POJO Cache

User Documentation

Release 2.0.0
July 2007

Authors:
BenWang(ben.wang@jboss.com)

JasonGreene(jason.greene@jboss.com)

Table of Contents

1= =0 2 PPPERR iv
O I 011100 [| TP PPPPPPPP 1
L1 OVEBIVIBIV ettt ettt e oo oo ettt et e e e e e e e et tee et e eeee e e e e nntteeeeeaaeeeeaansnteseeeaaeeeeaannsnnneeeaens 1

P22 411 [N o1 o o PP UPPPPPPPRR 3
N R @ V= o PRSP 3

22 FEBIUMES ... 5

PG UL o L= PP PP TP PPPPPP 6

2.4, REQUITEIMENTS ... 6

N (1= ot (D £ OO PP PP OUPPPPPPPRP 7
3.1. POJO CaChe iNtErCEPIOr SLACKeieiiuiieieiiiiiie e et e e ettt e e s e e e e e e e 7

I w1 Lo M g1 0= (0= o (]] [T SERRR 9

3.3. Object relationship MAaNBGEMENTueiieiiie e e s e st e e snneeees 10

3.4. ODJECE INNENTANCEoeiiieiiiie e e e e e e e e e e e e e e s s et a e e e e e e e e s enanreees 11

3.5. Physical object cache mapping MOGE!oeiiiiiiiiii e 12

G I G T @] 1= ox 1 o g 01, =" o 1 Vo [17
6.1, LIMUTBIIONS ...ttt ettt et et e e et e e e s st e e e et e e e nnbb e e e e e nnnee s 18

T N o B O Y= Y SRR 19
4.1. POjOCACHEFACONY ClaSS ...uiiiiiiii ittt e e e e e e e e e e e e s s st e e e e e e e e e enannrees 19

4.2. POJOCECNE INLEITACE ...eiiiiiieiie ettt e e st e e e et e e e s anbn e e e e e nnnreeas 19
A I N L - 011 0 | PSP 19

A B L o 0= 0| SRS 20

e T O 11 = o VS 21

5. Configuration and DEPIOYMENTeeiiieiiiiiiiiiee e e e e e e e e s s et eeaaeessannsrraaereaeeeaaans 22
5.1. Cache configuration XMl ilooiiiiiie e 22

I =SS LY o] o PP PRI 22

5.3. AOP CONFIQUIBLION ...eeiiiiiiieiiiee etttk e st e e et e e e e et et e e anbb e e e e anbe e e e s annnneeeans 23

5.4. Deployment OPLIONSccooeee e 23
5.4.1. ProgramatiC DEPIOYMENTooiiiiiiiieeiiiiiee ettt ettt e e s ee e 23

5.4.2. IMX-Based Deployment in JBoss AS (JBOSSAS5.X and 4.X) ...ccuevveeeeeeeeeiiiiiiieeeeeeeenne 23

5.4.3. ViaJBoss Microcontainer (JBOSSAS B5.X) .uvvueiiiiieiiiiiiiiiiieiee e e s esitiee e e e e e e s sssineaneeaaa e e e 24

5.5. POJO CaChE MBEANScoiiiiiiiiiiiiiiie ettt e e e e e s et e e e e e e e esnnnaaaeeeaeeeeeennnneees 25

5.6. Registering the PojoCacheIMXWIaDPErc.cvvviiiiee e e e e e 26
5.6.1. ProgramatiC REQISIIALIONevieiiiiiieeiiie ettt e e e e s snbaeee e 26

5.6.2. IMX-Based Deployment in JBoss AS (JBoSSAS4.X and 5.X)ccoeeeveeeeiiiieeeeeeeee, 27

5.6.3. ViaJBoss MicrocontaiNer (JBOSS AS 5.X) ..eeeiiurriieiiiieieeiiieieessiieeeessiitee e sibeee e snnneee e 27

5.7. Runtime Statistics and IMX NOLITICALIONSoiiiiiiiiiiiiiiii e 28

L LIS (01T gz o] o PSPPI 30
6.1, XML GESCIIPLONeieeeeiiiee ettt ettt e et e e e st e e e et et e e e e e e e et e e e e annnneeeans 30

G2 N 11110 - 1o PP PRRPTPRR 31
6.2.1. POJO annotation for iNStrumentationcceeeeeiiiciiiieriee e s sceiiierer e e e e s s sseieerereee e e e 31

6.2.2. IDK5.0 field level anNOLELIONSeoiiiiiiiieiei et e e e e e 32

RS A V< Voo PP PP PP TUPPPPTOTPRPN 32
6.3.1. Ant target for running load-time instrumentation using specialized class loader 33

SR AN o T 0 = {0 = o] o o PP PPRRRR 33

Release 2.0.0

POJO Cache

A I (018 0] =S g oo (1o [P PRSP PPREPPR 35
S Y o] o [G OO PPPRP PP 36
8.1 EXAMPIE POJIOiiiiiieiiiiie ettt et e et e e et e e e e e n e e e e e nta e e e e nnraeeeeans 36
8.2. Sample Cache CoNfigUIation XMeieiiiiiiee e 37
8.3. PojoCache configuration XMl ... 38

Release 2.0.0

Preface

POJO Cache is an in-memory, transactional, and clustered cache system that allows users to operate on a POJO
(Plain Old Java Object) transparently and without active user management of either replication or persistence as-
pects. JBoss Cache, which includes POJO Cache, is a 100% Java based library that can be run either as a stan-
dalone program or inside an application server.

This document is meant to be a user and reference guide to explain the architecture, api, configuration, and ex-
amples for POJO Cache. We assume the readers are familiar with both JGroups and the core JBoss Cache usages.

If you have questions, use the user forum [1] linked on the JBoss Cache website. We also provide tracking links for
tracking bug reports and feature requests on JBoss Jira web site [2] . If you are interested in the development of
POJO Cache, post a message on the forum. If you are interested in trandating this documentation into your lan-
guage, contact us on the developer mailing list.

JBoss Cache is an open source product, using the business and OEM-friendly OSl-approved LGPL license. Com-
mercia development support, production support and training for JBoss Cache is available through JBoss, a divi-
sion of Red Hat Inc. [3]

In some of the example listings, what is meant to be displayed on one line does not fit inside the available page
width. These lines have been broken up. A '\" at the end of aline means that a break has been introduced to fit in the
page, with the following lines indented. So:

Let's pretend to have an extrenely \
long line that \

does not fit

This one is short

Isredly:

Let's pretend to have an extrenely long |line that does not fit
This one is short

[1] http://www.jboss.com/index.html ?modul e=bb& op=viewforum& f=157
[2] http://jirajboss.com
[3] http://www.jboss.com

Release 2.0.0 iv

http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
http://jira.jboss.com
http://www.jboss.com
http://www.jboss.com

Terminology

1.1. Overview

The section lists some basic terminology that will be used throughout this guide.

Aop
Aspect-Oriented Programming (AOP) is a new paradigm that allows you to organize and layer your software
applications in ways that are impossible with traditional object-oriented approaches. Aspects allow you to
transparently glue functionality together so that you can have a more layered design. AOP allows you to inter-
cept any event in a Java program and trigger functionality based on those events.

JBoss Aop
JBoss Aop is an open-source Aop framework library developed by JBoss. It is 100% Java based and can be run
either as a standalone or inside an application server environment. More details can be found at
www.jboss.com. PojoCache uses JBoss Aop library in two ways. It uses JBoss Aop firstly for its own inter-
ceptor-based architecture and secondly to realize the fine-grained replication aspects.

Dynamic Aop
Dynamic Aop is afeature of JBoss Aop that provides a hook so that a caller can insert event interception on the
POJO at runtime. PojoCache currently uses this feature to perform field level interception.

JGroups
JGroups is a reliable Java group messaging library that is open-source and LGPL. In addition to reliable mes-
saging transport, it al'so performs group membership management. It has been a de facto replication layer used
by numerous open-source projects for clustering purposes. It is also used by JBossCache for replication layer.

Core Cache
Core Cache is a tree-structured, clustered, transactional cache. Simple and Serializable java types are stored as
key/value pairs on nodes within the tree using a collection-like API. It also provides a number of configurable
aspects such as node locking strategies, data isolation, eviction, and so on. POJO Cache leverages Core Cache
as the underlying data-store in order to provide the same capabilities.

POJO
Plain old Java object.

Annotation
Annotation is a new feature in JDK5.0. It introduces metadata along side the Java code that can be accessed at
runtime. PojoCache currently uses JDK50 annotation to support POJO instrumentation (JDK 1.4 annotation has
been deprecated since release 2.0).

Release 2.0.0 1

Terminology

Prepare
Prepare is a keyword in JBoss Aop pointcut language used to specify which POJO needs to be instrumented. It
appearsin apoj ocache- aop. xm file. However, if you can use annotation to specify the POJO instrumentation,
there is no need for a poj ocache- aop. xnl listing. Note that When a POJO is declared properly either through
the xml or annotation, we consider it "aspectized".

Instrumentation
Instrumentation is an Aop process that basically pre-processes (e.g., performing byte-code weaving) on the
POJO. There are two modes: compile- or load-time. Compile-time weaving can be done with an Aop precom-
piler (aopc) while load-time is done to specify a specia classloader in the run script. This step is necessary for
an Aop system to intercept events that are interesting to users.

Release 2.0.0 2

Introduction

2.1. Overview

JBoss Cache consists of two components, Core Cache, and POJO Cache. Core Cache provides efficient memory
storage, transactions, replication, eviction, persistent storage, and many other "core" features you would expect
from a distributed cache. The Core Cache AP istree based. Datais arranged on the tree using nodes that each offer
amap of attributes. This map-like API isintuitive and easy to use for caching data, but just like the Java Collection
API, it operates only off of simple and serializable types. Therefore, it has the following constraints:

If replication or persistence is needed, the object will then need to implement the Seri al i zabl e interface. E.g.,

public Cass Foo inplenments Serializable

< If the object is mutable, any field change will require a successive put operation on the cache:

val ue = new Foo();

cache. put (fgn, key, value);

val ue. update(); // update val ue

cache. put (fgqn, key, value); // Need to repeat this step again to ask cache to persist or replicate the ct

« Java serialization always writes the entire object, even if only one field was changed. Therefore, large objects
can have significant overhead, especialy if they are updated frequently:

t housand = new ThousandFi el dObj ect () ;

cache. put (fgn, key, thousand);

thousand. set Fi el d1("blah"); // Only one field was nodified
cache. put (fqn, key, thousand); // Replicates 1000 fi el ds

« The object structure can not have a graph relationship. That is, the object can not have references to objects that
are shared (multiple referenced) or to itself (cyclic). Otherwise, the relationship will be broken upon serializa-
tion (e.g., when replicate each parent object separately). For example, Figure 1 illustrates this problem during
replication. If we have two Per son instances that share the same Addr ess , upon replication, it will be split into
two separate Addr ess instances (instead of just one). The following is the code snippet using Cache that illus-
trates this problem:

joe = new Person("joe");

mary = new Person("mary");

addr = new Address("Tai pei");

j oe. set Addr ess(addr);

mary. set Addr ess(addr) ;

cache. put("/joe", "person", joe);
cache. put ("/mary", "person", nary);

Release 2.0.0 3

Introduction

Joe Mary Joe Mary

fif

"I-

- P
- L
- L

L]

@ replicatic:n

¥y
2 Address
instances!

