ATOLL: Aspect-Oriented Toll System’

Luis Daniel Benavides Navarro', Christa Schwanninger?, Robert Sobotzik?, Mario Stidholt’

'OBASCO group
EMN-INRIA, LINA
Ecole des Mines de Nantes

4 rue Alfred Kastler, 44307 Nantes cedex 3, France
{lbenavid, sudholt}@emn.fr

ABSTRACT

Product line development places emphasis on quality attributes
like understandability, maintainability, reusability and
variability. Better modularization techniques like aspect-oriented
programming are supposed to improve these attributes.

In the context of an industrial case study in the domain of
infrastructure software for toll systems from Siemens AG,
Germany, we have investigated how OO designs can be
enhanced using AO techniques. We have explored, in particular,
how sequential crosscutting concerns can be modularized using
Aspect] and how distributed ones can be modularized using
AWED, a system that features aspects with explicit distribution.
Concretely, we show how sequential and distributed aspects
improve the implementation of the charge -calculation
functionality that is central to real-world tolling systems.

General Terms
Design, Experimentation, Languages.

Keywords

Software Product Lines, Aspect-oriented Software Development.

1. INTRODUCTION

Automatic tolling systems are becoming popular in many
European countries for charging toll for the usage of roads and
motorways. There are considerable differences between existing
toll system installations. Light-weight systems rely mainly on
road-side equipment, while for advanced solutions vehicles carry
sophisticated embedded on-board units (OBU) featuring position
determination using GPS and mobile communication that
interact with powerful back-end servers (electronic tolling back
office, ETBO). In the latter case, road side equipment and OBUs
are used to record the position data of vehicles. The calculation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACPA4IS'07, March 12-13, 2007, Vancouver, British Columbia, Canada.
Copyright 2007 ACM 1-59593-657-8/07/03...$5.00.

2Software & Engineering, Architecture
Siemens Corporate Technology
Siemens AG

Otto-Hahn-Ring 6, 81730 Munich, Germany
Christa.Schwanninger@siemens.de, R.Sobotzik@gmx.de

of toll charges can be distributed between the OBU and the back
end ETBO in different ways. Depending on the capability of the
embedded device the position data can be processed on the OBU
itself and the resulting information is sent to the back end server
for billing, or position data is immediately transmitted to the
back end server for further processing. Despite the variability,
core tasks like road recognition, charge calculation and billing
are essentially done in a similar manner for every instance of a
toll system. Therefore, companies like Siemens build product
lines for toll systems to provide cost-effective toll systems that
exploit such similarities while supporting the necessary
variability.

Software product line engineering aims to reduce development
time, effort, cost and complexity by taking advantage of the
commonality within a portfolio of similar products [1]. Members
of a product line differ in the number and the specific properties
of features they include. Features are not always well localized
but often crosscut multiple software artifacts in every stage of
the development life cycle. As a result, effective variability
management is a predominant engineering challenge in software
product line development.

For the toll system product line a number of crosscutting
concerns have to be accommodated by the system design like
variability in the tariff models, different ways how toll charges
are calculated and the distribution between server and on-board
units of road recognition and charging responsibilities. Aspect-
oriented software development should be useful in this context
because it improves the way software is modularized by
providing modularization constructs for the encapsulation of
crosscutting concerns.

We have implemented the toll system in an industrial case study
using AOP whenever it improved the design. To make a realistic
case and taking the degree of adoption of AOSD in the industry
into account, the main design technique used for the toll system
demonstrator is still plain object-orientation. All features were
first implemented in pure OO and only enhanced or replaced by
aspects when the original implementation showed limitations in
fulfilling quality attributes that could be addressed using aspects.
The two concerns we report on here arise from the variability in
the charge calculation, a central functionality of any toll system.

