantic conflicts
among the aspects he uses.

The limit of this system is that the programmer has to be aware of all the aspects used
and that some of them are conflicting in order to think about designing these rules. He
for instance has to check manually all the points where the logging can interact with other
aspects so as to design the appropriate rules.

Concerning structural aspects, they do not detect the interactions as they state that they
are usually captured by the typing system of the underlying language [9]. This assertion is
somehow a bit light as when structural aspect have a dynamic cut, they can be influenced
by the actions of other aspects, which is not detected by the compiler or the language.

However, in [10] they introduce an algorithm to reason about inter-dependent structural
aspects, that is to say aspects whose cut is influenced by the action of another aspect. This
can build circular dependencies: (1) an aspect A1 adds the annotation PersistentClass

to every class containing at least one method with the annotation Persistent and (2)
aspect A2 adds the annotation Persistent to every method of classes which have the
annotation PersistentClass. Depending on the order of the application and of the class,
we can end up with different results. Their algorithm is based on iterations over every
possible ordering, but is limited to the case where there are no aspects with what they call
”negative feedback”, that is to say aspects whose cut is based on the absence of elements.
In these conditions, the algorithm is sure to reach a fix point, and therefore terminate. For
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example, adding an aspect A3 which adds the annotation Transient to any method which
doesn’t have the annotation Persistent would be considered as an error and reported as
such. However, using aspect whose cut is based on the absence of some elements is still
possible as long as it does not interact with other aspects.

2.2.4 LogicAJ

LogicAj stands for Logic Aspects for Java. It is being designed at the university of Bonn
and uses Prolog as the base elements to modify the Java program [15, 17]. Quoting the
website:

LogicAJ enables the use of meta-variables for base program elements (fields,
methods, parameter lists, argument lists, method bodies, etc.). Meta-variables
can be used uniformly in pointcut definitions, introductions and advice. Generic
introductions and generic advice can both be subject to prior pointcut evalu-
ation. This enables implementation of aspect effects that can vary depending
on the values produced for meta-variables during the evaluation of pointcuts.

Generic introductions make it easy to introduce new types, determine new
class members, and vary the code of introduced methods by evaluating pred-
icates. Generic advices replace otherwise redundant or reflective advices and
reference methods and fields created by generic introductions.

LogicAJ uses Condor [5] (for Conflict Detector) for interactions detection. To our knowl-
edge, there hasn’t been any publication on Condor so far, but on their web site we can
read that Condor provides:

• the ability to identify a well-defined class of interferences

• the ability to determine an interference-free order of execution, if one exists

• the ability to determine the most suitable weaving algorithm for a given set of aspects

And the interaction analysis is

• independent of the base programs to which the aspects refer (only aspects need to
be analyzed)

• independent of any special annotations of the analyzed aspects

However, no more information is provided, and no download found, so no further investi-
gations have been done on this.
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2.2.5 Logic Metaprogramming

Brichau et al [3] propose a way to combine aspects written in different aspect languages
using Logic MetaProgramming (LMP). Aspects and aspect languages are represented as
modularized logic metaprograms which are combined using various combination modules
and/or interaction modules.

Combination modules take as parameters several other modules and contain rules that tell
how the functionalities of these modules are meant to be combined.

Interaction modules implement a dependency or an interaction between aspects. Contrary
to combination modules, they do not combine other modules but instead modularize a
crosscutting aspect.

Figure 2.4: Example of composition of logic modules

Figure 2.4, taken from [3], shows an example of this system. Three aspects are represented
as modules: synchronization, logging and order of execution. These three aspects interact
together, as modularized by the Interaction Module, and are composed as follow: logging
is wrapped inside synchronization, thanks to the Wrapper Combination, and the resulting
combination is combined with order of execution thanks to the Dominates Combination,
which states that order of execution is to be applied first. The resulting combination is
then given to the weaver.

This LMP approach allows to abstract the aspects in logic modules and then to combine
them. It also allows to define complex behavior for the composition by combining mod-
ules together. Hence it provides interesting means of composition, especially for aspects
from different aspect languages. However, this approach does not address the problem of
interaction detection.
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2.2.6 Reflex

Reflex is a versatile kernel for multi-language AOP which uses reflection in order to achieve
aspects. Its purpose is to be able to support any other AOP approach. Still the study of
this approach is postponed to chapter 3 as it will be the base for the rest of the study.

2.3 Summary

A lot of work has been done on composition of behavioral aspects. Some approaches like
AspectJ prefer to restrain the possibilities so as to have an easy but efficient system and
to avoid complications, while other, like JAsCo, try to come up with advanced solutions to
combine and compose aspects. Still, ordering and nesting is usually not very flexible and
often limited.

On the other hand, composition of structural aspects seems to have been quite neglected
and these aspects are not even always supported.

Concerning detection of conflicts and interactions, it seems very little work has been done
so far. Compose* brings some interesting ideas based on specifications provided by the
developers to state what is a conflict and what should be happening. However this is not
really automatic detection as it requires a lot of work from the developer and a clear vision
of the entire system, especially of all the different aspects present, which is not always
feasible in the case of big teams of development.

Still, they provide a kind of detection mechanism for interactions among structural aspects.
This mechanism detects and resolves automatically the circular dependencies among struc-
tural aspects, in specific case where there is no negative feedback. However they do not
provide tools for the programmers to see the list of all the detected interactions and do
not provide them with tools to resolve the interactions manually, as it would be wanted in
certain cases.

We now turn to the study of Reflex, which will be the base for the rest of this study.



Chapter 3

Diving inside Reflex

In this chapter we introduce Reflex, a versatile kernel for AOP in Java, as it is the base for
the present study. This presentation summarizes the papers [22, 20]. The reader is invited
to read them if he wants to learn more about this system. Nevertheless, the necessary
information for the rest of the report is presented here.

This presentation is the state of Reflex as it was before the present contribution to the
system.

In this chapter, we briefly review this multi-language AOP kernel. In the first section, we
describe the idea behind it and how it works. Then we review the aspects of composition
in Reflex: aspects of aspects (Sect. 3), aspect dependencies (Sect. 4), ordering/nesting of
aspects (Sect. 5), and visibility of structural changes (Sect. 6). Finally, we describe the
what happens when a class is loaded in the Java Virtual Machine, as it will be used further
in the present document.

3.1 Introduction

Reflex makes it possible to translate aspects from any AOP approach, even domain specific
ones, into Reflex [21, 22]. This is done thanks to a model based on reflection and links to
build aspects. Reflex supports both behavioral aspects and structural aspects and provides
means for compositions of aspects. Reflex supports:

• automatic detection of aspect interactions limiting spurious conflicts;

• aspect dependencies, such as implicit cut and mutual exclusion;

• extensible composition operators for ordering and nesting of aspects;

16
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• control over the visibility of structural changes made by aspects;

• aspects of aspects.

3.2 Multi-language AOP and Reflex

This section briefly introduces the necessary background concepts on multi-language AOP
and the Reflex AOP kernel.

3.2.1 Multi-language AOP

Reflex is based on a flexible model of partial behavioral reflexion [23] along with structural
abilities. It is based on a three level model (cf. Fig. 3.1). The lower level, the transformation
layer, is in charge of basic weaving for both behavioral and structural modifications. The
second layer, the composition layer, is for detection and resolution of aspects interactions.
The language layer is there for modular definition of aspect languages (as plugins).

Figure 3.1: Architecture of a versatile kernel for multi-language AOP

3.2.2 Reflex in a nutshell

Reflex’s view of AOP is inherently related to metaprogramming: the central notion is about
links binding a set of program points (a hookset) to a metaobject. A link is characterized
by a number of attributes, among which the control at which metaobjects act (before,
after, around), and a dynamically-evaluated activation condition. The cut of aspects are
done through introspection of the program, while the action is done by behavior/structural
modifications (intercession). Figure 3.2 shows two links, one subject to activation unlike
the other one, and the correspondence to AOP concepts of the pointcut/advice model.
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Figure 3.2: The link model and correspondence to AOP concepts

Reflex uses Javassist [4] to perform bytecode transformation at load-time, according to the
aspects declared. As one could have figured, there are two kinds of links for the behavioral
and structural modifications.

The behavioral links, also refered as BLinks, follow this pattern of hookset with a possible
activation test and a metaobject. During their installation, hooks are are inserted in class
definitions at the appropriate places in order to provoke reification at runtime.

The structural links, or SLinks, on the contrary, are not subject to activation as they are
only used at load time. Each structural link binds a structural cut to a metaobject. In
Reflex, a structural cut is a class set defined intentionally by a class selector. For instance
the following class selector defines a cut consisting of the Buffer class only.

bufferSelector = new ClassSelector(){

boolean accept(RClass aClass){

return aClass.getName().equals("Buffer");

}};

The metaobject bound to the class set can modify the structure of the elements, follow-
ing the model of Javassist [4]: an RPool object gives access to RClass objects, which
in turn give access to their members as RMember objects (either RField, RMethod, or
RConstructor), which in turn give access to their bodies as RExpr objects (with a specific
type for each kind of expression). These objects provide and abstraction of the byte-code
and facilitate the manipulations.

Using these links, we can rebuild aspects as they are known in other AOP approaches: an
aspect can be represented as a set of structural and behavioral links. The transformation
from one side to the other is the matter of the language layer introduced earlier.
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3.3 Aspects of Aspects

Designing aspects of aspects is possible in Reflex: A link A can apply to the action of
another link B by having the cut of A matching operations that occur in the metaobject
associated to B. Metaobjects are indeed normal objects and therefore can be modified as
any other object.

The difference is for aspects acting around an execution point: in Reflex, the call to the
method proceed is visible to other aspects, unlike in AspectJ, and therefore can be used
in the activation of other aspects.

3.4 Aspect Dependencies

Aspect dependencies are of three kinds in Reflex: implicit cut (”apply A whenever B
applies”), mutual exclusion (”never apply A if B applies”), and forbidden interactions,
which is an error mechanism to forbid two aspects to interact.

The implicit cut is defined by providing a link the same cut as another link. In the case of
behavioral links, it would be done by

BLink trace = Links.getSameCut(discount, <mo>);

which is a convenient procedure to declare both links in the same hookset and sharing
the same activation condition. (<mo> stands for the metaobject specification, not relevant
here.)

Mutual exclusion between two aspects is obtained in Reflex by declaring that a link should
not apply if another one does. It is defined by the code

Rules.declareMutex(aLink1, aLink2);

and ensures that if aLink1 is to be applied, then aLink2 is not. In the case of BLinks, the
resolution of mutual exclusion is subject to the activation condition, if present: if there is
no, then the mutual exclusion can be resolved at weaving time. In the other case, resolution
is done dynamically at runtime. See [20], section 4.2 for more details on this matter.

A particular case of mutual exclusion is when interaction between two aspects should be
considered an error. In that case, it simply raises an error at the attention of the developer
whenever both links are applied both. The following code is used to declare a forbidden
interaction between discount and bingo:
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Rules.declareError(discount, bingo);

3.5 Ordering and Nesting of Aspects

The Reflex AOP kernel follows the general approach advocated by Douence et al., of
automatic detection and explicit resolution of aspect interactions [7]:

• The kernel ensures that interactions are detected, and reported to users upon under-
specification (Sect. 3.5.1).

• The kernel provides expressive and extensible means to specify the resolution of
aspect interactions (Sect. 3.5.2).

• From such specifications, it composes links appropriately (Sect. 3.5.3).