Figure 2.1. lllustration of shared objects problem during replication

POJO Cache attempts to address these issues by building a layer on top of Core Cache which transparently maps
normal Java object model operations to individual Node operations on the cache. This offers the following im-
provements:

e Objects do not need to implement Seri ali zabl e interface. Instead they are instrumented, alowing POJO
Cache to intercept individual operations.

« Replication is fine-grained. Only modified fields are replicated, and they can be optionally batched in a transac-
tion.

e Object identity is preserved, so graphs and cyclical references are allowed.

» Once attached to the cache, all subsequent object operationis will trigger a cache operation (like replication)
automatically:

PQJO poj o = new PQIQ();
poj oCache. attach("i d", pojo);
poj o. set Nane("sone pojo"); // This will trigger replication autonatically.

In POJO Cache, these are the typical development and programming steps:

* Annotate your object with @epl i cabl e

Release 2.0.0 4

Introduction

Useat tach() to put your POJO under cache management.

Operate on the object directly. The cache will then manage the replication or persistence automatically and
transparently.

More details on these steps will be given in later chapters.

Since POJO Cache is alayer on-top of Core Cache, al features available in Core Cache are aso available in POJO
Cache. Furthermore, you can obtain an instance to the underlying Core Cache by caling Poj oCache. get Cache() .
Thisisuseful for resusing the same cache instance to store custom data, along with the POJO model.

2.2. Features

Here are the current features and benefits of PojoCache:

Fine-grained replication. The replication modes supported are the same as that of Core Cache: LoOCAL,
REPL_SYNC, REPL_ASYNC, | NVALI DATI ON_SYNC, and | NVALI DATI ON_ASYNC (see the main JBoss Cache reference
documentation for details). The replication level is fine-grained and is performed automatically once the POJO
is mapped into the internal cache store. When a POJO field is updated, a replication request will be sent out
only to the key corresponding to that modified attribute (instead of the whole object). This can have a potential
performance boost during the replication process; e.g., updating a single key in abig HashMap will only replic-
ate the single field instead of the whole map!

Transactions. All attached objects participate in a user transaction context. If arollback occurs, the previousin-
ternal field state of the object will be restored:

PQJO p = new PQIQ();

p. set Nane("ol d val ue");

poj oCache. attach("id", p);

tx.begin(); // start a user transaction

p. set Nanme("sone poj 0");

tx.rollback(); // this will cause the rollback
p.getNane(); // is "old val ue"

In addition, operations under a transaction is batched. That is, the update is not performed until the conmit
phase. Further, if replication is enabled, other nodes will not see the changes until the transaction has completed
successfully.

Passivation. POJO Cache supports the same passivation provided by Core Cache. When a node mapped by
POJO Cache has reached a configured threshold, it is evicted from memory and stored using a cache loader.
When the node is accessed again, it will be retrieved from the cache loader and put into memory. The configur-
ation parameters are the same as those of the Cache counterpart. To configure the passivation, you will need to
configure both the eviction policy and cache loader.

Object cache by reachability, i.e., recursive object mapping into the cache store. On attach, Pe10 Cache will at-
tach all referenced objects as well. This feature is explained in more detail |ater.

Natural Object Relationships. Java references are preserved as they were written. That is, a user does not need
to declare any object relationship (e.g., one-to-one, or one-to-many) to use the cache.

Release 2.0.0

Introduction

e Object Identity. Object identity is preserved. Not only can a cached object be compared using equal s() , but the
comparison operator, ==, can be used as well. For example, an object such as Address may be multiple refer-
enced by two Persons (eg., joe and nmary). The objects retrieved from joe.get Address() and
mary. get Address() should be identicali, when when retrieved from a different node in the cluster then that
which attached them.

« Inheritance. POJO Cache preserves the inheritance hierarchy of any object in the cache. For example, if a st u-
dent classinherits from a Person class, once a st udent object is mapped to POJO Cache (e.g., at t ach call), the
fields in the base class Per son are mapped as well.

» Collections. Java Collection types (e.g. List, Set, and Map) are transparently mapped using Java proxies. De-
tails are described later.

» Annotation based. Starting from release 2.0, JDK 5 annotations are used to indicate that an object should be in-
strumented for use under POJO Cache (once attached).

» Transparent. Once a POJO is attached to the cache, subsequent object model changes are transparently handled.
No further API calls are required.

2.3. Usage

To use POJO Cache, you obtain the instance from the PojoCacheFactory by supplying a config file that is used by
the delegating Cache implementation. Once the PojoCache instance is obtained, you can call the cache life cycle
method to start the cache. Below is a code snippet that creates and starts the cache:

String configFile = "repl Sync-service. xm";

bool ean toStart = fal se;

Poj oCache pcache = Poj oCacheFactory. createCache(configFiel, toStart);
pcache.start(); // if toStart above is true, it will starts the cache automatically.
pcache. attach(i d, pojo);

b;:éche. stop(); // stop the cache. This will take PojoCache out of the clustering group, if any, e.g.

2.4. Requirements

PQIO Cache is currently supported on JDK 5 (since release 2.0). It requires the following libraries (in addition to
jboss-cachejar and the required libraries for Core Cache) to start up:

e Library:

e pojocachejar. Main POJO Cache library.
* jboss-aop-jdk50.jar. Main JBoss Aop library.
e javassist.jar. Javabyte code manipulation library.

« trovejar. High performance collections for Java.

Release 2.0.0 6

Architecture

POJO Cache internally uses the JBoss Aop framework to both intercept object field access, and to provide an in-
ternal interceptor stack for centralizing common behavior (e.g. locking, transactions).

The following figure is a simple overview of the POJO Cache architecture. From the top, it can be can seen that
when acall comesin (e.g., att ach or det ach), it will go through the POJO Cache interceptor stack first. After that,
it will store the object's fields into the underlying Core Cache, which will be replicated (if enabled) using JGroups.

! !

[ntercepiors| pojocache-aop.xml lnterceptors

! !

Cache cache-service. xml Cache

JGroups JGroups

replication

Figure 3.1. POJO Cache ar chitectur e overview

3.1. POJO Cache interceptor stack

As mentioned, the JBoss Aop framework is used to provide a configurable interceptor stack. In the current imple-
mentation, the main POJO Cache methods have their own independant stack. These are specified in META-

Release 2.0.0 7

Architecture

| NF/ poj ocache- aop. xm In most cases, this file should be left alone, athough advanced users may wish to add
their own interceptors. The Following is the default configuration:

<l-- Check id range validity -->
<i nterceptor name="Checkld" class="org.]jboss. cache. pojo.interceptors. Checkldlnterceptor"
scope="PER_| NSTANCE" / >

<l-- Track Tx undo operation -->
<i nterceptor name="Undo" cl ass="org.jboss. cache. pojo.interceptors. Poj oTxUndol nt er cept or"
scope="PER_| NSTANCE" / >

<l-- Begining of interceptor chain -->
<interceptor name="Start" class="org.]jboss. cache. pojo.interceptors. Poj oBegi nl nterceptor"
scope="PER_| NSTANCE" / >

<I-- Check if we need a |ocal tx for batch processing -->
<i nterceptor name="Tx" class="org.jboss. cache. pojo.interceptors. Poj oTxl nterceptor"
scope="PER _| NSTANCE"/ >

<l -

Mockup failed tx for testing. You will need to set PojoFail edTxMckupl nterceptor. setRol | back(true)

to activate it.
-->

<i ntercept or nanme="MckupTx" class="org.] boss. cache. poj o.i nterceptors. Poj oFai | edTxMckupl nt ercept or”

scope="PER_| NSTANCE"/ >

<l-- Performparent |evel node |ocking -->

<i ntercept or nane="TxLock" class="org.jboss.cache. pojo.interceptors.PojoTxLocklnterceptor"
scope="PER _| NSTANCE"/ >

<l-- Interceptor to performPojo |evel rollback -->

<i ntercept or nane="TxUndo" cl ass="org.jboss. cache. pojo.i nterceptors. Poj oTxUndoSynchr oni zati onl nt er cept

scope="PER _| NSTANCE"/ >

<I-- Interceptor to used to check recursive field interception. -->

<i nterceptor name="Reentrant" class="org.jboss. cache. pojo.interceptors. Met hodReentrancySt opper | nt er cey

scope="PER_| NSTANCE"/ >

<l-- \Wether to allow non-serializable pojo. Default is false. -->

<i nterceptor name="Marshal | NonSeri al i zabl e" cl ass="org.j boss. cache. poj o.interceptors. CheckNonSeri al i ze

scope="PER_| NSTANCE" >
<attribute nanme="marshal | NonSeri al i zabl e" >f al se</ attri but e>
</interceptor>

<stack name="Attach">
<interceptor-ref name="Start"/>
<i nterceptor-ref name="Checkld"/>
<interceptor-ref name="Tx"/>
<i nterceptor-ref name="TxLock"/>
<interceptor-ref name="TxUndo"/>
</ st ack>

<stack name="Detach">
<interceptor-ref nane="Start"/>
<i nterceptor-ref name="Checkld"/>
<interceptor-ref name="Tx"/>
<i nterceptor-ref name="TxLock"/>
<i nterceptor-ref name="TxUndo"/>
</ st ack>

<stack name="Fi nd">
<interceptor-ref nane="Start"/>
<interceptor-ref name="Checkld"/>
</ st ack>

Release 2.0.0 8

Architecture

The stack should be self-explanatory. For example, for the At t ach stack, we currently have Start, Checkld, Tx,

TxLock, and TxUndo interceptors. The stack always starts with a st art interceptor such that initialization can be
done properly. checkl d isto ensure the validity of the Id (e.g., it didn't use any internal 1d string). Finally, Tx, Tx-

Lock, and TxUndo are handling the the proper transaction locking and rollback behavior (if needed).

3.2. Field interception

POJO Cache currently uses JBoss AOP to intercept field operations. If a class has been properly instrumented (by
either using the @epl i cabl e annotation, or if the object has already been advised by JBoss AOP), then a cache in-
terceptor is added during an attach() call. Afterward, any field modification will invoke the corresponding
CachefFi el dI nt er cept or instance. Below is a schematic illustration of this process.