"Work supported by AOSD-Europe, the European Network of
Excellence in AOSD (http://www.aosd-europe.net)

Charge calculation is split into several sub tasks that are
executed using a pipes and filters architecture. The processing
steps can be performed in a pipelined fashion either on the OBU
or on the ETBO. Depending on how the charge calculation is
distributed between the two main components of the toll system

architecture, different steps of the processing pipeline need to be
adapted. This variability leads to two challenges that need to be
considered in the implementation, both of which are motivated
from real-world application scenarios, we are interested in. First,
communication of data

Retriewal GPS a Collection of . Plausahility . Road Time
fies journeys checks Recognition - Anabisis
Distance Tariff Charging Billing Account
Calculation P categorisation - - association

Figure 1: Data flow in the Toll System

between different steps may be managed differently and, second,
the charge calculation pipeline may be split, in principle, at
arbitrary elements to switch charging between OBU and ETBO
that are physically distributed entities. In both cases, parts of the
charging pipeline have to be modified to accommodate these
adaptations.

2. THE TOLL SYSTEM FAMILY

The key functionality of the toll system is the usage of GPS
information to track vehicle movement on roads in order to
charge vehicle owners. Depending on the capabilities of OBUs,
position data or billing data is transmitted from the OBU to the
ETBO. Depending on stakeholders' requirements the
responsibility split between OBU and ETBO can vary.

An OBU is responsible for collecting information on each
journey of a vehicle. The time interval between switching on and
off the ignition is treated as one distinct journey. During this
time incoming GPS fixes, i.e., position measurements, are
associated to this journey. Additionally the journey data will be
extended with predefined properties like trailer attached,
ecological vehicle classification, towed or carried. After
finishing a journey several plausibility checks have to be done,
like comparing start and end time of the journey. Each GPS
position is compared to a map to determine the corresponding
kind of road, e.g., a simple street or a motorway. Depending on
the kind of roads the list of GPS positions will be split into
sections. Afterwards the data is passed to do additional time
analysis on the journey to split the sections once again, e.g.,
depending on the attributes peak or non-peak time. Using streets
during peak-time is usually more expensive. The outcome is a
set of fine granular sections with respect to kinds of roads and
driving time. Then, the distance driven in each of these sections
will be calculated. Depending on a specific tariff model, the
charge of a journey is the sum of sections' costs. To associate the
charge with the account holder, the owner of the OBU has to be
identified. The journey charges are invoiced to the customer after
a specific period of time.

3. ARCHITECTURE

In this section we describe the architecture of our system by first
presenting its basic OO structure, followed by two crosscutting
concerns for which AOP support has proven valuable.

3.1. Basic OO Design

The basic architecture is data flow driven; it essentially follows
the Pipes & Filters [2] architectural pattern. Fig. 1 shows the
overall data flow within the demonstrator.

Depending on the capabilities of an OBU, charge calculation can
be done either on the OBU or on the ETBO. The main data flow
stays the same, but the distribution of work between OBU and
ETBO changes. Currently, we support the following charge
calculation models':

Central model: Raw GPS positions are transmitted to the
ETBO. Roads are identified and the charges are calculated on
the ETBO.

De-central model: The OBU identifies roads and calculates
charges. This requires that the OBU is aware of the tariff model
and the road map. Current costs can be displayed by the OBU in
real-time.

The filters that are mainly responsible for the charge calculation
process are highlighted in Fig. 1 by boldly-stroked boxes:

* Road Recognition identifies road usage based on GPS
positions.

* Time Analysis associates the time stamps with peak
or non-peak time.

* Charging is responsible for the charge calculation.

Depending on the charge calculation model, either only raw GPS
data is transmitted to the ETBO once a journey has ended, or
journey data is constantly processed to display the current cost in
real time. This has the effect that the data structures that have to
be passed between processing steps are either simple GPS lists
or GPS data enhanced with pre-calculated information, such as

! Other distributions of work between OBU and ETBO are
possible: many of these, however, are not useful in practice,
e.g., distributions that switch multiple times between OBU and
ETBO.

the breakdown into sections. This would result in two interfaces
for each affected filter, one for sending GPS data and one for
sending calculation results in addition. One way to minimize the
complexity to address this variability is to use the more complex
data structures necessary for the de-central model also for the
central model and deal with the variability only in the business
logic in a way such that it can be used for both models. This
means that the implementation of each filter should be the same,
no matter whether it will be executed on the OBU or on the
ETBO. The usage of stable interfaces to encapsulate the business
logic allows an exchange of the calculation model with minimal
effort; all variations of a filter have to implement the same
interface.

