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How to read this document 
 
This document pretends to summarize the work done as graduation project that 

defines how to map an object oriented language as Java into graphs and how the 

tool that performs this mapping was done.  

 

These graphs, in particular, have non labeled nodes and labeled edges. 

However, the edges’ label doesn’t represent any identity, i.e.  they can only be 

differentiated by their components: source node, label and target node. In this 

sense we can call them flat graphs because their components do not have 

identity by themselves. 

 
The text is organized as follows: the first chapter summarizes the basic points in 

which the work was based on, like its objectives, background theory and tools 

used. Chapter 2 explains the proposed translation from Java source code to flat 

graphs. Chapter 3 describes the tool developed to perform the translation. 

Chapter 4 explains in detail how the software works and the necessary 

knowledge to extend it. The proposals for future work, features to implement or 

complete, as well as the possible improvements and their priorities are located in 

the chapter 5. The conclusion indicates which goals were reached and which was 

the contribution of this work. 



 5

 

1. Introduction 
 

This thesis is intended to model Java source code as graph transformations 

within a larger project called GROOVE (see section 1.4.1) oriented to develop a 

fully automated verification tool for object oriented programs. 

In a wider perspective the graph transformations that generate the software 

developed give the possibility to generate all possible transitions from an initial 

state represented as a graph, this is called a transition system. From this set of 

possible states it is feasible to extract canonical patterns that represent a set of 

patterns. This generalizations are called temporal logic graphs and they 

represent the behavioral semantic of a set of transformations. In this way, they 

enable automatic verification of a program [3]. 

In the project, there is another master thesis being developed whose goal is to 

translate Java byte code into graph transformations. Our work crossed in order to 

define some parameters on the produced graph transformations in order to make 

them compatible. We defined an interface / standard of graph transformations 

that will derive the same kind of state graphs. 

 

The tool product of this thesis (called Translator) was developed as an extension 

of GROOVE. GROOVE (GRaphs for Object Oriented VErification) (see section 

1.4.1) is a set of tools product of a straightforward translation from the graph 

rewriting theory. GROOVE software (version 0.0.1) is composed by an editor 
that allows the creation of state graphs and production rule or transformation 

graphs, by a viewer that shows with a special format a production rule and by a 

simulator that, given an initial state graph and production rule graphs, can show 

the effects of a production rule applied to a state graph and also produce all 

possible states starting with the initial state and applying the production rules to 

this initial state or to the intermediate generated states. 

 

1.1. Goals 

The main interest of this work is to represent object oriented programs in graphs 

whose elements do not have own identity. In particular, Java source code. For 

this reason one of the higher priority tasks was to study the Java specification in 
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order to get a view of the possibilities that this language offers, and the scope 

that could be covered in the present work. 

 

Once the translation between the Java sources entities is defined it is also 

necessary to translate each execution point into a graph transformation. The 

objective was to identify all entities in the code that could generate changes in the 

object and represent this change as a graph transformation. This change 

representation implies the introduction of other entities that allow some 

restrictions not offered by source code entities themselves; but by the way they 

are interpreted such as the order of instructions. Note that the graph 

transformations are not just simple mapping from the source code to graphs 

because there are execution features implicit in the source code like class 

loading or instruction sequence; the mapping from source code to graphs should 

produce the same effect as the code execution would do in an object. It is 

necessary to introduce some execution information based only on static 

information provided by the source code. 

 

In the end the produced transformation graphs must simulate the code execution, 

registering in the state graphs all changes in the objects involved in a program. 

 

Summarizing, this project intends to: 

− Construct a model that translates Java source code into flat graphs. 

− Enrich the model to include implicit Java source features like class loading, 

garbage collection, execution order, etc. 

− Identify the transformation points in a Java source code. 

− Build canonical patterns for object oriented code transformations. 

− Develop a proof of concept tool that extends GROOVE and generates graph 

transformation rules from Java source code 

1.2. Concepts 

This section comprises in an informal and condensed way all necessary terms 

used along the document. It explains the main theoretical concepts in which this 

work is based on. 
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1.2.1. Graphs 

Graphs are mathematical representations that can be formally described, 

interpreted and transformed; furthermore they have intuitive visual 

representation. The graphs are composed by 2 kinds of elements: the nodes and 

the edges. The edges are elements that connect nodes. See [3]. 

The graphs that concern this work are not node labeled but edge labeled. 

Nevertheless neither nodes nor edges have identity of their own. Edges are 

distinguished by its components: source node, label(s) and target node. Two 

edges cannot have the same label and nodes. 

 
Figure 1.2.1.1. Two representations of a graph with 3 nodes and 4 edges. 

 

The nodes are graphically depicted as boxes, the edges as directed arrows that 

indicate the starting and ending edge except in self referenced edges i.e. edges 

whose source and target node are the same. They are represented with the label 

of the self referenced edge inside the source-target node. 

 

1.2.2. Transformation & Production rules 

A transformation is a way to represent the change from an initial graph to a final 

graph.  

 

 
Figure 1.2.2.1. A transformation instance of x = y 
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The generalization of a transformation is a pattern that can be applied to different 

initial graphs and when they are applied can produce different final graphs. These 

patterns are called production rules. The productions rules indicate the nodes 

and edges created or removed from the initial graph to the final graph. The figure 

1.2.2.2 shows a production rule in which the edge identified with the label x is 

deleted in the final graph, and the edge identified with an x label in the final graph 

does not have a pre image in the initial graph, this gain or loss of elements in the 

transformation is represented with question marks. 

A rule only can be applied if it matches in the initial graph. A rule can have 

multiple matchings in a graph and its result depends in which of the matchings 

the pattern is applied. Any rule application generates a new graph.  

The rule can also be defined as a partial injective function whose domain is the 

initial graph and its co domain is the final graph. 

 

 
Figure 1.2.2.2. A transformation pattern of x = y 

 

There are 4 element roles in a graph transformation. The reader element that 

must be in the initial and final graph, the eraser element that is present in the 

initial graph but not in the final graph, the creator that is present only in the final 

graph and the embargo element that cannot be present in the initial graph. 

If different elements on the rule correspond to the same element on the graph, 

the element will be transformed with the most powerful transformation that is 

applied to it. For instance, let’s suppose there is a rule that requires all self 

referenced nodes an deletes all nodes target of an edge labeled x. If the source 

graph has a self referenced node with an x, this element will match with a reader 

role and also with an eraser role; then the rule application will delete this node. 

x yx y 

Initial graph Final graph x = y

?
? 
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1.2.3. Double push out 

 
Figure 1.2.3.1. Double push out graphical representation. Transformation rule for 

x = y 

 

The classical representation of a production rule is called double push out. It 

consists of the initial graph called also the left hand side graph (LHS), the final 

graph or right hand side graph (RHS) and the morphism between them. This 

morphism is a partially injective function, which establishes which elements of the 

LHS have which image in the RHS (if they have). See [1]. 

1.2.4. Single push out 

 
Figrure 1.2.4.1. Single push out in GROOVE’s output format.  

Transformation rule for x = y 

 

The double push out representation can be summarized indicating the necessary 

nodes to have a match, which of them are deleted in the RHS graph and which 

are created, this is, elements that do not have an image in the LHS. This 

representation is just the disjoint union between LHS and RHS. This equivalent 

function constructs the set of elements of LHS that are not in the co domain of 

the morphism (nodes or edges deleted) and the set of elements of RHS that are 

not in the in the domain of the morphism (nodes or edges created). It is called the 

x yx

x y x y

Left hand side Right hand side morphism
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single push out approach. Translator represents production rules with the single 

push out approach. See [1] and  [4]. 

1.2.5. Negative Application Conditions 

 
Figrure 1.2.4.1. Single push out enriched with a Negative Application Condition in 

GROOVE’s output format. Transformation rule x = y / z 

 

The single push out graphs are enriched with a kind of Negative Application 

Conditions (NAC) that forbid relations in the initial graph, in other words, the rule 

is not applicable if there is a match of the NAC in the initial graph. The role played 

by the elements that are part of the NAC are called embargo. See [4]. 

Note that due to a NAC defines relationships, the elements that compose it are 

edges. Then the NAC elements are also called embargo edges.  

1.2.6. Graph grammar 

The duple formed by an initial state graph and a set of production rules is called 

graph grammar. 

A graph transition system if a triple formed by an initial state graph, a set of 

transition rules and a set of final states. See [4]. 

A graph grammar produces a transition system if the transitions correspond to all 

possible rule applications to all reachable states. 

 

1.3. Java source structure 

This section is dedicated to present an overview of the main structural nodes that 

compose a Java program. The immediate interest is to condense all necessary 

terms that will be mention now and on from a source code point of view. This 

section can be omitted if you are familiar with the Java Language Specification. 

See [2]. 
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1.3.1. Declarations 

A source code is a set of declaration that establishes new named program 

elements. In general, a source file contains one or more class declarations, with 

their corresponding identifying information and its members: accessibility, name, 

super class, implemented interfaces, fields, and method declarations. Which at 

the same time have their own identifying and member information like 

accessibility, name, exceptions thrown, parameters, local variables, etc. What is 

more, each object mentioned in a source file must have its own declaration 

indicating at least its name and type, in some cases its initial value. With the 

exception of the literals, a literal is a source code representation of a value of 

primitive type. 

The most important concept present in a declaration is the modifier. The 

modifiers are reserved keywords that restrict the use of a program element 

(abstract; final; native; private; protected; public; static; strictfp; 

synchronized; transient; volatile). The modifiers vary depending on the 

program element declared. For instance a class declaration only can have 

abstract, final and strictfp modifiers, a field declaration can be static, final, 

transient and volatile, and a method declaration can be  abstract, static, final, 

native, strictfp, synchronized. 

1.3.1.1. Abstract modifier 

In a class declaration it means that the class cannot be instantiated and it may 

contain unimplemented methods. All interfaces are abstract. In a method 

declaration, means that it does not have a body and the enclosing class is 

abstract. 

1.3.1.2. Final modifier 

The final modifier means that the program element cannot be changed; this 

implies that a final class cannot be sub-classed, a final method cannot be 

overridden and dynamically looked up, a final variable or final field cannot change 

its value. The static final fields are compile-time constants. 

1.3.1.3. Native modifier  

It can only appear in a method declaration and means that it is platform-

dependent. This method does not have body, only signature. 

1.3.1.4. Package modifier (none/default)  
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It means that the program element is accessible only inside its package. It can 

appear in class, interface and method declarations. 

1.3.1.5. Private modifier   

It means that the program element is a class member accessible only in the class 

which defines it. 

1.3.1.6. Protected modifier   

It means that the program element is a class member accessible only within the 

subclasses and package of the class which defines it. 

1.3.1.7. Public modifier  

It means that the program element is accessible anywhere. It can appear in 

class, interface and member declarations (in these cases the member is 

accessible anywhere its class is). 

1.3.1.8. Strictfp modifier  

It means that all floating-point computation done is strictly conforms to the IEEE 

754 standard. All values including intermediate results must be expressed as 

IEEE float or double values. It can appear in class and method declarations. A 

class strictfp implicitly has all its methods strictfp. 

1.3.1.9. Static modifier 

It means that a class has members that can be accessed without a class 

instance, because they do not depend of the instance’s state. It can appear on a 

class, method, field or initializer declarations. A static method is also called a 

class method, and can be invoked through the class name. 

A static or class field (exists only one instance of this field for all class instances), 

can be invoked through the class name, regardless of class instances created. A 

static modifier inside an initializer indicates that it is executed when the class is 

loaded, rather than when an instance is created. 

1.3.1.10. Synchronized modifier  

It can only appear in method declarations. For a static method, a lock for the 

class is acquired before executing the method. For a non-static method, a lock for 

the specific object instance is acquired. 
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1.3.1.11. Transient modifier 

It can only appear in field declarations. It means that the field does not belong to 

the persistent state of the object and they will not be serialized with the object.  

1.3.1.12. Volatile modifier 

It can only appear in field declarations. It means that the field is accessible by 

unsynchronized threads, i.e. each thread can have a working copy of the field. 

1.3.2. Types1 

Java is a strongly typed language what implies that every variable has a known 

type at compile time. The type determines the structure and operations of each 

object.  

Java types are classified into two kinds: the primitive and the reference types. 

The primitive types are predefined and have reserved keywords. They are 

subdivided in numeric and boolean types. The numeric types are also subdivided 

in integral types and floating point types. The integral types are: byte, short, int, 

long and char. The floating point types are: double and float. 

The reference types are the classes and interfaces. They are defined in 

compilation units. They can have a modifier, a super type, variables and 

methods. The referenced types can be instantiated or not. The types that cannot 

be instantiated are the interfaces and the abstract classes.  

The interfaces can be public, protected or private, and its super type can only be 

an interface. Its methods cannot have an implementation and its variables must 

be static final. The abstract classes can have abstract and non abstract methods.  

