
Vrije Universiteit Brussel – Belgium
Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes –
France

and
University of Twente – The Netherlands

2003

A Representation of Java Programs as Partial
Graph Morphisms

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange)

By: Angela Consuelo Lozano Rodríguez

Promoter: Prof. Theo D’Hondt (Vrije Universiteit Brussel)
Co-Promoter: Prof. Arend Rensink (Universiteit Twente)

 2

Table of Contents

1. Introduction..5

1.1. GOALS ..5
1.2. CONCEPTS ..6

1.2.1. Graphs ...7
1.2.2. Transformation & production rules ...7
1.2.3. Double push out ...9
1.2.4. Single push out ..9
1.2.5. Negative application conditions..10
1.2.6. Graph grammar..10

1.3. JAVA SOURCE STRUCTURE ...10
1.3.1. Declarations ...11

1.3.1.1. Abstract modifier ..11
1.3.1.2. Final modifier..11
1.3.1.3. Native modifier ...11
1.3.1.4. Package modifier (none/default) ..11
1.3.1.5. Private modifier ..12
1.3.1.6. Protected modifier ..12
1.3.1.7. Public modifier..12
1.3.1.8. Strictfp modifier ..12
1.3.1.9. Static modifier ..12
1.3.1.10. Synchronized modifier..12
1.3.1.11. Transient modifier ..13
1.3.1.12. Volatile modifier..13

1.3.2. Types ...13
1.3.3. Fields..14
1.3.4. Methods ...14

1.3.4.1. Parameters...14
1.3.4.2. Throws clause ..15
1.3.4.3. Method body ..15

1.3.4.3.1. Variables ..15
1.3.4.3.2. Expressions..15
1.3.4.3.3. Literals..16
1.3.4.3.4. Operators ...16
1.3.4.3.5. References ...18
1.3.4.3.6. Statements ...18

1.4. CONTEXT ..19
1.4.1. Groove ...20
1.4.2. Recoder..21

2. Principles of translation..22

2.1. GRAPH NOTATION ..22
2.1.1. Nodes definition ...22
2.1.2. Edges definition..25
2.1.3. Object oriented concepts as graphs...32

2.2. CLASS GRAPHS..33
2.3. OBJECT GRAPHS..35
2.4. PATTERN RULES ..37

2.4.1. Literal creation..37
2.4.2. Variable declaration ...38
2.4.3. Operations..40
2.4.4. Assignment ..42

 3

2.4.5. Methods ... 43
2.4.5.1. Method environment creation .. 45
2.4.5.2. Method call... 46
2.4.5.3. Method return... 47

2.4.6. If ... 49
2.4.7. While.. 54

3. Tool description... 58

3.1. USER GUIDE .. 58
3.1.1. System requirements... 58
3.1.2. Installation instructions .. 58
3.1.3. Instructions of use.. 59
3.1.4. Output directory structure .. 62
3.1.5. Reporting bugs .. 63

3.2. PROGRAMMER GUIDE .. 65
3.2.1. Requirements .. 65

3.2.1.1. Project risks ... 65
3.2.2. Background.. 66

3.2.2.1. Groove ... 66
3.2.2.2. Recoder ... 68

3.2.3. Translator architecture... 70
3.2.4. Subsystem design ... 71

3.2.4.1. Model package... 71
3.2.4.2. Reference package.. 72

3.2.4.2.1. Field ... 73
3.2.4.2.2. Class .. 73
3.2.4.2.3. Method ... 74
3.2.4.2.4. Super constructor... 74
3.2.4.2.5. Super ... 74
3.2.4.2.6. This constructor.. 75
3.2.4.2.7. This .. 75
3.2.4.2.8. Type ... 75
3.2.4.2.9. Variable.. 76

3.2.4.3. Rule patterns package ... 76
3.2.4.4. Gui package... 77

3.2.5. Getting involved in the project ... 78
3.2.5.1. How to join the project ... 78

3.2.5.1.1. Last cvs version ... 78
3.2.5.1.2. Directory structure.. 79

3.2.5.2. How to extend the project .. 80
3.2.5.2.1. Adding new production rules.. 80
3.2.5.2.2. Changing parser .. 80

4. Processing algorithms.. 81

4.1. PARSING AND ABSTRACT SYNTAX TREE CONSTRUCTION.......................... 81
4.2. PREPROCESSING... 82
4.3. PRODUCTION RULES GENERATION.. 83

5. Future work proposals.. 85

5.1. MISSING OR INCOMPLETE FEATURES .. 85
5.2. IMPROVEMENTS... 86
5.3. PRIORITIES.. 87

6. Conclusions ... 89

7. References ... 91

 4

How to read this document

This document pretends to summarize the work done as graduation project that

defines how to map an object oriented language as Java into graphs and how the

tool that performs this mapping was done.

These graphs, in particular, have non labeled nodes and labeled edges.

However, the edges’ label doesn’t represent any identity, i.e. they can only be

differentiated by their components: source node, label and target node. In this

sense we can call them flat graphs because their components do not have

identity by themselves.

The text is organized as follows: the first chapter summarizes the basic points in

which the work was based on, like its objectives, background theory and tools

used. Chapter 2 explains the proposed translation from Java source code to flat

graphs. Chapter 3 describes the tool developed to perform the translation.

Chapter 4 explains in detail how the software works and the necessary

knowledge to extend it. The proposals for future work, features to implement or

complete, as well as the possible improvements and their priorities are located in

the chapter 5. The conclusion indicates which goals were reached and which was

the contribution of this work.

 5

1. Introduction

This thesis is intended to model Java source code as graph transformations

within a larger project called GROOVE (see section 1.4.1) oriented to develop a

fully automated verification tool for object oriented programs.

In a wider perspective the graph transformations that generate the software

developed give the possibility to generate all possible transitions from an initial

state represented as a graph, this is called a transition system. From this set of

possible states it is feasible to extract canonical patterns that represent a set of

patterns. This generalizations are called temporal logic graphs and they

represent the behavioral semantic of a set of transformations. In this way, they

enable automatic verification of a program [3].

In the project, there is another master thesis being developed whose goal is to

translate Java byte code into graph transformations. Our work crossed in order to

define some parameters on the produced graph transformations in order to make

them compatible. We defined an interface / standard of graph transformations

that will derive the same kind of state graphs.

The tool product of this thesis (called Translator) was developed as an extension

of GROOVE. GROOVE (GRaphs for Object Oriented VErification) (see section

1.4.1) is a set of tools product of a straightforward translation from the graph

rewriting theory. GROOVE software (version 0.0.1) is composed by an editor
that allows the creation of state graphs and production rule or transformation

graphs, by a viewer that shows with a special format a production rule and by a

simulator that, given an initial state graph and production rule graphs, can show

the effects of a production rule applied to a state graph and also produce all

possible states starting with the initial state and applying the production rules to

this initial state or to the intermediate generated states.

1.1. Goals

The main interest of this work is to represent object oriented programs in graphs

whose elements do not have own identity. In particular, Java source code. For

this reason one of the higher priority tasks was to study the Java specification in

 6

order to get a view of the possibilities that this language offers, and the scope

that could be covered in the present work.

Once the translation between the Java sources entities is defined it is also

necessary to translate each execution point into a graph transformation. The

objective was to identify all entities in the code that could generate changes in the

object and represent this change as a graph transformation. This change

representation implies the introduction of other entities that allow some

restrictions not offered by source code entities themselves; but by the way they

are interpreted such as the order of instructions. Note that the graph

transformations are not just simple mapping from the source code to graphs

because there are execution features implicit in the source code like class

loading or instruction sequence; the mapping from source code to graphs should

produce the same effect as the code execution would do in an object. It is

necessary to introduce some execution information based only on static

information provided by the source code.

In the end the produced transformation graphs must simulate the code execution,

registering in the state graphs all changes in the objects involved in a program.

Summarizing, this project intends to:

− Construct a model that translates Java source code into flat graphs.

− Enrich the model to include implicit Java source features like class loading,

garbage collection, execution order, etc.

− Identify the transformation points in a Java source code.

− Build canonical patterns for object oriented code transformations.

− Develop a proof of concept tool that extends GROOVE and generates graph

transformation rules from Java source code

1.2. Concepts

This section comprises in an informal and condensed way all necessary terms

used along the document. It explains the main theoretical concepts in which this

work is based on.

 7

1.2.1. Graphs

Graphs are mathematical representations that can be formally described,

interpreted and transformed; furthermore they have intuitive visual

representation. The graphs are composed by 2 kinds of elements: the nodes and

the edges. The edges are elements that connect nodes. See [3].

The graphs that concern this work are not node labeled but edge labeled.

Nevertheless neither nodes nor edges have identity of their own. Edges are

distinguished by its components: source node, label(s) and target node. Two

edges cannot have the same label and nodes.

Figure 1.2.1.1. Two representations of a graph with 3 nodes and 4 edges.

The nodes are graphically depicted as boxes, the edges as directed arrows that

indicate the starting and ending edge except in self referenced edges i.e. edges

whose source and target node are the same. They are represented with the label

of the self referenced edge inside the source-target node.

1.2.2. Transformation & Production rules

A transformation is a way to represent the change from an initial graph to a final

graph.

Figure 1.2.2.1. A transformation instance of x = y

x y

63

x y

6 3
=

x
y

x
y

3 6 6

Initial graph Final graph x = y

3

 8

The generalization of a transformation is a pattern that can be applied to different

initial graphs and when they are applied can produce different final graphs. These

patterns are called production rules. The productions rules indicate the nodes

and edges created or removed from the initial graph to the final graph. The figure

1.2.2.2 shows a production rule in which the edge identified with the label x is

deleted in the final graph, and the edge identified with an x label in the final graph

does not have a pre image in the initial graph, this gain or loss of elements in the

transformation is represented with question marks.

A rule only can be applied if it matches in the initial graph. A rule can have

multiple matchings in a graph and its result depends in which of the matchings

the pattern is applied. Any rule application generates a new graph.

The rule can also be defined as a partial injective function whose domain is the

initial graph and its co domain is the final graph.

Figure 1.2.2.2. A transformation pattern of x = y

There are 4 element roles in a graph transformation. The reader element that

must be in the initial and final graph, the eraser element that is present in the

initial graph but not in the final graph, the creator that is present only in the final

graph and the embargo element that cannot be present in the initial graph.

If different elements on the rule correspond to the same element on the graph,

the element will be transformed with the most powerful transformation that is

applied to it. For instance, let’s suppose there is a rule that requires all self

referenced nodes an deletes all nodes target of an edge labeled x. If the source

graph has a self referenced node with an x, this element will match with a reader

role and also with an eraser role; then the rule application will delete this node.

x yx y

Initial graph Final graph x = y

?
?

 9

1.2.3. Double push out

Figure 1.2.3.1. Double push out graphical representation. Transformation rule for

x = y

The classical representation of a production rule is called double push out. It

consists of the initial graph called also the left hand side graph (LHS), the final

graph or right hand side graph (RHS) and the morphism between them. This

morphism is a partially injective function, which establishes which elements of the

LHS have which image in the RHS (if they have). See [1].

1.2.4. Single push out

Figrure 1.2.4.1. Single push out in GROOVE’s output format.

Transformation rule for x = y

The double push out representation can be summarized indicating the necessary

nodes to have a match, which of them are deleted in the RHS graph and which

are created, this is, elements that do not have an image in the LHS. This

representation is just the disjoint union between LHS and RHS. This equivalent

function constructs the set of elements of LHS that are not in the co domain of

the morphism (nodes or edges deleted) and the set of elements of RHS that are

not in the in the domain of the morphism (nodes or edges created). It is called the

x yx

x y x y

Left hand side Right hand side morphism

 10

single push out approach. Translator represents production rules with the single

push out approach. See [1] and [4].

1.2.5. Negative Application Conditions

Figrure 1.2.4.1. Single push out enriched with a Negative Application Condition in

GROOVE’s output format. Transformation rule x = y / z

The single push out graphs are enriched with a kind of Negative Application

Conditions (NAC) that forbid relations in the initial graph, in other words, the rule

is not applicable if there is a match of the NAC in the initial graph. The role played

by the elements that are part of the NAC are called embargo. See [4].

Note that due to a NAC defines relationships, the elements that compose it are

edges. Then the NAC elements are also called embargo edges.

1.2.6. Graph grammar

The duple formed by an initial state graph and a set of production rules is called

graph grammar.

A graph transition system if a triple formed by an initial state graph, a set of

transition rules and a set of final states. See [4].

A graph grammar produces a transition system if the transitions correspond to all

possible rule applications to all reachable states.

1.3. Java source structure

This section is dedicated to present an overview of the main structural nodes that

compose a Java program. The immediate interest is to condense all necessary

terms that will be mention now and on from a source code point of view. This

section can be omitted if you are familiar with the Java Language Specification.

See [2].

x

y

x

0

z
/

 11

1.3.1. Declarations

A source code is a set of declaration that establishes new named program

elements. In general, a source file contains one or more class declarations, with

their corresponding identifying information and its members: accessibility, name,

super class, implemented interfaces, fields, and method declarations. Which at

the same time have their own identifying and member information like

accessibility, name, exceptions thrown, parameters, local variables, etc. What is

more, each object mentioned in a source file must have its own declaration

indicating at least its name and type, in some cases its initial value. With the

exception of the literals, a literal is a source code representation of a value of

primitive type.