<<interface>>
ChargingRecordFilter

<<interface>>
JourneyFilter

void processJourney (journey) void: processChargingRecord (ChargingRecord)

Figure 2: Filter Interfaces

Filters are not hard wired with each other, rather we use
dependency injection to connect the processing steps. A factory
is responsible for creating the filters and setting up their next
neighbour (conforming to a common interface) as a parameter.
Data passing to the following filter is managed by each filter
itself. For this loosely coupled control model to work, a common
data structure usable by all filters is necessary. The benefit of
using dependency injection is that it establishes an abstraction
via interfaces, which reduces the dependency on components
and facilitates a plug-in based architecture [4].

Because the charging calculation has to support two different
data types between the filters (depending on whether plain GPS
journeys or journeys containing pre-computed information is to
be transmitted), the filters have to implement at least one of the
following interfaces:

The class Journey is used as a data container to store raw GPS
positions plus predefined properties like trailer attached.

The class ChargingRecord contains a reference to a particular
journey and information about the journey's pre-calculated
sections with respect to kinds of roads and time.

In the case of central charging the computation within each
filter is done on a completed journey. Therefore each filter has to
be passed only once because all data is available at the beginning
of the computation chane. But in the case of de-central charge
calculation the whole filter chain needs to be traversed for each
new GPS position to calculate the current charging in real-time.

As mentioned above the data structures including all
components between ‘“Retrieval of GPS fixes” and “Charging”
are chosen such that they fit both charge calculation variations
which causes parts of the data structures to be empty or not
complete in the de-central case.

Without optimization, this proceeding introduces redundancy
and method calls that are useful only in one of the variants. E.g.
at some point in the processing journeys are passed to a data
buffer for sending them to the remote server. This makes sense

for the central charging model, but in the de-central case the
data buffer refuses to accept data before it is complete. Only
compete journeys will be sent to the ETBO. These kinds of
redundancy should, however, be avoided as far as possible to
increase the performance and code understandability. At the
same time as much code as possible should be reused unchanged
for both variants.

3.2. Data Passing Concern

Handling of the data structures between pipeline filters is subject
to two crosscutting concerns:

® Transition between the filters (pipe logic).
® Keeping track of processing states.

The latter point is due to the decision to minimize the variations
in data structures. In every charge calculation variant whole
journeys are passed between filters, not only single positions.
Therefore it is necessary for each filter to keep track of the last
position that was already processed by this filter to avoid rerun
of road recognition, time analysis and charging in the de-central
case. To keep this tracking functionality centralized, the class
Journey was extended by providing getter-methods for each
filter to get its specific last processed position in the GPS list.
Adding or removing filters within the charge calculation model
therefore always would cause changes in Journey.

The passing of data between two filters always follows the same
algorithm: testing for “null” references (in order to ensure that
structures that are used for holding the processing results have
already been created), getting the last processed position before
processing and passing the data to the next filter after
processing.

Since the data transfer functionality is identical in every
processing step and only necessary to accommodate the
variability in charge data processing, it would be good to have it
modularized in one place. First it reduces the error-proneness
because of reusing the data transfer functionality and second
optimizations could be applied to it, e.g. asking for the last
processed position is not necessary in central charge calculation
since all processing is done in pass through.

Encapsulating this concern with classic OO could be done in
several ways. For example the JourneyFilter and
ChargingRecordFilter could be classes instead of
interfaces and implement the common behavior, while each
deriving filter implements the specific logic, an implementation
of the template method pattern [11]. Since there are filters that
have to implement both interfaces, this is not possible, so a
separate class could hold the common behavior and be inherited
from. Methods for the pre- and post functionality of the
processing steps would be the only functionality of this class,
though. Also this would require some mechanism for calling the
right getter method from the Journey, since these getters need to
be specific to each filter. The information about the processing
position in the Journey of each filter could be directly stored in
each filter, which would pollute the filter with information only
relevant for the de-central case and deprive us of the opportunity
to do optimizations.

