
Vrije Universiteit Brussel - Belgium
Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes - France

2006

V
R

IJ
E

UNIVERSITEIT BRUSS
E

L

S
C

IE
N

TIA
VINCERE TENEB

R
A

S

ECOLE DES MINES DE NANTES

CONCURRENT ASPECTS

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange)

By: Angel Núñez López

Promoter: Prof. Dr. Theo D’Hondt (Vrije Universiteit Brussel)
Co-Promoter: Dr. Jacques Noyé and Dr. Rémi Douence (Ecole des Mines de Nantes)

Abstract

Aspect-Oriented Programming (AOP) promises the modularization of so-called crosscuting
functionality in large applications. Currently, almost all approaches to AOP provide means
for the description of sequential aspects that are to be applied to a sequential base program.
A recent approach, Concurrent Event-based AOP (CEAOP), has been introduced, which
models the concurrent application of aspects to concurrent base programs. CEAOP uses
Finite State Processes (FSP) and their representation as Labeled Transition Systems (LTS)
for modeling aspects, base programs and their concurrent composition, thus enabling the
use of the Labeled Transition System Analyzer (LTSA) for formal property verification.

CEAOP does not provide an implementation of its concepts, restricting the study of con-
current aspects to the study of a model. The contribution of this thesis is the production
of an implementation of CEAOP as a small DSAL (Domain-Specific Aspect Language),
Baton, which is very close to FSP, and can be compiled into Java. As an intermediate
layer, we have developed a Java library which makes it possible to associate a Java imple-
mentation to a finite state process. The compilation process consists of using the Baton
program to translate both the Baton aspects and the Java base program into Java finite
state processes. This translation relies on Metaborg/SDF to extend Java with Baton and
Reflex to instrument the base program.

i

Acknowledgements

I would like to thank my promotors prof. Dr. Theo D’Hont, Dr. Jacques Noyé and Dr.
Rémi Douence for giving me the opportunity to do this thesis. I would like to express my
gratitude to Dr. Jacques Noyé for guiding me and helping me in this research until the
last moment.

I would like to thank my friends from EMOOSE and EMN that make this time very
pleasant.

Thanks to my family for the unconditional affection and emotional help.

Thanks to Anna-Loeke for making this time in France unforgettable.

ii

Table of Contents

1 Introduction 1

2 State of the Art 3

2.1 Aspects matching join point sequences . 3

2.1.1 Stateful aspects and pattern matching based approaches 3

2.1.2 Logic-based approaches . 6

2.2 Modeling concurrency with LTSA . 7

2.2.1 Modeling processes . 7

2.2.2 Modeling concurrency . 10

2.3 Concurrent EAOP . 12

2.3.1 Translation . 13

2.3.2 Composition . 15

3 Toward an implementation of CEAOP 18

3.1 User point of view . 18

3.1.1 The intention and the scenarios . 18

3.1.2 Basic hypotheses about the aspects and the base program 19

3.1.3 A concrete aspect syntax for CEAOP 19

3.2 An implementation of LTS composition . 25

3.2.1 Introduction . 25

3.2.2 Semantics of LTS composition . 26

3.2.3 Principles of the synchronization using a centralized monitor 27

3.2.4 Implementation of LTSs as active objects 28

iii

TABLE OF CONTENTS iv

3.2.5 Implementation of the synchronization and the monitor 28

3.2.6 Evaluation . 30

3.3 Principles of the implementation . 31

3.3.1 Aspects and base program as prefixed LTSs 31

3.3.2 Objects implementing aspects and base program LTSs 33

3.3.3 Instrumenting the base program . 33

3.3.4 Operators . 34

4 A concrete implementation and optimizations 38

4.1 A Java implementation of the LTS composition 39

4.1.1 The monitor . 39

4.1.2 The LTS hierarchy . 39

4.2 High-level layer: aspects and weaving . 41

4.2.1 Implementing aspects . 41

4.2.2 Weaving using Reflex . 42

4.3 Low-level layer: aspects and base program as LTSs 45

4.3.1 The LTSs modeling the aspects . 45

4.3.2 The LTSs modeling the base program 47

4.3.3 Configuring the composition . 50

4.4 Implementing the DSAL . 51

4.4.1 Overview of Metaborg . 51

4.4.2 Aspects . 52

4.4.3 Mappings . 54

4.4.4 Connectors . 55

4.4.5 Implementing aspect binding . 56

4.5 Optimizations . 57

4.5.1 Avoiding waiting loops in aspects 57

4.5.2 Optimizing the object Monitorable 59

4.5.3 Eliminating the double synchronization 59

TABLE OF CONTENTS v

5 The Readers and Writers problem 60

5.1 The problem . 60

5.2 A solution using CEAOP . 60

6 Conclusions 62

6.1 Contributions . 62

6.2 Perspectives . 62

6.2.1 Improvements to the implementation 62

6.2.2 Improvements to the CEAOP model 64

Bibliography 66

List of Figures

2.1 A model of a coffee machine . 8

2.2 A model of a simple e-commerce base program 12

2.3 A first model of the LTS of the aspect Consistency. 13

2.4 LTS of the aspect Consistency where skippable actions have been split up. 14

2.5 LTS of the aspect Consistency . 14

2.6 LTS of the e-commerce application . 15

2.7 The consistency aspect (a) and the safety aspect (a”) in FSP. 15

2.8 Woven example . 16

2.9 Woven example with more concurrency . 16

2.10 Composition of the aspects Consistency and Safety with the base program
using ParAnd . 17

3.1 Example of synchronization. 28

3.2 LTSs of the threads of a model of an e-commerce application 31

3.3 Prefixed LTSs of the threads of a model of an e-commerce application . . 32

3.4 Example of synchronization of two components using ParAnd. 36

3.5 Example of synchronization of three components using ParAnd. 37

vi

Chapter 1

Introduction

Building computational systems is about abstracting and modeling some part of the ele-
ments or information flows of the world. In this regard, most of the effort in the last time
has been the development of methodologies, languages and paradigms that facilitate such
a modeling and implementation. Object-oriented Programming and Component-oriented
programming are big discoveries in this context. The abstraction of problems using ob-
jects and/or components reduces the gap between the subject studied and its modeling.
It introduces good properties such as modularization and reuse. However, it fails in the
modularization of the so-called crosscuting functionalities which are scattered among the
distinct entities of a computer system. Non-functional concerns such as monitoring, de-
bugging, coordination among others are examples of crosscuting functionalities that make
the programming less intuitive and less straightforward. They also make objects and com-
ponents more complex.

Aspect-oriented programming (AOP) [1, 2] promises means for the modularization of such
crosscuting functionalities permitting objects and components to get rid of these concerns.
The state of the art includes several languages supporting sequential AOP, most notably
AspectJ [3]. However these languages support in a very limited way the potential con-
currency of their target applications. Some expressions such as the perthread in AspectJ
make it possible just to apply exclusive aspects to the distinct processes forming an ap-
plication but without any interaction among them. Therefore, concurrency issues such as
mutual exclusion and coordination have to be explicitly treated using libraries for concur-
rent programming.

A recent approach named Concurrent Event-oriented Programming (CEAOP) [4, 5] has
been proposed that provides support for aspects applied over concurrent applications. It
is based on the model of Event-based AOP (EAOP) [6] and proposes the modeling of as-
pects and aspect weaving by a transformation into the calculus of Finite State Processes
(FSP) [7]. The FSP semantics models concurrent processes which are composed and ver-

1

CHAPTER 1. INTRODUCTION 2

ified with the tool Labeled Transition System Analyzer (LTSA) [7]. Using this tool it is
possible to model concurrent applications that are free of deadlocks and data races.

The CEAOP approach allows the coordination of concurrent aspects in a compositional
way using high-level operators. These aspects can execute their advices in coordination
with the base program using the CEAOP semantics, without requiring the need of a
different mechanism (aspect-oriented or otherwise) whose only purpose is to introduce
synchronization-related code.

However, CEAOP has been proposed and developed as a model and not much has been
done in terms of a concrete implementation. The importance of such an implementation
is that it would permit to test and experiment with concrete scenarios, to study the real
applicability of the concepts introduced.

Since the approach is based on modeling aspects using FSP and its compositional semantics,
a starting point in the generation of an implementation should be the study of how processes
described in FSP are implemented. Unfortunately, once processes have been modeled using
FSP and tested using LTSA, their implementation still remain to be done “by hand”, as a
result, there is not certainty that the final product is effectively correct.

The main objective of this thesis was the production of a concrete implementation of
CEAOP. With this objective in mind, it was developed a library that translates the com-
position in FSP of concurrent processes into running Java processes correctly composed.
By means of a direct translation, the composition of the implemented processes is guar-
anteed to the model. Using this implementation as a target, a small DSAL permits the
composition of concurrent aspects and put in concrete form the concepts introduced by
CEAOP.

This dissertation is structured as follows:� Chapter 2 reviews the state of the art. First, it exposes the state of the art with
respect to stateful aspects, which correspond to the kind of aspects supported by
CEAOP. Second, it introduces the main concepts of FSP and LTSA necessary for
the understanding of this report. Finally, it presents CEAOP.� Chapter 3 introduces our implementation of CEAOP. It presents the DSAL developed
in this thesis and exposes the principles of its implementation. This chapter also
exposes the library for the composition of processes described using FSP.� Chapter 4 describes the concrete implementation of our DSAL and FSP composition.
The result is a running prototype that puts in concrete form the concepts of CEAOP.
In addition, the chapter discusses some optimizations.� Finally, Chapter 5 illustrates the use of our prototype and chapter 6 concludes.

Chapter 2

State of the Art

This chapter exposes the state of the art, that is the starting point of the work developed
in this thesis.

Section 2.1 overviews concepts related to stateful aspects. This is useful because the
kind of aspects this work considers are basically stateful. Section 2.2 introduces LTSA
a methodology for modeling concurrent programs, which is the methodology used in this
thesis to model concurrent aspects. Finally, section 2.3 introduces Concurrent EAOP which
is the main topic of this thesis.

2.1 Aspects matching join point sequences

A new generation of aspects have appeared with the introduction of stateful aspects [8, 6].
These aspects are defined in terms of sequences of execution points, rather than single join
points, i.e., the result of matching its pattern is not any more an isolated program point,
but a sequence of join points in the history of computation. In this way, stateful aspects
allow us to customize the current computation of a program based not only on the current
operation but also on its previous behavior. In other words, they extend and make more
complete the initial concept of aspects.

2.1.1 Stateful aspects and pattern matching based approaches

Event-based AOP (EAOP) is the approach used to introduce stateful aspects. It was first
documented in [9] as a language with a semantics formally defined by means of parser
operators matching event patterns in execution traces. The form of EAOP described in
[8, 6] defines crosscuts using regular expressions. Therefore, EAOP can be considered as a

3

2.1. Aspects matching join point sequences 4

pattern matching based approach. After EAOP several other approaches based on pattern
matching have been defined, e.g., JAsCo [10], abc [11], DEP AspectJ [12], among others.

It can be useful to visit some general ideas in the area of pattern matching and to apply
them to the stateful aspects approaches. A pattern is a form, template or model (or more
abstractly, a set of rules) describing things or parts of things. Pattern matching corresponds
to finding (or matching) objects satisfying a pattern in a collection of these objects. A
well-known case is the pattern matching of text or sequences of elements. In this case,
the collection is a big sequence of elements and the intention is to match subsequences.
In terms of pattern matching of sequences, patterns are usually described using regular
expressions.

A regular expression describes a set of syntax rules to be applied sequentially over the
elements of a collection. The rule that is applied to each element is part of the semantics
of the regular expression. For example, if the regular expression (ad|b)∗c is applied over the
text "acaabc", for the first letter "a" of the text, the following local rule is applied: (match
a ∨ match b ∨ match c). Since the letter "a" is matched, for the second letter "d" of
the text a new rule (match a ∨ match b ∨ match c ∨ match d) is applied. When a
final rule is matched, then it is possible to say that a sequence has been found. Looking at
this process, it is possible to describe the application of a regular expression as a sequential
switch of local rules matching single elements.

Applying these concepts to the case of aspects, the elements of the sequences correspond to
representations of joins points including both static information (e.g., AST fragments) and
dynamic information (e.g., variable values). Then, patterns provide rules that constraint
both kinds of information at each join point representation. Patterns are applied over the
elements of the collection, which corresponds to the trace of computation.

In the following, some aspect approaches based on the pattern matching of sequences are
described.

The switch of local rules in the application of a pattern is well-observable in EAOP, which
describes an aspect using the following syntax:

A ::= µa.A recursive definition

| C � I;A prefixing

| C � I; a end of sequence

| A1 2 A2 choice

The basic rule in the formalism of the language is C � I, where C is a crosscut function
that takes a join point (representation) and returns true if the join point matches, false

2.1. Aspects matching join point sequences 5

otherwise (it is a predicate), and I an insert. The semantics of this rule is that when
the crosscut matches the current join point, it yields a substitution which is applied to
the insert before executing it (the substitution takes into account the variable bindings
produced in the matching). The meaning of the first rule is that the aspect µa.A is the
same aspect A where all occurrences of a are replaced by µa.A. The second rule expresses
a sequence of aspects, so that, when the crosscut C matches, then the insert I is performed
and the following aspect becomes active. The third rule expresses the end of the sequence
and finally, the fourth rule is a choice such that either the aspect A1 or A2 are applicable,
but when A1 is applied then A2 is not.

The combination between both the first and the third rule is the basis of the definition of
the kind of event sequences that this approach supports. These two rules implement a tail
recursion that allows us to express patterns matching regular languages of events.

In the presence of a choice (A1 2 A2 2 ... 2 An), this approach exposes the application of
a local rule (C1 ∨ C2 ∨ ... ∨ Cn) matching single join points through the functions
Ci such that Ai = Ci � Ii. When a join point is matched, the rule is replaced by another
rule involving crosscut functions to proceed with the execution of the EAOP aspect.

In terms of stateful aspects, CASB [13] defines a model similar to the model of EAOP,
but it details how join point matching is performed, based on its general model of AOP. A
local rule to be applied over a join point is modeled as the application of two functions: the
function ψ matching static information and the function φ matching dynamic information.
These functions (ψ and φ) are defined as:

ψ(i) =(φ, t, ψ′) and φ(Σ) = a

where i and Σ correspond to the static and dynamic parts of a join point, respectively.
a denotes an advice, and t denotes the kind of aspect (before, after, around,...). The
semantics behind this rule is that when the static part of a join point i is matched then
the result is a triplet (φ, t, ψ′). If the function φ matches the dynamic part Σ, then it is
possible to say that the pattern has matched a new sequence and the result is the advice
a. As a result of the match, the function to be applied to the next join point becomes ψ′,
which corresponds to a switch of the local rule of the pattern.

JAsCo [10] is a stateful aspect approach that can be considered as an implementation of
EAOP. It is based on the explicit programming of a state machine matching sequences. An
aspect in JAsCo is programmed defining the transitions of such a machine, where crosscuts
associated to each transition are defined using AspectJ pointcuts.

The approaches previously referred are considered stateful aspect approaches because it is
always possible to distinguish a state in the aspect. This state defines the local rule to be
applied for the next join points to be matched. An important feature of the stateful aspect
approaches is that they make it possible to perform interaction analysis, as exposed in [6].

2.1. Aspects matching join point sequences 6

Other kinds of aspect approaches matching sequences have been introduced. They could
be considered as stateful aspects but indirectly, since they do not show an explicit state.
These approaches directly define their patterns using regular expressions.

