

Vrije Universiteit Brussel - Belgium

Faculty of Sciences

In collaboration with Ecole des Mines de Nantes - France

1999

Towards a security aspect for Java

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Sciences in Computer Science

(Thesis research conducted in the EMOOSE exchange
project funded by the European Community)

Master in Computer Science

By Andrés Farías

Promotor: Prof. Theo D'Hont (Vrije Universiteit Brussel)

Co-Promotor: Mario Südholt (Ecole des Mines de Nantes)

Sunday, February 04, 2001

13:02

Table of contents

Table of contents 3

1 Introduction 5

2 Aspect oriented programming 7
2.1 Separation of concerns __ 7
2.2 The aspect oriented programming technique____________________________________ 7
2.3 Characteristics of aspect oriented programming_________________________________ 8

3 The Java security model 9
3.1 Security __ 9
3.2 Security in Java__10
3.3 The Java™ language__10

3.3.1 Main characteristics ___10
3.3.2 Types and scope in Java ___11
3.3.3 Cast __11
3.3.4 Applets ___12

3.4 Security features in Java__12
3.4.1 The class loader___12
3.4.2 Dynamic code verification __13
3.4.3 The Sandbox model and beyond __14
3.4.4 Protection Domain based security architecture ____________________________14
3.4.5 The policy file ___15
3.4.6 Permissions classes ___15
3.4.7 An example of the Policy File ___16

3.5 The Java security model and AOP ___16
3.6 Compromising Java security through applet attacks and security bugs _________________17

3.6.1 Hostile applets __17
3.6.2 Bugs in the Java implementation ___18

4 Security in typed applets based on [Leroy/Rouaix, POPL 98] 21
4.1 Introduction ___21
4.2 Storing and instrumenting the environment ____________________________________21

4.2.1 Determining sensitive locations of the environment ________________________21
4.2.2 Instrumentation and runtime checks______________________________________22

4.3 Four security properties for typed applets______________________________________23

5 A security aspect for the integration of type-based properties into the Java
security model 27

5.1 Integrating the approach of typed applets______________________________________27
5.1.1 Sensitive locations___27
5.1.2 Objects and classes__27

5.2 Syntax of the security aspect language __28
5.3 General description of the security aspect _____________________________________28

5.3.1 Sensitive locations___29
5.3.2 Named types__30
5.3.3 Java permissions __31

5.4 About the integration of security properties three and four ______________________31
5.5 Semantic considerations__________________________ Error! Bookmark not defined.

5.5.1 Compatibility of the two approaches__________ Error! Bookmark not defined.
5.5.2 Complementary of type-based and policy-based security___________________33
5.5.3 Discussion of Overlap __33

5.6 Issues and considerations of the aspect _______________________________________33
5.6.1 AOP paradigm___33
5.6.2 Inheritance and scoping__34

 Towards a security aspect for Java

Sunday, February 04, 2001 - 13:02:40

4

5.6.3 Aliases__34
5.6.4 Dynamic definition of sensitive locations __________________________________34
5.6.5 Detecting violations__34

6 Security results 37
6.1 Avoiding consequences of bugs ___37

6.1.1 Signature control bug, Princeton University, April 1997 ___________________37
6.1.2 Bug in the JVM, University of Marburg, Germany, april 1999:_______________37

6.2 Avoiding applet attacks___37
6.2.1 Attacks that modify the system___37
6.2.2 Attacks that invade a user's privacy_______________________________________38

7 Implementation 39
7.1 Overview___39
7.2 The aspect parser__40

7.2.1 The Java policy file __40
7.2.2 The StoreControl class ___40
7.2.3 Program transformations __41

7.3 Parsing the aspect file __41
7.3.1 Sensitive locations___41
7.3.2 Definitions of named types___42
7.3.3 The Java policy file __43

7.4 The weaver __43
7.5 Comments___44

8 Program transformations 45
8.1 Syntax and semantics of program transformations _____________________________45
8.2 Transformations for instrumentations ___46

8.2.1 Program transformations write instrumentation ___________________________46
8.2.2 Program transformations for instrument coercions ________________________46
8.2.3 Checking writes ___47
8.2.4 Coercing types __47

9 Conclusions 49
9.1 Future work__49

References 51

Appendix A. The parser aspect 53

Appendix B. The TXL program transformations 61

1 Introduction

The Java™ language is an object oriented language that has become widespread in
commercial use. It allows Java-compatible Web browsers to download code dynamically and then
to execute that code locally. However, users must worry about executing any code that comes from
untrusted sources or that passes through an insecure network. Programs that come from remote
sites are called applets and they are used to add services and features to web pages. Applets allow
normal programmers to create very interesting decorators and graphics. Nevertheless applets can
attack the system in several ways. This is why security has become a very important issue: if
Internet seems be insecure, then people hesitate to use it as a commercial trustable environment.

Security consists in providing mechanisms to protect a system. Most of these mechanisms
consist in the separation of system's functionalities and the control to access them. In this thesis,
security will be considered as the way to ensure that external programs (like applets) do not access
(certain) security-sensitive resources without passing appropriate runtime checks.

Java provides a security manager that allows programmers to define a security policy for
the system in such a way that the functional code (also called base code) and the security policy
are largely separated. Therefore, the functional code is not affected and can be written quite
independent from the security specification.

Until now, many bugs have been found in the Java implementation and applet attacks that
bypass the security protection of Java, endangering the vital information and user privacy. This
facts oblige the programmer to go further than the security provided by Java and force them to
merge the base code with security protection that make code lose some desirable properties such
as reusability, clarity and understandability. Then a new issue arises: Is it possible to write
program secure and understandable, in such a way that it will be easy to reuse?

Separation of concerns is a paradigm that study how to separate concerns from each
others, and from the source code in order to make it more understandable. Programming
techniques to separate concerns have recently lead to Aspect Oriented Programming (AOP) that
consist in writing the code and the different concerns (called aspects as well) separately and then
merge them using a tool called "weaver" to generate the final code.

The aim of this thesis is to study security and security models to make a security aspect
for Java based on the AOP technique. This security aspect is the integration of type-based and
policy-based security strategies. Using this aspect, programmers should be able to write a secure
specification in a very expressive language, and implement this language using program
transformations.

As a result of using this security aspect, some of the bugs found in the Java
implementation have no impact. Moreover, the protection against applets that attack the system
using only the power given by the Java language is enforced.

This thesis is divided in two main parts. In a first part are described the separation of
concern paradigm, the aspect oriented programming technique and the Java security model. The
second part of the thesis present the contributions that are a definition of the aspect language, the
program transformations and an overview of the implementation.

2 Aspect oriented programming

2.1 Separation of concerns

Today's software applications have to deal with concerns like concurrency, distribution, real-
time constrains, debugging and security. Unfortunately, when programmers deal with one or more of
these concerns in the same program, they see themselves involved in a complex code. Then, this
code becomes hard to understand, write, modify and maintain, and less reusable because the
functional code is merged with concerns and then the identity of the code lose generality.

This problem arises because the code associated with the concern is scattered throughout
the source code of the different program components. For example, figure 1 shows a peace of the
Java 1.2.2 implementation source code [Sun99b] where it is scattered by the aspect (marked in
bold).

public Win32FileSystem() {
 slash = ((String) AccessController.doPrivileged(
 new GetPropertyAction("file.separator"))).charAt(0);
 semicolon = ((String) AccessController.doPrivileged(
 new GetPropertyAction("path.separator"))).charAt(0);
 altSlash = (this.slash == '\\') ? '/' : '\\';
 }
}

 handle = create(cmdstr, envstr, stdin_fd, stdout_fd, stderr_fd);
 java.security.AccessController.doPrivileged(
 new java.security.PrivilegedAction() {
 public Object run() {
 stdin_stream =
 new BufferedOutputStream(new FileOutputStream(stdin_fd));
 return null;
 }
 });

Figure 1: Security runtime checks code scattered along the code

Normal abstraction mechanisms provided by languages such as procedures, classes and
objects, do not package the concern into a single unit of encapsulation. The paradigm called
"Separation of Concerns" proposes to separate the concerns of the program in order to make it
easy to reuse, write, understand and modify.

There are several techniques to accomplish the separation of concerns, and each
technique can be applied to more than one concern. Some techniques address specific concerns
because they permit to make the separation in a more natural way. In [Hür95] different techniques
are identified with the concerns which are more appropriated to separate with1. Some examples of
them are metalevel programming [Str96], pattern-oriented programming [Lor98], composition Filters
[Aks98], etc. This thesis focuses on Aspect Oriented Programming.

2.2 The aspect oriented programming technique

Until now we have been talking about different concerns that are scattered throughout the
functional code (called base code in the AOP terminology) of the programs. An Aspect will be
defined as a feature or concern that crosscuts the different components of our program (as it was showed
in the previous figure) and is responsible for code tangling [Kic97].

1 This classification was made considering the state of the art in AOP until this time. Each technique can surely
offer new solutions to separate different concerns of those named here.

 Towards a security aspect for Java

Sunday, February 04, 2001 - 13:02:40

8

Aspect Oriented Programming (AOP) is a technique that enables programs involving such
aspects to be expressed clearly, including appropriate isolation and composition.

The principal goal of AOP is to precisely separate the aspect code from the base
functionality code by means of aspect languages, which offer the ability to express the different
aspects separately. Once the user has written both the base function code and the aspect
specification, a tool called "weaver" merge them. Figure 2 shows the AOP scheme:

Figure 2: AOP scheme

The weaver is the most important component in the system. This tool takes the different
aspects plus the base code and generates a new program that has all the components merged. The
weaver taking elements from the aspect definition and transforming the base code in function of
these elements. These elements that relate the aspect and the base code are called join points
[Kic97]. The final code produced by the weaver is clearly more complex than the original code.

2.3 Characteristics of aspect oriented programming

As it was said before, AOP is a new technique that is still under development. The
application of AOP to object-oriented languages raises some issues relevant for this thesis.

?? Conciseness

When the aspect language is expressive enough, many lines of code could be
resumed in a fewer quantity. Moreover, specification of the aspect can be written only one
time, representing many appearances in the base code [Fra98].

?? Understandability of the aspect

Using the aspect language, the programmer deals with a specific domain
language and should understand it better. Furthermore, the programmer may easier
acquire programming skills in this specific domain due that the aspect language express
the concern very concisely and clear. Finally, the programmer deals now only with the
source code or one aspect language at the same time.

?? Efficiency

In general, the weaver inserts and changes all the code necessary to satisfy the
requirements specified in the aspect language. Then, the efficiency relative with the code
that does not use the aspect language should depend of the implementation of the weaver.

In the application of AOP to security these characteristics are important. A discussion
about the applicability of those characteristics to the security aspect defined can be found at the
end of chapters 5 and 6.

Base code

security

synchronization

Components

Aspect 1

Aspect 2

Weaver

Final
Code

3 The Java security model

3.1 Security

Since computational systems have been built to be used by multiple users sharing
resources, applications and data, it has become necessary to implement mechanisms to ensure
that each user has only access to the resources, applications and data that has been assigned for
him.

Security consists in providing mechanisms to protect a system. Most of these mechanisms
consist in the separation of system's functionalities and the control to access them.

The particularity of each system makes necessary to define different security mechanisms
to protect the system, and then, many protocols of security have been created until today. In an
effort to establish common profiles for secure systems, the U.S. Department of Defense has
published the "Orange book" in 1985 [Nat85].

We will define a security mechanism as a piece of software that provides any combination
of the following functionalities:

?? authorization

Authorization is the process of giving someone permission to do or have
something. In multi-user computer systems, a system administrator defines for the system
which users are allowed access to the system and what privileges of use (such as access
to which file directories, hours of access, amount of allocated storage space, and so on).

?? authentication

The process of identifying an individual usually based on a username and
password. In security systems, authentication is distinct from authorization, which is the
process of giving individuals access to system objects based on their identity.
Authentication merely ensures that the individual is who he or she claims to be, but says
nothing about the access rights of the individual.

?? privacy

Privacy is a mechanism by which each user can protect its personal information
and will not be shared with anyone else without his permission.

?? integrity

Integrity refers to the validity of the data within such a system, and covers the
topics associated with guaranteeing that data are correctly updated and maintained.
Integrity can also be understood as the reasonable assurance that data is not changed
while en route from a sender to its intended recipient

?? non-repudiation

The reasonable assurance that a principal cannot deny being the originator of a
message after sending it. Non-repudiation is achieved by encrypting the message digest
using a principal's private key. The public key of the principal must be certified by a
trusted certification authority.

?? delegation

The ability to empower a principal to act on behalf of another principal.

 Towards a security aspect for Java

Sunday, February 04, 2001 - 13:02:40

10

?? Cryptography

The art of protecting information by transforming it (encrypting it) into an
unreadable format called cyphertext. Only those who possess a secret key can decipher (or
decrypt) the message into plaintext. Encrypted messages can sometimes be broken by
cryptanalysis, also called codebreaking, although modern cryptography techniques are
virtually unbreakable.

As the Internet and other forms of electronic communication become more prevalent and
protecting an execution environment is becoming more and more important. Today is more
frequent to find programs that are transferred from an unknown origin and executed, in the local
system. In the context of those programs security has the same meaning of the definition given
above: programs have access to a well defined set of system's functionalities preventing that its
execution impact the execution environment.

In this thesis we focus on security models for program languages that permits the creation
of secure programs.

3.2 Security in Java

Security in the Java™ language has been an issue since the language was created. Its
security model has been extended and improved in each new version of the language.

Java has become widespread because its presence in the Internet via applets, which are
applications (usually small) implemented in Java that can by embedded in an HTML page and
downloaded in order to be executed. Applets are used to add features to web pages that can not be
obtained with the simple use of HTML. Applets are a good alternative to programs distributed
instead to execute them in the server side, because then can be downloaded and executed by any
Java-enable browser as well as they can be executed directly from the local machine. Nevertheless,
applets can potentially attack the system that tries to load it.

The security in Java consists basically in providing a good environment to ensure that
foreign code can run safely in your system. Java security includes two main concepts [Gon98]:

?? The Java platform (primarily through JDK) as a secure, ready-built platform on which
to run Java-enable applications in a secure fashion.

?? Provide security tools and services implemented in the Java programming language
that enable a wider range of security-sensitive applications, for example, in the
enterprise world.

The security model of Java involves not only prevention against applets, but also to ensure
that any code satisfies some conditions, such as type soundness, in order to avoid any malicious
code to run in the system. However, most of the danger comes from applets loaded from remote
sites.

This chapter presents an overview of the Java™ language and a description of the security
model and capabilities implemented by Java. In the last section of the chapter different issues
compromising the security in Java such as applet attacks and bug in the Java implementation are
discussed.