Modularizing the pre-and post functionality in an aspect has the
effect that the logic only exists once and can be reused for each

component. A suitable aspect can be defined by capturing the
respective method calls of the interface and would thus be really
simple and stable. Concretely, the aspect is defined per target, an
instance of the aspect thus existing for each filter.

Also the issue with the filter specific processing state variables
and the associated getters in the Journey class can be solved
easily. The solution to this is to embed these variables in the
aspect mentioned above. Since an instance of the aspect exists
for each filter, only a single variable is necessary to keep track of
the last processed position. Thus adding or removing filters
within the charge calculation chain does not cause any need for
adaptation.

3.3. Distribution Concern

Partitioning of the application into a distributed system is an
orthogonal concern to that of data passing in the pipelined
charge calculation. As mentioned before we want a solution
flexible enough to incorporate variability into the distribution
concern. Thus the specific point where the calculation chain is
partitioned can be changed at will, deciding which steps are
performed in the OBU and which are performed in the ETBO.

Distribution has been shown before to be a crosscutting concern
in distributed applications implemented using OO techniques
(see, e.g, [9] for such evidence in the domain of replicated
caches). Furthermore, it has been shown that encapsulating such
a concern using sequential AOP languages presents limitations
and requires preparation of the base code (harming
encapsulation and separation of concerns) [8]. To avoid these
problems the AWED aspect system (“Aspects with Explicit
Distribution”) [9,10] provides explicit support for distribution. In
the context of the toll system, AWED allows to modularize the
code for distribution of arbitrary sets of pipeline segments and
the code for communication between them in one aspect.

4. IMPLEMENTATION

We now present how we implemented the two crosscutting
concerns using AO techniques.

4.1. Data Passing Concern

In the original OO design the functionality for checking data
types and the position up to where they are already processed is
implemented in each filter. In our AO-refactored version, two
aspects are required (for each interface) to extract the pipes logic
from the filters, thus only the business logic remains in the
filters.

To accomplish the extraction of the pipe logic, both interfaces
displayed in figure 3 have to be adapted.

<<interface>> <<interface>>
JourneyFilter ChargingRecordFilter

void processJourney (Journey)

void runChargingRecordProcessor
void runJourneyProcessor (int, ChargingRecord)

(int, ChargingRecord)

Figure 3: Filter interface using aspects

While processJourney is used as a hook, the business logic
of classes implementing the interfaces is coded in

runJourneyProcessor method and
runChargingRecordProcessor. Note that the
ChargingRecord method in the JourneyFilter has a
parameter of type ChargingRecord. Such parameter is used
to allow delegation of creation of an object of type
ChargingRecord to the aspect. Thus the method signature
allows the aspect to communicate with the base program in a
more flexible way.

Before the business logic of each filter being executed the
aspects handle the non-functional requirements, e.g. like getting
the last processed position. After execution of the business logic
the same aspect delegates the data to the next neighbor. Filters
whose methods should not be captured by the aspect have been
labelled with the annotation @Exclude. The reason is that the
logic of some filters differ comparison to the other, like the in
memory database. Although the application still would work
correctly without excluding them, keeping track of processed
positions and testing for “null” references are not necessary and
decrease the performance.

The code shown below in figure 4 is the source code of the
“Road Recognition” filter in the OO implementation. There the
non-functional code for the filter pattern implementation is
entangled with the functional code of the filter. Figure 5 shows
the same class once the application has been refactored using
aspects. Note that business logic code is present only in the filter
implementation.

01 public class RoadRecognitionFilter implements JourneyFilter{

02 // ...

03 public RoadRecognitionFilter (double tolerance, ChargingRecordFilter nextFilter) {
04 this.tolerance = tolerance;

05 this.nextFilter = nextFilter;

06 }

08 // businessLogic

09 public void identifyRoad (int lastProcessedPosition, Journey journey) {
10 // code of the businesslogic

11}

13 // non-functional requirements

14 public void processJourney (Journey journey) {
15 //null testing

16 // get last processed journey

17 // call identifyRoad(..)

18 // pass data to the next filter

19 }

20 }

Figure 4: Road recognition filter implementation in the OO
solution

01 public class RoadRecognitionFilter implements JourneyFilter{

02 /...