3.5.1 Interaction Detection

Reflex adopts different definitions of interactions depending on the case: behavioral and
structural.

Two behavioral links interact statically if the intersection of their hookset is not empty. As
the cut of a link is subject to a dynamic-evaluated condition, it is said that they interact
dynamically if they interact statically and they are both active at the same time. But since
link ordering is resolved statically (when introducing hooks) and activation conditions can
be changed dynamically, Reflex adopts a defensive approach: any static interaction is
reported, and must be considered by the developer, so that a dynamic interaction is never
under-specified [20]. This approach has the advantage to limit the spurious conflicts.

Two structural links are said to interact if the intersection of their class set is not empty.
This approach is too coasrse-grained as two links can bring orthogonal modifications and
therefore not create any conflict. This approach shall be reviewed, which is part of the
present work.

3.5.2 Ordering and Nesting

Reflex provides two basic sequencing: ordering and nesting. Ordering applies two elements
one before the other. Nesting applies two elements one ”inside” the other. This is exclu-
sively the case for around advices: the nested action will be executed only if the previous
one calls the method proceed.
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Using these two basic operators, Reflex user can build higher level operators, such as
wrapping and sequence (cf. Fig. 3.3). The implementation details of such operators is not
to be discussed here [20].

Figure 3.3: Ordering and nesting scenarios

An example of composition of behavioral links is given as follow:

BLink timer = ...; BLink synchro = ...;

Rules.declare(new Wrap(timer, synchro));

The declared composition implies that the timing aspect measures execution time of meth-
ods, including the synchronization cost.

Structural links are treated separately as they cannot be nested. These links are applied
in sequence and therefore only ordering is applicable. They are composed using the code:

Rules.declarePrecedence(persistency, history);

This example states that the link persistency has to be applied before the link history.

Behavioral and structural links are composed and applied separately and therefore do not
need to be ordered in any way.

3.5.3 Hook Generation

When detecting links interactions, Reflex generates a hook skeleton based on the specified
composition rules, similarly to Fig. 3.3. The hook skeleton is then used for driving the
hook generation process: taking into account how links elements have to be inserted,
with the appropriate calls to metaobjects. In order to support nesting of aspects with
proceed, Reflex adopts a strategy similar to that of AspectJ described in [11], based on
the generation of closures.
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3.6 Visibility of Structural Changes

As explained ealier, both behavioral and structural links rely on introspection of the struc-
ture of a program to define their cut. Yet, SLinks modify this structure, so the question
of the visibility of these modifications naturally arise.

Let’s consider two links: a SLink history adds history to fields while a BLink persistency

makes fields persistent by monitoring the fields accesses. The issue of whether the field
added by the first link in order to record history should be made persistent appears. In
fact, persistency can only save the state of the fields added by history if it actually
”sees” them. In some cases, saving this state is relevant while in other it is not, depending
on the program and the intentions. Therefore there should be a choice for whether or not
added elements are visible to other links.

As said in [20], by default, every structural change is invisible to the cut of other links,
thus avoiding unwanted interactions.1 Still, it is possible to define the view of each link so
as to see the changes made by other SLinks and to take it into account.

The code

Rules.augmentViewOf(persistency, history);

found in [20] declares that all changes made by history are visible to persistency, while

Rules.addToDefaultView(history);

says that all the changes made by history are part of the default view, and therefore that
they are visible to every other link.

3.7 Structural Links application

In Reflex, structural links are applied when a class is being loaded in the JVM. As shown
in Figure 3.4, the structural and behavioral links are applied in different phases: first the
structural links, then the behavioral ones.

As for now, the structural links application is done as follow: When the class is being
loaded, it enters the Structural Link Application (SLA) phase. The system builds a list of
all the structural links present. Each link is being tested on the class to see whether or not

1This is possible in the case of additions. The case of modifications is not dealt with in this report.
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Figure 3.4: Loading of a class in Reflex AOP Kernel

this class is part of its cut. That is the class is given to every link’s class selector which
will then return a Yes or No. This is corresponds to the introspection, and to the select(c)
on the diagram. The links which have this class as part of their cut are kept in a list.
Then mutual exclusion rules are applied to this list in order to exclude links. The final list
of remaining links is ordered thanks to the ordering rules defined. If no order is defined,
SLinks are applied in a arbitrary order. Finally the links are applied to the class, that is to
say that their action is performed. This corresponds to the intercession and to the apply
on the diagram. Afterwards, the class exits the SLA phase and enters the Behavioral Link
Set-up (BLS) phase for BLinks application, which will not be explained here.

3.8 Summary

Reflex is a kernel for AOP supporting many languages. It provides a lot of possibilities,
especially in terms of composition as it provides fine-grained ordering and nesting. It also
tries to supply tools for detection of interactions and conflicts. As for now, these tools are
limited, especially in the case of SLinks. Indeed, for SLinks, composition process is very
basic and there is hardly any existent interaction detection tools.

In the present contribution, we propose solutions for detection of interactions in the case
of SLinks as well as a more advanced and flexible composition process.
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Contributions to Declarative
Composition of Aspects in Reflex
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Chapter 4

Possible Interactions and their
Resolution

In this chapter, we propose a classification of structural interactions, and list the possible
resolutions that one would expect from a comprehensive system truly supporting structural
aspects 1. We distinguish conflicts occurring from the interaction of an aspect with the
original base code, conflicts between actions of (at least) two aspects, and dependencies
between the action of an aspect and the cut of another one. For each category, we give a
general description of the syndrome, a few examples, and a list of desired possibilities of
resolution. Note that every suggested possibility is a priori always applicable.

In the following, a structural element denotes any piece of structure in an OO program,
i.e. a class, interface, annotation, field, method or constructor. The actions we consider are
the addition of structural elements to the base program, e.g. a new class, a new method to a
class, or a new annotation to a field. A structural container is an element containing other
structural elements; for instance, the VM is a structural container of classes, a class is a
structural container of members, and a member is a structural container of its annotations.

1This analysis has been published in ECOOP ADI Workshop [13]
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4.1 Interactions with base code

Syndrome An aspect adds a structural element which is already present in the base
code.

Examples Add class C but C already exists.
Add method m to class C which already has this method (either directly or
via inheritance).

Treatments Skip the action.
Combine element to add with existing one (*).
Modify the aspect to avoid the clash.

(*) By combining, we are referring to a mechanism similar to what is proposed in composi-
tion of traits [18]: explicit aliasing of conflicting members and definition of a combination
based on the aliased members.

This kind of interactions are reported as conflicts by the compiler as the code cannot be
compiled anymore.

The presented treatments will be introduced later in this chapter.

4.2 Interactions between actions

Syndrome Two aspects add an element with the same signature in the same structural
container.

Examples Aspects A1 and A2 add a class C.
Aspects A1 and A2 add a method m to class C (either directly or via inheri-
tance).

Treatments Skip one or both of the actions.
Combine both elements to add in a single one (*).
Modify one or both aspects to avoid the clash.

Same as for interactions with the base code, such interactions are conflicts which prevent
the code from compiling.
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4.3 Interactions action-cut

Syndrome An aspect adds an element which belongs to the intensional cut of another
aspect.

Examples Aspect A1 adds a class C to package p, and aspect A2 adds a method m to
all classes of p.
Aspect A1 adds an annotation to all fields of class C, and aspect A2 adds a
field to class C.

Treatments Make added element visible or not to (the cut of) other aspects.
Control order of application of aspects.
Declare mutual exclusion.

These interactions are treacherous as they do not end up in conflicts and are not reported
by the compiler. They can bring unwanted and unexpected behavior and therefore should
be detected and reported somehow.

4.4 Classification of interactions in Reflex

The present study is limited to the case of structural additions. Modifications like changing
the methods modifiers, from private to protected for instance, or changing the hierarchy
of a class, are left for further study. However, this topic is approached briefly in the
discussion part, section 9.3.

Yet, additions already provide a lot of possible interactions due to the action-cut model. In
this section, we describe the hierarchy of interactions that have been identified and which
are detected in Reflex. We also give a terminology for the interactions which will be used
in the rest of this report.

4.4.1 Types of interactions

Interactions between structural aspects can be of several kinds. In this chapter, we have
identified three categories of interactions: with base code, between actions, action-cut.
The first two end up with compilation errors while the third one has to be detected to be
noticed. Hence, only action-cut interactions need further work for detection and reporting.

Action-cut interactions involve the cut of one SLink and the action of another one. The
cut of SLinks is represented by the class selector, as introduced in section 3.2.2. A class
selectors can base its decision on any introspectable characteristics of a reified class object,
down to the constituents of method bodies (expressions in a method body are reified
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Figure 4.1: Simplified hierarchy of interactions

if needed) [22]. Besides, any kind of structural element can be added, from classes to
fields, from annotations to interfaces, etc. Consequently, interactions can happen on any
characteristic of structural elements.

Figure 4.1 shows a classifications of the possible points where interactions can happen in
Reflex model. The rounded rectangles show the main characteristic of the interaction, what
it is about, while the rectangles below show the points where this interaction happen. So for
instance, the upper rectangle of the column ”Annotation on...” represents the interaction
involving the presence of a specific annotation on a class. This interaction happen between
a SLink whose class selector accepts classes which have a specific annotation while another
SLink adds this annotation on classes. Another example, the rectangle ”method” under the
rounded-rectangle ”Modifier of” designated the interactions concerning the access modifiers
of methods. So for instance a SLink’s class selector accepts classes which have a public

static method while another aspect adds a public static method.

Of course, as class selectors are not restricted to only one characteristic, interactions can
involve several of these points. For instance a class selector can accept classes which
implement the interface Point2D, which have the annotation Persistent and which have
at least on method which throws the exception InvalidPointException.
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4.4.2 Terminology

We have introduced earlier, in chapter 2, a first terminology for interactions. It states
that two aspects are said to interact if they apply at a common join point or if one aspect
modifies the behavior or the scope of another aspect. Then there are two dimensions: (1)
is the interaction correct in a semantic point of view, and (2) has resolution mechanisms
been declared for the interaction? For (1) we say that an interaction is non-conflicting if
it is correct semantically, and conflicting otherwise. For (2) we say that an interaction is
resolved if resolution mechanisms have been declared for it, unresolved otherwise.

Figure 4.2: Set of possible interactions between structural links

Regarding the new classification of interactions presented in this chapter, it appears that
this terminology is not sufficient for action-cut interactions (recall section 4.3). We here
define a terminology for structural aspects interactions. Figure 4.2 introduces two new
terms in the specific case of action-cut interactions: if the action is placed before the cut,
the interaction is said to be enabled because the action of the first aspect does modify the
scope and/or behavior of the second one (cut), while if the cut is placed before the action,
the interaction is said to be disabled because the second aspect (cut) is not affected by the
action of the first aspect (action).

Note that the figure 4.2 is only valid for the classification of interactions among structural
aspects. For example, between structural aspects in Reflex, an interaction cannot be
unresolved and enabled. The reason is that to enable an interaction, one must define
rules of ordering for it and therefore the interaction is resolved. This is because of Reflex
default semantics that avoids unwanted interactions. However, when involving structural
and behavioral aspects together, an interaction can be unresolved and still enabled because
behavioral aspects are set up after structural ones are installed (see section 3.7).
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Moreover, we say an interaction is effective when the behavior and/or scope of one aspect
is modified by another aspect, whereas it is said non-effective if it is not effective but could
become effective with composition rules. For instance, the visibility mechanism introduced
in section 3.6 hides by default the modifications made by aspects. Therefore, if a first
aspect L1 adds an element which is part of the cut of a second aspect L2, L2 does not
see the modifications and thus is not affected: we say that the interaction is non-effective.
However, by allowing L2 to see the modifications made by L1, this interaction become
effective as the scope of L2 is modified by L1.

