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Abstract. With the adoption of Web services technology to realize Ser-
vice Oriented Architectures, the need arises for more flexible and dy-
namic technologies for the just-in-time integration and composition of
services. As the runtime integration, selection and management of ser-
vices involves a variety of crosscutting concerns, such as error handling,
service monitoring, and QoS enforcements, Aspect Oriented Program-
ming (AOP) is useful to modularize such concerns.

In this paper we investigate aspect-oriented support for crosscutting
concerns of distributed management of web service compositions. We
propose to use a distributed AOP approach, Aspects with Explicit Dis-
tribution (AWED), to modularize such concerns in a distributed variant
of the Web Services Management Layer (WSML). Concretely, we present
three contributions. First, we present an extension of the WSML to dis-
tributed compositions. Second, we present two extensions to AWED’s
aspect language which are useful for the modularization of crosscutting
concerns of web services: support for chains of (a)synchronous remote ad-
vice that communicate through futures, and support for different modes
of parameter passing between remote pointcuts and advice. Third, we il-
lustrate our approach by investigating error handling in distributed web
compositions.

1 Introduction

Because of their platform and hardware independent nature, web services have
become popular to realize Service Oriented Architectures (SOA) [31]. It is well
known that low-level infrastructure-related code frequently abounds in the im-
plementation of SOAs based on web services [29, 10]. For instance, exception
handling code has often to be added around service invocations in order to log
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failures and trigger backup services. The resulting code frequently crosscuts the
business code required by the services.

Aspect Oriented Programming (AOP) [3, 17] is useful to modularize such
crosscutting concerns of web service based applications. Several previous ap-
proaches have investigated this claim in the context of web service infrastruc-
tures relying on centralized service composition (as is common in BPEL-based
approaches). We have, in particular, proposed the Web Services Management
Layer (WMSL) [28] that focuses on achieving dynamic and flexible client-side
integration and management of services in the clients. Concretely, the WSML
deals with redirecting client requests to services while taking into account QoS
selection policies, service composition and client-side management concerns such
as monitoring, logging, security and caching.

Recently, the first approaches for decentralized management of web service
compositions have been put forward, in particular, to avoid performance bottle-
necks arising from centralized web service composition (see, e.g., [8]). However,
the handling of crosscutting concerns in such decentralized web service manage-
ment systems is an open issue. In this paper we investigate the modularization
of crosscutting concerns of distributed web service management. We propose an
infrastructure enabling distribution of web service compositions based on a vari-
ant of the WSML where crosscutting concerns are modularized using a recently
proposed aspect language for distributed applications, Aspects with Explicit Dis-
tribution (AWED). AWED allows distribution-related crosscutting concerns to
be modularized in terms of sequences of remote execution events, advice that
executes on remote hosts, and aspects providing for a distributed notion of state.

Here, we present three contributions. First, we present a model extending
the WSML to support distributed web service compositions. Second, we extend
the AWED language by two new features: chains of advice which may integrate
synchronously and asynchronously executed remote advice, and a richer model
of parameter passing between remote pointcuts and remote advice. Third, we
illustrate how crosscutting concerns of distributed web service compositions may
be better modularized than with previous approaches by implementing a non-
trivial distributed error handling strategy using our approach.

The paper is structured as follows. Section 2 provides further motivation
of crosscutting concerns in distributed web service compositions. In Sect. 3 we
introduce our model of the distributed WSML. The AWED language for aspects
with explicit distribution and an overview of the implementation of our system
is presented in Sect. 4. Section 5 presents how error handling for distributed web
services can be implemented using our approach. Related work is discussed in
Sect. 6. Section 7 gives a conclusion and presents future work.

2 Motivating example: travel agent application

In order to motivate our approach, we first present an example motivating dis-
tributed WS infrastructures and why crosscutting is a major issue in such a



setting. We then give an overview of the distributed web service platform we
base our extension on, the distributed Web Services Management Layer.

As a motivating example for our approach, let us first discuss how a travel
agent application can benefit from a distributed web service infrastructure and
why crosscutting concerns are a particular hard problem for such an application.