03 public RoadRecognitionFilter (double tolerance, ChargingRecordFilter nextFilter) {
04 this.tolerance = tolerance;

05 }

07 // businessLogic

08 public void identifyRoad (int lastProcessedPosition, Journey journey) {
09 // code of the businesslogic

10 }

12 // non-functional requirements
13 public void processJourney (Journey journey) {}

Figure 5: Road Recognition Filter after extracting the aspect

01 public aspect JourneyFilterAspect pertarget(execution JourneyFilter+.new(..))){
02 int lastProcessedPosition = 0;

03

04 pointcut getSuccessor(ChargingRecordProcessor nextFilter) :

05 execution(*.new(..)) && args(..,nextFilter) &&this(JourneyProcessor);
06

07 pointcut preparationForProcessing(Journey journey, JourneyProcessor
currentFilter) :

08 execution (public void JourneyProcessor.processJourney(Journey))
09 && args(journey)

10 && target(currentFilter)

11 && lexecution (@Exclude * *(..);

13 after(ChargingRecordProcessor nextFilter) : getSuccessor(nextFilter){
14 // get reference of successor;

15}

16

17 void around (Journey journey, JourneyProcessor currentFilter) :

18 preparationForProcessing(journey, currentFilter){

19 //testing of ,null” reference; get last processed state

20 currentFilter.runJourneyProcessor(lastProcessedPosition, record);
21 // pass data to the next filter

22}

Figure 6: JourneyFilterAspect

The pipe functionality can be extracted from the filters and
encapsulated into a single aspect as shown in figure 6. Because
the aspect is declared as pertarget (line 1), an instance of the
aspect exists for each filter which is implementing the interface
JourneyFilter. Lines 4 to 5 define the pointcut to capture
the reference of the next filter. The around advice of the
pointcut preparationForProcessing (lines 7 to 11)
prepares the filter to execute his business logic, i.e. testing for
“null” reference and getting the last processed. After executing
the business logic (line 20) the data will be passed to the next
filter.

The benefit of this aspect is encapsulation of the same
functionality that is applied in several places, thus improving
maintainability and the correction properties of the code.

4.2. Distribution Concern

Evolution of the charge calculation pipeline into a distributed
pipeline can be achieved using AWED’s remote pointcuts,
distributed advices and group support. The basic idea is that
AWED aspects include a declarative description of the
distributed partitioning at specific points (i.e., method
invocations) of the pipeline.

Figure 7 shows an aspect implementing pipeline distribution
using AWED. It implements the distributed partitioning of the
calculation pipeline after journey(s) have been gathered. Lines 2
to 5 present a pointcut definition that matches all the calls to the
method receiveJourneys (in the class
ec.noe.tollsystem.etbo.Communication) that are
executed in a host that belongs to the group OBUs (through use
of the term host ("OBUs") in the pointcut). The pointcut
definition also restricts the execution of the advice to the group
ETBOs (by use of the term on ("ETBOs")).

Note that the above aspect represents a general aspect for
partitioning, the names of the groups are just selected for
understandability in the context of the example. But they
represent two groups of host, one where the call originated and
the second where the method is executed. The on construct can

be extended with a selection policy, e.g., to implement high
availability cluster support.

01 aspect DistributionAsp{
02 pointcut partitioningMethod():
03 call(* etbo.Communication.receiveJourneys(..))

04 && host("OBUS")
05 && on("ETBOS");
06

07 around(): partitioningMethod(){

08 System.out.printin("Remote execution");

09 LocalRegistry.getinstance().getCom().receiveJourneys(
10 (List) thisJoinPoint.getArgumentsArray()[0]);

11 return new Object();}

Figure 7: Distribution aspect using AWED.

Performance of our distributed system can be improved using an
asynchronous advice, i.e. annotating the around advice with
asyncex. This will return immediately after the distributed call a
future object in the base application. Thus booth the OBU and
the ETBO will run asynchronously and they will synchronize
only if the future object receives a request to return an actual
value.