So, the visibility of structural modifications controls the effectiveness of the action-cut
interactions, while ordering enables or disables them. Still, a non-effective interaction
cannot be enabled or disable as it does not really exist.

This terminology will be used for the rest of this document.

4.5 Advanced resolution mechanisms in Reflex

For interactions with base code and between action (see sections 4.1 and 4.2), we have raised
the possibilities of skipping an action or combining two methods with the same signature.
Skipping an action simply removes the conflict by not adding the conflicting element and
therefore keeping the previous implementation of the concerned element. Combining two
methods allows to keep and use both behaviors in a single method, which is a combination
of the two conflicting ones.

An additional combination method is provided, more as a convenience method, and allows
to exclude a class from the class set of a SLink.

Concerning action-cut interactions, resolution mechanisms are base on the control of the
visibility of the modifications, on the order of application of the SLinks and on aspect
dependencies to declare mutual exclusions.

We here review these mechanisms in more details.

4.5.1 Interactions with base code or between actions

The resolution mechanisms used to cope with interactions with base code or between
actions are of three kinds: skipping an action, combining two methods or excluding a class
from the cut of a SLink. We here review these three mechanisms.
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Class exclusion

Class exclusion can be declared between a SLink an a set of classes (represented by a class
selector). It enables to prevent these classes from being part of the cut of the SLink and
therefore prevents this SLink from applying any structural modification onto these classes.

To do so, one must use the code

Rules.declareExclusion(aLink, aClassSelector);

where aLink is the SLink concerned by this rule, and aClassSelector is a class selector
defining a set of classes.

Skipping an action

Skipping an action allows to remove a conflict when for instance an aspect tries to add a
structural element which already exists in the class (either from base code or previously
added by another SLink). This is done simply by not doing the conflicting action.

Still, there can be two different level of granularity for the term ”action”. One can either
skip the entire action (advice), which is the same as not applying the modifications to the
class at all, or skip only the part of the action which is conflicting: the addition of the
conflicting element.

Skipping the entire action can be done by using

Rules.declareEntireActionSkip(aLink, aClassSelector);

which prevents the SLink aLink from applying any structural modification to the classes
accepted by the class selector aClassSelector. It can also be done manually by defining
a class exclusion between the link aLink and the set of classes defined by the class selector
aClassSelector. As a matter of fact, skipping the entire action is implemented using the
class exclusion mechanism.

Skipping only a part of the action allows to skip only the conflicting addition while keeping
the other modifications. It can be declared using

Rules.declareConflictingActionSkip(aLink);

to define that the addition of conflicting elements added by aLink should always be skipped
and
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Rules.declareConflictingActionSkip(aLink, aClass);

to define that it should only be skipped on a specific class and conflicts with the other
classes shall still be reported. The last rules allows to have a very fine-grained conflict
resolution as it allows to resolve the conflict using the action skip in some case while
defining other mechanisms for the other cases.

Method combination

To solve the conflicts caused by the addition of an already existing method, another solution
has been proposed which consist of the combination of the existing method and the one
which is about to be added. These two methods are conflicting because they have a
common signature and belong to the same class, which is not tolerated by Java.

Method combination is inspired from the mechanism in traits [18] which allows to combine
two methods added using traits into one. The two former methods are aliased and a new
method is added, which combines the two aliased methods.

Figure 4.3: Example of a class Circle built using three traits

Figure 4.3 shows a example of use of traits to build a class Circle. This class is composed
by the three traits TColor, TCircle and TDrawing. TColor and TCirlcle provide the
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methods hash and = therefore creating a conflict. These methods are combined into one
in the class Circle: the class defines a method hash which uses the two previous methods
aliased as tcolorHash and tcircleHash. Same goes for =.

In our case, suppose class C has a method String getName(). During introspection, a
SLink SL tries to add a method with the same signature. This is reported as a conflict as
it bring compilation errors. To overcome this issue, one can declare a combination of these
methods. Then, the existing method is automatically aliased to getName Old 9820639816(),
which is a unique generated and non existing name, and the new method is added under
the alias of getName New 8731378(). A new method String getName() is then created:
it defines a combination of the two previously aliased methods. An example of combination
is given here:

public String getName()

{

return "My names are " +

getName_Old_9820639816() +

" and " +

getName_New_8731378();

}

The body of the combination method is provided under the form of a String. The two
aliased methods can be referenced using the text $aliased existing method$ for the
method already present in the code and $aliased new method$ for the one which is to be
added. These references will be replaced in the body by the actual names of the aliased
methods.

The methods

declareMethodCombination(SLink aLink,

RClass aReturnClass,

String aMethodName,

RClass[] aParameters,

RClass[] aExceptions,

String aBody);

declareMethodCombination(SLink aLink1, SLink aLink2,

RClass aReturnClass,

String aMethodName,

RClass[] aParameters,

RClass[] aExceptions,

String aBody);
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allows to declare a combination for the method with the given signature (return type,
method name and parameters), with the body given by String aBody. The first method
is used in the case of interaction with base code and defines the SLink involved, while the
second one is used in case of interaction between actions thus providing the two interacting
SLinks.

For some reasons, mostly technical, it is not the conflicting method which is given in
parameters as a RMethod but only what defines its signature. As a matter of fact, it is not
always possible to give a reference to the method which is involved in the conflict and which
is to be added as this method may be generated during the action. Providing the existing
method involved in the conflict is not a good choice as (1) it leaves the conflict between
actions unsolved, (2) it forces the programmer to declare such rule for each class where this
method is conflicting. Suppose the method String getName() appears in several classes
and the link SL adds a generated method String getName() in several of them, then the
programmer would have to declare a rule for each case. It appears then that the most
flexible solution is to provide the elements which define the signature of the methods as
this solution works in all cases.

An example of code used to declare the previous combination in case of interaction with
base code is given as follow:

Slink theLink = = addSLink(...);

String theBody = "return \"My names are \"" +

"$aliased_new_method$()" +

"\" and \"" +

"$aliased_existing_method$();";

Rules.declareMethodCombination(

theLink,

API.getClassPool().get("java.lang.String"),

"getName",

new RClass[] {},

new RClass[] {},

theBody);

4.5.2 Action-cut interactions

Two cope with action-cut interactions, we can either control the visibility of the structural
modifications, control the order of application of the SLinks or declare mutual exclusions.
We here review how these mechanisms help to resolve interactions.
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Visibility

The ability to control the visibility of structural elements has been introduced in section 3.6.
It allows to show or hide the structural modifications made by the SLink to the cut of other
links. It then appears that hidding these modifications prevents action-cut interactions.

Ordering

Action-cut interactions happen between two SLinks when the action of a SLink L1 adds an
elements which is part of the cut of a SLink L2, thus modifying its behavior and/or scope.

The point of ordering as a resolution mechanism is that if L1 is applied before L2, then
L2 can see the modifications done (assuming sufficient visibility) and therefore react upon
it: the interaction is enabled. On the contrary, if L2 is applied after L1, then L1 did not
see the modifications made by L2 and therefore is not affected by it: the interaction is
disabled.

Hence, ordering is used to resolve action-cut interactions as it can enable or disable them.

Aspect dependencies

As said before, action-cut interactions happen between two SLinks. The idea of using
aspect dependencies to solve these interactions is that if these two links are in mutual
exclusion, they cannot interact. Indeed, in that case, the two SLinks are never both
applicable on a common class and so the modifications of one SLink cannot affect the cut
of the other. Aspect dependencies can then be used to prevent action-cut interactions.

4.6 Summary

In this chapter we have studied the possible interactions between structural aspects and
discussed possible resolution mechanisms that would be applicable. We have seen that
apart from ordering and visibility we would like to use two other mechanisms: the possi-
bility to skip the conflicting actions purely and simply by skipping the conflicting actions,
and the possibility to replace the conflicting methods by a new one which combines both
behaviors.

Now that we have identified all possible interactions and some resolution mechanisms to
deal with them, we wish to know how the composition process works for structural links.
This matter is to be discussed in the next chapter.



Chapter 5

An iterative composition process

In the previous chapter we have defined what interactions between structural aspects are
and ways to resolve them. But in order to resolve the interactions, one must first be aware
of their existence and know where they happen. We therefore require a mechanism to
detect and report the interactions between links.

As introduced earlier, interactions with base code (section 4.1) and between action (sec-
tion 4.2) terminate in compilation errors and therefore are reported by the compiler itself;
only action-cut interactions (section 4.3) need further consideration.

In our proposal, the detection mechanism is integrated in a wider process for links com-
position. This process aims at presenting the detected interactions according to the spec-
ifications of the programmer. The programmer can specify rules of ordering, visibility,
dependencies (e.g. mutual exclusion), etc., in the line of what is introduced so far. Then,
by rerunning the detection mechanism, he can see the effect of these rules and therefore
modify them or add some more if needed.

We first present the global view of this process and then review all the parts in more details
in further sections. We also have a word on the reporting tools in the last section.

5.1 Global view of the process

In [7], Douence et al introduce a process for aspect composition. We reuse the idea and
build an iterative process out of it: interactions are detected during a conflict analysis
and reported to the programmer who then has to resolve them using composition tools
and who can then see the effects by returning to the conflict analysis phase. The Reflex
composition process is based on the same idea. Figure 5.1 shows a global view of the
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Figure 5.1: An iterative composition process
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process. Composition tools (top of the figure) have an influence on the interactions and
therefore on the detection tools which provide data to the reporting tools which presents
the found interactions to the programmer (bottom of the figure). The latter can then
define new composition rules, or modify the existing ones, and see their effects over a new
iteration of the process.

The composition rules defined have an impact on the interactions and thus on the detection:
an interaction which has been resolved shall still be reported though differently than the
unresolved ones. How this is presented is the matter of the reporting tools which are not
in the scope of the present study.

The effects of the three composition tools, namely visibility, ordering and aspects depen-
dencies, on the detection tools are studied in the following sections.

5.2 Visibility

Section 3.6 introduces the concept of visibility of the structural modifications brought by
the structural links (SLinks). The point is that the visibility of these modifications should
be controllable so as to prevent unwanted interactions. By default, these modifications are
invisible to other links thus preventing any interaction. This visibility has to be extended
over the default one (see section 3.6 to see how) for SLinks to interact.

It appears easily that visibility rules do affect the interactions detection tools as it can
make any action-cut interaction non-effective by preventing the modifications of the action
to affect the cut of other links. On the contrary, extending the visibility to other links does
not necessarily enable an interaction: ordering is still needed to enable it.

Finally, detection tools are able to detect non-effecitve interactions, that is to say in-
teractions that lack sufficient visibility to be effective. For instance SLink L1 adds the
annotation Persistent to some classes while the cut of L2 contains classes with the an-
notation Persistent. By default, the annotations added by L1 are invisible to the cut of
L2 and so no interaction exists between these two SLinks. However, if the visibility of the
modifications done by L1 was extended to L2, then an interaction would be detected as it
would be effective. These interactions are still detected and reported as any interactions,
but marked as lacking visibility.
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5.3 Ordering

Over the iterative process, action-cut interactions are detected and resolved by the pro-
grammer. One way to resolve this kind of interactions is the ordering rules. The idea
behind that is that if the cut is done before the action, then the interaction is disabled.
On the contrary, if the action is done before the cut, then the interaction is enabled and
so the behavior and/or the scope of the second aspect, the one whose cut is involved, are
modified.