A travel agent application is a typical example of a SOA used by customers
to, for instance, book an online holiday. For this purpose, the travel agent needs
to communicate with a wide variety of services to obtain hotel and flight in-
formation and to arrange bookings. In a centralized fashion, this SOA would
implement a business process where for instance, first the flight is booked, and
based on these results, a hotel is booked at the destination city for the cor-
responding period. In the distributed approach, the different parts of the WS
composition become decentralized and each node deals with a particular sub-
set of the business process at different locations within the distributed system.
The nodes communicate directly with each other to transfer data and control,
instead of relying on a central coordinator. A distributed implementation of this
setting is obviously attractive because, e.g., it allows concurrent execution of
independent parts of the composition. However, distributed WS infrastructures
must frequently be able to dynamically accommodate changes to the current WS
composition. Let us consider three typical scenarios for travel agent applications:

– Error handling. If both the hotel booking and flight booking sub processes
are handled concurrently by two WSML instances, and one process results
in a failure, the other process can be rolled back, too. More generally, a
failure situation may require the termination of some executing parts of the
composition and rollbacks at a large number of nodes.

– Performance optimization. SOAs are frequently performance-critical. One
way to measure performance consists in setting up measurement points as
part of the composition for each subprocess, network communication and the
involved services. Based on this, bottlenecks can be analyzed and actions un-
dertaken. For instance, calls to slow services can be distributed over multiple
semantically equivalent services, network traffic on congested networks can
be optimized by installing caching functionality and service invocations that
take a long time can be executed in advance.

– Evolution of business requirements. A change to the business requirements,
for instance, relaxation of the rules for booking travel tickets (an opera-
tor may start offering the possibility of later reservations for premium cus-
tomers), frequently call for adaptations of web services compositions.

Each of these three require communication between many nodes. Further-
more, most of these are difficult to anticipate because they often depend on the
specific composition at hand. In a context where new compositions may be de-
veloped, anticipation would be next to impossible. A dynamic distributed WS
infrastructure therefore seems most appropriate for them.

Note that all three scenarios include crosscutting behavior. Error handling [18]
is a typical crosscutting concern whose implementation requires modifications at
a large number of places in the code that partially depend on the node where an



error occurs and where the corresponding error handlers are executed. (see [8]
for more information on error handling in distributed WS infrastructures and
an approach to deal with part of this problem). Similarly, the monitoring and
performance optimization scenario also requires modifications to many code lo-
cations on many nodes. Furthermore, optimization actions may vary much from
node to node. Finally, note that even business requirements are frequently cross-
cutting if a legacy code base has to be adapted (see [6] of a detailed discussion
of this issue in the context of replicated transactional caches).

This paper presents a distributed WS infrastructure supporting such dynamic
adaptations and, in particular, the modularization of such crosscutting concerns.

3 Overview of distributed WSML

The Web Services Management Layer (WSML) is an architectural framework
for the mediation of Web services in client applications. The WSML is placed in
between the client and the web services management infrastructure. All service
related code is extracted from the clients and placed in the WSML, where each
service related concern is enforced transparently for both the client and the
services.

Concretely, the WSML is able to redirect client requests to functionally com-
patible services, while dealing with possible mismatches and incompatibility. If
necessary, multiple services can be composed so that they can cooperate to deal
with a given request. Additionally, the WSML enforces a more advanced selection
mechanism that contemplates service criteria based on non-functional Quality-
of-Service properties of services and deals with other client-side management
concerns such as monitoring, logging, security and caching.

The original WSML [28] provided a web service composition model based
on a centralized coordinator, similar to common WS-BPEL engines. We have
extended this model to a decentralized setup as depicted in Fig. 1. There, two
hosts that are part of the composition are equipped with a separate instance of
the WSML, which takes care of all service related coordination with third-party
services (which are shown in the figure on the right-hand side). The WSML
instances communicate with each other to transfer data and control, while not
relying on a central coordinator. This approach differs from the one described
in [8] where existing composition descriptions are partitioned and statically
deployed on multiple WS-BPEL engines. With the WSML, the composition is
realized by multiple aspects that are combined together, possibly at runtime.
By changing or adding aspects, the composition is dynamically adapted. This
runtime flexibility is needed to accommodate the composition of unanticipated
changes in the third-party service environment and possible business require-
ments imposed by the SOA.
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Fig. 1. Overview of distributed Web Services Management Layer.