Another important feature of distributed systems that can be
implemented easily with AWED is failure safety. Using groups
and a policy extension for the on pointcut. The expression
on (“ETBOs”, org.awed.policy.roundrobin), in
the pointcut definition, will tell the application to execute the
advice in the hosts bellowing to the ETBOs group, but it will
restrict the selection of the executing hosts by the round-robin
policy. Note that the system will support intermediately a cluster
deployment for the ETBO server.

To complete the AWED implementation a configuration aspect
is needed. The objective of such an aspect is to create the OBUs
and ETBOs groups. This is a specialized aspect that is highly
coupled with deployment decisions concerning the to-be-run
application. Such a configuration aspect is typically defined
based on configuration files, here we define it, for simplicity,
based on method invocations. Figure 8 shows the
implementation of the configuration aspect. The aspect basically
includes a host in an specific group depending of the invoked
method: one for the OBUs group and the other for the ETBOs
group. The advice is executed locally wherever the
corresponding method is called. Note that groups are created as
they are requested, no previous group creation is required.

S. EVALUATION OF OO vs AO

The toll system demonstrator currently consists of 40 classes and
7 aspects and is still under development to introduce
communication middleware adaptability.

The demonstrator was developed in several increments. For
every increment the additional functional and non functional
requirements first were designed and implemented using OOP
only with Java. The resulting system then was analyzed. In case
of weaknesses, e.g., complex designs necessary to accommodate
variability, we investigated alternative designs using AOP. These
designs were then finally implemented. The reason for this
proceeding was, that industrial systems most frequently are not
(yet) designed with aspects up front. AOP is employed for
modularizing development concerns, e.g. tracing. Only if there

are very clear benefits, AOP is also used for modularizing
domain specific concerns.

01 aspect AppConfigurator{

03 pointcut confAsClient():
04 call(void OBU.init(..))

05 && host(localhost)
06 && on(localhost);
07

08 pointcut confAsServer():
09 call(void ETBO.init(..))
10 && host(localhost)

11 && on(localhost);

13 after():confAsClient(){
14 System.out.printin("Adding Host to group OBUs");
15 addGroup("OBUs");}

17 after():confAsServer(){
18 System.out.printin("Adding Host to group ETBOs");
19 addGroup("ETBOs");}

Figure 8: Configuration aspect using AWED.

5.1. Data Passing Concern

One of the goals for the design of the demonstrator was to reuse
as much code as possible for different variations in the product
family, in this example specifically for both charging variants. A
pure OO design would either be more complicated and less open
for optimizations or less efficient and intuitive. Changes, e.g.
introducing new filters, would require to make changes to code
in the Journey class, which is not obvious to a developer. With
the AO solution only the business logic of a new filter has to be
implemented, the aspect cares for pre- and post processing
transparently without change.

5.2. Distribution

Implementation of a distributed version of the tool system could
be achieved wusing existing distributed frameworks and
middleware, e.g., J2EE[12], CORBA[13], Spring[14], Internet
Communications Engine (ICE) [15] and several other research
and industrial approaches. These approaches each provide their
own model of distributed objects, specialized APIs and specific
mechanisms for RPC-based communication. However, none of
these approaches directly address the problem of distribution as
a crosscutting concern and even though some of them provide
AO mechanisms, e.g., Spring AOP, JBOSS AOP [16], these
mechanisms are not intended to interact directly with the
distribution model. Furthermore, these frameworks require the
preparation of base code in advance in order to support the
specific mechanisms provided, thus distinguishing between local
and distributed objects. Our experiments using AWED propose
an additional, and different, level of abstraction where
distributed concepts are considered explicitly in the aspect
language and the original model for objects is maintained
without affecting the original semantics of the application and
without need of advance preparation of code.

Another set of approaches that can be employed to attain
variability in the distribution implementation, is the use of
systems for automatic partitioning, e.g., Addistant[17], J-
Orchestra[18]. Those systems propose a technique for separated
specification of the distributed behavior. In general, at

configuration time, first a specific distributed schema for
runtime is defined, then the application is partitioned (e.g.,
modifying the bytecode of a Java application). These techniques
do address separation of crosscutting concerns but they do not
provide the expressive power harnessed by AWED aspects. They
just provide a declarative language for partitioning that is applied
statically at deployment time. They do not allow the resulting
system to be modified dynamically as AWED allows to do.