Once the programmer has defined an ordering rule for one interaction, it means that the
interaction is resolved and so the warning message for the interaction has to be different.
The goal is to make a clear difference between the interaction that are still to be coped
with and those that have already been. To do this, the detection mechanism needs to make
a difference between these two situations and so be aware of the ordering rules defined.

5.4 Aspects Dependencies

Aspect dependency rules (see section 3.4) act like a filter which adds/removes links from
the set of links which should normally be applied on a class. Their effect on the detection
is not the same whether they add or remove links. Normally, what happens on each class
is:

Mutual exception. In a system which reasons on the cuts and the actions of links so as
to find possible interactions, problems occur if a link first introspects a class and is removed
by mutual exclusion afterwards. The reason is that the introspection of a SLink over a
class has already given the detection mechanism some information about the cut of the
SLink and therefore interactions can be detected although the mutual exclusion prevents
it. The detection mechanism thus needs to be aware of exclusions so as to report only
relevant interactions.

Implicit cut. As for now, implicit cut is done by defining that two links have the same
cut. So the detection is not affected as all phases (introspection and intercession) are done
normally.

Interaction Selectors. More generally, Reflex provides ways to create advanced compo-
sition rules the same way JAsCo provides the Combination Strategies. Mutual Exception
and Implicit Cut can be programmed using these interaction selectors and based on these
two examples we can conjecture that the only case that arise problems is when a SLink
is removed from the set of selected SLinks because interactions are still reported although
they should not. The detection mechanism shall therefore be aware of all exclusions.
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5.5 The reporting tools

Once the interactions are detected, they have to be reported to the programmer so that he
can deal with them. These tools are out of the scope of the present study but have to be
built on top of it and so we provide the necessary functions for an easy implementation.

Ideally, these tools would be a graphical interface which allows the programmer to browse
and sort the found interactions and which provides as much information about the in-
teractions as possible, so that the programmer can resolve them easily. If he finds that
an interaction is spurious or if he simply does not want to deal with it, he can tell the
reporting tools to ignore this interaction. To do so, he simply have to declare an ignore
rule between the two concerned SLinks as follow:

Rules.declareIgnore(aLink1, aLink2);

5.6 Summary

An iterative process enables the programmer to detect and resolved interactions. These
interactions are detected by automatic detection tools and then reported to the programmer
thanks to reporting tools. The programmer can then define composition rules to resolve
the interactions and see their effect by querying again the detection tools. This iterative
process thus helps the programmer to compose interacting aspects by providing better
visibility on the interactions and on the effects of the composition rules.

In the next chapter, we describe the detection tools and see how we can use a logic engine
to detect the interactions.



Chapter 6

Automatic Detection of Structural
Interactions

Admittedly, a crucial part in aspect composition lies in the detection of the interactions [7].
As a matter of fact, aspects typically use intensional definitions of their cuts, so the devel-
oper can have trouble foreseeing the possible interactions between a given aspect and the
base code, and between several aspects. It is therefore crucial that the AO system detects
and reports on interactions.

Some interactions (with base code and between actions in our classification) are easy to
detect since they result in compilation errors (e.g. a class with two methods of the same
signature). AspectJ for instance reports on this class of conflicts, since the compilation
process cannot go any further.

More subtle is the case of action-cut interactions, because there is no compilation error
implied, nor are the dependencies between aspects easy to see – in particular if the cut and
action languages are Turing-complete. In order to detect these interactions, we must be
able to reason from two sets of pieces of information: which aspects look at which structural
elements for their cut and action? which aspects change which structural elements as a
result of their action?

6.1 A logic-based approach

Our approach consist in the use of a logic engine connected to Reflex. This is feasible
and interesting to do, as explained in [6], because this part of the system is strongly logic-
oriented.
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Moreover we could have programmed the detection tools in plain Java, as the rest of Reflex
is, but it seemed to us that it would be so much simple and easier to extends with new rules
with a Prolog interface. Indeed, the actual rules only take into account the additions of
structural elements and not modifications, which have been left for further consideration.
Extending the actual system of rules to this problem is quite simple as it is just few rules
to add or modify. In Java, such modification, and therefore the maintenance and extension
of the mechanism, would have been much more difficult.

Finally the current implementation of detection and resolution of interactions between
behavioral aspects in Reflex is purely Java-based, and the obstacles encountered strongly
motivated this change of implementation approach.

6.1.1 Fact generation

In order to reason about the facts concerning the added elements and the observed ones,
we need to generate them. This generation happens at several level of the system:

• Upon introspection, entities from our structural model (classes, methods, fields, etc.)
generate logic facts indicating that they are being observed by a given link. For
instance, link l1 cuts the classes which have a field with the annotation @Persistent.
It first accesses the pool1 of fields of the class and then, on each field it accesses the
pool of annotations of the field and finally, on each annotation, it reads its name.
Each structural element generates a fact when it is being accessed and therefore the
class C generates the fact that l1 reads its pool of fields (readFields(’l1’,’C’).2),
each field generates the fact that l1 reads its pool of annotations
(readFieldAnnotations(’l1’,’C’).) and each annotation generates the fact that
l1 reads its name (readFieldAnnotationName(’l1’,’C’).) We do not need to keep
additional information about what is being accessed as only the intentional cut is
important and useful.

• Upon intercession (i.e. structural changes), structural elements generate logic facts
indicating the changes being made. For instance, class C generates the fact that link
l2, applied on class C2, adds the annotation @Persistent on the field named f, in
class C (C and C2 may not necessarily be the same). That is
addAnnotationToField(’l2’,’C2’,’C’,’f’,’Persistent’).

Besides, upon specification of rules of ordering, visibility or dependency, additional facts are
generated. These facts are not directly involved in the interactions, but they influence the

1We say that each class has a pool of fields, a pool of methods, a pool of constructors, etc. Similarly,
other structural elements may have pools of other elements, such as annotations.

2This is a Prolog fact, thus respecting Prolog syntax: Strings are surrounded by ’ ’
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detection as they determine the scope of the aspects and the feasibility of the interactions.

Visibility

As reasoning on the sets of facts generated in order to find interactions, the logic engine
needs additional data concerning the effectiveness of the interactions. These data are
related to the visibility of the structural modifications made by SLinks. So, we need a way
to tell the logic engine whether or not the modifications are visible, or what links can see
the modifications. For example, the code

Rules.augmentViewOf(persistency, history);

found in section 3.6 declares that persistency sees all changes made by history, and
therefore generates the fact

visible(’history’,’persistency’).

which means that changes made by history are visible to persistency. In the same way,
the code

Rules.addToDefaultView(history);

says that all the changes made by history are part of the default view, and therefore that
they are visible to every other link. Thus it could generate the fact

visible(’history’,_).

which says that history is visible to any other link.

In such way, the logic engine, with the appropriate rules, can make the difference between
interactions disabled due to insufficient visibility from the one partially enabled by sufficient
visibility.

Ordering

Once a precedence rule has been declared between two links, we consider that the interac-
tion has been coped with (resolved). The rule can either disable or enable the interactions
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(see section 4.4.2). In any case, the important information is that the interaction has been
resolved and therefore shall not be reported to the programmer, or at least not the same
way.

Defining an ordering rule thus generates the fact

ord(’link1’,’link2’).

where link1 is the SLink which is applied first and link2 the one applied in second.
Then the detection understands that link1 and link2 are ordered if there is either
ord(link1,link2) or ord(link2,link1), but still knows whether the interaction is en-
abled or disabled.

Aspects Dependencies

We have seen that the only thing the detection mechanism needs to be aware of is when
a SLink is being removed from the set of links which are to be applied to class (see
sections 4.5.1, 4.5.1 and 5.4), either by class exclusion or mutual exclusion. Therefore,
when resolving the the exclusions, a fact

remove(’link’,’class’).

is emitted each time a link is removed from the set of links that should be applied to a
class.

In such way, we are able to make the difference between disabled resolved interactions from
the others.

6.1.2 Rules

Along with the facts generated concerning the added elements, the observed elements and
the composition rules, we define rules for detecting interactions. These rules follow the
principle of section 4.3: they look for actions interacting with cuts. Below is an example
of the minimal rule which detects all interactions between links that adds an interface to
a class and links whose cuts contain classes with an interface:

interactInterfaceName(Link1,Link2,Class1,Class2,InterfaceName)

:- readClassInterfaceName(Link1,Class2),

addInterface(Link2,Class1,Class2,InterfaceName).
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Class1 is the class on which Link2 is applied and Class2 is the class where Link2 adds
the interface with name InterfaceName. The result of the detection using this rule is a
tuple which is to be understood as: ”Link2 interacts with Link1 because Link2, applied
to class Class1, adds the interface named InterfaceName to class Class2, while Link1

is looking for interfaces on Class2 in its intentional cut.”

As such, this rule is not complete as it does not take into account what was discussed
earlier. It should indeed detect the state of the visibility, the ordering and whether or
not Link2 was really applied and not excluded. The correct rule which takes all that in
account is as follow:

interactInterfaceName(Link1,Link2,Class1,Class2,InterfaceName,View,Order,Mutex)

:- readClassInterfaceName(Link1,Class2),

addInterface(Link2,Class1,Class2,InterfaceName),

visible(Link2,Link1,View),

ordered(Link1,Link2,Order),

remove(Link1,Class2,Mutex).

The above rule calls three additional predicates which check what composition rules were
declared to solve the interaction, if any, an return informations about the composition
thanks to the variables View, Order and Mutex

6.2 Summary

In this chapter we have seen how the interactions are detected. A logic engine has been
added to the Reflex kernel and is used for detection. Fact describing the behavior of the
SLinks, that is, what they look at and what they modify, are generated during introspec-
tion and intercession so as to give food for thought to the engine. Additionally, several
rules have been defined in order to detect each specific interaction. Finally, the state of
the interaction is reported as well during the reasoning: each interaction is marked with
meta-data concerning the visibility and the ordering between the two concerned links, and
concerning actual exclusion or not of the modifying SLink.

We now turn to the resolution mechanisms. In the next chapter, we study how interactions
are resolved thanks to the rules defined by the user.



Chapter 7

Interaction resolution mechanisms

In the previous chapter, we have discussed the detection mechanism and the effect of the
various composition rules upon it. Now that the interactions are detected, they shall be
resolved, if necessary.

The aim here is to take advantage of the precedence rules, of the visibility mechanism
and enable or disable action-cut interactions. Considering the structural links (SLinks)
installation described in section 3.7, it is impossible to enable interactions because all the
introspections are done before all the actions and because the default visibility hides the
modifications. Therefore the composition mechanism of SLinks has to be reviewed.

In this chapter, we first review the interaction resolution possibilities and see how they
are limited by the previous SLink application mechanism. We then review the previous
SLinks application mechanism and study its limits before introducing the new mechanism
implemented.

7.1 Interaction resolution mechanisms

We have defined in chapter 4 some resolution mechanisms depending on the kind of inter-
actions (i.e. with base code, between actions or action-cut).

We have already reviewed several mechanisms used to resolve the interactions with base
code and between actions in section 4.5, namely skipping an action and the combining
methods. These mechanisms are involved during introspection, while adding some struc-
tural elements.