Only fields, and not methods are intercepted, since this is the most efficient and accurate way to gaurantee the same
dataisvisible on al nodesin the cluster. Further, this allows for objects that do not conform to the JavaBean spec-
ficiation to be replicable. There are two important aspects of field interception:

» All access qualifiers are intercepted. In other words, all private, all protected, al default, and all public
fields will be intercepted.

» Anyfiedwithfinal,static, and/or transi ent qualifiers, will be skipped. Therefore, they will not be replic-
ated, passivated, or manipulated in any way by POJO Cache.

The figure below illustrates both field read and write operations. Once an POJO is managed by POJO Cache (i.e.,
after an at t ach() method has been called), JBoss Aop will invoke the CacheFi el di nt er cept or every time a class
operates on a field. The cache is always consulted, since it is in control of the mapped data (i.e. it gaurantess the
state changes made by other nodes in the cluster are visible). Afterwords, the in-memmory copy is updated. Thisis
mainly to allow transaction rollbacks to restore the previous state of the object.

1 2
] [Cachelntemeptn%]
6 3
9 4 addr skill lang
In Memory

Release 2.0.0 9

Architecture

Figure 3.2. POJO Cachefield interception

3.3. Object relationship management

As previously mentioned, unlike a traditional cache system, POJO Cache preserves object identity. This alows for
any type of object relationship available in the Java language to be transparently handled.

During the mapping process, all object references are checked to see if they are aready stored in the cache. If
aready stored, instead of duplicating the data, a reference to the original object is written in the cache. All refer-
enced objects are reference counted, so they will be removed once they are no longer referenced.

To look at one example, let's say that multiple Per sons ("joe" and "mary") objects can own the same Addr ess (e.g.,
a household). The following diagram is a graphical representation of the pysical cache data. As can be seen, the
"San Jose" addressisonly stored once.

Person p (key="husband)

name: Joe” name Person p (kev='wife)

H addr
< hobbies

Y

city: ,, San Joze”

name: , Mary™

addr

hobbies

zip: 95123

city San Joge
zip 05123

Figure 3.3. Schematic illustration of object relationship mapping

In the following code snippet, we show programmatically the object sharing example.

i mport org.jboss. cache. poj 0. Poj oCache;

i mport org.jboss. cache. poj 0. Poj oCacheFact ory;

i mport org.jboss.test.cache.test.standAl oneAop. Person;

i mport org.jboss.test.cache.test.standAl oneAop. Addr ess;

Release 2.0.0 10

Architecture

String configFile = "META-1 NF/ repl Sync-service. xm";
Poj oCache cache = Poj oCacheFactory. createCache(configFile); // This will start PojoCache automatically

Person joe = new Person(); // instantiate a Person object nanmed joe
j oe. set Name("Joe Bl ack");
j oe. set Age(41);

Person mary = new Person(); // instantiate a Person object named mary
mary. set Nane("Mary Wiite");
mary. set Age(30) ;

Address addr = new Address(); // instantiate a Address object naned addr
addr.setCity("Sunnyval e");

addr.set Street ("123 Al bert Ave");

addr . set Zi p(94086) ;

j oe.set Address(addr); // set the address reference
mary. set Address(addr); // set the address reference

cache. attach("pojo/joe", joe); // add aop sanctioned object (and sub-objects) into cache.
cache. attach("poj o/ mary", mary); // add aop sanctioned object (and sub-objects) into cache.

Address joeAddr = joe.get Address();
Address maryAddr = mary. get Address(); // joeAddr and maryAddr shoul d be the sanme instance

cache. det ach(" poj o/ joe");
mar yAddr = mary. get Address(); // Should still have the address.

If j oe isremoved from the cache, mar y should still have reference the same Addr ess object in the cache store.

To further illustrate this relationship management, |et's examine the Java code under a replicated environment. Ima-
gine two separate cache instances in the cluster now (cachel1 and cache2). On the first cache instance, both j oe and
mary are attached as above. Then, the application fails over to cache2. Hereisthe code snippet for cache2 (assume
the objects were aready attached):

/**

* Code sni ppet on cache2 during fail-over

*/

i mport org.jboss. cache. PropertyConfi gurator

i mport org.jboss. cache. poj 0. Poj oCache;

i mport org.jboss.test.cache.test.standAl oneAop. Person

i mport org.jboss.test.cache.test.standAl oneAop. Addr ess;

String configFile = "META-I NF/ repl Sync-service. xm";
Poj oCache cache2 = Poj oCacheFactory. createCache(configFile); // This will start PojoCache automatically

Person joe = cache2.find("pojo/joe"); // retrieve the PQJO reference
Person mary = cache2.find("pojo/mary"); // retrieve the PQJO reference.

Address joeAddr = joe.get Address();
Address maryAddr = mary. get Address(); // joeAddr and maryAddr should be the sane instance!!

mar yAddr = mary. get Address() . set Zi p(95123);
int zip = joeAddr.get Address().getZip(); // Should be 95123 as wel | instead of 94086!

3.4. Object Inheritance

POJO Cache preserves the inheritance hierarchy of all attached objects. For example, if a st udent extends Per son

Release 2.0.0 11

Architecture

with an additional field year , then once st udent is put into the cache, all the class attributes of Per son are mapped
to the cache as well.

Following is a code snippet that illustrates how the inheritance behavior of a POJO is maintained. Again, no special
configuration is needed.

i mport org.jboss.test.cache.test.standAl oneAop. Student;

Student joe = new Student(); // Student extends Person cl ass
joe.set Name("Joe Black"); // This is base class attributes
joe.set Age(22); // This is also base class attributes
joe.setYear("Senior"); // This is Student class attribute

cache. attach(" poj o/ student/joe", joe);

/...

joe = (Student)cache. attach("poj o/ student/joe");

Person person = (Person)joe; // it will be correct here
joe.setYear("Junior"); // will be intercepted by the cache
joe.setNane("Joe Black I1"); // also intercepted by the cache

3.5. Physical object cache mapping model

The previous sections describe the logical object mapping model. In this section, we will explain the physical map-
ping model, that is, how do we map the POJO into Core Cache for transactional state replication. However, it
should be noted that the physical structure of the cache is purely an internal implementation detail, it should not be
treated as an APl as it may change in future releases. This information is provided solely to aid in better under-
standing the mapping process in POJO Cache.

When an object is first attached in POJO Cache, the Core Cache node representation is created in a specia internal
area. The d fgn that is passed to at t ach() isused to create an empty node that references the internal node. Future
references to the same object will point to the same internal node location, and that node will remain until all such
references have been removed (detached).

The example below demonstrates the mapping of the Person object under id "pojo/joe” and "pojo/mary” as
metioned in previous sections. It is created from a two node replication group where one node is a Beanshell win-
dow and the other node is a Swing Gui window (shown here). For clarity, multiple snapshots were taken to high-
light the mapping process.

The first figure illustrates the first step of the mapping approach. From the bottom of the figure, it can be seen that
the PojoReference field under pojo/joe is pointing to an interna location, /
__JBosslInternal __/5c4012-1 paf 5g- esl 49n5e- 1- esl 49n50- 2. That is, under the user-specified Id string, we store
only an indirect reference to the internal area. Please note that Mar y has asimilar reference.

Release 2.0.0 12

Architecture

¢ I __JBossinternal__
9 [Acdol 2-Ipafig-esld49nbe-1-es149n50-2

E’] address

|__""| ac4ol 2-Ipafag-esld49nae-1-esl49ngs-3

9 [Gcdol 2-Ipafag-esld49nbe-1-esl490a0-4
E’] address

Mame Yalue
l_lock_ LOCK

FPojoReference Internal Fogn --=1__JBassinternal_cdol 2-lpafag-esl49nae-1-esl148n50-2

Figure 3.4. Object cache mapping for Joe

¢ CJ __JBossinternal_
9 [Gcdol 2-Ipafag-esld49nbe-1-esl49n50-2

|j‘| address

|__°‘| acdolZ-lpafag-esldinse-1-es149ngs-3

9 [5cdo12-Ipafag-esl49n5e-1-esl490al-4
E| address

Mame Yalue
I lock_ LOCK

FojoReference Internal Fogn --=71__JIBossinternal__fAcdol 2-lpafag-esl49nae-1-esld4490a0-4

Figure 3.5. Object cache mapping for mvary

Release 2.0.0 13

Architecture

Then by clicking on the referenced internal node (from the following figure), it can seen that the primitive fields for
Joe are stored there. E.g., Age is41 and Nane iSJoe Bl ack. And similarly for vary aswell.

¢ [__JBossinternal__
¢ [J/5c4012-Ipafig-esl49nse-1-esl48n50-2 |

|__°‘| address

E‘] acdal2-lpafag-esldanae-1-esld9ngs-3

9 [Gcdal 2-lpafig-esld49nbe-1-esl490a0-4
|__""| address

Mame Walle
age 41
Fojolnstance org.jhoss.cache. pojo.Fojolnstance&@y S08hY
lock LOCk
narmea Joe Black

Figure 3.6. Object cache mapping for internal node Joe

¢ 3 __JBossinternal__
9 [Gcdal 2-lpafig-esld9nbe-1-esl49nh0-2

|__""| address

E‘] acdal2-lpafag-esldanae-1-esld9ngs-3

¢ [CJ[5cd01 2-IpafSg-esl48n5e-1-es1480a0-4
|__°‘| address

Marme Walue
age 30
Fojolnstance ard.jhoss.cache pojo.Pojolnstance&addals
lock LOCkK
name mMary Higoins

Release 2.0.0 14

Architecture

Figure 3.7. Object cache mapping for internal node Mary

Under the/ __JBossl nternal __/5c4012-1 paf 5g- esl 49n5e- 1- esl 49n50- 2, it can be seen that there is an Addr ess
node. Clicking on the Address node shows that it references another internal location: /

__JBosslInternal __/5c4012- 1 paf 5g- esl 49n5e- 1- esl 49ngs- 3 as shown in the following figure. Then by the same
token, the Addr ess node under / __JBossl nternal __/ 5c4012- 1 paf 5g- esl 49n5e- 1- esl 49na0- 4 points to the same
address reference. That is, both Joe and Mar y share the same Addr ess reference.