3.3 The Java™ language

The Java language is a general-purpose object-oriented language that was introduced by
Sun Microsystems in 1995. One of the major design goals for Java was portability. The result is
that not only the Java source code, but also the binary code is executable on all processors. This is
accomplished by compiling the source code into platform independent bytecode, which is then run
by the Java virtual machine. In this section the most important characteristics of the Java language
will be presented.

3.3.1 Main characteristics

Some features of the Java language that make it simpler and supposedly more secure are
that it is strongly typed, there are no preprocessor statements (like C's #define and #include),

3 The Java security model

Sunday, February 04, 2001 - 13:02:40

11

there are no explicit pointers (and then there is no pointer arithmetic operation), no global
variables, and no global procedures.

A Java program is a collection of classes and instances of classes. Each class is compiled
into an intermediate format, called bytecode, which is then interpreted to execute the program. A
major characteristic of Java is that pointers are not supported; object references are provided
instead. When a class instance (an object) is needed, it is created explicitly and a reference to it is
returned; when a method is invoked on an object, the interpreter selects the method to be
executed according to the class hierarchy and method overloading. Java uses only single
inheritance. Object destruction is automatically handled by a garbage collector, so that memory
management is completely in the control of the interpreter.

Java supports concurrent programming via threads. The Java Virtual Machine instructions
are all one byte long, and that is why they are called bytecodes. Bytecode can also be generated
from other high level languages, such as Ada or C, or it could be generated manually.

3.3.2 Types and scope in Java

Java defines eight primitive types. Variables that are declared as primitive types are not
objects. They are only placeholders to store primitive values. In Java, primitive types are passed by
copy and objects are passed by reference to functions.

Blocks consist of sequences of local variable declarations and statements. Blocks are
statement sequences which are delimited by braces. The scope of the variables in Java is limited
by the block where the variable was declared.

Java allows the definition of nested blocks (as in C or C++). When a variable name that is
defined in a nested scope has the same name that in the super scope (and eventually different
type), the variable of the super scope is hidden and only the locally-defined name is visible in the
nested scope.

The same phenomenon happens when instances variables have the same name as
variables defined in their super class or in the class that they implement. In this case, the variables
defined in the super class (or interface) are hidden.

3.3.3 Cast

The "cast" is a mechanism used in Java to convert types of objects and primitive types.
Supertyping in Java is made without explicit specification, i.e. an object of a given type can be seen
as an object of any of its supertypes. For example, consider the class hierarchy present in figure 3.
An object of class Triangle can be seen as an object of class Shape because inheritance.

In this class hierarchy, all the subclasses implemented the copy() method defined in class
Shape in such a way that they all return an copy of itself, for example, an object square returns a
copy of itself. Nevertheless, the object returned by the method copy is of type Shape.

If we want to change the type of the object returned to its real type (in order to have a
complete view of it) it is necessary to make an explicit cast. This is done using the expression:

(subtype) objectExpression

For example, in the following piece of code:

Shape sh = new Square(0, 0, 2, 2);
Square sq = (Square)sh.copy();

we can see that an instance of class ‘Square’
called "sh" is created and a variable of class
‘Shape’ reference to it. Afterwards a second
object of class ‘Square’ is created by means
of the method copy() using an explicit cast to
convert the Shape object in to a Square
object.

 Figure 3: Shape hierarchy

Shape

Shape copy();

Square
float side()

Shape copy();

Triangle
float high()

Shape copy();

Circle
float radio()
Shape copy();

 Towards a security aspect for Java

Sunday, February 04, 2001 - 13:02:40

12

This piece of code is accepted by the compiler without further analysis. This is because the
compiler does not check the exact type of the object. Nevertheless, the method copy() returns a
generic object of type Shape whose real type could be Triangle or Circle. In the following code:

Shape sh = new Triangle(1, 0, 2);
Square sq = (Square)sh.copy();
an object of class Triangle is created and then cast to an incompatible object of class

Square. As we have said before, the compiler does not check if the class is correct or not, so such
a code is accepted by the compiler. However, at runtime, the JVM will throws an exception saying
that the types of the cast's member are incompatible.

3.3.4 Applets

Applets are applications (usually small) implemented in Java. They can by embedded in an
HTML page and downloaded in order to be executed. Applets can be downloaded and executed by
any Java-enable browser. Alternatively, they can be executed directly from the local machine using
a tool called Java applet viewer.

Several applets can be downloaded from the same page and run concurrently within the
same web page context. The class applet defines a set of methods to control its behavior. This
methods are start(), init() and stop(). The method start() define initialization tasks. The method init()
is used to initialize the applet after it is downloaded. The method start() and stop() are used to
start, pause, resume or stop the applet’s execution. When the windows of the browser which is
running the applet, is minimized or closed, the stop() method is invoked and the applet should stop
to run (because the default implementation of the stop() method). Those methods are not final and
it is possible to override them and define special behaviors for events like during finalization make
the applets restart and making it 'immortal' (see concrete examples in subsection 3.6.1).

3.4 Security features in Java

In general, the Java environment provides basic security mechanisms such as type
soundness, which focus on ensuring Java program safety. For Java applications, this is the only
kind of security that exists; however, for Java applets a number of additional issues are addressed,
as discussed in the next section.

Four security layers [McG99] provides special features to secure the environment against
trusted or untrusted applets that run in the local machine. Those features are geared towards
securing the system itself, independent from if the code is trusted or not, and allow or disallow
several accesses from the applets, depending on the level of trust that they have. These four layers
are:

Layer 1: Language and Compiler - moves the memory allocation and layout decision to
runtime and removes pointers from the Java language.

Layer 2: Bytecode Verifier - Uses a simple theorem prover to verify basic safety properties
of the code.

Layer 3: ClassLoader - ensures that imported classes loaded from the network execute
within their own separated name space.

Layer 4: API-Specific Security - provides tools to implement different levels of security
such as:

1. Disallowing all network accesses.

2. Allowing network accesses only to the host from which the code was imported.

3. Allowing network accesses only outside the firewall if the code came from outside.

4. Allowing all network accesses.

3.4.1 The class loader

Normally, the JVM loads classes from the local file system. However, not all the classes
are generated from files in the file system, they can be generated also from other sources such as

3 The Java security model

Sunday, February 04, 2001 - 13:02:40

13

the network, or can be created by an application. A class loader is the entity of the environment
responsible for loading classes.

Java supplies an abstract ClassLoader class for this purpose. Because abstract classes
cannot be used directly, each browser needs to declare a subclass of this class to be used by the
browser for downloading classes. Each subclass must include a customized implementation of the
loadClass() method to retrieve and download a class from the network. A class is downloaded as an
array of bytes that must be converted to an instance of class ‘Class’. That is, the array of bytes
must be translated to the structure of a class. The ClassLoader method that actually does the
conversion is defineClass(). Every class object contains a reference to the class loader that defined
it, so related classes can be downloaded by the same class loader. These features make Java
suitable for writing programs in a distributed, heterogeneous environment such as the web.

The security manager is an abstract class defined to control access to resources of the
system. The job of the Security Manager is to keep track of who is allowed to do which dangerous
operations with respect to a policy file which contain all the policies set by the programmer. A
standard Security Manager will disallow most operations when they are requested by untrusted
code, and will allow trusted code to do whatever it wants. To implement a specific security policy it
is necessary to subclass the SecurityManager class and install it in the system.

3.4.2 Dynamic code verification

Even though the compiler performs through type checking, there is still the possibility of
generating malicious code via the use of a “hostile compiler”. Applications such as the HotJava™,
Netscape™ and Internet Explorer™ browsers do not download source code, which they then
compile; these applications download already-compiled class file. The HotJava browser has no way
of determining whether the bytecode were produced by a trustworthy Java compiler or by an
adversary attempting to exploit the interpreter.

As mentioned above, Java code was designed to run on any client; therefore, compiled
Java programs are network and platform independent. The absence of physical pointers and
automatic memory management help to achieve this independence. Moreover, the bytecode has
been designed to fully support the typing mechanism of Java so that dynamic code verification can
be performed. This is a safety and a security feature designed to prevent one from executing
corrupted or malicious code.

Every Java virtual machine has a class file verifier, which ensures that loaded class files
has a proper internal structure. The class-file verifier operates in two distinct phases: internal
checks and verification of symbolic references.

In phase one, the class-file verifier makes sure the imported class file is properly formed,
internally consistent, adheres to the constraints of the Java programming language, Once the
class-file verifier has successfully completed the checks for proper format and internally
consistency, it turns its attention to the bytecodes. During this part of the phase, which is
commonly called the “bytecode verifier” the Java virtual machine perform a data-flow analysis on
the streams of bytecodes that represent the methods of the class.

The bytecode verifier includes a mini theorem prover, which verifies that the language
ground rules are respected. It checks the code to ensure that it does not forge pointers, does not
violate access restrictions, accesses objects as what they are, which they call methods with
appropriate arguments of the appropriate type and that there are no stack overflows. Once the
verification is done, a number of important properties are known:

?? There are no operand stack overflows or underflows

?? The types of the parameters of all bytecode instructions are known to always be correct.

?? Object field accesses are known to be legal – private, public, package or protected.

Knowing these properties also makes the Java interpreter much faster, because it does not
have to check the items named before.

Phase two verifies symbolic references. A symbolic reference is a character string that
gives the name and possibly other information about the referenced item – enough information to
uniquely identify a class, field, or method. The JVM follows the references from the class file being
verified to the referenced class files, to make sure the references are correct. Because phase two

 Towards a security aspect for Java

Sunday, February 04, 2001 - 13:02:40

14

has to look at other classes external to the class file being checked, phase two may require that
new classes be loaded.

3.4.3 The Sandbox model and beyond

The Sandbox Model is the name for the security model of Java 1.0. This model consists in
a very restricted environment where untrusted code obtained from the network could run. These
applets could be executed in their environment and use some restricted resources such as the
screen to display beans or play sounds. Meanwhile local code is considered ‘trusted’ and can have
full access to vital system resources (such as the file system).

But this model was much too restrictive and needed to extend the model. In the next
version of Java (1.1) a new concept called “signed applet” was introduced. Applets are signed
using a key and they are recognized as trusted (having access to all the resources of the system) if
the key is correct. Unfortunately, this scheme of “black or white” was still weak in the sense that
applets that are not trusted are very restricted and have no permission in domains that does not
represent any danger to the system.

In the latest version of Java (1.2) a more fine-grained scheme was introduced. This scheme
allows some permission to be granted over the system’s resources to some applets depending of
where the applet comes from or its signature. This scheme is based in the introduction of a new
arquitecture model called Protection Domain

3.4.4 Protection Domain based security architecture

The Protection Domain model can be seen as an extension of the sandbox model. In this
model, applets loaded in the system are grouped in several domains called application domain.
Java programs that run from the local system are all stored in the same space called system
domain2. Each class/object belongs to one domain, and each domain is given permissions
according to policy, see figure 4.

Figure 4: Complete caption

When a given object wants to access some resource in the system domain, it must make a
call to the system asking for the correspondent permission. The system must answer depending of
the policy associated to the domain from where the call was made.

The system executes security-check code to examine the runtime stack. Each thread of
execution has its own runtime stack. The purpose of the stack is to keep a track of which method
calls which other method in order to be able to return to the appropriate program location when an
invoked method has finished its work.

In this way security decisions can be made with reference to this check. This is called
stack inspection [McG99]. Trusted code has access to more resources invoking the doPrivileged()
method, which will be checked in order to determine if the application that invokes this method
belong to the application domain which has access to those system domains.

2 When local applets are loaded with the applet viewer, it is possible to specify that those applets will be
subject of the security polices defined in the system

a.class

b.class

c.class

d.class Protection
Domain A

Protection
Domain B

permissions

permissions

execution stack security policy

3 The Java security model

Sunday, February 04, 2001 - 13:02:40

15

3.4.5 The policy file

The capability to specify a security policy for applets and applications represent one of the
powerful security features introduced in JDK 1.2. A policy file consist of a series of statements,
referred to as grant entry that identify the permissions granted to code (applet or application)
based on the location from which it is loaded and any signers of the code.

The grant entries of the security policy identify a code source (URL and list of signers),
followed by the permissions granted to that code source. The permissions specify the action that a
code source may take with respect to a protected resource (entries between “[“ and “]” are
optional and those symbols does not belongs to the language). The syntax of a grant entry follows:

grant [SignedBy “signer_names”] [, CodeBase “URL”] {
 permission_entries
}

Each grant specifies one or more permission entries to define the permissions that are
granted to the code source described by the SignedBy and CodeBase clauses. If only CodeBase
clause is specified then the grant will be given to any code that comes from this URL.

A permission entry (permission_entry) consists of the keyword Permission, followed by the
fully qualified name of a Java permission class, followed by an optional target name, action list,
and SignedBy clause. The syntax of a permission entry is as follows:

Permission permission_class_name [“target_name”]
 [, “action_list”] [, SignedBy “Signer_names”];

The permission class name identifies the permission to be granted. It is the fully qualified
name of the Java class that implements the permission. Most of those permissions have “targets”
and “actions”. For example, the targets of the java.io.FilePermission permission are files or
directories of the files system, and the actions associated are “read”, “write” and “execution”. In
the following, we will see the most important permission classes.

3.4.6 Permissions classes

The permission classes represent access to system resources. As an example of a
permission class, the following code can be used to produce a permission to read the file named
“abc” in the /tmp directory:

Perm = new Java.io.FilePermission(“/tmp/abc”, “read”);
java.security.Permissions represents a collection of collections of permission objects. There

are several classes already subclassed which implement the most important permission. All of
them are described in detail in [Sun98a].

?? java.security.Permission

This abstract class is the ancestor of all permissions. It defines the essential functionalities
required for all permissions.

Each permission instance is typically generated by passing one or more string parameters
to the constructor. In a common case with two parameters, the first parameter is usually "the name
of the target" (such as the name of a file for which the permission is aimed), and the second
parameter is the action (such as "read" action on a file). Generally, a set of actions can be specified
together as a comma-separated composite string.

?? java.security.BasicPermission:

The base class for permissions that want to follow the same naming convention as
BasicPermission (see below). The action string (inherited from Permission) is unused. Thus, a
BasicPermission is commonly used as the base class for "named" permissions (ones that contain a
name but no actions list, you either have the named permission or you do not.) Subclasses may
implement actions on top of BasicPermission, if desired.