We here review the resolution mechanisms used for resolving action-cut interactions, namely
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the precedence rules (ordering) and the visibility rules. These two resolution mechanisms
are directly involved in a higher perspective: the SLink installation process.

7.1.1 The visibility mechanism

The visibility mechanism enables to control the visibility of added structural elements so
that it is possible to control how these modifications will affect the scope and behavior
of other links. This mechanism is therefore used as a tool for resolving interactions as
invisibility of modifications make the action-cut interactions non-effective.

To use it, one can extend the visibility of the modifications done by a SLink aSLink to
another link aLink (not necessarily SLink) using the code:

Rules.augmentViewOf(aLink, aSLink);

It is also possible to promote the modifications done by a SLink to every other links by
using:

Rules.addToDefaultView(aSLink);

However, when a the structural modifications made by a SLink are defined to be part
of the default view (i.e. visible to every other link), it is legitimate to think that they
should be applied before any other link does anything on the class (either introspection
or modifications). That way, these modifications can be promoted to the rest of the links.
This introduces the concept of absolute precedence: the link is applied before everything
else.

There are then at least two levels of ordering, the absolute level which involves SLinks
which are to be applied before any other, and a second level which contains all the other
SLinks. The study of the latter level is continued in the following section.

7.1.2 The precedence rules

Precedence rules are used to enable or disable an action-cut interaction as introduced
earlier (see section 4.4.2). The definition of such rules, in the case of SLinks, is to order
two SLinks one before the other. This introduces a concept of relative precedences.

In the absolute level of ordering introduced in the previous section, that is to say the
level containing the SLinks which shall be installed before the others so as to promote



CHAPTER 7. INTERACTION RESOLUTION MECHANISMS 48

the modifications as part of the default view, when several SLinks co-exist in that level
then they shall be ordered as well. Indeed, if one SLink should be applied before all the
other and if another SLink should do the same, then we have an unsolvable situation. The
solution we chose is to ask the programmer to define an ordering for the SLinks in that
situation.

Figure 7.1: Three different levels of ordering

We can then identify three levels of ordering as shown in figure 7.1. The absolute level
contains the SLinks concerned by the absolute precedences. The relative level contains the
SLinks concerned by relative precedences which are not part of the absolute level. The
third level contains all the other SLinks, which have not been ordered. Note that it is
incoherent to say that a SLink from the relative level is to be applied before a SLink of
the absolute level. Either this link should be in the absolute level as well or no order shall
be declared.

Rules have been defined to declare these precedences:

(1) Rules.addToDefaultView(SLink aLink);

(2) Rules.declareAbsolutePrecedence(SLink aLink);

(3) Rules.declareRelativePrecedence(SLink aLink1, SLink aLink2);

To declare that a SLink shall be applied before the others, one must declare it as part of
the default view (1) or simply declare it as part of the absolute level (2) although we do
not recommend this method. Then, one must order the SLinks in the absolute level among
themselves using simple relative precedences (3). To order the other SLinks, one should
use (3).

While declaring orders of application, one can define entire ordering chains. For instance,
if A1 should be applied before A2, which in turn should be applied before A3, then a an
ordering chain A1<A2<A3 is therefore defined. In absolute and relative levels, such chains
can be defined. Chains can be very long depending on the precedence rules declared, or
on the contrary very short. The shortest involve only two elements and is defined by
any precedence rule: saying that A1 is to be applied before A2 defines the chain A1<A2.
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Figure 7.2: An example of Precedence Chain aggregating three ordering chains.

Moreover, when several chains exist, the links of one chain are supposed not to interact with
any link of another chain. Otherwise, interacting SLinks should be ordered and therefore
belong to the same ordering chains. Therefore, applying two links of two different chains
should not create any problem. So we can build a structure which aggregates all the
ordering chains of a same level of ordering and which enables to manipulate groups of
non-interacting links for application. We shall refer to this structure as a precedence chain
later on in this document.

An example of precedence chain is shown in figure 7.2. There are three different ordering
chains: A1 to A3, B1 to B5 and C1 to C8. In a same column, all links are supposed to be
non-interacting as no ordering rule have been defined for them.

Having defined all that, it appears that the SLinks installation process described in sec-
tion 3.7 is insufficient to support ordering. In the following section, we come back on this
process and review its limits regarding the desired interaction composition mechanisms.
Later on we will introduce a new design for this process which is better suited for these
composition mechanisms

7.2 Limits of the previous system

In section 3.7 we have described the previously implemented Structural Link Application
(SLA) process. We have seen that when a class is loaded in the JVM, it enters two phases:
the SLA phase and the Behavioral Link Set-up (BLS) phase. The one that is of some
interest here is the SLA.
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Figure 7.3: Loading of a class in Reflex AOP Kernel

The SLA phase is composed of only one main step containing three inner steps. First
a selection step (a diamond in Fig. 7.3) determines the set of SLinks that apply to the
class being loaded. This is done by introspection on the class. Then the selected links
are composed according to user specifications. Due to exclusion rules, some SLinks may
be removed from the set of selected links. And finally the remaining SLink are applied,
in order if they have been ordered, or in arbitrary order otherwise, bringing structural
modifications to the class. This is intercession.

One could notice that with such process, action-cut interactions are inexistent among
SLinks. The modifications made by a SLink can still modify the scope or the behavior of
a behavioral link, but this is out of the scope of this study.

Consequently, defining ordering among SLinks in order to enable action-cut interactions is
not working as it does not help to have the introspection of the affected SLink after the
modifications done by the other SLink involved in the interaction.

It appears then that this process needs to be modified so as to be able to truly enable action-
cut interactions among SLinks. This is the leitmotiv which conducted the implementation
of the new process, which is presented in the next section.

7.3 A new link installation process

A new process has been designed to install the links. As BLinks are out of the scope of
this study, only what deals with SLinks has been modified, that is to say the SLA phase.

The guide lines when designing this new process were:

• We want to support every kind of interactions we have identified, especially action-cut
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interactions (See chapter 4).

• We want to be able to enable or disable action-cut interactions.

• We want to leave little space to unknown as it can bring unexpected behavior.

• We want to fully use the composition possibilities given by the ordering and the
visibility mechanisms.
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Figure 7.4: Modified SLA phase

Figure 7.4 shows the new process as it is currently implemented. The process is divided
in three main steps, related to the three levels of ordering introduced in section 7.1.2 and
figure 7.1. The first step relates to the links of the absolute level, while the second step
relates to the links of the relative level and the last step to all the other links.

The first two steps work the same way, only a difference is made between the absolute level
and the relative level of ordering. At first, precedence chains are build for the absolute
and relative levels and are aggregate into the two different precedence chains. Then, for
each column of the precedence chain concerned (see Fig. 7.2), a selection test occurs (a
diamond shape in the figure). The SLinks selected are filtered using exclusion rules and the
remaining SLinks are applied. In the last step, as no order has been specified, all links are
tested at the same time and the selected links are applied in a arbitrary order. However,
no iteration is done on this step.
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This design allows to have action-cut interactions has two ordered links are tested and
applied one after the other. It also allows to promote the modifications which should be
part of the default view to every other link by installing these SLink at the very first stage
of the process. And finally, as there is no iteration during the last step, there can be no
”surprises”. Indeed, the only way to have an action-cut interaction is to enable it both
with visibility and ordering rules. This decision gives an essential role to the detection
tools which have to tell the programmer what he can enable and how.

7.4 Summary

In this chapter we have reviewed the interaction resolution mechanisms used for action-cut
interactions. We have seen that promoting some modifications to all the other links and
adding it to the default view implies that these modifications shall be done at the very
beginning, thus leading to the concept of absolute precedence. We have also seen that
the ordering rules define another concept of relative precedences and that the absolute
level of precedences and the relative one shall be treated separately. We have also seen
that the previous SLA phase was no adapted for such resolution mechanisms and that a
new process was needed. We therefore have introduced a new design for this SLA phase.
This phase is now divided in three steps, regarding the three levels of ordering (absolute,
relative and the rest), and thanks to a structure of precedence chains and a succession of
introspection-intercession phases we are able to apply the SLinks according to the ordering
rules defined.



Chapter 8

The technique in details

In the previous chapters, we have introduced the design and ideas of the detection tools
and composition mechanisms. In this chapter, we describe in more details how these
mechanisms and tools work. In the first section, we study the detection tools, how the
link with Prolog is done and how the facts are generated. Then in a second part we come
back on the composition process and more particularly on the composition algorithm, and
then see how we can use Prolog to order the links according to the rules defined by the
developer.

8.1 Detection

We have seen that the detection mechanism is based on a logic engine which reason thanks
to detection rules previously defined and facts generated by the elements being introspected
and modified. In this section, we will review how the detection mechanism works in details,
how the link has been made between Prolog and Reflex, and how facts are generated.

8.1.1 Switching on the detection mechanism

By default, the interaction detection mechanism is disabled. In order to enable it, the
programmer has to add a simple parameter to the command line when launching Reflex.
The parameter chosen is --detect:on.

To do so, another ArgumentHandler has been added to Reflex so as to take this parameter
into account. Moreover, a global DetectionLevel has been added, which gives the actual
state of the detection mechanism. By default, the state is OFF, but when the parameter is

53



CHAPTER 8. THE TECHNIQUE IN DETAILS 54

added, it is simply switched to ON. Other systems used for the detection refer to this state
so as to adapt their behavior.

8.1.2 From Reflex to Prolog

As introduced earlier, Reflex now uses a logic engine to reason about the interactions be-
tween structural links (SLinks). This logic engine is basically a Prolog engine attached to
Reflex. There are several different implementations which allow to make a link between
Java and Prolog: some based on a real Prolog environment and mechanisms to commu-
nicate with it using Java, and others which provide a Java implementation of the Prolog
engine.

In order to keep Reflex independent from other softwares, it has been decided to use a
Java implementation of Prolog. Still, we have made great efforts to keep the link between
Reflex and Prolog as generic and modular as possible so as to be able to change the Prolog
engine at will.

The gateway between Reflex and Prolog is divided into two parts, which are two levels of
abstraction going from Prolog to Reflex. A first part abstract the Prolog engine into an
abstract logic engine, thus providing a logic interface independent from the chosen Prolog
implementation, and a second part links this logic engine abstraction to Reflex. However,
as the gateway is seen from Reflex to Prolog and not the opposite, the names are in the
opposite order: from Reflex to the logic abstraction and from the logic abstraction to
Prolog.

In the overall, it gives a system as presented on figure 8.1. In order to change the Prolog
engine, one just have to change the Logic to Prolog gateway by another adapted to the
new engine.

Logic to Prolog

The Relfex to Prolog gateway is divided in two parts, as shown on figure 8.1. This section
presents the Logic to Prolog part.

The Logic to Prolog gateway is represented by an interface LogicToPrologGateway which
provides a number of low level, yet generic, methods used to communicate with the chosen
Prolog engine. Implementations of this interface build a link between these methods and
a particular Prolog implementation.

These methods are generic and used to manage the rules and facts of the knowledge base
and to send queries to the engine. They are independent from any particular implementa-
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Figure 8.1: Design and decomposition of the Reflex to Prolog gateway

tion.

So far, there are two different implementations in Reflex. The first one is embedded
and used as default as it relies on a Java implementation of Prolog, named JLog [12]
and therefore does not bring external dependencies. The second one is based on the
Prolog Development Tools developed at the university of Bonn [16]. This PDT relies on
the program SWI-Prolog which is a multi-platform Prolog engine, thus bringing external
dependencies.