The types that can be instantiated are divided into final and non final types. The 

final types cannot have subclasses and all its methods must be final. The non 

final types only can contain non abstract methods. 

Another kind of type is the array type. The array types do not have super types. 

They define a set of fixed length that contains components of the same type 

(called component type). Array types can have as component type other array 

types.   

 

All non primitive types can have only one super type. This inheritance relation 

creates a hierarchical type structure whose root is the class Java.lang.Object that 

does not have super type. 
                                                 
1 All types that are not interfaces are called classes. 
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Each class has one or more constructor methods and can have zero or more 

instance variables called fields.  

In order to recognize uniquely a type the fully qualified name that is composed by 

the package name and the type name is used. A type package is defined by the 

package declared in its container compilation unit2. The package is a hierarchical 

organization of the type names, a package can be nested in other packages. The 

package name is defined by the containing package name followed by a dot 

followed by the package name.  

1.3.3. Fields 

The fields are variables that belong to a class (i.e. the field is static then there is 

just one object for all class instances) or to an instance (i.e. the field is not static 

then it exists one object for each class instances). As all variables they have a 

name and type. 

All fields inside a class must have a different name and can have a different 

accessibility. 

1.3.4. Methods 

The methods are composed by their modifier, return type, signature, throw clause 

and their body. A type cannot have two methods with the same signature. There 

are two kinds of methods, those that do not have a return type called constructors 

and the regular methods that have return type. The constructors’ names are the 

same of their containing class. Each class has at least one constructor method, if 

it is not defined explicitly the language will create a default one without 

parameters and whose accessibility will be the same as its container class. 

The method signature is composed by the method name and its parameters. 

1.3.4.1. Parameters 

The parameters are method variables (i.e. they have a type and a name). A 

method can have zero or more parameters but they cannot have the same name. 

Method parameters name argument values passed to a method. For every 

parameter declared in a method declaration, a new parameter variable is created 

each time that method is invoked. The new variable is initialized with the 

corresponding argument value from the method invocation. The method 

                                                 
2 A compilation unit is an abstract program element (equivalent to a Java file) in which can be 
defined several types. 
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parameter effectively ceases to exist when the execution of the body of the 

method is complete. 

1.3.4.2. Throws clause 

The throws clause indicates the possible exceptions raised by the method 

execution. All types thrown must be subclasses of java.lang.Throwable. 

1.3.4.3. Method body 

The method body is composed by local variable declarations, expressions, 

literals, operators, references and statements. 

1.3.4.3.1. Variables 

The local variables can only be accessible inside the method scope. 

Local variables are declared by local variable declaration statements. Whenever 

the flow of control enters a block or for statement, a new variable is created for 

each local variable declared in a local variable declaration statement immediately 

contained within that block or for statement. A local variable declaration 

statement may contain an expression which initializes the variable. The local 

variable with an initializing expression is not initialized, however, until the local 

variable declaration statement that declares it is executed. (The rules of definite 

assignment prevent the value of a local variable from being used before it has 

been initialized or otherwise assigned a value.) The local variable effectively 

ceases to exist when the execution of the block or for statement is complete. 

1.3.4.3.2. Expressions 

Every expression written in the Java programming language has a type that can 

be deduced from the structure of the expression and the types of the literals, 

variables, and methods mentioned in the expression.  The language performs an 

implicit conversion from the type of the expression to a type acceptable for its 

surrounding context. 

Then the five conversion contexts are:  

− Assignment conversion converts the type of an expression to the type of a 

specified variable. The conversions permitted for assignment are limited in 

such a way that assignment conversion never causes an exception.  

− Method invocation conversion is applied to each argument in a method or 

constructor invocation and, except in one case, performs the same 
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conversions that assignment conversion does. Method invocation conversion 

never causes an exception.  

− Casting conversion converts the type of an expression to a type explicitly 

specified by a cast operator. It is more inclusive than assignment or method 

invocation conversion, allowing any specific conversion other than a string 

conversion, but certain casts to a reference type may cause an exception at 

run time.  

− String conversion allows any type to be converted to type String.  

− Numeric promotion brings the operands of a numeric operator to a common 

type so that an operation can be performed. 

1.3.4.3.3. Literals 

A literal is the source code representation of a value of a primitive type, the String 

type, or the null type. 

 

An integer literal may be expressed in decimal (base 10), hexadecimal (base 16), 

or octal (base 8). 

 

A floating-point literal has the following parts: a whole-number part, a decimal 

point (.), a fractional part, an exponent, and a type suffix.  

At least one digit, in either the whole number or the fraction part, and a decimal 

point, an exponent, or a float type suffix are required. All other parts are optional. 

 

The boolean type has two values, represented by the literals true and false, 

formed from ASCII letters. 

 

A character literal is expressed as a character or an escape sequence, enclosed 

in ASCII single quotes (‘).  

 

A string literal consists of zero or more characters enclosed in double quotes. 

Each character may be represented by an escape sequence. 

 

The null type has one value, the null reference, represented by the literal null, 

which is formed from ASCII characters.  

1.3.4.3.4. Operators 

The Java operators are : 
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− The comparison operators <, <=, >, and >=. 

− The equality operators == and !=  

− The logical-complement operator !  

− The logical operators &, ^, and |  

− The conditional-and and conditional-or operators && and ||  

− The conditional operator ? :  

− The numerical operators:  

o The unary plus and minus operators + and -  

o The multiplicative operators *, /, and %  

o The additive operators + and -  

o The increment operator ++, both prefix and postfix  

o The decrement operator --, both prefix and postfix  

o The integer bitwise operators &, |, and ^  

− The signed and unsigned shift operators <<, >>, and >>>  

− The bitwise complement operator ~  

− The cast operator, which can convert from an integral value to a value of any 

specified numeric type  

− The operators on references to objects: 

o Field access, using either a qualified name or a field access 

expression  

o Method invocation  

o The cast operator  

o The instanceof operator  

− The string concatenation operator +, which, when given a String operand 

and:  

o an integral operand, will convert the integral operand to a String 

representing its value in decimal form, and then produce a newly 

created String that is the concatenation of the two strings  

o a floating-point operand, will convert the floating-point operand to 

a String representing its value in decimal form (without information 

loss), and then produce a newly created String by concatenating 

the two strings  

o a boolean operand, will convert the boolean operand to a String 

(either "true" or "false"), and then produce a newly created String 

that is the concatenation of the two strings  



 18 

o a reference, will convert the reference to a String by invoking the 

toString method of the referenced object (using "null" if either the 

reference or the result of toString is a null reference), and then will 

produce a newly created String that is the concatenation of the two 

strings 

1.3.4.3.5. References 

The references are elements representing implicit or explicit (named) references 

to other program elements. 

1.3.4.3.6. Statements 

The statements are control flow structures. The Java statements are: break, 

continue, do, empty statement, expression statement, for, if, labeled statement, 

return, switch, synchronized, throw, try, while. 

 

The break statement transfers control out of an enclosing statement. 

 

A continue statement may occur only in a while, do, or for statement; statements 

of these three kinds are called iteration statements. Control passes to the loop-

continuation point of an iteration statement. 

 

The do statement executes a Statement and an Expression repeatedly until the 

value of the Expression is false. 

 

An empty statement does nothing. 

 

An expression statement (Assignment; PreIncrementExpression; 

PreDecrementExpression; PostIncrementExpression; PostDecrementExpression; 

MethodInvocation; ClassInstanceCreationExpression;) is executed by evaluating 

the expression; if the expression has a value, the value is discarded. Execution of 

the expression statement completes normally if and only if evaluation of the 

expression completes normally. 

 

The for statement executes some initialization code, then executes an 

Expression, a Statement, and some update code repeatedly until the value of the 

Expression is false. 
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The if statement allows conditional execution of a statement or a conditional 

choice of two statements, executing one or the other but not both. 

 

A labeled statement is executed by executing the immediately contained 

Statement. If the statement is labeled by an Identifier and the contained 

Statement completes abruptly because of a break with the same Identifier, then 

the labeled statement completes normally. In all other cases of abrupt completion 

of the Statement, the labeled statement completes abruptly for the same reason. 

 

A return statement returns control to the invoker of a method or constructor 

 

The switch statement transfers control to one of several statements depending on 

the value of an expression. 

 

A synchronized statement acquires a mutual-exclusion lock on behalf of the 

executing thread, executes a block, then releases the lock. While the executing 

thread owns the lock, no other thread may acquire the lock. 

 

The throw statement causes an exception to be thrown. The result is an 

immediate transfer of control that may exit multiple statements and multiple 

constructor, instance initializer, static initializer and field initializer evaluations, 

and method invocations until a try statement is found that catches the thrown 

value. If no such try statement is found, then execution of the thread that 

executed the throw is terminated after invocation of the uncaughtException 

method for the thread group to which the thread belongs. 

 

A try statement executes a block. If a value is thrown and the try statement has 

one or more catch clauses that can catch it, then control will be transferred to the 

first such catch clause. If the try statement has a finally clause, then another 

block of code is executed, no matter whether the try block completes normally or 

abruptly, and no matter whether a catch clause is first given control.  

 

The while statement executes an Expression and a Statement repeatedly until 

the value of the Expression is false. 

1.4. Context 

This section gives some detail about the tools used in order to build Translator. 
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Translator is an extension of GROOVE. GROOVE is a software project whose 

purpose is to verify the semantic of object oriented programs. 

The parsing and Abstract Syntax Tree generation was delegated to another tool 

called Recoder.  

1.4.1. GROOVE  

GROOVE (GRaphs for Object Oriented VErification) is a tool for representing the 

semantics of object-oriented programs using graphs in order to perform 

automatic verification and properties validation. GROOVE is developed with Java 

jdk 1.4, in its actual version 0.0.3 it includes an editor for creating production 

rules, a viewer for visualizing the production rules and a simulator for applying the 

graph transformations of a set of production rules. The system was developed by 

Arend Rensink at the software engineering group at University of Twente. See 

[4]. 

 

GROOVE takes advantage of the visual representation of graphs and adds some 

semantics to it. In particular, it provides a different visualization for each kind of 

the roles that an element can be playing in a production rule. The reader or 

required elements are depicted with solid thin black arrows and boxes. The 

eraser elements are represented with dashed thin blue lines and boxes. The 

embargo elements are showed with dashed fat red arrows. And the creator 

elements are depicted by solid fat green arrows and nodes. 

This representation is enabled just once the production rule is saved. Meanwhile, 

in the editor there are some special prefixes that specify the role of each element. 

The reader or required elements prefix is “use:”, the eraser elements prefix is 

“del:”, the embargo elements prefix is “not:”  and the creator elements prefix is 

“new:”. If the element does not have any prefix the editor will assume it as a 

reader node as default.  

 
Figrure 1.4.1.1. Single push out enriched with a Negative Application Condition in 

GROOVE’s input format. Transformation rule x = y / z 

del:x 

y

new:x

not:0 

z
/
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GROOVE’s output format is XML, the XML text files categorize the rule elements 

in terms of their role prefix.  

1.4.2. Recoder  

Recoder is a framework for Java meta programming, it provides elements to 

analyze and transform Java code. The core system was developed by Andreas 

Ludwig as part of his PhD thesis, with help and support from Uwe Aßmann and 

co-author Rainer Neumann at the software engineering and compiler construction 

group of Prof. Dr. Goos at the University of Karlsruhe. See [5]. 

 

The developed tool benefits from the Recoder parsing facilities. Recoder 

assumes that the input is a syntactically correct Java source file (i.e. it can be 

compiled without errors) and creates a model unambiguously based on a partial 

semantic analysis. The model is retrieved in an Abstract Syntax Tree.   

 

These are some important characteristics that make Recoder a special parser:  

 

Semantic entities (Type, Variable) are distinguished from their definitions 

(TypeDeclaration, VariableDeclaration) and uses (TypeReference, 

VariableReference).  

The language specification distinguishes between type (of variables and 

expressions only) and class (of objects during execution). Recoder is not so 

strict.  

 

Addition of parent references to any syntactical elements. It allows easy access 

to arbitrary program elements as argument for a program transformation; avoids 

the need to traverse the trees to find the context of a program element. This 

direct access to syntax elements requires quick access to parents, which should 

be type safe.   

Note: recoder.Java.expression and recoder.Java.statement contain pure 

expressions and statements, respectively, but they do not contain all of them; 

many references are valid expressions, some of them are hybrids 

(ExpressionStatements).  

Note: Not all references are expressions, e.g. PackageReference, 

TypeReference. 
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2. Principles of translation 
 

This chapter describes the model created to represent the source code in graph 

terms.  

In first place, it illustrates the notation used to construct these graphs. In second 

place, it explains the transformation concepts.  