The extension to the AspectBench Compiler abc [14] for the AspectJ language, presented in
[11], is an approach to stateful aspects that uses regular expressions to define the pattern.
A local rule to be applied to a single join point is declared using a symbol that maps
an AspectJ-like pointcut. The pattern is expressed in a regular expression that uses the
defined symbols.

DEP AspectJ [12] is another approach that uses regular expressions. Like the abc ap-
proach, some names are associated to AspectJ-like pointcuts that afterward are used in
the definition of the pattern. An important feature is that it permits to refer to sequences
matched in the past, i.e., to save a kind of history of matched sequences. Furthermore, it
permits to match context-free sequences.

2.1.2 Logic-based approaches

Logic-based approaches implement the detection of sequences using logic queries. One of
these approaches is ALPHA [15], which corresponds to a pointcut language implemented
as an interpreter for a small statically typed AO language. The main characteristics of
the approach are the existence of different models of the program semantics that represent
on-line databases, and pointcuts that are designed as logic queries written in Prolog in
order to retrieve facts from those databases.

The models used as the databases are: the abstract syntax tree (AST), the execution trace,
the heap, and the static type assignment. From these models, distinct kinds of information
can be brought out.

Alpha provides some basic predicates for querying the execution trace. For example, the
predicates calls(ID, ExprID, Receiver, MethodName, Arg) and endcall(ID, CallID,

ReturnValue) allow us to match the events of entering a method call and exiting of it. Each
event in the trace acquires a timestamp in the variable ID that indicates some precedence
in the trace. The predicate now(ID) gives the current event ID.

Those basic predicates correspond to the basic facts for querying the execution trace. Some
rules are provided that are written in function of these facts and also facts defined for the
other models. An example of these rules is cflow(ID1, ID2) that indicates if an event
whose identifier is ID1 is in the cflow of ID2 (note that it can correspond to a fact in the
past). The most important feature is the capability of adding more rules of this kind to
the language, this it is important since more sophisticated predicates can be given, for
example to support context-free grammars for sequences of events.

2.2. Modeling concurrency with LTSA 7

2.2 Modeling concurrency with LTSA

The design of concurrent systems is a complex task prone to subtle errors. Tools for
modeling and analyzing the behavior of concurrent systems are very important in this
regard. Furthermore, mechanical or algorithmic verification becomes essential for a correct
analysis.

LTSA (Labeled Transition System Analyzer), introduced in [7], is a model-checking tool
that allows us to check both desirable and undesirable properties for all possible sequence
of events and actions in a concurrent system. It is based on a kind of finites state ma-
chines, namely LTSs (Labeled Transition Systems), which have well-defined mathematical
properties, facilitating formal analysis and mechanical checking.

Due to the fact that representing state machines graphically severely limits the complexity
of problems that can be addressed, LTSA works with a textual representation namely FSP
(Finite State Processes). FSP descriptions allows us to describe processes in a straightfor-
ward manner. They can be easily translated by LTSA to the equivalent graphical form.

The interest of FSP/LTS is that it provides us with a fairly simple model of concurrency
that is well documented (with a good understanding of how to implement models in Java)
and supported by LTSA.

This section introduces the concepts around LTSA.

2.2.1 Modeling processes

A process is the execution of a sequential program. The state of a process consists of the
values of explicit and implicit variables in the computation of such a program. A process
changes this state by the execution of atomic actions such as uninterruptible machine
instructions that load and store registers. LTSA introduces an abstract model of a process,
by ignoring details of state representation and machine instructions. A process is modeled
by having a state that is changed through atomic actions. The change from a current state
to a next state corresponds to a transition in a graph that is an abstract representation of
the program. The result is the modeling of a process using a finite state machine.

The use of finite state machines is very common in several areas of computing and other
sciences. They provide a good understanding of the behavior of the subject studied, which
has the advantage of being easy to represent graphically. The models introduced by the
LTSA tools also use finite state machines in order to study the behavior of computer
processes. LTSA uses models based on finite state machines in order to animate and check
the behavior of the overall system before it is implemented.

2.2. Modeling concurrency with LTSA 8

0 1 2

coins

cancel

choice

take
Figure 2.1: A model of a coffee machine

The kind of finite state machines descriptions used by this approach are known as Labeled
Transition Systems (LTS) because transitions are labeled with action names. Using LTSs
it is possible to model processes. For example, the process of a coffee machine could be
modeled using the LTS of figure 2.1.

An LTS is a graphical form of a finite state machine description which is excellent for simple
processes, but which becomes unmanageable and unreadable for large number of states and
transitions. Consequently, LTSA introduced a simple algebraic notation describing an LTS,
called FSP. An LTS and an FSP are two representations of the same manner of modeling
a process, so that, describing a process using FSP is equivalent to doing it using LTS.

An FSP can be described as follows.

Action Prefix. If x is an action and P a process then the action prefix (x->P) describes
a process that initially engages in the action x and then behaves exactly as described
by P.1

This can be shown in the following example:

SWITCH = OFF,

OFF = (on -> ON),

ON = (off -> OFF).

In this example, the process OFF is described as a process that initially engages in the
action on and then behaves as ON. A repetitive behavior is described in FSP using
recursion, where the , are used to separate processes and the . denotes the end of
the FSP description. Finally it is possible to apply substitutions obtaining a more
compact description:

SWITCH = (on -> off -> SWITCH).

Choice. If x and y are actions then (x->P | y -> Q) describes a process which initially
engages in either of the actions x or y. After the first action has occurred, the
subsequent behavior is described by P if the first action was x and Q if the first action
was y.

A choice is represented as a state with more than one outgoing transition.

1This definition and the ones below were taken from [7]

2.2. Modeling concurrency with LTSA 9

Indexed processes and actions. In order to model processes and actions that can take
multiple values, both local processes and action labels may be indexed in FSP. Indexes
always take a finite range of values. The process below is a buffer that can contain
a single value. It inputs a value in the range 0 to 3 and then output that value.

const N = 3

BUFF = (in[i:0..N] -> out[i] -> BUFF).

N corresponds to the definition of a constant. FSP translates each index into a dot
notation . for the transition label, so that in[0] becomes in.0, and so on. The
code above is analogous to the code below:

BUFF = (in[0] -> out[0] -> BUFF

|in[1] -> out[1] -> BUFF

|in[2] -> out[2] -> BUFF

|in[3] -> out[3] -> BUFF

).

An equivalent definition, that uses indexed local processes, is shown below:

const N = 3

BUFF = (in[i:0..N] -> out[i] -> STORE[i]),

STORE[i:0..N] = out[i] -> BUFF).

The scope of a process index variable is the process definition. The scope of an
action label index is the choice element in which it occurs. Consequently, the two
definitions of the index variable i in BUFF above do not conflict. On the other hand,
both process and action labels may have more than one index.

Indexed processes may induce transitions to undefined states, as shown as follows:

const N = 3

COUNT[i:0..N] = (inc -> INC[i+1]).

The state COUNT[3] defines a transition to a state COUNT[4] that does not exist.

FSP defines an error state, denoted ERROR, which is a terminal state. When an LTS
transits to the error state through some action, there is no action that makes the
LTS get out of such a state.

Then, the problem can be fixed adding COUNT[4] = ERROR. Since the FSP compiler
automatically maps undefined states to the error state, this process definition can be
omitted.

Guarded Actions The choice (when B x -> P | y -> Q) means that when the guard
B is true then the actions x and y are both eligible to be chosen, otherwise if B is false
then the action x cannot be chosen”.

The example below is a process that encapsulates a count variable. The count can
be increased by inc operations and decreased by dec operations. The count is not
allowed to exceed N or be less than zero.

2.2. Modeling concurrency with LTSA 10

const N = 3

COUNT = COUNT[0],

COUNT[i:0..N] = (when(i<N) inc -> COUNT[i+1]

|when(i>0) dec -> COUNT[i-1]

).

Process alphabets. The alphabet of a process is the set of actions in which it can engage.

In general the alphabet groups the actions of an FSP that are visible to the other
FSPs. Internal actions, labeled tau, correspond to actions that are not shared and
are invisible to other FSPs. These actions do not belong to the alphabet of the FSP.

As an example, the FSP of figure 2.1 is as follows:

COFFEE_MACHINE = (coins->choice->take -> COFFEE_MACHINE

|coins->cancel->COFFEE_MACHINE

).

2.2.2 Modeling concurrency

The execution of a concurrent program consists of multiple processes active at the same
time. In the real life, this is only possible having multiple processors running in parallel, so
that, each process can be run in its own designated processor. In this case, it is possible to
talk about a real-concurrent execution. However, most of the times the amount of processes
running are bigger than the number of available processors. In such cases, the processors
are switched between processes, so that, they alternate small times of CPU until finishing
their execution. Then, it is possible to talk about a pseudo-concurrent execution.

Due to the fact that it corresponds to the most general case, the model of concurrency
introduced by LTSA includes the case of a pseudo-concurrent execution. Concurrent ex-
ecution implies then a virtual processor executing a sequence of instructions which is an
interleaving of the instruction sequences from each individual process. In the most gen-
eral case, this interleaving is arbitrary, so that there is not any criteria to predict which
instruction of which process will be the next to be executed at some time.

2.2.2.1 Parallel composition

FSP provides semantics to model the concurrent execution of actions: An action a is
concurrent with another action b if a model permits the actions to occur in either the order
a->b or the order b->a.2

2This definition and the one below were taken from [7]

2.2. Modeling concurrency with LTSA 11

Concurrent actions in FSP are the result of the composition of two or more processes using
|| as the designated operator, which is defined as follows: If P and Q are processes then
(P||Q) represents the concurrent execution of P and Q. The operator || is the parallel
composition operator.

The state machine representing the composition generates all possible interleaving of the
traces of its constituent processes and is formed by the Cartesian product of them.

2.2.2.2 Shared actions

Interaction between processes is modeled through shared actions. When the alphabets
of the composed processes intersect in some actions, these actions are said to be shared
actions. While unshared actions may be arbitrary interleaved, a shared action must be
executed at the same time by all the processes that participate in that shared action [7].

This section has introduced the main concepts about modeling of concurrency using LTSA.
There are some other elements that are not useful for describing our work. Further details
may be seen in [7].

2.2.2.3 Some FSP syntax for concurrency

FSP provides some syntax for customizing the composition of processes, the following
features are used in the context of our work.

Process prefixing. a:P prefixes each action label in the alphabet of P with the label a”. In
an analogous way: ”{a1,..,ax}::P replaces every action label n in the alphabet of P
with the labels a1.n, ..., ax.n. Further, every transition (n->Q) in the definition
of P is replaced with the transitions {a1.n, ..., ax.n}->Q.

Relabeling. Relabeling functions are applied to processes to change the names of action
labels. The general form of the relabeling function is:
{newlabel 1/oldlabel 1,...,newlabel n/oldlabel n}.

Hiding. When applied to a process P, the hiding operator /{a1..ax} removes the action
names a1..ax from the alphabet of P and makes these concealed actions ’silent’.
These silent actions are labeled tau. Silent actions in different processes are not
shared.

2.3. Concurrent EAOP 12

2.3 Concurrent EAOP

Concurrent EAOP (CEAOP) is introduced in [4] and [5]. To illustrate its concepts we
will use a running example inspired by typical e-commerce applications. Let us consider
the following e-commerce base program. Clients connect to a website and must log in to
identify themselves, then they may browse an online catalog. The session ends at checkout,
that is, as soon as the client has paid. In addition, an administrator of the shop can
update the website at any time by publishing a working version. Figure 2.2 illustrates this
example.

0 1

login

checkout

update

update

browse (0) Server = (login → InSession
| update → Server),

(1) InSession = (checkout → Server
| update → InSession,
| browse → InSession).

a) Automata representation b) FSP representation

Figure 2.2: A model of a simple e-commerce base program

Let us now consider the problem of canceling updates during sessions to the client-specific
view of the e-commerce shop, e.g., to ensure consistent pricing to the client. Using EAOP
we can define a suitable aspect, called Consistency as follows:

µa.
(

login;µa′.
(

(update � skip log; a′) 2 (checkout; a)
))

This aspect initially starts in state a and waits for a login event from the base program
(other events are just ignored). When the login event occurs, the base program resumes
by performing the login, and the aspect proceeds to state a′ in which it waits for either
an update event or a checkout (other events being ignored). If update occurs first, the
associated advice skip log causes the base program to skip the update command (skip is a
keyword) and the aspect performs the log command. Then the base program resumes and
the aspect returns to state a′. If checkout occurs first, the aspect returns to state a and the
base program execution resumes. Since updates are ignored in state a, updates occurring
out of a session are performed, while those occurring within sessions (state a′) are skipped.

On the other hand, each time the website is updated (i.e., the administrator publishes an
internal working version), it is desirable that a second aspect rehashes a database of links
before the publication, and backups the database afterward. The second aspect, called
Safety, can be defined as follows:

µa′′.(update � rehash proceed backup; a′′)

Both aspects interact through the action update, and the composition can be determined
using EAOP in the sequential case. However, sometimes the concurrent execution of the

2.3. Concurrent EAOP 13

aspects together with the base program is desirable (e.g., in the case of the rehashing
and backups of the aspect Safety, which are rather time-consuming operations). CEAOP
introduces a model to coordinate the concurrent execution of aspects applied to a base
program, which consists of two steps: 1) each aspect and the base program are translated
to FSP; 2) the concurrent behavior of the aspects applied to the base program is modeled
as the parallel composition of those FSPs.

2.3.1 Translation

The translation consists in generating the FSP representation of both aspects and the base
program by translating their automata into FSP. This report does not show the formal
details of the translation. They are given in [4]. In an informal way, it is possible to say
that for the aspect Consistency the resulting LTS should have two states, a first state
indicating that no client has logged in, and a second state indicating that some client has
logged in. In the first state a login makes the LTS transit to the second one. In the
second state an update is a loop that introduces advices, and a checkout makes the LTS
transit to the first state. The preliminary LTS would be as shown in figure 2.3 (EAOP-like
notation for the label update is an abuse of notation).

0 1

login

checkout

update �skip log

Figure 2.3: A first model of the LTS of the aspect Consistency.

The translation introduces synchronization events that will be used to coordinate the aspect
and the base program. Aspect expressions of the type e � b ps a are translated to:

eventB e → b → eventB ps → eventE ps → a → eventE e

where ps is one of the keywords proceed or skip, and b, a denote sequences of actions that
are executed respectively before and after ps. An action like e is called a skippable action.
By splitting the skippable action update the LTS of the aspect Consistency is as follows:

In the translation of aspects, waiting loops are introduced for ignoring events in order to
avoid deadlocks. For example, in the first state of the aspect Consistency a waiting loop is
introduced for the actions update and checkout, and for the second state another waiting
loop for the action login. The introduction of waiting loops is done before skippable
actions are split, so that waiting loops are also included. The final LTS representing the
aspect Consistency is shown in figure 2.5.

2.3. Concurrent EAOP 14

0 5
6

7

8

9

eb
sb

se

log

ee

browse

login

checkout

where the following abbreviations are used:

eb = eventB update ee = eventE update
pb = proceedB update pe = proceedE update
sb = skipB update se = skipE update

Figure 2.4: LTS of the aspect Consistency where skippable actions have been split up.

0

12

3

eb

pb

pe

ee

checkout

4
5

6

7

8

eb
sb

se

log

ee

browse
login

login

checkout

Figure 2.5: LTS of the aspect Consistency

2.3. Concurrent EAOP 15

Something similar happens with the aspect Safety. In the LTS representing the base
program, skippable actions are split up by the choice below:

(proceedB e → e → proceedE e | skipB e → skipE e)

Once skippable actions are split, the LTS representing the base program is shown in the
figure 2.6.