4 The AWED language

Modularization of crosscutting concerns for web services using an aspect lan-
guage (i.e., in terms of pointcut, advice and aspect abstractions), suggests sup-
port for the following issues: (i) a notion of remote pointcuts allowing to cap-
ture relationships between execution events occurring on different hosts, (ii) a
notion of groups of hosts which can be referred to in pointcuts and manipu-
lated in advice, (iii) execution of advice on different hosts in an asynchronous or
synchronous way and (iv) flexible deployment, instantiation, and state sharing
models for distributed aspects.

AWED provides such support through three key concepts at the language
level. First, remote pointcuts, which enable matching of join points on remote
hosts and include remote calls and remote cflow constructs (i.e., matching of
nested calls over different machines). As an extension of previous approaches
AWED supports remote regular sequences which smoothly integrate with JAsCo’s
stateful aspects [27] but also include features of other recent approaches for (non-
distributed) regular sequence pointcuts [13–15, 4]. Second, support for distributed
advice: advice can be executed in an asynchronous or synchronous fashion on
remote hosts and pointcuts can predicate on where advice is executed. Third,
distributed aspects, which enable aspects to be configured using different deploy-
ment and instantiation options. Furthermore, aspect state can be shared flexibly
among aspect instances on the one hand, as well as among sequence instances
which are part of an aspect on the other hand.

In this paper, a subset of the AWED language is presented. In particular,
we focus on two novel features of AWED with respect to our previous work [5],



namely advice chains involving synchronous as well as asynchonous advice with
futures, and parameter passing by reference.

AWED’s syntax is shown in Fig. 2 using EBNF formalism (i.e., square brack-
ets express optionality; parentheses denote multiple occurrences, possibly none;
terminal parentheses are enclosed in apostrophes).

4.1 Pointcuts

Pointcuts (which are generated by the non-terminal Pc) are basically built from
call constructors (execution allows to denote the execution of the method
body), field getters and setters, nested calls (cflow) and sequences of calls (non-
terminal Seq).

AWED employs a model where, upon occurrence of a join point, pointcuts are
evaluated on all hosts where the corresponding aspects are deployed. Pointcuts
may then contain conditions about (groups of) hosts where join points origi-
nate (term host(Group)), i.e., where calls or field accesses occur. Furthermore,
pointcuts may be defined in terms of where advice is executed (term on(Group)).
Advice execution predicates may further specify a class implementing a selec-
tion strategy (using the term on(Group, Select)) which may act as an additional
filter or define an order in which the advice is executed on the different hosts.
Groups are sets of hosts which may be constructed using the host specifications
localhost, jphost and adr:port, which respectively denote the host where a
pointcut matches, the host where the corresponding join point occurred and any
specific host. Alternatively, groups may be referred to by name. (Named groups
are managed dynamically within advice by adding and removing the host which
an aspect is located on, see Sec. 4.3 below.)

Finally, pointcut definitions may extract information about the executing
object (target) and arguments (args), and may test for equality of expressions
(eq), the satisfaction of general conditions (if), and whether the pointcut lexi-
cally belongs to a given type (within). Pointcuts may also be combined using
common logical operators.

As a first example, the simple pointcut shown in Fig. 3 could be part of
a distributed monitoring aspect. The pointcut matches calls to the bookHotel
method that originate from the host that has the specified address. Advice at-
tached to this pointcut will be executed on any host where the aspect is deployed
(possibly multiple ones) as there is no restriction on the advice execution host.

In Fig. 4, the pointcut restricts the execution hosts to be different from the
host where the joinpoint occurred. Here, the pointcut matches calls to book hotel
operations on any type by using wildcards. The advice is executed on hosts other
than the joinpoint host and binds the corresponding arguments. Note that in this
case the clause !host(localhost) could replace !on(jphost) to achieve exactly
the same effect of matching non-local joinpoints.

AWED also supports the concept of stateful pointcuts [14] through sequences
derived by the non-terminal Seq. A stateful pointcut triggers on a specified se-
quence of events instead of a single event. For more information about sequences,
we refer to [5].