The most important concept present in a declaration is the modifier. The

modifiers are reserved keywords that restrict the use of a program element

(abstract; final; native; private; protected; public; static; strictfp;

synchronized; transient; volatile). The modifiers vary depending on the

program element declared. For instance a class declaration only can have

abstract, final and strictfp modifiers, a field declaration can be static, final,

transient and volatile, and a method declaration can be abstract, static, final,

native, strictfp, synchronized.

1.3.1.1. Abstract modifier

In a class declaration it means that the class cannot be instantiated and it may

contain unimplemented methods. All interfaces are abstract. In a method

declaration, means that it does not have a body and the enclosing class is

abstract.

1.3.1.2. Final modifier

The final modifier means that the program element cannot be changed; this

implies that a final class cannot be sub-classed, a final method cannot be

overridden and dynamically looked up, a final variable or final field cannot change

its value. The static final fields are compile-time constants.

1.3.1.3. Native modifier

It can only appear in a method declaration and means that it is platform-

dependent. This method does not have body, only signature.

1.3.1.4. Package modifier (none/default)

 12

It means that the program element is accessible only inside its package. It can

appear in class, interface and method declarations.

1.3.1.5. Private modifier

It means that the program element is a class member accessible only in the class

which defines it.

1.3.1.6. Protected modifier

It means that the program element is a class member accessible only within the

subclasses and package of the class which defines it.

1.3.1.7. Public modifier

It means that the program element is accessible anywhere. It can appear in

class, interface and member declarations (in these cases the member is

accessible anywhere its class is).

1.3.1.8. Strictfp modifier

It means that all floating-point computation done is strictly conforms to the IEEE

754 standard. All values including intermediate results must be expressed as

IEEE float or double values. It can appear in class and method declarations. A

class strictfp implicitly has all its methods strictfp.

1.3.1.9. Static modifier

It means that a class has members that can be accessed without a class

instance, because they do not depend of the instance’s state. It can appear on a

class, method, field or initializer declarations. A static method is also called a

class method, and can be invoked through the class name.

A static or class field (exists only one instance of this field for all class instances),

can be invoked through the class name, regardless of class instances created. A

static modifier inside an initializer indicates that it is executed when the class is

loaded, rather than when an instance is created.

1.3.1.10. Synchronized modifier

It can only appear in method declarations. For a static method, a lock for the

class is acquired before executing the method. For a non-static method, a lock for

the specific object instance is acquired.

 13

1.3.1.11. Transient modifier

It can only appear in field declarations. It means that the field does not belong to

the persistent state of the object and they will not be serialized with the object.

1.3.1.12. Volatile modifier

It can only appear in field declarations. It means that the field is accessible by

unsynchronized threads, i.e. each thread can have a working copy of the field.

1.3.2. Types1

Java is a strongly typed language what implies that every variable has a known

type at compile time. The type determines the structure and operations of each

object.

Java types are classified into two kinds: the primitive and the reference types.

The primitive types are predefined and have reserved keywords. They are

subdivided in numeric and boolean types. The numeric types are also subdivided

in integral types and floating point types. The integral types are: byte, short, int,

long and char. The floating point types are: double and float.

The reference types are the classes and interfaces. They are defined in

compilation units. They can have a modifier, a super type, variables and

methods. The referenced types can be instantiated or not. The types that cannot

be instantiated are the interfaces and the abstract classes.

The interfaces can be public, protected or private, and its super type can only be

an interface. Its methods cannot have an implementation and its variables must

be static final. The abstract classes can have abstract and non abstract methods.

The types that can be instantiated are divided into final and non final types. The

final types cannot have subclasses and all its methods must be final. The non

final types only can contain non abstract methods.

Another kind of type is the array type. The array types do not have super types.

They define a set of fixed length that contains components of the same type

(called component type). Array types can have as component type other array

types.

All non primitive types can have only one super type. This inheritance relation

creates a hierarchical type structure whose root is the class Java.lang.Object that

does not have super type.

1 All types that are not interfaces are called classes.

 14

Each class has one or more constructor methods and can have zero or more

instance variables called fields.

In order to recognize uniquely a type the fully qualified name that is composed by

the package name and the type name is used. A type package is defined by the

package declared in its container compilation unit2. The package is a hierarchical

organization of the type names, a package can be nested in other packages. The

package name is defined by the containing package name followed by a dot

followed by the package name.

1.3.3. Fields

The fields are variables that belong to a class (i.e. the field is static then there is

just one object for all class instances) or to an instance (i.e. the field is not static

then it exists one object for each class instances). As all variables they have a

name and type.

All fields inside a class must have a different name and can have a different

accessibility.

1.3.4. Methods

The methods are composed by their modifier, return type, signature, throw clause

and their body. A type cannot have two methods with the same signature. There

are two kinds of methods, those that do not have a return type called constructors

and the regular methods that have return type. The constructors’ names are the

same of their containing class. Each class has at least one constructor method, if

it is not defined explicitly the language will create a default one without

parameters and whose accessibility will be the same as its container class.

The method signature is composed by the method name and its parameters.

1.3.4.1. Parameters

The parameters are method variables (i.e. they have a type and a name). A

method can have zero or more parameters but they cannot have the same name.

Method parameters name argument values passed to a method. For every

parameter declared in a method declaration, a new parameter variable is created

each time that method is invoked. The new variable is initialized with the

corresponding argument value from the method invocation. The method

2 A compilation unit is an abstract program element (equivalent to a Java file) in which can be
defined several types.

 15

parameter effectively ceases to exist when the execution of the body of the

method is complete.

1.3.4.2. Throws clause

The throws clause indicates the possible exceptions raised by the method

execution. All types thrown must be subclasses of java.lang.Throwable.

1.3.4.3. Method body

The method body is composed by local variable declarations, expressions,

literals, operators, references and statements.

1.3.4.3.1. Variables

The local variables can only be accessible inside the method scope.

Local variables are declared by local variable declaration statements. Whenever

the flow of control enters a block or for statement, a new variable is created for

each local variable declared in a local variable declaration statement immediately

contained within that block or for statement. A local variable declaration

statement may contain an expression which initializes the variable. The local

variable with an initializing expression is not initialized, however, until the local

variable declaration statement that declares it is executed. (The rules of definite

assignment prevent the value of a local variable from being used before it has

been initialized or otherwise assigned a value.) The local variable effectively

ceases to exist when the execution of the block or for statement is complete.

1.3.4.3.2. Expressions

Every expression written in the Java programming language has a type that can

be deduced from the structure of the expression and the types of the literals,

variables, and methods mentioned in the expression. The language performs an

implicit conversion from the type of the expression to a type acceptable for its

surrounding context.

Then the five conversion contexts are:

− Assignment conversion converts the type of an expression to the type of a

specified variable. The conversions permitted for assignment are limited in

such a way that assignment conversion never causes an exception.

− Method invocation conversion is applied to each argument in a method or

constructor invocation and, except in one case, performs the same

 16

conversions that assignment conversion does. Method invocation conversion

never causes an exception.

− Casting conversion converts the type of an expression to a type explicitly

specified by a cast operator. It is more inclusive than assignment or method

invocation conversion, allowing any specific conversion other than a string

conversion, but certain casts to a reference type may cause an exception at

run time.

− String conversion allows any type to be converted to type String.

− Numeric promotion brings the operands of a numeric operator to a common

type so that an operation can be performed.

1.3.4.3.3. Literals

A literal is the source code representation of a value of a primitive type, the String

type, or the null type.

An integer literal may be expressed in decimal (base 10), hexadecimal (base 16),

or octal (base 8).

A floating-point literal has the following parts: a whole-number part, a decimal

point (.), a fractional part, an exponent, and a type suffix.

At least one digit, in either the whole number or the fraction part, and a decimal

point, an exponent, or a float type suffix are required. All other parts are optional.

The boolean type has two values, represented by the literals true and false,

formed from ASCII letters.

A character literal is expressed as a character or an escape sequence, enclosed

in ASCII single quotes (‘).

A string literal consists of zero or more characters enclosed in double quotes.

Each character may be represented by an escape sequence.

The null type has one value, the null reference, represented by the literal null,

which is formed from ASCII characters.

1.3.4.3.4. Operators

The Java operators are :

 17

− The comparison operators <, <=, >, and >=.

− The equality operators == and !=

− The logical-complement operator !

− The logical operators &, ^, and |

− The conditional-and and conditional-or operators && and ||

− The conditional operator ? :

− The numerical operators:

o The unary plus and minus operators + and -

o The multiplicative operators *, /, and %

o The additive operators + and -

o The increment operator ++, both prefix and postfix

o The decrement operator --, both prefix and postfix

o The integer bitwise operators &, |, and ^

− The signed and unsigned shift operators <<, >>, and >>>

− The bitwise complement operator ~

− The cast operator, which can convert from an integral value to a value of any

specified numeric type

− The operators on references to objects:

o Field access, using either a qualified name or a field access

expression

o Method invocation

o The cast operator

o The instanceof operator

− The string concatenation operator +, which, when given a String operand

and:

o an integral operand, will convert the integral operand to a String

representing its value in decimal form, and then produce a newly

created String that is the concatenation of the two strings

o a floating-point operand, will convert the floating-point operand to

a String representing its value in decimal form (without information

loss), and then produce a newly created String by concatenating

the two strings

o a boolean operand, will convert the boolean operand to a String

(either "true" or "false"), and then produce a newly created String

that is the concatenation of the two strings

 18

o a reference, will convert the reference to a String by invoking the

toString method of the referenced object (using "null" if either the

reference or the result of toString is a null reference), and then will

produce a newly created String that is the concatenation of the two

strings

1.3.4.3.5. References

The references are elements representing implicit or explicit (named) references

to other program elements.

1.3.4.3.6. Statements

The statements are control flow structures. The Java statements are: break,

continue, do, empty statement, expression statement, for, if, labeled statement,

return, switch, synchronized, throw, try, while.

The break statement transfers control out of an enclosing statement.

A continue statement may occur only in a while, do, or for statement; statements

of these three kinds are called iteration statements. Control passes to the loop-

continuation point of an iteration statement.

The do statement executes a Statement and an Expression repeatedly until the

value of the Expression is false.

An empty statement does nothing.

An expression statement (Assignment; PreIncrementExpression;

PreDecrementExpression; PostIncrementExpression; PostDecrementExpression;

MethodInvocation; ClassInstanceCreationExpression;) is executed by evaluating

the expression; if the expression has a value, the value is discarded. Execution of

the expression statement completes normally if and only if evaluation of the

expression completes normally.

The for statement executes some initialization code, then executes an

Expression, a Statement, and some update code repeatedly until the value of the

Expression is false.

 19

The if statement allows conditional execution of a statement or a conditional

choice of two statements, executing one or the other but not both.

A labeled statement is executed by executing the immediately contained

Statement. If the statement is labeled by an Identifier and the contained

Statement completes abruptly because of a break with the same Identifier, then

the labeled statement completes normally. In all other cases of abrupt completion

of the Statement, the labeled statement completes abruptly for the same reason.

A return statement returns control to the invoker of a method or constructor

The switch statement transfers control to one of several statements depending on

the value of an expression.

A synchronized statement acquires a mutual-exclusion lock on behalf of the

executing thread, executes a block, then releases the lock. While the executing

thread owns the lock, no other thread may acquire the lock.

The throw statement causes an exception to be thrown. The result is an

immediate transfer of control that may exit multiple statements and multiple

constructor, instance initializer, static initializer and field initializer evaluations,

and method invocations until a try statement is found that catches the thrown

value. If no such try statement is found, then execution of the thread that

executed the throw is terminated after invocation of the uncaughtException

method for the thread group to which the thread belongs.

A try statement executes a block. If a value is thrown and the try statement has

one or more catch clauses that can catch it, then control will be transferred to the

first such catch clause. If the try statement has a finally clause, then another

block of code is executed, no matter whether the try block completes normally or

abruptly, and no matter whether a catch clause is first given control.

The while statement executes an Expression and a Statement repeatedly until

the value of the Expression is false.

1.4. Context

This section gives some detail about the tools used in order to build Translator.

 20

Translator is an extension of GROOVE. GROOVE is a software project whose

purpose is to verify the semantic of object oriented programs.

The parsing and Abstract Syntax Tree generation was delegated to another tool

called Recoder.

1.4.1. GROOVE

GROOVE (GRaphs for Object Oriented VErification) is a tool for representing the

semantics of object-oriented programs using graphs in order to perform

automatic verification and properties validation. GROOVE is developed with Java

jdk 1.4, in its actual version 0.0.3 it includes an editor for creating production

rules, a viewer for visualizing the production rules and a simulator for applying the

graph transformations of a set of production rules. The system was developed by

Arend Rensink at the software engineering group at University of Twente. See

[4].

GROOVE takes advantage of the visual representation of graphs and adds some

semantics to it. In particular, it provides a different visualization for each kind of

the roles that an element can be playing in a production rule. The reader or

required elements are depicted with solid thin black arrows and boxes. The

eraser elements are represented with dashed thin blue lines and boxes. The

embargo elements are showed with dashed fat red arrows. And the creator

elements are depicted by solid fat green arrows and nodes.