0

1
2

3
4

5

eb

pb

update

pe

ee

sb

se

6
7

8

9

10

11

eb
pb

update
pe

ee sb

se

browse

login

checkout

Figure 2.6: LTS of the e-commerce application

Finally, figure 2.7 shows the FSP descriptions that result from the translation of the aspects
Consistency and Safety.

a = (eventB update → proceedB update → proceedE update →
eventE update → a | login → a’ | checkout → a | browse → a),

a’ = (eventB update → skipB update → skipE update → log →
eventE update → a’ | checkout → a | browse → a’ | login → a’).

a” = (eventB update → rehash → eventB proceed →
eventE proceed → backup → eventE update → a”).

Figure 2.7: The consistency aspect (a) and the safety aspect (a”) in FSP.

2.3.2 Composition

The parallel composition of FSPs is a form of synchronized product, where interactions are
modeled by shared actions. When an action is shared among several processes, the shared
actions must be executed at the same time by these processes.

As an example, figure 2.8 shows the output of the composition of the Consistency aspect
and the base program. The left-hand side cycle performs updates outside of sessions. The

2.3. Concurrent EAOP 16

0

1
2

3
4

eb

pb

update

pe

ee

5
6

7

8

9

eb
sb

se

log

ee

browse

login

checkout

Figure 2.8: Woven example

right-hand side cycle skips update commands during sessions and does some logging. The
middle cycle starts and ends sessions.

More concurrency can be introduced by hiding the event eventE e before the parallel
composition. The result is shown in figure 2.9. Since after the action skipE update the
base program can resume, both interleaving browse log and log browse are possible.

0

1

2

3

ebpb

update pe

5 6

78

eb

sb

se

log

browse

browse

login

checkout

Figure 2.9: Woven example with more concurrency

Composition operators can be designed to compose the aspects in different ways. For
instance, let us consider the ParAnd operator. When two advices can be applied at the
same join point, their before action sequences are executed in parallel, but there is a
rendez-vous on proceed and skip. If both of them wish to proceed, they will proceed in
parallel. If (at least) one of them wishes to skip, both will skip in parallel. In our example,
ParAnd(Consistency,Safety) composes both advices during sessions to get, using informal
syntax, backup skip (log ‖ rehash), which ensures that all database management actions
are performed, if reasonable, in parallel.

This composition is modeled in FSP by renaming some synchronization events in the aspect
definitions and by defining a process ParAnd that dynamically renames skip and proceed
messages. Both aspects share the events eventB e and eventE e so that the beginning and
the end of advices are synchronized. Before (and after) skip or proceed, advices of the
aspects are executed in parallel. The woven program is represented by the automaton of

2.3. Concurrent EAOP 17

figure 2.10, where most of the synchronization events have been hidden after the parallel
composition (except eventB update, proceedE update and skipE update).

0

1
2

3
4

eb

rehash

update

pe

bck

5
6

7

8

9

10

eb

rehash

se

log

bck

bck

log

browse

login

checkout

Figure 2.10: Composition of the aspects Consistency and Safety with the base program
using ParAnd

It makes clear that the advices are executed in parallel: both sequences log backup and
backup log are valid. Furthermore, more concurrency can be introduced by hiding the event
eventE update, as a result, after skipE update the base program can resume. We get the
same automaton but with loops on browse in the states 8, 9 y 10. Then, the user can still
browse concurrently with the after advices.

Other operators can be defined similarly. For instance, the advices composed with ParOr
proceed when at least one of them proceeds.

More details are available in [4] and [5].

Chapter 3

Toward an implementation of

CEAOP

This chapter introduces the main ideas and concepts used to generate an implementation
for Concurrent EAOP, which is concretized in the next chapter. Section 3.1 describes the
implementation as seen by a user. Section 3.2 exposes a reusable implementation of LTS
composition which is afterward used for implementing aspects. Finally section 3.3 explains
the principles behind our implementation of CEAOP.

3.1 User point of view

3.1.1 The intention and the scenarios

CEAOP introduces a method for modeling the concurrent execution of aspects together
with the base program. It uses LTSA in order to ensure the correct properties of the final
concurrent system. That is, once the aspects and the base programs are modeled as LTS,
the correctness of the composition can be verified using LTSA.

LTSA allows us to be sure that our final product is correct. However, there is a gap between
the model and the final implementation. In spite of the methodologies exposed in [7], which
explain how to move from the model to the implementation in Java, the implementation
is not direct and there is not a real certainty that they do not introduce problems similar
to the ones we are trying to solve (but a different level).

The aim of this thesis is to produce a direct implementation of LTSs and the LTS com-
position that minimizes as much as possible the gap between the model and the final im-
plementation of concurrent systems. In a next step, this implementation is used to model

18

3.1. User point of view 19

concurrent aspects by implementing both aspects and base program threads as LTSs, and
by composing them as LTSs.

The importance of providing an implementation for CEAOP is that it makes it possible to
experiment and test its applicability in distinct scenarios. In a typical scenario, CEAOP
is used to coordinate the parallel execution of the advices of distinct aspects applied over
a base program. The work of this thesis allows us to implement this scenario, but also
allows us to experiment with another kind of scenarios such as the problem of Readers
and Writers shown in the final chapter. The latter is a problem that is solved by our
implementation of CEAOP and which uses the power of LTSA complemented with AOP
to produce a straightforward solution.

Finally, the aim of this chapter is to produce implementation principles as much indepen-
dent as possible of a specific base program language, however, some parts are based on the
use of Java.

3.1.2 Basic hypotheses about the aspects and the base program

The work developed in this thesis is based on the hypotheses that the CEAOP models
state about the aspects. In addition, it has some restrictions about how the base program
is provided.

The kind of aspects modeled by this approach are stateful, i.e., at each time during the
activity of the aspect, it is possible to recognize an active state with some active transitions.
Associated to each transition, it is possible to find a pointcut and some advices. The cut
language matches syntactical features of join points. Advices may receive variables bound
on pointcuts. Furthermore, each transition is fixed to a keyword either skip or proceed,
indicating if the execution of a matched join point has to be skipped or not.

In terms of the base program, we suppose the availability of either its source code or its
bytecode, in order to be able of instrument it using a tool like AspectJ or Reflex.

3.1.3 A concrete aspect syntax for CEAOP

Our implementation of CEAOP is based on the design of a small DSAL (Domain-Specific
Aspect Language), called Baton, that allows us to experiment the ideas exposed in this
thesis. The composition of Baton with Java is an aspect-oriented extension of Java with
concurrent aspects. Baton has been influenced by the languages AspectJ and JAsCo, but
introduces some new concepts inherent to the ideas exposed in this work.

The language is divided in three main parts: aspects, mappings and connectors. An aspect

3.1. User point of view 20

defines an automaton with the transitions of the stateful aspect, using a syntax similar to
FSP. We have decided to express the automaton as similar as possible to the syntax of
FSP because it facilitates the understanding of our ideas. A mapping allow us to make an
association between the labels used in the automaton and either pointcuts or functions.
An association label-pointcut indicates that a transition is generated by the execution of
a join point in the base program. An association label-function indicates a routine to be
executed together with a transition which corresponds to an advice. Finally, a connector
allows to instantiate aspects connecting Baton’s aspects to Baton’s mappings.

These three parts allow us to make a separation among four concepts of AOP and stateful
aspects, permitting the study of them in an independent way:

1. The join point model and pointcuts (also referred as the cut language) indicating
which are the supported join points and where to instrument the base program. It
is declared through the pointcuts of a Baton mapping.

2. The advices built of pure Java classes. It is declared through the associations between
labels denoting advices and functions in a Baton mapping.

3. The automaton describing the state machine of the stateful aspect. It is declared in
the definition of a Baton aspect.

4. The instantiation permitting to create and compose several aspect instances in a
Baton connector.

Most of the stateful aspects approaches declares the automaton, pointcuts and advice code
in a single module, this permits more encapsulation but impedes the total reuse of these
ingredients. A step in reuse is introduced by JAsCo through the declaration of connectors.

In our case, we have put more attention in the reuse by a total separation of the conceptual
parts involving AOP. However, this is not the only reason. Since our approach is based on
the use of LTSA, the automaton is described and composed using the LTS semantics, which
put a lot of dependency on the labels used to declare the aspects. In order, to compose
aspects, the labels must have the same semantics, i.e., they have to refer to the same
pointcuts and/or functions. The separation of the cut language using mappings allow us
to declare composition of aspects and instantiate them using a unique semantics for labels.

In terms of encapsulation, not everything is lost with this separation. The definition of
the automaton can be seen as a component whose interface are the events indicated by the
labels, in an analogous ways as an LTS in [7] is seen as a component. In this component the
labels have a fixed role, they can be either input events (pointcuts) or output events (advice
routines). In the same way, a mapping can be seen as a component instrumenting the base
program, generating events and receiving events in order to execute routines. Then, a
connector is able to connect both components in a proper way. The component that

3.1. User point of view 21

results from the connection of aspects and mappings, has input events that correspond to
pointcuts and output events that correspond to the execution of the routines corresponding
to advices. In this way aspects are seen as black boxes connected with a base program and
executing advice routines when required.

3.1.3.1 Aspects

The declaration of Baton’s aspects corresponds to the definition of the automaton of a
stateful aspect, as exemplified in the code below:

1 aspect Consistency {

2

3 p1 = update -> p1

4 | login -> p2

5 | checkout -> p1,

6

7 p2 = update(admin) > skip; log(admin) -> p2

8 | login -> p2

9 | checkout -> p1

10 }

This code describes an aspect as a process p1 with a subprocess p2, and the set of labels
{update, login, checkout} as its alphabet. The aspect is written using a syntax similar
to FSP, with the only exception of the expression update > skip; log(admin) on line
7. This expression declares an extension of the label update with the sequence of labels
skip;log, which is explained in the remainder. In addition, the label update declares a
parameter which is passed to the action log. This corresponds to the syntax of bindings
in pointcuts, also explained in the remainder.

The language also supports the definition of indexed processes. This allows us to declare
the previous example by using only one process as follows:

1 aspect Consistency {

2

3 p[logged:0..1] =

4 when (logged == 0)

5 update -> p[logged]

6 | when (logged > 0)

7 update(admin) > skip; log(admin) -> p[logged]

8 | login -> p[1]

9 | checkout -> p[0]

10

11 }

3.1. User point of view 22

This example declares the same automaton. The condition when allows us to indicate
whether a transition is available or not.

An aspect is defined by the following abstract grammar:

aspect ::= id automaton

automaton ::= process+

process ::= id paramDecl∗ choice

paramDecl ::= param number number

choice ::= sequence+

sequence ::= [condition] transition+ id paramRef ∗

paramRef ::= param | param op number | number | number op number

condition ::= param comp number

transition ::= label | extension

An aspect consists of an identifier and an automaton described, in turn, by one or more
processes. A process is described by an identifier, zero or more variable declarations, and
a choice. A variable declaration allows us to declare a variable, specifying a range between
two numbers. A choice is either a single sequence or a set of sequences. A sequence consists
of an optional condition, a sequence of transitions, and the identifier of some process with
optional variable references. A variable reference is either a single variable, an arithmetic
operation between a variable and a number, a single number or an arithmetic operation
between two numbers. A condition is a binary comparison between a variable and a number
(this could be easily extended to allow comparing variables as well as with conjunctions,
disjunctions and negation). Finally, a transition may be an atomic label or an extension,
which is explained straight after.

In general, labels are associated to join points in the base program using a mapping label-
pointcut. In this way, the automaton can be connected with the base program. An
extension is the way to introduce advices in this process. The syntax of an extension is
described by the following grammar:

extension ::= event call∗ ps call∗

ps ::= proceed | skip

event ::= label param∗

call ::= (label | +label) param∗

where both label and param are identifiers.

3.1. User point of view 23

The semantics of this expression describes the replacement of a target label by a sequence
consisting of before labels, either the label proceed or skip and after labels. The target
label may declare parameters representing the binding of variables in the base program
which may be distributed in parameters among the before and after labels. These parame-
ters become the values passed to advice functions associated to the latter (using a mapping
label-function). For example, in our case the line 7 of the previous code declares an ex-
tension of the label update that is defined by the sequence skip;log. In this definition,
a variable admin, declared as the parameter of update, is given as parameter to the label
log.

In general, the labels associated to advices are considered internal labels, i.e., labels that
are not visible to other LTSs, so that, they do not participate to the LTS composition.
The last rule of the grammar of extensions allows us to define advice labels that are visible
to other LTSs. This is done by prefixing such advices by the sign +.

3.1.3.2 Mappings

Mappings allow us to complete the semantics of Baton’s aspects by associating labels with
pointcuts. In this way, aspects can relate to the base program. Mapping are also used to
map the labels introduced by extensions with executable functions. These labels denote
advices, so that, the association with functions allows us to perform advice routines.

The pointcuts defined in a mapping are declared using AspectJ syntax, where the name
of the pointcut corresponds to the label associated to it. In this preliminary version,
the AspectJ expressions provided are only execution, call and the binding expression
target.

The definition of functions is simply done by indicating the label and the signature of the
corresponding method.

The following code shows an example of the declaration of a mapping:

1 mapping MyMapping {

2 pointcut update(Admin param) :

3 execution(public void Admin.update(..)) && target(param);

4 pointcut login() : execution(* *.login(..));

5 pointcut checkout() : execution(* *.checkout(..));

6 function log : Logger.log(Admin);

7 }

This code maps the label update to a pointcut matching the execution of the method
Admin.update() and also declares a binding of the object executing the method. The
labels login and checkout declare pointcuts matching the execution of any method

3.1. User point of view 24

named login and checkout, respectively. Line 6 maps the label log to the Java method
Logger.log(Admin).

The abstract grammar describing a mapping is as follows:

mapping ::= id (pointcut | function)∗

pointcut ::= label param∗ pExpression+

function ::= label methodSignature

A mapping consists of an identifier and zero or more pointcuts or functions. A pointcut is
declared using the corresponding label, some optional parameters binding variables, and
one or more pointcut expressions. These expressions are the ones taken from AspectJ, such
that, call and execution.

The simplified grammar of the expressions supported in AspectJ is as follows:

pExpression ::= (call | execution) methodPattern

methodPattern ::= MethodMod Type ClassMemberName FormalParameter∗

The pointcut expression can be either a call or a execution (also it is supported target,
but it is not detailed) and a method pattern. A method pattern consists of method
modifiers, a return type, a class name and zero or more formal parameters.

A function declares just a label and a method signature in Java.

3.1.3.3 Connectors

Connectors are used to instantiate aspects by connecting mappings with aspect declarations
as shown in the following code:

1 connector MyConnector {

2 Aspect aspect = new Consistency() using MyMapping;

3 }

In this code a new aspect is instantiated by connecting the declaration of the aspect
Consistency with the mapping MyMapping. The result is an aspect as an instance of the
Java class Aspect.

It is also possible to declare aspect instances using operators:

3.2. An implementation of LTS composition 25

1 connector MyConnector {

2 Aspect aspect = new ParAnd(new Consistency(), new Safety()) using MyMapping;

3 }

In this case, a new aspect is instantiated using the operator ParAnd which receives two
aspect instances of both aspect declarations Consistency and Safety. The three created
instances share the same mapping MyMapping, which is important in order perform the
composition using the same semantics of labels.

Connectors are defined using the following grammar:

connector ::= id aspectInst∗

aspectInst ::= aspectComp mappingId

aspectComp ::= id

aspectComp ::= operator aspectComp aspectComp

A connector consists of an identifier and zero or more aspect instantiations. An aspect
instantiation, in turn, is made of a compositional expression relating aspect declarations
and a mapping. This expression constitutes a tree of aspects composed using operators.