The transformation process is accomplished in a two level transformation: a 

preprocessing transformation that maps the class defined in the Java source 

code into the proposed Java graph model, and the generation of the 

transformation rules, obtained by applying the Java source code instructions to 

an object graph (i.e. an instance of the class graph produced in the first 

transformation stage).  

 

This chapter is divided into 4 sections. The first section explains the graph 

elements designed to map Java source code into graphs, i.e. the model that 

maps Java model into flat graphs.  

Sections 2.2 and 2.3 explain how the model explained in section 2.1 is used to 

perform the translation from the Java source to a graph. Simply put, the second 

section shows a class graph example, while the third section shows an object 

graph example. 

Section 2.4 describe in detail the mapping of Java instructions to production rules 

and how they are instantiated to obtain the production rules that represent certain 

Java program. 

2.1. Graph notation  

The graph representation of the Java entities is straightforward from the source 

code. The software units (classes, objects, methods, packages, statements, etc) 

are represented as nodes identified by its name and its type (or the entity that 

represent the name or type). While the software relations (inheritance, 

aggregation, ownership relations, etc.) are represented as edges.  

2.1.1. Nodes definition 

In this section, all node types defined to model Java code static information are 

listed . 

The model created for characterizing typed languages is achieved by 

representing in the same level objects and classes. 
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A class represents the common properties of all its instances. In this model a 

class is represented by a node with a self reference edge labeled with the full 

qualified name of the class. As shown in the figure 2.1.1.1 

 
Figure 2.1.1.1. Class node example 

 

The method node represents each one of the methods defined in a particular 

class. In order to distinguish among them they are labeled not just by their name 

but also by the type of their parameters (in the order they are defined). In a Java 

way like, that is to say, the types are replaced by its Java VM Type Signatures3. 

The figure 2.1.1.2 shows a method node for the method of the form: 

 String toString(){….} 

 

 
Figure 2.1.1.2. Method node example 

 

The object node corresponds to an instance of a class; it encloses its identifying 

and runtime information. As they are not self labeled with a particular name they 

can be referenced with labeled edges; this means that the objects are managed 

in a pointer like way. The figure 2.1.1.3 depicts an object node called size.  

 
Figure 2.1.1.3. Object node example  

 

                                                 
3 The general form of a Java method signature is: "(argument-types)return-type". 
The encoding for the Java VM Type Signatures is:  Z for boolean, B for byte, C for char, S for short, 
I for int, J for long, F for float,D for double, L for fully-qualified-class and [ for an array type  
For instance, the signature (I)V, for example, denotes a Java method that takes one argument of 
type int and has a return type void. 

size

toString():Ljava.lang.String

java.lang.String
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The method instance nodes represent each one of the calls of a specific method. 

Like the object nodes, the method instance nodes do not have any identifier. 

They are necessary because each object can call the methods defined by its 

class but each method call should have specific state depending on the state of 

the object that calls it, the value of the parameters passed, and the exact 

execution point in which they are. 

 

This exact point in the execution of each method is modeled with the instruction 

order node, an example of it can be seen in figure 2.1.1.4. The goal is to maintain 

the sequence of instructions determined by the source code. 

 
Figure 2.1.1.4. Instruction order node example  

 

The Java Virtual Machine (see figure 2.1.1.5) node was created in order to 

simulate the class loading and garbage collection. When a class is loaded is 

created a edge from the JVM node to the class node, in this way, each class is 

loaded just once and is easy to recreate the following reference algorithm do 

perform garbage collection (the nodes not referenced are deleted, the garbage 

collection starts to mark the referenced objects starting with the JVM references) 

 
Figure 2.1.1.5. Instruction order node example  

 

The nodes definition table (2.1.1.1) recapitulates the type of nodes defined to 

represent Java source code. The first column enumerates the represented 

software units. The second says if the node has an identifier (self reference with 

a particular label). The identifier can have two values: none (i.e. it does not have 

self referenced label) or the information that represents the label of this kind of 

nodes. The third column has an abbreviation for each kind of nodes in order to 

obtain a canonical textual representation of the defined graphs. 

 

JVM

<PC>
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Type Identifier Abbreviation4 

Class Fully qualified name of the class C, I (interface) 

Method Java signature of the method M 

Object None  O 

Method instance None MI 

Instruction order Index of the instruction IO 

Operation5 Operation identifier  OP 

Statement6 Statement name S 

Java Virtual Machine JVM JVM 

 

Table 2.1.1.1. Nodes definition 

2.1.2. Edges definition 

In this section, all edge types defined to model Java code information are listed. 

These edges complete the model by describing relations between object oriented 

entities and adding dynamic / execution information.  

 

The super edge connects a class node with its corresponding super class, and 

also an object node with its corresponding object node (i.e. an instance of its 

super class that will represent its super node, thus, there is a clear separation 

between the object level and the meta object level in the graph representation). 

This differentiation is exposed in the figures 2.1.1.2 and 2.1.1.4. Note that this 

distinction is very important in order to be capable of distinguishing among 

objects. For example, the fields are edges from the object container to the object 

contained labeled with the name of the field. As the fields belong to the object 

and not to the class each object must have a chain of super objects to offer a 

clear mapping from the meta model to the object space. As shows the figure 

2.1.1.2. 

                                                 
4 This abbreviation is just a textual simplified representation of each one of the types of nodes, in 
order to explain in a compact way its possible relationships in the edges’ table. 
5 The operation nodes represent the primitive transformations like addition, times, division, modulo, 
shift, logical and, etc.  
6 A statement node represents a control instruction of the language like if, for, while, etc. 
The operation node and the statement node are equivalent representations of the method instance 
node. They encapsulate primary transformations offered by the language in a defined semantic that 
allow its simulation. 
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Figure 2.1.1.2. Super class edge example 

 

The instanceOf edge allows the connection between the meta-model to the 

model by connecting the object to its classes, as shown in the figure 2.1.1.3. 

They are also used to describe the relation between a method itself and its 

executions, which is a fundamental step to simulate simple concepts like method 

calls or recursion. 

 
Figure 2.1.1.3. instanceOf edge example 

 

 
Figure 2.1.1.4. Super object edge example 

 

The method declared edge is a link between a method and its defining class. This 

establishes the interface of each class. For example, the following method would 

be described by the figure 2.1.1.5. 

public class Object(){ 

 ….. 

String toString(){….} 

} 

 

 

Java.lang.String
<instanceOf>

Java.lang.Object

Java.lang.String

<super> <super> 
<instanceOf>

<instanceOf>

Java.lang.Object

Java.lang.String

<super>
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Figure 2.1.1.5. Method declared edge example 

 

The object name edge permits naming objects. It is like a pointer that only allows 

method or assignment transformations. See figure 2.1.1.6. 

 
Figure 2.1.1.6. Object name edge example  

 

The method active edge indicates the method or statement that is being executed 

in a certain moment. It is created in the method / statement call (by the caller) 

and destructed in the method return / end statement (by the called). There is an 

example of this edge in the figure 2.1.1.7. 

 
Figure 2.1.1.7. Active / scope edge example 

 

The method caller edge gives to the called method instance the identity of its 

caller in order to provide its response (a return or a throw edge to the 

corresponding result of the method execution). This is illustrated in figure 2.1.1.8 

.If a return/throw statement appears in the source code method body, a new 

<return> or <throw> edge from the active method instance pointing to the 

returned object (an object instance of a subclass of Java.lang.Throwable or an 

object instance of any other class) is created.  

 

 

JVM 

<active> 

toString():LJava.lang.String

Java.lang.Object

<in>

<instanceOf>

size

toString():LJava.lang.String

Java.lang.Object

<in>
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Figure 2.1.1.8. Caller edge example 

 

When the last instruction of the method is executed all method instance relations 

are erased. If there is a returned object (an object instance connected from the 

method instance called by a <return> or <throw> edge), the method instance 

node will be replaced by the returned object. If there is not any returned object a 

void instance will be created to replace the method instance called. 

 
Figure 2.1.1.9. Caller edge example 

 

Furthermore, a new temporal variable edge (<0>) will be created from the method 

instance caller to the returned object and a new active edge (<active>) to the 

method instance caller. See figure 2.1.1.10. 

<return>

toString():LJava.lang.String

Java.lang.Object

<in>
<instanceOf>

Java.lang.String 
<instanceOf>

 

<caller> 

toString():LJava.lang.String

Java.lang.Object

<in>
<instanceOf> 

toString():LJava.lang.String 
<instanceOf>

myClass 

<in> 
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Figure 2.1.1.10. Temporal variable edge example 

 

The loaded class edge serves as connector between the JVM node and loaded 

class nodes. This edge representation is displayed in figure 2.1.1.11.In this way, 

if the JVM has not loaded any referenced class, its load production rule will be 

the only one that matches at the moment that this class is needed. Besides, it 

also can contribute for marking all referenced objects starting from the JVM node. 

The non marked objects are not referenced anymore and should be deleted. 

Thus the class edge permits to simulate garbage collection.   

 
Figure 2.1.1.11. Loaded class edge example 

 

The actual instruction (PC) edge is a link between a method instance and its 

corresponding index of instruction, see figure 2.1.1.12. Each method instance 

has its own order of instruction to simulate its state. 

 
Figure 2.1.1.12. Index of instruction edge example 

 

<PC> 

toString():LJava.lang.String

myClass

<in>
<instanceOf>

6

JVM
<class>

Java.lang.Object

 

<0> 

toString():LJava.lang.String

myClass

<in>
<instanceOf>

Java.lang.String
<instanceOf>
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The temporal variable edges are objects defined without any identifier. This edge 

links them to their parent scope, in other words to the method instance in which 

they were created. 

The operation result edge is an object name edge (named <0>) that has the 

result of executing an operation or statement. This means that they can point to 

the operation or statement node or to its result. 

 
Figure 2.1.1.13. Operands edge example 

 

The parameter edges are object name edges that correspond to each one of the 

parameters of a method instance, an operation or a control statement. They are 

named with the order they have in the caller definition (with positive numbers 

between <> starting with one). 

 

The edges definition table condenses the types of edges that symbolize relations 

of object model entities in a Java environment. The first column enumerates the 

relationships among the represented software units (method calls, inheritance, 

membership, etc). The second shows its corresponding labels. And the third 

column has an abbreviation for each type of edge to generate a canonical textual 

representation of the defined graphs. 

 

<0>

toString():LJava.lang.String

myClass 

<in> 
<instanceOf>

*

<2>

2

<1>

6
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Type  Identifier Description 

Super class  

Super instance 

–<super>  O1 –<super>  O2 

C1 –<super>  C2 

Instance of  –<instanceOf>   O –<instanceOf>  C 
MI – <instanceOf>  M 

Method declared –<in>   M  –<in>  C 

Object name –name   O1 –name  O2 

MI –name  O2 

Super interface –<implements>   C1 –<implements>  I1 

Active / scope –<active>  JVM –<active>  MI1 

JVM –<active>  S1 

Method caller –<caller>  MI2  –<caller>  MI1 

Normal return –<return>  MI2 –<return>  MI1 

Exception return –<throw>  MI2 –<throw>  MI1 

Loaded class  –<class>  JVM  –<class>  C 

Actual instruction  –<PC>  MI  –<PC>  IO 

Index of instruction – positive int  

–positive int $ positive 

int  

IO –positive int IO 
IO –positive int $ positive 

int IO 

Operation result / 

temporal variable 

–<0>  MI –<0>  OP 
MI –<0>  S 
MI –<0>  O 

Non named 

variables 

(Literals) 

–value   O –<value>  O 

Parameters –<1>  (first parameter) 

–<2> (second 

parameter)  

–<3> (third parameter) 

 … 

OP –< positive integer >  O 
MI –< positive integer >  O 
S –< positive integer >  O 
S1 –< positive integer >  S2 

 

Table 2.1.2.1. Edges definition 

 

Note that the edges artificially created in order to add object oriented semantics 

to the graph are enclosed by angled brackets (<>), the edges whose label is not 

surrounded by brackets are explicit relations in the source code like the variable 



 32 

names. The only exception is the index of instruction which identifies uniquely 

and adds ordering information.   

 

By composition of these relations plus the set of nodes we can represent with a 

flat multipurpose graph Object Oriented entities in a Java approach. 

2.1.3. Object oriented concepts as graphs 

Some elements are defined with other elements depending on its defining 

relations like aggregation, inheritance, dependency, etc. For example, the 

representation of an object is the representation of its class (package, methods 

and super class –with its package, methods and super class-) and the 

representation of the object itself (object node and its super object node –which 

can also have super object node-). 

 

A class is composed of the class node which is the main node, a super class 

edge pointing to its parent class node, a set of super interface edges 

(<implements>) pointing to its parent interface nodes, its method nodes 

connected to the class node with a method declared edge (<in>).  

 

An object is defined by the object node, linked to its class reference by an 

instanceOf edge (<instanceOf>) and to its super reference by a super edge 

(<super>). The class fields are represented as links from the object node to the 

values labeled with the name of the field (fieldName).  