If one want to change the Prolog engine, all he has to do is replace the Logic to Prolog
gateway by another one building a link to the chosen engine. This ensures that Reflex is
kept independent from any Prolog implementation.

Any implementation of this interface should store a list of facts and rules, as they are
added through fact generation. It is also generally needed to write the rules and facts in a
text file and load this file in the Prolog engine before making queries.

The second part of the Reflex to Prolog gateway, the Reflex to Logic gateway, is presented
in the next section.
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Reflex to logic

This part of the link is represented by a single interface ReflexToLogicGateway which
make the link between Reflex and any LogicToPrologGateway. This interface provides all
the methods used to generate the facts during introspection and intercession and a simple
query method.

It has been studied what facts were needed and possibly generated and each fact has a
method dedicated in this interface. During introspection, the facts concern reading of the
existent elements in classes, therefore leading to a list of reading facts. Thus this interface
provides methods that are to be called when accesses are made to class elements during
introspection. For example, if a class selector reads the name of a field in a class, a call to
the method readFieldName(Slink aLink) is to be made, which will generate the proper
fact and send it to the LogicToPrologGateway for storage. How this call is made will be
discussed in the section 8.1.3

Furthermore, there are two different instances of this ReflexToLogicGateway. One is
dedicated to the detection mechanism while the second is used for ordering the SLinks
before intercession. The separation between the two is mostly just a matter of convenience
and optimization of the performances. Both instances can be summoned using the methods
(1) for ordering and (2) for detection:

(1) API.getOrderingPrologGateway();

(2) API.getDetectionPrologGateway();

A PrologGatewaysFactory, based on the design pattern of the Abstract Factory, manages
the creation and access to the instances depending on the detection level introduced in
section 8.1.1, and on the kind of gateway desired (for ordering or for detection).

8.1.3 Fact generation

During introspection and intercession, as elements are being observed or added, facts have
to be generated to support the detection of interaction. As introduced before, these facts
are generated through calls to methods of the ReflexToLogicGateway. The question is:
who makes these calls?

A first alternative would to define a small Domain Specific Language (DSL) to describe
the intentional cut of the links. This DSL would then call the appropriate methods of the
gateway according to what has been declared.

A second alternative would be to change the pointcut language and adopt a language closer
to the logic one, as it is done in Compose* for instance. This solution allows to generate



CHAPTER 8. THE TECHNIQUE IN DETAILS 57

accurate facts concerning the cut of the links but greatly reduces the expressiveness of the
pointcut language as it is based on predefined predicates.

A last alternative is to let the structural elements generate facts as they are being observed.
This solution is less precise but is automatic and does not require additional work from
the programmer.

Concerning the modifications being done, letting the modified elements handle the calls to
the appropriate methods of the gateway seems a good solution. Indeed, we know exactly
what is being done, by who and on what and therefore the facts generated are accurate.

So the most relevant answer seems to let the elements being observed and/or modified
call the appropriate methods of the gateway so as to generate the facts for detection of
interactions. These elements are the structural elements of the Reflex API, representations
of the Java elements manipulated. These elements are presented in the class diagram in
figure 8.2.

Figure 8.2 shows the hierarchy of the structural elements in Reflex API. The methods
and fields have been omitted in the class diagram as they are not relevant for the coming
explanation and make the diagram heavier.

Leaf elements, such as RClass and RMethod, have a bunch of methods to access their
properties, such as signature, parameters etc., and to modify the elements, mostly by
additions of other elements. Some methods allow to rename the elements or to change the
hierarchy of the class, but such modifications are not taken into account in the present
study; they shall be studied later on. For fact generation, leaf classes of the tree have
been subclassed by classes with name ending with Logic. A mechanism based on the
Abstract Factory pattern has been set to choose between the simple RElement Impl or
RElement ImplLogic depending on the state of the DetectionLevel (cf. 8.1.1.) When the
detection is OFF, simple implementations are instantiated, but when the detection is ON,
logic implementation are instantiated.

These logic implementations override every methods of their superclass and manage the
calls to the methods of the ReflexToLogicGateway for fact generation. Concretely, every
method of such implementation simply generates the proper fact by calling the proper
method of the gateway, but only if the phase is correct (introspection/intercession/other),
and then forwards the call to its superclass. For example, the method getName in the logic
implementation would follow the following pattern:

public String getName()

{

if the phase is introspection

then call the method readName(...) of the ReflexToLogicGateway;

return super.getName();
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Figure 8.2: Hierarchy of Structural Elements
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}

8.1.4 Interactions reporting

Detecting the interactions, and therefore the possible conflicts, is not all. Without a good
reporting to the user, detection doesn’t bring much. And as the matter of interactions is
complex, there is a need for an advanced reporting tool, such as, for instance, a graphical
interface which allows to browse the detected interactions and to sort them by various
categories. The design and implementation of this graphical interface is out of the scope
of this study and so has not been done.

This reporter has to be aware of all kinds of interactions that exist

About the interactions

Interactions happen between two links as explained in the model of action-cut interactions.
In case of bigger interactions involving more then two links, then several interactions are
reported.

The two links are not at the same level: one is the modifying link (i.e. the action) while the
other one is the reading link (i.e. the cut). An interaction stores both and can be sorted
according to both kinds of links.

Furthermore, there are two classes involved in the interaction. The modifying link is applied
to a class but may do the modifications on another class. For instance, link L may say that
if class C has a specific annotation and some specific methods, then a new class shall be
created. This new class is called VisitorC, implements the interface Visitor and provides
a particular method which is generated according to the elements of C. Therefore, in this
example, the class on which the link is applied and the class on which the modifications are
done are not the same. In consequence, an interaction stores both classes as the application
class and the destination class. The reading link is only concerned by the destination class,
which is the class being modified.

Moreover, a interaction can be detected even if it is logically impossible. For example, the
detection mechanism detects possible interactions even if the visibility of the modifications
disables interaction, but the interaction is marked as insufficient visibility. Still, the pro-
grammer can see it in the report and therefore may choose to extend the visibility so as
to enable the interaction. The same goes for rules of ordering and exclusion. Interactions
are still detected even if there is an ordering rule coping with it, but the found interaction
will be marked as already resolved. Thus the reporting message will be different as it will
show that the composition process has already been applied here. In the same line, mutual
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exclusion are taken into account: the possible interaction is detected but reported to the
programmer as non valid as the reading link has been excluded. This way, the programmer
can know everything and modify the three kinds of rules at will, knowing what should be
the result.

In the case of ordering rules, the detection mechanism reports that the two involved links
are either not ordered, or ordered so as to enable the interaction (i.e.the action is before
the cut), or ordered so as to disable it (i.e.the cut is before the action).

Finally, interactions are of different kinds, as explained in section 4.4.1. Some interactions
are about the name of some elements, other about the existence of elements, other again
about the types of some elements. etc. In order to store this information as well, several
kinds of interactions have been created. The interface Interaction defines the methods
that any interaction should implement. This includes methods for accessing the links
and the classes concerned, as well as the description of the interaction, a conflict report
generation method and queries about the visibility, ordering and mutual exclusion. Then
there is a whole hierarchy of interactions depending on their type. Figure 4.1 show a
simplified hierarchy of these interactions. The explanation of this schema has already been
carried out in section 4.4.1.

Interactions reporter

An interactions reporter is an object which can be queried about the interactions found.
It is in charge of querying the Prolog engine to detect the interactions which it stores for
further reuse.

An interactions reporter implements the interface ConflictReporter which declares basic
methods for manipulation of found interactions, for example methods for retrieving the
interactions which concern a specific link or a specific class. Using this, any graphical
reporting tool can make queries to the base of conflicts.

Note that before showing the found interactions, one must ask the ConflictReporter to
search for them, that is to say to query the Prolog engine for all kinds of interactions.
This is not done automatically as it burdens the performances a lot and as detection is not
always required.

8.2 Resolution

In chapter 7 we have introduced the design of the composition process. We have seen
that we need to have an iterative process composed of several phases of introspection and
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intercession in order to have action-cut interactions. In this section, we review it in details
and see the influences of the ordering mechanism on it.

But first of all, we come back on the matter of the two resolution mechanisms introduced in
section 4.5: skipping an action and methods combination. These two mechanisms interact
as they apply at a common join point and therefore shall be composed the same way we
compose aspects.

8.2.1 Interactions between the Action Skip and Methods Com-
bination

Skipping an action and combining methods work at a common join point of the system
and therefore interact. Indeed, both system first try to add the conflicting element and
react when an exception is raised. Therefore they have to be composed in the right order
and way so as to provide the desired behavior.

When a method is added although there is already a method with the same signature in
the code, either from the base code or previously added by another SLink, the compiler
raises an exception saying it cannot compile the new code.

The action skip mechanism provide means to skip the addition of a conflicting element.
It is in fact implemented using fault tolerance: it first tries to add the element and when
an exception is raised saying the addition failed then it silently catches the exception and
continue. In normal cases, SLinks are not tolerant to faults and therefore the exception is
normally thrown.

The Method Combination mechanism acts the same way: it reacts on a failed attempt to
add an element. It first catches the exception, checks for method combination rule and if
not found throws back the exception, but if found applied the combination mechanism. We
assume that when both rules are defined and applicable for a same method, the combination
prevails and therefore shall be applied first.

The final mechanism is then:

1. First try to add the method.

2. If a error occurs (exception raised), then try:

• If a method combination has been declared for this method then do it.

• Otherwise if the link is tolerant to faults, then do nothing.

• Otherwise report the error (throw the exception back).
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3. Continue normally.

In the case of other structural element, this problem doesn’t exist as there is only the
Action Skip mechanism.

8.2.2 Composing the SLinks

In sections 7.1.1 and 7.1.2, we have introduced two concepts in the ordering of SLinks: the
absolute precedence and the relative precedences. We have also seen that there are some
relative precedences among the SLinks of the absolute level.

This leads to two different levels of ordering, two groups, which have to be treated sepa-
rately. Still, each group have to be processed and the algorithm to do so are the same, as
we will see further in the explanation.

We will first study the mechanisms used to order the SLinks according to the rules defined
and what is the structure used, then we will come back to the composition process.

Applying the links in order

During the iterative process introduced in chapter 5 the developer defines ordering rules
to deal with the various interactions. These relative precedences build chains of SLinks
defining the application order. Let us study an example. Suppose there are tree ordering
chains:

La<Lb<Lc<Ld<Le<Lk<Ll

Lf<Ld<Lg<Lm<Ln<Ll

Lh<Li<Lj

(Where La<Lb stands for ”La is to be applied before Lb”.)

We can notice that Ld is a crosspoint between two chains, and so is Ll. Now, a SLink shall
be applied only once in the composition process. Therefore, the two instances of this link
shall be treated as one.

We can assume that since there is no ordering rules between La and Lh, they do not interact
and therefore can be applied at the same time. So during the composition process, we can
apply all the links of the same column at the same time. By applying the links column after
column, we are sure to respect the order defined and we process all the different chains at
once.
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Moreover, each SLink shall be applied only once. If one link is involved in several chains,
then it has to be placed in a single column so as to be used only once.

Considering these remarks, we can come up with a design for the precedence chains, given
as follow:

La | Lb | Lc | Ld | Le | Lk | __ | Ll

__ | __ | Lf | Ld | Lg | Lm | Ln | Ll

Lh | Li | Lj

All the SLinks are placed in rows, according to their precedence chains, and every time a
SLink is a crosspoint between several chains, then it is placed in a single columns. Then,
over the iterations of the composition process (See section 7.3), the links will be applied
by column.