// Pointcuts

Pc ::= call(MSig) | execution(MSig)
| get(FSig) | set(FSig)
| cflow(Pc) | Seq
| host(Group) | on(Group[, Select])
| target({Type}) | args({Arg})
| eq(JExp, JExp) | if(JExp)
| within(Type)
| passbyval({Id})
| Pc ‖ Pc | Pc && Pc | !Pc

Seq ::= [Id:] seq({Step}) | step(Id,Id)
Step ::= [Id:] Pc [→Target ]
Target ::= Id | Id ‖ Target
Group ::= { Hosts }
Hosts ::= localhost | jphost | ”Ip:Port”

| GroupId
GroupId ::= String
Select ::= JClass

// Advice

Ad ::= [asyncex] Pos({Par}) : PcAppl ’{’ {Body} ’}’
Pos ::= before | after | around
PcAppl ::= Id({Par})
Body ::= JStmt | proceed({Arg}) | localproceed({Arg})

| addGroup(Group) | removeGroup(Group)

// Aspects

Asp ::= [Depl] [Inst] [Shar] aspect Id ’{’ {Decl} ’}’
Depl ::= single | all
Inst ::= perthread | perobject | perclass

| perbinding
Shar ::= local | global | inst | group(Group)
Decl ::= [Shar] JVarD | PcDecl | Ad
PcDecl ::= pointcut Id({Par}) : Pc

// Standard rules (intensionally defined)

MSig, FSig ::= // method, field signatures (AspectJ-style)
Type ::= // type expressions
Arg,Par ::= // argument, parameter expressions (AspectJ-style)
Id ::= // identifier
Ip,Port ::= // integer expressions
JClass ::= // Java class name
JExp ::= // Java expressions
JStmt ::= // Java statement
JVarD ::= // Java variable declaration

Fig. 2. AWED language



1 call(void bookHotel()) && host("134.184.2.3:1432")

Fig. 3. Simple pointcut limiting the joinpoint host.

1 hotelReservation(Hotel hotel, Period period):
2 call(* *.bookHotel(Hotel, Period))
3 && !on(jphost) && args(hotel,period)

Fig. 4. Pointcut limiting the execution host.

4.2 Parameter passing

Sharing of remote object information is an inherent need in distributed appli-
cations. AWED’s new proposal includes a mechanism to manage explicitly how
parameters of a given joinpoint are distributed.

The pointcut language model allows joinpoint information like parameters,
caller object and target object to be bound to specific variables in pointcut or
advice definitions. The model also allows those variables to be explicitly dis-
tributed by value or by reference (the latter is the default behavior). The first
option, by value, creates a copy of the object in the hosts where remote advice
are executed, binding the new value to the formal parameter used in the advice
body. The second option, by reference, creates a remote reference to the original
object. Once the remote reference or the copy are bound, they can be treated as
local objects without any distinction in the advice body.

Figure 5 shows an example of the usage of the pass by value behavior. The
pointcut definition has four variables i, y, v and c. The parameters of the
matched method, foo, and the target object of that method are bound to the
pointcut’s variables. The pointcut passbyval is used to annotate the variables
i and c to be passed by value.

1 pointcut myDef(Integer i, Object y, Vector v, MyObject c):
2 call(* foo(Integer,Object, Vector, String)) &&
3 args(i, y, v, String) && target(c) &&
4 passbyval(i, c);

Fig. 5. Parameter passing example using a pointcut definition

As usual, by value passing has to be used with care, in particular, because
it implies a copy of the whole object graph below the object that is passed by
copy. AWED allows all objects to be referenced remotely, copied and distributed.
Reflective information queried through the thisJoinPoint keyword is always
passed by reference.

The remote referencing model of AWED is fully transparent with respect to
the object model. This means that there is no distinction between the remotely



referenced objects and the locally referenced objects. However, it is important
to note that the language provides a richer and finer grained model for param-
eter passing in the pointcut definition language than the one provided in direct
method invocation over objects. When a method is invoked directly in a re-
mote referenced object, the parameters are passed by value as with normal Java
method invocations. There is no language support to specify pass by reference
behavior (although a work-around using a proxy object is possible). This is mo-
tivated by the fact that we aim to stay as close as possible to Java and changing
the method invocation syntax and semantics would be a drastic measure.

4.3 Advice

Advice (non-terminal Ad) is mostly defined as in AspectJ: it specifies the position
(Pos) where it is applied relative to the matched join point, a pointcut (PcAppl)
which triggers the advice, a body (Body) constructed from Java statements, and
the special statement proceed (which enables the original call to be executed).