This representation is enabled just once the production rule is saved. Meanwhile,

in the editor there are some special prefixes that specify the role of each element.

The reader or required elements prefix is “use:”, the eraser elements prefix is

“del:”, the embargo elements prefix is “not:” and the creator elements prefix is

“new:”. If the element does not have any prefix the editor will assume it as a

reader node as default.

Figrure 1.4.1.1. Single push out enriched with a Negative Application Condition in

GROOVE’s input format. Transformation rule x = y / z

del:x

y

new:x

not:0

z
/

 21

GROOVE’s output format is XML, the XML text files categorize the rule elements

in terms of their role prefix.

1.4.2. Recoder

Recoder is a framework for Java meta programming, it provides elements to

analyze and transform Java code. The core system was developed by Andreas

Ludwig as part of his PhD thesis, with help and support from Uwe Aßmann and

co-author Rainer Neumann at the software engineering and compiler construction

group of Prof. Dr. Goos at the University of Karlsruhe. See [5].

The developed tool benefits from the Recoder parsing facilities. Recoder

assumes that the input is a syntactically correct Java source file (i.e. it can be

compiled without errors) and creates a model unambiguously based on a partial

semantic analysis. The model is retrieved in an Abstract Syntax Tree.

These are some important characteristics that make Recoder a special parser:

Semantic entities (Type, Variable) are distinguished from their definitions

(TypeDeclaration, VariableDeclaration) and uses (TypeReference,

VariableReference).

The language specification distinguishes between type (of variables and

expressions only) and class (of objects during execution). Recoder is not so

strict.

Addition of parent references to any syntactical elements. It allows easy access

to arbitrary program elements as argument for a program transformation; avoids

the need to traverse the trees to find the context of a program element. This

direct access to syntax elements requires quick access to parents, which should

be type safe.

Note: recoder.Java.expression and recoder.Java.statement contain pure

expressions and statements, respectively, but they do not contain all of them;

many references are valid expressions, some of them are hybrids

(ExpressionStatements).

Note: Not all references are expressions, e.g. PackageReference,

TypeReference.

 22

2. Principles of translation

This chapter describes the model created to represent the source code in graph

terms.

In first place, it illustrates the notation used to construct these graphs. In second

place, it explains the transformation concepts.

The transformation process is accomplished in a two level transformation: a

preprocessing transformation that maps the class defined in the Java source

code into the proposed Java graph model, and the generation of the

transformation rules, obtained by applying the Java source code instructions to

an object graph (i.e. an instance of the class graph produced in the first

transformation stage).

This chapter is divided into 4 sections. The first section explains the graph

elements designed to map Java source code into graphs, i.e. the model that

maps Java model into flat graphs.

Sections 2.2 and 2.3 explain how the model explained in section 2.1 is used to

perform the translation from the Java source to a graph. Simply put, the second

section shows a class graph example, while the third section shows an object

graph example.

Section 2.4 describe in detail the mapping of Java instructions to production rules

and how they are instantiated to obtain the production rules that represent certain

Java program.

2.1. Graph notation

The graph representation of the Java entities is straightforward from the source

code. The software units (classes, objects, methods, packages, statements, etc)

are represented as nodes identified by its name and its type (or the entity that

represent the name or type). While the software relations (inheritance,

aggregation, ownership relations, etc.) are represented as edges.

2.1.1. Nodes definition

In this section, all node types defined to model Java code static information are

listed .

The model created for characterizing typed languages is achieved by

representing in the same level objects and classes.

 23

A class represents the common properties of all its instances. In this model a

class is represented by a node with a self reference edge labeled with the full

qualified name of the class. As shown in the figure 2.1.1.1

Figure 2.1.1.1. Class node example

The method node represents each one of the methods defined in a particular

class. In order to distinguish among them they are labeled not just by their name

but also by the type of their parameters (in the order they are defined). In a Java

way like, that is to say, the types are replaced by its Java VM Type Signatures3.

The figure 2.1.1.2 shows a method node for the method of the form:

 String toString(){….}

Figure 2.1.1.2. Method node example

The object node corresponds to an instance of a class; it encloses its identifying

and runtime information. As they are not self labeled with a particular name they

can be referenced with labeled edges; this means that the objects are managed

in a pointer like way. The figure 2.1.1.3 depicts an object node called size.

Figure 2.1.1.3. Object node example

3 The general form of a Java method signature is: "(argument-types)return-type".
The encoding for the Java VM Type Signatures is: Z for boolean, B for byte, C for char, S for short,
I for int, J for long, F for float,D for double, L for fully-qualified-class and [for an array type
For instance, the signature (I)V, for example, denotes a Java method that takes one argument of
type int and has a return type void.

size

toString():Ljava.lang.String

java.lang.String

 24

The method instance nodes represent each one of the calls of a specific method.

Like the object nodes, the method instance nodes do not have any identifier.

They are necessary because each object can call the methods defined by its

class but each method call should have specific state depending on the state of

the object that calls it, the value of the parameters passed, and the exact

execution point in which they are.

This exact point in the execution of each method is modeled with the instruction

order node, an example of it can be seen in figure 2.1.1.4. The goal is to maintain

the sequence of instructions determined by the source code.

Figure 2.1.1.4. Instruction order node example

The Java Virtual Machine (see figure 2.1.1.5) node was created in order to

simulate the class loading and garbage collection. When a class is loaded is

created a edge from the JVM node to the class node, in this way, each class is

loaded just once and is easy to recreate the following reference algorithm do

perform garbage collection (the nodes not referenced are deleted, the garbage

collection starts to mark the referenced objects starting with the JVM references)

Figure 2.1.1.5. Instruction order node example

The nodes definition table (2.1.1.1) recapitulates the type of nodes defined to

represent Java source code. The first column enumerates the represented

software units. The second says if the node has an identifier (self reference with

a particular label). The identifier can have two values: none (i.e. it does not have

self referenced label) or the information that represents the label of this kind of

nodes. The third column has an abbreviation for each kind of nodes in order to

obtain a canonical textual representation of the defined graphs.

JVM

<PC>

 25

Type Identifier Abbreviation4

Class Fully qualified name of the class C, I (interface)

Method Java signature of the method M

Object None O

Method instance None MI

Instruction order Index of the instruction IO

Operation5 Operation identifier OP

Statement6 Statement name S

Java Virtual Machine JVM JVM

Table 2.1.1.1. Nodes definition

2.1.2. Edges definition

In this section, all edge types defined to model Java code information are listed.

These edges complete the model by describing relations between object oriented

entities and adding dynamic / execution information.

The super edge connects a class node with its corresponding super class, and

also an object node with its corresponding object node (i.e. an instance of its

super class that will represent its super node, thus, there is a clear separation

between the object level and the meta object level in the graph representation).

This differentiation is exposed in the figures 2.1.1.2 and 2.1.1.4. Note that this

distinction is very important in order to be capable of distinguishing among

objects. For example, the fields are edges from the object container to the object

contained labeled with the name of the field. As the fields belong to the object

and not to the class each object must have a chain of super objects to offer a

clear mapping from the meta model to the object space. As shows the figure

2.1.1.2.

4 This abbreviation is just a textual simplified representation of each one of the types of nodes, in
order to explain in a compact way its possible relationships in the edges’ table.
5 The operation nodes represent the primitive transformations like addition, times, division, modulo,
shift, logical and, etc.
6 A statement node represents a control instruction of the language like if, for, while, etc.
The operation node and the statement node are equivalent representations of the method instance
node. They encapsulate primary transformations offered by the language in a defined semantic that
allow its simulation.

 26

Figure 2.1.1.2. Super class edge example

The instanceOf edge allows the connection between the meta-model to the

model by connecting the object to its classes, as shown in the figure 2.1.1.3.

They are also used to describe the relation between a method itself and its

executions, which is a fundamental step to simulate simple concepts like method

calls or recursion.

Figure 2.1.1.3. instanceOf edge example

Figure 2.1.1.4. Super object edge example

The method declared edge is a link between a method and its defining class. This

establishes the interface of each class. For example, the following method would

be described by the figure 2.1.1.5.

public class Object(){

 …..

String toString(){….}

}

Java.lang.String
<instanceOf>

Java.lang.Object

Java.lang.String

<super> <super>
<instanceOf>

<instanceOf>

Java.lang.Object

Java.lang.String

<super>

 27

Figure 2.1.1.5. Method declared edge example

The object name edge permits naming objects. It is like a pointer that only allows

method or assignment transformations. See figure 2.1.1.6.

Figure 2.1.1.6. Object name edge example

The method active edge indicates the method or statement that is being executed

in a certain moment. It is created in the method / statement call (by the caller)

and destructed in the method return / end statement (by the called). There is an

example of this edge in the figure 2.1.1.7.

Figure 2.1.1.7. Active / scope edge example

The method caller edge gives to the called method instance the identity of its

caller in order to provide its response (a return or a throw edge to the

corresponding result of the method execution). This is illustrated in figure 2.1.1.8

.If a return/throw statement appears in the source code method body, a new

<return> or <throw> edge from the active method instance pointing to the

returned object (an object instance of a subclass of Java.lang.Throwable or an

object instance of any other class) is created.

JVM

<active>

toString():LJava.lang.String

Java.lang.Object

<in>

<instanceOf>

size

toString():LJava.lang.String

Java.lang.Object

<in>

 28

Figure 2.1.1.8. Caller edge example

When the last instruction of the method is executed all method instance relations

are erased. If there is a returned object (an object instance connected from the

method instance called by a <return> or <throw> edge), the method instance

node will be replaced by the returned object. If there is not any returned object a

void instance will be created to replace the method instance called.

Figure 2.1.1.9. Caller edge example

Furthermore, a new temporal variable edge (<0>) will be created from the method

instance caller to the returned object and a new active edge (<active>) to the

method instance caller. See figure 2.1.1.10.

<return>

toString():LJava.lang.String

Java.lang.Object

<in>
<instanceOf>

Java.lang.String
<instanceOf>

<caller>

toString():LJava.lang.String

Java.lang.Object

<in>
<instanceOf>

toString():LJava.lang.String
<instanceOf>

myClass

<in>

 29

Figure 2.1.1.10. Temporal variable edge example

The loaded class edge serves as connector between the JVM node and loaded

class nodes. This edge representation is displayed in figure 2.1.1.11.In this way,

if the JVM has not loaded any referenced class, its load production rule will be

the only one that matches at the moment that this class is needed. Besides, it

also can contribute for marking all referenced objects starting from the JVM node.

The non marked objects are not referenced anymore and should be deleted.

Thus the class edge permits to simulate garbage collection.

Figure 2.1.1.11. Loaded class edge example

The actual instruction (PC) edge is a link between a method instance and its

corresponding index of instruction, see figure 2.1.1.12. Each method instance

has its own order of instruction to simulate its state.

Figure 2.1.1.12. Index of instruction edge example

<PC>

toString():LJava.lang.String

myClass

<in>
<instanceOf>

6

JVM
<class>

Java.lang.Object

<0>

toString():LJava.lang.String

myClass

<in>
<instanceOf>

Java.lang.String
<instanceOf>

 30

The temporal variable edges are objects defined without any identifier. This edge

links them to their parent scope, in other words to the method instance in which

they were created.

The operation result edge is an object name edge (named <0>) that has the

result of executing an operation or statement. This means that they can point to

the operation or statement node or to its result.

Figure 2.1.1.13. Operands edge example

The parameter edges are object name edges that correspond to each one of the

parameters of a method instance, an operation or a control statement. They are

named with the order they have in the caller definition (with positive numbers

between <> starting with one).

The edges definition table condenses the types of edges that symbolize relations

of object model entities in a Java environment. The first column enumerates the

relationships among the represented software units (method calls, inheritance,

membership, etc). The second shows its corresponding labels. And the third

column has an abbreviation for each type of edge to generate a canonical textual

representation of the defined graphs.

<0>

toString():LJava.lang.String

myClass

<in>
<instanceOf>

*

<2>

2

<1>

6

 31

Type Identifier Description

Super class

Super instance

–<super> O1 –<super> O2

C1 –<super> C2

Instance of –<instanceOf> O –<instanceOf> C
MI – <instanceOf> M

Method declared –<in> M –<in> C

Object name –name O1 –name O2

MI –name O2

Super interface –<implements> C1 –<implements> I1

Active / scope –<active> JVM –<active> MI1

JVM –<active> S1

Method caller –<caller> MI2 –<caller> MI1

Normal return –<return> MI2 –<return> MI1

Exception return –<throw> MI2 –<throw> MI1

Loaded class –<class> JVM –<class> C

Actual instruction –<PC> MI –<PC> IO

Index of instruction – positive int

–positive int $ positive

int

IO –positive int IO
IO –positive int $ positive

int IO

Operation result /

temporal variable

–<0> MI –<0> OP
MI –<0> S
MI –<0> O

Non named

variables

(Literals)

–value O –<value> O

Parameters –<1> (first parameter)

–<2> (second

parameter)

–<3> (third parameter)

 …

OP –< positive integer > O
MI –< positive integer > O
S –< positive integer > O
S1 –< positive integer > S2

Table 2.1.2.1. Edges definition

Note that the edges artificially created in order to add object oriented semantics

to the graph are enclosed by angled brackets (<>), the edges whose label is not

surrounded by brackets are explicit relations in the source code like the variable

 32

names. The only exception is the index of instruction which identifies uniquely

and adds ordering information.