£ TreeCacheGui2: mbr=192.168.1.2:2243 :”E”Z|
Operations

¢ 3 __JBossinternal__
9 [Gcdol 2-Ipafag-esld49nbe-1-esl49n50-2

[fpuaress|

|__°‘| acdolZ-lpafag-esldinse-1-es149ngs-3
9 [Acdo12-Ipafig-esld49nbe-1-es1490a0-4
E| address

Mame Yalue
FojoReference Internal Fon --=71__JIBossinternal__fAcdol 2-lpafag-esl49nae-1-esld48ngs-3

Figure 3.8. Object cache mapping: Joe' sinternal address

Release 2.0.0 15

Architecture

¢ [__JBossinternal__
9 [5c401 2-Ipafag-esl49n5e-1-es149n50-2

E‘] address
E‘] acdol 2-lpafag-esl49nae-1-e5149ngs-3
9 [5c401 2-Ipafag-esl49n5e-1-es1490a0-4

[ugress]

MHame “alue
FPojoReference Internal Fogn --=1__JBossinternal_facdal 2-lpafag-eslddnge-1-esld9ngs-3

Figure 3.9. Object cache mapping: Mary'sinternal address

Finally, the /__JBosslnternal __/5c4012-1 paf 5g- esl 49n5e- 1- esl 49ngs-3 node contains the various various
primitive fields of Address, €.g., Street, Zi p, and G ty. Thisisillustrated in the following figure.

¢ 3 __JBossinternal__
9 [Gcdal 2-lpafig-esld9nbe-1-esl49nh0-2
|j| address

E‘] |5c4|:|1 2lpafag-esl49nae-1-esl49nas-3
9 [Acdol 2-Ipafsg-esld49nbe-1-esl1490a0-4

|__°‘| address

Marme Walle
Fojolnstance org.jhoss.cache pojo.Pojolnstanceg@bbcEel
street 123 Albert Ave
Zin 94086
ity Sunmyale

Release 2.0.0 16

Architecture

Figure 3.10. Object cache mapping: Addressfields

3.6. Collection Mapping

Due to current Java limitations, Collection classes that implement Set, Li st, and mvap are substituted with a Java
proxy. That is, whenever POJO Cache encounters any Collection instance, it will:

¢ Create a Collection proxy instance and place it in the cache (instead of the original reference). The mapping of
the Collection elements will still be carried out recursively as expected.

» |If the Collection instance is referenced from another object, POJO Cache will swap out the original reference
with the new proxy, so that operations performed by the refering object will be picked up by the cache.

The drawback to this approach is that the calling application must re-get any collection references that were at-

tached. Otherwise, the cache will not be aware of future changes. If the collection is referenced from another ob-

ject, then the calling app can obtain the proxy by using the publishing mechanism provided by the object (e.g. Per-

son.getHabbies()). If, however, the collection is directly attached to the cache, then a subsequent fi nd() call will

need to be made to retrieve the proxy.

The following code snippet illustrates obtaining a direct Collection proxy reference:

List list = new ArrayList();
list.add("ONE");
list.add("TWO");

cache. attach("pojo/list", list);
list.add("THREE"); // This won't be intercepted by the cache!

Li st proxyList = cache.find("pojo/list"; // Note that list is a proxy reference
proxylList.add("FOUR"); // This will be intercepted by the cache

This snippet illustrates obtaining the proxy reference from arefering object:

Person joe = new Person();

j oe.set Nane("Joe Black"); // This is base class attributes
List lang = new ArrayList();

| ang. add(" Engl i sh");

| ang. add(" Mandari n");

j oe. set Languages(| ang) ;

/1 This will map the | anguages List automatically and swap it out with the proxy reference.
cache. attach("poj o/ student/joe", joe);
| ang = joe. getLanguages(); // Note that lang is now a proxy reference

| ang. add("French"); // This will be intercepted by the cache

Finaly, when a Collection is removed from the cache (e.g., via det ach), you still can use the proxy reference.
POJO Cache will just redirect the call back to the in-memory copy. See below:

List list = new ArrayList();
|'ist.add("ONE");
list.add("TWO");

Release 2.0.0 17

Architecture

cache. attach("pojo/list", list);
Li st proxyList = cache.find("pojo/list"); // Note that list is a proxy reference
proxylList.add("THREE"); // This will be intercepted by the cache

cache. detach("pojo/list"); // detach fromthe cache
proxyLi st.add("FOUR"); // proxyList has 4 elenents still.

3.6.1. Limitations

The current implementation has the following limitations with collections:

* Only List, Set and Map are supported. Also it should be noted that the Java Collection API does not fully de-
scribe the behavior of implementations, so the cache versions may differ slightly from the common Java imple-
mentations (e.g. handling of NULL)

» Asof PojoCache 2.0, HashMap keys must be serializable. Prior to PojoCache 2.0, HashMap keys were conver-
ted to String. This was fixed as you couldn't get the key back in its original form. See issue JBCACHE-399 for
more details.

Release 2.0.0 18

APl Overview

This section provides a brief overview of the POJO Cache APIs. Please consult the javadoc for the full API.

4.1. PojoCacheFactory Class

PojoCacheFactory provides a couple of static methods to instantiate and obtain a PojoCache instance.

/**

* Create a Poj oCache instance. Note that this will start the cache |life cycle automatically.
* @aramconfig A configuration string that represents the file nane that is used to

* configure the underlying Cache instance.

* @eturn PojoCache

*/

public static PojoCache createlnstance(String config);

/**

* Create a Poj oCache instance.

* @aramconfig A configuration string that represents the file nanme that is used to
* configure the underlying Cache instance.

* @aramstart If true, it will start the cache life cycle.

* @eturn PojoCache

*/

public static PojoCache createlnstance(String config, boolean start);

/**

* Create a PojoCache instance.

* @aramconfig A configuration object that is used to configure the underlying Cache instance.
* @aramstart If true, it will start the cache life cycle.

* @eturn Poj oCache

*/

public static PojoCache createl nstance(Configuration config, boolean start);

For example, to obtain a PojoCache instance and start the cache lifestyle automatically, we can do:

String configFile = "META-1 NF/ repl Sync-service. xm";
Poj oCache cache = Poj oCacheFactory. createl nstance(configFile);

4.2. PojoCache Interface

Poj oCache is the main interface for POJO Cache operations. Since most of the cache interaction is performed
against the application domain model, there are only afew methods on this interface.

4.2.1. Attachment

Release 2.0.0 19

API| Overview

/**

* Attach a PQJO into PojoCache. It will also recursively put any sub-PQIO into
* the cache system A PQJO can be the follow ng and have the consequences when attached:

*

It is PojoCacheable, that is, it has been annotated with

{@ee org.|boss. cache. aop. annot ati on. Poj oCacheabl e} annotation (or via XM.), and has
been "instrunmented" either conpile- or load-tinme. The POQJO will be mapped recursively to
the system and fine-grained replication will be perforned.

It is Serializable. The PQDOw Il still be stored in the cache system However, it is
treated as an "opaque" object per se. That is, the PQOO w Il neither be intercepted
(for fine-grained operation) or object relationship will be nmintained.

*

*

*

*

*

*

*

*

*

* Neither of above. In this case, a user can specify whether it wants this PQJO to be
* stored (e.g., replicated or persistent). If not, a PojoCacheException will be thrown.
*
*
*
*
*
*
*
*
*

@aram i d An id String to identify the object in the cache. To pronote concurrency, we
recommend the use of hierarchical String separating by a designated separator. Default
is "/" but it can be set differently via a System property, jbosscache. separator
inthe future release. E.g., "ben", or "student/joe", etc.

@ar am poj o object to be inserted into the cache. If null, it will nullify the fqgn node.

@eturn Existing PQOO or null if there is none.

@ hrows Poj oCacheException Throws if there is an error related to the cache operation.

/
oj ect attach(String id, Object pojo) throws PojoCacheExcepti on;

As described in the above javadoc, this method "attaches' the passed object to the cache at the specified location
(i d). The passed in object (poj o) must have been instrumented (using the @repl i cabl e annotation) or implement
the Seri al i zabl e interface.

If the object is not instrumented, but serializable, POJO Cache will simply treat it as an opague "primitive" type.
That is, it will smply store it without mapping the object's fields into the cache. Replication is done on the object
wide level and therefore it will not be fine-grained.

If the object has references to other objects, this call will issue attach() cals recursively until the entire object
graph is traversed. In addition, object identity and object references are preserved. So both circular and multiply
referenced objects are mapped as expected.

The return value after the call is the previous object under i d, if any. Asaresult, a successful call i will replace that
old value with the new instance. Note that a user will only need to issue this call once for each top-level object.
Further calls can be made directly on the graph, and they will be mapped as expected.

4.2.2. Detachment

*

/
Rermove PQJO object from the cache.

@aramid |Is string that associates with this node.

@eturn Original value object fromthis node.

@ hrows Poj oCacheException Throws if there is an error related to the cache operation.
/
Cbj ect detach(String id) throws PojoCacheExcepti on;

L I T

This call will detach the POJO from the cache by removing the contents under i d and return the POJO instance
stored there (null if it doesn't exist). If successful, further operations against this object will not affect the cache.

Release 2.0.0 20

API| Overview

Note this call will also remove everything stored under i d even if you have put other plain cache data there.

4.2.3. Query
/**
* Retrieve PQJO fromthe cache system Return null if object does not exist in the cache.
* Note that this operation is fast if there is already a PQJO i nstance attached to the cache.
*
* @aramid that associates with this node.
* @eturn Current content value. Null if does not exist.
* @hrows Poj oCacheException Throws if there is an error related to the cache operation.
*

~

bject find(String id) throws Poj oCacheExcepti on;

This call will return the current object content located under i d. This method call is useful when you don't have the
exact POJO reference. For example, when you fail over to the replicated node, you want to get the object reference
from the replicated cache instance. In this case, PojoCache will create a new Java object if it does not exist and then
add the cache interceptor such that every future access will be in sync with the underlying cache store.

*

Query all managed PQJO obj ects under the id recursively. Note that this will not return
t he sub-object PQJCs, e.g., if Person has a sub-object of Address, it

won't return Address pojo. Al so note also that this operation is not thread-safe

now. In addition, it assunes that once a PQJOis found with a id, no nore PQJO is stored
under the children of the id. That is, we don't mx the id with different PQICs.

L I . R T R

@aramid The starting place to find all PQIGs.
@eturn Map of all PQIGs found with (id, PQJO pair. Return size of 0, if not found.
@ hrows Poj oCacheException Throws if there is an error related to the cache operation.

*

“f
Map findAll (String id) throws PojoCacheExcepti on;

This call will return all the managed POJOs under cache with a base Fgn name. It is recursive, meaning that it will
traverse al the sub-trees to find the POJOs under that base. For example, if you specify the fgn to beroat, e.g., */ "
, then it will return al the managed POJOs under the cache.

Release 2.0.0 21

Configuration and Deployment

Since POJO Cache uses Core Cache for the underlying node replication, transaction, locking, and passivation beha-
vior, the configuration is mostly the same.