In an environment where advice may be executed on other hosts (which is
possible in AWED using the on pointcut specifier), the question of synchroniza-
tion of advice execution with respect to the base application and other aspects
arises. AWED proposes one unified model for (local and remote) advice exe-
cution: all advice (including remote ones) are triggered by one controller. This
means that there is only one advice chain per joinpoint. The host where the
joinpoint occurs is responsible for managing the advice chain. As such, there is a
well-defined precedence as defined by the AspectJ precedence rules (e.g. declare
precedence), even for advice executed on remote hosts.

Per default, advice executes synchronously to the base application, meaning
that the application waits until completion of the advice in order to proceed to
the original behavior or to execute the next advice in the chain. Both remote and
local advice conform to this general model. The programmer may also choose to
execute an advice asynchronously with respect to the application on the joinpoint
host by marking the advice with the asyncex keyword. This means that the base
application proceeds with the original behavior or executes the next advice in the
chain while the asynchronous advice is executing. Of course, asynchronous advice
are still treated in the same advice chain and thus are only executed when the
previous synchronous advice are finished or when previous asynchronous advice
are started.

Multiple around advice applying at a joint point is executed as usual in a
nested fashion as part of a chain controlled by the invocation of proceed (see
figure 6). Such advice is expected to return a value that can be processed by
the previous advice that invoked proceed or by the original application in case
of the first advice. In case of asynchronous advice, this value is possibly not
yet computed, so the invocation of such an advice returns a future3 object [22]

3 A future object is an object that represents the result of an asynchronous computa-
tion, the actual value of the computation is bound to the object once the concurrent
computation is finished.



that synchronizes with the remote advice in case the object is claimed. The
future object is implicit, as such the advice caller can safely treat the return
value as a real value. The AWED infrastructure and run-time weaver take care
of generating a transparent future and claiming it whenever its value might be
accessed. It is also possible to make the future explicit by casting it to a standard
Java Future object4 when useful. This way, the invoking advice may manage its
behavior depending on the availability of the result.

Host X

Aspect1

around() {
   ...
   proceed();
   ....
}

advised
method() { 
...
}

Base App

Host Y

Aspect2

around() {
   ...
   proceed();
   ....
}

Aspect3

around() {
   ...
   proceed();
   ....
}

Fig. 6. Around advice chaining in AWED. Advice applicable to the same joinpoint
execute in a single advice chain, regardless of execution host.

AWED introduces one general model for (a)synchronous distributed advice.
The semantics of AWED remains backward compatible with AspectJ. The se-
mantics of advice is also independent of whether the joinpoint host is different
or the same as the execution host. This is in contrast to the previous version of
AWED [5], where advice was treated differently because every host had its own
advice chain. In that model, advice always executes asynchronously to advice
on different hosts, impeding, for instance, remote authentication that blocks all
other advice and the original behavior until authentication has been successful.
The new general model of AWED is able to support such behavior as illustrated
by the code fragment of figure 7. The authentication advice is guaranteed to
always execute before other advice that applies to that joinpoint such as, for
instance, a billing advice [12]. The billing advice will not be executed when the
authentication fails because the authentication advice does not invoke proceed
in that case.

The advice body has one important additional keyword in comparison to
AspectJ: localproceed. The invocation of localproceed makes sure that the
original behavior (i.e., the joinpoint) is executed on the host where the advice
occurs instead of on the host where the original behavior originated from (i.e.,
the joinpoint host). As an example, consider the aspect shown in Fig. 8 that im-
plements the distribution concern. It is well-known that distribution can be seen
as a crosscutting concern that can be modularized using aspects (see, e.g., [24]).

4 Java supports futures since version 1.5 through the java.util.concurrent API.



1 around(User user,Object ttarget): toAuthenticate(user,ttarget) {
2 if(userMayAccess(user,ttarget))
3 proceed();
4 else throw new AccessSecurityException(user,ttarget);
5 }

Fig. 7. Simple authentication around advice

The distribution pointcut selects all calls to Facade methods on the client and
makes sure that the accompanying advice is only executed at the server side.
By employing the negation of the host designator, calls on the server side will
not match the pointcut themselves. The redirection behavior is encapsulated in
a synchronous around advice. As the around advice gets executed on the server
host, the getInstance method of the Facade class will retrieve an instance
which is local to the server host (this could be generalized in order not to rely
on a single object.) The localproceed expression makes sure to invoke the orig-
inal behavior on the server host instead of on the joinpoint host. An interesting
variation of the distribution concern would be to mark the advice asynchronous.
The result is that the original sequential application is not only distributed but
also parallelized. In such a case a future object is immediately returned to the
base application and the advice is executed in parallel with the base program.
The base program and the advice get synchronized once the actual value of the
computation is claimed through the future.