By composition of these relations plus the set of nodes we can represent with a

flat multipurpose graph Object Oriented entities in a Java approach.

2.1.3. Object oriented concepts as graphs

Some elements are defined with other elements depending on its defining

relations like aggregation, inheritance, dependency, etc. For example, the

representation of an object is the representation of its class (package, methods

and super class –with its package, methods and super class-) and the

representation of the object itself (object node and its super object node –which

can also have super object node-).

A class is composed of the class node which is the main node, a super class

edge pointing to its parent class node, a set of super interface edges

(<implements>) pointing to its parent interface nodes, its method nodes

connected to the class node with a method declared edge (<in>).

An object is defined by the object node, linked to its class reference by an

instanceOf edge (<instanceOf>) and to its super reference by a super edge

(<super>). The class fields are represented as links from the object node to the

values labeled with the name of the field (fieldName).

A method is constituted by the method node linked to its class. A method cannot

be linked to two different classes, the declared in edge (<in>) means that this

method is defined in the pointed class. For example, if there is method

overloading, there will be a method node per declaring class.

A method instance is formed by its method instance node linked to its method by

an instance edge (<instanceOf>). When the method instance is called is created

its caller edge (<caller>) pointing to the method instance that called the method,

then, its this edge (<this>) is created pointing to the object that invokes the

method call. If there is not an invoker object it is assumed that the actual object

instance is the one that calls the method, in such case the invoker object is the

same pointed by the this edge in the caller method instance.

 33

The local variables (those ones created inside a method execution) are named

using a name edge (name). The parameters edges (<number>) point to the

objects sent to the method, in which the number indicates the order in which they

are expected. Remark: in this version, the Translator only represents sending

parameters by reference. Once these information requirements are fulfilled, the

method instance is ready to start its execution.

Finally, so is its actual instruction edge (<PC>) will point to an instruction

operation node labeled with a index of instruction zero (0). Also the <active>

edge that is created, it indicates that the instructions of this method are those that

will be applied, this means that the active edge actualizes the scope.

When the method call ends, the caller edge is used with return purposes, this

means, a return edge (<throw> or <return>) is created from the caller pointed

node to the returned object node.

The information obtained as a result of a production rule application is execution

time information; it can be simulated by applying a production rule that clean up

the environment created by the previous one but the applications of these rules

are transparent for the user. For more detail see end production rules examples

in section 2.4.

2.2. Class graphs

A class graph is the name given to a graph that represents any possible

reference to a given class; this means, its fields, its methods and its super class.

This is achieved by modeling in a generic way every relation of a class. Any class

is modeled with 3 basic types of relations: the methods that define (<in>), the

fields that comprise it (name) and all its super types7 (<super>).

The class graph comprises the object and class level, each class node has its

corresponding object instance and each method node has its corresponding

method instance.

For example, the class graph for C2 would be 8:

package p1;

public class C2 extends C1{

7 Chain of classes that extend.
8 Note that all the source code in the example has public modifier, this is done because the model
currently does not support modifiers.

 34

 public C3 myField;

 public C2(){}

 public void m1(){}

}

package p1;

public class C1{

public C1(){}

 public void m1(){}

}

package p1;

public class C3{

public C3(){}

}

Figure 2.2.1. Class graph for class C2

The class C2 is composed of the class node (p1.C2), a super class edge

pointing to its parent class node (p1.C1), an empty set of super interface edges

pointing to its parent interface nodes and its method nodes connected to the

class node with a method declared edge -C2(), m1()-.

p1.C1

p1.C2

p1.C3

<init>()

<super> <super>

<instanceOf>

<instanceOf>

<instanceOf>

<in>

myField

<init>()
<in>

m1()

<in>

m1()

<in>

<init>()

<in>

 35

The object instance of C2 is defined by the object node, linked to its class

reference by an instanceOf edge (p1.C2) and to its super reference by a super

edge. The class fields are represented as links from the object node to the values

labeled with the name of the field (myfield which is a C3 instance).

2.3. Object graphs

The object graphs are instances of class graphs. Essentially they are class

graphs with values for the instances of the primitive classes; they are objects in a

given execution time (with a specific IO value).

For example, the class graph for C2 would be:

package p1;

public class Main{

static public void main(String[] args){

C2 c = new C2();

c.m1();

}

}

package p1;

public class C2 extends C1{

 public C3 myField;

public C2(){}

 public void m1(){}

}

package p1;

public class C1{

public C1(){}

 public void m1(){}

}

package p1;

public class C3{

public C3(){}

}

 36

Figure 2.3.1. Object graph in c.m1();

p1.C1

p1.C2

p1.C3

m1()

<super> <super>

<instanceOf>

<instanceOf>

<instanceOf>

<in>

myField

m1()

<in>

JVM

[]

p1.Main

Java.lang.String

main(LJava.lang.String[])

<in>

<class>

<class>

<class>

<1>

<1>

<class>

<instanceOf>

2

 <instanceOf>

c

<class>

null

<this>

0

<PC>

<instanceOf>

<this>

<active>

<caller>

<2>

<PC>

<PC>

<init>()

<in>

<init>()

<in>

<init>()

<in>

<init>() <in>

<init>()

<in>

 37

2.4. Pattern rules

The semantic established by a code transformation can be represented as a

production rule. This generic production rule can be ‘instantiated’ by filling its free

variables with the matching equivalents of any object.

This section explains the principal contribution of this thesis, which is the

translation into production rules of the semantic of Java statements.

The statements chosen were: for representing the branch the if statement; for

representing the loop the while statement; for representing method interactions

the method call and return and for representing object transformations:

assignment, operators, variable and field declarations. This set of statements

aim to be a minimal to reproduce basic Java functionality and to proof that it can

be represented without loss of information as graph transformations.

The following sections will explain in detail how the semantic of these statements

was model into rule patterns.

2.4.1. Literal creation

A literal is an object in particular a primitive class instance that does not have

name. For example, 5, 2.5 or “hello world!”.

They are differentiated by their value. Furthermore, their value is not only

necessary to distinguish between them but also the allow operators execution.

As they do not have explicit creation statements it is compulsory to create them

each time they are mentioned, otherwise the following instruction will not find its

entire required

elements.

Figure 2.4.1.1. Literal creation generic production rule

value <instanceOf>

<active>

x x+1

<PC>

 38

To create a literal is necessary to know its value, its type node, and the active

node. As the figure 2.4.1.2 depicts a new node is created in order to represent

the literal object, then it is added a self referenced edge labeled with the literal

value and an instanceOf edge from the new node to the type node. Finally the

index of instruction edge is replaced by another labeled with the next integer

value.

Figure 2.4.1.2. Literal creation production rule application example

The example in the figure 2.4.1.2 shows the result after applying the literal

creation rule. In this case, was created a 5, and the actual instruction was

incremented by one. The narrowed elements in the initial graph mark the

corresponding match to the rule shown in the figure 2.4.1.1.

2.4.2. Variable declaration

A variable is a named object only can be accessible inside a well defined scope.

The scope is given by the method or statement in which the variable was created.

To represent the scope, variables are created at the in the instruction order

indicated by the source code and destroyed with their scope. This representation

allows in a nested scope to access the parent scope variables, but a high scope

will not attempt to refer a internal scope variables because the inner scope will be

executed and deleted once it instructions are finished.

<active>

0

<PC>

int

<active>

1

<PC>

int 5 <instanceOf>

 39

Figure 2.4.2.1. Variable declaration generic production rule

The actual scope is represented by the active edge that explicitly points to the

method instance or statement whose instruction is executing in a given moment.

The variable name is the label of an edge that links the scope node to the new

object node.

As illustrates the figure 2.4.2.1, creating a new variable means create the node

that represent as object, create its name edge form the scope node to the

variable node and a instanceOf edge from the variable node to its type node.

Then replacing the index of instruction by another edge labeled with the next

integer value.

Figure 2.4.2.2. Variable declaration production rule application example

The example in the figure 2.4.2.2 shows the result after applying the variable

declaration rule. In this case, a new variable i of type int was created inside the

method compareTo, and the actual instruction was incremented by one. The

narrowed elements in the initial graph mark the corresponding match to the rule

shown in the figure 2.4.2.1.

JVM
<active>

1

<PC>

int int

<instanceOf>

i

compareTo():LJava.lang.Object

<instanceOf>
JVM

<active>

2

<PC>

compareTo():LJava.lang.Object

<instanceOf>

 <instanceOf>

<active>

x x+1

<PC>
name

 40

2.4.3. Operations

An operator performs an action on one or two operands. As result of performing

the specified action, an operator can be said to return a value (or evaluate to a

value) of a given type. The type depends on the operator and the type of the

operands. To evaluate to a value means that after the action is performed, the

operator and its operands are effectively replaced in the expression by the value

that is returned.

The operations are operator’s actions, they are modeled as a node that

represents the operator, and in order to be able to apply them unambiguously

they are self referenced with the operator and a reference to its operands: the

first one labeled with a <1> and the second one labeled with a <2>. With the

purpose of leaving the value obtained as the operation result, the scope node

(the method or statement active) is connected to the operator node with an edge

labeled <0>.

Figure 2.4.3.1. Operations generic production rule

The figure 2.4.3.1. presents a general operation production rule. It is possible to

appreciate the prerequisites to create them: the scope node (method or

statement active), the index of instruction edge (in this case represented with an

x) and the operand nodes. With them the production rule construction consists in

creating the operator node and self reference (labeled with the operand), the

operand edges (labeled <1> and <2> respectively) and the result edge (labeled

<0>). Finally, the value in the label of the instruction edge is incremented by one

to indicate that the operation call was completed.

operator

<1>

<active>

x x+1

<PC><0>

<2>

 41

Figure 2.4.3.2. Operations production rule application example

The figure 2.4.3.2 demonstrates how is created a new operation call. The

narrowed elements in the initial graph mark the corresponding match to the rule

shown in the figure 2.4.3.1..

Figure 2.4.3.3. End operation production rule

Once the operation is executed the operands edges (labeled with <1> and <2>)

and the operator self reference will be deleted. The operator node will acquire a

new self reference labeled with the literal value obtained from the operation

evaluation. The picture above presents the result of executing an operation.

This evaluation is done automatically by the simulator that is in charge of

evaluating the operation and creation of the literal obtained as result.

Nevertheless, it must be simulated somehow by the Translator in order to

maintain the object graph consistent for the creation of the next instruction, for

that reason, and given that it will not always have the values of the operands; it

limits to delete the operator and operands nodes and leave the object graph with

the representation of the operation result but without its value.

7

<active>

3

<PC>

9 7

+

<1>

<active>

4

<PC><0>

9

<2>

operator eval(<1>operator<2>)

<1>

<active>

<0>

<2>

 42

Figure 2.4.3.4. Operations production rule application example

The figure 2.4.3.4. exemplifies how an operation application would see in the

simulator. The narrowed elements in the initial graph mark the corresponding

match to the rule shown in the figure 2.4.3.3.

2.4.4. Assignment

The assignment is an operation that modifies the value of the left hand side

object with the value of the right hand side object. The right side of an

assignment expression is always known because it is evaluated before the

assignment takes place.

The assignment is represented as a change of pointed value in a given variable.

This is accomplished deleting the variable edge and creating a new one exactly

as the deleted one except for the target value that points to the correct side

object node. As any operation the assignment modifies the instruction edge

incrementing its value by one to express that the assignment is done. This graph

transformation is shown in the graphic below.

7

+

<1>

<active>

4

<PC><0>

9

<2>

16

<active>

4

<PC><0>

 43

Figure 2.4.4.1. Assignment generic production rule

The figure 2.4.4.2 shows an assignment execution, the narrowed elements in the

left hand side graph are the ones that match the production rule of the figure

2.4.1.1. As shown in the example, the initial node value of the variable is not

deleted in the production rule for two reasons: it does not occur when an

assignment takes place and it could have other objects that reference it. The non

referenced objects are supposed to be deleted with another production rule that

would simulate the execution of a garbage collector.

Figure 2.4.4.2. Assignment production rule application example

2.4.5. Methods

Methods define how an object responds to a message or request. Each method

has its own scope, for that reason each time a method is called a new method

instance is created with some requires variables in order to be able to be

executed.

<active>

4

<PC> var

5

<active>

<PC>

0

5

0

5

var

<active>

x x+1

<PC>

variableName

variableName

 44

Consider: variable = object.method(variable2);

The following process takes place:

1. Find object pointed to by object, let’s call it invoker.

2. Find code for that object’s class

3. Find code for method()

4. Find object pointed to by variable2, this is the parameter passed to the

method execution

5. Run code

6. Return value

7. Use returned value and assign it to variable

From the first to the fourth steps allow creating a new one for the new method

instance, we will call it method creation environment and saving the actual state

of the execution to be able to return to the previous scope once the method

execution has finished. To execute the fifth step is necessary to effectively call

the method. Finally, a method can have a return statement that indicates to the

caller object which object is the result of the request. In some cases the method

just changes the internal state of the invoker and does not need to return any

object, in those cases, it returns a void object. The return statement execution is

called here method return.