Some of the BasicPermission subclasses are

? ? java.lang.RuntimePermission

 Towards a security aspect for Java

Sunday, February 04, 2001 - 13:02:40

16

? ? java.security.SecurityPermission
? ? java.util.PropertyPermission
? ? java.net.NetPermission.

?? Specific Permission classes

There are several classes that inherit from the class java.security.Permission. Each
implements a particular permission.

? ? java.io.FilePermission: This class is an important class in that it is used to grant
permission for file and directory operations. This class sets the read, write, deletion
and execution permission for files in the system.

? ? java.util.propertyPermission: This class is used to control access to system
properties. The actions are read and write which allows the applet to call
getProperty() and setProperty() method in java.lang.System respectively.

? ? java.lang.RuntimePermission: This class is used to control access to services of the
Java runtime environment For example, RuntimePermission("exitVM") denotes the
permission to exit the Java Virtual Machine.

? ? java.net.NetPermission: This class is used to control access to network resources.

? ? java.lang.reflect.ReflectPermission: This class is used to circumvent the access
checks performed on reflected objects. It allows all members of an object to be
accessed, no matter what access is specified via the public, protected, and private
keywords.

? ? java.securiaty.securityPermission: This class is used to grant a variety of security-
related permissions to guard access to the Policy, Security, Provider, Signer, and
Identity objects

? ? java.security.AllPermission: This class is used to grant all the permissions. Note that
AllPermission also implies new permissions that are defined in the future. Clearly
much caution is necessary when considering granting this permission.

3.4.7 An example of the Policy File

The following example shows a Policy file with many permissions that exemplify the way of
set permissions and grants.

An example of Java.Policy File

grant{
// allows anyone to listen on un-privileged ports
permission java.net.SocketPermission “localhost:1024-“, “listen”;

// “standard” properties that can be read by any one:
permission java.util.PropertyPermission “java.version”, “read”;
permission java.util.PropertyPermission “os.name”, “read”;

};

grant SignedBy “Mario, Andres, Remi”, CodeBase “http://www.emn.fr” {
// Only the code signed by Mario, Andres or Remi, coming from
// the site www.emn.fr to write the file “abc” in /tmp
permission java.io.FilePermission “/tmp/abc”, “write”;

};

3.5 The Java security model and AOP

The Java security model has been made in such a way that it shares some characteristics
with the AOP technique. In fact, all the security specifications are written in a file that is stored in
the system. Those specifications are not related at all with any specific program. Thus, security
becomes independent in the logical level from other aspects and from the base code. This way, the
user gains separation of concerns (see section 2.1) in its model.

3 The Java security model

Sunday, February 04, 2001 - 13:02:40

17

This similarity is very important for this thesis, because the aspect that is defined in
section 5 is constructed using the Java security model. Since the Java security model has these
AOP characteristics it becomes easier to integrate into our security aspect language.

However, when Java security model is applied using a kind of AOP technique, it is very
different in the implementation level. As presented in subsection 3.4.4 many checks of permissions
are inserted in many points of the classes that are related with the permissions.

3.6 Compromising Java security through applet attacks and security bugs

Today, applets have become widespread because their features make them ideal to
improve web-based services. Applets are used in several ways, from graphics adorns in web pages
to commercial activities (for example electronic commerce).

However, applets present also some risks to the user who loads the pages that contain
them. Applets can potentially attempt several kinds of attacks, even under the constrained
environment in which they run. Applets of this nature are usually called “hostile applets” [Isr99],
[LaD96].

Moreover, if applets achieve bypassing the security layers of the Java model the applet can
gain dangerous abilities such as read, write files in the file system, load and change any class, etc.
Until today, it is known that the Java security layers can be bypassed by applets that exploit bugs
in the Java implementation [Dea96]. Many bugs have been discovered in different Java
implementation in the Java-enable browsers ever since Java appeared.

In this section some hostile applets are described in more detail, the types of attacks that
they can attempt and the bugs that have been found in the different versions of Java and browsers
such as Netscape, HotJava, and Internet Explorer.

3.6.1 Hostile applets

There are many kinds of attacks that an applet can attempt. They have been classified in
four groups of attacks [McG99]:

?? Attacks that modify the system

This kind of attacks involves intrusion into the system itself. Applets that perform
these attacks have been developed only in research laboratory and it is not known that
they do exist outside the laboratory [McG99].

Most of the time, the applet uses some holes in the Java system (see subsection
3.6.2) to get special permissions that allows it to damage the computer where it is
running. This kind of attack is considered severe because that the applet can eventually
delete, write or read whatever in the victim's site. This kind of attacks is fortunately
difficult to build because they require a very deep knowledge of the Java security model
and its implementation

An example of this attack is an applets that gain access to the list of trusted
signers and then insert its own name in the list. Afterwards, the applet can have all the
privileges granted to those signers.

?? Attacks that invade a user’s privacy

Sensitive information is stored in some machines connected to the Internet such
as password files, system configuration files, files containing sensitive personal or
company information. For example, if an applet get access the /etc/passwd3 file of an
Unix system, the owner of the attacker applet can then intent a password attack in order to
become "root" which can have severe consequences.

3 The /etc/passwd is an encrypted file that contains the password (encrypted) of all the users of a Unix/Linux
system.

 Towards a security aspect for Java

Sunday, February 04, 2001 - 13:02:40

18

Forging mail is also considered a kind of invasion of privacy. If some one can gain
enough information to forge mail that appears to be from the victim, then the victim is
exposed to a large number of serious risks. For example, the victim can be target of spam
attacks.

Another issue in this context are the security holes presented by the use of
software that run in the system under some privileges and risk to enable applets to get
access to different resources of the system. An example of this is "Java Wallet" [Sun98b]: a
Java Electronic Commerce Framework (JECF). This software allows applets, for example,
to read vital information from your computer, has access to serial ports to dial up through
modems, or modify the behavior of an element of the Java Wallet interface [Jou98]. These
attacks are targeted towards the user privacy because they can access information like
personal information, credit card numbers and so on.

?? Attacks that deny legitimate use of the machine by hogging resources

This attack consists in make the system resources unavailable. They are
performed essentially against servers, but also can work against individual clients. This
kind of attack is quite common and we can find them in many flavors, as for example:

?? Applets that creates threads until the kernel of the of the machine panics
[Ash99]. With this attack, at least the browser should be quitted, or if the
system is not a multitasking system it will be necessary to reboot the
machine.

?? Applets that can stop any applets that are running and kill any other applets
that are downloaded [Isr99].

?? Applets that use up all available file pointers creating thousands of windows
(effectively denying access to the output screen or window event queue).

The defense against those applet's attack provided by Java is very weak and can
by surely improved as is discussed in section 3.3.4. Implement such as attack is not hard
[Obe97] [LaD96]. Stopping denial attack is very hard and [McG99] says that “ is expected
that Java will not have strong defenses against denial of service any time soon”.

?? Attacks that antagonize a user

The last kind of attacks are those ones that for example, play some bizarre noise
[Isr99] through a speaker or display obscene pictures in the screen of the user. There are
also some attacks that makes your browser visit a given web site over and over again,
whether you want to or not, popping up a new copy of the browser each time [Isr99].

3.6.2 Bugs in the Java implementation

The Java system has been implemented by several companies such as Sun, Microsoft,
Netscape, Symantec, IBM, etc. There are several security bugs in the implementations that allow
untrusted code to take control of the system resources and perform malign computation.

From the first version until the version 1.2 of Java, several security bugs have been
discovered. We will briefly describe the most important bugs that affect directly the bases of the
security principles of Java.

?? Bug in the Bytecode verifier, Princeton University, March 1996

Java code that is not accepted by the compiler must not be accepted by the
bytecode verifier either, because they should have the same semantics. Nevertheless, this
bug consists precisely in that code that is not accepted by the compiler it is accepted by
the bytecode verifier. This way incorrect code can be loaded.

There are many attacks that are possible [Dea96] because of this bug. In Java, all
constructors must call the constructor of their superclass. Classes like SecurityManager,
FileInputStream and ClassLoader have checks in its constructors in order to know if it is
an applet who is invoking their constructors. Java forbids the definition of classes that

3 The Java security model

Sunday, February 04, 2001 - 13:02:40

19

extend the SecurityManager, the FileInputStream and the ClassLoader, but corresponding
"bytecode programs" may be accepted.

For example, If an applet can create an instance of its own FileInputStream class,
then it will be allowed to create streams that will not be subject of the normal security
checks of Java.

?? Bug in Internet Explorer, August 1996

This bug allows attacker to booby-trap a Web page that can be used to execute
any DOS command in the victim’s machine that run Internet Explorer 3.0, including
commands that delete files, for example.

?? Bug in Explorer and Netscape, Princeton University, August 1996

Two different security flaws were found in Netscape 3.0 beta 5 and Internet
Explorer 3.0 beta 2. These two flaws allow applet to gain grant to at least read/write
access to the victim’s files.

?? Signature control bug, Princeton University, April 1997

As it have been said in the subsection 3.4.3 the first security model was the
sandbox model in which foreign code is considered ‘untrusted’ and then is confined to the
sandbox. In the next version of Java, applets had digital signatures. If an applet’s signer is
labeled as trusted by the local system, then the applet is not subject to the normal
security restrictions. A very serious flaw was found in April 1997 at Princeton University
[Sec97]. It was present in version 1.1.1 of the Java Development Kit (JDK) and version 1.0
of the HotJava browser, both from Sun. These systems allow digitally signed applets. The
flaw allows an applet to change the system’s idea of who signed it. The applet can get a
list of the all signers known to the local system, determine which if any of those signers is
trusted, and then the applet can re-label itself so it appears to have been signed by a
trusted signer. In this way, the applet can completely evade Java’s security mechanism.

?? Bug in the ClassLoader, Princeton University, July 1998

This Java security flaw allows a malicious applet to disable all security controls in
Netscape Navigator 4.0x. After disabling the security controls, the applet can do whatever
it likes on the victim’s machine, including arbitrarily read, modify, or delete files. This flaw
is not directly exploitable unless the attacker uses a secondary flaw.

?? Bug in the JVM, University of Marburg, Germany, April 1999:

Another serious flaw affects the current versions of the JVM, including Sun’s JDK
1.1 and Java 1.2, and Netscape’s Navigator 4.x (the last version is 4.5). The flaw allows an
attacker to create a booby-trapped Web page, so that when a victim views the page, the
attacker seizes control of the victim’s machine and can do whatever he wants, including
reading and deleting files, and snooping on any data and activities on the victim’s
machine. The flaw is in an essential security component of the JVM. Under some
circumstances the JVM fails to check all of the code that is loaded into the JVM. Exploiting
the flaw allows the attacker to run code that breaks Java's type safety mechanisms. This
code can set up a type confusion attack, which leads to a full-blown security breach.

4 Security in typed applets based on [Leroy/Rouaix, POPL 98]

4.1 Introduction

An applet is a program written in the Java™ programming language that can be called in
an HTML page4. Java enabled Web browsers can display a page that contains an applet. Then the
applet's code is transferred to the local system and executed by the browser.

When a client downloads an applet from a site, a security process is started by the
component responsible for loading the applet that is normally the ClassLoader. The process can
consist in static type checks both at the client and at the server side, cryptographic signature
checks and dynamic type checks at the client. Nevertheless, a necessary condition that the
program will run without violations of type soundness will be that applets are strongly typed.

In the entire spectrum of security violations performed by Java applets we can distinguish
between attacks that make use of security holes and those that make use of the public functions
for the applet’s execution environment. In case of applets that exploit security holes it becomes
necessary that security properties must be enforced by the applet’s execution environment.

In [Ler98] are formulated and proved several security properties that can be expressed as
well-typed conditions on applets. Those conditions can be achieved by using procedural
encapsulation, type abstraction, and systematic type based placement of runtime checks. Those
runtime checks are inserted in the code defining program transformations.

The aim of this chapter is to introduce a certain level of knowledge about security
properties and its conditions that are presented in [Ler98]. Most of the concepts introduced in this
chapter are used to build the security aspect that is defined in chapter 5.

4.2 Storing and instrumenting the environment

The four properties defined in [Ler98] are based on several concepts that help to store and
control environment information. Below these concepts are first described followed by a
reformulation of the four security properties.

4.2.1 Determining sensitive locations of the environment

?? Sensitive locations

Sensitive locations (also sensitive store locations) are variables, locations or references that
have a special importance in the environment and must be protected. For example, variables that
can never be written, or variables that can be written but must satisfy a given invariant.

Different devices like input/output streams or network connections or files are represented
as references or locations in the environment. Usually, those devices are the targets of applets
attacks and special control over them by declaring them explicitly as sensitive locations can
provide a higher level of security.

?? The store control

The store control is an entity that maps sensitive locations (called also store locations) to
sets of values. In this way it is possible to control all the writes to any sensitive location declared. If
the value written in the location is not in the set of permitted values an error is raised. In the case
of sensitive location that have not allowed to be written at all, the store control is simply defined
empty (?) for this location.

4 Currently, an applet is not necessarily written in the Java™ language. The Smalltalk language version
developed by Dolphin [Obj99] provides an Applet development kit to write programs in Smalltalk that can be
included in an HTML file and can be downloaded and executed with the help of a Web Applet Virtual Machine
plug-in. The plug-in works for most of the web browsers.

 Towards a security aspect for Java

Sunday, February 04, 2001 - 13:02:40

22

It is strictly necessary that the Store Control be given at the beginning of the program's
execution, before any class is loaded or any applet is run. This is because, if it is not be given from
the start, some malign applet could write any value in sensitive locations and before the Store
Control check the value of the sensitive locations it could restore the environment to its permitted
values in order to avoid to be discovered. By giving the store control in advance, we ensure that the
any error will be detected and the corresponding error message will be generated.

?? The reachable locations set

A variable a is reachable from a variable b, if it is possible to obtain a reference to a
starting from b. For example, let us imagine a reference x to an array that contains references to
objects of a given class. Then, according to the previous definition all those objects are reachable
from x, because there is a way to obtain a reference to them starting from x.

The set of "reachable locations RL from v to s" is defined as all the variables that are
reachable from a given value ‘v’ in a store ‘s’. In particular there is the set that represent all the
locations reachable from any variable in the environment. This set is used to formulate the first
security property (see section 4.3).

?? Named types

As presented in subsection 3.3.3 a mechanism to transform the objects type is the cast.
From the point of view of security, the cast mechanism can be used to introduce invalid objects to
the environment. For example, let a security policy defined for a type TextFile that is subtype of the
File Type. Then to introduce an invalid object my be enough to create a new subtype of TextFile
(that we will call MyBadTextFile), create an instance of this object and make a reference from a
variable of type File:

File fd = new MyBadTextFile(ilegalValue1, ilegalvalue2);

And then, make a cast from the type of the illegal object to the type, which is subject of
security policies:

TextFile text = (TextFile) fd;

Therefore, controlling constructors of specific types is not enough to avoid the creation of
invalid objects via subtyping. Then, what the programmer can do is to define more precisely which
classes can be casted to which other classes.