A possible simplification.
This is the optimal way to order the SLinks concerned by the precedence rules, but it is
not the easiest to build... Crosspoints have to be identified, localized, and empty cells have
to be placed in the rows to ensure the crosspoints are in single columns.

An easier alternative is to have only one chain containing all the links involved and ordered
according to the precedence rules. So for instance:

[La,Lb,Lc,Lf,Lh,Ld,Le,Lk,Li,Lg,Lm,Ln,Ll,Lj]

The construction of such chain is always possible, assuming that there are no circular
declarations. This chain has the advantage to be easier to build, but on the other hand
can slow the process as there will be as many iterations as there are links in the chain.
This is especially true if there are many ordering chains involving only few links. In this
case, instead of having three loops involving each twenty links, there would be sixty loops
involving each only one link. Fortunately, this case is not frequent as there are rarely many
SLinks defined and interacting.

Improvements and optimizations.
The first solution with the two dimensions array containing the links to be applied in
order is the optimal solution, yet more complex. The solution proposed is a simple and
convenient solution, yet not very optimized. In further optimization, one can think of a
two dimensions array containing several lists such as the second solution. To do so, we
just need to separate the links in several lists, putting together the links that are somehow
connected and therefore separating the links that are not comparable at all. This solution
would reduce slightly the length of the final list in most cases, and would come very close
to the optimal solutions in some cases. For instance, the first given example would become:
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La | Lb | Lc | Lf | Ld | Le | Lk | Lm | Ln | Ll

Lh | Li | Lj

In the case of numerous small ordering chains, this solution will be far better than putting
all this chains in a single list.

This is the actual used solution. A pre-sorting as been set, separating the initial list into
several ones, each list containing the SLinks that are somehow connected. Then each
sublist is sorted and checked, and we get a list of lists as a result.

The sorting of each sublist is based on the sorting algorithm usually known as insert-
sort. It is possible to use it because a single sublist contains only links that are somehow
connected and therefore comparable. However, there are some cases where comparison is
not possible: La and Lf are not comparable. Indeed, they are both before Ld but we still
cannot compare them. Therefore the insert-sort algorithm has to be modified to take into
account the case when no order is known between two elements.

This algorithm has been programmed in Prolog, using the existing Reflex-Prolog interface,
because it is more convenient when it comes to such reasoning and programming. The
code is as follow:

insert_sort(List,Sorted) :- i_sort(List,[],Sorted).

i_sort([],Acc,Acc).

i_sort([H|T],Acc,Sorted) :-

insert(H,Acc,NAcc),

i_sort(T,NAcc,Sorted).

This is the basic code made to make the use of the algorithm more user-friendly. The user
calls the function, giving an unsorted list as List, and receives the sorted list as Sorted.
This calls the recursive function i sort which will add the element one by one at a correct
position. The sorting part of the algorithm is in the predicate insert/3.

before(X,Y) :- before(X,Y,[Y]).

before(X,Y,_) :- ord(X,Y).

before(X,Y,Memo) :-

ord(X,Z),

acceptable(Z,Memo),

before(Z,Y,[Z|Memo]).
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acceptable(_,[]).

acceptable(X,[Y|Xs]) :-

X \== Y,

acceptable(X,Xs).

This is the comparison predicate: we say an element X is before another one Y either when
it has been defined as such (ord(X,Y).) or when X is before another element Z and Z

is before Y. The use of the predicate acceptable/2 is to avoid the circular declarations,
if any, as this kind of reasoning can easily go into an infinite loop. It ensures that the
before/3 predicate does not pass by the same element twice.

insert(X,[],[X]).

insert(X,[Y|Ys],[Y|Zs]):-

before(Y,X),

not(before(X,Y)),

insert(X,Ys,Zs).

insert(X,[Y|Ys],[X,Y|Ys]):-

before(X,Y),

not(before(Y,X)).

This is the exact translation of the classic insert-sort algorithm:

• Inserting an element in an empty list is a list with the element.

• Inserting an element X in a sorted list which first element is Y, having X greater
than Y, is inserting X in the tail of the sorted list.

• Inserting an element X in a sorted list which first element is Y, having Y greater
than X, is inserting X in the first position of the sorted list.

The not(before(X,Y)) and not(before(Y,X)) are just to make sure that there are not
circular declarations between two elements.

insert(X,[Y|Ys],[Y|Zs]) :-

not(before(X,Y)),

not(before(Y,X)),

insert(X,Ys,Zs).
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This part is needed as all pairs of elements cannot be compared. This states that if no
comparison is possible, then it should try to insert the element in the tail of the sorted list.

This algorithm deals with the problem of circular declarations in several ways. First by
ensuring that before/2 does not loop because of them, and secondly by ensuring, in insert-
sort algorithm, that if a link is before another link, then it is not after at the same time.
In case of circular declaration, the algorithm fails and no result is returned.

This algorithm is used to construct the precedence chain by giving it a list containing all
the links involved in precedence rules and by retrieving a list of lists. This list of lists
contains in fact sorted sublists. Each sublist is an ordering chain which has been sorted.
If the result is empty, it means that there are circular declarations and the programmer is
to be informed about it.

The composition algorithm

In section 7.3, a new process has been designed for SLinks installation. This process
works in several consecutive loops. Each loop is composed of a introspection phase and a
intercession phase. At the very first stage of the composition process, the ordering rules
are examined and combined so as to build the precedence chains. All the links mentioned
by theses rules are kept aside and treated separately, in two lists of links called L-ordering-
absolute for the links of the absolute level and L-Ordering-relative for the links of the
relative level (See section 7.1.2), depending on the kind of precedence rule. Let S-applied
be the set of links that have been applied to the class being loaded, S-rejected be the set of
link rejected by exclusion rules, S-selected be the set of selected links for this class, during
one loop, and S-pool be the general pool of links to be tested. The composition algorithm
is as follow:

1. Build precedence chains using defined ordering rules: L-ordering-absolute and L-
ordering-relative.

2. From the pool of links of Reflex, place in S-pool all the links except those concerned
by ordering rules, that is to say those that are in L-ordering-X.

3. Test and Apply links of L-ordering-absolute:

(a) For each link of L-ordering-absolute, in order:

i. Introspection on the current class being loaded (*).

ii. If the class is accepted, apply the exclusion rules.

iii. If the link is excluded, add it to S-rejected, then stop.

iv. Intercession of the link on the class. Add the link to S-applied.
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4. Test and Apply links of L-ordering-relative:

(a) For each link of L-ordering-relative, in order:

i. Introspection on the current class being loaded.

ii. If the class is accepted, apply the exclusion rules (*).

iii. If the link is excluded, add it to S-rejected, stop.

iv. Intercession of the link on the class. Add the link to S-applied.

5. Test and Apply all other links i.e.links of S-pool.

(a) Empty/flush S-selected.

(b) Introspection on each link of S-pool. Place in S-selected the accepted links.

(c) Apply the exclusion rules on S-selected (*). Add the excluded links to S-rejected
and remove them from S-selected and S-pool.

(d) Intercession on each link of S-selected. Add the applied links to S-applied and
remove them from S-pool.

6. Verify all the dependency rules on S-applied in order to search for conflicts. For each
conflict found, generate an error message for the programmer.

(*) Exclusion rules take into account the currently selected SLink as well as the SLink
which have already been applied (S-applied).

(**) Modifications have been done, other links may then apply...

With such algorithm, the links concerned by precedence rules are tested only once but in a
precise order. The others are tested several times as long as they still don’t cut the class,
while those which cut the class are applied and removed.

Problems can occur due to conflicts between mutual exclusion rules and ordering rules.
For instance one can declare that L1 is to be applied before L2 and that if L2 is applied
than L1 shall be excluded. This situation clearly conflicts and therefore shall be reported
to the programmer as a warning.

Figure 7.4 illustrates the previous algorithm. The figure 3.4 is then obsolete as the SLA
phase is replaced by this one. The BLS phase is kept unchanged.

Handling the composition rules

During the iterative process for SLink composition (cf. chapter 5), composition rules are
defined. In this section we review how these rules are handles, and more precisely by what.
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We have seen that rules are always defined using the Rules class, like for example:

Rules.declareConflictingActionSkip(aLink);

In fact, this object dispatches the messages to processor objects dedicated to these rules.
Indeed, there is one processor for each kind of rule, and it is used to centralize them, to
store them and to interpret them. We identify the following rule processors:

• a ClassExclusionProcessor which handles the rules excluding a class from the cut
of a SLink

• a FaultToleranceProcessor which is used to implement the Action Skip mechanism

• a MethodCombinationProcessor which handles the combinations of method

• a PrecedenceProcessor which handles the precedence rules for SLinks and builds
the precedence chains

• a StructuralMutexProcessor as mutual exclusion rules are treated separately be-
tween SLinks and BLinks

• a VisibilityManager which manages the access rights of the links

Each processor is based on the singleton design pattern and provides a method process,
with or without arguments depending on the needs. Then the effect and the method return
is different depending on the processor. For example, the structural mutex processor takes
a set of SLink in parameters, representing the SLinks which are about to be applied in
intercession phase, and returns a set of SLinks which has been filtered using the mutual
exclusion rules. The precedence processor queries the Prolog engine in order to get the two
precedence chains for the absolute and relative levels of ordering and then provides access
methods to these precedence chains.

These objects allow to have a separated treatment of the rules from the rest of the code
and therefore help to have a maintainable code.
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Chapter 9

Discussion and evaluation

We have seen, in the previous chapters, how the detection and composition mechanism
work. We have seen that the programmers can define rules to compose the structural links
(SLinks), such as rules for ordering, visibility of the added elements, aspect dependencies,
etc. The point is that these rules are global. In other words, they are always valid, in all
cases. One could wonder about the use of local rules, which would be valid and used only
at some particular points.

We have also seen that the detection mechanism detects a lot of interactions, and not only
those that are actually happening. There are pro and cons for both visions and this is
open for discussion.

Furthermore, this contribution deals only with the case of structural aspects adding ele-
ments. It does not deal with modifications, like an aspect changing the hierarchy of a class
or changing the access rights of methods (from private to protected for instance). These
aspects are more tricky as they can help a lot but also bring a lot of troubles since they
can be destructive (renaming a method bring compilation errors in most cases). Further
work shall be done on this matter.

In this chapter, we will discuss briefly each topic. We do not intend to bring any solution
or definitive opinion on these questions, but instead bring some preliminary thoughts.

9.1 Local rules

The question arise concerning the use of local composition rules, that is to say rules that
are only valid in certain cases or places. The question is still open and shall not be answered
in this paper. Still, here is some food for thoughts.
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9.1.1 Ordering

In [10], Havinga et al. propose an algorithm to deal with circular interactions of type
action-cut. These case happen when several aspects depend on the action of another
aspect and form a circular chain of dependencies. They resolve it by iterating over the
different orders possible until they reach a fix point, as explained in section 2.2.3.

In Reflex, the approach is always defensive: whenever a problem is detected, it is the duty
of the programmers to solve it using all the possibilities given. In the same line, the case of
circular dependencies is dealt with using precedence declarations. The programmers have
to define a suitable order for these interactions so as to have the desired behavior.

As for now, precedence declarations are global, that is to say that the order declared is to
be used in all the cases. With circular dependencies, one may wish to have a specific order
on one class, another order on another class, and a third order on the rest of the classes.