3.2 An implementation of LTS composition

3.2.1 Introduction

If two or more single processes are running at the same time, it is possible to say that a
global process is running, which is the composition of these single processes. Then, each
state of the composite process can be mapped to a tuple consisting of one state for each of
the component processes. In a schema where processes run independently, any combination
of states can be a state of the composition. The semantics of the LTS composition, exposed
in this section, describes the composition of processes, where some coordination constraints
are imposed, so that not all the state tuples are reachable.

LTS composition consists in the construction of a single LTS describing the composition,
which is the combination of the LTSs of the processes to be composed. The semantics
of this composite LTS allows us to direct the execution of the composed processes. In a
scheme without any synchronization, each single process runs on its own, following its LTS
description and taking its own decisions. The LTS describing the composition imposes

3.2. An implementation of LTS composition 26

synchronization among the single processes, by telling them which transitions to follow at
each time.

It is possible to make a metaphor with an Orchestra, such that each LTS can be seen
as a written piece of music for a particular instrument and the process running the LTS,
as a musician. Then, an LTS describing the composition would correspond to a musical
arrangement, which tells how a musical composition has to be played by the different
participants of the orchestra.

In contemporary orchestras, there exists a musician playing the role of conductor. In
general, the conductor is responsible for ensuring entries are made at the right time and
that there is a unified beat. In the case of composing LTSs, we have a similar necessity.
Some entity having the global view of the execution of the processes should conduct the
synchronization of them. We have called this entity a monitor, which is in charge of this
coordination. Since each process cannot take on its own the decision about which transition
to follow at the right time, the decision is taken by the monitor, based on the information
obtained from the other processes. Then, the monitor acts as an object dictating to the
single processes the transitions to follow at each time.

In the remainder, section 3.2.2 presents the semantics of the LTS composition. This se-
mantics is taken from [7] and expressed in a way that is considered clearer for the purposes
of this report. Section 3.2.3 introduces in a declarative form our ideas of synchronization in
order to implement LTS composition. Sections 3.2.4 and 3.2.5 introduce an implementation
of the LTS composition. Finally, section 3.2.6 presents an evaluation of our ideas.

3.2.2 Semantics of LTS composition

The LTS composition consists in the creation of a single LTS describing the composition
of several processes described as LTSs. The semantics of an LTS and LTS composition
are presented in [7]. In this section, the ideas behind this semantics are explained in a
way more useful for the purposes of this report. We present how the LTS describing the
composition is constructed and also what is the semantics behind it.

The following defines how the LTS describing the composition is constructed for the case
of n LTSs.

Let us consider n LTSs Pi (with 1 ≤ i ≤ n), with their shared alphabets αPi and their sets
of transitions ∆i. A state sc of the composition corresponds to a state tuple (s1, s2, ..., sn),
where si is a state of Pi.

The transition ((s1, s2, ..., sn), aj, (s
′

1, s
′

2, ..., s
′

n)) is a transition in the composition, if ∀Pi

such that aj ∈ αPi, (si, aj, s
′

i) ∈ ∆i. Then, ∀i such that aj /∈ αPi, s
′

i = si.

3.2. An implementation of LTS composition 27

Finally, the first state of the composition corresponds to the state tuple (s0
1, s

0
2, ..., s

0
n),

where s0
i corresponds to the initial state of Pi.

In other words, in a state (s1, s2, ..., sn) of the composition, aj corresponds to a transition
if ∀Pi such that aj ∈ αPi, aj is a transition in the state si. Then the semantics of the
composition tell us that all these LTSs transit together through aj.

3.2.3 Principles of the synchronization using a centralized mon-

itor

Section 3.2.2 presented the semantics of the LTS composition. This section explains the
mechanism to compose running processes in order for them to follow this semantics.

The scenario consists of several processes described using LTSs and a monitor conducting
their executions. As section 3.2.1 explained, the monitor is necessary in order to decide
which transitions the LTSs should follow at each instant. An LTS cannot take this decision
on its own, so that it has to wait for such a decision from the monitor. In the remainder,
our mechanism of synchronization is described in a declarative way.

Let us consider n LTSs Pi (with 1 ≤ i ≤ n), with their shared alphabets αPi, and their
current states si. We say that Pi is in state sw

i if it is in a state si and it is waiting to pass
to a next state, or it is in state sb

i if it is in a state si and it is busy. Now, let us consider
m possible shared actions aj (with 1 ≤ j ≤ m) such that ∃i such that aj ∈ αPi. We define
cj a counter indicating the amount of Pi such that aj ∈ αPi and Pi is in state sw

i , and
bj a bound indicating the amount of Pi such that aj ∈ αPi. At each time, cj tells us the
number of LTSs waiting to pass to a next state using the action aj.

The monitor is an entity in charge of checking at each time for all the actions aj whether
cj = bj.

When for an action ak, ck = bk, the action ak may be chosen as an action to proceed. If
ak is chosen, then all Pi, such that ak ∈ αPi, transit together to a next state using ak.

The election of an action aj such that cj = bj is correct with respect to LTS composition.
The rationale behind this statement is that in a state (s1, s2, ..., sn) of the LTS composition,
the transition labeled aj effectively corresponds to a transition in the composition, because
∀Pi such as aj ∈ αPi, Pi is waiting to pass to the next state using aj, and therefore aj is a
transition in the state si of each of these LTSs.

Figure 3.4 shows an example of the schema of synchronization. We have the LTSs P1, P2

and P3 with the alphabets αP1 = {a1, a2}, αP2 = {a2, a3} and αP3 = {a2}. At a certain
instant, P1 and P3 are waiting to pass to a next state, whereas P2 is still busy. The monitor
keeps the counters updated and checks that the action a1 has reached its bound.

3.2. An implementation of LTS composition 28

S1

a1

a2

S2

a3

a2

S3

a2

LTS: P1
State: waiting

LTS: P2
State: busy

LTS: P3
State: waiting

c1 = 1, b1 = 1

c2 = 2, b2 = 3
c3 = 0, b3 = 1

Monitor

Figure 3.1: Example of synchronization.

3.2.4 Implementation of LTSs as active objects

An LTS is the description of a computation, such that its transitions are associated to
the actions performed in such a computation and its states are associated to the different
configurations the computation moves between. In this way, the LTS that corresponds to
a computation may be deduced by observing its execution. The approach is the other way
around when we first have the LTS describing a computation and we want to generate a
computation following this description.

In order to generate the computation that follows a given LTS, we have chosen an inter-
preted schema. The idea is to generate the computation that results from the interpretation
of the LTS. This interpretation is the evaluation of the transition used to pass from a state
to another, each time a transition is performed. This evaluation results in the execution
of a routine associated to the corresponding transition and the passing to the next state
in the LTS.

Since we need to be able to compose several LTSs and execute them concurrently, a natural
manner to implement them is by using active objects. In this way, an LTS corresponds
to an object consisting of (1) its states, (2) its transitions, (3) the routines associated
to the transitions (4) and an internal thread where the transitions and the routines are
performed. Also we provide this object with a function to determine the next transition
to be evaluated and an evaluation function.

The election of the next transition depends on the monitor, which is in charge of choosing
it in terms of the possible composition with other LTSs.

3.2.5 Implementation of the synchronization and the monitor

The monitor is designed as an object which keeps the variables cj and bj described in
section 3.2.3, and which is able to choose the next action to be followed by the LTSs in the

3.2. An implementation of LTS composition 29

composition. It keeps watch over the execution of the LTSs and indicates the transition
to follow at the right time to the waiting LTSs. In order to calculate the bounds of each
action, the initialization of the monitor requires the complete alphabet of the LTS to be
composed.

The mechanism of synchronization can be explained as follows. When an LTS is in some
state, ready to pass to a next one, it notifies to the monitor the different actions that
it could follow and then it waits for a decision. The monitor increments the counters cj
associated to the actions passed by the LTS, and checks whether some action has reached
its bound bj. If no action has reached its bound, it does nothing. Otherwise, if an action
reaches its bound, the monitor chooses the action to proceed with. Then, it wakes up and
notifies the decision to all the LTSs having the chosen action in their alphabets. When it
notifies the decision to an LTS, it also decrement the counters of the actions not chosen
that were previously notified by the LTS . When the LTSs wake up and receive the decision,
they transit to the next state. Then, some extra synchronization is necessary to ensure
that these LTSs transit together.

3.2.5.1 Interpretation of a shared action

Suppose the monitor has chosen an action a, and the LTSs P1, P2,..., Pm are ready to pass
to their next states using this action. The LTS semantics says that the action a has to be
executed at the same time by all these LTSs. In order to give a general meaning to this
definition, the action a can be refined in the sub-actions a1, a2,..., am, where ai corresponds
to the action a in Pi. The execution (or interpretation) of the action a corresponds to the
execution (or interpretation) of each sub-action ai by its LTS Pi. The action a is executed
at the same time by all the LTSs Pi if their sub-actions ai are executed together, i.e., any
possible interleaving b1 → b2→...→ bm is allowed such that ∀ bi ∃ ai such that bi = ai (no
action is executed in the middle of two sub-actions).

A synchronization on the entry of a makes all the LTSs Pi meet at the same point. From
this point they begin the execution of their sub-actions ai, generating some interleaving.
A synchronization on the exit imposes that all the LTSs meet at the end of the execution
of their sub-actions. This impedes that some LTS Pi executes some other action c (such
that ∀ ai, ai 6= ci) when it has finished the execution of its sub-action but some LTS has
not already finished. In this way, an interleaving b1 → b2→...→ c→...→ bm is avoided.

We can distinguish the necessity of two points of synchronization: the entry and the exit
to a transition. These points are described as follows.

3.2. An implementation of LTS composition 30

3.2.5.2 Synchronization on entry

The synchronization on entry is implemented as the notification that an LTS does when
it is ready to pass to a next state. Then, it passes to the monitor the different actions
that it could follow. Since to choose an action a the monitor needs all the LTSs having a
in their alphabets to notify the synchronization on entry, they do meet before performing
the action (if the action is chosen). In an ideal scenario, if the next action to be chosen
is known, all the LTSs having this action in their alphabets should wait in a common
waiting set, so that, through a single notification, they could wake up together. However,
the action to be chosen is not known a priori, so it is not possible to group the LTS by any
criteria. The better option in this case is not to make any group. Then, the LTSs should
wait in their own waiting set. Afterward, the monitor has to wake up these LTSs one by
one.

3.2.5.3 Synchronization on exit

When a group of LTSs are transiting together using an action chosen by the monitor, it is
necessary to ensure that all of them have exited of the transition before continuing their
respective computations. In order to do this, each of them has to notify the monitor of
its exit and wait until all the rest have exited. This is done using a synchronizer object,
which receives notifications from the LTSs and make them wait in a common waiting set.
When the last of them has exited, all the rest are woken up in order to continue with their
executions.

3.2.6 Evaluation

A big problem of this implementation is that it is too centralized. The decision is always
taken by a central entity: the monitor. All the LTSs have to do a notification to this monitor
and wait for its decision. This is a problem specially in the case of distributed systems.
Since the decisions are taken by a central monitor, the distribution of the LTSs in different
hosts requires all the LTSs to establish a remote connection with the monitor which resides
in some host. Unfortunately, not much can be done in this regard. Necessarily the schema
using LTS composition is centralized by definition. If we come back to our metaphor of
an Orchestra, necessarily there to be a conductor. It may also depend on some specific
properties of composition (e.g., binary interactions, i.e., shared actions are only shared by
two LTSs). This requires further investigations.

3.3. Principles of the implementation 31

3.3 Principles of the implementation

This section introduces the principles of our implementation of CEAOP, which is the basis
of the concrete implementation of the next chapter.

3.3.1 Aspects and base program as prefixed LTSs

The main idea of CEAOP, as described in section 2.3, is to model both aspects and base
program as LTSs in order to compose them following the semantics of the LTS composition.

The modeling of aspects and base program as LTSs is explained in 2.3.1. The main idea
is that the automaton of an aspect is represented as an LTS by splitting the actions that
declare advices (skippable actions) in several synchronization events and by introducing
the advices as explicit actions in the automaton. The base program is modeled in a similar
way by splitting skippable actions. In addition, in order to avoid deadlocks, the definition
of the LTSs representing aspects includes waiting loops.

Section 2.3 models the base program as a single LTS, no matter if such a base program
is composed of more than one thread. For instance, the example of the e-commerce ap-
plication of section 2.3 consists of at least two distinct threads, one representing clients
performing the actions login and checkout (for simplicity the action browse is omit-
ted), and a second representing administrators doing updates. The LTS modeling this
application is the single LTS of Figure 2.2.

The implementation proposed by this thesis makes the hypothesis that each base program
thread is modeled by a distinct LTS. In this way, the e-commerce application is modeled
by the LTSs of Figure 3.2 (omiting the action browse).

0update 0 1

login

checkout

browse

a) Administrator b) Client

Figure 3.2: LTSs of the threads of a model of an e-commerce application

The final woven e-commerce application is modeled by the composition of the LTSs de-
scribing the threads of the base program and the ones describing the aspects.

When the base program is a composition of various identical (FSP) processes, care has to
be taken to understand the meaning of each individual action. Are there actions shared

3.3. Principles of the implementation 32

between all the base processes or are they only shared with the aspects? In the second
case, a different process instance has to be created for each process. For instance, if the
e-commerce application executes two threads representing two different clients, then the
LTS of clients is instantiated twice. This implies the existence of two LTSs exposing the
same alphabet. The composition in the final weaved application has the undesirable result
that all their actions are shared and therefore synchronized, e.g., both clients will log in at
the same time.

At the description level, this problem can be solved by adding waiting loops. If in the state
1 of the client’s LTS of figure 3.2 a waiting loop is added on the label login, then a client
may log in first and the second afterward by synchronization on the waiting loop of the
first client. However, this solution cannot be implemented in the base program. Once the
client log in, the base program continues its normal execution and the waiting loop is not
available.

The solution of this problem is to generate an unique prefixed instance of the LTS for each
thread in the base program. This instance is the result of applying the prefixing id[n]::P,
where P corresponds to the LTS to instantiate and n is an unique thread’s identifier. The
instance exposes the same LTS but with all its transitions prefixed by the identifier. In this
way, each thread in the base program is modeled by an LTS having an unique alphabet.
In the example, the result of prefixing the LTS for each client thread is shown in figure 3.3,
assuming the existence of two clients and one administrator.

0id[1].update 0 1

id[2].login

id[2].checkout

id[2].browse 0 1

id[3].login

id[3].checkout

id[3].browse

a) Administrator (id = 1) b) Client (id = 2) c) Client (id = 3)

Figure 3.3: Prefixed LTSs of the threads of a model of an e-commerce application

Since the LTSs of the base program have been prefixed, the aspect LTSs have also to be
prefixed. The prefixing is done before splitting skippable actions. An aspect is prefixed by
the expression id[0..N]::P, where N is the number of threads in the base program and
P is the LTS of the aspect without splitting skippable actions. The result is a prefixed
instance of the LTS that for each transition labeled a defines similar transitions labeled
id[0].a, id[1].a,..., id[N].a. Afterward, each skippable action, now prefixed, is splitted
in the synchronization events described in section 2.3.1.

The solution has the disadvantage that it is limited to a maximum of N threads in the
base program, which is fixed. However, it exposes a straightforward solution that applies
concepts inherent to LTSA. Therefore, this thesis adopts this solution as the manner to
model aspects and the threads of the base program. This should be only for the case of

3.3. Principles of the implementation 33

multiple similar threads instances. However, knowing when the base program will create
multiple similar threads is not straightforward. Since using prefixing is more general, we
adopt this solution.