The set of types that will be restricted in casts is called the set of named types and is
defined by a mapping TD (Type Definitions) from type names to type expressions, stating that the
type t is interconvertible with its implementation type TD(t). The programmer could define these
named types in advance. Then, casts associated to certain types can be introduced automatically.
We will see later the advantage to do this and which properties this implies.

Making the coercion explicit facilitates the definition of the program transformations as we
will see, ensuring in particular that each term has a unique type.

?? The set of permitted values

For some types of the system it is possible to define the values that are permitted for
them. This is achieved by a mapping from types to values called permitted values of t denoted PV(t).

If the function PV is undefined for some type t, this means that any value is valid for this
type and it has no restrictions. This function helps to define policies that affects certain types such
as paths, permissions, usernames, counters, etc.

To reference those types that are mapped by this function, we will write Dom(PV) that is
the domain of the function PV.

4.2.2 Instrumentation and runtime checks

Instrumentation and checks are introduced in order to control that sensitive locations can
never have values that do not belongs to its permitted values set. Finally they are used in the last
two properties to ensure the integrity of the environment.

4 Security in typed applets based on Leroy/Rouaix, POPL 98

Sunday, February 04, 2001 - 13:02:40

23

?? Runtime validation of values

The operator OKt (one for each named type t) is a function used to perform runtime
validation of its argument. The use of this function assumes that a set of possible values PV is
already defined, and it will check that the argument belongs to this set.

If the runtime checking is passed, the value of the expression is returned, if the test fails, it
aborts the execution of the applet and reports an error.

?? Instrumented writes

A transformation scheme called Instrumented Writes (denoted IW) is defined as an
insertion of an OKt check before any write to a reference of type t with t ? Dom(PV). This way it is
possible to control all writes to a reference t and ensure that all the values stored in those locations
will belong to PV(t). This scheme is defined as the following program transformation:

IW(at ref = bt) ? IW(at ref) = Okt(IW(bt))

In other words this definition means that any assignment between a term that is a
reference to a type t (expressed by t ref) is transformed on both sides in order to ensure that the
value stored in the location belongs to PV(t). Moreover, we can remark that the definition is
recursive and this is necessary because in Java an assignment or a class declaration like inner
classes [Sun97] can be found in a expression.

?? Instrumented coercions

This instrumentation add checks to all creations of values of type t ? Dom(PV) in the
execution environment, i.e. to coercions of the form t(a), following the instrumentation scheme
called Instrumentation of Coercions (denoted IC) below

IC(t(a)) ? Okt(t(IC(a))) if t ? Dom(PV)

Both the scheme IW of instrumented writes and the IC scheme of instrumented coercions
can be clearly expressed as program transformations. These transformations will be defined in
detail in section 8.

4.3 Four security properties for typed applets

In [Ler98] four security properties are presented, which are based in the concepts
presented in the section before. The aim of these properties is to ensure the safeness of the
execution environment. In the following, we will present and explain them in general terms. More
details and proofs can be found in the [Ler98].

As all the security properties presented in [Ler98], the aim of the first security property is
to preserve a safe environment. This property requires strong conditions in the sense that the
environment is strongly constrained. The security property can be reformulated as:

“Let p be a set of sensitive Locations and R the set of all the variables that are
reachable from any variable, reference or location in the system. If p ? R = ? , then for all
applets a, we have that no applet will trigger an error by writing to a location in p.”

This property is based mainly in the fact that if applets have no access to any sensitive
locations p through the system, then it is impossible to write in them.

To ensure the safeness of the environment is introduced the ‘writes instrumentation ' scheme
(IW). All the code in the local environment is instrumented using this scheme in order to ensure
that writes in the environment are safe.

Nevertheless, applet code is not instrumented and if it has a reference to a sensitive
location, it will be able to perform illegal writes on it. But if in the environment applet there is no
reference to any type t in Dom(PV), then will be impossible for it to have access to a sensitive
location.

Then, the second security property states:

 Towards a security aspect for Java

Sunday, February 04, 2001 - 13:02:40

24

“Assume a semantically correct environment e and a semantically correct storage
location s. Further assume that the applet environment contains no occurrence of
references to any type t in Dom(PV), and that all function closures in the environment
and in the storage have been instrumented with the IW scheme (that is, e and s are
obtained by evaluating source terms instrumented with IW). Then, for every well-typed
applet in the type environment in which all the sensitive location are, it will not trigger an
error writing in sensitive locations. ”

A semantically correct environment means that the variables have values that correspond
to their types, and then the environment is considered correct. In other words, all the local code is
instrumented used the IW scheme, assuming that the initial environment is correct. The
instrumentation of writes will ensure that in the local execution environment, all the writes are
valid, and because the applet does not manage sensitive locations it is impossible for the applet to
write them. Then writes to sensitive locations will trigger no error and they will store only permitted
values of its type t, i.e. values in PV(t).

Compared with the first property, the conditions of this second property do not constrain
so much the environment. However, it requires different conditions: no references of type t must
occur in the environment of the applet. Unless types of sensitive locations are very rare or unused,
this condition can constrain much the system than property one.

The main problem of the second property is that impose a strong condition over the
applets (no references to types in Dom(PV)). However, if all the values of type t in Dom(PV) that
flaws in the applet's execution environment always belong to PV(t), then the applet will never write
an illegal value in a sensitive location, even if it has references to types t.

Introducing the scheme to instrument coercions IC (presented in section 4.2.2) it is
possible to ensure that all the values of type t ? Dom(PV) created in the execution environment
belongs to PV(t). Nevertheless, this is not enough because the applet can introduce unchecked
values of the type t. Then, a new less strong condition can be imposed to the applet: it must not
contain any creation of types t in Dom(PV). This is achieved reducing the set of named types TD
to only those types t that does not belong to Dom(PV).

Mainly, the security property three says that:

“Assume that all function closures in the environment and the initial store have been
instrumented with the IC scheme (that is, the environment and the initial store are
obtained by evaluating source terms instrumented with IC). Assume also that the
environment and the initial store are semantically correct. Then, for every applet well-
typed in the environment and in the restricted set type definitions, we have that the applet
will not trigger an error in the environment.”

The subset of type definitions that we mention here has been explicitly created in order to
avoid that applets can create their own values of types that belongs to Dom(PV) in their code. This
objective is reached by making those types abstract, and then, the applet can manipulate values
but it can not create any value of types in Dom(t). Therefore, all the values that flow in the applet
environment have been created and checked in the initial environment.

One practice that the property three formally justifies is capability-based systems: by
making the type of capabilities abstract to the applets, runtime checks are necessary only at points
where new capabilities are constructed and returned to the applet. Capabilities presented by the
applet can then be trusted without further checks. Unlike property 2, property 3 does not require
that types t ref do not occur in the typing environment E.

In some cases is not possible or convenient make the types t ? Dom(PV) abstract, but it
is possible to adapt the approach of the security property three, by reverting to procedural
abstraction and putting checks not only at coercions, but also on all values of types t ? Dom(PV)
that come from the applet. Procedural abstraction of a certain types consists basically in allow an
applet only to manage values of this type, forbidding the creation of variables of this type.

This is achieved by a standard wrapping scheme applied to all functions of the execution
environment. This scheme consist in create new types for each type t in Dom(PV) where its
values are first checked and then transformed to the original type.

The security property four can be written as follow:

4 Security in typed applets based on Leroy/Rouaix, POPL 98

Sunday, February 04, 2001 - 13:02:40

25

“Assume that the execution environment and the initial store are obtained by
evaluating a set of transformed bindings that have been wrapped in order to ensure that all
the values that come from the applet have been checked and belongs to the set PV(t).
Assume also that the environment and the initial store are semantically correct. Then, for
every applet well-typed in the environment and in the initial set of restricted type
definitions TD of named types, we have that the applet will not trigger an error in the
environment.”

The mentioned set of transformed bindings refers to those types that have been binding
with its wrapped version. Then, then applet environment work with the wrapped version that is
checked in creation and then passed to the local execution environment.

5 A security aspect for the integration of type-based
properties into the Java security model

In this chapter, a security aspect for Java is presented which integrate the security
properties for typed applets into the current Java security model. The presentation is as follows:
first, properties of the key concepts (such as sensitive locations) with respect to the integration are
discussed. After having defined the syntax of the security aspect, its semantics is defined
informally and examples of its use are given. Finally, a method for a formal correctness proof is
sketched and some important properties of the aspect language are discussed.

5.1 Integrating the approach of typed applets

The approach presented in chapter 4 shows properties that every strongly-typed applet
has. The fundamental idea is to instrument writes in sensitive locations in order to ensure that they
always have permitted values. [Ler98] presents an approach to security based on an imperative
language. In this thesis, a preparatory step for the definition of the aspect is to adapt and
implement their work in the context of object oriented language.

5.1.1 Sensitive locations

In [Ler98] sensitive locations have been defined as variables that must not be written or
must always have some restricted set of values.

In OOP variables are references to objects that are stored in memory. The state of an
object can be modified both by directly accessing its instance variables or altering its behavior
through its method.

Therefore, when declaring a sensitive location, we be able to which values are accepted for
instance variables and which methods by which may be used to affect objects.

Sensitive locations can be seen as a fine-grained visibility modifier. The standard Java
modifier ‘private’ restricts the visibility of the field of a method defined in a class to only this class.
A sensitive location declaration can be used to enlarge or reduce the visibility of certain objects or
classes to very fine-grained domains.

For example, consider a class "Employer" that has a public method getSalary() that returns
the employer's salary. The visibility of this method can not be restricted to subclasses,
nevertheless "Workers" should not be able to use this method, only "Managers". A solution to this
problem is to define "Employer" as sensitive with respect to getSalary() and specify that it can be
invoked only by managers.

5.1.2 Objects and classes

A second important problem concerning the integration is that in class-based languages
there are classes and objects. Classes can have class variables (called static variables in Java) that
store information common for all the objects instance of this class. Classes can have also class
methods (called static methods in Java) that do not need an instance of the class to be invoked.

Therefore, classes and objects have the necessary characteristics to consider them as
sensitive locations. Declaring classes as sensitive locations means that all the objects that are
instances of this class (and of its subclasses) will be considered sensitive locations and will be
subject to the conditions associated to this class.

Therefore, writing a sensitive location will be understood as "send a message to an object or
access (read or write) a given instance variable of an object or class". Consequently, the definition of a
sensitive location is first to specify the class or object that will be considered as sensitive and then
the member by which the class or object becomes sensitive.

 Towards a security aspect for Java

Sunday, February 04, 2001 - 13:02:40

28

5.2 Syntax of the security aspect language

The following syntax uses standard EBNF conventions)

securityAspect :: = typeDefinition
 | sensitiveLocDec
 | javaPermission

javaPermission ::= "PERMISSION" ["TO" unionList] ["FROM" unionList] "OF" javaSecurityEntry
 | peopleSetDefinition
 | urlSetDefinition

sensitiveLocDec ::= "SENSITIVE" location "SATISFY" booleanJavaExpression

typeDefinition ::= "SUBTYPE" identifier "OF" identifier

javaSecurityEntry ::= javaPermissionName target action

peopleSetDefinition ::= "GROUP" identifier = unionList

urlSetDefinition ::= "URL" identifier = unionList

location ::= classMember
 | objectMember

classMember ::= varName"." memberName

objectMember ::= classMember "::" varName"->" className

memberName ::= identifier
 | identifier"(" [identifier (identifier)*]")"

booleanJavaExpression ::= stringLiteral

varName ::= identifier("."identifier)*

unionList ::= intersectionList ["UNION" intersectionList]

intersectionList ::= poepleList ["INTERSECTION" peopleList]
 | urlList ["INTERSECTION" urlList]

peopleList ::= identifier ["," peopleList]
 | stringLiteral ["," peopleList]

urlList ::= identifier ["," urlList]
 | stringLiteral ["," urlList]

Identifiers are used to refer to names in general. They are used to reference variables
defined in the aspect or to refer class name or member name. The stringLiteral is used to
represent Java Boolean expressions.

5.3 General description of the security aspect

Now that the security aspect syntax is defined, its semantics is informally presented.

5 A security aspect for the integration of type-based properties into the Java security model

Sunday, February 04, 2001 - 13:02:40

29

5.3.1 Sensitive locations

Sensitive locations, as defined in subsection 4.2.1. are used to define those classes and
objects that will be eventually subject to security checks performing runtime validation and
write/coercion instrumentations.

A sensitive location declaration consists in the specification of the location (that
correspond to a class or an object) and the specification of the invariant (that will define the set of
sensitive values PV for this class). The syntax of this declaration is:

sensitiveLocDec ::= "SENSITIVE" location "SATISFY" booleanJavaExpression

The symbol location represents the complete description of the sensitive location. A
location can be an object or a class5. A class declaration is declared as follow:

class ::= varName"." memberName

Basically it defines the full class name (varName) consisting of an optional package
definition and a class name. Then it specifies the memberName that correspond to the member of
the class (instance variable or method) through which it becomes sensitive.

A declaration of an object sensitive is of the form:

object ::= class "::" varName"->" class

It first part consists in a class declaration (explained above) that specifies the exact scope
where the object is declared and instantiated6, followed by two colons (::). Follows the name of the
object followed by an arrow (->), and then another class declaration that will specify the class of
the object and the member by which it becomes sensitive.

For example, we want to declare as sensitive an object of class Manager called myManager
because it manages important system security policies. Let this object be declared in the method
main(String args[]) of the class Browser, then the declaration should be:

SENSITIVE Browser.main(String[]) :: Manager->myManager SATISFY …

The specification of a location is followed by an invariant declaration (for the sake of
simplicity is based on the transformations of source code). An invariant is composed by the
keyword "SATISFY" followed by a Java boolean expression (Note that we can simply use a string
representation because the implementation is based on the transformation of source code.).

SATISFY booleanJavaExpression

This declaration means that the Java boolean expression will be checked each time that
the member of the sensitive object/class is accessed (or invoked in case of methods). In the
boolean expression, all the fields or methods that belong to the sensitive locations are preceded by
its class or object name. This is shown in more detail in the following examples.

Three examples should clarify these declarations. The first example shows the declaration
of a sensitive class and its possible values:

SENSITIVE Visitor.username SATISFY
"(Visitor.username.equals(“root”) == false)"

The class "Visitor" is sensitive via accessing its instance variable "username". The set of
possible values for this instance variable is any string but "root".