1 pointcut distribution(Facade f):
2 target(f) && call(* *(..)) &&
3 && !host("Serveripadr:port") && on("Serveripadr:port");
4

5 syncex Object around(Facade f): distribution(f) {
6 return localproceed(Facade.getInstance()); }

Fig. 8. Distribution as an aspect

Finally, note that AWED enables advice to manage named groups of hosts:
addGroup adds the current host to a given group, removeGroup allows to
remove the current host from a group.

4.4 Aspects

Aspects (non-terminal Asp) group a set of fields as well as pointcut and advice
declarations. Aspects may be dynamically deployed (Depl) on all hosts (term
all) or only the local one (term single).

Furthermore, aspects support four instantiation modes (Inst): similar to sev-
eral other aspect languages, aspects may be instantiated per thread, per object,
or per class.



4.5 Implementation

New language features. The AWED language is implemented on top of the dy-
namic AOP framework JAsCo [25]. JAsCo has two main advantages over other
approaches: its dynamism and run-time performance. JAsCo allows adding and
removing aspects while an application is running through its novel run-time
weaver. The performance cost of advice execution is minimal and similar to a
regular Java method execution. The AWED DJAsCo extension has been made
publicly available as a part of the regular JAsCo distribution [16].

We have revised and extended DJAsCo to reflect the improved AWED lan-
guage semantics as presented in this paper. More concretely, we have imple-
mented support for the new advice chaining strategy including transparant fu-
tures. Furthermore, the pass by reference strategy for parameters has been added
and installed as default. An interesting fact of the extension is that some parts of
the language are themselves implemented by making use of basic AWED aspects.
As such, we are able to tackle crosscutting concerns in our own implementation.
Due to space constraints, we cannot provide more details about the implemen-
tation. For an in-depth discussion of the AWED implementation we refer the
interested reader to a companion technical report [6].

Integration with WSML. The Web Services Management Layer can be easily im-
plemented on top of AWED because it offers all the features of the original AOP
platform used by WSML (JAsCo). The WSML generates AWED aspects that
realize a distributed composition based on higher level templates. By exploiting
AWED’s distributed capabilities, the WSML is able to solve distribution specific
crosscutting concerns. The following section discusses an interesting example of
such a concern, namely error handling.

5 Error handling revisited

In Sect. 2 we have presented three scenarios motivating the need for aspect-
oriented support for distributed WS compositions. In this section we show how
to use the AWED language in order to concisely implement such scenarios.

Let us reconsider the problem of error handling in the context of distributed
WS compositions. We only consider a model in which errors cause the current
composition to be aborted (The same assumption is common in other approaches
to distributed WS composition [8]). Error handling requires errors to be identified
on all nodes taking part in a WS composition and two corrective actions to be
applied when an error occurs: first, active components of the composition have
to be terminated; second, effects performed by the composition before the error
occurred have to be rolled back. (This obviously requires WS actions to be
reversable, a property we assume here.)

Fig. 9 shows how such an error handling strategy for distributed WS com-
positions can be implemented using AWED. The first two advice (lines 3–11)
monitor undo information for two basic web service actions (represented by calls
to store and invoke) to a set of monitors. The monitoring of composition errors



1 // ---- 2 example advice for monitoring purposes-----------------
2

3 // monitor database operations within the composition group
4 asyncex after(): call(store(key, val)) && host(CompGroup) {
5 send2Monitors(oldVal(key));
6 }
7

8 // monitor service invocations
9 asyncex after(): call(invoke(target, service)) && host(CompGroup) {