5.1. Cache configuration xml file

When a PojoCache instance is obtained from a PojoCacheFactory, it is required that the either a
org. j boss. cache. confi g. Confi guration object is passed, or more typicaly a String indicating the location on
the classpath or filesystem of an xml configuration file is provided. In the latter case, PojoCacheFactory will parse
the xml to create a Confi gurati on. PojoCache will simply pass the resulting Confi gurati on to the underlying
Core Cache implementation. For details on the configuration please see the "Configuration” chapter in the the
JBoss Cache User Guide.

5.2. Passivation

A common use-case is to configure the underlying Core Cache to enable passivation. Passivation is a feature used
to reduce cache memory usage by evicting stale data that can later be reloaded. In JBoss Cache, it is done via a
combination of an eviction policy and a cache loader. That is, when a node is evicted from the Cache's in-memory
store, it will be stored in a persistent store by the cache loader. When the node is requested again, it will be loaded
from the persistent store and stored into memory.

There is arestriction, however. Since POJO Cache maps object data into an internal area, there are two places that
have object information. One is under the regular String ID that the user specifies, and the other is located under /
_ JBossInternal __. Therefore, to maintain consistentency, when you specify the eviction region, you can only
specify one global (i.e., / _def aul t _) region. This way, when the nodes associated with a POJO are passivated, they
will do so across the whole region.

Below is a snippet from a cache configuration xml illustrating how the eviction policy along with cache loader can
be configured. Please note that thisis simply an aspect of the underlying Cache. That is, PojoCache layer is agnost-
ic to this behavior.

<attribute name="EvictionPolicyConfig">
<confi g>
<attribute name="wakeUpl nt erval Seconds" >5</attri bute>
<attribute name="policyd ass">org.jboss. cache. evi cti on. LRUPol i cy</attri bute>
<I-- Cache wide default -->
<regi on nane="/_default_">
<attri bute name="nmaxNodes">5000</attri bute>
<attribute name="ti neToLi veSeconds">3</attri bute>
</regi on>

Release 2.0.0 22

Configuration and Deployment

</ confi g>
</attribute>

<attri bute name="CachelLoader Confi gurati on">
<confi g>
<passi vati on>t rue</ passi vati on>
<pr el oad>/ </ pr el oad>
<shar ed>f al se</ shar ed>

<I-- we can now have mnul tiple cache | oaders, which get chained -->
<cachel oader >
<cl ass>org. j boss. cache. | oader. Fi | eCacheLoader </ cl ass>

<l-- whether the cache | oader wites are asynchronous -->
<async>f al se</ async>
<l-- only one cache | oader in the chain nay set fetchPersistentState to true.
An exception is thrown if nore than one cache | oader sets this to true. -->
<f et chPer si st ent St at e>t rue</ f et chPer si st ent St at e>
<l-- determ nes whether this cache | oader ignores wites - defaults to false. -->

<i gnor eModi fi cati ons>f al se</i gnoreMdi fi cati ons>
</ cachel oader >
</ confi g>
</attribute>

Another way to support multiple regions in eviction is to use region-based marshalling. See the "Architecture”
chapter in the JBoss Cache User Guide for more information on region-based marshalling. When the Cache uses
region-based marshalling, POJO Cache will store internal node data on the region that is specified. This allows for
amore flexible eviction policy.

5.3. AOP Configuration

POJO Cache supplies a poj ocache- aop. xni that is required to be set via a system property: j boss. aop. pat h dur-
ing compile- or load-time, or placed in the user's classpath. The file now consists of the interceptor stack specifica
tion, as well as annotations for POJO instrumentation. It is listed fully in the Appendix section. Note that the file
should not normally need to be modified. Only an advanced use-case would reguire changes.

5.4. Deployment Options

There are a number of ways to deploy POJO Cache:

5.4.1. Programatic Deployment

Simply instantiate a PojoCacheFactory and invoke one of the overloaded cr eat eCache methods shown in the AP
Overview.

5.4.2. JMX-Based Deployment in JBoss AS (JBoss AS 5.x and 4.x)

If PojoCacheisrunin JBoss AS then your cache can be deployed as an MBean simply by copying a standard cache
configuration file to the server's depl oy directory. The standard format of PojoCache's standard XML configuration
file (as shown in the Appendix) is the same as a JBBoss AS MBean deployment descriptor, so the AS's SAR Deploy-
er has no trouble handling it. Also, you don't have to place the configuration file directly in depl oy; you can pack-

Release 2.0.0 23

Configuration and Deployment

age it along with other services or JEE componentsin a SAR or EAR.

In AS5, if you're using a server config based on the standard al I config, then that's all you need to do; all required
jars will be on the classpath. Otherwise, you will need to ensure poj ocache. j ar, j bosscache. j ar and j gr oups-
all.jar are on the classpath. You may need to add other jars if you're using things like JdbnCacheLoader . The
simplest way to do thisis to copy the jars from the PojoCache distribution's | i b directory to the server config'slib
directory. Y ou could also package the jars with the configuration file in Service Archive (.sar) file or an EAR.

It is possible, to deploy a POJO Cache 2.0 instance in JBoss AS 4.x However, the significant APl changes between
the 2.x and 1.x releases mean none of the standard AS 4.x clustering services (e.g. http session replication) that rely
on the 1.x API will work with PojoCache 2.x. Also, be aware that usage of PojoCache 2.x in AS 4.x is not
something the cache developers are making any significant effort to test, so be sure to test your application well
(which of course you're doing anyway.)

Note in the example the value of the nbean element's code attribute:
org. j boss. cache. poj 0. j nx. Poj oCacheJmxW apper . Thisisthe class JBoss Cache uses to handle IMX integration;
the PojoCache itself does not expose an MBean interface. See the JBoss Cache M Beans section for more on the Po-
joCacheJmxWrapper.

Once your cache is deployed, in order to use it with an in-VM client such as a servlet, a IMX proxy can be used to
get areference to the cache:

MBeanServer server = MBeanServerlLocator. | ocateJBoss();
Cbj ect Nane on = new Obj ect Nanme("] boss. cache: servi ce=Poj oCache");
Poj oCacheJmxW apper MBean cacheW apper =
(Poj oCacheJdnxW apper MBean) MBeanSer ver | nvocati onHandl er. newPr oxyl nst ance(server, on,
Poj oCacheJmxW apper MBean. cl ass, fal se);
Poj oCache cache = cacheW apper. get Poj oCache();

The MBeanServerLocator class is a helper to find the (only) JBoss MBean server inside the current VM. The
j avax. managenent . MBeanSer ver | nvocat i onHandl er class newPr oxyl nst ance method creates a dynamic proxy
implementing the given interface and uses IMX to dynamically dispatch methods invoked against the generated in-
terface to the MBean. The name used to look up the MBean is the same as defined in the cache's configuration file.

Once the proxy to the Poj oCacheJmxW apper is obtained, the get Poj oCache() will return a reference to the Po-
joCache itself.

5.4.3. Via JBoss Microcontainer (JBoss AS 5.x)

Beginning with AS 5, JBoss AS also supports deployment of POJO services via deployment of a file whose name
ends with - beans. xn . A POJO service is one whose implementation is via a "Plain Old Java Object”, meaning a
simple java bean that isn't required to implement any special interfaces or extend any particular superclass. A Po-
joCache is a POJO service, and al the components in a Confi gur ati on are also POJOS, so deploying a cache in
thisway is anatural step.

Deployment of the cache is done using the JBoss Microcontainer that forms the core of JBoss AS. JBoss Microcon-
tainer is a sophisticated 10OC framework (similar to Spring). A - beans. xni fileisbasically a descriptor that tells the
IOC framework how to assemble the various beans that make up a POJO service.

Release 2.0.0 24

Configuration and Deployment

The rules for how to deploy the file, how to package it, how to ensure the required jars are on the classpath, etc. are
the same as for a JM X-based deployment.

Following is an abbreviated example - beans. xni file. The details of building up the Configuration are omitted; see
the "Deploying JBoss Cache" chapter in the JBoss Cache User Guide for a more complete example. If you look in
theserver/al | / depl oy directory of an AS 5 installation, you can find several more examples.

<?xm version="1.0" encodi ng="UTF-8""?>
<depl oyment xm ns="urn:j boss: bean-depl oyer: 2. 0">

<I-- First we create a Configuration object for the cache -->
<bean name="Exanpl eCacheConfi g"
cl ass="org. j boss. cache. confi g. Confi guration">

. details omtted
</ bean>

<l-- The cache itself. -->
<bean nane="Exanpl eCache" cl ass="org. | boss. cache. poj o. i npl . Poj oCachel npl ">

<constructor factoryC ass="org.jboss. cache. poj 0. Poj oCacheFact ory
fact oryMet hod="cr eat eCache" >
<par anet er ><i nj ect bean="Exanpl eCacheConfi g"/ ></ par anet er >
<par anet er >f al se</fal se>
</ constructor >

</ bean>

</ depl oynent >

An interesting thing to note in the above example is the difference between POJO Cache and a plain Cache in the
use of afactory to create the cache. (See the "Deploying JBoss Cache" chapter in the JBoss Cache User Guide for
the comparable plain Cache example.) The PojoCacheFactory exposes static methods for creating a PojoCache; as
aresult thereis no need to add a separate bean element for the factory. Core Cache's Def aul t CacheFact ory creates
caches from a singleton instance, requiring a bit more boilerplate in the config file.

5.5. POJO Cache MBeans

POJO Cache provides an MBean that can be registered with your environment's IMX server to allow access to the
cache instance via IMX. This MBean is the org. j boss. cache. poj 0. j nx. Poj oCacheJnxW apper . It is a Stand-
ardMBean, so it's MBean interface is or g. j boss. cache. poj o. j nx. Poj oCacheJnxW apper MBean. This MBean can
be used to:

» Get areference to the underlying PojoCache.
* Invoke create/start/stop/destroy lifecycle operations on the underlying PojoCache.

e See numerous details about the cache's configuration, and change those configuration items that can be changed
when the cache has aready been started.

Release 2.0.0 25

Configuration and Deployment

See the Poj oCacheJmxW apper MBean javadoc for more details.

It is important to note a significant architectural difference between PojoCache 1.x and 2.x. In 1.x, the old
TreeCacheAop class was itself an MBean, and essentially exposed the cache's entire API viaJMX. In 2.x, IMX has
been returned to it's fundamental role as a management layer. The PojoCache object itself is completely unaware of
JMX; instead IMX functionality is added through a wrapper class designed for that purpose. Furthermore, the inter-
face exposed through JIM X has been limited to management functions; the general PojoCache AP is no longer ex-
posed through IMX. For example, it is no longer possible to invoke a cache at t ach or det ach viathe IMX inter-
face.