For instance, using the example given in [10]: two aspects adding annotations, the first
one A1 adds the annotation WebService to any class which have a public method with
the annotation WebMethod, and the second one A2 adds the annotation WebMethod to
every public methods of classes which have the annotation WebService. Imagine we have
two classes C1 and C2: C1 has the annotation WebService and public methods without
any annotations, and C2 does not have annotations but a method with the annotation
WebMethod. We obviously want that A1 is before A2 on C2 and the opposite order on C1.

The use of local ordering rules is then interesting, especially for resolving circular dependen-
cies, due to the position of Reflex for interaction resolution. These rules are not supported
in the current state of Reflex but could be added with a little refactoring.

9.1.2 Visibility

In the same line, local visibility rules may be wanted. Ordering rules and visibility rules
are closely tight as without extended visibility ordering rules are useless. In order to fine
tune the behavior of the structural links, one may want to adjust precisely the visibility
of the modifications as well as the precise ordering. Though, this is quite redundant with
the local ordering rules in most cases and therefore is just a second way to do the same
thing. Indeed, the use a local visibility rule is to enable or disable an interaction on
some classes among all those concerned by the same interaction between the same links.
But that is just the purpose of ordering rules as well. The only case where this is not
possible is the case where the programmer wants to disable an interaction in the case of
circular dependency while he wants to enable it on other classes. Therefore, in the case of
two links in circular dependency, applying on several classes, if the programmer wants to
disable the interaction on some classes, allow it on others and define two different orders
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for modification application, then he needs both local visibility and local ordering rules.

9.1.3 Aspects Dependencies

The question arise whether or not it is relevant to define local combination rules. Is it
relevant to say that two links are in mutual exclusion only on some classes but not other?
It does not appear to be relevant at first sight. However, it is still possible to do so manually
by excluding one SLink from one class, as explained earlier.

9.1.4 Action skip

The skip-action rule defines in fact the fault tolerance of a structural link regarding the
additions it makes. In normal case, a link reports every conflict (i.e. error) when the
addition of an element has failed. With such rule, no conflict is reported as the addition
is virtually skipped. The point of a local version of such rule would be to skip conflicting
additions in certain cases, on certain classes, and to report the error in every other case.
This would be useful for the programmer who wants to skip actions which he knows are
conflicting but still be warned if new conflicts arise while developing.

This is actually supported in the current version of Reflex.

9.1.5 Method Combination

Combining methods enables to keep the two behaviors in a single method. In the current
state, the method combination is global and the combination behavior is the same every
time the methods are combined. But one could wish to combine a specific method differ-
ently depending on the implementation of the existing method, that is to say depending
on the class where the conflict takes place. Therefore providing the possibility to define
different behaviors (i.e. different bodies) depending on the class could be useful.

This also is not supported in the current state of Reflex but could be added with few
refactoring.

9.2 The detection mechanism

There are several ways to see what the detection mechanism should do. Of course it should
be able to detect the effective interactions so that the programmer is aware of it. But the
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question arise of whether it should detect only that or also detect possible interactions that
could arise if the programmer helps it.

The fact is that in Reflex, by default, thanks to the visibility of the structural elements, no
interaction is possible between aspects of any kind. The reason is simple: by default, the
structural elements added are invisible to the cut of other aspects. Therefore a tool which
detects only the effective interactions would not be of a great use at first. The visibility
has to be extended before interactions can be effective.

Being able to detect interactions that could arise if the visibility was enhanced and good
ordering was declared is a great help to the programmer who has to deal with several
aspects which should interact. With the current approach, the programmer can know
what he has to declare so as to enable the interaction he wants and not the other ones.
Therefore he can fine-tune the visibility of each aspect, define a precise order among them
and have the result he wants without having to cope with unexpected interactions.

The other alternative, less elegant, is to disable the visibility mechanism, like in other
aspect-oriented approaches, detect only the existing interactions and deal with each of
them. This approach is not very subtle and starts from a conflicting situation in order
to go to a suitable situation. Our approach, with visibility, starts from a basic, but not
conflicting situation, and goes toward a suitable one involving interactions.

On top of that, another dimension of the problem is to be taken into account. This
dimension is discussed in the following section.

9.2.1 Accuracy of detection vs. expressiveness of the cut lan-
guage.

Regarding all the facts generated during the introspection (see section 6.1.1), the question
of the accuracy of the detection naturally arises. In fact, there is trade off between expres-
siveness of the cut language and the accuracy of the detection1. In Compose* for instance,
the cut language has limited expressiveness (it is not Turing-complete) and greatly resem-
bles a logic language. Hence with such a language it would be straightforward to ensure
that only appropriate facts are generated. On the other hand, this means not being able to
express advanced selection criteria, e.g.: cut every class which has a method with a specific
annotation, but no more than three annotations, exactly four parameters and two of type
int.

The path we choose is to keep the expressiveness given by our reflection-based model

1The action language does not cause any problem as, in Reflex, we precisely know what changes are
effectively done since structural entities know what changes are performed upon them, as well as by which
link. So the facts generated for structural changes are accurate and always correct.
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(i.e. cut and action are expressed as Java methods manipulating reifications of the struc-
tural elements). Then there are two alternatives: (a) the structural elements automatically
generate logic facts as they are being observed, (b) the user explicitly specifies (e.g. as an-
notations or using an embedded DSL) what the cut does.

In the first case, there is a possibility that too many facts are generated. For instance,
in the example introduced in section 6.1.1, only the fact that l1 reads the name of the
annotation on a field is relevant as it was the intention of the programmer. The two
other facts may lead to non-existent interaction detection as they get involved with other
rules. Therefore we detect spurious conflicts, but this is arguably better than missing
effective conflicts. In the second case, an explicit contract is actually expressed by the
aspect programmer, and hence we can generate the facts that precisely correspond to the
intention of the programmer. On the other hand, it is the burden of the programmer to
declare this contract. We have finally chosen the first alternative.

9.3 Structural modifications

The present contribution is limited to the case of structural additions and does not cover
the question of modifications or removal.

Removing an element using aspects is dangerous, as anyone could have figured: the code
may not be compilable anymore as elements are missing. Moreover, this kind of modi-
fications does not make sense anyway and that’s why it has never been covered by any
aspect-oriented approach (to our knowledge.)

Modifying the hierarchy of a class is supported and used in other approaches, such as
AspectJ for instance. It allows to add some behavior and some characteristics to a whole
tree of classes at the same time. AspectJ supports it with restrictions: the new superclass
must extends the previous superclass so as to keep the original inheritances.

Action-cut interactions involving hierarchy changes are possible. For example: an aspect
(1) cuts every class which extends a class SC and a second aspect (2) changes declares a
class as extending SC. This case is detectable using the model we have designed and so our
model could be extended to that matter in future work.

Apart from hierarchy modifications, there are other modifications possible. Some of them
are useful and relevant whereas other, as removal, do not make sense as such. For example,
renaming an element is possible in Reflex but it is dangerous to use it. Indeed, renaming
an element breaks the code of every other elements which were using it. So it cannot be
used as such. However, it can be used in combination with a copy procedure so as to clone
elements or classes. The element is then copied and renamed before it is added somewhere.
Cloning facilities can easily be involved in action-cut interactions and therefore should be
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detected, but the study of the matter is left for further consideration.

Still, one other modification makes sense: changing the modifier of an element. For example
declaring that a private method is now protected so that it can be used by the children
classes. This is interesting in combination with an aspect which adds a class which extends
an existing one with private methods. Still, only increasing the access permissions should
be possible as restricting the permissions could lead to compilation errors. This is again
subject to action-cut interactions as an aspect could search for methods with a specific
kind of modifiers. It shall therefore be detected and reported.

9.4 Interactions with behavioral aspects

In the present study, only the interactions among structural aspects has been studied.
However, if this approach of detection and resolution using a logic engine turns out to be
a valid approach, then it may be considered to extend it to the behavioral part later on.

At first, the bridge between the two ”worlds” could be done by detecting the interactions
between the behavioral links (BLinks) and the structural modifications made by the SLinks.
These interactions are obvious as structural elements are added in order to be used by
BLinks at some point during the execution. The point would then be to detect interactions
which were not meant in the design of the links. Again, thanks to the visibility mechanism,
these interactions are limited or non-existent but one could wish to take advantage of an
interaction although it was not designed to be done at first.

Then the matter of BLink interactions is to be studied further to see if it can be detected
using logic, and if this approach is the best to be used. Actually, the BLink interaction
detection is done in plain Java, and the problems encountered strongly push to search for
another alternative.

9.5 Evaluation

The proposed approach detects interactions between two SLinks but do not detect semantic
conflicts. Indeed, it is not possible to define what a semantic conflict is, as Compose*
does [8, 9]. Hence, every interaction is reported to the programmer which has to decide
himself if the two aspects are conflicting or not and so define composition rules. This
approach therefore puts more burden on the programmer.

Moreover, as discussed in this chapter, due to the model chosen, the detection is not very
accurate as spurious interactions can be detected. This comes mainly from the fact that
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the facts generated during introspection and intercession are not linked together. For
instance, if a SLink L1 defines its class selector as accepting classes which implement a
specific interface and which have a specific annotation, two facts will be generated: (1)
the cut is about a specific interface and (2) the cut is about a specific annotation. Then
if another SLink adds an interface to classes, the two SLink will be declared as interacting
because of point (1). In fact, in most cases, they are not as the added elements are not
sufficient: the annotation is not added. However, in the case of classes which already have
the desired annotation, adding the expected interface is sufficient to modify the scope of
L1 and therefore the interaction is not spurious. So finally, detecting spurious interactions
is not that bad as long as no effective interactions are missed.



Chapter 10

Conclusion

In the present study we have proposed a solution for automatic detection and declarative
resolution of interactions between structural aspect using a logic engine attached to Reflex.

Automatic interactions detection tools are particularly needed to help the programmers to
detect interactions when building big programs involving numerous aspects developed by
different persons. In this extreme case, detecting interactions manually is almost impossible
and therefore automatic tools are needed. In the present study, we propose a solution
based on a logic engine attached to the aspect language. We use generated facts regarding
the observed and modified structural elements to reason about the cut and the action of
aspects. Then, using detection rules previously defined to detect interactions, we are able
to combine these facts and detect interactions between structural aspects. In the one hand
this solution is not very accurate as spurious interactions may be detected, but on the
other hand it allows to detect all effective interactions plus also non-effective interactions
which can help the programmer better understanding what is happening in his application
and what may happen if he modifies the aspect composition rules.

Declarative resolution mechanism allows one programmer to resolve the interactions de-
tected and to solve the conflicting interactions if any. In this study, we have identified
three kinds of interactions and defined wanted resolution mechanisms for each of them.
Designing and supporting these resolution mechanisms has forced the structural aspect
composition process to be revised entirely. The new process now supports fully all the pro-
vided resolution tools and allows the programmer to compose aspects in a very fine-grained
manner. Still, these resolution mechanisms could be even more fine-grained by defining
local rules, that is to say rules of composition which are only valid at some points of the
program.

Furthermore, this study was limited to the case of structural aspects which add structural
elements and further work shall be done on those which modify existing elements and on
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interactions between structural and behavioral aspects.

And finally, some work is still needed to build the reporting tools, that is to say a complete
graphical interface to sort and browse the found interactions. This interface would have
to get its data from the detection tools and present them in a good way for the user to
understand easily where are the interactions and how they can be resolved.
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