10 sendUndoInfo2Monitors(thisCompositionNode, INVOKE, target, service);
11 }
12

13

14

15 // ---- error handling -------------------------------------------
16

17 // composition errors:
18 // call to webServiceError() after service initialization
19 pointcut compositionError:
20 seq(initCompositionMonitors(CorrelationIdMonitors) && host(Monitor),
21 initCompositionNode(CorrelationIdNode)
22 && host(CompGroup) && eq(CorrelationIdMonitors, CorrelationIdNode),
23 webServiceError() && host(CompGroup)
24 )
25

26 // error: abort local service
27 asyncex after(): compositionError {
28 abortComposition();
29 }
30

31 // service abortion: register abortion with monitor
32 asyncex after(): call(abortComposition()) &&
33 jphost(CompGroup) && on(Monitor) {
34 registerAbortion(joinPointHost());
35 }
36

37 // service abortion registered: terminate blocked services
38 // synchronized to perform undo on terminated services later
39 after: call(aborted(_, _, _)) && on(CompGroup, blockedOnInput) {
40 terminateService();
41 }
42

43 // service abortion registered:
44 // undo previous actions of terminated actions
45 asyncex after: call(aborted(_, undoInfo, compositionHandle)) &&
46 passbyval(undoInfo) &&
47 on(CompGroup, terminated) {
48 undoService();
49 }

Fig. 9. Error handling using AWED



is defined in a distributed fashion by means of the pointcut compositionError
(line 19). This pointcut defines a composition error as a call to webServiceError
occurring at a host that is part of the host group CompGroup and correlated to the
relevant set of monitors (using the equality test eq(CorrelationIdMonitors,
CorrelationIdNode)).

The last four advice define the error handling strategy: First, on occurrence
of a composition error the computation at the current node is aborted (line 28).
Second, the abortion has to be registered with the monitor (line 34). Third, other
still active components (which have to be blocked and waiting for input) have
to be terminated (line 40). To this end, the pointcut matches a call to abort on
the monitor, which provides access to the undo information and a handle to the
current WS composition that is used in case local undos depend on the undos
of other activities. Fourth, all terminated activities are undone (line 48).

This example presents the major features of AWED’s features for explicit
distribution:

– The pointcuts are triggered on different hosts and the pointcut composition-
Error line 19) consists of a sequence of remote events.

– Steps 2–4 (lines 31–49) use AWED’s remote execution feature: In step 2, the
call abortComposition is executed on a host of group CompGroup, while the
triggering action registerAbortion occurs in the monitors.

– Steps 2 and 3 (lines 31–41) illustrates the first new language feature intro-
duced in this work, a mixed synchronous/asynchronous advice chain: both
advice are triggered on the monitor. In Step 2, termination is triggered
synchronously in order to ensure that all activities are terminated before
rollbacks are executed. The rollbacks (step 3), however, may be executed
concurrently. Note that the body of the advice of steps 2 and 3 are ex-
ecuted on different but overlapping sets of hosts (in fact the set of hosts
identified by the predicate terminated strictly includes the set identified by
blockedOnInput).

– Step 4 (lines 43–49) illustrates the use of the new parameter passing feature.
The (immutable) local undo information is passed by value. Dependencies
to other nodes may appear dynamically depending on how their respective
undos evolve. A handle to the composition information stored in the monitors
is therefore passed by reference, so that those dependencies can be updated
dynamically via the monitors.

Finally, note that this application provide clear evidence that we can better
handle typical crosscutting issues in distributed WS compositions. We improve,
in particular, on the recent work by Chafle et al. [8], who propose a fully cen-
tralized monitor and do not accommodate concurrent error handling actions.
Our solution improves on these two issues. First, monitoring is done in a dis-
tributed fashion in Fig. 9 thus reducing the danger of bottleneck of a single
monitor. Second, our implementation directly exploits parallelism in the error
handling strategy by the use of asynchronously executed advice that are syn-
chronized only if necessary. Such synchronization occurs in the above example,
if the remote reference compositionHandle is accessed in step 4 (lines 43–49).



6 Related work

Since we have proposed a new model for distributed web service composition
using AOP, four kinds of related work are presented in the following: approaches
using AOP in the context of de/centralized web service composition, distributed
web service composition infrastructures, and approaches for AOP in distributed
systems.