 

A method is constituted by the method node linked to its class. A method cannot 

be linked to two different classes, the declared in edge (<in>) means that this 

method is defined in the pointed class.  For example, if there is method 

overloading, there will be a method node per declaring class. 

 

A method instance is formed by its method instance node linked to its method by 

an instance edge (<instanceOf>). When the method instance is called is created 

its caller edge (<caller>) pointing to the method instance that called the method, 

then, its this edge (<this>) is created pointing to the object that invokes the 

method call. If there is not an invoker object it is assumed that the actual object 

instance is the one that calls the method, in such case the invoker object is the 

same pointed by the this edge in the caller method instance.  
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The local variables (those ones created inside a method execution) are named 

using a name edge (name). The parameters edges (<number>) point to the 

objects sent to the method, in which the number indicates the order in which they 

are expected. Remark: in this version, the Translator only represents sending 

parameters by reference. Once these information requirements are fulfilled, the 

method instance is ready to start its execution.  

Finally, so is its actual instruction edge (<PC>) will point to an instruction 

operation node labeled with a index of instruction zero (0). Also the <active> 

edge that is created, it indicates that the instructions of this method are those that 

will be applied, this means that the active edge actualizes the scope. 

 

When the method call ends, the caller edge is used with return purposes, this 

means, a return edge (<throw> or <return>) is created from the caller pointed 

node to the returned object node. 

 

The information obtained as a result of a production rule application is execution 

time information; it can be simulated by applying a production rule that clean up 

the environment created by the previous one but the applications of these rules 

are transparent for the user. For more detail see end production rules examples 

in section 2.4. 

2.2. Class graphs 

A class graph is the name given to a graph that represents any possible 

reference to a given class; this means, its fields, its methods and its super class. 

This is achieved by modeling in a generic way every relation of a class. Any class 

is modeled with 3 basic types of relations: the methods that define (<in>), the 

fields that comprise it (name) and all its super types7 (<super>).  

The class graph comprises the object and class level, each class node has its 

corresponding object instance and each method node has its corresponding 

method instance. 

 

For example, the class graph for C2 would be 8: 

package p1; 

public class C2 extends C1{ 

                                                 
7 Chain of classes that extend. 
8 Note that all the source code in the example has public modifier, this is done because the model 
currently does not support modifiers. 
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 public C3 myField; 

 public C2(){} 

 public void m1(){} 

} 

 

package p1; 

public class C1{ 

public C1(){} 

 public void m1(){} 

} 

 

package p1; 

public class C3{  

public C3(){}  

} 

 

 

Figure 2.2.1. Class graph for class C2 

 

The class C2 is composed of the class node  (p1.C2), a super class edge 

pointing to its parent class node (p1.C1), an empty set of super interface edges 

pointing to its parent interface nodes and its method nodes connected to the 

class node with a method declared edge -C2(), m1()-. 

p1.C1 

p1.C2 

p1.C3 

<init>() 

 

 

 

<super> <super> 

<instanceOf> 

<instanceOf> 

<instanceOf> 

<in> 

myField 

<init>() 
<in> 

m1() 

<in> 

m1() 

<in> 

<init>() 

<in> 
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The object instance of C2 is defined by the object node, linked to its class 

reference by an instanceOf edge (p1.C2) and to its super reference by a super 

edge. The class fields are represented as links from the object node to the values 

labeled with the name of the field (myfield which is a C3 instance).  

2.3. Object graphs 

The object graphs are instances of class graphs. Essentially they are class 

graphs with values for the instances of the primitive classes; they are objects in a 

given execution time (with a specific IO value). 

 

For example, the class graph for C2 would be: 

 

package p1; 

public class Main{  

static public void main(String[] args){ 

C2 c = new C2(); 

c.m1(); 

} 

} 

 

package p1; 

public class C2 extends C1{ 

 public C3 myField; 

public C2(){} 

 public void m1(){} 

} 

 

package p1; 

public class C1{ 

public C1(){} 

 public void m1(){} 

} 

 

package p1; 

public class C3{ 

public C3(){} 

} 
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Figure 2.3.1. Object graph in c.m1(); 

 

p1.C1 

p1.C2 

p1.C3 

m1() 

 

 

 

<super> <super> 

<instanceOf> 

<instanceOf> 

<instanceOf> 

<in> 

myField 

m1() 

<in> 

JVM 

[] 

p1.Main 

Java.lang.String 

main(LJava.lang.String[]) 

<in> 

<class> 

<class> 

<class> 

<1> 

<1> 

<class> 

<instanceOf> 

2 

 <instanceOf> 

c 

<class> 

null 

<this> 

0 

<PC> 

 

<instanceOf> 

<this> 

<active>

<caller> 

<2> 

<PC>

<PC>

<init>() 

<in> 

<init>() 

<in> 

<init>() 

<in> 

<init>() <in> 

<init>() 

<in> 
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2.4. Pattern rules  

The semantic established by a code transformation can be represented as a 

production rule. This generic production rule can be ‘instantiated’ by filling its free 

variables with the matching equivalents of any object.  

This section explains the principal contribution of this thesis, which is the 

translation into production rules of the semantic of Java statements. 

 

The statements chosen were: for representing the branch the if statement; for 

representing the loop the while statement; for representing method interactions 

the method call and return and for representing object transformations: 

assignment, operators, variable and field declarations.  This set of statements 

aim to be a minimal to reproduce basic Java functionality and to proof that it can 

be represented without loss of information as graph transformations. 

 

The following sections will explain in detail how the semantic of these statements 

was model into rule patterns. 

2.4.1. Literal creation 

A literal is an object in particular a primitive class instance that does not have 

name. For example, 5, 2.5 or “hello world!”.  

They are differentiated by their value. Furthermore, their value is not only 

necessary to distinguish between them but also the allow operators execution. 

As they do not have explicit creation statements it is compulsory to create them 

each time they are mentioned, otherwise the following instruction will not find its 

entire required 

elements.

 
Figure 2.4.1.1. Literal creation generic production rule 

 

value <instanceOf>

 
<active>

x x+1 

<PC> 
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To create a literal is necessary to know its value, its type node, and the active 

node. As the figure 2.4.1.2 depicts a new node is created in order to represent 

the literal object, then it is added a self referenced edge labeled with the literal 

value and an instanceOf edge from the new node to the type node. Finally the 

index of instruction edge is replaced by another labeled with the next integer 

value. 

 
Figure 2.4.1.2. Literal creation production rule application example 

 

The example in the figure 2.4.1.2 shows the result after applying the literal 

creation rule. In this case, was created a 5, and the actual instruction was 

incremented by one. The narrowed elements in the initial graph mark the 

corresponding match to the rule shown in the figure 2.4.1.1. 

2.4.2. Variable declaration 

A variable is a named object only can be accessible inside a well defined scope. 

The scope is given by the method or statement in which the variable was created.  

To represent the scope, variables are created at the in the instruction order 

indicated by the source code and destroyed with their scope. This representation 

allows in a nested scope to access the parent scope variables, but a high scope 

will not attempt to refer a internal scope variables because the inner scope will be 

executed and deleted once it instructions are finished. 
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Figure 2.4.2.1. Variable declaration generic production rule 

 

The actual scope is represented by the active edge that explicitly points to the 

method instance or statement whose instruction is executing in a given moment. 

The variable name is the label of an edge that links the scope node to the new 

object node. 

As illustrates the figure 2.4.2.1, creating a new variable means create the node 

that represent as object, create its name edge form the scope node to the 

variable node and a instanceOf edge from the variable node to its type node. 

Then replacing the index of instruction by another edge labeled with the next 

integer value.  

 
Figure 2.4.2.2. Variable declaration production rule application example 

 

The example in the figure 2.4.2.2 shows the result after applying the variable 

declaration rule. In this case, a new variable i of type int was created inside the 

method compareTo, and the actual instruction was incremented by one. The 

narrowed elements in the initial graph mark the corresponding match to the rule 

shown in the figure 2.4.2.1. 
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2.4.3. Operations 

An operator performs an action on one or two operands. As result of performing 

the specified action, an operator can be said to return a value (or evaluate to a 

value) of a given type. The type depends on the operator and the type of the 

operands. To evaluate to a value means that after the action is performed, the 

operator and its operands are effectively replaced in the expression by the value 

that is returned.  

 

The operations are operator’s actions, they are modeled as a node that 

represents the operator, and in order to be able to apply them unambiguously 

they are self referenced with the operator and a reference to its operands: the 

first one labeled with a <1> and the second one labeled with a <2>. With the 

purpose of leaving the value obtained as the operation result, the scope node 

(the method or statement active) is connected to the operator node with an edge 

labeled <0>.  

 
Figure 2.4.3.1. Operations generic production rule 

 

The figure 2.4.3.1. presents a general operation production rule. It is possible to 

appreciate the prerequisites to create them: the scope node (method or 

statement active), the index of instruction edge (in this case represented with an 

x) and the operand nodes. With them the production rule construction consists in 

creating the operator node and self reference (labeled with the operand), the 

operand edges (labeled <1> and <2> respectively) and the result edge (labeled 

<0>). Finally, the value in the label of the instruction edge is incremented by one 

to indicate that the operation call was completed.  
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Figure 2.4.3.2. Operations production rule application example 

 

The figure 2.4.3.2 demonstrates how is created a new operation call. The 

narrowed elements in the initial graph mark the corresponding match to the rule 

shown in the figure 2.4.3.1.. 

 

 
Figure 2.4.3.3. End operation production rule 

 

Once the operation is executed the operands edges (labeled with <1> and <2>) 

and the operator self reference will be deleted. The operator node will acquire a 

new self reference labeled with the literal value obtained from the operation 

evaluation. The picture above presents the result of executing an operation. 

This evaluation is done automatically by the simulator that is in charge of 

evaluating the operation and creation of the literal obtained as result. 

Nevertheless, it must be simulated somehow by the Translator in order to 

maintain the object graph consistent for the creation of the next instruction, for 

that reason, and given that it will not always have the values of the operands; it 

limits to delete the operator and operands nodes and leave the object graph with 

the representation of the operation result but without its value. 
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Figure 2.4.3.4. Operations production rule application example 

 

The figure 2.4.3.4. exemplifies how an operation application would see in the 

simulator. The narrowed elements in the initial graph mark the corresponding 

match to the rule shown in the figure 2.4.3.3. 

 

2.4.4. Assignment 

The assignment is an operation that modifies the value of the left hand side 

object with the value of the right hand side object.  The right side of an 

assignment expression is always known because it is evaluated before the 

assignment takes place. 

 

The assignment is represented as a change of pointed value in a given variable. 

This is accomplished deleting the variable edge and creating a new one exactly 

as the deleted one except for the target value that points to the correct side 

object node. As any operation the assignment modifies the instruction edge 

incrementing its value by one to express that the assignment is done. This graph 

transformation is shown in the graphic below. 
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Figure 2.4.4.1. Assignment generic production rule 

 

The figure 2.4.4.2 shows an assignment execution, the narrowed elements in the 

left hand side graph are the ones that match the production rule of the figure 

2.4.1.1. As shown in the example, the initial node value of the variable is not 

deleted in the production rule for two reasons: it does not occur when an 

assignment takes place and it could have other objects that reference it. The non 

referenced objects are supposed to be deleted with another production rule that 

would simulate the execution of a garbage collector. 

 
Figure 2.4.4.2. Assignment production rule application example 

 

2.4.5. Methods 

Methods define how an object responds to a message or request. Each method 

has its own scope, for that reason each time a method is called a new method 

instance is created with some requires variables in order to be able to be 

executed.  
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Consider: variable = object.method(variable2); 

 

The following process takes place: 

1. Find object pointed to by object, let’s call it invoker. 

2. Find code for that object’s class 

3. Find code for method()  

4. Find object pointed to by variable2, this is the parameter passed to the 

method execution 

5. Run code 

6. Return value  

7. Use returned value and assign it to variable  

 

From the first to the fourth steps allow creating a new one for the new method 

instance, we will call it method creation environment and saving the actual state 

of the execution to be able to return to the previous scope once the method 

execution has finished. To execute the fifth step is necessary to effectively call 

the method. Finally, a method can have a return statement that indicates to the 

caller object which object is the result of the request. In some cases the method 

just changes the internal state of the invoker and does not need to return any 

object, in those cases, it returns a void object. The return statement execution is 

called here method return. 

 

As these macro steps of the method call are carried out in the following order: 

1. Method environment creation 

2. Method call 

a. Method execution 

3. Method return 

4. End method call 

 

The method execution assumes that the method called has pre established its 

parameters, and environment references and just executes as any instruction. 