As these macro steps of the method call are carried out in the following order:

1. Method environment creation

2. Method call

a. Method execution

3. Method return

4. End method call

The method execution assumes that the method called has pre established its

parameters, and environment references and just executes as any instruction.

The end method call performs at once: the destruction of the method

environment, the return of the control to the caller scope and the storage of the

returned object in a non named value.

 45

2.4.5.1. Method environment creation

The method environment creation rule creates a new method instance given its

invoker object node, its method node, the active node (in order to save the

previous execution environment) and its parameters.

With those elements it creates the new instance method node, connected to the

previous scope node by a caller edge, to the invoker object by a this edge, to its

method node by an instanceOf edge and to its parameters by edges labeled with

the expected order of parameters. To indicate that the method environment

creation was finished, it also increments by one the instruction edge, as illustrates

the figure 2.4.5.1.1.

Figure 2.4.5.1.1. Method environment creation generic rule production

The generic production rule knows that the number of parameters is variable, i.e.

a method may not have any parameters. For this reason, the specific production

rule may or may not have these edges. The figure 2.4.5.1.2.a depicts a method

creation environment production rule of a method with one parameter.

Figure 2.4.5.1.2.a. Method environment creation production rule example

<instanceOf>

<caller>

<active>

<PC>

5 6<this> <1>

<instanceOf>

<active>

x x+1

<PC> <caller>

<1>….<this> <n>

 …

 46

The picture 2.4.5.1.2.b. shows a method environment creation execution, the

narrowed elements in the left hand side graph are the ones that match the

production rule of the figure. 2.4.5.1.2.a

Figure 2.4.5.1.2.b. Method environment creation production rule application

example

2.4.5.2. Method call

The method call effectively activates the new method instance by giving to it two

essential elements to, its own instruction index node with an initial instruction

zero and activates its scope with the active edge. In order to be able to construct

this production rule is necessary to have the active edge, the new method

instance and the instruction index node of the actual scope node. The generated

production rule is depicted in the following illustration.

The creation of a new instruction index node can also be called as PC nesting

because the new instruction index depends of the previous one by a PC edge.

getValue(I):LJava.lang.String

<instanceOf>

<active>

5

<PC> <caller>

<active>

<PC>

getValue(I):LJava.lang.String

<this>
<this>

6<this> 9 9 <1>

 47

Figure 2.4.5.2.1. Method call generic rule production

The figure 2.4.5.2.2 illustrates how a specific method call production rule match in

a graph and which is the resulting graph once the rule is applied. The elements in

the left hand side graph irrelevant for the rule application are not narrowed.

Figure 2.4.5.2.2. Method call production rule application example

2.4.5.3. Method return

Some methods contain a return expression. However, the value-returning

methods as the void methods will have a return edge that explicitly points to the

returned object or to a void object if it does not have return statement.

To create a method return production rule is necessary to have the returned

object node, the method instance node (is also the active scope node), and the

<active>

getValue(I):LJava.lang.String

<instanceOf>

<caller><PC>
<this>

6 <this>

<active>

getValue(I):LJava.lang.String

<instanceOf>

<caller>

<PC>
<this>

6
<this>

0

<PC>

<PC>
9<1> 9<1>

<active>

<PC>

0

<PC><PC>

<active>

 48

instruction edge. With these elements the production rule is generated by

creating a return edge from the method instance node to the returned object

node, and replacing the value of the instruction edge label for the next one. Note

that replacing a label of an edge or its source or target nodes implies delete the

existing edge and creating a new one with the desired elements because the

edge identity is given by its set of components.

Figure 2.4.5.3.1. Method return generic rule production

The figure 2.4.5.3.2 depicts the application of a specific method return production

rule. The narrowed elements are those that match with the rule, what means that

they are required for applying the rule.

Figure 2.4.5.3.2. Method return production rule application example

<instanceOf>

“9”
<return>

<active>

getValue(I):LJava.lang.String

<caller>

<PC>
<this>

6
<this>

1

<PC>

<PC>
9 <1>

<this>

<PC>

“9”

<PC>

<PC><caller>

x x + 1

<PC><PC>

<active>

<return>

<active

getValue(I):LJava.lang.String
<instanceOf>

<caller>

<PC>

6
<this>

0
9<1>

 49

Once the method execution has ended the method environment must be deleted

in order to return to the execution point in which the method was invoked. In other

words, the method instance and all its required references (caller, method,

invoker object, parameters and instruction index) are deleted. The node pointed

by the return edge is linked to the caller scope node as a non named / temporal

variable, and the active edge leave of pointing the method instance to point to its

caller scope. This can be seen in the figure 2.4.5.1.

Figure 2.4.5.1. End method environment creation and method call production rule

2.4.6. If

The representation of if statement is solved in 3 steps:

1. If condition

2. Then (or true branch of if

3. Else (false if branch)

As if condition is an operation result, it is evaluated before of any other part of the

if statement. Once the condition is evaluated the if node is created in order to

save the value of the condition evaluation and associate it to the if statement.

Note that any type of if arrangement can be defined with this if-then-else basic

representation. For example, consider:

if (bool){

 variable = 0;

}

else if (variable > 0){

 variable = variable * -1;

<1>

<active>

<caller>

….<n>

<PC>

x

<PC><PC>

<active>

<this> <instanceOf>

<return>

…

<0>

 50

}

else{

 variable = variable + 1;

}

the previous code would be represented in the following way:

 if (bool)

 then

 variable = 0;

 end then

 else

 if (variable > 0)

 then

 variable = variable * -1;

 end then

 else

 variable = variable + 1;

 end else

 end if

 end else

 end if

Once the if node is created is necessary to create the transformation rules in the

event that the condition had been evaluated as true or as false. Given that both

then clause and else clause may have a dependent statement block, they must

have a differentiating instruction edge that permits the execution of many

instructions. Besides, they require a unambiguously instruction value which

explicitly state in which branch of the if statement the instruction is situated.

These two instruction conditions are accomplished by adding some special

structure to this kind of statement nesting (statements inside the then-else

statements). The first token would represent the if or parent statement, the

second one would represent the value of the branch condition and the last one

the index of the next instruction. For example the instruction index 8$1$0 would

mean that the following instruction is part of the if statement whose instruction

index is 8, is an instruction of the then clause because it is followed by the 1 (in

this case it represents true condition) and is the first instruction (ends with a 0) of

 51

the statement block of the then part in the if statement. An instruction index

8$0$2 would mean it is the third instruction of the else branch of the if statement

whose instruction edge label is 8.

These special instruction indexes have two advantages: they allow a unique

instruction naming representation and they permit the exact execution point of

any nested instruction.

Figure 2.4.6.1. If generic production rule

The figure 2.4.6.1 depicts a new if node creation. To be able to generate it, it is

necessary to have the active node that defines the scope in which if statement

was created, the temporal variable that contains the value of the condition

evaluation and the instruction edge that permits establishing the value of the next

instruction. With these elements is created the new if node, its self reference that

identifies it (if), and two temporal variable edges (those labeled with a <0>) the

first one connects the active node to the new if node and the second one

connects the if node to the condition value. As a new temporal variable edge is

created from the active node to the if node, the previous one that pointed to the

condition evaluation is deleted. Finally, the instruction index is replaced by

another one with the previous label value incremented by one.

if

<0>

<active>

x x+1

<PC> <0>

<0>

 52

Figure 2.4.6.2. If true generic production rule

In the picture above there is a then clause creation, as it shows, there is a special

environment creation for this new block statement. It means that there is

instruction autonomy because there is a special set of instruction indexes for the

block statement (from x$1$0 to x1n), it also means that it is a new scope block

and for that reason the active edge now points to then node (a self referenced

true node which is temporal variable of an if node).

Figure 2.4.6.3. If false generic production rule

The figure 2.4.6.3 depicts an else clause creation, as the then clause there is a

special instruction set of indexes and the active scope is transferred to the else

node (a self referenced false node which is temporal variable of an if node).

In order to create these branch production rules (true/then and false/else) is

necessary to know which is the corresponding if node, the active edge, and the

instruction edge. As these rules are generated based on the source code the

graph does not have the condition execution value. Given that if condition is a

boolean value it is inserted artificially into the graph when the branch is created;

as it has its own set of instruction values, the condition value is not needed

false

if

<active> x x$0$0

<PC><0>

<active>

<0>

true

if

<active> x x$1$0

<PC><0>

<active>

<0>

 53

anymore inside the generation and application of the production rules of the

instruction block.

The rule deletes the previous active edge and creates a new one with the same

source node and label but with target the condition value node, the instruction

index is replaced by an structured one depending on the branch created.

Figure 2.4.6.4. If production rule application example

The figure 2.4.6.4 shows an if statement creation. The narrowed elements on the

left hand side graph are those that match for a specific if rule creation. The others

are not required to apply the rule.

Figure 2.4.6.5. If branch production rule application example

The previous graphic illustrates a then (true branch) creation. The not narrowed

elements on the left hand side graph are those irrelevant for the rule application.

true

JVM
<active>

8

<PC>

if

<0>

<0>
true

JVM <active>

8$1$0

<PC>

if

<0>

<0>

true

JVM
<active>

7

<PC><0>

true

JVM
<active>

8

<PC>

if

<0>

<0>

 54

Figure 2.4.6.6. End if branch and if production rules

Once the branch set of instructions are translated the branch execution

environment is destroyed, this means that the edge that connects the if node with

its condition node is deleted, as well as the condition node. The previous scope

(i.e. the node that called created the if node) is activated, deleting the active edge

that was pointing to the branch node and creating a new one pointing to the

previous scope node. The structure given to the instruction edge is deleted,

remaining the value previous to the branch creation.

Then is deleted the if production rule by removing the if node, its self reference

edge (if) and the temporal variable edge that linked the previous scope node to

the if node. Finally, the instruction edge labeled is incremented to manifest that

the end if was accomplished. This rule (as all ending production rules) is

executed in a transparent way to the user in order to maintain the graph

consistency along the transformation (i.e. to simulate the instructions execution)

but is not part of the output transformation rules.

2.4.7. While

The while representation is a slightly different from an if representation, the main

difference is the while semantics, also represent an execution split but with an

instruction set that must be executed as many times as the condition complies

whereas when the condition does not comply the while execution must be

omitted.

Then the while is represented in four steps:

1. While condition

2. While instruction block (true condition)

3. While jump to next instruction (false condition)

<0>

 <active>

xyz x+1

<PC>

<active>
if

<0>

 55

4. While jump to condition (final while instruction)

The while condition is done exactly as the if condition the only difference is that

the new node is a self referenced with a while label. This step is presented in the

figure 2.4.7.1:

Figure 2.4.7.1. While condition generic production rule

Once the while node is generated the complying and not complying actions are

generated.

When the while condition is set to true, the production rule creates the

environment for the while instruction block. This implies to transfer the active

node to the while condition node and structuring once its instruction edge. This is

done because there is no need to distinguish between the execution when the

condition is true and when it is false, because when it is false it just continues the

previous scope instruction order. The figure 2.4.7.2 illustrates how a while true

production rule is seen.

Figure 2.4.7.2. While true generic production rule

When the while condition is set to false, the rule created must destroy the while

statement and jump out the while scope. In other words, it has to delete the while

true

<active> x x$0

<PC>

<active>

while

<0>

<0>

while

<0>

<active>

x x+1

<PC> <0>

<0>

 56

and condition nodes and their relations, this includes self references (while and

false), temporal variable edge that connects the active scope node and the while

node and temporal variable edge that links the while node to its condition node.

The instruction edge labeled is replaced with another with the next value, in order

to jump to the instruction after the while statement. See figure 2.4.7.3.

Figure 2.4.7.3. While false generic production rule

The next graphic displays a while statement creation. The narrowed elements on

the left hand side graph are those that match for a specific if rule creation whose

instruction edge is 10. The others elements (like the JVM edge) are not required

to apply the rule.

Figure 2.4.7.4. While production rule application example

The figure 2.4.7.5. shows a while instruction block creation. The not narrowed

elements on the left hand side graph are those irrelevant for the rule application.

false

x x+1

<PC>

<active>

while

<0>

<0>

JVM
<active>

9

<PC><0>

JVM
<active>

10

<PC>

while

<0>

<0>

 57

Figure 2.4.7.5. While true production rule application example

Once the instruction block is translated the true while branch execution

environment is destroyed, this means that the edge that connects the while node

with its condition node and the one that connects the previous scope (i.e. the

node that called created the while node) to the while node are deleted, as well as

the condition and while nodes. The previous scope is re-activated, deleting the

active edge that was pointing to the condition node and creating a new one

pointing to the previous scope node.

Finally, the instruction edge structure is eliminated and its obtained value is

decremented to ensure that the last while block instruction will jump to reevaluate

the condition.

Figure 2.4.7.6. While jump to condition production rule

true

JVM
<active>

10

<PC>

while

<0>

<0>
true

<active>

10$0

<PC>

while

<0>

<0>

JVM

while

<0>

<active>

x$y x-1

<PC> <0>

<active>

 58

3. Tool Description
Translator is a software application developed using Java language. It is

designed on top of GROOVE (GRaphs for Object Oriented Verification). To learn

more about GROOVE, see [4].