AOP and decentralized web service composition. There are only very few ap-
proaches applying AO techniques to distributed web service composition. A no-
table exception is Aspect-Sensitive Services (CASS) [11], which provides a dis-
tributed aspect platform that targets the encapsulation of coordination, activity
lifecycle and context propagation concerns in service-oriented environments. In
contrast to our approach is does not support features for explicit distribution,
especially asynchronous advice chaining, as we do.

AOP and centralized web service composition. Some more recent AOP approaches
are explicitly targeted at Web services. With Padus [7] and Ao4BPEL [9], aspects
can be (un)plugged into BPEL composition processes. Since BPEL processes
consist of a set of activities, joinpoints in Padus and AO4BPEL are well-defined
points in the execution of the processes: each BPEL activity is a possible join-
point. The attributes of a business process or certain activity can be used as
predicates to choose relevant joinpoints. BPEL, Padus and AO4BPEL differ
from our approach as they realize centralized compositions.

Singh et al. [23] present a software architecture for web services: Aspect-
Oriented Web Services (AOWS). It is targeted at describing crosscutting con-
cerns between web services to give more complete description of Web services,
supporting richer dynamic discovery and seamless integration. An implementa-
tion is made on the .NET platform and all AOWS subsystems and their relation-
ships have been formally modelled. While aiming to achieve similar goals as the
WSML, AOWS does not support third-party independent services as services
need to be modelled in an AOWSDL language, and registered in a dedicated
AOUDDI registry.Multiple services are bundled in a centralized fashion in an
AOComposite. The aspectual features of the AOWS framework are used to pro-
vide more efficient and effective dynamic description, discovery and integration.
Similar as in our approach, service related code is extracted from the client, and
the client only needs to communicate with the AOconnectors.

Decentralized web service composition. A few approaches have recently been put
forward for decentralized web service composition that do not employ AOP tech-
niques. Most notably, Chafle et al. [8] propose techniques for the partitioning
of web service compositions and error handling mechanisms for distributed web
service compositions. As presented in Sect. 5 our approach allows the concise
definition of more general error handling strategies than they propose. Further-
more, their partitioning technique results in static overall architecture which
precludes dynamic changes to the composition.



AOP for distributed applications. There are only very few AOP languages and
system that support features for explicit distribution (notable exceptions being
D [30], JAC [20] and DJCutter [19]). These systems could potentially be used to
modularize crosscutting functionalities in web services. However, the distributed
features of all of these systems are much more restricted than those of AWED.
None of these systems support asynchronous advice execution. Recently, Re-
flexD [26] has been proposed as a kernel supporting a range of distributed AO
languages. ReflexD provides a meta-object protocol like interface to features
for the implementation of distributed pointcuts, advice and bindings. As is,
i.e., without language support, ReflexD is not suitable for the concise definition
of crosscutting concerns in web services. Furthermore, it is an open question
whether the system can be reasonably integrated with existing web service in-
frastructures, as we show here for AWED and distributed WSML.

Most approaches that can be used currently to apply aspects dynamically
to distributed applications (e.g., JBoss AOP [1], Spring AOP [2]) as well as
many academic approaches (see DAOP [21] to name just one), essentially al-
low non-distributed aspects to manipulate applications implemented using an
existing framework for distribution, such as industrial component platforms or
other middlewares. These approaches do not allow to express web service related
crosscutting functionalities concisely because all communication and coordina-
tion issues that are handled using AWED by remote advice execution, would
have to be implemented manually using the corresponding middleware libraries.

7 Conclusion

In this paper we have investigated the problem of crosscutting concerns of dis-
tributed composition of web services. We have presented an approach integrat-
ing a new model for such compositions, distributed WSML, with the AWED
language for aspect-oriented programming of distributed applications to modu-
larize crosscutting concerns of web services compositions. We have introduced
two language extensions for AWED: chains of mixed a/synchronous executed
remote advices and an extended model of parameter passing between remote
pointcuts and advice. Finally, we have given evidence that these extensions al-
low the concise modularization of crosscutting concerns for the case of an error
handling concern.

This work paves the way for different leads of future work. Most importantly,
previous work on AOP has shown that domain-specific abstractions are often
useful. In the context of web services a predefined set of composition operators
should be useful as well as for the more declarative definition of web service
compositions as for reasoning about the correctness of compositions. Second, in
this paper we mainly applied AWED’s features for remote pointcuts and advice;
the application to web services of some other features, especially for distributed
state, remains to be done.
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