5We treat an interface as a class, because it is place where behavior (and then information) is defined. Then,
policies can be defined over them to project them to all its implementers.

6 We assume that Java programs are normalized in that object are created in initialization statements occurring
in the same scope as the corresponding declaration.

Location of the object

declaration
Object type and name

definition

 Towards a security aspect for Java

Sunday, February 04, 2001 - 13:02:40

30

As a second example consider a class BankAcount that is declared as sensitive by the
invocation to its methods "setPassword(String) " and "setName() ". The requirements of the
programmer are that only the administrator of the system (represented by a class of this name) is
the only entity that can set the password of any BankAcount; the other requirement is that the
method "setName(String) " can never be invoked even when it is visible7. Those conditions are
expressed as:

SENSITIVE Username.setPassword(String)
SATISFY "this.geClass().equals("Administrator")"

SENSITIVE Username.setName(String)
SATISFY "false"

As it is shown, to make a method or a variable completely inaccessible the condition must
be "false".

The third example shows how to declare an object as a sensitive location. To motivate the
example we will suppose that in a military program all the information about the generals of this
country are managed in a list of type SoldierList called "generals" declared as an instance variable
of the TopSecret class. Nevertheless, other lists of militaries are stored as lists of this type. Then,
to impose some restrictions only to the list of generals, the next declaration can be used:

SENSITIVE TopSecret :: SoldierList -> generals.getNext()
 SATISFY "false"

5.3.2 Named types

Named Types (as introduced in subsection 4.2.1) are used to avoid creation of objects by
casting from non-valid types. The syntax of named types entries is:

typeDefinition ::= "SUBTYPE" identifier "OF" identifier

This declaration specifies those types that can be cast to specific subtypes and subtypes
that can cast to its super-type. For example:

SUBTYPE Boss OF Employer

This declaration has two direct implications. First, it will not be possible anymore to make
direct cast from Employer to Boss without a direct injection of the type name Boss(). For example,
to obtain an object of class Boss from an object Employer one must write:

Employer myBadBoss = new BadBoss();
Boss myBoss = Boss(myBadBoss);

The Second implication is that now, code that makes direct subtyping from any subclass
of Employer will be refused unless it has been defined as an already known subtype of Employer.
But even in this case the subtype will be explicitly cast. Taking the above example, the first
sentence will be rejected. Nevertheless, giving a subtype by its type will be allowed and done by
program transformations. The following code:

Boss myBoss = new Boss();
Employer anEmployer = myBoss;

will be accepted, and then transformed to:
Boss myBoss = new Boss();
Employer anEmployer = Boss(myBoss);

The use of named types, relies strongly on that the program transformations will detect
every relevant transformation. For more specifics details about the program transformations done
in the code, see subsection 8.2.4.

7 This kind of requirements could occur when methods already exist (because the have been inherited or
implemented because a good programming stile says that every instance variable should have an accessor),
but they should not be used because security reasons.

5 A security aspect for the integration of type-based properties into the Java security model

Sunday, February 04, 2001 - 13:02:40

31

5.3.3 Java permissions

The last alternative "javaPermission " of the security aspect permits the inclusion of the Java
security model. Those definitions are represented by expressions that follow the syntax:

javaPermission ::= "PERMISSION" ["TO" unionList] ["FROM" unionList] "OF" javaSecurityEntry

In a permission declaration, the permission is represented by a Permission class, and can
specify two more elements: signers of the code and the locations where this code comes from (for
further details see subsection 3.4.6).

The name of the signers and the place from where the code of the applets comes is
optional and omission means that the permission is granted to everybody or to code that comes
from any place.

Signers and location specification can be done using lists of signers and lists of locations
that have been declared before using peopleSetDefinition and urlSetDefinition. These set entries are
defined using the usual union and intersection operators.

Consider the following code, which presents an example in the use of specification of Java
permissions and set of people and URLs:

GROUP ooEmn = “Annya, “Mario”, “Noury”, “Andres”
GROUP emoose = “Lucia”, “Majo”, “Andres”
GROUP friends = "Andres, Sinagi" UNION emoose

URL dcc = “www.dcc.uchile.cl”
URL ecole = “www.emn.fr, www.eleves.emn.fr”

PERMISSION TO (ooEmn INTERSECTION emoose) FROM (dcc UNION ecole) OF

java.io.FilePermission “/temp/abc” “read”

PERMISSION TO ("Andres, Majo" INTERSECTION friends) FROM dcc OF

 java.security.SecurityPermission “Security.setProperty.*”

In this example, we see that the three first lines define three groups of signers: “ooEmn”,

“emoose” and "friends". They are sets of different possible signers for the applets. Afterwards two
sets of URLs are defined. The fifth declaration is a Java permission declared for all programs
coming from the union of the URLs url1 and url2, which are signed by the intersection of the people
set defined in ooEmn and emoose.

5.4 Leroy/Rouaix’s security reconsidered

In this section, we briefly discuss the impact of the security aspect defined above on the
security properties defined in section 4.3.

Property one is non-constructive and not considered further in the remainder of this thesis.

Property two says that instrumenting the execution environment with the IW scheme and
asking that there are no occurrence of references to any t in Dom(PV) in the applet, the system
will be safe typed. Nevertheless, the condition of no occurrence of any type t in Dom(PV) is too
strong and is not viable for our aspect because can become very restrictive. Our implementation
therefore only relies on properties three and four.

Mainly, the property three says that an applet may access variables of type t in Dom(PV)
only if it may not create them. Consequently, because the execution environment is the only one
that can create checked values of those type, all the values that flow in the applet's execution
environment will always belong to PV(t). However, to achieve this, it is necessary to make all the
types t in Dom(PV) abstract in the applet. Applied to our approach, this means that any applet
that wants to create objects of those types will be rejected. This restriction sounds again very
strong and depends of the kind of types in PV. For example if the class Object has restrictions,
then no applet could be accepted because in Java every class inherits from Object.

Finally, property four solves this problem of property three by wrapping the types in
Dom(PV). For each type t in Dom(PV) an equivalent type t’ is defined. Afterwards, when any
applet wants to import a variable of type t’ it is checked and then passed to the environment as the

 Towards a security aspect for Java

Sunday, February 04, 2001 - 13:02:40

32

real type t. In our aspect it is not necessary to wrap the types. It is enough to instrument all the
local calls where constructors of types t in Dom(PV) are included.

This is possible because in [Ler98] types have no constructor and then, the creation of
types is more difficult to control. In our approach we can ensure that no applet will not create an
object of a type t in Dom(PV) without invoking the constructor already instrumented in the
execution environment.

Nevertheless, is not enough to know that constructors and functions of the execution
environment are instrumented, because applets can introduce new subclasses of types t in
Dom(PV) and then make cast to those sensitive types.

To solve this problem all the cast to types t in Dom(PV) in the applet code must been
transformed to explicit injections to the type name to ensure that the creation of the type is being
instrumented. This transformation implies a reduction in the performance of the applet execution,
but fewer transformations are applied compared with those proposed in [Ler98].

5.5 Towards a formal semantics for the security aspect

The syntax definition of the security aspect (cf. the rule for the non terminal securityAspcet
on page 28) clearly indicates that it is composed of the ordinary Java security model and the type-
based security model.

This definition raises three main semantics issues:

1. The definition of a formal operational semantics. Concretely, such a semantics could
be developed by integrating the type-based part into a semantics for plain Java or by
integrating Java’s stack-based approach to security into the operational semantics
proposed in [Ler98].

2. The two approaches should be complementary in the sense that the combination of
the two approaches to security provides a stronger security model than any of its
parts.

3. Obviously, there is a certain overlap between the standard Java security model and the
type-based approach. Nevertheless, they should be ‘pragmatically complementary’ in
the sense that each individual model should be better suited for the specification of
some part of the shared security properties of the stronger model.

5.5.1 Definition of an integrated operational semantics

In this subsection, we sketch how the standard Java model for security could be integrated
on the basis of the operational semantics defined by Leroy and Rouaix. Basically, the set of
syntactic terms has to be extended with terms for the stack-based implementation (essentially,
doPrivileged() and checkPermission()) of the Java model and the evaluation rules have to be
changed in order to take into account these new terms.

As an example of the terms and the rules that may be added, we could write:

Terms ::= … (as before)
 | doPrivileged()
 | checkPermissiont(a)

And add the following evaluation rules:

)(,,
)(.,,

assioncheckPermise
sveDomainexaxase

sve
DomainDomaine

A

AA

?
??

?

?
?? ???

?
?

ed()doPrivileg
ed()doPrivileg

P Permission has

Once this new system defined, it should not be difficult to prove that the security
properties stated in [Ler98] are still valid and then prove that the integration of the two security
models does not affect the validity of each one.

5 A security aspect for the integration of type-based properties into the Java security model

Sunday, February 04, 2001 - 13:02:40

33

5.5.2 Complementarity of type-based and policy-based security

The two integrated approaches to security are quite complementary, precisely because
these two approaches are different and independent from each other.

Consider a situation where a specific file is subject of some policies. Using the Java
security model, the programmer is allowed to apply security specifications related with access
actions like read, write or delete, for example declaring:

PERMISSION TO “Thomas” FROM (“www.kurupt.org”) OF
 java.io.LogFilePermission “/kurupop/log.txt” “write”

Using the approach for typed applets, policies related directly with the class File could be
specified. This way a more fine grained policy can be specified, if programmer wants to allows
writes on the file when valid values are written in it, for example, continuing with the previous
policy:

SENSITIVE PopUp.main(String[]) :: LogFile -> kurupLog.writeIn
 SATISFY " !kurupLog.writeIn.equals(“ERROR”) "

This declaration says that the file log.txt is represented in the execution environment by
the instance variable created in the method main of the class PopUp called kurupLog, and that
each time that the instance variable writeIn is accessed should satisfy to be different of the
String “ERROR”. This declaration clearly complements the previous one adding more restriction in
the level of the code.

The Java security model has the advantage that the policy to apply for a given applet
depends of where the applet comes from or of its signature. Therefore, the model offer a fine-
grained policy application. In other hand, the approach for typed applets establish conditions to
satisfy for all the applets without make distinction between them.

When Java permission classes are too coarse and a more well fine-grained definition for
the policy is required, then a specification via declaring a class as sensitive and specifying its
possible values and its behavior can be done using the approach for typed applets.

5.5.3 Discussion of Overlap

There are many examples where it is possible to secure some specific target using the two
approaches. For example, if a file is the target of security restrictions, it will be possible to secure
the file using the two models. Nevertheless, each model can offer different abstraction levels of
security that are not equivalent.

The typed-based security model provides a different perspective to the problem. This
model can be integrated seemingly into the object-oriented paradigm (see subsection 5.1). Files
are represented in programs as classes and then it is possible to establish restrictions over
instances of this class and its subclasses. In this way it is possible to control not only if applets will
have access to the file, but also to control any property of the file object. Nevertheless, using this
approach is not possible to specify which applets will be subject of the restrictions.

Therefore, even when the two approaches can attack the same problem, they work
different levels of abstraction, transforming overlap to complementation.

5.6 Issues and considerations of the aspect

There are some issues that arise when a new paradigm like AOP is applied to some
concrete concern such as security. In [Pre99] are presented some issues that appear in the
application of AOP in the implementation of an aspect for robustness. In this section are presented
those issues and other that have appeared during this thesis.

5.6.1 AOP paradigm

As it was explained in chapter 0, AOP is a technique where the base code and the aspect
are written separately and then they are woven using a tool called weaver. In the specific
application to the security aspect, some code is initially in the system, but more code can be
received dynamically.

 Towards a security aspect for Java

Sunday, February 04, 2001 - 13:02:40

34

5.6.2 Inheritance and scoping

Security policies of our aspect can affect objects and classes. In the case of classes, those
policies should be applied also to all the subclasses of the class affected by the policy. This is
necessary because important classes such as File and System can be subclassed by an applet and
then used to perform dangerous actions without being subject of checks or instrumentations.

When subclassing in Java, it is possible to overload methods and change the type of
variables defined in superclasses hiding their visibility. This raises three new issues:

?? When policies are defined for an instance variable of a certain type in a class, are
those policies applied to any instance variable with the same name but different type
defined in a subclass?

?? What happens with those variables that are defined in a scope inside classes where
such variable names already exist? Are the policies applied to these variables also?

?? On declaration of sensitive locations, concrete methods names are specified. What
happens with methods overridden in subclasses? Are they not subject to restrictions?

In the presence of inheritance it is imperative to answer these questions, otherwise the
security of the system can not be warranted. This implies that an analysis of the system should be
possible at every moment (compile time and runtime), and perhaps it should be necessary to keep
information such as the class hierarchies.

5.6.3 Aliases

References to locations (and its recursive definition), can represent a problem, because
when declaring an object as sensitive, many references to this object (and to this reference) can be
done. Fortunately, in Java all references to variables are direct references to the object. Thus, it is
important to protect writes to the initial variable that point to the object, as well as check for all the
methods invocations and methods accessing objects of the class of the initial object.

To achieve this, the transformation written for instrument writes to object has been
defined as inserting an “if” statement in all the occurrences of objects that invoke methods or
access variables with the same name of the members of a sensitive location class. Then inside the
“if” statement it is checked if the suspected object points to the original object by simply using the
equals method defined for every object.

In Java many variables can reference to the same object. Direct writes to those references
are not relevant if they are not declared as sensitive. This is because make an assignment to those
references does not modify the object that they point, but it change the references. Thus, the only
reference that must be subject of writes controls is the one that has been declared as sensitive.

5.6.4 Dynamic definition of sensitive locations

In [Ler98] is stated that new sensitive locations can not be protected. In the adaptation to
our approach, this condition persists. Protecting classes introduced dynamically by an applet is
not possible because methods and constructors of this class are not instrumented. Nevertheless, it
is possible to introduce more transformations in the system and instrument all the new classes
declared as sensitive, but the performance is again reduced.

5.6.5 Detecting violations

Once policies have been defined and the system is running, applets can perform execute
code that violate the policies defined in the aspect.

When the violation corresponds to a Java permissions policies an exception called
SecurityException is thrown on the applet side, then the applet can catch the exception or simply
finish its program execution; the local system does not stop its execution.

However, checks and instrumentations are inserted in code of the local system as well as
in applet code. Therefore, when applets perform some violation, errors may be detected in the
code of the local system. It is not completely clear what should be done. There are many solutions:

5 A security aspect for the integration of type-based properties into the Java security model

Sunday, February 04, 2001 - 13:02:40

35

stop the applet's execution, stop the local system, make the StoreControl throw an exception or
make the applet throws an exception.