 

The end method call performs at once: the destruction of the method 

environment, the return of the control to the caller scope and the storage of the 

returned object in a non named value. 
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2.4.5.1. Method environment creation  

The method environment creation rule creates a new method instance given its 

invoker object node, its method node, the active node (in order to save the 

previous execution environment) and its parameters. 

 

With those elements it creates the new instance method node, connected to the 

previous scope node by a caller edge, to the invoker object by a this edge, to its 

method node by an instanceOf edge and to its parameters by edges labeled with 

the expected order of parameters. To indicate that the method environment 

creation was finished, it also increments by one the instruction edge, as illustrates 

the figure 2.4.5.1.1. 

 
Figure 2.4.5.1.1. Method environment creation generic rule production 

 

The generic production rule knows that the number of parameters is variable, i.e. 

a method may not have any parameters. For this reason, the specific production 

rule may or may not have these edges. The figure 2.4.5.1.2.a depicts a method 

creation environment production rule of a method with one parameter. 

 
Figure 2.4.5.1.2.a. Method environment creation production rule example 
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The picture 2.4.5.1.2.b. shows a method environment creation execution, the 

narrowed elements in the left hand side graph are the ones that match the 

production rule of the figure. 2.4.5.1.2.a  

 

 
Figure 2.4.5.1.2.b. Method environment creation production rule application 

example 

2.4.5.2. Method call 

The method call effectively activates the new method instance by giving to it two 

essential elements to, its own instruction index node with an initial instruction 

zero and activates its scope with the active edge. In order to be able to construct 

this production rule is necessary to have the active edge, the new method 

instance and the instruction index node of the actual scope node. The generated 

production rule is depicted in the following illustration. 

 

The creation of a new instruction index node can also be called as PC nesting 

because the new instruction index depends of the previous one by a PC edge. 
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Figure 2.4.5.2.1. Method call generic rule production 

 

The figure 2.4.5.2.2 illustrates how a specific method call production rule match in 

a graph and which is the resulting graph once the rule is applied. The elements in 

the left hand side graph irrelevant for the rule application are not narrowed. 

 
Figure 2.4.5.2.2. Method call production rule application example 

 

2.4.5.3. Method return  

Some methods contain a return expression. However, the value-returning 

methods as the void methods will have a return edge that explicitly points to the 

returned object or to a void object if it does not have return statement. 

 

To create a method return production rule is necessary to have the returned 

object node, the method instance node (is also the active scope node), and the 
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instruction edge. With these elements the production rule is generated by 

creating a return edge from the method instance node to the returned object 

node, and replacing the value of the instruction edge label for the next one. Note 

that replacing a label of an edge or its source or target nodes implies delete the 

existing edge and creating a new one with the desired elements because the 

edge identity is given by its set of components.  

 
Figure 2.4.5.3.1. Method return generic rule production 

 

The figure 2.4.5.3.2 depicts the application of a specific method return production 

rule. The narrowed elements are those that match with the rule, what means that 

they are required for applying the rule. 

 
Figure 2.4.5.3.2. Method return production rule application example 
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Once the method execution has ended the method environment must be deleted 

in order to return to the execution point in which the method was invoked. In other 

words, the method instance and all its required references (caller, method, 

invoker object, parameters and instruction index) are deleted. The node pointed 

by the return edge is linked to the caller scope node as a non named / temporal 

variable, and the active edge leave of pointing the method instance to point to its 

caller scope.  This can be seen in the figure 2.4.5.1.  

 
Figure 2.4.5.1. End method environment creation and method call production rule 

 

2.4.6. If 

The representation of if statement is solved in 3 steps: 

1. If condition  

2. Then (or true branch of if 

3. Else (false if branch) 

 

As if condition is an operation result, it is evaluated before of any other part of the 

if statement. Once the condition is evaluated the if node is created in order to 

save the value of the condition evaluation and associate it to the if statement. 

Note that any type of if arrangement can be defined with this if-then-else basic 

representation. For example, consider: 
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} 

else{ 

 variable = variable + 1; 

} 

 

the previous code would be represented in the following way:  

  

 if (bool) 

 then  

  variable = 0; 

 end then 

 else 

 if (variable > 0) 

 then  

  variable = variable * -1; 

 end then 

 else 

  variable = variable + 1; 

   

 end else 

 end if 

 end else 

 end if 

 

Once the if node is created is necessary to create the transformation rules in the 

event that the condition had been evaluated as true or as false. Given that both 

then clause and else clause may have a dependent statement block, they must 

have a differentiating instruction edge that permits the execution of many 

instructions. Besides, they require a unambiguously instruction value which 

explicitly state in which branch of the if statement the instruction is situated. 

These two instruction conditions are accomplished by adding some special 

structure to this kind of statement nesting (statements inside the then-else 

statements). The first token would represent the if or parent statement, the 

second one would represent the value of the branch condition and the last one 

the index of the next instruction. For example the instruction index 8$1$0 would 

mean that the following instruction is part of the if statement whose instruction 

index is 8, is an instruction of the then clause because it is followed by the 1 (in 

this case it represents true condition) and is the first instruction (ends with a 0) of 
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the statement block of the then part in the if statement. An instruction index 

8$0$2 would mean it is the third instruction of the else branch of the if statement 

whose instruction edge label is 8. 

 

These special instruction indexes have two advantages: they allow a unique 

instruction naming representation and they permit the exact execution point of 

any nested instruction. 

 
Figure 2.4.6.1. If generic production rule 

 

The figure 2.4.6.1 depicts a new if node creation. To be able to generate it, it is 

necessary to have the active node that defines the scope in which if statement 

was created, the temporal variable that contains the value of the condition 

evaluation and the instruction edge that permits establishing the value of the next 

instruction. With these elements is created the new if node, its self reference that 

identifies it (if), and two temporal variable edges (those labeled with a <0>) the 

first one connects the active node to the new if node and the second one 

connects the if node to the condition value. As a new temporal variable edge is 

created from the active node to the if node, the previous one that pointed to the 

condition evaluation is deleted. Finally, the instruction index is replaced by 

another one with the previous label value incremented by one. 
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Figure 2.4.6.2. If true generic production rule 

 

In the picture above there is a then clause creation, as it shows, there is a special 

environment creation for this new block statement. It means that there is 

instruction autonomy because there is a special set of instruction indexes for the 

block statement (from x$1$0 to x$1$n), it also means that it is a new scope block 

and for that reason the active edge now points to then node (a self referenced 

true node which is temporal variable of an if node). 

 
Figure 2.4.6.3. If false generic production rule 

 

The figure 2.4.6.3 depicts an else clause creation, as the then clause there is a 

special instruction set of indexes and the active scope is transferred to the else 

node (a self referenced false node which is temporal variable of an if node). 

In order to create these branch production rules (true/then and false/else) is 

necessary to know which is the corresponding if node, the active edge, and the 

instruction edge. As these rules are generated based on the source code the 

graph does not have the condition execution value. Given that if condition is a 

boolean value it is inserted artificially into the graph when the branch is created; 

as it has its own set of instruction values, the condition value is not needed 
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anymore inside the generation and application of the production rules of the 

instruction block. 

The rule deletes the previous active edge and creates a new one with the same 

source node and label but with target the condition value node, the instruction 

index is replaced by an structured one depending on the branch created. 

 
Figure 2.4.6.4. If production rule application example 

 

The figure 2.4.6.4 shows an if statement creation. The narrowed elements on the 

left hand side graph are those that match for a specific if rule creation. The others 

are not required to apply the rule. 

 
Figure 2.4.6.5. If branch production rule application example 

 

The previous graphic illustrates a then (true branch) creation. The not narrowed 

elements on the left hand side graph are those irrelevant for the rule application. 
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Figure 2.4.6.6. End if branch and if production rules 

 

Once the branch set of instructions are translated the branch execution 

environment is destroyed, this means that the edge that connects the if node with 

its condition node is deleted, as well as the condition node. The previous scope 

(i.e. the node that called created the if node) is activated, deleting the active edge 

that was pointing to the branch node and creating a new one pointing to the 

previous scope node. The structure given to the instruction edge is deleted, 

remaining the value previous to the branch creation. 

Then is deleted the if production rule by removing the if node, its self reference 

edge (if) and the temporal variable edge that linked the previous scope node to 

the if node. Finally, the instruction edge labeled is incremented to manifest that 

the end if was accomplished. This rule (as all ending production rules) is 

executed in a transparent way to the user in order to maintain the graph 

consistency along the transformation (i.e. to simulate the instructions execution) 

but is not part of the output transformation rules. 

2.4.7. While 

The while representation is a slightly different from an if representation, the main 

difference is the while semantics, also represent an execution split but with an 

instruction set that must be executed as many times as the condition complies 

whereas when the condition does not comply the while execution must be 

omitted. 

Then the while is represented in four steps:  
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4. While jump to condition (final while instruction) 

 

The while condition is done exactly as the if condition the only difference is that 

the new node is a self referenced with a while label. This step is presented in the 

figure 2.4.7.1: 

 
Figure 2.4.7.1. While condition generic production rule 

 

Once the while node is generated the complying and not complying actions are 

generated. 

When the while condition is set to true, the production rule creates the 

environment for the while instruction block. This implies to transfer the active 

node to the while condition node and structuring once its instruction edge. This is 

done because there is no need to distinguish between the execution when the 

condition is true and when it is false, because when it is false it just continues the 

previous scope instruction order. The figure 2.4.7.2 illustrates how a while true 

production rule is seen. 

 
Figure 2.4.7.2. While true generic production rule 

 

When the while condition is set to false, the rule created must destroy the while 

statement and jump out the while scope. In other words, it has to delete the while 
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and condition nodes and their relations, this includes self references (while and 

false), temporal variable edge that connects the active scope node and the while 

node and temporal variable edge that links the while node to its condition node. 

The instruction edge labeled is replaced with another with the next value, in order 

to jump to the instruction after the while statement. See figure  2.4.7.3. 

 

 
Figure 2.4.7.3. While false generic production rule 

 

The next graphic displays a while statement creation. The narrowed elements on 

the left hand side graph are those that match for a specific if rule creation whose 

instruction edge is 10. The others elements (like the JVM edge) are not required 

to apply the rule. 

 
Figure 2.4.7.4. While production rule application example 

 

The figure 2.4.7.5. shows a while instruction block creation. The not narrowed 

elements on the left hand side graph are those irrelevant for the rule application. 

 

false

 

x x+1 

<PC>

<active>

while

<0>

<0>

JVM 
<active>

9

<PC><0> 

JVM
<active>

 

10

<PC>

while 

<0> 

<0>



 57

 
Figure 2.4.7.5. While true production rule application example 

 

Once the instruction block is translated the true while branch execution 

environment is destroyed, this means that the edge that connects the while node 

with its condition node and the one that connects the previous scope (i.e. the 

node that called created the while node) to the while node are deleted, as well as 

the condition and while nodes. The previous scope is re-activated, deleting the 

active edge that was pointing to the condition node and creating a new one 

pointing to the previous scope node.  

Finally, the instruction edge structure is eliminated and its obtained value is 

decremented to ensure that the last while block instruction will jump to reevaluate 

the condition. 

 

 
Figure 2.4.7.6. While jump to condition production rule 
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3. Tool Description 
Translator is a software application developed using Java language. It is 

designed on top of GROOVE (GRaphs for Object Oriented Verification). To learn 

more about GROOVE, see [4].  

 

This software is result of a graduate final project, carried out with TRESE, 

Computer Science, University of Twente, The Netherlands. Translator was 

developed by Angela Lozano (Software Designer and Programmer) and Arend 

Rensink (Project advisor and facilitator of Twente University). 

 

This section explains how to use or extend the Translator application.  

3.1. User guide 

Translator allows you to translate from Java source code to graph transformation 

rules. By using Translator you can get a set of files that represent the semantics 

of a Java source code. With these files you can simulate the code execution. In a 

future version GROOVE will be able to verify the code consistency. Finally, 

Translator is useful in creating simple and intuitive graphical representations of 

Java programs. 

 

This section is to provide guidance on using Translator tool. 

3.1.1. System Requirements 

As this software is developed using the Java language it requires its system 

specification. This specification is stated in Java documentation, for more 

information please visit: http://java.sun.com/j2se/1.4.1/install-windows.html if you 

have Windows as operating system, http://java.sun.com/j2se/1.4.1/install-

linux.html if you have Linux as operating system and 

http://java.sun.com/j2se/1.4.1/install-solaris.html for Solaris machines. 

Using a more powerful system will certainly enhance the software performance. 

3.1.2. Installation Instructions 

This program is built using Java Language; this means that you need the Java 

Development Kit, known as JDK/SDK/J2SDK. Before you run Translator, you 

must install the JDK 1.4 software in your pc. 
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The first step you have to do is get the software from: 

 http://java.sun.com/j2se/1.4.1/download.html   

Next steps are explained here: 

 http://servlet.java.sun.com/help/installation/   

Make sure JDK is properly installed and class paths are set. Details for Linux and 

Solaris operating systems see: 

http://java.sun.com/j2se/1.4.1/docs/tooldocs/solaris/classpath.html    

For windows operating systems please go to: 

http://java.sun.com/j2se/1.4.1/docs/tooldocs/windows/classpath.html  

 

Now that you have configured your JDK, you can proceed with the GROOVE 

installation, needed for viewing and simulating Translator files. 