If a Poj oCacheJmxW apper is registered, the wrapper also registers MBeans for the underlying plain Cache and for
each interceptor configured in the cache's interceptor stack. These MBeans are used to capture and expose statistics
related to cache operations; see the JBoss Cache User Guide for more. They are hierarchically associated with the
Poj oCacheJmxW apper MBean and have service names that reflect this relationship. For example, a plain Cache as-
sociated with a jboss. cache: service=Poj oCache Will be accessible through an mbean named
j boss. cache: servi ce=Poj oCache, cacheType=Cache. The replication interceptor MBean for that cache will be ac-
cessible through the mbean named
j boss. cache: servi ce=Poj oCache, cacheType=Cache, cache-i nt er cept or =Repl i cati onl nt er cept or.

5.6. Registering the PojoCacheJmxWrapper

The best way to ensure the Poj oCachednxW apper is registered in IMX depends on how you are deploying your
cache:

5.6.1. Programatic Registration

Simplest way to do thisisto create your Poj oCache and passit to the Poj oCacheJmxW apper constructor.

/1 Build but don't start the cache
/1 (although it would work OK if we started it)
Poj oCache cache = Poj oCacheFactory. creat eCache("cache-configuration.xm", false);

Poj oCacheJnxW apper MBean wr apper = new Poj oCacheJnxW apper (cache);
MBeanServer server = get MBeanServer(); // however you do it

Obj ect Nane on = new Obj ect Name("] boss. cache: servi ce=Poj oCache");
server.regi st er MBean(w apper, on);

/1 Invoking |lifecycle nethods on the wapper results
/1 in a call through to the cache

wr apper.create();

wrapper.start();

use the cache
. on application shutdown
/1 Invoking lifecycle nethods on the w apper results
/1 in a call through to the cache

wr apper . stop();
wr apper . destroy();

Alternatively, build a Confi gurati on object and pass it to the Poj oCacheJmxW apper . The wrapper will construct

Release 2.0.0 26

Configuration and Deployment

the Poj oCache:

Configuration config = buildConfiguration(); // whatever it does

Poj oCacheJmxW apper MBean wr apper = new Poj oCacheJnxW apper (confi g);
MBeanServer server = getMBeanServer(); // however you do it

Ooj ect Namre on = new Obj ect Nane("j boss. cache: servi ce=TreeCache") ;
server. regi st er MBean(w apper, on);

/1 Call to wapper.create() will build the Cache if one wasn't injected
wr apper . create();
wr apper.start();

/1 Now that it's built, created and started, get the cache from the w apper
Poj oCache cache = wrapper. get Poj oCache();

use the cache
on application shutdown

wr apper. stop();
wr apper . destroy();

5.6.2. JMX-Based Deployment in JBoss AS (JBoss AS 4.x and 5.x)

When you deploy your cache in JBoss AS using a -service.xml file, a Poj oCacheJmxW apper is automatically re-
gistered. Thereis no need to do anything further. The Poj oCacheJmxW apper is accessible through the service name
specified in the cache configuration file's nbean €lement.

5.6.3. Via JBoss Microcontainer (JBoss AS 5.x)

Poj oCacheJmxW apper is aPOJO, so the microcontainer has no problem creating one. The trick is getting it to re-
gister your bean in IMX. This can be done by specifying the or g. j boss. aop. ni crocont ai ner. aspect s. j mx. JMX
annotation on the Poj oCacheJmxW apper bean:

<?xm version="1.0" encodi ng="UTF-8""?>

<depl oynent

xm ns="urn: j boss: bean- depl oyer: 2. 0" >

<I-- First we create a Configuration object for the cache -->
<bean nane="Exanpl eCacheConfi g"

cl ass="org. j boss. cache. confi g. Confi guration">

build up the Configuration

</ bean>

<l-- The cache itself. -->
<bean nane="Exanpl eCache" cl ass="org. | boss. cache. poj o.i npl . Poj oCachel npl ">

<constructor factoryC ass="org.jboss. cache. poj 0. Poj oCacheFact ory

fact or yMet hod="cr eat eCache" >

<par anet er ><i nj ect bean="Exanpl eCacheConfi g"/ ></ par anet er >
<par anet er >f al se</f al se>
</ const ructor>

Release 2.0.0

27

Configuration and Deployment

</ bean>

<l-- JMX Managenent -->
<bean name="Exanpl eCacheJnxW apper" cl ass="org. | boss. cache.j nx. CacheJnxW apper " >

<annot ati on>@r g. j boss. aop. i cr ocont ai ner. aspects. j mx. JMX(
nane="j boss. cache: servi ce=Exanpl ePoj oCache"
exposedl nt er f ace=or g. j boss. cache. poj o. j nx. Poj oCacheJnxW apper MBean. cl ass,
regi sterDirectly=true)
</ annot ati on>
<construct or>
<par anet er ><i nj ect bean="Exanpl eCache"/ ></ par anet er >
</ const ructor >
</ bean>

</ depl oyment >

As discussed in the Programatic Registration section, Poj oCacheJnmxW apper can do the work of building, creating
and starting the PojoCacheif it is provided with aConf i gur at i on:

<?xm version="1.0" encodi ng="UTF-8"?>
<depl oynment xm ns="ur n:j boss: bean-depl oyer: 2. 0">
<I-- First we create a Configuration object for the cache -->
<bean nane="Exanpl eCacheConfi g"
cl ass="org. j boss. cache. confi g. Confi guration">
build up the Configuration
</ bean>
<bean nane="Exanpl eCache" cl ass="org. | boss. cache. poj o.j nx. Poj oCacheJnxW apper " >
<annot ati on>@r g. j boss. aop. m crocont ai ner. aspect s. j mx. JMX(
nane="j boss. cache: servi ce=Exanpl ePoj oCache"
exposedl nt er f ace=or g. j boss. cache. poj 0. j nx. Poj oCacheJnxW apper MBean. cl ass,
regi sterDirectly=true)
</ annot ati on>
<construct or >
<par anet er ><i nj ect bean="Exanpl eCacheConfi g"/ ></ par anet er >
</ constructor>

</ bean>

</ depl oynent >

5.7. Runtime Statistics and JMX Notifications

As mentioned above, the cache exposes a variety of statistical information through its MBeans. It aso emits IMX

Release 2.0.0 28

Configuration and Deployment

notifications when events occur in the cache. See the JBoss Cache User Guide for more on the statistics and notific-
ations that are available.

The only PojoCache addition to the plain JBoss Cache behavior described in the User Guide is that you can register
with the PojoCacheJmxWrapper to get the notifications. There is no requirement to figure out the ObjectName of
the underlying cache's CacheJmxWrapper and register with that.

Release 2.0.0 29

Instrumentation

In this chapter, we explain how to instrument (or "aspectize") the POJOs via JBoss Aop. There are two steps
needed by JBoss Aop: 1) POJO declaration, 2) instrumentation. But depends on the instrumentation mode that you
are using, you may not need to pre-process your POJO at al. That is, if you use JDK5.0 (required) and load-time
mode, then al you need to do is annotating your POJO (or declare it in a xml file). This makes your PojoCache
programming nearly transparent.

For the first step, since we are using the dynamic Aop feature, a POJO is only required to be declared "prepare”.
Basically, there are two ways to do this: either via explicit xml or annotation.

Asfor the second step, either we can ask JBoss Aop to do load-time (through a special class |oader, so-called load-
time mode) or compile-time instrumentation (use of an aopc pre-compiler, so-called precompiled mode). Reader
can read the JBoss Aop introduction chapter for more details.

6.1. XML descriptor

To declare a POJO via XML configuration file, you will need a META- I NF/ j boss- aop. xni (or in the PojoCache
case, it is the equivalent poj ocache- servi ce. xn file located under the class path or listed in the j boss. aop. pat h
system property. JBoss AOP framework will read this file during startup to make necessary byte code manipulation
for advice and introduction. Or you can pre-compile it using a pre-compiler called aopc such that you won't need
the XML file during load time. JBoss Aop provides a so-called poi nt cut language where it consists of a regular
expression set to specify the interception points (or j oi nt poi nt in aop parlance). The jointpoint can be constructor,
method call, or field. You will need to declare any of your POJO to be "prepared” so that AOP framework knows
to start intercepting either method, field, or constructor invocations using the dynamic Aop.

For PojoCache, we only allow al the fields (both read and write) to be intercepted. That is, we don't care for the
method level interception since it is the state that we are interested in. So you should only need to change your
POJO class name. For details of the pointcut language, please refer to JBoss Aop.

The standalone JBoss Cache distribution package provides an example declaration for the tutorial classes, namely,
Per son and Addr ess . Detailed class declaration for Per son and Addr ess are provided in the Appendix section. But
here is the snippet for poj ocache- aop. xnl :

< >
aggrepare expr="field(* $instanceof { @rg.]jboss. cache. poj o. annotati on. Replicable}->*)" />
</ aop>
and then notice the annotation @Replicable used in the Per son and Addr ess POJOs. Also note that @Replicable is
now inheritant. For example, sub-class of Per son such as st udent will also be aspectized by JBoss Aop as well. If
you want to stop this inheritance behavior, you can simply remove the $i nst anceof declaration in the prepare
statement, e.g.,

Release 2.0.0 30

I nstrumentation

<aop>
<prepare expr="field(* @rg.jboss.cache. pojo.annotation. Replicable->*)" />
</ aop>

Detailed semantics of poj ocache- aop. xm (or equivalently poj ocache- aop. xni) can again be found in JBoss Aop.
But above statements basically declare al field read and write operations in classes Addr ess and Per son will be
"prepared” (or "aspectized"). Note that:

¢ Thewildcard at the end of the expression signifies all fieldsin the POJO

* You can potentially replace specific class name with wildcard that includes al the POJOs inside the same pack-
age space

e Theinstanceof operator declares any sub-type or sub-class of the specific POJO will also be "aspectized”. For
example, if ast udent classisasubclass of Person , JBossAop will automatically instrument it as well!

* Weintercept the field of al accesslevels(i.e, private , protected, public , €c.) The main reason being that
we consider al fields as stateful data. However, we can relax this requirement in the future if there is a use case
for it.

Wedon't intercept field modifiers of final and transi ent though. That is, field with these modifiers are not
stored in cache and is not replicated either. If you don't want your field to be managed by the cache, you can de-
clare them with these modifiers, e.g., transient.

6.2. Annotation

Annotation is a new feature in Java 5.0 that when declared can contain metadata at compile and run time. It iswell
suited for aop declaration since there will be no need for external metadata xml descriptor.