As mentioned before the main objective of our work was to
achieve flexible variability of the implementation. This objective
applies to the middleware layer in the distributed
implementation. Currently, the AWED implementation relies on
JGroups to manage group communication, the AWED model
can, however, relatively straightforwardly be extended to support
other distributed middleware.

6. Conclusion and future work

Software product lines attempt to reduce development time,
effort, cost and complexity by taking advantage of the
commonality within a portfolio of similar products. Therefore it
is quite important to acquire as much commonality as possible to
reduce the amount of variability to the required minimum but
this leads always to a trade-off between customizing and reuse

[7].

In this paper have we considered a particular product line for the
development of automated tolling systems. We have motivated
that the management of data flows in such a product line can
benefit from aspect-oriented programming and have shown how
to modularize two specific aspects, data passing and distribution
control, benefit from Aspect-Oriented Programming.

Concretely, we have shown how an OO base application has
been refactored using Aspect] for modularization of the data
passing concern and AWED, an aspect system providing explicit
distribution, for the distribution concern.

Future work will extend the demonstrator with new features to
see if aspects support the unanticipated evaluation of a product
line. Furthermore, we plan to develop middleware specific
optimization strategies to better support AO-specific features for
the adaptation of such product line architectures.

7. References

[1] Clements, P., and Northrop, L. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2001

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture — A System
of Patterns, John Wiley & Sons, 1996

[3] Description of the Industrial Demonstrator Toll System, C.
Schwanninger, I. Groher, M. Kircher, R. Chitchyan, A.
Sampaio, A. Rashid, AOSD Europe, 10.10.2005

[4] M. Fowler, Inversion of Control Containers and the
Dependency Injection pattern,
http://www.martinfowler.com/articles/injection.html (Date:
01/22/2007)

[5] R. Laddad, Aspect] in Action, Manning, 2003

[6] G. Kiczales, J. Lamping, A. Nemdhekar, C.Maeda, C. Lopes,
J. M. Loingtier, and J. Irwin. Aspect-oriented programming.
In Proceedings ECOOP’97, LNCS 1241, pages 220-242.
Springer, 1997

[7]1 K. Pohl, G. Bockle, F. van der Linden, Software Product
Line Engineering, Springer 2005

[8] S. Soares, E. Laureano, and P. Borba. Implementing
distribution and persistence aspects with Aspect]. In
Proceedings of OOPSLA’02, pages 174-190. ACM Press,
2002.

[9] L. D. Benavides Navarro, M. S“udholt, W. Vanderperren, B.
D. Fraine, and D. Suv’ee. Explicitly distributed AOP using
AWED. In AOSD ’06: Proceedings of the 5th international
conference on Aspect-oriented software development, pages
51-62, New York, NY, USA, 2006. ACM Press.

[10] L. D. Benavides Navarro, M. S"udholt, W. Vanderperren, B.
D. Verheecke. Modularization of distributed web services
using AWED. In Proceedings of On the Move to Meaningful
Internet Systems 2006: CooplS, DOA, GADA, and
ODBASE. 8" Int. Symposium on Distributed Objects and
Applications (DOA’06), pages 1449—1466, Montpellier,
France, 2006. Springer.

[11] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns. Elements of Reusable Object-Oriented Software.:
Elements of Reusable Object-Oriented Software, Addison-
Wesley 1995.

[12] J2EE Platform Specification 1.4.
http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf. Sun
Microsystems, 2003.

[13] CORBA. http://www.omg.org. The Object Management
Group (OMG).

[14] Spring Framework. http://www.springframework.org/ .

[15] The Internet Communications Engine.
http://www.zeroc.com/ice.html.

[16] JBOSS AOP. http://labs.jboss.com/portal/jbossaop.

[17] M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano. A bytecode
translator for distributed execution of legacy java software.
In European Conference on Object-Oriented Programming
2002 (ECOOP 2002), LNCS 2072, pages 236-255. Springer,
2001.

[18] E. Tilevich and Y. Smaragdakis. J-orchestra: Automatic java
application partitioning. In European Conference on Object-
Oriented Programming 2002 (ECOOP 2002). Springer,
2002.