First, download the zip archive with the jar and batch files from: 

http://www.cs.utwente.nl/~ GROOVE 

Then, unzip and copy the jar (*.jar) and scripts/batch (.bat extensions are for 

Windows 

batch files, extension-less files are Unix shell scripts) files to a suitable local or 

system-wide directory, e.g., (for Unix) $HOME/lib/GROOVE or (for Windows) 

"C:\Program Files\GROOVE" 

Finally, modify the scripts/batch files so that they contain the correct references to 

the jar directory and an installed jdk bin directory (JDK 1.4). For instance,  

set JDK="C:\Dev\j2sdk1.4.1"  

set LIB_DIR="C:\Documents Program Files\GROOVE" 

3.1.3. Instructions of use 

The tool set comprises the following tools (.bat extensions are for Windows 

batch files, extension-less files are Unix shell scripts): 

− Editor[.bat]: for editing graphs and graph production rules. 

− Viewer[.bat]: for viewing existing graph production systems, i.e.,  collections 

of graph production rules. 

− Simulator[.bat]: for simulating graph production systems, starting in a given 

initial graph. 

− Translator[.bat]: for mapping form Java source code to production rules 

 

To run the software in Windows, double click on the Translator.bat file in the 

batch files directory. In Unix execute the script Translator. 

The application starts and the following window should appear. 
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Figure 3.1.3.1. Starting the application 

 

The first button in the tool bar which has the icon , it allows you to select the 

Java source file to translate. Once you have pressed it, you can see a window as 

shown below. 

 
Figure 3.1.3.2. Loading Java file to translate 

 

This window will show you only Java source files (*.Java) and directories.  Once 

you have found the desired file to translate you can press the button labeled 

Open. If you click this option accidentally simply click the button labeled Cancel. It 

will not change the Java file to translate.  
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The second button in the tool bar which has the icon , it allows you to select 

the directory in which all production rules will be saved in a package-class-

method hierarchical way. Once you have pressed it, you can see a window as 

shown below. 

 

 
Figure 3.1.3.3. Specifying the desired target directory 

 

This window will show you only directories.  Once you have found the desired 

directory in which you want to save the production rules you can press the button 

labeled Open. If you click this option accidentally simply click the button labeled 

Cancel. It will not change the target directory.  

 

The last button in the tool bar which has this icon:  is that starts  the 

transformation. Once you have pressed it the bottom of the window (section 

below the tool bar) will be filled with the hierarchical organization of the 

production rules as shown below. 
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Figure 3.1.3.4. Translator output 

 

If you have already translated a Java file, and you want to translate other Java 

files, you can repeat the process. In any time you can also change the desired 

target directory. 

3.1.4. Output directory structure 

The packages, classes and methods are represented as directories. The 

methods are subdirectories of the classes and the classes are subdirectories of 

their package directory. The packages also can be nested into other packages. In 

this way, the production rules’ file structure also represents the ownership of a 

method to its class, the property of a class to its package and of a package to its 

parent package. 

 

For example, let’s consider: 

 

package myPackage.mySubPackage; 

import myPackage.MyInterface; 

 

public MyClass  

extends MySuperClass  

implements MyInterface{ 

String variable1; 

 

public void myMethod (String parameter1){ 
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variable1 = parameter1; 

} 

} 

 

This Java source code would give as output the following directory structure: 

 
Figure 3.1.4.1. Translator directory structure 

3.1.5. Reporting bugs 

If you find any kind of error (bugs), you can report to 

groove_software@yahoo.com . In this way, you can help us to improvement the 

on coming versions of this application.  

Fill out the following questions completely. The information requested is essential 

to solve the problem. Nevertheless, sending the error report is not a guarantee 

that the problem will be resolved. 

 

Type of bug  

Select: 

− Bug if some feature of the product does not perform to the 

documentation.  

− Request for enhancement if there is some feature not present in the 

product which you feel should be included.  

   

Product:   

Select: 

− Editor if you have troubles editing graphs and graph production rules. 

− Viewer if you have troubles viewing existing graph production systems, 

i.e., collections of graph production rules. 

    default 
  myPackage 

  mySubPackage 
 MyClass 

 $clinit() 
 $init()V 
 $link() 
 $load() 
 myMethod(Ljava.lang.String)V 

1.gpr 
2.gpr 

…. 
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− Simulator if you have troubles simulating graph production systems, 

starting in a given initial graph. 

− Translator if you have troubles mapping form Java source code to 

production rules. 

 

Synopsis: 

Enter a one line summary of your report. Please be specific.  

 

Description: 

Enter a detailed description of the problem. Please describe only one 

problem per report. For multiple problems, file a separate report for each 

one.  

 

Frequency: 

Select, how often does the bug occur?    

− Always 

− Often 

− Occasionally 

− Rarely 
 

Steps to Reproduce: 

Describe the step-by-step process we can follow to reproduce this bug.  

  

Expected Result: 

Describe the results you were expecting when performing the above 

steps.  

  

Actual Result: 

Please report the actual results that you saw.  

 

Error Message(s): 

Exact text of any error message(s) that appeared or any trace information 

available.  

 

Severity: 

Select, what impact does this issue have on developing your software?   
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− It is impossible to continue working without resolving this error. 

− It is difficult to continue working without resolving this error. 

− It is possible to continue working without resolving this error. 

− No Impact. 
  

User Info  

Please give us some information about yourself. Be sure to include a valid 

email address. We will use this data for communications with you to clarify 

issues regarding the report you submitted and/or status of that report. 

− Name:     

− Email:    

3.2. Programmer guide 

Translator is a subsystem inside GROOVE tool. It translates Java source code to 

production rules.  

Translator creates a hierarchical directory structure that represents the Java 

hierarchy: packages-classes-methods. The application save the production rule 

files inside the method directories to which they belong. These production files 

are XML files produced by GROOVE.  

 

This section explains in general terms how the tool was built. 

3.2.1. Requirements 

Translator must create production rules that represent a Java program given its 

source code. These rules must also be compatible with GROOVE output format. 

Performance is not a requirement for the first version of Translator. 

3.2.1.1. Project risks 

There is a technical risk because the main programmer requires significant 

learning of the theoretical foundation of the project as well as experience with 

GROOVE and Recoder. 

Since the there are two persons working in order to achieve a similar kind of 

translation (Java source code and Java byte code to production rules) the 

communication needs to be carefully coordinated, efficient and effective. 
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3.2.2. Background 

This section describes the software environment in which the Translator was 

developed that is to say GROOVE and Recoder architectures. 

3.2.2.1. GROOVE 

GROOVE follows a design style that contributes to its quality because it assures 

a strong cohesion and low coupling. 

The high cohesion is achieved by having classes and methods with a specific 

well defined task; in this way following the application logic is painless. In 

GROOVE this characteristic is made evident by the class hierarchy; all concepts 

mapped by a class are first abstracted as their common interface, then if there 

are some common behavior features, they are encapsulated in an abstract class 

and, finally, the different kinds of a concept are represented as various classes 

that inherit the concept interface and concept abstract class. Additionally, each 

concept has a default representation. For instance, see Label (interface), 

AbstractLabel (abstract implementation) and DefaultLabel (default 

representation), in GROOVE’s class diagram figure 3.2.2.1. 

 

The light coupling is reached by reducing the interactions between a method and 

other objects, in other words, by giving each method a simple task it is an 

accesor or it is a modifier method. GROOVE provides low coupling by sharing 

utility functions that do not modify the parameters received, also by creating a 

different class for each kind of concept because it allows having custom-made 

methods. 

 

Moreover, its documentation is complete in the sense that it describes the 

purpose of the code, its required and provided information and the required 

conditions to execute it. In this way, GROOVE pretends to maximize its 

reusability and extendibility 

 

GROOVE is divided into 8 packages. Most of them are intended to model a 

conceptual layer in the system. For example: groove.graph, 

groove.trans, groove.lts and groove.Translator. The rest of 

them (i.e. groove.gui, groove.io groove.jgraph and 

groove.util) represent functionality layers provided as interface or 

convenience utilities for the conceptual packages.   
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The groove.graph package defines the basic concepts and their properties 

like graph, nodes, edges, labels. It also defines the concept of morphism.  

The groove.trans package defines the production rule terms like the 

production rule and the negative application conditions, it does not define the 

created, required and deleted element concepts because this is set for default 

when a morphism is established. It also characterizes the derivation or rule 

application notion. 

The groove.lts package is dedicated to define the labeled transition systems 

that are all possible derivations given a set of production rules. 

The groove.gui package is responsible for the visualizing functionality; 

groove.io package is in charge of GROOVE’s input and output functions; 

groove.jgraph package was developed to extend the graphs visualization 

and groove.util package is for general convenience functionality. 

 

The Translator package contains the one developed in this project and is treated 

in the section 3.2.3. 

 

The figure 3.2.2.1 depicts GROOVE’s UML class diagram. 



 68 

graph
+HashGraph
+DefaultLabelSet
+Graph
+DefaultEdgeSet
+Node
+DefaultLabelList
+Edge
+DefaultMorphism
+InjectiveHashMorphism
+AbstractGraph
+AbstractNodeMap
+DefaultInjectiveMorphism
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+AbstractEdgeSet
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+EdgeIterator
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+LabelFormatException
+LabelSet
+NodeIterator
+DefaultNode
+Relabellable
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+Label
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+DirectDerivation
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+RuleSystem
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+StructuredRuleName
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+RuleGraph

lts
+State
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+DefaultLTS
+LTS
+DefaultState
+Transition

gui
 StateFrame
+Viewer
+MyMarqueeHandle
 LayoutAction
+Simulator
 RuleJTree
 LTSFrame
+SimulationListener
 RuleFrame
+Editor
 MyJGraph
 UndoHistory

io
+XmlException
+AbstractXml
+XmlRuntimeExceptio
+GrooveFileView
+Xml
+Validator
+Gxl
+ExtensionFilter

util
+Tokenizer
+ConversionExceptio
+Assert
+History
+Groove
+Converter

jgraph
+GraphJMode
+RuleJModel
+JModel

transformer
Model
gui
reference
rulePatterns
+Main
+Translator
+Edges
+JavaGraph
+CurrentState
+VisitorAdapte

 
Figure 3.2.2.1.  GROOVE’s class diagram 

 

3.2.2.2. Recoder 

Recoder is built with a layer architecture, it contains the Intermediate 

Representation Layer that maintains the intermediate representation of the 

programs being manipulated, i.e., the model of the programs, on top of it the 

Refactoring Command Layer  that maintains a worklist of the refactoring 

commands of the user, and provides a simple transaction concept for interactive 

use of Recoder.  

 

The intermediate representation layer is conformed by: 

translator 
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Reading/Writing Layer: This layer reads and writes programs, classes from and 

to files.  These are the layer components: 

− Parser. The Recoder parser is generated from a JavaCC grammar.  

− Java program factory. The parser calls factory functions of the Recoder 

abstract syntax tree (class Recoder.Java.JavaProgramFactory). 

Internally, the factory calls the constructors of the AST classes, but hides 

the actual form of the AST so that the AST can be easily exchanged.  

− Pretty printer The pretty printer prints an AST to file or a stream. It is 

hand-written, and exists in several versions: Java pretty printer, html 

writer, JXML writer.  

 

Source File Repository Layer: 

 The source file repository maintains all ASTs, including a mapping from file 

names (source file names, byte code file names) to ASTs. It starts the parser and 

the pretty printer if desired.  

 

Definition objects handling  

This layer handles definitions of the program (the abstract model). Definitions are 

types (classes and interfaces), methods, attributes, packages, and other 

semantic objects of Java programs. All these objects have been checked by the 

Recoder semantic analysis, i.e., are valid in terms of Java semantics. The main 

facade classes of this layer are  

 

− Recoder.service.NameInfo: maintains the meaning of names, and can 

load classes from file, given their name  

− Recoder.service.SourceInfo: maintains the relation between AST 

elements and semantic (abstract) objects, i.e., between source and 

abstract model.  

 

Cross-reference info handling. 

The cross reference info (class CrossReferenceService) links all definitions 

(variables, parameters, fields) to their references. For refactoring, this information 

is indispensable, to rename methods, fields, and classes.  

 

The core of Recoder is its program model. It is structured in two packages: the 

Recoder.Java.* that contains the abstract syntax trees (AST) classes i.e. it 
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contains the source model and the Recoder.abstraction.* has the program 

definitions or abstract model.  