6.2.1. POJO annotation for instrumentation

To support annotation (in order to simplify user's development effort), the JBoss Cache distribution ships with a
poj ocache-aop. xni under the r esour ces directory. For reference, here is annotation definition from poj ocache-
aop. xn again:

<aop>
<prepare expr="field(* @rg.]jboss.cache. pojo.annotation. Replicable->*)" />
</ aop>

Basicaly, it simply states that any annotation with both marker interfaces will be "aspectized" accordingly.

Here is acode snippet that illustrate the declaration:

@r g. j boss. cache. poj 0. annot ati on. Repl i cabl e
public class Person {...}

The above declaration will instrument the class Per son and al of its sub-classes. That is, if St udent sub-class from
Per sonal , then it will get instrumented automatically without further annotation declaration.

Release 2.0.0 31

I nstrumentation

6.2.2. JDK5.0 field level annotations

In Release 2.0, we have added two additional field level annotations for customized behavior. The first one is
@r g. j boss. cache. poj 0. annot at i on. Transi ent . When applied to a field variable, it has the same effect as the
Java language t ransi ent keyword. That is, PojoCache won't put this field into cache management (and therefore
no replication).

The second one is @rg. j boss. cache. poj 0. annot at i on. Seri al i zabl e, when applied to a field variable, Po-
joCache will treat this variable as Seri al i zabl e, even when it is Repl i cabl e. However, the field will need to im-
plement the Seri al i zabl e interface such that it can be replicated.

Here is a code snippet that illustrates usage of these two annotations. Assuming that you have a Gadget class:

public class Gadget
{

/1 resource won't be replicated

@r ansi ent Resource resource;

/| special Address is treated as a Serializable object but still has object relationship
@peri al i zabl e Speci al Addr ess speci al Addr ess;

/1 other state variables

}
Then when we do:

CGadget gadget = new Gadget ();
Resource resource = new Resource();
Sepci al Addr ess speci al Address = new Speci al Address();

/] setters
gadget . set Resour ce(resource);
gadget . set Speci al Addr ess(speci al Addr ess) ;

cachel. put oj ect ("/gadget”, gadget); // put into PojoCache managenent

CGadget g2 = (Gadget)cache2. get Obj ect("/gadget"); // retrieve it from another cache instance
g2.get Resource(); // This is should be null because of @ransient tag so it is not replicated.

Sepci al Address d2 = g2. get Speci al Address();
d2. set Name("inet"); // This won't get replicated automatically because of @erializable tag
ge. set Speci al Address(d2); // Now this wll.

6.3. Weaving

As already mentioned, a user can use the aop precompiler (aopc) to precompile the POJO classes such that, during
runtime, there is no additional system class loader needed. The precompiler will read in poj ocache- aop. xm and
weave the POJO byte code at compile time. Thisis aconvenient feature to make the aop lessintrusive.

Below isan Ant snippet that defines the library needed for the various Ant targets that we are listing here. User can
refer to the bui 1 d. xnd in the distribution for full details.

<path i d="aop. cl asspath"/>
<fileset dir="${lib}"/>
<i ncl ude name="**/*_jar" //>
<excl ude nane="**/j boss-cache.jar" //>

Release 2.0.0 32

I nstrumentation

<exclude nane="**/j*unit.jar" //>
<excl ude nanme="**/bsh*.jar" //>
</fileset/>
</ pat h/ >

6.3.1. Ant target for running load-time instrumentation using specialized class
loader

In JDK5.0, you can use the j avaagent option that does not require a separate Classloader. Here are the ant snippet
from one-t est - poj o, for example.

<target nane="one.test.pojo" depends="conpile" description="run one junit test case.">
<junit printsummary="yes" timeout="${junit.timeout}" fork="yes">
<jvmarg val ue="-D boss. aop. pat h=${ out put}/ r esour ces/ poj ocache- aop. xm "/ >
<jvmarg val ue="-j avaagent: ${1i b}/ boss-aop-j dk50.jar"/>
<cl asspath path="${output}/etc" />
<sysproperty key="log4j.configuration" value="file:${output}/etc/logdj.xm" />
<cl asspath refid="Ilib.classpath"/>
<cl asspath refid="buil d.cl asspath"/>
<formatter type="xm" usefile="true"/>
<test name="${test}" todir="${reports}"/>
</junit>
</target>

6.3.2. Ant target for aopc

Below is the code snippet for the aopc Ant target. Running this target will do compile-time weaving of the POJO
classes specified.

<t askdef nane="aopc" cl assnanme="org.jboss. aop. ant. AopC' cl asspat href ="aop. cl asspat h"/>
<target nanme="aopc" depends="conpile" description="Preconpile aop class">
<aopc conpil ercl asspat href ="aop. cl asspat h" verbose="true">
<src path="${build}"/>
<i ncl ude nane="org/jboss/cache/ aop/test/**/*.class"/>
<aoppat h pat h="${out put }/resour ces/ poj ocache-aop. xm "/ >
<cl asspath pat h="${buil d}"/>
<cl asspath refid="Iib.classpath"/>
</ aopc>
</target>

Below is a snapshot of files that are generated when aopc is applied. Notice that couple extra classes have been
generated because of aopc.

Release 2.0.0 33

I nstrumentation

Quuct - ©

Folders
outouk
2 o
7 chsses
() etc
) TRSOLINTES:
test-classes
2 B2 org
3 |2 Jboss
= (C3) cache
B I3 aop
I colection
Il-': nitegrabed
I3 loader
(]
I i
) benchmark
fj ECTion
I oader
) bock
] marshial
< 0 |

Be EdE Vew Favortes Tooks Hep
¥ | P

! search || roiders | [TE1]>

Agldiess | £ Fryjboss) IBossCache\nutpur pest-clssesyong Jooss\carhe\aopitast

% pame =
w M| Adoress
— || Addressscky Get
[Addresstony_Sat
=) AddressSstreet_Get
|| Ackresssslresl_Set
| Adovesssrn Gt
[*1] Addresstaip Set
[=] Person
= Persongaddress_Get
= Persongadiiess_set
| Persongage Gat
[Persongzge_Set
[= Persongourrentstatus_Get
= PersongourrentStatus_Set
=] Personghobibes_Gat
*%| Personghobiies Set
[*f] Personglanguages_Get
[Persond$Enguages_set
=] Persong medication_Get
:-_l Persongmedicalion_Set
| Persongname Gat
[*1] Persondname_Set
[=] Persongskis_Get
~ [Z Persongskis_Set
£

G KB
2EB
2EE
2 KE
268

2EB
13 KB
2 KE
268

2EB
2EE
2 KE
268

2EB
2EE
2 KE
AR

3B
3 EE
3 KB

- BX
I

w G
Type
CLASS Fle
CLASE Fle
CLASS Fie
CLASS Fie
CLASS Fie
CLASS Fie
CLASE Fle
CLASS Fie
CLASS Fie
CLASS Fie
CLASS Fie
CLASE Fle
CLASS Fie
CLASS Fie
CLASS Fie
CLASS Fie
CLASE Fle
CLASS Fie
CLASS Fie
CLASS Fie
CLASS Fie
CLASE Fle
CLASS Fie
CLASS Fie

Figure 6.1. Classes generated after aopc

Release 2.0.0

TroubleShooting

We have maintained a PojoCache wiki troubleshooting page [1]. Please refer it first. We will keep adding
troubleshooting tips there.

All the current outstanding issues are documented in JBossCache Jira page [2] . Please check it for details. If you
have discovered additional issues, please report it there as well.

[1] http://wiki.jboss.org/wiki/Wiki.jsp?page=PojoCacheTroubl eshooting
[2] http://jira,jboss.com/jira/secure/BrowseProject.jspa?d=10051

Release 2.0.0 35

http://wiki.jboss.org/wiki/Wiki.jsp?page=PojoCacheTroubleshooting
http://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10051

Appendix

8.1. Example POJO

The example POJO classes used for are: Person, Student, and Address. Below are their definition (note that
neither classimplements Seri al i zabl e) along with the annotation.

@r g. j boss. cache. poj 0. annot ati on. Repl i cabl e
public class Person {

String name=nul | ;

i nt age=0;

Map hobbi es=nul I ;

Addr ess address=nul | ;

Set skills;

Li st | anguages;

public String getNanme() { return name; }
public void setName(String name) { this.nane=nane; }

public int getAge() { return age; }
public void setAge(int age) { this.age = age; }

public Map get Hobbi es() { return hobbies; }
public void set Hobbi es(Map hobbi es) { this.hobbies = hobbies; }

publ i c Address get Address() { return address; }
public void set Address(Address address) { this.address = address; }

public Set getSkills() { return skills; }
public void setSkills(Set skills) { this.skills = skills; }

public List getlLanguages() { return |anguages; }
public void setlLanguages(List |anguages) { this.|anguages = | anguages; }

public class Student extends Person {
String year=null;

public String getYear() { return year; }
public void setYear(String year) { this.year=year; }

@r g. j boss. cache. poj 0. annot ati on. Repl i cabl e
public class Address {

String street=null;

String city=null;

int zip=0;

public String getStreet() { return street; }
public void setStreet(String street) { this.street=street; }

Release 2.0.0 36

Appendix

8.2. Sample Cache configuration xml

Below is a sample xml configuration for Cache that you can use for PojoCache creation.