This software is result of a graduate final project, carried out with TRESE,

Computer Science, University of Twente, The Netherlands. Translator was

developed by Angela Lozano (Software Designer and Programmer) and Arend

Rensink (Project advisor and facilitator of Twente University).

This section explains how to use or extend the Translator application.

3.1. User guide

Translator allows you to translate from Java source code to graph transformation

rules. By using Translator you can get a set of files that represent the semantics

of a Java source code. With these files you can simulate the code execution. In a

future version GROOVE will be able to verify the code consistency. Finally,

Translator is useful in creating simple and intuitive graphical representations of

Java programs.

This section is to provide guidance on using Translator tool.

3.1.1. System Requirements

As this software is developed using the Java language it requires its system

specification. This specification is stated in Java documentation, for more

information please visit: http://java.sun.com/j2se/1.4.1/install-windows.html if you

have Windows as operating system, http://java.sun.com/j2se/1.4.1/install-

linux.html if you have Linux as operating system and

http://java.sun.com/j2se/1.4.1/install-solaris.html for Solaris machines.

Using a more powerful system will certainly enhance the software performance.

3.1.2. Installation Instructions

This program is built using Java Language; this means that you need the Java

Development Kit, known as JDK/SDK/J2SDK. Before you run Translator, you

must install the JDK 1.4 software in your pc.

 59

The first step you have to do is get the software from:

 http://java.sun.com/j2se/1.4.1/download.html

Next steps are explained here:

 http://servlet.java.sun.com/help/installation/

Make sure JDK is properly installed and class paths are set. Details for Linux and

Solaris operating systems see:

http://java.sun.com/j2se/1.4.1/docs/tooldocs/solaris/classpath.html

For windows operating systems please go to:

http://java.sun.com/j2se/1.4.1/docs/tooldocs/windows/classpath.html

Now that you have configured your JDK, you can proceed with the GROOVE

installation, needed for viewing and simulating Translator files.

First, download the zip archive with the jar and batch files from:

http://www.cs.utwente.nl/~ GROOVE

Then, unzip and copy the jar (*.jar) and scripts/batch (.bat extensions are for

Windows

batch files, extension-less files are Unix shell scripts) files to a suitable local or

system-wide directory, e.g., (for Unix) $HOME/lib/GROOVE or (for Windows)

"C:\Program Files\GROOVE"

Finally, modify the scripts/batch files so that they contain the correct references to

the jar directory and an installed jdk bin directory (JDK 1.4). For instance,

set JDK="C:\Dev\j2sdk1.4.1"

set LIB_DIR="C:\Documents Program Files\GROOVE"

3.1.3. Instructions of use

The tool set comprises the following tools (.bat extensions are for Windows

batch files, extension-less files are Unix shell scripts):

− Editor[.bat]: for editing graphs and graph production rules.

− Viewer[.bat]: for viewing existing graph production systems, i.e., collections

of graph production rules.

− Simulator[.bat]: for simulating graph production systems, starting in a given

initial graph.

− Translator[.bat]: for mapping form Java source code to production rules

To run the software in Windows, double click on the Translator.bat file in the

batch files directory. In Unix execute the script Translator.

The application starts and the following window should appear.

 60

Figure 3.1.3.1. Starting the application

The first button in the tool bar which has the icon , it allows you to select the

Java source file to translate. Once you have pressed it, you can see a window as

shown below.

Figure 3.1.3.2. Loading Java file to translate

This window will show you only Java source files (*.Java) and directories. Once

you have found the desired file to translate you can press the button labeled

Open. If you click this option accidentally simply click the button labeled Cancel. It

will not change the Java file to translate.

 61

The second button in the tool bar which has the icon , it allows you to select

the directory in which all production rules will be saved in a package-class-

method hierarchical way. Once you have pressed it, you can see a window as

shown below.

Figure 3.1.3.3. Specifying the desired target directory

This window will show you only directories. Once you have found the desired

directory in which you want to save the production rules you can press the button

labeled Open. If you click this option accidentally simply click the button labeled

Cancel. It will not change the target directory.

The last button in the tool bar which has this icon: is that starts the

transformation. Once you have pressed it the bottom of the window (section

below the tool bar) will be filled with the hierarchical organization of the

production rules as shown below.

 62

Figure 3.1.3.4. Translator output

If you have already translated a Java file, and you want to translate other Java

files, you can repeat the process. In any time you can also change the desired

target directory.

3.1.4. Output directory structure

The packages, classes and methods are represented as directories. The

methods are subdirectories of the classes and the classes are subdirectories of

their package directory. The packages also can be nested into other packages. In

this way, the production rules’ file structure also represents the ownership of a

method to its class, the property of a class to its package and of a package to its

parent package.

For example, let’s consider:

package myPackage.mySubPackage;

import myPackage.MyInterface;

public MyClass

extends MySuperClass

implements MyInterface{

String variable1;

public void myMethod (String parameter1){

 63

variable1 = parameter1;

}

}

This Java source code would give as output the following directory structure:

Figure 3.1.4.1. Translator directory structure

3.1.5. Reporting bugs

If you find any kind of error (bugs), you can report to

groove_software@yahoo.com . In this way, you can help us to improvement the

on coming versions of this application.

Fill out the following questions completely. The information requested is essential

to solve the problem. Nevertheless, sending the error report is not a guarantee

that the problem will be resolved.

Type of bug

Select:

− Bug if some feature of the product does not perform to the

documentation.

− Request for enhancement if there is some feature not present in the

product which you feel should be included.

Product:

Select:

− Editor if you have troubles editing graphs and graph production rules.

− Viewer if you have troubles viewing existing graph production systems,

i.e., collections of graph production rules.

 default
 myPackage

 mySubPackage
 MyClass

 $clinit()
 $init()V
 $link()
 $load()
 myMethod(Ljava.lang.String)V

1.gpr
2.gpr

….

 64

− Simulator if you have troubles simulating graph production systems,

starting in a given initial graph.

− Translator if you have troubles mapping form Java source code to

production rules.

Synopsis:

Enter a one line summary of your report. Please be specific.

Description:

Enter a detailed description of the problem. Please describe only one

problem per report. For multiple problems, file a separate report for each

one.

Frequency:

Select, how often does the bug occur?

− Always

− Often

− Occasionally

− Rarely

Steps to Reproduce:

Describe the step-by-step process we can follow to reproduce this bug.

Expected Result:

Describe the results you were expecting when performing the above

steps.

Actual Result:

Please report the actual results that you saw.

Error Message(s):

Exact text of any error message(s) that appeared or any trace information

available.

Severity:

Select, what impact does this issue have on developing your software?

 65

− It is impossible to continue working without resolving this error.

− It is difficult to continue working without resolving this error.

− It is possible to continue working without resolving this error.

− No Impact.

User Info

Please give us some information about yourself. Be sure to include a valid

email address. We will use this data for communications with you to clarify

issues regarding the report you submitted and/or status of that report.

− Name:

− Email:

3.2. Programmer guide

Translator is a subsystem inside GROOVE tool. It translates Java source code to

production rules.

Translator creates a hierarchical directory structure that represents the Java

hierarchy: packages-classes-methods. The application save the production rule

files inside the method directories to which they belong. These production files

are XML files produced by GROOVE.

This section explains in general terms how the tool was built.

3.2.1. Requirements

Translator must create production rules that represent a Java program given its

source code. These rules must also be compatible with GROOVE output format.

Performance is not a requirement for the first version of Translator.

3.2.1.1. Project risks

There is a technical risk because the main programmer requires significant

learning of the theoretical foundation of the project as well as experience with

GROOVE and Recoder.

Since the there are two persons working in order to achieve a similar kind of

translation (Java source code and Java byte code to production rules) the

communication needs to be carefully coordinated, efficient and effective.

 66

3.2.2. Background

This section describes the software environment in which the Translator was

developed that is to say GROOVE and Recoder architectures.

3.2.2.1. GROOVE

GROOVE follows a design style that contributes to its quality because it assures

a strong cohesion and low coupling.

The high cohesion is achieved by having classes and methods with a specific

well defined task; in this way following the application logic is painless. In

GROOVE this characteristic is made evident by the class hierarchy; all concepts

mapped by a class are first abstracted as their common interface, then if there

are some common behavior features, they are encapsulated in an abstract class

and, finally, the different kinds of a concept are represented as various classes

that inherit the concept interface and concept abstract class. Additionally, each

concept has a default representation. For instance, see Label (interface),

AbstractLabel (abstract implementation) and DefaultLabel (default

representation), in GROOVE’s class diagram figure 3.2.2.1.

The light coupling is reached by reducing the interactions between a method and

other objects, in other words, by giving each method a simple task it is an

accesor or it is a modifier method. GROOVE provides low coupling by sharing

utility functions that do not modify the parameters received, also by creating a

different class for each kind of concept because it allows having custom-made

methods.

Moreover, its documentation is complete in the sense that it describes the

purpose of the code, its required and provided information and the required

conditions to execute it. In this way, GROOVE pretends to maximize its

reusability and extendibility

GROOVE is divided into 8 packages. Most of them are intended to model a

conceptual layer in the system. For example: groove.graph,

groove.trans, groove.lts and groove.Translator. The rest of

them (i.e. groove.gui, groove.io groove.jgraph and

groove.util) represent functionality layers provided as interface or

convenience utilities for the conceptual packages.

 67

The groove.graph package defines the basic concepts and their properties

like graph, nodes, edges, labels. It also defines the concept of morphism.

The groove.trans package defines the production rule terms like the

production rule and the negative application conditions, it does not define the

created, required and deleted element concepts because this is set for default

when a morphism is established. It also characterizes the derivation or rule

application notion.

The groove.lts package is dedicated to define the labeled transition systems

that are all possible derivations given a set of production rules.

The groove.gui package is responsible for the visualizing functionality;

groove.io package is in charge of GROOVE’s input and output functions;

groove.jgraph package was developed to extend the graphs visualization

and groove.util package is for general convenience functionality.

The Translator package contains the one developed in this project and is treated

in the section 3.2.3.

The figure 3.2.2.1 depicts GROOVE’s UML class diagram.

 68

graph
+HashGraph
+DefaultLabelSet
+Graph
+DefaultEdgeSet
+Node
+DefaultLabelList
+Edge
+DefaultMorphism
+InjectiveHashMorphism
+AbstractGraph
+AbstractNodeMap
+DefaultInjectiveMorphism
+DefaultLabel
+AbstractNodeEdgeMap
+AbstractEdgeSet
+LabelList
+LabelCollection
+EdgeIterator
+DefaultEdge
+LabelFormatException
+LabelSet
+NodeIterator
+DefaultNode
+Relabellable
+HashMorphism
+InjectiveMorphism
+DefaultMutableEdgeSet
+MutableEdgeSet
+GraphListener
+HashNodeEdgeMap
+AbstractLabel
+HashNodeMap
+NodeSet
+NodeMap
+Morphism
+EdgeSet
+DefaultNodeSet
+RelabelGraphListener
+AbstractLabelCollection
+NodeEdgeMap
+Label
+DefaultGraph

trans
+NAC
+Embargo
+DefaultRule
+DefaultRuleSystem
+Derivation
+DefaultDirectDerivation
+DefaultNAC
+GraphGrammar
+DirectDerivation
+DefaultDerivation
+DefaultGraphGrammar
+RuleSystem
+Rule
+DefaultRuleName
+StructuredRuleName
+RuleLabel
+RuleGraphFormatExceptio
+RuleGraph

lts
+State
+DefaultTransition
+DefaultLTS
+LTS
+DefaultState
+Transition

gui
 StateFrame
+Viewer
+MyMarqueeHandle
 LayoutAction
+Simulator
 RuleJTree
 LTSFrame
+SimulationListener
 RuleFrame
+Editor
 MyJGraph
 UndoHistory

io
+XmlException
+AbstractXml
+XmlRuntimeExceptio
+GrooveFileView
+Xml
+Validator
+Gxl
+ExtensionFilter

util
+Tokenizer
+ConversionExceptio
+Assert
+History
+Groove
+Converter

jgraph
+GraphJMode
+RuleJModel
+JModel

transformer
Model
gui
reference
rulePatterns
+Main
+Translator
+Edges
+JavaGraph
+CurrentState
+VisitorAdapte

Figure 3.2.2.1. GROOVE’s class diagram

3.2.2.2. Recoder

Recoder is built with a layer architecture, it contains the Intermediate

Representation Layer that maintains the intermediate representation of the

programs being manipulated, i.e., the model of the programs, on top of it the

Refactoring Command Layer that maintains a worklist of the refactoring

commands of the user, and provides a simple transaction concept for interactive

use of Recoder.

The intermediate representation layer is conformed by:

translator

 69

Reading/Writing Layer: This layer reads and writes programs, classes from and

to files. These are the layer components:

− Parser. The Recoder parser is generated from a JavaCC grammar.

− Java program factory. The parser calls factory functions of the Recoder

abstract syntax tree (class Recoder.Java.JavaProgramFactory).

Internally, the factory calls the constructors of the AST classes, but hides

the actual form of the AST so that the AST can be easily exchanged.