Unfortunately, the three last possibilities are not practical. Stop the local system is very
drastic. If the StoreControl throws an exception then the security control is stopped and this is not
admissible. Of course, there are cases where stop the local system can be the one alternative and
the cost to do it may be less than the cost of the damage caused by the applet. If the applet throws
an exception only the applet is affected and its behavior is modified because of the exceptions
inserted, for which the applet has is not been designed.

From the three possibilities, the third one is less severe and could be considered together
with stopping the applet execution.

6 Security results

The aspect presented in chapter 5 provides not only a simple way to specify a security
policy, but also enables more possibilities to defend the system against attacks.

Moreover, this model is useful to avoid attacks based on certain bugs found in the Java
implementation API (see subsection 3.6.2). In this chapter some concrete examples of attacks are
presented that can be avoided when the aspect is used.

6.1 Avoiding consequences of bugs

In this section two bugs are presented that can be avoided using the security aspect.

6.1.1 Signature control bug, Princeton University, April 1997

As explained in [Sec97], this bug exploits a bug in a public method (for any applet) that
erroneously return a reference to information about trusted signers instead of a reference to a copy
of this information. The list of trusted signers in Java is stored in an array that is modifiable as all
the arrays in Java. After that applet get this information, it can change this array and write its
name or modify its own signature to a trusted one of the list.

Certainly, after having declared this list of signers as a “sensitive location” of the system,
the system will never be hacked because confusion of signers, or at least because some sensible
data of the disk was accessible in some way to applets.

In fact, a way to secure the system in Java is hidden this information, but -by using a
sensitive location.- even when an applets knows the list of signers it is still a hard problem to falsify
signatures. Moreover, when the information is public it will not be possible for applets to modify
those locations.

In general, declaring that kind of information as sensitive, attacks of this class can be
avoided. The next bug presented in this section exploits a bug that allows writing variables that are
final or private. Nevertheless, even when the attack can introduce code that gives that enables such
a facility, the use of this security aspect will prevent those writes stopping the execution if an
applet tricks to access sensitive locations.

6.1.2 Bug in the JVM, University of Marburg, Germany, april 1999:

As explained in subsection 3.6.2 this serious bug allows applet to perform a type
confusion attack [Sec97]. Applets may write any variable (even if it is declared static or private)
incurring serious risk in the system.

However, when using the security aspect, variables that are declared as sensitive can not
be written, even when there are not restrictions imposed by the language. Then, attacks of this
type are useless against security specifications on sensitive locations. The only chance of the
applet is to gain reflective permissions and then write variables using reflective functions provided
by the Java API.

6.2 Avoiding applet attacks

We will consider two kinds of applet attacks that can be avoided by applying the security
aspect.

6.2.1 Attacks that modify the system

There have not been registered applets that performs this kind of attacks in the network,
but in laboratories. These applets exploit bugs like those presented before, and without them it is
less much probable that this happens.

Moreover, the application of our security aspect ensures that the sensitive variables in the
system will not be modified, even when the applet may access them. Further this consideration,

 Towards a security aspect for Java

Sunday, February 04, 2001 - 13:02:40

38

even when applets get access to write over those variables the application of the aspect will ensure
that the system will halt before to be hacked.

6.2.2 Attacks that invade a user's privacy

As mentioned in subsection 3.6.1 sensitive information is stored in both the machine
where the local main program run and in the program itself. Applets should use this information to
perform other attacks or simply use the information obtained to other purposes.

The integration of the approach for typed applets is quite useful for avoiding this kind of
attacks because most of the important information flowing for the system is stored in variables. To
protect sensitive information like system variables it is only necessary to define them as sensitive
locations.

Attacks affected by a security prevention are: extraction of local system information (like
password files), user information in the browser or in the program, attacks that forge mail, and
attacks that capture the browser actions to obtain behavior information.

7 Implementation

This section describes the different elements that take part in the implementation of the
entire security system. Basically, there are two main parts:

?? Parse and interpret the policy defined by the user using the security aspect to obtain
the necessary information to create the Java policy file, the StoreControl class and the
program transformations.

?? Weave the base code with the policy specifications.

Along this chapter, different code generations are presented where the following font
meaning is used:

normal code
new inserted code
meta variables

Meta variables are used to represent values that are determined by the aspect parser and
then inserted in the generated code.

7.1 Overview

As we have said before, the first step in the process consists in parsing the policy defined
by the user. During the parsing process, the Java permission declarations are transformed directly
to a standard file that is used in Java to define the security policies. At the same time, a class
called StoreControl is created according to the policy specified by the user. This class will be the
responsible of the different controls of writes and coercions made in the system. Finally, a parser is
used to build the weaver, which will apply program transformations. Those program
transformations are defined in the chapter 8.

The second step consists in the application of the program transformations by the weaver
in the applets code. Program transformations will be implemented using a tool called TXL [Cor95]
(for details of the transformations see chapter 8). Figure 6 and Figure 6 shows the general scheme
of the entire process

First step

Figure 5: Parsing the aspect file

java.policy

Aspect
Parser

Aspect
File

StoreControl

Program
transformations

 Towards a security aspect for Java

Sunday, February 04, 2001 - 13:02:40

40

Figure 6: The weaving process

Next, the four components are presented in detail: the aspect parser, the StoreControl class,
the program transformations and the weaver.

7.2 The aspect parser

The aspect parser is a program written in JavaCC [Sun99a] that parses a file with the
security aspect specification and generates or modifies three different output files: the Java policy
file, the StoreControl class and program transformations for the weaver.

An overview of the code of the parser is given in the Appendix A.

7.2.1 The Java policy file

As presented in subsection 3.4.5. the Java policy file is where the policies related with Java
permission are specified. When the aspect parser reads a Java permission entry it generate the
equivalent permission entry in the Java policy file.

7.2.2 The StoreControl class

The StoreControl class is created in order to store information related with sensitive
locations and its checks and named types. The StoreControl class is composed of two instance
variables, one constructor and several methods. Before parsing the aspect file, the StoreControl
class has the following appearance:

public final class StoreControl{

private ListOfSensitiveLocations sensitiveLocations;
private ListOfNamedTypes namedTypes;

public StoreControl(){
}

}

The StoreControl class components are:

?? List of Sensitive location

The StoreControl class has a list of sensitive locations that stores all the sensitive
locations of the system. This list is used to perform runtime checks.

?? List of Named types

The StoreControl class has a list of named types that is used to control the
instrumentation of coercion, cast and subtyping.

Applet StoreControl
Program

transformations

Secure Applet

Weaver

7 Implementation

Sunday, February 04, 2001 - 13:02:40

41

?? The StoreControl constructor

This constructor is completed while the aspect file is parsed. Inside this
constructor statements are generated to add sensitive locations and named types.

??Methods for Runtime checks

Two kinds of method called “ok” and “ok_assig”, are inserted in the StoreControl
class to perform runtime checks for sensitive locations defined in the system. The “ok”
methods are introduced in order to perform runtime checks for method invocations of
sensitive locations. The “ok_assig” methods are inserted to perform runtime checks when
instance variables of sensitive locations are accessed (for write or read).

There is one method “ok” and “ok_assig” for each sensitive location, they are
distinguished by the type of the first parameter that is the type of the sensitive location.
However, because a sensitive location can have several associated invariants, a second
argument defined as an integer is added to specify the invariant to be checked.

The “ok” method tests the invariants specified in the sensitive declaration and
returns true if the test succeeds and false otherwise. The method signature is:

boolean ok (Class a, int index)

The body of the “ok” method correspond to a “switch” block that checks a
condition associated to the index “index”.

The “ok_assig” method tests the invariants specified in the sensitive declaration
and returns the object given as parameter if the test has succeeded and throws an
exception if it does not. The method signature is as follow:

Class ok_assig (Class a, int index) throws SecurityWriteReadException

As the method “ok”, the body of the “ok_assig” method corresponds to a “switch”
block that checks a condition associated to the index “index”.

7.2.3 Program transformations

Program transformations are programs written in TXL programming language [Cor95] that
look for a pattern in the base code and replace the match by a predefined expression. These
program transformations are generated after parsing the aspect file. Afterwards, an instance of the
StoreControl class is created and the program transformations are generated.

The implementation of the program transformation in TXL is presented in Appendix B.

7.3 Parsing the aspect file

When parsing the aspect file, several actions are performed for each kind of statement of
the security aspect that is read.

7.3.1 Sensitive locations

When sensitive locations are parsed, they are stored in the list of sensitive locations. Then,
after parsing the sensitive declaration, two different code generations are performed:

1. Declaration of sensitive location in the StoreControl Class

The declaration of a sensitive location in the security aspect definition is
implemented by inserting an object SensitiveLocation to the sensitive location list in the
StoreControl. For example, when a sensitive location declaration as the following one:

SENSITIVE Class.field SATISFY JavaBooleanExpression

is parsed, the constructor of the StoreControl is modified and the following code (marked
in bold) is added:

private StoreControl(){

 Towards a security aspect for Java

Sunday, February 04, 2001 - 13:02:40

42

sensitiveLocations.add("Class", "field");

…
}

The execution of the method “add” will insert a sensitive location in the
StoreControl class as an objet. Then, a second code generation is performed. The Java
boolean expression declared in the aspect file is inserted in the OK method as stated in
the section before.

2. Creation of runtime checks

The second code generation step consists in the insertion of the condition
specified in the aspect to perform the runtime check. As it was said in section 7.2.2 the
condition must be inserted as part of a switch block defined in the methods “ok” and
“ok_assig”. If the method “ok” (or “ok_assig”) does not exist when the declaration is read,
then the following expression is created:

boolean ok (Class a, int index){
Switch (index) {
}

}
The method “ok_assig” is created in a similar way. The parser determines the

value of the meta variable 'Class' that corresponds to the class name of the sensitive
location specified in the declaration.

According to the specification of the sensitive location declaration the following
code is added in the switch block (marked in bold) of the method “ok”:

boolean ok (Class a, int index){
Switch (index) {
 case number:

return JavaBooleanExpression;
}

}
For the method “ok_assign” the code inserted is slightly different. The condition is

checked and if the check succeeds, the object is returned:

Class ok (Class a, int index){
Switch (index) {
 case number:
if JavaBooleanExpression;

 return a;
}

}

The parser keeps a counter for each sensitive location and determines the value
‘number’. For each declaration of a sensitive location the counter associated to this
sensitive location is incremented. The 'JavaBooleanExpression' is that specified in the
sensitive location definition.

7.3.2 Definitions of named types

When a named type definition is parsed, two basic code generation steps are done. The
first step consist in add the named type (if it does not exist) and its subtype to the list of named
types. The second step consists in the introduction of a method that will check the creation of
objects of this type.

?? Adding the named types to the class StoreControl

As described in section 7.2.2, the StoreControl class has an instance variable that
is a list of types named objects. Each node of the list contains the name of the named type
and a list of all its subtypes that are accepted as a source of objects for this named type.

The first code generation step consist in the addition of a named type element to
the list of named types. In order to do this, the code to add an element to the named types

7 Implementation

Sunday, February 04, 2001 - 13:02:40

43

list will be inserted in the constructor of the StoreControl class. Supposing that the named
type is namedType and the source type is subType, the code inserted will be like:

StoreControl(){
…

namedTypes.add("namedType", "subType");
…
}

?? Coercion methods

The second transformation is related to the creation of the method that will make
the coercion from the named type to the subtype.

As presented in 4.2.2 the aim of coercions is to control the object creation of
sensitive classes via cast from subtypes of those classes. It is performed by replacing
explicit cast with injections from the subtype.

Given that the relation between subtypes and types is n to n8, a method will be
created with the name of the subtype and an argument the same type of the type declared
for each subtype defined. These methods will be inserted in StoreControl class and will
have the following structure:

public subType subType(Type source){

subType auxObj = (subType)source;

/** Here are performed the checks */
allChecks(“subType”, auxObj);

return auxObj;

}

Inside the method a cast to from the subtype to a new variable is inserted and
then all the conditions declared for this subtype are checked in new variable. The method
“allCheckAlways()” is defined inside the StoreControl class and check all the conditions
associated to the class passed as first parameter.

7.3.3 The Java policy file

When a Java permission statement is parsed according to the syntax definition (see
section 5.2) a plain Java policy file is generated. Java permission declarations (see subsection
3.4.6) are inserted and no further changes are necessary.

7.4 The weaver

After the aspect file has been parsed, an object of class Weaver is created. This object has
an instance variable of type StoreControl that is used to obtain information about the security
policies of the system and delegate the runtime checks.

The Weaver implements a method called "weave" that receives a class in both bytecode
format and source form (String):

ByteCodeArray weave(ByteCodeArray aClass)
String weave(String aClass)

The method weave(ByteCodeArray) is an extension of the method weave that receives and
returns a String. This method receives the bytecode of a class, decompile the code transforming it
in a String, then invokes the method weave(String) giving the new string as parameter and receives
a new program with the integration of the aspect and the base code. Finally the string is compiled
and is returned the bytecode array of the new compiled program.

8 A given class can have many subtypes and a given type can have a class inheritance grater than 1.

 Towards a security aspect for Java

Sunday, February 04, 2001 - 13:02:40

44

The method weave(String) is responsible to perform the program transformations specified
over its argument.

The first action of a weaver instance is to generate the file with program transformations
that contain the specialized program transformations. This file is used later by the weaver to
perform the program transformations on the target code. Because those program transformations
are written in TXL [Cor95], a detailed explanation is found in section 8.2 and the implementation of
this transformations are written in Appendix B.

7.5 Comments

In the MMM browser9 implementation two ways are proposed to ensure type-safeness. The
first one in related with our approach because it is based in the same mechanism. Applets can be
transmitted in source form and then compiled with the local compiler that ensures that the
bytecode generated is not corrupted. Another way is to receive the applet bytecode and decompile
it for verifications. The experience with this mechanism shows that decompilation is fast and
source code is not so large than Caml bytecode, what indicates that the mechanism could be
viable.

In our approach, the weaver offers two methods to weave the applets: one works with the
source code and the other one with the bytecode. Source code transformations instead of bytecode
transformations have been choose as a way to implement the weaver only because simplicity.
Nevertheless, like in the MMM browser, it can be used as a way to enforce the security model.

An immediate consequence of this mechanism is that applet attacks based on bugs in the
Java implementation where illegal bytecode were accepted, will be rejected by the process of
compilation.

An example of this is the bug found in the bytecode verifier (March 1996) explained in
subsection 3.6.2. The bug is in the Bytecode verifier that can accept bytecode whose equivalent in
Java code is not accepted. This bug has many consequences and there are many applet attacks
build in laboratory that exploit this bug for other purposes.