3.3.2 Objects implementing aspects and base program LTSs

The principle behind the implementation of aspects corresponds to using the concepts
introduced in section 3.2.4. An aspect is implemented as an active object interpreting the
LTS that models it. Such an object is equipped with some routines to be executed in
the interpretation of the transition denoting advices. The other transitions have built-in
routines used to impose synchronization, although these routines are not seen by the user.

The concrete execution of an aspect is given not only by the interpretation of its LTS
but also by the composition with other LTSs, specially with the LTSs representing the
threads of the base program. The composition makes the aspect move between states in
coordination with the base program.

The LTSs describing the threads of the base program are implemented using objects called
monitorable which, unlike the objects implementing aspects, do not interpret their LTSs,
the transitions are triggered by the execution of the code that instruments join points in
its corresponding base program thread.

Since, the interpreted LTSs implementing aspects and the objects monitorable are both
implementations of LTSs, they can be composed using the monitor described in section
3.2.5.

3.3.3 Instrumenting the base program

The monitorable object of a base program thread allows the monitor to see such a thread
as an LTS and to compose it with the other LTSs. By instrumenting join points in the
base program, the control flow is passed to the monitorable object associated to the current
thread, which makes the composition possible.

For instrumentation purposes, a group of labels classified into skippable and non-skippable
is given. These classified labels are retrieved from the aspects by analysis of their automa-
tons. Skippable labels are ones defining advices. For each label, it is selected a set of join
points in the source of the base program (we suppose the sets do not overlap).

In the instrumentation, the actions are prefixed with the identifier associated to the thread
(see section 3.3.1). Join points associated to a non-skippable label e are instrumented in
pseudo-code as follows, where id corresponds to the thread identifier:

3.3. Principles of the implementation 34

1 monitorable.synchronizeOnEntry(id.e);

2 proceed();

3 monitorable.synchronizeOnExit(id.e);

Instrumentation can itself be seen as low-level aspects (this explains the pseudo-code
proceed()). The variable monitorable corresponds to the monitorable object of the
current base program thread, whereas the function synchronizeOnEntry is used to indi-
cate to the monitorable object the intention of passing to a next state using the transition
labeled id.e, and the function synchronizeOnExit() indicates the synchronization of on
exit. The function proceed() indicates the execution of the original join point. Through
this code, the monitorable object passes to the next state together with the other LTSs in
the composition, using the transition labeled e.

Join points associated to a skippable label e are instrumented in pseudo-code as follows:

1 monitorable.synchronizeOnEntry(id.eventB_e);

2 monitorable.synchronizeOnExit();

3

4 monitorable.synchronizeOnEntry(id.proceedB_e, id.skipB_e);

5

6 if(monitorable.getChosen() == id.proceedB_e){

7 monitorable.synchronizeOnExit();

8 proceed();

9 monitorable.synchronizeOnEntry(id.proceedE_e);

10 monitorable.synchronizeOnExit();

11 }

12 else{

13 monitorable.synchronizeOnEntry(id.skipE_e);

14 monitorable.synchronizeOnExit();

15 }

16

17 monitorable.synchronizeOnEntry(id.eventE_e);

18 monitorable.synchronizeOnExit();

It is important to understand line 4. In this line, the monitorable object tries to pass to a
next state using either id.proceedB e or id.skipB e. The transition chosen depends on
the composition with other LTSs and the result is captured using monitorable.getChosen().
If the chosen transition is the beginning of a proceed then the original join point is executed
(line 8), else the join point is skipped.

3.3.4 Operators

To introduce this section let us consider aspects as independent processes interpreting their
LTS descriptions (as seen in Section 3.3.2). In the same way, let us also consider the base

3.3. Principles of the implementation 35

program as an independent program describing its LTS. If all these processes run in an
independent way, then they just become arbitrary interleaved processes. The objective of
modeling them as LTSs is explained by applying the semantics of the LTS composition.
Using this semantics, aspects are coordinated together with the base program, so that their
actions are executed at the right time, following the parallel composition of their LTSs.
However, a composition done only in this way (pure parallel composition) is sometimes
unpredictable and may be not enough, e.g., if they are two aspects which react differently
to an event, one says proceed and the other skip, the result will randomly depend on which
one first provides an answer. In order to solve this problem, operators are introduced,
which provides a more predictable result.

A component approach has been chosen to model the application of operators. Two aspects
can be combined using an operator, giving as a result a new aspect representing this
combination. In this way, aspects are ordered in a hierarchy. The operators in this hierarchy
impose extra-coordination by applying some LTS operations (such as relabeling and hiding
events) over the aspects to which they have been applied.

In the compositional view, an aspect is either a primitive aspect, which constitutes the
leaves of the hierarchy, or a composite aspect, which corresponds to a pair of aspects
composed using some operator. In the implementation point of view, a primitive aspect is
a process following its LTS, as explained in Section 3.3.2, whereas a composite aspect is a
set of processes following the semantics of the composition of their LTSs.

3.3.4.1 An aspect as a component

An aspect has always an LTS describing its execution, which can be a single LTS or a
composite one. This allows us to use the alphabet of this LTS as the interface of the
component representing the aspect. Then for each skippable event e of the aspect, the
component has the events eventB e, eventE e, proceedB e, proceedE e, skipB e and skipE e
as interface. This describes the interface of an aspect no matter if it is a primitive or a
composite aspect.

3.3.4.2 An aspect as a composite

The creation of a composite aspect is the result of applying an operator to a pair of aspects.
What the operator does depends on the concrete semantic of the operator, however, it may
consist of applying some LTS operations to the aspects. The important point is that the
resulting composite aspect should expose an interface as described before.

3.3. Principles of the implementation 36

3.3.4.3 The operator ParAnd as an example

Section 2.3.2 describes the operator ParAnd. It works by renaming skip and proceed

messages. Both aspects share the events eventB e and eventE e so that the beginning and
the end of advices are synchronized. Before (and after) skip or proceed, advices of the
aspects are executed in parallel. The woven program is represented by the automaton of
figure 2.10, where most of the synchronization events have been hidden after the parallel
composition (except eventB update, proceedE update and skipE update).

From a compositional point of view ParAnd is a composite aspect consisting of two com-
ponent aspects. For each skippable action e, they define the events eventB e, eventE e,
proceedB e, proceedE e, skipB e and skipE e as their interfaces. The aspect ParAnd renames
the events in the interface of the component aspects and define a new LTS. Afterward it
connects the renamed events of the aspect with the interface of the new LTS (seen as a
component). Figure 3.4 illustrates the resulting composite aspect (for more clarity, it is not
shown all the interface of the aspects). In the figure C1 and C2 are the component aspects
and the resulting composite is the aspect ParAnd. The interface of both C1 and C2 has
been renamed and the LTS ParAndLTS connected with them (the text in gray corresponds
to the renamings).

c1eventB_e

proceedB_e1_c3

skipB_e1_c3

c2eventB_e

proceedB_e2_c3

skipB_e2_c3

ParAnd

eventB_e

P
rim

P
a
rA

n
d skipB_e

2_c3

proceedB_e

1_c3

1_c3

2_c3

Figure 3.4: Example of synchronization of two components using ParAnd.

Our implementation considers composite aspects formed by two aspects. In this way, the
following aspect in pseudo-code is permitted:
Aspect = ParAnd(Aspect1,ParAnd(Aspect2,Aspect3))

,the composition that results is shown in picture 3.5.

Possibly, supporting only two aspects in composite aspects could be a restriction. For
example, expressing the previous aspect as ParAnd(Aspect1,Aspect2,Aspect3) could be
more efficient. It is something that was not investigated in this thesis but could be inter-
esting.

3.3. Principles of the implementation 37

c2eventB_e

proceedB_e1_c4

skipB_e1_c4

c3eventB_e

proceedB_e2_c4

skipB_e2_c4

Parand2

skipB_e2_c5

proceedB_e2_c5

eventB_e

P
rim

P
a

rA
n

d
2

c1eventB_e

skipB_e

P
rim

P
a

rA
n

d
1

skipB_e1_c5

eventB_e

ParAnd1

proceedB_e1_c5

proceedB_e

Figure 3.5: Example of synchronization of three components using ParAnd.

Chapter 4

A concrete implementation and

optimizations

This chapter introduces a concrete implementation for CEAOP. The issues exposed in this
chapter are the result of our experience with producing a running Java implementation of
CEAOP.

As an intermediate layer, we have developed a Java library which makes it possible to
associate a Java implementation to a finite state process. This implementation is presented
in section 4.1.

Our concrete implementation translates both the Baton aspects and the Java base program
into Java finite state processes which are composed using the previous referred Java library.
This translation relies on Metaborg/SDF [16] to extend Java with Baton and Reflex [17]
to instrument the base program.

We define three layers:� In a first layer, Baton aspects and the Java base program are provided. Section 4.4
presents the assimilation of aspects, mappings and connectors defined in Baton.� In a second layer (high-level layer), Baton aspects are represented as Java objects
in a compositional way. A aspect hierarchy is created. This layer uses the poincuts
defined by this hierarchy to intercede the base program using Reflex. This layer is
detailed in section 4.2.� In a third layer (low-level layer), aspects and base program are translated to objects
implementing their LTSs. At this point, the intermediate layer with the Java library
is used to perform the composition of the aspect and base program LTSs. This layer
is detailed in section 4.3.

38

4.1. A Java implementation of the LTS composition 39

Finally, section 4.5 presents some optimizations.

4.1 A Java implementation of the LTS composition

This section exposes an implementation in Java of the composition of LTSs introduced in
section 3.2. It explains how LTSs are implemented and details an implementation of LTS
composition.

4.1.1 The monitor

The monitor is implemented as a class Monitor. It includes an instance variable
selectedAction, which is non-null when the monitor is busy (its value is the selected
action), and a collection of counters. It provides the following methods (which are public

and synchronized):� void register(PrimitiveLTS lts, List<Action> actions) is used to initialize
the system. Before starting its own thread, each LTS, seen as an object implementing
the abstract class PrimitiveLTS (see below), has to register to the monitor with this
method. The parameter actions corresponds to the alphabet of the LTS. It is used
by the monitor to set up the counters.� void synchronizeOnEntry(List<Action> choice) is called by an LTS ready to
perform a choice. It increments the appropriate counters. Whether the monitor is
not busy and one of the counter bounds is reached, the monitor is set to busy. Then,
the appropriate counters are decremented and the LTSs on the wait set of the selected
counter are notified (their selectedAction instance variable is set to the selected
action). For simplicity, this method is also used for the cases when there is a single
action i.e., not a real choice, then choices has only one element.� void synchronizeOnExit() is called when an LTS has performed its part of the
shared action. The counter corresponding to the selected action is decremented.
When it reaches zero, the monitor is no longer busy. The LTSs on its wait set are
notified. In a first implementation this method belongs to the class Monitor, however
in an optimized version this method is separated in a class called Synchronized. This
allows us to balance a little bit the charge of the monitor.

4.1.2 The LTS hierarchy

Each LTS extends the abstract class LTS, which includes the following methods:

4.1. A Java implementation of the LTS composition 40� void start(), LTSs are supposed to be active objects. This method starts the LTS
underlying thread.� void relabel(String oldAction, String newAction), this method relabels an
oldAction name by a newAction name. It is used by the operators (see below).� void setMonitor(Monitor monitor), sets the monitor of the LTS and registers the
LTS with the monitor. All LTSs are supposed to be synchronized by a monitor.

An LTS can be either a PrimitiveLTS or a CompositeLTS. The monitor of our implemen-
tation just works with PrimitiveLTSs, so that the abstract class PrimitiveLTS defines
methods permitting the interaction with the monitor:� void setAction(Action action), this method must be synchronized. It is used

by the monitor to inform the PrimitiveLTS that it can proceed with the selected
action action. It simply sets the selectedAction instance of the PrimitiveLTS

and calls notifyAll to wake up the waiting LTS.� Action getAction(), returns the selected action. If no action has been selected
yet, the LTS thread executing the method waits in the LTS Java monitor until the
notification of a new selection.� void synchronizeOnEntry(List<Action> choice), initializes selectedAction to
null, tells the monitor about the choice by calling the monitor version of
synchronizeOnEntry, and finally waits for an action to be selected.� void synchronizeOnExit(), simply calls the monitor version of
synchronizeOnExit.

The prototypical implementation of PrimitiveLTS, the PrimitiveLTSImpl class, is a basic
implementation of an LTS as an active object, i.e., implementing the interface Runnable.
It is based on a definition of the LTS by its alphabet (instance variable alphabet) and its
transfer function, implemented as a combination of a hash map associating an action to
an index (actionMap) and an array associating a (source) state and an index to a (target)
state (target).

The implementation of setMonitor(Monitor) of PrimitiveLTSImpl sets and stores the
monitor in an internal field. It also registers the LTS with the monitor. In addition,
the implementation of start() starts the internal thread of a PrimitiveLTSImpl ob-
ject. Once registered to the monitor and started, an instance of PrimitiveLTSImpl

repeatedly evaluates the action choice associated to the current state, calls its method
synchronizeOnEntry, calls its method void evaluate(int actionIndex), which, by

4.2. High-level layer: aspects and weaving 41

default, change states depending on the selected action, and calls its method
synchronizeOnEntry.

The class CompositeLTS groups several LTS objects. Its implementation of
setMonitor(Monitor monitor) delegates the method to its component LTSs, because
the monitor can only work with primitive LTSs. In this way, the monitor is finally set in
the leaves of the composition tree, which correspond to primitive LTSs. The implementa-
tions of relabel(String, String) and start() are also delegated to the methods of the
component LTSs.

4.2 High-level layer: aspects and weaving

This section explains how aspects are represented in our concrete implementation of CEAOP.
It also details how the weaving is configured and performed.

4.2.1 Implementing aspects

Concretely, an aspect consists of:� An object that implements the LTS that models the aspect.� The set of skippable actions of the aspect automaton.� A map label-pointcut that permits to retrieve the pointcuts that are necessary for
the instrumentation of the base program.

The LTS object and the actions are retrieved from the assimilation of a Baton aspect (see
section 4.4.2). The map is retrieved from the assimilation of a Baton mapping (see section
4.4.3).

Aspects implement the interface Aspect, which defines the following methods:� Map<Action,Hookset> getPointcuts(), returns the pointcuts used to instrument
the base program. We use the class Hookset referring to the concept of pointcut in
Reflex. This method returns an object that maps an action to a pointcut. Then the
base program is instrumented for each action using its associated pointcut.� Set<String> getSkippable(), returns the set of skippable actions in the automaton
of the aspect. It is used to configure the instrumentation of the base program for an
action, indicating whether the action is skippable or not. This method is also used
in the low-level layer.

4.2. High-level layer: aspects and weaving 42� LTS getLTS(), returns the object that implements the LTS representing the as-
pect. This object can be either an instance of PrimitiveLTS or an instance of
CompositeLTS. This method is only used in the low-level layer.

The class PrimitiveAspect corresponds to the prototypical implementation of this inter-
face. It represents a primitive aspect. It is instantiated giving a PrimitiveLTS, a list of
skippable actions and the pointcuts as parameters. The assimilation of a Baton aspect
generates subclasses of PrimitiveAspect (see section 4.4.2). This subclasses represent
concrete aspects. In the assimilation of a Baton connector new instances of these classes
are created(see section 4.4.4).