<?xm version="1.0" encodi ng="UTF-8" ?>

<server>
<nbean code="org.jboss. cache. poj o.j nx. Poj oCacheJnxW apper "
nanme="j boss. cache: servi ce=Poj oCache" >

<depends>j boss: servi ce=Tr ansact i onManager </ depends>

<l-- Configure the Transacti onManager -->
<attribute name="Transacti onManager LookupC ass" >

org.j boss. cache. transacti on. DunmyTr ansact i onManager Lookup
</attribute>

<I-- Isolation |level : SERI ALI ZABLE
REPEATABLE_READ (def aul t)
READ_COWM TTED
READ_UNCOWM TTED
NONE
-->
<attribute name="1sol ati onLevel ">REPEATABLE_READ</ attri but e>

<l-- Valid nodes are LOCAL, REPL_ASYNC and REPL_SYNC -->
<attribute name="CacheMbde" >REPL_SYNC</ attri but e>

<l-- Nane of cluster. Needs to be the sane for all caches,
in order for themto find each other

-->

<attribute name="C ust er Nanme" >Poj oCacheCl uster</attri bute>

<l-- JGoups protocol stack properties. -->
<attribute name="d usterConfig">
<confi g>
<I-- UDP: if you have a nultihomed machi ne, set the bind_addr
attribute to the appropriate NIC | P address -->
<l-- UDP: On Wndows machi nes, because of the nedia sense feature

being broken with nmulticast (even after disabling nedia sense)
set the | oopback attribute to true -->

<UDP ntast_addr="228.1.2.3" ntast_port="48866"
ip_ttl="64" ip_ncast="true"
ncast _send_buf _si ze="150000" ntast _recv_buf_si ze="80000"
ucast _send_buf _si ze="150000" ucast _recv_buf _si ze="80000"
| oopback="fal se"/>

<PI NG ti neout ="2000" num. ni tial _nenbers="3"/>

<MERGE2 mi n_interval ="10000" nax_i nt erval ="20000"/ >

<FD shun="true"/>

<FD_SOCK/ >

<VERI FY_SUSPECT ti neout ="1500"/ >

<pbcast. NAKACK gc_| ag="50" retransmt_ti neout="600, 1200, 2400, 4800"

max_xmt_size="8192"/>

<UNI CAST ti meout =" 600, 1200, 2400", 4800/ >

<pbcast. STABLE desired_avg_gossi p="400000"/ >

<FC max_credi t s="2000000" ni n_t hreshol d="0.10"/>

<FRA®R frag_size="8192"/>

Release 2.0.0 37

Appendix

<pbcast. GVS joi n_ti meout ="5000" join_retry_tineout="2000"
shun="true" print_|ocal _addr="true"/>
<pbcast . STATE_TRANSFER/ >
</ confi g>
</attribute>

<I-- \Whether or not to fetch state on joining a cluster -->
<attribute name="Fetchl nMenoryState">true</attribute>

<I-- The max armount of tinme (in mlliseconds) we wait until the
initial state (ie. the contents of the cache) are retrieved from
exi sting nmenbers in a clustered environnent

-->

<attribute name="Initial StateRetrieval Ti neout”>15000</attri bute>

<I-- Nunber of mlliseconds to wait until all responses for a
synchronous call have been received.
-->

<attribute name="SyncRepl Ti meout">15000</attri but e>

<l-- Max nunber of mlliseconds to wait for a | ock acquisition -->
<attribute name="LockAcqui sitionTi meout">10000</attri bute>

</ nbean>
</ server>

8.3. PojoCache configuration xml

Attached isafull listing for poj ocache- aop. xni .

<?xm version="1.0" encodi ng="UTF-8""?>

<l--
This is the PojoCache configuration file that specifies:
1. Interceptor stack for API
2. Annotation binding for PQIO (via "prepare" el ement)
Basically, this is a variant of jboss-aop.xm . Note that
except for the custom zation of interceptor stack, you shoul d
not need to nodify this file.
To run PojoCache, you will need to define a system property:
j boss. aop. path that contains the path to this file such that JBoss Aop
can locate it.
-->
<aop>
<l--
Thi s defines the PojoCache 2.0 interceptor stack. Unless necessary, don't nodify the stack here!
-->

<I-- Check id range validity -->
<i nterceptor nane="Checkl d" cl ass="org.j boss. cache. poj o.interceptors. Checkl dl nterceptor"
scope="PER_| NSTANCE"/ >

<I-- Track Tx undo operation -->
<i nterceptor nane="Undo" cl ass="org.jboss. cache. pojo.interceptors. Poj oTxUndol nt erceptor"
scope="PER_| NSTANCE"/ >

<I'-- Begining of interceptor chain -->

Release 2.0.0 38

Appendix

<interceptor name="Start" class="org.]jboss. cache. pojo.interceptors. Poj oBegi nl nterceptor"
scope="PER_| NSTANCE" / >

<I-- Check if we need a |ocal tx for batch processing -->
<i nterceptor name="Tx" class="org.jboss. cache. pojo.interceptors. Poj oTxl nterceptor"
scope="PER _| NSTANCE"/ >

<I--
Mockup failed tx for testing. You will need to set PojoFail edTxMockupl nterceptor. setRol | back(trtL
to activate it.
-->
<i nterceptor nane="MckupTx" class="org.jboss. cache. pojo.interceptors. PojoFai | edTxMckupl nt er cept or
scope="PER | NSTANCE"/ >

<l-- Performparent |evel node |ocking -->
<i nt ercept or nane="TxLock" cl ass="org.jboss.cache. pojo.interceptors.PojoTxLocklnterceptor"
scope="PER _| NSTANCE"/ >

<l-- Interceptor to performPojo |evel rollback -->
<i nterceptor nane="TxUndo" cl ass="org.jboss. cache. pojo.interceptors.PojoTxUndoSynchroni zati onl nterc
scope="PER _| NSTANCE"/ >

<I-- Interceptor to used to check recursive field interception. -->
<i nterceptor name="Reentrant" class="org.jboss. cache. pojo.interceptors. Met hodReent rancySt opper | nt er
scope="PER_| NSTANCE" / >

<l-- \Wether to allow non-serializable pojo. Default is false. -->
<i nterceptor name="Marshal | NonSeri al i zabl e"
cl ass="org.j boss. cache. poj o. i nterceptors. CheckNonSeri al i zabl el nt erceptor"
scope="PER | NSTANCE" >
<attribute name="narshal | NonSeri al i zabl e">f al se</attri but e>
</interceptor>

<l-- This defines the stack macro -->
<stack name="Attach">
<interceptor-ref name="Start"/>
<i nterceptor-ref nane="Checkld"/>
<i nterceptor-ref name="Marshal |l NonSeri al i zabl e"/>
<i nterceptor-ref name="Tx"/>
<l-- NOTE: You can coment this out during production although leaving it here is OK -->
<i nterceptor-ref name="MckupTx"/>
<i nterceptor-ref name="TxLock"/>
<interceptor-ref nane="TxUndo"/>
</ st ack>

<stack name="Detach">
<interceptor-ref nane="Start"/>
<i nterceptor-ref nane="Checkld"/>
<i nterceptor-ref name="Tx"/>
<l-- NOTE: You can comment this out during production although leaving it here is OK -->
<i nterceptor-ref name="MckupTx"/>
<i nterceptor-ref name="TxLock"/>
<interceptor-ref name="TxUndo"/>
</ st ack>

<stack name="Fi nd">
<interceptor-ref name="Start"/>
<interceptor-ref nane="Checkld"/>

</ stack>
<l--
The follow ng section should be READ-ONLY!! |t defines the annotation binding to the stack.
-->
<l-- This binds the jointpoint to specific in-nenory operations. Currently in PojoUtil. -->

<bi nd poi nt cut =" executi on(*

Release 2.0.0 39

Appendix

@r g. j boss. cache. poj 0. annot ati on. Reentrant->toString())">
<interceptor-ref nane="Reentrant"/>
</ bi nd>

<bi nd poi nt cut =" executi on(*
org.j boss. cache. poj 0. PojolUti | ->@rg.j boss. cache. poj 0. annot ati on. TxUndo(..))">
<interceptor-ref name="Undo"/>

</ bi nd>

<bi nd poi nt cut ="execution(* org.]j boss. cache. poj o.inpl. Poj oCachel npl - >@r g.] boss. cache. poj 0. annot at
<stack-ref name="Attach"/>
</ bi nd>

<bi nd poi nt cut ="execution(* org.]j boss. cache. poj o.i npl . Poj oCachel npl - >@r g.] boss. cache. poj 0. annot at
<stack-ref name="Detach"/>
</ bi nd>

<bi nd poi nt cut ="execution(* org.]j boss. cache. poj o.i npl . Poj oCachel npl ->@r g.] boss. cache. poj 0. annot at
<stack-ref name="Find"/>
</ bi nd>

<!--
Fol lowing is declaration for JDK50 annotation. You use the specific annotation on your
PQJO such that it can be instrunented. ldea is user will then need only to annotate |ike:
@r g. j boss. cache. poj 0. annot ati on. Repl i cabl e

in his PQJO There will be no need of jboss-aop.xm fromuser's side.
caD

<I-- |If a PQJO has PojoCachabl e annotation, it will be asepctized. -->
<prepare expr="field(* $instanceof{@rg.]jboss. cache. pojo. annotati on. Replicable}->*)" />

<I-- Observer and Cbservable to nonitor field nodification -->
<bi nd poi nt cut ="
set (* $i nstanceof { @r g.j boss. cache. poj 0. annot ati on. Repl i cabl e} ->*)
">
<interceptor class="org.jboss.cache. pojo.observabl e. Subj ectlnterceptor"/>
</ bi nd>

<i ntroduction cl ass="$i nst anceof { @r g.] boss. cache. poj 0. annot ati on. Repl i cabl e}">
<m Xi n>
<i nterfaces>org.jboss. cache. poj 0. observabl e. Subj ect</i nterfaces>
<cl ass>org. j boss. cache. poj 0. obser vabl e. Subj ect | npl </ cl ass>
<construction>new org.j boss. cache. poj 0. obser vabl e. Subj ect | npl (t hi s) </ construction>
</ m xi n>
</introduction>
</ aop>

Release 2.0.0 40

	POJO Cache
	Table of Contents
	Preface
	Chapter 1. Terminology
	1.1. Overview

	Chapter 2. Introduction
	2.1. Overview
	2.2. Features
	2.3. Usage
	2.4. Requirements

	Chapter 3. Architecture
	3.1. POJO Cache interceptor stack
	3.2. Field interception
	3.3. Object relationship management
	3.4. Object Inheritance
	3.5. Physical object cache mapping model
	3.6. Collection Mapping
	3.6.1. Limitations

	Chapter 4. API Overview
	4.1. PojoCacheFactory Class
	4.2. PojoCache Interface
	4.2.1. Attachment
	4.2.2. Detachment
	4.2.3. Query

	Chapter 5. Configuration and Deployment
	5.1. Cache configuration xml file
	5.2. Passivation
	5.3. AOP Configuration
	5.4. Deployment Options
	5.4.1. Programatic Deployment
	5.4.2. JMX-Based Deployment in JBoss AS (JBoss AS 5.x and 4.x)
	5.4.3. Via JBoss Microcontainer (JBoss AS 5.x)

	5.5. POJO Cache MBeans
	5.6. Registering the PojoCacheJmxWrapper
	5.6.1. Programatic Registration
	5.6.2. JMX-Based Deployment in JBoss AS (JBoss AS 4.x and 5.x)
	5.6.3. Via JBoss Microcontainer (JBoss AS 5.x)

	5.7. Runtime Statistics and JMX Notifications

	Chapter 6. Instrumentation
	6.1. XML descriptor
	6.2. Annotation
	6.2.1. POJO annotation for instrumentation
	6.2.2. JDK5.0 field level annotations

	6.3. Weaving
	6.3.1. Ant target for running load-time instrumentation using specialized class loader
	6.3.2. Ant target for aopc

	Chapter 7. TroubleShooting
	Chapter 8. Appendix
	8.1. Example POJO
	8.2. Sample Cache configuration xml
	8.3. PojoCache configuration xml