However, when bytecode is received it must be decompiled. Afterwards, when it is
compiled (independent of the program transformations) corrupt code is rejected by the trusted
compiler of the system. Given that the code is de-compiled and re-compiled, it will never happen
that the bytecode verifier will receive code that has not been checked against a secure compiler.

9 The MMM browser [Rou96] is a Web browser with applets. It uses several security approaches that are similar
to those presented in [Ler98]. The browser and the applets are written in Object Caml [Ler96] and compiled to
bytecode by the Caml bytecode compiler. After being compiled, applets are loaded in memory and linked with
the browser by the Caml dynamic linker.

8 Program transformations

The weaver combines the base code and the aspect language defined by the programmer
in one final program. There are many ways to implement the behavior of the security aspect in the
target program, for example, the use of reflection. However, there is another technique that has
more facilities fitting the requirements of the security aspect and provides a more flexible solution:
program transformations.

Program transformation is a technique that consists in the definition of a set of functions
making the necessary changes in the target program. These functions receive the syntax tree of the
target program and return a new tree including the modifications. Using a generic framework of
program transformations and analysis aspects most aspects can be implemented in a more easily
way [Fra98]. In this thesis, all the program transformations are generated in TXL.

The goal of this section is to express the security aspect language in term of program
transformations used to implement the weaver. As presented in chapter 7, after parsing the aspect
file, an instance of the StoreControl class generates the program transformations based on the
information stored in it. There are only two sets of transformations: those associated to write
instrumentation and coercion instrumentation.

8.1 Syntax and semantics of program transformations

The semantic of the transformations is as follows:

υ υυ υ? arguments ? ? pattern ? new tree

This is a function whose domain is a syntax tree and the result of the function is a
modified tree. Each function has a name which is capitalized and (between brackets) a set of
arguments. The arguments can be variables or words defining the context of the expression. Then
definition sign "? " separates it from the transformation definition.

The transformation definition is composed of a pattern that is matched on the program
syntax tree, a sign "? ", and another syntax tree by which the pattern will be replaced. The pattern
can be defined using the parameters that are given to the function (always written in lower case).

It is also possible to use variables local to the program transformation definition that
denote the subtree that has a pattern matched. For example, if the objective is to replace all the
assignments to a given variable (varName) by a function call, then a program transformation can
be written as follow:

υ ? varName ? ?

varName = Expression ? function(Expression);

In this example, each time that a match is produced (when an assignment to a variable of
name varName has been found), the variable "Expression" is bound to the syntax tree that fits in the
pattern definition. Then the right-hand side tree that uses the variable "Expression" will replace the
entire syntax tree that has been matched by the pattern. The pattern matched is bound (always
and by default) in the variable ‘match’.

It is also possible to write some applicability conditions that are verified before
accomplishing the transformation. These are written using a “;” before the condition, as shown by
the example:

υ? var ?

; if var = 0

?

pattern ? new tree

In this example, the program transformation called "E" has an argument that is checked
against the value 0. If it is the case, the transformation is executed, otherwise not.

 Towards a security aspect for Java

Sunday, February 04, 2001 - 13:02:40

46

8.2 Transformations for instrumentations

8.2.1 Program transformations write instrumentation

Those program transformations are defined in order to satisfy the conditions of the second
and third properties described in [Ler98]. Those transformations are oriented to perform runtime
check in objects declared as sensitive locations and instances of classes declared as sensitive
locations.

The second property for typed applets requires an environment that has been
instrumented using the scheme IW described in section 4.2.2.

The weaver constructs a specialization of this transformation for the specifications in the
aspect file. The transformation consist basically in applying the transformation that checks the
writes to a specific sensitive location by its field or method, for every sensitive (class or object)
location defined in the aspect file.

For example, the following code shows the program transformation generated to
instrument writes for a given aspect file parsed:

υυ υυυ _υ υυυυυ ? ?
?

υ υυυυυ ? CLASS "c1" FIELD "f1" ?
υ υυυυυ ? CLASS "c1" FIELD "f2" ?
υ υυυυυ ? CLASS "c1" METHOD "m1" ?

υ υυυυυ ? CLASS "c2" FIELD "g1" ?
υ υυυυυ ? CLASS "c1" METHOD "n1" ?
…

υ υυυυυ ? OBJECT "o1" FIELD "a1" ?
υ υυυυυ ? OBJECT "o1" METHOD "m1" ?

This program transformation consists in the application of another program
transformation called "υ υυυυυ " (defined below in this section) for every member of every sensitive
location.

8.2.2 Program transformations for instrument coercions

These program transformations are defined in order to satisfy the conditions of the third
and four property described in [Ler98]. They introduce coercions in all creations of variables via
casts. Constructors are not analyzed because they are transformed explicitly and any creation via
constructor will already have been checked.

As in the program transformation presented before, the generation of this transformation
consist in a specialization for the current aspect file. This transformation consists in applying a
program transformation that makes the coercion over specific subtypes.

An example of a particular case is showed at follow:

υυ υυυ _υυ υυυυυ υ ? ?
?

υυ υυυυυ υ ? "subType1" ?
υυ υυυυυ υ ? "subType2" ?
υυ υυυυυ υ ? "subType3" ?
…

The program transformation called "υυ υυυυυ υ " (defined below) inserts the coercions in
casts and the checks for the constructor of the determined subtype.

8 Program transformations

Sunday, February 04, 2001 - 13:02:40

47

8.2.3 Checking writes

This program transformation is used to insert code where a given sensitive variable is
modified according to the definition given in section 5.1.

υ υυυυυ ? CLASS className FIELD fieldName ?

?
Aclass ”.” fieldName = Expression

? if (st.TypeOf(Aclass, className)){
 className aux_st = υυ υυυ_υ υυυυυ ? ? Expression
 Aclass.fieldName = st.ok_assig((className)aux_st, index))
 }
 else
 match

υ υυυυυ ? CLASS className METHOD methodName index?
?

Aclass ”.” methodName

? st.TypeOf(Aclass, className)){
 if(st.ok((className)Aclass, index))
 match
 else
 st.Error()

}
There are other similar transformations for those cases where the method to be matched

is found in a condition statement.

When a class invokes or accesses its owns methods and instance variables, it does not
need to specify the class of such members, but can also specify using “this” that is calling
variables of the same class. Usually this is done to clarify code or to enlarge the visibility of the
member because has been hidden by a local variable. Therefore, when the sensitive class is the
target of the transformation to instrument them, slightly different transformations are applied.

8.2.4 Coercing types

This program transformation replaces any cast by a specific injection to the casted type.

υυ υυυυυ υ ? typeName ?
?

"(" typeName ")" Expression

? ? st.subType(υυ υυυυυ υ ? typeName ? Expression)

In the IC scheme of [Ler98] this is defined slightly different from here. A runtime check is

performed over the result. Here, the runtime check is performed inside the subtype’s method.
Then, the semantics of both definitions are equal.

9 Conclusions

Two different security models have been presented and studied: the Java security model
and security properties for typed applets. Furthermore a security aspect for Java has been defined
showing that the application of Aspect-oriented programming to security permits to define easily
strong security models.

The security aspect presented in this thesis is the result of merging two different
approaches. These approaches are the security model of Java and the properties for typed applets
as well as some extensions. The security aspect defined inherits the security features of the two
models.

The most important consequences of this aspect are:

?? Security holes caused by some bugs in the Java implementation can be avoided. This
is done by exploiting extra protection gained from the integration that helps to secure
it against applet attacks. There are at least two important bugs that have been found
in the Java implementation whose consequences can be avoided using the techniques
proposed in this thesis.

?? The application of AOP to the security concern was successful and security is really
separated from the base code, i.e. achieving all the benefits of AOP: better
understandability, reusability and maintainability of the programs.

?? The security aspect helps programmers to deal with security concerns on two different
levels: specifying policies related with domain’s entities and specifying restrictions at
the code level by for example, declaring sensitive classes and named types of the
system.

?? The syntax of the security aspect is clear and intuitive, facilitating the specification of
policies by the programmer. The expressiveness of the security aspect language
permits programmers to have access to the features of complex approaches without
deal directly with technical details.

We have implemented a prototype of this security aspect and have been used a generic
framework for program transformations called TXL, to implement the aspect weaver.

9.1 Future work

A concern like security is very intricate and very difficult to express in a single model. We
have seen the advantage to integrate two models in one security aspect resulting in a very powerful
tool. Nevertheless, there are still many other models that could be incorporated in the security
aspect, and there are also many problems that are not addressed by the current approaches.

One of the fields where security plays an important role is applet’s attack. There are only
few kinds of applet attacks that can be avoided using the current security techniques. The
combination of two approaches has proven to be more powerful than each component. Perhaps
joining more approaches will result in a security aspect where the system is more secure and
applets can not gain more privileges than those privileges that are clearly defined.

The current implementation of the security aspect is based on programs transformations
that are performed in compiled and load time and many checks at runtime time are done in order
to determine if a given policy must be applied or not to a given peace of code. Those calculations
affect the performance of the program execution. The use of analyses at compile or load time can
help to reduce those checks in the base code.

Policies of sensitive locations are formulated independently from the applet origin or
signature. Nevertheless simple modifications in the implementations can extend the semantics of
the security aspect, allowing sensitive locations and to types depend on origin or signature of
applets.

References

[Aks98] Mehmet Aaksit, Bedir Tekinerdogan. Solving the modeling problems of object-
oriented languages by composing multiple aspects using composition filters.
Published in Ecoop98 Workshop on AOP.

[Ash99] Joseph Ashwood. Windows thread overrun from a Java Applet. Web page at
http://www-scf.usc.edu/~ashwood

[Cor95] James R. Cordy, Ian H. Carmichael, Russell Halliday. The TXL Programming
Language. Software Technology Laboratory, Department of Computing and
Information Science, Queen’s University, Kingston, Canada. April 1995.
http://www.cs.queensu.ca/~legasys/TXL_Info/index.html.

[Dea96] Drew Dean, Edward W. Felten and Dan S. Wallach. Java Security: From HotJava to
Netscape and Beyond. Published in the 1996 IEEE Symposium on Security and
Privacy, Oakland, May 6-8, 1996.

[Fra98] Pascal Fradet and Mario Südholt. AOP: towards a generic framework using program
transformation and analysis. International Workshop on Aspect-Oriented
Programming at ECOOP, July 1998

[Fra99] Pascal Fradet and Mario Südholt. An aspect language for robust programming. Is
not published yet.

[Gon98] Li Gong, Java Security Architecture (JDK 1.2). In the Java Site:
http://java.sun.com/products/jdk/1.2/docs/guide/security/spec/security-
spec.doc.html, October 2, 1998.

[Isr99] Israel Java User Group. JUG Hostile applet collection.
http://www.java.org.il/hostile/hostile_applet.html.

[Hür95] Walter L. Hürsch an Cristina Videira Lopes. Separation of Concerns. Northeastern
University technical report NU-CCS-95-03, Boston, February 1995.

[Jou98] Mark D. LaDue. How secure is the Java Wallet? Published in developer.com
journal: tech focus http://www.developer.com/journal/techfocus/062998_wallet.html.

[Kic97] Gregor kiczales, John Lamping, Anurag mendhekar, Chris Maeda, Cristina
Videira Lopez, Jean-Mark Loingtier, Jhon Irwin. Aspect-Oriented Programming.
Published in proceedings of the European Conference on Object-Oriented
Programming (ECOOP), Finland, June 1997.

[LaD96] Mark D. LaDue. Hostile Applets on the Horizon. Published in the Web at
http://www.informatik.fh-wiesbaden.de/~turau/java/HostileArticle.html, 1996.

[Ler96] Xavier Leroy, J. Vouillon, D. Doligez, et al. The Object Caml system. Software and
documentation available on the Web, http://caml.inria.fr/ocaml/, 1996

[Ler98] Xavier Leroy and François Ronuaix. Security properties of typed applets. Published
in POPL 98 San Diego CA USA.

[Lor98] David H. Lorenz. Visitor Beans: An Aspect-Oriented Pattern. Published in Ecoop98
Workshop on AOP.

[McG99] Gary McGraw, Edward W. Felten. Securing Java: Getting Down to Business With
Mobile Code. Published by: John Wiley & Sons, Inc, February 1999.

 Towards a security aspect for Java

Sunday, February 04, 2001 - 13:02:40

52

[Nat85] National Computer Security Center, Fort Meade, Meryland. Department of
Defense Trusted Computer System Evaluation Criteria (The Orange Book), December
1985.

[Obe97] Sumit Oberai, Fariba Shaker, Michael van Dam. Designing a Hostile Applet.
Reporter for part I of the course ECE 1741 - Trustworthy Computer Systems in
the University of Toronto, http://www.eecg.toronto.edu/~mvandam/project.html
March 20, 1997.

[Obj99] Object Arts Ltd. Object Arts Products: Dolphin Smalltalk. Web page located in
http://www.object-arts.com/Products.htm, 1999.

[Pre99] Maria José Presso, Miro Casanova and Marcelo Machado. Object Oriented
Programming + Aspect Oriented Programming. Reporter for Specialization
Training of the EMOOSE master, February 22, 1999.

[Rou96] François. Rouaix. A Web navigator with applets in Calm. In proceedings of the 5th
International World Wide Web Conference, Computer Networks and
Telecomunications Networking, volume 28, pages 1365-1371. Elsevier, May
1996.

[Sec97] Secure Internet Programming Group. HotJava 1.0 Signature Bug. Web page:
http://www.cs.princeton.edu/sip/news/april29.html. Department of Computer
Science, Princeton University.

[Str96] Robert J. Stroud and Zhixue Wu. Chapter three of the book Advances in Object
Oriented Metalevel Architectures and Reflection. Using Metaobject Protocols to
Satisfy Non-Functional Requirements. Edited by Chris Zimmermann, 1996

[Sun97] Sun Microsystems Inc. Inner Classes Specification. Guide published at the Java
site: http://java.sun.com/products/jdk/1.1/docs/guide/innerclasses/spec/innerclasses.doc.html,
February 4, 1997.

[Sun98a] Sun Microsystems Inc. Permissions in JDK 1.2. Guide in the Java site:
http://java.sun.com/p roducts/jdk/1.2/docs/guide/security/permissions.html,
October 30, 1998.

[Sun98b] Sun Microsystems Inc. Java wallet Frequently Asked Questions. Published at the
Java site: http://java.sun.com/products/commerce/faq.html.