The definition of more complex aspects is done by using operators. An operator is rep-
resented as a composite aspect combining two or more aspects. It is implemented by
subclassing CompositeAspect. In this way, a hierarchy of aspects is created such that its
leaves correspond to instances of the class PrimitiveAspect. For instance, the operator
ParAnd is implemented in the class ParAnd, which extends the class CompositeAspect

and is instantiated by providing two Aspect objects and a mapping label-pointcut. The
instantiation is done in the assimilation of a Baton connector.

The aspects in the high-level layer just permit the creation of one hierarchy of aspects.
The real composition is done at the level of LTSs in the low-level layer.

4.2.2 Weaving using Reflex

In the preliminary work of this thesis, only one hierarchy of aspects is supported. This
hierarchy is represented by a root Aspect object. This object understands the method
getPointcuts() that returns the pointcuts used to instrument the base program.

We use Reflex [17] as the tool that allows this instrumentation using the pointcuts given
by the aspect. Our necessities, with regard to instrumentation, are not complex, so that
we could have chosen for instance AspectJ. We have chosen Reflex because it permits the
configuration of the instrumentation using pure Java object. This makes the configuration
of the instrumentation simpler for our purposes.

4.2.2.1 Overview of Reflex

Reflex started as a flexible model of partial behavioral reflection [18]. The clear connection
between reflection and AOP led to the proposal of AOP kernels [19], which directed the
posterior transformation of Reflex into a versatile kernel for multi-language AOP [17].

Reflex provides, in the context of Java, building blocks for facilitating the implementation of

4.2. High-level layer: aspects and weaving 43

different aspect-oriented languages so that it is easier to experiment with new AOP concepts
and languages, and also possible to compose aspects written in different AOP languages.
It is built around a flexible intermediate model, derived from reflection, of (point)cuts,
links, and metaobjects, to be used as an intermediate target for the implementation of
aspect-oriented languages. This is the level at which aspect interactions can be detected
and resolved. Below this composition layer, a reflection layer implements the intermediate
reflective model. Above the composition layer, a language layer, structured as a plugin
architecture, helps bridge the gap between the aspect models and the intermediate model.

In order to be portable, Reflex is implemented as a Java class library. It relies on Javassist to
weave hooks in the base bytecode at load-time and connect these hooks to the metalevel, or
to add structural elements (methods, classes) according to a Reflex configuration program.
Part of this configuration can be modified at runtime through a dynamic configuration API.
Load-time configuration makes it possible to limit program transformation to the program
points of interest (partial reflection with spatial selection). Runtime configuration makes
it possible to activate/deactiveate the hooks (partial reflection with temporal selection),
and access/change metaobjects.

An important property of Reflex is that the MOP of its underlying reflective layer is
not fixed but can also be configured. This makes it possible to configure Reflex in order
to support efficient static weaving but also makes it possible to support dynamic weaving
(although a minimal overhead at the level of the hooks cannot be avoided after unweaving).

The primitive means to configure Reflex are configuration classes. To raise the level of
abstraction, plugins can be provided: a plugin supports an aspect language, and is in
charge of generating the appropriate Reflex configuration.

This thesis opt for using configuration classes due to the fact that the configuration needed
is very simple.

Configuration classes The principle behind Reflection is the existence of a base level
where the objects defined in the normal computation of the base program reside, and a
meta level populated of metaobjects. Metaobjects permit the customization of the base
level. The base program join points selected by a cut language delegate their executions
to metaobjects, which perform some routine and resume the base program computation.

The cut language of Reflex is based on the definition of hooks. A hook is a point in the base
program selected by a class selector, a operation selector and a kind of operation. A hookset
permits grouping hooks in terms of common selectors. To clarify more the concepts, it is
possible to do an analogy between join points and hooks, and pointcuts and hooksets.

Reflex allows us to intercede the base program by inserting hooks. It permits the passing
of the execution control to metaobjects. The passing is in charge of links. A Reflex link

4.2. High-level layer: aspects and weaving 44

defines:� A hookset, which indicates the places in the code where the control should be trans-
fered to the meta level.� A MOP (Meta Object Protocol), which indicates which metaobject should be called
and how to call it.� An activation condition, which permits to enable or disable a link at runtime.

The Reflex configuration is done in a class following a specific protocol, where hooksets,
metaobjects and links are defined.

4.2.2.2 Reflex configuration of the weaving

From the hierarchy of aspects, it is possible to obtain a variable that maps actions to hook-
sets. These hooksets are defined in the assimilation of a Baton mapping. The configuration
of Reflex uses these hooksets to configure the instrumentation of the base program.

To customize the base program, a metaobject is defined for each hookset. The metaobject
is an instance of the class ActionInstrumenter, which is instantiated passing as parameter
an action classified in skippable or non-skippable. The class ActionInstrumenter defines
the method instrument, which corresponds to the instrumentation method.

The method configureReflex of a class named ReflexConfigurer implements the Reflex
configuration for an aspect hierarchy as follows:

1 public void configure(Aspect aspect) {

2 Set<Action> skippable = aspect.getSkippable();

3 Map<Action,Hookset> hooksets = aspect.getPointcuts();

4 Iterator it = hookset.getKeySet().iterator();

5

6 while(it.hasNext()){

7 Action action = it.next();

8 Hookset hookset = hooksets.get(action);

9

10 ActionInstrumenter mo = new ActionInstrumenter(action, skippable.contains(action));

11

12 BLink link = API.links().createBLink(hs, new MODefinition.SharedMO(mo));

13 link.setControl(Control.AROUND);

14 link.setActivation(Activation.ENABLED_START_ON);

15 link.setCall(ActionInstrumenter.class.getName(),

16 "instrument",

17 new Parameter[] { Parameter.CLOSURE });

18

19 addBLink(link);

4.3. Low-level layer: aspects and base program as LTSs 45

20 }

21 }

It is important to see the properties of the link. The control of the link is Control.AROUND
(line 13), which implies that the join point interceded will be replaced by the execution of
the metaobject method. This permits the use of proceed. The link starts activated (line
15). The parameter that the metaobject method receives is a Reflex closure representing
the join point (lines 15-17). Some others parameters can be configured, for example to
support the expression target of AspectJ.

4.3 Low-level layer: aspects and base program as LTSs

The low-level layer implements the modeling of aspects and base program as LTSs and
their composition.

4.3.1 The LTSs modeling the aspects

An LTS exists associated to each aspect. The LTS associated to a PrimitiveAspect is an
instance of a class named RoutineLTS, which extends PrimitiveLTSImpl.

The class PrimitiveLTSImpl, as explained in section 4.1.2, defines an implementation of
LTS that interprets the LTS actions through the method evaluate(int actionIndex),
which evaluates the action having the index actionIndex. The default implementation of
this method does nothing. The class RoutineLTS overrides the method evaluate in order
to execute Java methods associated to actions. It defines a variable named routines that
maps action labels to objects of the class Method of the reflection API of Java (this variable
is set in the assimilation of a Baton mapping).

The method evaluate of class RoutineLTS is as follows:

1 public void evaluate(int actionIndex) {

2 Method method = routines.get(actionIndex);

3

4 if(method == null)

5 return;

6

7 Object[] params = ...;

8

9 try {

10 method.invoke(null, params);//execution of a static method

11 } catch (Exception e) {}

12 }

4.3. Low-level layer: aspects and base program as LTSs 46

The routine to be executed is obtained (line 2) and executed (line 10). Line 7 corresponds to
retrieving the parameters of the call. This is explained in section 4.4.5. In the preliminary
work of this thesis, exception handling has not been implemented (line 11). It is important
to note that not all actions have a routine associated, in such a case the evaluation does
nothing (lines 4 and 5).

The LTS associated to a CompositeAspect is an instance of the class CompositeLTS. A
CompositeAspect represents an operator between two aspects. It is instantiated passing
the two Aspect objects as parameters. At instantiation time, it can apply the semantic
of the operator by relabeling and/or hiding the actions of the LTS objects of each aspect
and by optionally defining new LTS objects. The CompositeLTS of a CompositeAspect is
formed of the LTS objects modified and the optional LTS objects defined.

For instance the creation of the CompositeLTS for the aspect ParAnd is as follows:

1 public class ParAnd extends CompositeAspect {

2 private Aspect aspect1;

3 private Aspect aspect2;

4 ...

5 public LTS getLTS() {

6 theLTS1 = aspect1.getLTS();

7 theLTS2 = aspect2.getLTS();

8

9 List<LTS> parAnds = new ArrayList<LTS>();

10 List<String> skipableList = getSkippable();

11 for(Iterator<String> it = skipableList.iterator();it.hasNext();) {

12 String skippable = it.next();

13

14 if(!hasSkippable(aspect1,skippable) || !hasSkippable(aspect2,skippable))

15 continue;

16

17 theLTS1.relabel("proceedB_"+skippable+id+"1","proceedB_"+skippable);

18 ...

19 theLTS2.relabel("proceedB_"+skippable+id+"2","proceedB_"+skippable);

20 ...

21

22 PrimitiveLTSImpl parAndLTS =;

23 parAnds.add(parAndLTS);

24 }

25

26 CompositeLTS composite = new CompositeLTS();

27 composite.add(theLTS1);

28 composite.add(theLTS2);

29 composite.addList(parAnds);

30 return composite;

31 }

32 }

The aspect ParAnd for each skippable action applies relabeling (lines 17-20) and creates
a new PrimitiveLTSImpl (line 22). The LTSs created are collected in a list (line 23).

4.3. Low-level layer: aspects and base program as LTSs 47

Afterward, the CompositeLTS is created that groups the renamed LTSs of the component
aspects and the LTSs created by ParAnd (lines 26-29).

4.3.2 The LTSs modeling the base program

4.3.2.1 The class Monitoreable

The LTS representing a base program thread is implemented using the class Monitorable,
which extends the class PrimitiveLTS and implements the inherited methods start

and relabel as empty methods. The class Monitorable is different than the class
PrimitiveLTSImpl because the latter synchronizes and interprets the transitions of a pre-
defined automaton. However, the Monitoreable class just synchronizes in the transitions
that the instrumented base program indicates.

Each thread in the base program has its own instance of the class Monitoreable.
This is possible by using thread locality in Java. The ThreadLocal variable
Monitorable.THREAD LOCAL stores the object Monitorable associated to the correspond-
ing thread. The constructor of an object Monitorable receives as parameter an identifier
which is obtained using other thread local variable, Monitorable.ID, which returns an
unique identifier for the thread.

The instantiation of the object Monitorable of a thread could be done in two ways.
The first one would consist in instrumenting some routine of the base program and do
the instantiation the first time a thread executes such a routine, e.g., the method run()

of a class implementing Runnable. It implies to add some expression at the language
level in order to indicate a routine to be instrumented and the alphabet of the objects
Monitorable to be instantiated for the threads executing such a routine. A second option
is simpler. It consists in instantiating the object Monitorable in the instrumentation code
of the first instrumented action that the thread executes, e.g., if the action login has been
instrumented, then the instantiation is performed the first time a client executes a join
point belonging to the pointcut associated to login.

We opt for the second alternative. However, in this case the alphabet for the object
Monitorable is not known. Only one action of the alphabet, which corresponds to the
instrumented action, is known. To circumvent this, each time the thread executes an
action that has not been included in the language of the object Monitorable, the action
is included in its alphabet and the object is subscribed to the action with the monitor. It
is done using the method register(PrimitiveLTS,List<Action>) of the monitor.

The code below corresponds to the code that instantiates the object Monitoreable of a
thread:

4.3. Low-level layer: aspects and base program as LTSs 48

1 Action action = ...;

2 Monitor monitor = ...;

3 List<Action> choice = new ArrayList<Action>();

4 choice.add(action);

5 Monitorable monitorable = Monitorable.THREAD_LOCAL.get();

6

7 if(monitorable == null) {

8 Integer ID = Monitorable.ID.get();

9 monitorable = new Monitorable(ID);

10 monitorable.addAction(action);

11 Monitorable.THREAD_LOCAL.set(monitorable);

12 monitor.register(monitorable,choice);

13 monitor.synchronizeOnEntry(choice, monitorable);

14 }

Lines 1 and 2 correspond to the declaration of the action and the monitor, respectively,
which is not detailed in this section. Line 5 corresponds to retrieving the object Monitorable
of the current thread using the thread local variable Monitorable.THREAD LOCAL. If the
object has not already registered in the thread local variable, the result is null and it has
to be instantiated and registered. Line 8 shows the definition of a new identifier for the
object, which is given as a parameter in its instantiation (line 9). Lines 10 and 11 include
the action in the alphabet of the object and the object is registered in the thread local vari-
able, respectively. Finally, line 12 and 13 perform the registering and the synchronization
on entry with the monitor, respectively.

4.3.2.2 Why using the class Monitorable

The advantages of using our schema (with an object Monitorable for each thread) is related
with the advantages of using thread locality. As an invariant of any possible schema, each
thread has an object implementing its LTS (a PrimitiveLTS object). When a join point is
interceded in the base program, such an intercession is done in the context of some thread
(but not necessarily in a method of the class implementing Runnable). Then, we need to
look for the PrimitiveLTS of such a thread. Thread locality becomes the unique possible
way to easily accede to the PrimitiveLTS. Since the activities of the PrimitiveLTS objects
associated to the threads are the same no matter the thread, we have opted for sub-classing
PrimitiveLTS with a standard implementation, the class Monitorable.

For example suppose the following code:

1 public class Client implements Runnable {

2 private Brower b;

3 ...

4 public void run() {

5 this.login();

4.3. Low-level layer: aspects and base program as LTSs 49

6 b.browse();

7 }

8

9 public void login() {

10 ...

11 }

12 }

The code above represents a client as an active object. It can perform the actions login

and delegate the action browse to an object of class Browser.

A more static approach could transform the class Client into a PrimitiveLTS, for instance,
by performing both structural and behavioral transformations using Reflex. Then in the
instrumentation of the execution of a method such as login, it could be possible to assume
that the target object (in this case the object Client) corresponds to the PrimitiveLTS of
the thread (if clients only log in in their own threads). However, if we want to instrument
the execution of the method browse, an easy way to obtain the PrimitiveLTS of the thread
is by using thread locality. Using thread locality we could retrieve the PrimitiveLTS,
which, in this case, would be the object Client. Our approach, instead of transforming a
class like Client, uses a predefined class Monitorable.

This is related to why for each thread there is an object PrimitiveLTS associated. The
reason can be explained by negation. If two threads share the same object PrimitiveLTS,
then both threads could concurrently notify an action. Since the PrimitiveLTS implements
a single process in LTSA, it is by definition sequential. Therefore, the actions notified by
two distinct threads should be sequentialized. It could be undesirable. By implementing a
PrimitiveLTS for each thread more concurrency is allowed.