3.2.3. Translator architecture 

This section explains the architecture of Translator. Each section describes the 

purpose of groove.Translator package and how it is reached.  

 

The groove.Translator package encapsulates the code transformation into 

production rules. This package is in charge of direct the transformation process.  

 

This process starts when a frontage class 

(groove.Translator.gui.Application1)  calls the main method in the 

Main class, this method creates a Recoder.ServiceConfiguration object and set 

its properties, then it calls a method that given a Java source file, it returns the 

AST root node.  

A new Translator object is created with the AST root node, the output directory 

and the service configuration. It has a field of type CurrentState inherited from its 

super class. When the Translator object is created calls a method in the Current 

State that performs a preprocessing transformation that gives as result a class 

graph of the Java source code.  

 

Then, the main method starts the AST tree visitation. 

The AST navigation and visiting is performed by the Translator and its super 

class. While the tree is traversed the production rules are generated. Depending 

on the kind of node to which the visitor arrives; if the node is one of the modeled 

instructions, the production rule is created and it is applied to an object graph 

(which represents an instance of the Java source code that is been processed). 

This object graph is accessed through the current state field.  If the node is not 

modeled the application will anyway visit its children and printing in console that it 

visited those nodes. 

Each time that a production rule is generated it is saved to inside its 

corresponding method directory, and its name is the instruction edge label. 
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SourceVisitor
VisitorAdapte

gui
+Frame1
+JavaFileFilter
+MyDirectory
+Frame1 AboutBo
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+MyFile
+DirectoryFilter
+Application1

rulePatterns
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+EndOperator
+EndWhile
+DeclareVariable
+BranchIf
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+RulePattern
+EndMethodCall
+MethodReturn
+UnaryOperators
+If
+MethodCall
+EndIf
+BinaryOperators
+While
+Return
+BranchWhile

reference
+Reference
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+DefaultGraphReferenc

Model
+ClassModel
+StateGraph
+NamedClassInstance
+ClassGraph
+Classes
+PC
+ClassInstance

DefaultGraph
JavaGraph

Edges

CurrentState Translator

Main

 
Figure 3.2.3.1.  Translator package class diagram 

 

The diagram 3.2.3.1 shows the Translator sub packages and its classes.  

The Edges class stores in constant fields (abstract final) the name of all edges 

defined to represent Java code (for example instanceOf, super, PC, active, class, 

etc). The JavaGraph class of DefaultGraph class, it has some methods that allow 

asking for graph elements as their ‘name’ or their relationships with other graph 

elements. 

3.2.4. Subsystem Design 

This section states how the packages and classes contribute to the translation 

process in order to get a clear idea of each package purpose. 

3.2.4.1. Model package 

The model package (groove.Translator.Model) is used to take 

advantage of the Java model information provided by Recoder in order to keep all 
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the required information about the class that is being processed and transform is 

into a class graph. It also provides a class that represents the object graph that is 

being translated to maintain its information in a consistent way.  

0..* 0..*

NamedClassInstanc

ClassMode

ClassInstance
ClassGraph

Classes

StateGraph

LinkedList
PC

 
Figure 3.2.4.1.1.  Model package class diagram 

 

ClassIntance, ClassModel, NamedClassInstance and Classes types model the 

processed Java source into a class graph into the ClassGraph class, with this 

graph the StateGraph class creates a new object graph that is the one that keeps 

the necessary information to generate the production rules. PC class models the 

sub graph that carries the instruction ordering information. 

3.2.4.2. Reference package 

Reference package (groove.Translator.reference) is in charge of 

pointing to a graph element in or outside a context. 

Given that a graph element has no identity itself to be able to mention a graph 

element, for example inside a rule application, is necessary to create another 

object that points to the desired graph element reference. In some cases the 

graph element require some additional information to ensure that it is the desired 

one, for example a method instance can be identified unambiguously by its 

method node, its defining class node and its caller object. These graph elements 

are collected in a sub graph that creates this differentiation pattern, among these 

graph elements build a context in which the desired element is the one pointed by 

the reference.  

A context-less reference is represented by the Reference class and a context 

reference is represented by the DefaultGraphReference class. The 

context reference interface is defined in the GraphReference class. The 

corresponding class diagram is depicted 3.2.4.2.1. 

 

abstract 
fields 

non abstract 
fields 

type 

instance 

require  

type represents



 73

Reference
interface

GraphReference

DefaultGraphReferenc

 
Figure 3.2.4.2.1.  Reference package class diagram 

 

 

The references are required because the Abstract Syntax Tree realizes if a 

software entity was previously defined, in such cases the visited node will not 

have the element declaration information but a reference to its name and in some 

cases other relevant information like its type name or its invoker name. W e call 

invoker to the caller object, in other word is the one that refers its messages or 

fields by the dot (“.”) syntax construction, for instance, object.myField or 

object.myMethod(). This node is the one that permit the unambiguously location 

of a reference. 

If there is not any explicit invoker, it is assumed that the default one is the this 

reference or object instance of the processed Java code. 

 

The following sections will explain briefly each type of referenced refer in a 

Recoder Abstract Syntax Tree and how it is represented unequivocally. 

3.2.4.2.1. Field 

A field reference (object.fieldName, in source code)  can be easily 

recognized once the object to which belongs and its name are known, as shows 

the following illustration. The referenced element is the one with a narrow line. 

 
Figure 3.2.4.2.1.1. Field reference pattern 

3.2.4.2.2. Class 

A class reference (ClassName.class, in source code) is identifiable with its 

name. This is illustrated in the following graphic. 

fieldNameInvoker 
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Figure 3.2.4.2.2.1. Class reference pattern 

3.2.4.2.3. Method  

A method reference (object.methodName(parameters), in source code)  

is differentiated by its signature, caller object and its defining class. The picture 

3.2.4.2.3.1 depicts a method reference, note that the reference is the narrowed 

element. 

 
Figure 3.2.4.2.3.1. Method reference pattern 

3.2.4.2.4. Super constructor  

A super constructor reference (super(), in source code) is acknowledged with 

its signature and the caller object. This can be observed in the following diagram. 

 
Figure 3.2.4.2.4.1. Super constructor reference pattern 

3.2.4.2.5. Super 

A super reference (super.something, in source code) is recognized with the 

caller object as shows the figure below. 

Invoker 

constructorSignature 

<instanceOf> <in>

<super> 

Invoker 

className

methodSignature 

<instanceOf> <in>

className
Invoker 
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Figure 3.2.4.2.5.1. Super constructor reference pattern 

3.2.4.2.6. This constructor 

A this constructor reference ( this(), in source code) is identifiable with its 

signature and the caller object, as obvious this is a mix between the this and the 

method reference patterns, it can be verified in the next picture. 

 
Figure 3.2.4.2.6.1. This constructor reference pattern 

3.2.4.2.7. This  

The this reference (this.something, in source code) is the same invoker or 

caller object. 

 
Figure 3.2.4.2.7.1. This reference pattern 

 

3.2.4.2.8. Type 

A type reference (ClassName, in source code) is differentiated by its name, 

because the class nodes are named with fully qualified names, as the next 

illustration shows.  

 
Figure 3.2.4.2.8.1. Type reference pattern 

className

Invoker

Invoker 
constructorSignature 

<instanceOf> <in> 

Invoker
<super> 
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3.2.4.2.9. Variable  

A variable reference (variableName, in source code) can be easily 

acknowledged once the object to which belongs and its name are known, as 

shows the following image. The referenced element is the one with a narrow line. 

 
Figure 3.2.4.2.9.1. Variable reference pattern 

3.2.4.3. Rule patterns package 

The rule patterns package (groove.Translator.rulePattern) is  is the 

one that effectively converts an object graph and some references to it into a 

production rule file, actualizing the information inside the object graph in order to 

be consistent to the next instruction, i.e. the object graph has applied the 

instruction transformations. This is accomplished by using a class that contain all 

the general functionality of a production rule pattern like saving the rule into a 

GROOVE file and a class for each specific transformation rule pattern that 

creates the production rule and applies the pattern to the object graph.  

 

To know more about the production rule patterns see section 2.4 that explains 

each instruction and its translation into a production rule pattern. 

 

The class diagram below presents the implemented rule patterns in Translator. 

 

variableName
 

<active>
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Figure 3.2.4.3.1.  Reference package class diagram 

 

3.2.4.4. GUI package 

This package (groove.Translator.gui) contains the set of classes 

created to generate the application interface. The following figure is the gui 

package’s class diagram Figure 3.2.4.4.1.   

Application JDialog
ActionListener

Frame1 AboutBo

JFrame
Frame1

MyFileStructur

MyFile MyDirectory

FileFilter
DirectoryFilte

FileFilter
JavaFileFilte

 
Figure 3.2.4.4.1.  Reference package class diagram 

 

The main class in this package is Application1 which is responsible of performing 

the input / output functionality by collaborating with the other classes in the 

package.  
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The Frame1 class is the output frame in which the generated code tree is 

inserted; the Frame1AboutBox is a window with some information about 

Translator. The FileStructure, MyFile and MyDirectory are convenience classes 

to show in a tree way the output files, and finally, the JavaFileFilter and 

DirectoryFilter are classes that permit showing or not Java source files and/or 

directories depending if the user is selecting the file to transform or the output 

directory. 

3.2.5. Getting involved in the project 

The following section describes the procedure to follow in order to get access to 

the Translator source code, and what changes you have to make to your 

environment before fetching the sources from CVS. It also establishes a few 

basic rules you have to follow, when updating CVS with modified versions of 

Translator source files. 

3.2.5.1. How to join the project 

This project is promoted by Arend Rensink associated professor of the computer 

science department at Twente University.  

Actually there is another parallel project being developed by Mark Arends 

(m.r.arends@student.utwente.nl) whose purpose is to translate Java byte code 

into graph transformations. 

Your comments and suggestions are well received.  

3.2.5.1.1. Last CVS version 

GROOVE source code (including Translator) is maintained on a machine named 

demeter.cs.utwente.nl using CVS. This machine is from Twente University, the 

GROOVE directory and CVS administrator is Arend Rensink. 

Follow these steps to get involved: 

1. Send an email to Arend Rensink (rensink@cs.utwente.nl) asking for an 

account on demeter. 

2. Once you have obtained the account, you need to set up the following 

environment variables to get ready for a CVS checkout 
CVSROOT 

:extssh2:account@demeter.cs.utwente.nl:/home/trese/projects/GROOVE/cvs 

CVS_RSH ssh2 

3. Go to your home directory and type:  
cvs checkout src  
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This will checkout all sources, binaries and other files into a directory tree 

whose root is home/GROOVE/src 

4. If you want a particular version proceed as above, but use command:  
cvs checkout -r versionid src 

Where, versionid is the name of the version you need. (Ask Arend Rensink 

for available versions). 

5. In order to commit changes back to CVS, you need to do the following: 

− Make sure you tested your changes before 

− If you do not have your own branch and you made substantial changes, 

you should show your results first to Arend Rensink. 

− Always add a comment stating the changes you made, when cvs is 

asking for it (after a cvs commit). This will allow identifying, who changed 

what and for what reason. 

3.2.5.1.2. Directory structure 

This section it says where is the information that concerns to this project.  

  

Directory Content 

/src/GROOVE/ This is the directory where the GROOVE 

source files starts. 

/src/GROOVE/Translator In this directory are the Translator source 

file classes and sub packages directories 

/src/GROOVE/Translator/gui This directory contains the classes 

created for the user interface in 

Translator. 

/src/GROOVE/Translator/reference This directory has the classes that point 

to a graph element or set of elements. 

/src/GROOVE/Translator/model The model directory holds the classes in 

charge of representing a Java class in a 

textual way and converting it into a class 

graph. 

/src/GROOVE/Translator/rulePatterns Inside the rulePatterns directory is stored 

the most important part of the project : 

the generic production rules that given an 

object graph and some references inside 

it, produce the production rule file and 
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the next object graph (after applying the 

instruction transformation) 

/src/GROOVE/Translator/tests The tests directory contains the unit tests 

created in order to test the Translator 

functionality. 

/src/classes/ This directory has a structure similar to 

the Translator directory, but it does not 

contain Java source file but its 

corresponding binaries. 

/src/resources In this directory is saved all files required 

to execute any of the GROOVE tools, for 

example the icons. 

/doc/ This directory possesses the code 

documentation.  

Table 1.2.5.1.2.1. Translator’s directory structure 

3.2.5.2. How to extend the project 

There are two possible extensions for this project the first one is to model other 

Java statements as production rules; this will have as consequence the addition 

of new production rules. The other one is to change the parser (now the parsing 

is performed with Recoder) to another more powerful or with a closer 

representation to the Java source model. This section analyzes the necessary 

modifications in order to extend them. 

3.2.5.2.1. Adding new production rules 

To add a new production rule is necessary to create the class that converts the 

rule pattern in specific production rules for a given object graph.  