[Sun99a] Sun Microsystems Inc. Java Compiler Compiler (JCC), the Java Parser generator .
http://www.suntest.com/JavaCC/

[Sun99b] Sun Microsystems Inc. Java 1.2.2 implementation source code.
http://java.sun.com/products/jdk/1.2/

Appendix A. The parser aspect

/**
 *
 * Parser for the Security Aspect
 * Made by Andrés Farías
 *
 * 8/7/1999
 *
 */

options {
 JAVA_UNICODE_ESCAPE = true;
}

PARSER_BEGIN(SecAspParser)

package parser;

import parser.util.*;
import java.io.*;

public class SecAspParser {

 /* Two list: one for the people name list and another one for the Urls */
 static ListNames groupsList = new ListNames();
 static ListNames urlList = new ListNames();
 static PrintStream outl = new PrintStream(System.out);

 public static void main(String args[]) {
 SecAspParser parser;
 if (args.length == 0) {
 System.out.println("Security Aspect Parser Version 0.1: Reading from standard
input . . .");
 parser = new SecAspParser(System.in);
 } else if (args.length == 1) {
 System.out.println("Security Aspect Parser Version 0.1: Reading from file " +
args[0] + " . . .");
 try {
 parser = new SecAspParser(new java.io.FileInputStream(args[0]));
 } catch (java.io.FileNotFoundException e) {
 System.out.println("Security Aspect Parser Version 0.1: File " + args[0] + "
not found.");
 return;
 }
 } else {
 System.out.println("Security Aspect Parser Version 0.1: Usage is one of:");
 System.out.println(" java SecAspParser < inputfile");
 System.out.println("OR");
 System.out.println(" java SecAspParser inputfile");
 return;
 }
 try {
 parser.Policy();
 System.out.println("Security Aspect Parser Version 0.1: Java program parsed
successfully.");
 } catch (ParseException e) {
 System.out.println("Security Aspect Parser Version 0.1: Encountered errors
during parse.");
 }
 }

}

PARSER_END(SecAspParser)

SKIP : /* WHITE SPACE */
{
 " "
| "\t"

 Towards a security aspect for Java

Sunday, February 04, 2001 - 13:02:40

54

| "\n"
| "\r"
| "\f"
}

SPECIAL_TOKEN : /* COMMENTS */
{
 < SINGLE_LINE_COMMENT: "//" (~["\n","\r"])* ("\n"|"\r"|"\r\n")>
| < FORMAL_COMMENT: "/**" (~["*"])* "*" ("*" | (~["*","/"] (~["*"])* "*"))* "/">
| < MULTI_LINE_COMMENT: "/*" (~["*"])* "*" ("*" | (~["*","/"] (~["*"])* "*"))* "/">
}

TOKEN : /* RESERVED WORDS AND LITERALS */
{
 < ACTION: "ACTION">
| < CHARACTER_LITERAL:
 "'"
 ((~["'","\\","\n","\r"])
 | ("\\"
 (["n","t","b","r","f","\\","'","\""]
 | ["0"-"7"] (["0"-"7"])?
 | ["0"-"3"] ["0"-"7"] ["0"-"7"]
)
)
)
 "'"
 >
| < COERCIONS: "COERCIONS" >
| < EQUAL: "=">
| < FROM: "FROM" >
| < GROUP: "GROUP" >
| < INSTRUMENT: "INSTRUMENT" >
| < INTERSECTION: "INTERSECTION" >
| < OF: "OF" >
| < PERMISSION: "PERMISSION" >
| < NOTEXECUTE: "NOTEXECUTE" >
| < SATISFY: "SATISFY" >
| < SENSITIVELOCATION: "SENSITIVELOCATION" >
| < STRING_LITERAL:
 "\""
 ((~["\"","\\","\n","\r"])
 | ("\\"
 (["n","t","b","r","f","\\","'","\""]
 | ["0"-"7"] (["0"-"7"])?
 | ["0"-"3"] ["0"-"7"] ["0"-"7"]
)
)
)*
 "\""
 >
| <TARGET: "TARGET">
| < TO: "TO" >
| < TYPE: "TYPE" >
| < UNION: "UNION" >
| < URL: "URL" >
| < WRITES: "WRITES" >

}

TOKEN : /* IDENTIFIERS */
{
 < IDENTIFIER: <LETTER> (<LETTER>|<DIGIT>)* >
|
 < #LETTER:
 [
 "\u0024",
 "\u0041"-"\u005a",
 "\u005f",
 "\u0061"-"\u007a",
 "\u00c0"-"\u00d6",
 "\u00d8"-"\u00f6",
 "\u00f8"-"\u00ff",
 "\u0100"-"\u1fff",
 "\u3040"-"\u318f",
 "\u3300"-"\u337f",

Appendix A. The parser aspect

Sunday, February 04, 2001 - 13:02:40

55

 "\u3400"-"\u3d2d",
 "\u4e00"-"\u9fff",
 "\uf900"-"\ufaff"
]
 >
|
 < #DIGIT:
 [
 "\u0030"-"\u0039",
 "\u0660"-"\u0669",
 "\u06f0"-"\u06f9",
 "\u0966"-"\u096f",
 "\u09e6"-"\u09ef",
 "\u0a66"-"\u0a6f",
 "\u0ae6"-"\u0aef",
 "\u0b66"-"\u0b6f",
 "\u0be7"-"\u0bef",
 "\u0c66"-"\u0c6f",
 "\u0ce6"-"\u0cef",
 "\u0d66"-"\u0d6f",
 "\u0e50"-"\u0e59",
 "\u0ed0"-"\u0ed9",
 "\u1040"-"\u1049"
]
 >
}

TOKEN : /* SEPARATORS */
{
 < SEMICOLON: ";" >
| < COMMA: "," >
| < DOT: "." >
}

/* TOKEN : OPERATORS */

/***
 * THE JAVA SECURITY ASPECT LANGUAGE GRAMMAR STARTS HERE *

/*
 * Program structuring syntax follows.
 */

void Policy() :
{}
{
 (SecurityDeclaration())*
 <EOF>
}

void SecurityDeclaration () :
{}
{
 Permission()
| SensitiveLocation()
| TypeDefinition()
| Instrumentation()
| PeopleListDefinition()
| UrlListDefinition()

}

/**
 *
 *
 * PERMISSION NONTERMINAL FUNCTIONS
 *
 */

/** The PERMISSION declaration */
void Permission() :
{ String people = null, urls= null, javaPermission; }
{

 Towards a security aspect for Java

Sunday, February 04, 2001 - 13:02:40

56

 <PERMISSION>
 [<TO> people = UnionList()] [<FROM> urls = UrlUnionList()]
 <OF> javaPermission = JavaPermission()

{
 outl.print("grant");
 if (people != null) outl.print(" SignedBy \"" + people + "\"");
 if (urls != null) outl.println(", CodeBase \"" + urls + "\" {");
 outl.println(" {");
 outl.println(" " + javaPermission + ";");
 outl.println("}");
}
}

/** The declaration of the Java Permissions */
String JavaPermission() :
{
 Token target = null, action = null;
 String permissionName, result = "PERMISSION ";
}

{
 permissionName = Name() [<TARGET> target = <STRING_LITERAL>] [<ACTION> action =
<STRING_LITERAL>]
{
 result += " " + permissionName;
 if (target != null) result += " " + target.image;
 if (target != null) result += ", " + action.image;
 return result;
}
}

/** To define List of people's */
void PeopleListDefinition():
{
String peopleList, nom;
Token t;
}
{

 <GROUP> t = <IDENTIFIER>
 <EQUAL>
 peopleList = UnionList()
 {
 nom = t.image;
 System.out.println("DEFINITION OF " + nom + " = " + peopleList);
 groupsList.add(nom, peopleList);
 }
}

/** UnionList is an Union of Intersectionlists */
String UnionList():
{
 String result, another = null;
 ListNames auxResult;
}
{
 result = InterList()
 { auxResult = new ListNames("Union1", result); }

 (<UNION> another = InterList()
 { if (another != null)
 auxResult = auxResult.union(new ListNames("Union2", another));
 }
)*

 { return auxResult.toString(); }
}

/** The interseciont between peopleLists */
String InterList():
{
 String result, another = null;

Appendix A. The parser aspect

Sunday, February 04, 2001 - 13:02:40

57

 ListNames auxResult;
}
{

 result = PeopleList()
 { auxResult = new ListNames("people", result);}

 (
 <INTERSECTION> another = PeopleList()
 { if (another != null)
 auxResult = auxResult.intersection(new ListNames("aux2", another));
 }
)*

 { return auxResult.toString(); }
}

/** Declaration of People */
String PeopleList() :
{
 Token t;
 String result, more = null;
}
{
 t = <IDENTIFIER> [more = PeopleList()]
 { result = groupsList.toString(t.image);
 if (more != null) result += ", " + more;
 return result;
 }
| t = <STRING_LITERAL> [more = PeopleList()]
 {
 result = t.image;

 /** We transform a bit result */
 result = result.substring(1, result.length()-1);
 if (more != null) result += ", " + more;
 return result;
 }

}

/** To define List of URL's */
void UrlListDefinition():
{
 String anUrl, nom;
 Token t;
}
{
 <URL> t = <IDENTIFIER>
 <EQUAL>
 anUrl = UrlUnionList()
 {
 nom = t.image;
 System.out.println("DEFINITION OF URL " + nom + " = " + anUrl);
 urlList.add(nom, anUrl);
 }
}

/** UnionList is an Union of Intersectionlists */
String UrlUnionList():
{
 String result, another = null;
 ListNames auxResult;
}
{
 result = UrlInterList()
 { auxResult = new ListNames("Union1", result); }

 (<UNION> another = UrlInterList()
 { if (another != null)
 auxResult = auxResult.union(new ListNames("Union2", another));

 Towards a security aspect for Java

Sunday, February 04, 2001 - 13:02:40

58

 }
)*

 { return auxResult.toString(); }
}

/** The interseciont between peopleLists */
String UrlInterList():
{
 String result, another = null;
 ListNames auxResult;
}
{

 result = UrlList()
 { auxResult = new ListNames("url", result);}

 (
 <INTERSECTION> another = UrlList()
 { if (another != null)
 auxResult = auxResult.intersection(new ListNames("aux2", another));
 }
)*

 { return auxResult.toString(); }
}

/** Declaration of Urls */
String UrlList():
{
 Token t;
 String result, more = null;
}
{
 t =<IDENTIFIER> [more = UrlList()]
 { result = urlList.toString(t.image);
 if (more != null) result += ", " + more;
 return result;
 }

| t = <STRING_LITERAL> [more = UrlList()]
 {
 result = t.image;

 /** We transform a bit result */
 result = result.substring(1, result.length()-1);
 if (more != null) result += ", " + more;
 return result;
 }
}

/**
 *
 *
 * SENSITIVE LOCATIONS NONTERMINAL FUNCTIONS
 *
 */

void SensitiveLocation() :
{}
{
 <SENSITIVELOCATION> <IDENTIFIER> [<SATISFY> InvarianStatement()]
}

void Instrumentation() :
{}
{
 <INSTRUMENT> [<WRITES> | <COERCIONS>]
}

void TypeDefinition() :
{}
{
 <TYPE> <IDENTIFIER> <TO> <IDENTIFIER>
}

Appendix A. The parser aspect

Sunday, February 04, 2001 - 13:02:40

59

void InvarianStatement() :
{}
{
 JavaBooleanExpresion()
| MethodRestriction()

}

void JavaBooleanExpresion() :
{}
{
 <STRING_LITERAL>
}

void MethodRestriction() :
{}
{
 <NOTEXECUTE>
}

String Name() :
/*
 * A lookahead of 2 is required below since "Name" can be followed
 * by a ".*" when used in the context of an "ImportDeclaration".
 */
{
 String className;
 Token t;
}
{
 t = <IDENTIFIER>
 {
 className = t.image;

 }
 (LOOKAHEAD(2) "." t = <IDENTIFIER>
 { className += "." + t.image; }
)*
 { return className; }
}

Appendix B. The TXL program transformations

This appendix contain the implementation in TXL [Cor95] of the program transformations
presented in chapter 8.

The first transformation introduce the IW scheme.

include "java.grm"

rule InstrumentWrites

 replace [Expression]
 yea [Expression]
 by
 yea
end rule

rule wriClassMethBef className [id] fieldName [id]

 replace [Statement]
 NewStateme [PostfixExpression] ';

 by
 NewStateme [wriClassMethExpr className fieldName] ';

end rule

rule wriClassMethExpr className [id] fieldName [id]

 construct ST [id]
 st

 construct TypeOf [id]
 typeOf

 construct OkMeth [id]
 ok

 construct Index [id]
 index

 construct Aux_Var [id]
 aux_st

 replace [Statement]
 AclassName [id] '. fieldName ASel [Selector] ';

 construct IfExp [Expression]
 ST '. TypeOf '(AclassName ')

 construct Cond [PostfixExpression]
 ST '. OkMeth '('(className ') Aux_Var ', Index ')

 construct ThenState2 [StatementNoShortIf]
 AclassName '. fieldName ASel ';

 construct Error [id]
 error

 construct ElseState [Statement]
 ST '. Error '(') ';

 construct ThenState [IfThenElseStatement]
 'if '(Cond ') ThenState2 'else ElseState

 Towards a security aspect for Java

Sunday, February 04, 2001 - 13:02:40

62

 construct IfElseStatement [IfThenStatement]
 'if '(IfExp ') ThenState

 by
 IfElseStatement

end rule

rule writesClassField className [id] fieldName [id]

 construct ST [id]
 st

 construct TypeOf [id]
 typeOf

 construct Aux_Var [id]
 aux_st

 construct OkAssign [id]
 ok_assign

 construct Index [id]
 index

 construct IfExp [Expression]
 ST '. TypeOf '(className ')

 replace [Statement]
 Aclass [id] '. AfieldName [id] '= Expr [AssignmentExpression] ';

 construct Dec1 [LocalVariableDeclarationStatement]
 className Aux_Var '= Expr [InstrumentWrites] ';

 construct Dec2 [Assignment]
 AClass '. fieldName '= ST '. OkAssign '('(className ') Aux_Var
', Index ')

 construct State [StatementNoShortIf]
 '{ Dec1 Dec2 '; '}

 construct StatNoShortIf [Statement]
 Aclass '. fieldName '= Expr ';

 construct IfElseStatement [IfThenElseStatement]
 'if '(IfExp ') State 'else StatNoShortIf

 by
 IfElseStatement

end rule

function main
 replace [program]
 P [program]

 construct Cn [id]
 myClass

 construct Me [id]
 method1

 by
 P [wriClassMethExpr Cn Me]
end function