4.3.2.3 Code of the instrumentation

The section 4.2.2 explained that the instrumentation of the base program is done by in-
terceding join points in the base program, using Reflex, and passing the control to a
metaobject of class ActionInstrumenter. The method that receives the control is the
method instrument. This method replaces, as an around, the execution of the join point.
In addition, this join point has been associated to an action (that is the action associated to
the metaobject in the variable action) and a boolean indicating if the action is skippable
or not (the boolean corresponds to the variable skippable of the metaobject). How the
join point is interceded depends on the kind of action, as introduced in section 3.3.3. In
order to illustrate how an action is instrumented in Reflex, we show the code of the method
instrument as follows:

1 public Object instrument(IExecutionPointClosure aClosure)

2 {

4.3. Low-level layer: aspects and base program as LTSs 50

3 Object result = null;

4 Monitoreable lts = Monitoreable.get();

5 Integer id = lts.getID();

6 String action = this.action;

7

8 if(!this.isSkippable()) {

9 lts.synchronizeOnEntry(id + "." + action);

10 result = aClosure.proceed();

11 lts.synchronizeOnExit();

12 }

13 else

14 {

15 lts.synchronizeOnEntry(id + "eventB_" + action);

16 lts.synchronizeOnExit();

17

18 lts.synchronizeOnEntry(id + "proceedB_" + action, id + "skipB_" + action);

19

20 if (lts.getChosen().getName().equals(id + "proceedB_" + action)) {

21 lts.synchronizeOnExit();

22

23 result = aClosure.proceed();

24

25 lts.synchronizeOnEntry(id + "proceedE_" + action);

26 lts.synchronizeOnExit();

27 }

28 else {

29 lts.synchronizeOnExit();

30

31 lts.synchronizeOnEntry(id + "skipE_" + action);

32 lts.synchronizeOnExit();

33 }

34

35 lts.synchronizeOnEntry(id + "eventE_" + action);

36 lts.synchronizeOnExit();

37 }

38

39 return result;

40 }

Line 5 obtains the identifier used to prefix all the actions (see section 3.3.1). Line 4 is
used to obtain the object Monitoreable of the current thread. This object is used to
perform the synchronizations. If the action of the metaobject is not skippable, then it is
only required a simple synchronization and a proceed (lines 9-11). If the action is skippable
then the action is split in several synchronization events (lines 15-36).

4.3.3 Configuring the composition

In a low-level the composition of aspects and its application to the base program is trans-
lated to the composition of the LTSs modeling the aspects and the LTSs modeling the
base program. The composition is done using the implementation of our library for LTS

4.4. Implementing the DSAL 51

composition. Therefore, the composition consists in the instantiation of a monitor (one for
each hierarchy of aspects) that has to be shared by the aspect LTSs and the base program
LTSs. The latter is done in two steps. First, the monitor is given to the aspect LTSs
straight after an aspect hierarchy has been instantiated. In a second step, each time a new
Monitoreable object is instantiated, such an object is incorporated to the composition.

The work of this thesis considers only one hierarchy of aspects, which is represented by a
root Aspect object (that can be a composite aspect). From this object, the corresponding
object LTS (that can be a composite LTS) is possible to retrieve. This is done using the
method getLTS(). The composition is configured using a Monitor object for the hierarchy
of aspects and by setting the object as the monitor of the aspect LTS using the method
setMonitor(Monitor). Afterward, by invoking the method start() over the LTS object,
the different LTSs composing it begin to run and synchronize with the monitor.

The following code configures the composition for a given aspect aspect in the assimilation
of a Baton connector:

1 Monitor monitor = new Monitor()

2 LTS lts = aspect.getLTS();

3 lts.setMonitor(monitor);

4 lts.start();

The variable aspect represents the root of a hierarchy of aspects. Line 1 instantiates a
monitor for the hierarchy. The LTS of the hierarchy is obtained (line 2). The monitor is
set (line 3). The LTS is started (line 4).

4.4 Implementing the DSAL

This section describes the implementation of Baton, introduced in section 3.1.3. The
implementation is done using Metaborg, a methodology to extend language syntax, which
in our case is used to extend Java. In the remainder, Metaborg is presented and afterward
we detail the result of the assimilation of each part of the Baton language.

4.4.1 Overview of Metaborg

Metaborg [16] is a method for providing concrete syntax for domain abstractions to ap-
plication programmers. The method consists of embedding domain-specific languages in a
general purpose host language and assimilating the embedded domain code into the sur-
rounding host code. Instead of extending the implementation of the host language, the

4.4. Implementing the DSAL 52

assimilation phase implements domain abstractions in terms of existing APIs leaving the
host language undisturbed. Indeed, MetaBorg can be considered a method for promoting
APIs to the language level.

MetaBorg consists of SDF [20] (Syntax Definition Formalism) for modular syntax defini-
tions, and Stratego/XT [21] for language assimilation. A feature of SDF is that it inverts
productions in the syntax definition: instead of having a single production with alterna-
tives per non-terminal (separated with | in BNF), SDF definitions have one production
per alternative. This makes it possible for an SDF module to introduce new alternatives
for a given non-terminal without the need to modify the original definition, hence fostering
syntactic extensibility of the language.

The process of assimilation corresponds to the translation of syntactic extensions to the
general-purpose code. The next sections details the result of the process of assimilation
for each part of Baton.

4.4.2 Aspects

The assimilation of the automaton defined in a Baton aspect is done using an internal
representation of FSP, through classes such as FSP, FSPProcess, FSPSequence, etc. which
are not detailed in this report. The assimilation is performed through the following actions:� The proper waiting loops are introduced.� The transitions are prefixed, as explained in section 3.3.1.� The skippable actions are split up in the synchronization events, as explained in

section 2.3.� The resulting FSP representation is translated into a concrete LTS.

The process of assimilation allows us to obtain an instance of the class PrimitiveLTSImpl
and a list of skippable actions. The process of assimilation also generates a subclass of
PrimitiveAspect, that uses the PrimitiveLTSImpl instance and the list of skippable
actions as templates to generate new aspect instances. For instance, for the example of
the e-commerce application of section 2.3 the subclass for the aspect Consistency is as
follows:

1 public class Consistency extends PrimitiveAspect {

2 private static PrimitiveLTSImpl ltsTemplate;

3 private static List<Action> skippableTemplate;

4

4.4. Implementing the DSAL 53

5 public Consistency(Map<Action,Method> routines, Map<Action,Hookset> pointcuts) {

6 super(new RoutineLTS(ltsTemplate, routines), skippableTemplate, pointcuts);

7 }

8 }

Lines 2 and 3 define the static variables used as templates to create new instances of the
aspect Consistency. Line 6 invokes the constructor of the class PrimitiveAspect by
passing a new instance of RoutineLTS, the skippable actions and the pointcuts.

The assimilation of a parametrized aspect, such as the one shown in the code below, is done
by generating all possible combinations for the variables defined by the process. In each
combination, the expression when indicates if, for the corresponding process, a sequence is
available or not.

1 aspect Consistency2 {

2

3 p[logged:0..1][updated:0..1] =

4 when (logged == 0 && updated == 0)

5 update -> p[logged][1]

6 | when (logged == 1 && updated == 0)

7 update(admin) > skip; log(admin) -> p[logged][1]

8 | login -> p[1][updated]

9 | checkout -> p[0][updated]

10 }

The code declares a distinct version of the aspect Consistency, such that only one update
is allowed. This is done using a variable that indicates whether an update has been
performed or not.

The assimilation of the previous aspect is analogous to the assimilation of the following
aspect:

1 aspect Consistency2 {

2

3 p00 =

4 update -> p01

5 | login -> p10

6 | checkout -> p00,

7

8 p10 =

9 update(admin) > skip; log(admin) -> p11

10 | login -> p10

11 | checkout -> p00,

12

13 p01 =

14 | login -> p11

15 | checkout -> p01,

4.4. Implementing the DSAL 54

16

17 p11 =

18 | login -> p11

19 | checkout -> p01

20 }

4.4.3 Mappings

4.4.3.1 Maps label-pointcut and label-function

The assimilation of the pointcuts of a Baton mapping generates part of the code used to
instrument the base program. This code implements the creation of hooksets that declare
the right class and operation selectors.

The assimilation of the functions defined on a mapping produces a map label-function that
is used afterward in the instantiation of an aspect.

A class with the name of the mapping is created. This class declares both the method
getMapLabelFunction() returning an object mapping a label to a Java method, and the
method getMapLabelPointcut() returning an object mapping a label to a Reflex hookset.

4.4.3.2 Generation of hooksets

In Reflex the cut language is implemented defining hooksets, which consist of a class selec-
tors to select classes, a operation selector to select operations, and the kind of operation
to be selected such as MsgReceive, MsgSend, among others. The code is instrumented in
such a way that when the program execution reaches selected join points, the control flow
is passed to a metaobject, which executes some routine and then resumes the execution of
the base program.

For the AspectJ expressions execution and call, the operations forming the hooksets are
MsgReceive and MsgSend, respectively.

The expressions nested inside these expressions consist of a modifier, a return type, a class
type, a member name and some class types describing parameters. For these elements,
distinct selectors are defined. The operation selectors PublicOS and PrivateOS select class
members such that their modifiers are public and private, respectively. The operation
selector ReturnOS permits to select the members by their return type. The operation
selector NameOS selects the members by their name. Finally, the class selector NameCS

selects the classes by its name.

For a given expression, an operation selector AndOS is instantiated. This selector receives

4.4. Implementing the DSAL 55

as parameter the corresponding operation selectors and performs the inclusion of their
selections.

In the case of the return type, the member name and/or the parameters are declared using
a wildcard, the corresponding operation selectors are omitted. If all operation selectors
are omitted then the operation selector AnyOS, selecting any member, is used. In the same
way, when the class type is declared with the wildcard the class selector AnyCS, selecting
any class, is used.

For example, the Reflex hookset for an action update mapping the pointcut
execution(public void Admnistrator.update(..)) is as follows:

1 PrimitiveHookset hs = new PrimitiveHookset(MsgReceive.class,

2 new NameCS("Administrator"),

3 new AndOS(new OperationSelector[] { new PublicOS(),

4 new ReturnOS(ReturnOS.VOID),

5 new NameOS("update") }));

4.4.4 Connectors

The assimilation of Baton connectors consists in the creation of aspect instances and the
configuration of the base program instrumentation. An aspect instantiation means a re-
lationship between a Baton aspect and a Baton mapping. This relationship permits the
following:� The instantiation of aspects by providing them with the routines (map label-function)

defined in the mapping.� The creation of an aspect hierarchy represented by a root aspect.� To provide the root of the aspect hierarchy with the pointcuts (map label-pointcut)
defined in the mapping.� The configuration of Reflex, using the method configure of the class
ReflexConfigurer.

For example, if a connector declares a new aspect instance using the syntax:

Aspect a = new ParAnd(new Consistency(), new Safety()) using MyMapping;

the code of the assimilation of the mapping is as follows:

4.4. Implementing the DSAL 56

1 Map<Action,Method> routines = MyMapping.getMapLabelFunction();

2 Map<Action,Hookset> hooksets = MyMapping.getMapLabelPointcut();

3

4 Aspect consistency = new Consistency(routines,null);

5 Aspect safety = new Safety(routines,null);

6 Aspect parAnd = new ParAnd(consistency, safety, hooksets);

7

8 ReflexConfigurer.configure(parAnd);

This code requires the previous assimilation of the aspect and the mapping files, so that
the classes Consistency and MyMapping have been generated. In line 1 the routines re-
quired by the instantiation of the aspect are retrieved. This is done by calling the method
getMapLabelFunction() of the mapping. In line 2 the pointcuts required by the instantia-
tion of the root of the hierarchy of aspects are retrieved. This is done by calling the method
getMapLabelPointcut() of the mapping. Lines 4 to 6 define the hierarchy of aspects. The
root of the hierarchy is the aspect parAnd. The primitive aspects consistency and safety

do not require the pointcuts since they are not roots in the hierarchy the aspects. Finally,
line 8 invokes the method that configures Reflex passing the root as parameter (see section
4.2.2).

4.4.5 Implementing aspect binding

The DSAL allows us to define aspects such as:

aspect UpdateLogger {

p = update(admin, db) > proceed; log(db) -> p

}

This aspect allows us to log all the updates performed in a database db by an administrator
admin. The action update is extended with an action declaring the after advice log. The
parameter db of update is passed to the action log as its first parameter.

The implementation of this feature requires the binding of the parameters defined by
the action update. This binding is done in the instrumentation code generated by the
assimilation of the pointcut associated to update in a mapping. Then, the execution of
the routine associated to the advice log requires to receive as parameter the value of the
binding of the second parameter of update.

We define a class called Closure in order to implement this feature. When the pointcut
associated to a label that defines parameters is assimilated in a mapping, a new instance
of the class Closure is created. This object is mapped to the label of the pointcut and

4.5. Optimizations 57

stored in the variable closures of the class generated for the mapping. The class Closure
stores the values of the variables bound in the pointcut.

On the other hand, in the assimilation of the aspect, for each advice action declaring
parameters, an array with the indexes of the parameters received by the action is created.
This array is stored in the variable argIndexes of the class generated for the aspect.

The evaluation of an advice action in the method evaluate of the class of the aspect looks
for the closure associated to the corresponding pointcut in order to obtain the value of the
bound variables. Using the array of indexes associated to the advice action it is possible
to obtain the values of the corresponding parameters.

For the example, the method evaluate would be the following:

1 public void evaluate(int actionIndex) {

2 Method method = routines.get(actionIndex);

3

4 if(method == null)

5 return;

6

7 Action action = actions.get(actionIndex);

8 Closure closure = mapping.getClosure(action);

9 int[] argIndexes = this.argIndexes[currentState][actionIndex];

10 Object[] params = closure.getArgs(argIndexes);

11

12 try {

13 method.invoke(null, params);//execution of a staticmethod

14 } catch (Exception e) {}

15 }

4.5 Optimizations

4.5.1 Avoiding waiting loops in aspects

The model introduced in CEAOP uses waiting loops in the definition of the LTSs that
describes aspects. The waiting loops are used in order to avoid deadlocks. The introduction
of waiting loops, in a declarative way, is as follows: let us consider P , the pseudo-LTS of an
aspect (without waiting loops), and its alphabet αP . For each state s of P , let actions(s)
be a function providing us with the transitions for the state s. For each action a ∈ αP
such that ∀t ∈ actions(s), t does not transit using a, a waiting loop, corresponding to the
transition (s, a, s), is added. The result is P ′, the proper LTS describing the aspect(with
waiting loops). In the remainder of this section we refer to an LTS in the sense of a proper
LTS describing an aspect.

4.5. Optimizations 58

A waiting loop allows us to ensure that each state of an LTS define a transition for each
action in the alphabet. Its function is to synchronize with the other LTSs in actions that
are not relevant for the LTS in its current state, avoiding deadlocks. However, it does not
have any effect on the LTS: a waiting loop does not introduce any routine and it does not
imply any change of state.

However, waiting loops do have an effect in the interpretation of LTSs. They introduce
extra synchronization in transitions that are not relevant for the interpretation of an LTS,
making such an interpretation slower.

A clear optimization is to make an LTS to avoid the synchronization on waiting loops. Or
even better, to avoid the use of them.

The solution proposed consists in a modification of the implementation of section 3.2 of
LTS and its composition, in order, to avoid the use of waiting loops. This solution is done
around the following observation supposing the absence of waiting loops. When an LTS
P1 tries to transit to a next state using an action a, it has to be synchronized with all the
other LTSs having a in their alphabets. If an LTS P2 has a in its alphabet but it does
not define any transition on a in its current state, then P1 has to wait until P2 reaches
an state where a transition on a is defined. If the arrival to such an state depends on the
transition of P2 to another state, it never occurs and produces a deadlock. If when P1 tries
to transit on a, P2 does not declare the action a in its alphabet, then P1 does not require
a synchronization with P2.

The solution consists in a schema where LTSs declare a subset of their real alphabet. These
subsets are changed by them in the transition to next states. This solution is such that the
alphabet of an LTS in a given state contains only the actions defining transition in such
an state. In this way, instead of synchronizing in a waiting loop producing any affect, the
LTS hides the action so that the other LTS do not synchronize with it.

In terms of our concrete implementation, the subscription and unsubscription to action is
performed in the method synchronizeOnExit(List, List) of the class Monitor which
has been modified by providing it with two lists of actions as parameters. Each time
an LTS changes its state and tries to synchronize on the exit of a transition, it calls
synchronizeOnExit(unsubscribe, subscribe), which provides the monitor with the list
unsubscribe of the actions corresponding to its previous choice, and the list subscribe

of the actions corresponding to the transitions forming the choice of the new state. The
monitor takes the actions of the first list and the actions of the second list, and decrements
and increment their bounds, respectively. When for the new state there is a single internal
action which is not visible to the other LTSs (typically an advice), the LTS include in the
subscribe list the actions of the next state that defines some visible action.