− Pretty printer The pretty printer prints an AST to file or a stream. It is

hand-written, and exists in several versions: Java pretty printer, html

writer, JXML writer.

Source File Repository Layer:

 The source file repository maintains all ASTs, including a mapping from file

names (source file names, byte code file names) to ASTs. It starts the parser and

the pretty printer if desired.

Definition objects handling

This layer handles definitions of the program (the abstract model). Definitions are

types (classes and interfaces), methods, attributes, packages, and other

semantic objects of Java programs. All these objects have been checked by the

Recoder semantic analysis, i.e., are valid in terms of Java semantics. The main

facade classes of this layer are

− Recoder.service.NameInfo: maintains the meaning of names, and can

load classes from file, given their name

− Recoder.service.SourceInfo: maintains the relation between AST

elements and semantic (abstract) objects, i.e., between source and

abstract model.

Cross-reference info handling.

The cross reference info (class CrossReferenceService) links all definitions

(variables, parameters, fields) to their references. For refactoring, this information

is indispensable, to rename methods, fields, and classes.

The core of Recoder is its program model. It is structured in two packages: the

Recoder.Java.* that contains the abstract syntax trees (AST) classes i.e. it

 70

contains the source model and the Recoder.abstraction.* has the program

definitions or abstract model.

3.2.3. Translator architecture

This section explains the architecture of Translator. Each section describes the

purpose of groove.Translator package and how it is reached.

The groove.Translator package encapsulates the code transformation into

production rules. This package is in charge of direct the transformation process.

This process starts when a frontage class

(groove.Translator.gui.Application1) calls the main method in the

Main class, this method creates a Recoder.ServiceConfiguration object and set

its properties, then it calls a method that given a Java source file, it returns the

AST root node.

A new Translator object is created with the AST root node, the output directory

and the service configuration. It has a field of type CurrentState inherited from its

super class. When the Translator object is created calls a method in the Current

State that performs a preprocessing transformation that gives as result a class

graph of the Java source code.

Then, the main method starts the AST tree visitation.

The AST navigation and visiting is performed by the Translator and its super

class. While the tree is traversed the production rules are generated. Depending

on the kind of node to which the visitor arrives; if the node is one of the modeled

instructions, the production rule is created and it is applied to an object graph

(which represents an instance of the Java source code that is been processed).

This object graph is accessed through the current state field. If the node is not

modeled the application will anyway visit its children and printing in console that it

visited those nodes.

Each time that a production rule is generated it is saved to inside its

corresponding method directory, and its name is the instruction edge label.

 71

SourceVisitor
VisitorAdapte

gui
+Frame1
+JavaFileFilter
+MyDirectory
+Frame1 AboutBo
+MyFileStructure
+MyFile
+DirectoryFilter
+Application1

rulePatterns
+AddLiteral
+EndOperator
+EndWhile
+DeclareVariable
+BranchIf
+Assignment
+RulePattern
+EndMethodCall
+MethodReturn
+UnaryOperators
+If
+MethodCall
+EndIf
+BinaryOperators
+While
+Return
+BranchWhile

reference
+Reference
+GraphReference
+DefaultGraphReferenc

Model
+ClassModel
+StateGraph
+NamedClassInstance
+ClassGraph
+Classes
+PC
+ClassInstance

DefaultGraph
JavaGraph

Edges

CurrentState Translator

Main

Figure 3.2.3.1. Translator package class diagram

The diagram 3.2.3.1 shows the Translator sub packages and its classes.

The Edges class stores in constant fields (abstract final) the name of all edges

defined to represent Java code (for example instanceOf, super, PC, active, class,

etc). The JavaGraph class of DefaultGraph class, it has some methods that allow

asking for graph elements as their ‘name’ or their relationships with other graph

elements.

3.2.4. Subsystem Design

This section states how the packages and classes contribute to the translation

process in order to get a clear idea of each package purpose.

3.2.4.1. Model package

The model package (groove.Translator.Model) is used to take

advantage of the Java model information provided by Recoder in order to keep all

 72

the required information about the class that is being processed and transform is

into a class graph. It also provides a class that represents the object graph that is

being translated to maintain its information in a consistent way.

0..* 0..*

NamedClassInstanc

ClassMode

ClassInstance
ClassGraph

Classes

StateGraph

LinkedList
PC

Figure 3.2.4.1.1. Model package class diagram

ClassIntance, ClassModel, NamedClassInstance and Classes types model the

processed Java source into a class graph into the ClassGraph class, with this

graph the StateGraph class creates a new object graph that is the one that keeps

the necessary information to generate the production rules. PC class models the

sub graph that carries the instruction ordering information.

3.2.4.2. Reference package

Reference package (groove.Translator.reference) is in charge of

pointing to a graph element in or outside a context.

Given that a graph element has no identity itself to be able to mention a graph

element, for example inside a rule application, is necessary to create another

object that points to the desired graph element reference. In some cases the

graph element require some additional information to ensure that it is the desired

one, for example a method instance can be identified unambiguously by its

method node, its defining class node and its caller object. These graph elements

are collected in a sub graph that creates this differentiation pattern, among these

graph elements build a context in which the desired element is the one pointed by

the reference.

A context-less reference is represented by the Reference class and a context

reference is represented by the DefaultGraphReference class. The

context reference interface is defined in the GraphReference class. The

corresponding class diagram is depicted 3.2.4.2.1.

abstract
fields

non abstract
fields

type

instance

require

type represents

 73

Reference
interface

GraphReference

DefaultGraphReferenc

Figure 3.2.4.2.1. Reference package class diagram

The references are required because the Abstract Syntax Tree realizes if a

software entity was previously defined, in such cases the visited node will not

have the element declaration information but a reference to its name and in some

cases other relevant information like its type name or its invoker name. W e call

invoker to the caller object, in other word is the one that refers its messages or

fields by the dot (“.”) syntax construction, for instance, object.myField or

object.myMethod(). This node is the one that permit the unambiguously location

of a reference.

If there is not any explicit invoker, it is assumed that the default one is the this

reference or object instance of the processed Java code.

The following sections will explain briefly each type of referenced refer in a

Recoder Abstract Syntax Tree and how it is represented unequivocally.

3.2.4.2.1. Field

A field reference (object.fieldName, in source code) can be easily

recognized once the object to which belongs and its name are known, as shows

the following illustration. The referenced element is the one with a narrow line.

Figure 3.2.4.2.1.1. Field reference pattern

3.2.4.2.2. Class

A class reference (ClassName.class, in source code) is identifiable with its

name. This is illustrated in the following graphic.

fieldNameInvoker

 74

Figure 3.2.4.2.2.1. Class reference pattern

3.2.4.2.3. Method

A method reference (object.methodName(parameters), in source code)

is differentiated by its signature, caller object and its defining class. The picture

3.2.4.2.3.1 depicts a method reference, note that the reference is the narrowed

element.

Figure 3.2.4.2.3.1. Method reference pattern

3.2.4.2.4. Super constructor

A super constructor reference (super(), in source code) is acknowledged with

its signature and the caller object. This can be observed in the following diagram.

Figure 3.2.4.2.4.1. Super constructor reference pattern

3.2.4.2.5. Super

A super reference (super.something, in source code) is recognized with the

caller object as shows the figure below.

Invoker

constructorSignature

<instanceOf> <in>

<super>

Invoker

className

methodSignature

<instanceOf> <in>

className
Invoker

 75

Figure 3.2.4.2.5.1. Super constructor reference pattern

3.2.4.2.6. This constructor

A this constructor reference (this(), in source code) is identifiable with its

signature and the caller object, as obvious this is a mix between the this and the

method reference patterns, it can be verified in the next picture.

Figure 3.2.4.2.6.1. This constructor reference pattern

3.2.4.2.7. This

The this reference (this.something, in source code) is the same invoker or

caller object.

Figure 3.2.4.2.7.1. This reference pattern

3.2.4.2.8. Type

A type reference (ClassName, in source code) is differentiated by its name,

because the class nodes are named with fully qualified names, as the next

illustration shows.

Figure 3.2.4.2.8.1. Type reference pattern

className

Invoker

Invoker
constructorSignature

<instanceOf> <in>

Invoker
<super>

 76

3.2.4.2.9. Variable

A variable reference (variableName, in source code) can be easily

acknowledged once the object to which belongs and its name are known, as

shows the following image. The referenced element is the one with a narrow line.

Figure 3.2.4.2.9.1. Variable reference pattern

3.2.4.3. Rule patterns package

The rule patterns package (groove.Translator.rulePattern) is is the

one that effectively converts an object graph and some references to it into a

production rule file, actualizing the information inside the object graph in order to

be consistent to the next instruction, i.e. the object graph has applied the

instruction transformations. This is accomplished by using a class that contain all

the general functionality of a production rule pattern like saving the rule into a

GROOVE file and a class for each specific transformation rule pattern that

creates the production rule and applies the pattern to the object graph.

To know more about the production rule patterns see section 2.4 that explains

each instruction and its translation into a production rule pattern.

The class diagram below presents the implemented rule patterns in Translator.

variableName

<active>

 77

MethodReturn

RulePattern

DeclareVariable

EndMethodCa

EndWhile

AddLitera

MethodCal
If

UnaryOperator

Return

While

EndOperato

EndIf

BranchIf

BinaryOperators
BranchWhile

Assignmen

Figure 3.2.4.3.1. Reference package class diagram

3.2.4.4. GUI package

This package (groove.Translator.gui) contains the set of classes

created to generate the application interface. The following figure is the gui

package’s class diagram Figure 3.2.4.4.1.

Application JDialog
ActionListener

Frame1 AboutBo

JFrame
Frame1

MyFileStructur

MyFile MyDirectory

FileFilter
DirectoryFilte

FileFilter
JavaFileFilte

Figure 3.2.4.4.1. Reference package class diagram

The main class in this package is Application1 which is responsible of performing

the input / output functionality by collaborating with the other classes in the

package.

 78

The Frame1 class is the output frame in which the generated code tree is

inserted; the Frame1AboutBox is a window with some information about

Translator. The FileStructure, MyFile and MyDirectory are convenience classes

to show in a tree way the output files, and finally, the JavaFileFilter and

DirectoryFilter are classes that permit showing or not Java source files and/or

directories depending if the user is selecting the file to transform or the output

directory.

3.2.5. Getting involved in the project

The following section describes the procedure to follow in order to get access to

the Translator source code, and what changes you have to make to your

environment before fetching the sources from CVS. It also establishes a few

basic rules you have to follow, when updating CVS with modified versions of

Translator source files.

3.2.5.1. How to join the project

This project is promoted by Arend Rensink associated professor of the computer

science department at Twente University.

Actually there is another parallel project being developed by Mark Arends

(m.r.arends@student.utwente.nl) whose purpose is to translate Java byte code

into graph transformations.

Your comments and suggestions are well received.

3.2.5.1.1. Last CVS version

GROOVE source code (including Translator) is maintained on a machine named

demeter.cs.utwente.nl using CVS. This machine is from Twente University, the

GROOVE directory and CVS administrator is Arend Rensink.

Follow these steps to get involved:

1. Send an email to Arend Rensink (rensink@cs.utwente.nl) asking for an

account on demeter.

2. Once you have obtained the account, you need to set up the following

environment variables to get ready for a CVS checkout
CVSROOT

:extssh2:account@demeter.cs.utwente.nl:/home/trese/projects/GROOVE/cvs

CVS_RSH ssh2

3. Go to your home directory and type:
cvs checkout src

 79

This will checkout all sources, binaries and other files into a directory tree

whose root is home/GROOVE/src

4. If you want a particular version proceed as above, but use command:
cvs checkout -r versionid src

Where, versionid is the name of the version you need. (Ask Arend Rensink

for available versions).

5. In order to commit changes back to CVS, you need to do the following:

− Make sure you tested your changes before

− If you do not have your own branch and you made substantial changes,

you should show your results first to Arend Rensink.

− Always add a comment stating the changes you made, when cvs is

asking for it (after a cvs commit). This will allow identifying, who changed

what and for what reason.

3.2.5.1.2. Directory structure

This section it says where is the information that concerns to this project.

Directory Content

/src/GROOVE/ This is the directory where the GROOVE

source files starts.

/src/GROOVE/Translator In this directory are the Translator source

file classes and sub packages directories

/src/GROOVE/Translator/gui This directory contains the classes

created for the user interface in

Translator.

/src/GROOVE/Translator/reference This directory has the classes that point

to a graph element or set of elements.

/src/GROOVE/Translator/model The model directory holds the classes in

charge of representing a Java class in a

textual way and converting it into a class

graph.

/src/GROOVE/Translator/rulePatterns Inside the rulePatterns directory is stored

the most important part of the project :

the generic production rules that given an

object graph and some references inside

it, produce the production rule file and

 80

the next object graph (after applying the

instruction transformation)

/src/GROOVE/Translator/tests The tests directory contains the unit tests

created in order to test the Translator

functionality.

/src/classes/ This directory has a structure similar to

the Translator directory, but it does not

contain Java source file but its

corresponding binaries.

/src/resources In this directory is saved all files required

to execute any of the GROOVE tools, for

example the icons.

/doc/ This directory possesses the code

documentation.