It is also necessary to check in which node of the AST must this new rule be 

called, being carefully to check if it has all necessary references. 

3.2.5.2.2. Changing parser 

Right now Translator is strongly attached to Recoder parser, to be able to change 

it is mandatory to create a wrapper class that converts from the parser AST 

output to a more generic AST. 
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4. Processing algorithms 
In order to obtain an Abstract Syntax Tree that organize and interpret the java 

source file, Translator uses Recoder. Translator also uses GROOVE graphs and 

production rules model to represent its own data. For these reasons, Translator is 

in charge of three main tasks: configure of Recoder to parse the java source code 

and obtain the Abstract Syntax Tree (AST),; preprocess the AST to get the java 

class in a graph representation, and generate the production rules by navigating 

the AST. 

4.1. Parsing and Abstract Syntax Tree Construction 

This section offers an explanation of the process that Recoder executes in order 

to translate a Java source code into it corresponding Abstract Syntax Tree 

mapping. See [5] 

 

First, the lexical analyzer takes successor character relation and groups several 

characters together to tokens.  

 

Then, parser analyses the successor token relation according to a context free 

grammar and produces an abstract syntax tree. Firstly, some of the tokens are 

skipped (such as keywords or comments) and others are retained as new objects 

of the new graph (for example if, while, procedure). Between those, a new 

tree-like relation is formed, the abstract syntax graph that contains: definitions of 

objects, references to objects, statements which compute something, 

expressions which are side effect free statements, and groupings which group 

definitions, references, statements, and expressions to larger blocks.  

 

After that, on the abstract syntax tree, a semantic analysis process starts. This 

process relates some of the elements of the tree to others which are remote (this 

is, elements that have been declared in other place of the tree). Hence, the 

abstract syntax tree is generalized to a graph. Semantic analysis constructs 

several graphs which build on top of each other:  

− Object oriented languages define an inheritance relation which records 

reuse references between classes and defines an extended visibility 

concept for class features (all features of the super classes are visible 

too).  
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− Import relation (visibility relation). Beyond the module that is being 

translated, other objects in other modules may be referenced, if they are 

imported. The front end computes a relation along which names are 

looked up.  

− The use-def graph of names. For every name used in the program 

(identifiers or structured identifiers called designators, also called 

references) the application should check whether it is defined once, which 

type it has and whether it shadows other definitions of the same name. 

This process usually is called name analysis, and it builds up a relation 

between all used names and their definitions. Conceptually, inheritance 

and import relations can be considered as parts of the use-def 

information, however, for practical reasons they are separated.  

− With the use-def graph, expressions and statements, procedure calls and 

generic parameterizations can be type-checked: just compare the types of 

the formal to the types of the actual arguments (type checking).  

4.2. Preprocessing 

The preprocessing stage takes the Recoder meta programming information in 

order to generate a class graph of the processed source file that later on serves 

as base for generating a new object graph in which the production rules that 

represents the instructions in its respective source code can be applied.  

 

The preprocessing maintains in the groove.Translator.Model classes all 

the elements that compose the processed class and its required classes like: 

super class, interfaces, field types, parameter and return types, etc. For this 

purpose it uses the meta information provided by Recoder that allows operations 

like compilationUnit.getDeclarations(), 

compilationUnit.getImports(), classType.getFullName(), 

cd.getAllSupertypes(), classType.getConstructors(), 

classType.getMethods(), method.getSignature(), 

method.getReturnType(), etc. 

 

All class information is used to generate the directory structure (see section 

3.1.4) required to save the production rule files and it is saved in an instance of 

the ClassModel. All processed classes are in a dictionary whose key is the fully 

qualified name of the class and whose value is its corresponding ClassModel 

instance. This dictionary is the Classes class. 
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If along the processing of any class is found a new required class it is processed 

and saved in the dictionary. This approach can be optimized because although it 

does not allow circular reference looping it could overflow the call stack. 

 

Once all required classes information is extracted, the class graph is generated. 

This process is performed by asking the ClassModel instance of the class that is 

being translated to produce its graph representation. A ClassModel graph 

representation is a graph reference (see previous chapter programmers guide 

section 3.2.3) whose referred element is the class node. When an element of the 

class that is being processed is going to be added, it calls the generate graph 

representation method of its corresponding ClassModel, previously stored in the 

dictionary. In this way the graph representation call is propagated through all 

required classes that are added as part of graph representation of the element.  

4.3. Production rules generation 

Production rules generation is carried out as follows: 

1. A new production rule is declared with its required references and the actual 

object graph. 

a. The object graph is cloned into a field called clone 

b. The clone is cleaned form the non required literals in the rule  

2. The apply transformation rule is called 

a. A graph representing the instruction order is added to the clone 

b. A new local variable called lhs, which represents the left hand side 

of the graph transformation, is created from the clone 

c. A new local variable called rhs, which represents the right hand 

side of the graph transformation, is created as clone of the lhs 

d. A new injective morphism is established between the lhs and the 

rhs 

e. If the references are complete 

i. The production rule changes are applied to the rhs. 

ii. A new production rule is created from the morphism 

iii. The production rule is saved. This is accomplished with the 

GROOVE class Gxl that converts a GROOVE graph into its 

corresponding GROOVE XML.  

iv. The production rule changes are applied to the actual 

object graph. 

f. If the references are not complete 
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i. Only the production rule changes that modify the 

instruction order are applied to the rhs. This is done in 

order to maintain the instruction order consistency. 

ii. A new production rule is created from the morphism 

iii. The production rule is saved. This is accomplished with the 

GROOVE class Gxl that converts a grove graph into its 

corresponding GROOVE XML.  

iv. Only the production rule changes that modify the 

instruction order are applied to the actual object graph. 

 

This application of the production rules generated to the object graph is 

fundamental because it allows an object graph with the expected object state 

needed for the rule matching, in other words it helps to keep the object status 

required for applying certain rule, for example if a method defines a local variable, 

the processing algorithm must know that this variable is only accessible inside 

the method scope, and which is its type and value as well as the objects that 

refer to it. 
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5. Future work proposals 
This section point’s out areas of future work. It first presents a detailed list of Java 

language features that are not currently implemented. Next, some areas in which 

possible refactorings were identified. These refactorings are focused on 

producing more extensible and reusable code and some improvements 

concerning the process report. A last part, suggests some priority on the missing 

tasks. 

5.1. Missing or incomplete features 

This section identifies those parts of the Java language that are not currently 

modeled or available in Translator. 

 

Translator omits access modifiers that could be present in the source program by 

setting default access modifiers instead. The reason for this is that the model 

presented is not complete to model the modifiers semantics. 

 

Feature Comments / JLS Reference 

New 

operator 

It allows the translation of class instantiation 

new Object (); 

JLS reference: 15.9 

Load It simulates the search of binaries done by the virtual machine 

JLS reference: 12.2 

Link It helps to map the process of verifying class loading, preparing 

memory for the execution and resolving references to other 

classes. 

JLS reference: 12.3 

Abrupt 

completion 

Permits the modeling of errors during expression evaluation and 

statement execution. 

JLS reference: spread in 4. 

Modifiers Models the accessibility of members, it changes the semantic and 

representation of an object. For example abstract fields must 

belong to their class node, while non abstract ones must belong to 

their instance node. 

abstract; final; native; private; protected; 

public; static; strictfp; synchronized; 
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transient; volatile 

JLS reference: 8.1.1 - 8.3.1 - 8.4.3 - 8.5.1 and  9.1.1 

Arrays Their representation helps to have collection of fixed size with 

object of the same type. 

JLS reference: 10. 

Threads With them is possible to model concurrency. 

JLS reference: 17. 

Missing 

statements 

Execution flow control 

Labeled: break,continue 

JLS reference: 14.14 and 14.15 respectively. 

Jump: switch –case and default-; do; for 

JLS reference: 14.10 – 14.12 and 14.13 respectively. 

Exception: throw, try –catch and finally– 

JLS reference: 14.17 and 14.19 respectively. 

Concurrency: synchronized 

JLS reference: 14.18. 

Expressions: post increment, post decrement, pre 

increment, pre increment. 

JLS reference: 14.8. 

Inner 

classes 

Representing inner classes. 

JLS reference: 8.1.2. 

Table 5.1.1. Topics for completing java-graph model 

 

The table 5.1.1 presents the java features that are not present in the model. The 

purpose of remarking these points is to provide some directions in which this 

work can be extended. 

There are some topics that were discussed and slightly modeled during this work, 

such as link, load, abrupt execution and garbage collection, but given the lack of 

time it was not possible to achieve a stable representation, for that reason they 

are not part of the document neither of the tool. 

5.2. Improvements 

The following improvements should be considered or need to be done, 

concerning the Translator architecture. 

 

Given that GROOVE is an extensible project, each one of its components should 

follow  GROOVE’s design policy. The purpose of this section is to state some 
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important steps previous to any further extension, they are simple arrangements 

of the existing code that would give a more reusable code. 

 

Artifact Comments Benefit 

Translator It is necessary to separate it into two 

packages one in charge of creating, 

initializing and wrapping the parser and 

another one in charge of traversing and 

processing the AST. 

Less 

coupling 

Translator.gui Some functionality in this package was 

already implemented in groove.gui, 

therefore it is necessary to move the non 

implemented classes and to eliminate the 

replicated code. 

Extensibility 

Translator.model This package also needs to be divided into 

two smaller packages: one for a more 

detailed java semantic modeling 

(ClassModel, ClassInstance, Classes, etc.) 

and another for having a more intuitive and 

clean representation of java graphs 

(JavaGraph, Edges). 

Higher 

cohesion  

Translator.references GraphReferences class must be modified 

in order to eliminate duplicated information 

as main and name, whose equivalent is 

defined in Reference class 

Extensibility 

Table 5.2.1. Refactoring improvements 

 

The current process report needs to be improved. Right now, only shows the final 

file structure produced by Translator nevertheless it would be better to show 

which line of code is processing and how is going to translate it.  

5.3. Priorities 

In order to aide in the future development of the tool it is compulsory to evaluate 

which of the tasks to perform must be done first. The purpose of this section is to 

evaluate which of the mentioned additions or improvements contribute more to 

extend the scope of programs that can be processed with Translator. 

 



 88 

Priority Tasks Type Importance Difficulty 

1 New operator Java modeling High Low 

2 Link Java modeling High Medium 

3 Modifiers Java modeling High High 

4 Load Java modeling Medium Medium 

5 Abrupt completion Java modeling Medium Medium 

6 Missing statements Java modeling Medium Medium 

7 Translator.model Code 

refactoring 

Medium High 

8 Translator Code 

refactoring 

Medium High 

9 Translator.gui Code 

refactoring 

Low  Low 

10 Translator.references Code 

refactoring 

Low Low 

11 Arrays Java modeling Low Medium 

12 Inner classes  Java modeling Low Medium 

13 Threads Java modeling Low High 

Table 5.3.1. Priorities of tasks to do. 
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6. Conclusions  
 

As was established in the chapter 2, Java source code can be transformed into 

flat graphs; furthermore, this graph representation allows the inclusion of runtime 

information, which is not present in other representations such as Abstract 

Syntax Trees. 

The produced model permits the simulation of code by instantiating rule patterns 

that represent Java statements transformations. This model: Java representation 

as graphs and production rules is unified with the byte code model. The source 

code and byte code models share the abstract Java graph model that serves as 

interface between both transformations. 

 

Although the Java language specification is not fully mapped, the fundamental 

statements were constructed and their extension will not represent a big effort.  

The Java source structures modeled were: declarations, types, fields, methods, 

parameters, method body, variables, expressions, literals, operators, references 

and some statements (if, while and other expression statements -assignment and 

method invocation-). In addition, the execution order was modeled. 

There are some Java structures not represented in the model: modifiers, threads 

(synchronization), exceptions, inner classes and the rest of statements (break, 

continue, do, some expression statements –pre-increment, pre-decrement, post-

increment, post-decrement,  class-instance-creation-, for, labeled statement, 

return, switch, synchronized, throw, try.). 

 

Almost all modeled features, except the class loading and the implicit Java 

classes9, were implemented in the tool. As a result, simple programs can be 

translated into production rules. 

 

The production rule files generated by the tool developed in this project are 

compatible with GROOVE  files, in this way; they can be seen, simulated and 

edited by the other tools that are part of GROOVE (Viewer, Simulator and Editor 

respectively). 

This simulation (or successive application of production rules) shows the 

execution of a Java program by applying the generated production rules. This 
                                                 
9 The implicit Java classes are those that can be referenced without import clause. For instance, 
java.lang.System 
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simulation maintains all the runtime information not present in most of the 

verification tools. 

 

The main contribution of this thesis was to represent object-oriented programs (in 

particular Java source code programs) in graphs whose elements don’t have own 

identity.  
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