The use of the method synchronizeOnExit avoids the inclusion of a new synchronized
method to subscribe and unsubscribe to actions. Furthermore, we take advantage of the

4.5. Optimizations 59

fact that when this method is called in the respective LTS, the corresponding synchroniza-
tions on entry have already been performed by all the LTSs and the monitor is busy, so
that the bounds are not being used.

4.5.2 Optimizing the object Monitorable

Section 4.3.2.1 introduced the object Monitorable implementing the LTS that represents
a base program thread. We have chosen a schema such that each object Monitorable

registers the actions of its alphabet in a lazy way, i.e., when an instrumented action is
reached by the thread. This is because the complete alphabet of the Monitorable cannot
be known a priori. Each time a new action is known for the LTS alphabet, it is invoked
register(PrimitiveLTS,List<Action>) on the monitor to make the LTS subscribe to
the action.

In order to avoid the use of the method register(PrimitiveLTS,List<Action>) defined
in the class Monitor to subscribe to actions, which implies an extra point of synchronization
in the monitor, we create a new instance of the method synchronizeOnEntry by providing
it with a new parameter that corresponds to the object Monitorable. In this way, this
method is used when the object synchronizes on entry with actions that the monitor has
not associated to this object. This method first subscribes the object to the actions that
the monitor has not associated to this object yet and then performs the synchronization.

4.5.3 Eliminating the double synchronization

Section 3.2.5 explained the necessity of a double synchronization schema for actions.
In the implementation, this is done through the methods synchronizeOnEntry and
synchronizeOnExit. The rol of the latter is making the LTSs participating of a syn-
chronization meet at the end of the transition. This is for ensuring that all LTSs have
transited together.

In some cases the synchronization on the exit on a shared action can be eliminated. This
is the case when in the next state of the corresponding transition, all the LTSs share the
same actions. Therefore, they have necessarily to meet again in the synchronize on the
entry of a next action.

Chapter 5

The Readers and Writers problem

As an illustration, this chapter exposes a solution of the classical problem of Readers and
Writers using CEAOP.

5.1 The problem

The Readers-Writers problem is concerned with access to a shared data by two kind of
processes. Readers execute atomic actions that examine the data while writers both exam-
ine and update the data. For the shared data to be updated correctly, writers must have
exclusive access to the data while they are updating it. If no writer is accessing the data,
any number of readers may concurrently access it.

5.2 A solution using CEAOP

The solution to this problem, exposed in this section, is based on the solution proposed
by [7], which is modeled using LTSA and then implemented “by hand”. However, our
aim is to generate a more transparent solution by using AOP, which is transparent to the
programmers of the base system. The programming of readers and writers is simplified if
concerns about access to the shared data are omitted. Afterward, the use of aspects allows
us to use these concerns in a more modular and straightforward way.

Our solution is based on the intercession, using aspects, of the operations of reading and
writing in the shared data. The action read is split up in the acquisition of a lock for
reading, the execution of the read and the release of the lock. Something similar is done
for the operation write.

60

5.2. A solution using CEAOP 61

The aspect interceding read is as follows:

1 aspect Reader {

2 p = read > +acquireRead; proceed; +releaseRead -> p;

3 }

The actions acquireRead and releaseRead are prefixed by the sign +, which indicates
that this actions are visible to the other aspects in the composition. The aspect interceding
write is analogous:

1 aspect Writer {

2 p = write > +requestWrite; proceed; +releaseWrite -> p;

3 }

In order to coordinate the exclusive access of writers to the shared data, an aspect is
implemented. This aspect, composed with the previous aspects, orders the reads and
writings to the data. It keeps a count of the number of readers accessing the data and
whether a Writer is writing. The action acquireRead is only available in a state such that
no Writer is accessing the data, in the same way the acquireWrite is available in states
such that no Reader is reading. The aspect implementing the lock is the following:

1 aspect Lock {

2

3 rw[readers:0..10][writing:0..1] =

4 when (writting == 0)

5 acquireRead -> rw[readers + 1][writing]

6 |releaseRead -> rw[readers - 1][writing]

7 |when (readers == 0 && writing == 0)

8 acquireWrite -> rw[readers][1]

9 |releaseWrite -> rw[readers][0].

10

11 }

The advantage with regard to a pure OO solution (as used in [7]) or an AspectJ is the fact
that it relies on a high-level DSAL, close to a specification language, and therefore less
error-prone. It is also simpler to reuse.

Chapter 6

Conclusions

6.1 Contributions

The main contribution of the work developed in this thesis corresponds to the preliminary
implementation of CEAOP, in the form of a small DSAL. This implementation has allowed
a deeper analysis of the concept formulated by the approach.

One of the products of this thesis corresponds to the development of a library that per-
mits the translation of FSP processes and their composition into running Java processes,
composed following the FSP semantics. Each process is implemented as an active object
interpreting the actions of its LTS. A centralized monitor is in charge of the composition.
This implementation is simple and correct since it strictly follows the semantics of LTS
composition.

6.2 Perspectives

6.2.1 Improvements to the implementation

Improving concurrency

The LTS composition serializes the composition in a single LTS representing the syn-
chronous product. Since we take care of following its transitions in a deterministic way,
the monitor may only take one decision at each time. So that, just one transition is chosen.
The result is that only one shared action is concurrently performed.

62

6.2. Perspectives 63

Our LTS implementation needs concurrently executing different shared actions. More
parallelism would imply to reformulate the invariants of the implementation of the monitor,
for example, when the monitor is busy because some decision has been taken, it would still
be possible to choose another action.

However, it presents the problem of being too much centralized, which is a drawback in the
case of distributed systems. For instance, for our example of the e-commerce application,
clients and administrators can be implemented as active LTSs. If the monitor resides in
a distinct host, it is mandatory a remote communication each time these actors need to
transit in their automata.

Intersection of pointcuts

The DSAL implemented in this thesis separates the automaton definition and the pointcut
definition of aspects. The main reason for that is the composition of aspects following the
same semantics for labels. Then if two aspects define a shared action, there is an only one
pointcut for such an action. However, this does not impede the non-empty intersection of
the sets of join points. Our implementation assumes that the set of join point of a pointcut
does not intersect with the set of join points of another pointcut. However, if a given
join point is matched by two pointcuts, the resolution of the conflict is up to the default
composition strategy of the instrumentation tool used (in our case Reflex). In some case
one action is synchronized first and after the other.

For example, suppose that an action logAll defines a pointcut call(* *.*(..)) and an
action login defines a pointcut call(* *.log(..)). When a method Client.log() is
invoked in the context of some base program thread, both actions are valid. In our current
implementation one action is synchronized first and after the other. However, the LTS
representing the thread should notify to the monitor a choice consisting of both actions.
The implementation of this feature impedes instrumenting the base program independently
for each pointcut. It is necessary a coordination between pointcuts to determine if there
is an interaction. The feasibility of the implementation depends on the expressiveness of
the tool used to instrument the base program.

Extension to the Baton language

Our Baton language allows us to define the automaton of an aspect in a Baton aspect.
The syntax permits define FSP processes such as the following:

safe = minimize(editor) > save(editor);proceed -> safe.

6.2. Perspectives 64

This process can be used to model an aspect that each time a certain text editor is min-
imized makes the editor save. Afterward, in a Baton mapping the action label save can
be associated to certain Java method that receives the object representing the editor and
sends the method save to the object. In the actual implementation only static methods
are supported. An interesting approach is to permit something more Object-oriented such
as:

safe = minimize(editor) > editor.save;proceed -> safe.

Then a parameter could be used as a call target.

General remarks� The prototype does not implement any protocol for handling exceptions. A typical
place where exception handling is needed, corresponds to the execution of the advices
routines in the implementation of an aspect LTS. The routines are defined in a Baton
mapping. In the assimilation of the mapping could be good to check the existence
of the defined Java methods. Afterward, the failed execution of a routine should be
handled following some defined criteria, making the prototype more robust.� The prototype has, for the time being, only be used on very few examples, such as
on our model of e-commerce application and on a solution of the problem of Readers
and Writers. It is necessary to use it on more examples, of different sizes, in order to
better assess it. In turn, these new examples will probably give new ideas on how to
improve it.� Section 4.5 proposes some optimizations to the prototype, specially with respect
to the library implementing LTS composition. A future work is to benchmark the
effectiveness of the approaches.

6.2.2 Improvements to the CEAOP model

Advice expressiveness of aspects in CEAOP

The basic language considered by CEAOP is limited. It would be interesting to consider
extensions to this basic language. For instance, we have seen that an advice takes the
form before action proceed or skip after action, i.e., it has to explicitly indicate either
the keyword skip or proceed. This keyword is fixed for each advice, as a result, an
aspect cannot dynamically decide whether it should skip or not its corresponding join
point executions. More dynamic advices (such as the around of AspectJ), which make the
proceed conditional on runtime context, cannot be modeled using this approach. This

6.2. Perspectives 65

advice restriction makes the LTS representing an aspect impose a fixed transition to the
LTS modeling the base program. To wit: whereas the latter defines a choice between skip
or proceed, the former takes a fixed decision by defining a single transition on either skip
or proceed. Therefore, the decision is taken at the LTS level.

Pointcut expressiveness of aspects in CEAOP

CEAOP models aspects and base program using transition labels that denote events in the
base program. No much more it is said about how such transition labels are mapped to
join points in the base program. Our implementation associates such transition labels to
pointcuts that matches just base program syntax. However, the necessity of support for
dynamic pointcuts has been early stated in the AOP state of the art [22, 23]. A support
of dynamic pointcuts in CEAOP necessary implies to review some semantic details.

Bibliography

[1] Mehmet Akşit, Siobhán Clarke, Tzilla Elrad, and Robert E. Filman, editors. Aspect-
Oriented Software Development. Addison-Wesley Professional, September 2004.

[2] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In
M. Aksit and S. Matsuoka, editors, Proceedings of the 11th European Conference on
Object-Oriented Programming (ECOOP’97), volume 1241, Jyväskylä, Finland, June
1997. Springer-Verlag.

[3] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William
Griswold. An overview of AspectJ. Number 2072, pages 327–353, Budapest, Hungary,
June 2001. Springer-Verlag.

[4] Rémi Douence, Didier Le Botlan, Jacques Noyé, and Mario Südholt. Concurrent
aspects. Research Report RR-5873, INRIA, March 2006.

[5] Rémi Douence, Didier Le Botlan, Jacques Noyé, and Mario Südholt. Towards a model
of concurrent AOP. SPLAT’06, March 2006.

[6] Rémi Douence, Pascal Fradet, and Mario Südholt. Composition, reuse and interac-
tion analysis of stateful aspects. In AOSD ’04: Proceedings of the 3rd international
conference on Aspect-Oriented Software Development, pages 141–150, New York, NY,
USA, March 2004. ACM Press.

[7] Jeff Magee and Jeff Kramer. Concurrency: State Models and Java Programs. John
Wiley&Sons, 1999.

[8] Rémi Douence, Pascal Fradet, and Mario Südholt. A framework for the detection
and resolution of aspect interactions. In GPCE ’02: The ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and Component Engineering, pages 173–188,
Pittsburgh, PA, USA, October 2002. Springer-Verlag.

[9] Rémi Douence, Olivier Motelet, and Mario Südholt. A formal definition of crosscuts.
In REFLECTION ’01: Proceedings of the Third International Conference on Metalevel

66

BIBLIOGRAPHY 67

Architectures and Separation of Crosscutting Concerns, pages 170–186, Kyoto, Japan,
September 2001. Springer-Verlag.

[10] Wim Vanderperren, Davy Suvée, Maŕıa Agustina Cibrán, and Bruno De Fraine. State-
ful aspects in jasco. In Thomas Gschwind, Uwe Aßmann, and Oscar Nierstrasz, edi-
tors, Software Composition, volume 3628 of Lecture Notes in Computer Science, pages
167–181. Springer-Verlag, 2005.

[11] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha
Kuzins, Ondrej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and
Julian Tibble. Adding trace matching with free variables to AspectJ. In OOPSLA
’05: Proceedings of the 20th annual ACM SIGPLAN conference on Object Oriented
Programming Systems Languages And Applications, pages 345–364, San Diego, CA,
USA, October 2005. ACM Press.

[12] Robert J. Walker and Kevin Viggers. Implementing protocols via declarative event
patterns. In SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM SIGSOFT twelfth
international symposium on Foundations of software engineering, pages 159–169, New-
port Beach, CA, USA, October 2004. ACM Press.

[13] Simplice Djoko Djoko, Rémi Douence, Pascal Fradet, and Didier Le Botlan. CASB:
Common Aspect Semantics Base. Technical Report AOSD-Europe Deliverable D41,
AOSD-Europe-INRIA-7, INRIA, France, February 2006.

[14] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jennifer
Lhoták, Ondrej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and
Julian Tibble. abc: an extensible AspectJ compiler. In AOSD ’05: Proceedings of the
4th international conference on Aspect-oriented software development, pages 87–98,
Chicago, Illinois, USA, March 2005. ACM Press.

[15] Klaus Ostermann, Mira Mezini, and Christoph Bockisch. Expressive pointcuts for
increased modularity. In Andrew P. Black, editor, ECOOP, volume 3586 of Lecture
Notes in Computer Science, pages 214–240. Springer-Verlag, 2005.

[16] Martin Bravenboer, René de Groot, and Eelco Visser. Metaborg in action: Examples
of domain-specific language embedding and assimilation using Stratego/XT. In Sum-
mer School on Generative and Transformational Techniques in Software Engineering
(GTTSE’05), Braga, Portugal, July 2005.

[17] Éric Tanter and Jacques Noyé. A versatile kernel for multi-language AOP. In Pro-
ceedings of the 4th ACM SIGPLAN/SIGSOFT Conference on Generative Program-
ming and Component Engineering (GPCE 2005), Lecture Notes in Computer Science,
Tallin, Estonia, September 2005. Springer-Verlag. To appear.

[18] Éric Tanter, Jacques Noyé, Denis Caromel, and Pierre Cointe. Partial behavioral
reflection: Spatial and temporal selection of reification. In Ron Crocker and Guy L.

BIBLIOGRAPHY 68

Steele, Jr., editors, Proceedings of the 18th ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA 2003), pages
27–46, Anaheim, CA, USA, October 2003. ACM Press. ACM SIGPLAN Notices,
38(11).

[19] Éric Tanter and Jacques Noyé. Motivation and requirements for a versatile AOP
kernel. In 1st European Interactive Workshop on Aspects in Software (EIWAS 2004),
Berlin, Germany, September 2004.

[20] Eelco Visser. Syntax Definition for Language Prototyping. PhD thesis, Amsterdam,
1997.

[21] Eelco Visser. Program transformation with Stratego/XT: Rules, strategies, tools,
and systems in StrategoXT-0.9. In C. Lengauer et al., editors, Domain-Specific Pro-
gram Generation, volume 3016 of Lecture Notes in Computer Science, pages 216–238.
Spinger-Verlag, June 2004.

[22] J. Brichau, W. De Meuter, and K. De Volder. Jumping aspects. In Workshop on
Aspects and Dimensions of Concerns (ECOOP 2000), June 2000.

[23] B. De Fraine, W. Vanderperren, D. Suvee, and J Brichau. Jumping aspects revisited.
In Proceedings of DAW 2005, March 2005.