Table 1.2.5.1.2.1. Translator’s directory structure

3.2.5.2. How to extend the project

There are two possible extensions for this project the first one is to model other

Java statements as production rules; this will have as consequence the addition

of new production rules. The other one is to change the parser (now the parsing

is performed with Recoder) to another more powerful or with a closer

representation to the Java source model. This section analyzes the necessary

modifications in order to extend them.

3.2.5.2.1. Adding new production rules

To add a new production rule is necessary to create the class that converts the

rule pattern in specific production rules for a given object graph.

It is also necessary to check in which node of the AST must this new rule be

called, being carefully to check if it has all necessary references.

3.2.5.2.2. Changing parser

Right now Translator is strongly attached to Recoder parser, to be able to change

it is mandatory to create a wrapper class that converts from the parser AST

output to a more generic AST.

 81

4. Processing algorithms
In order to obtain an Abstract Syntax Tree that organize and interpret the java

source file, Translator uses Recoder. Translator also uses GROOVE graphs and

production rules model to represent its own data. For these reasons, Translator is

in charge of three main tasks: configure of Recoder to parse the java source code

and obtain the Abstract Syntax Tree (AST),; preprocess the AST to get the java

class in a graph representation, and generate the production rules by navigating

the AST.

4.1. Parsing and Abstract Syntax Tree Construction

This section offers an explanation of the process that Recoder executes in order

to translate a Java source code into it corresponding Abstract Syntax Tree

mapping. See [5]

First, the lexical analyzer takes successor character relation and groups several

characters together to tokens.

Then, parser analyses the successor token relation according to a context free

grammar and produces an abstract syntax tree. Firstly, some of the tokens are

skipped (such as keywords or comments) and others are retained as new objects

of the new graph (for example if, while, procedure). Between those, a new

tree-like relation is formed, the abstract syntax graph that contains: definitions of

objects, references to objects, statements which compute something,

expressions which are side effect free statements, and groupings which group

definitions, references, statements, and expressions to larger blocks.

After that, on the abstract syntax tree, a semantic analysis process starts. This

process relates some of the elements of the tree to others which are remote (this

is, elements that have been declared in other place of the tree). Hence, the

abstract syntax tree is generalized to a graph. Semantic analysis constructs

several graphs which build on top of each other:

− Object oriented languages define an inheritance relation which records

reuse references between classes and defines an extended visibility

concept for class features (all features of the super classes are visible

too).

 82

− Import relation (visibility relation). Beyond the module that is being

translated, other objects in other modules may be referenced, if they are

imported. The front end computes a relation along which names are

looked up.

− The use-def graph of names. For every name used in the program

(identifiers or structured identifiers called designators, also called

references) the application should check whether it is defined once, which

type it has and whether it shadows other definitions of the same name.

This process usually is called name analysis, and it builds up a relation

between all used names and their definitions. Conceptually, inheritance

and import relations can be considered as parts of the use-def

information, however, for practical reasons they are separated.

− With the use-def graph, expressions and statements, procedure calls and

generic parameterizations can be type-checked: just compare the types of

the formal to the types of the actual arguments (type checking).

4.2. Preprocessing

The preprocessing stage takes the Recoder meta programming information in

order to generate a class graph of the processed source file that later on serves

as base for generating a new object graph in which the production rules that

represents the instructions in its respective source code can be applied.

The preprocessing maintains in the groove.Translator.Model classes all

the elements that compose the processed class and its required classes like:

super class, interfaces, field types, parameter and return types, etc. For this

purpose it uses the meta information provided by Recoder that allows operations

like compilationUnit.getDeclarations(),

compilationUnit.getImports(), classType.getFullName(),

cd.getAllSupertypes(), classType.getConstructors(),

classType.getMethods(), method.getSignature(),

method.getReturnType(), etc.

All class information is used to generate the directory structure (see section

3.1.4) required to save the production rule files and it is saved in an instance of

the ClassModel. All processed classes are in a dictionary whose key is the fully

qualified name of the class and whose value is its corresponding ClassModel

instance. This dictionary is the Classes class.

 83

If along the processing of any class is found a new required class it is processed

and saved in the dictionary. This approach can be optimized because although it

does not allow circular reference looping it could overflow the call stack.

Once all required classes information is extracted, the class graph is generated.

This process is performed by asking the ClassModel instance of the class that is

being translated to produce its graph representation. A ClassModel graph

representation is a graph reference (see previous chapter programmers guide

section 3.2.3) whose referred element is the class node. When an element of the

class that is being processed is going to be added, it calls the generate graph

representation method of its corresponding ClassModel, previously stored in the

dictionary. In this way the graph representation call is propagated through all

required classes that are added as part of graph representation of the element.

4.3. Production rules generation

Production rules generation is carried out as follows:

1. A new production rule is declared with its required references and the actual

object graph.

a. The object graph is cloned into a field called clone

b. The clone is cleaned form the non required literals in the rule

2. The apply transformation rule is called

a. A graph representing the instruction order is added to the clone

b. A new local variable called lhs, which represents the left hand side

of the graph transformation, is created from the clone

c. A new local variable called rhs, which represents the right hand

side of the graph transformation, is created as clone of the lhs

d. A new injective morphism is established between the lhs and the

rhs

e. If the references are complete

i. The production rule changes are applied to the rhs.

ii. A new production rule is created from the morphism

iii. The production rule is saved. This is accomplished with the

GROOVE class Gxl that converts a GROOVE graph into its

corresponding GROOVE XML.

iv. The production rule changes are applied to the actual

object graph.

f. If the references are not complete

 84

i. Only the production rule changes that modify the

instruction order are applied to the rhs. This is done in

order to maintain the instruction order consistency.

ii. A new production rule is created from the morphism

iii. The production rule is saved. This is accomplished with the

GROOVE class Gxl that converts a grove graph into its

corresponding GROOVE XML.

iv. Only the production rule changes that modify the

instruction order are applied to the actual object graph.

This application of the production rules generated to the object graph is

fundamental because it allows an object graph with the expected object state

needed for the rule matching, in other words it helps to keep the object status

required for applying certain rule, for example if a method defines a local variable,

the processing algorithm must know that this variable is only accessible inside

the method scope, and which is its type and value as well as the objects that

refer to it.

 85

5. Future work proposals
This section point’s out areas of future work. It first presents a detailed list of Java

language features that are not currently implemented. Next, some areas in which

possible refactorings were identified. These refactorings are focused on

producing more extensible and reusable code and some improvements

concerning the process report. A last part, suggests some priority on the missing

tasks.

5.1. Missing or incomplete features

This section identifies those parts of the Java language that are not currently

modeled or available in Translator.

Translator omits access modifiers that could be present in the source program by

setting default access modifiers instead. The reason for this is that the model

presented is not complete to model the modifiers semantics.

Feature Comments / JLS Reference

New

operator

It allows the translation of class instantiation

new Object ();

JLS reference: 15.9

Load It simulates the search of binaries done by the virtual machine

JLS reference: 12.2

Link It helps to map the process of verifying class loading, preparing

memory for the execution and resolving references to other

classes.

JLS reference: 12.3

Abrupt

completion

Permits the modeling of errors during expression evaluation and

statement execution.

JLS reference: spread in 4.

Modifiers Models the accessibility of members, it changes the semantic and

representation of an object. For example abstract fields must

belong to their class node, while non abstract ones must belong to

their instance node.

abstract; final; native; private; protected;

public; static; strictfp; synchronized;

 86

transient; volatile

JLS reference: 8.1.1 - 8.3.1 - 8.4.3 - 8.5.1 and 9.1.1

Arrays Their representation helps to have collection of fixed size with

object of the same type.

JLS reference: 10.

Threads With them is possible to model concurrency.

JLS reference: 17.

Missing

statements

Execution flow control

Labeled: break,continue

JLS reference: 14.14 and 14.15 respectively.

Jump: switch –case and default-; do; for

JLS reference: 14.10 – 14.12 and 14.13 respectively.

Exception: throw, try –catch and finally–

JLS reference: 14.17 and 14.19 respectively.

Concurrency: synchronized

JLS reference: 14.18.

Expressions: post increment, post decrement, pre

increment, pre increment.

JLS reference: 14.8.

Inner

classes

Representing inner classes.

JLS reference: 8.1.2.

Table 5.1.1. Topics for completing java-graph model

The table 5.1.1 presents the java features that are not present in the model. The

purpose of remarking these points is to provide some directions in which this

work can be extended.

There are some topics that were discussed and slightly modeled during this work,

such as link, load, abrupt execution and garbage collection, but given the lack of

time it was not possible to achieve a stable representation, for that reason they

are not part of the document neither of the tool.

5.2. Improvements

The following improvements should be considered or need to be done,

concerning the Translator architecture.

Given that GROOVE is an extensible project, each one of its components should

follow GROOVE’s design policy. The purpose of this section is to state some

 87

important steps previous to any further extension, they are simple arrangements

of the existing code that would give a more reusable code.

Artifact Comments Benefit

Translator It is necessary to separate it into two

packages one in charge of creating,

initializing and wrapping the parser and

another one in charge of traversing and

processing the AST.

Less

coupling

Translator.gui Some functionality in this package was

already implemented in groove.gui,

therefore it is necessary to move the non

implemented classes and to eliminate the

replicated code.

Extensibility

Translator.model This package also needs to be divided into

two smaller packages: one for a more

detailed java semantic modeling

(ClassModel, ClassInstance, Classes, etc.)

and another for having a more intuitive and

clean representation of java graphs

(JavaGraph, Edges).

Higher

cohesion

Translator.references GraphReferences class must be modified

in order to eliminate duplicated information

as main and name, whose equivalent is

defined in Reference class

Extensibility

Table 5.2.1. Refactoring improvements

The current process report needs to be improved. Right now, only shows the final

file structure produced by Translator nevertheless it would be better to show

which line of code is processing and how is going to translate it.

5.3. Priorities

In order to aide in the future development of the tool it is compulsory to evaluate

which of the tasks to perform must be done first. The purpose of this section is to

evaluate which of the mentioned additions or improvements contribute more to

extend the scope of programs that can be processed with Translator.

 88

Priority Tasks Type Importance Difficulty

1 New operator Java modeling High Low

2 Link Java modeling High Medium

3 Modifiers Java modeling High High

4 Load Java modeling Medium Medium

5 Abrupt completion Java modeling Medium Medium

6 Missing statements Java modeling Medium Medium

7 Translator.model Code

refactoring

Medium High

8 Translator Code

refactoring

Medium High

9 Translator.gui Code

refactoring

Low Low

10 Translator.references Code

refactoring

Low Low

11 Arrays Java modeling Low Medium

12 Inner classes Java modeling Low Medium

13 Threads Java modeling Low High

Table 5.3.1. Priorities of tasks to do.

 89

6. Conclusions

As was established in the chapter 2, Java source code can be transformed into

flat graphs; furthermore, this graph representation allows the inclusion of runtime

information, which is not present in other representations such as Abstract

Syntax Trees.

The produced model permits the simulation of code by instantiating rule patterns

that represent Java statements transformations. This model: Java representation

as graphs and production rules is unified with the byte code model. The source

code and byte code models share the abstract Java graph model that serves as

interface between both transformations.

Although the Java language specification is not fully mapped, the fundamental

statements were constructed and their extension will not represent a big effort.

The Java source structures modeled were: declarations, types, fields, methods,

parameters, method body, variables, expressions, literals, operators, references

and some statements (if, while and other expression statements -assignment and

method invocation-). In addition, the execution order was modeled.

There are some Java structures not represented in the model: modifiers, threads

(synchronization), exceptions, inner classes and the rest of statements (break,

continue, do, some expression statements –pre-increment, pre-decrement, post-

increment, post-decrement, class-instance-creation-, for, labeled statement,

return, switch, synchronized, throw, try.).

Almost all modeled features, except the class loading and the implicit Java

classes9, were implemented in the tool. As a result, simple programs can be

translated into production rules.

The production rule files generated by the tool developed in this project are

compatible with GROOVE files, in this way; they can be seen, simulated and

edited by the other tools that are part of GROOVE (Viewer, Simulator and Editor

respectively).

This simulation (or successive application of production rules) shows the

execution of a Java program by applying the generated production rules. This

9 The implicit Java classes are those that can be referenced without import clause. For instance,
java.lang.System

 90

simulation maintains all the runtime information not present in most of the

verification tools.

The main contribution of this thesis was to represent object-oriented programs (in

particular Java source code programs) in graphs whose elements don’t have own

identity.

 91

7. References

[1] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner and A.

Corradini. Algebraic approaches to graph transformation, part II: Single

pushout approach and comparison with double pushout approach. In G.

Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph

Transformation, volume I: Foundations, pages 247 – 312. World Scientific,

Singapore, 1997.

[2] James Gosling, Bill Joy, Guy Steele, Gilad Bracha. The Java Language

Specification, Second Edition, 2000. Available at

http://java.sun.com/docs/books/jls/index.html

[3] A. Rensink. Model Checking Graph Grammars.

[4] A. Rensink. GRaphs for Object Oriented VErification: A tool set for the

simulation and analysis of graph grammars. Available at

http://www.cs.utwente.nl/~groove

[5] Recoder. Java framework for source code metaprogramming. Project URL:

http://recoder.sourceforge.net/

