Invasive patterns: aspect-based adaptation of
distributed applications

Luis Daniel Benavides Navarro, Mario Siidholt,
Rémi Douence, Jean-Marc Menaud

OBASCO group, EMN-INRIA, LINA
Ecole des Mines de Nantes, Nantes, France
{1benavid, sudholt,douence ,menaud}@emn.fr

Abstract. Software patterns are frequently used as a software develop-
ment tool in sequential as well as (massively) parallel applications but
have been less successful in the context of distributed applications over
irregular communication topologies and heterogeneous synchronization
requirements. In this paper, we argue that lack of flexibility of pattern
definitions is a major impediment in distributed environments, especially
legacy contexts. We propose invasive patterns that support the modu-
lar definition and adaptation of distributed applications in the presence
of complex pattern-enabling conditions. Invasive patterns are concisely
defined in terms of two abstractions: aspects (in the AOP sense) for the
modularization of crosscutting enabling conditions, and groups of hosts
for the definition of patterns over complex topologies. Concretely, we
motivate the need for invasive patterns in the context of JBoss Cache,
introduce the concept of invasive patterns and briefly discuss correspond-
ing language support as well as an implementation.

1 Introduction

Software patterns have proven a versatile tool for program development, be it for
the development of application designs [6], architecture descriptions or program
implementations [4]. Design patterns have been very successful in the domain of
sequential, in particular object-oriented applications and for the derivation and
implementation of massively parallel algorithms [8, 3].

However, pattern-based approaches have been much less successful in the
domain of distributed programming, in particular if they are not defined over
regular communication topologies and subject to heterogeneous synchronization
constraints. In this paper, we argue that lack of flexibility of pattern definitions
is a major impediment in distributed environments, especially legacy contexts.
Frequently, applications of patterns in distributed contexts depend on informa-
tion on the execution state that is not directly available at the point where the
pattern is to be applied but has to be (invasively) accessed elsewhere. The under-
lying pattern-based architecture can only be made explicit using new (grey-box)
software composition techniques.

In this paper we propose a notion of invasive patterns for distributed pro-
gramming. Such patterns extend well-known regular computation and communi-
cation mechanisms by a built-in abstraction for access to non-local state that is

2 Luis Daniel Benavides Navarro et al.

necessary to enable invasive pattern applications in distributed applications. We
provide evidence that techniques from Aspect-Oriented Programming (AOP) [1]
can be harnessed to provide structured access to such non-local state, thus com-
plementing recent evidence that AOP is useful as a support technology for se-
quential pattern-based applications.

2 Motivation: patterns in JBoss Cache

As a motivating example for the problems in applying pattern in distributed
(legacy) applications, we consider the implementation of two phase commit
transactions in the current JBoss replicated cache framework [7].

““““““““

..........

123

Fig. 1. Transaction handling under replication in JBoss Cache

Transaction handling under replication in the current production version
(1.4) of JBoss Cache can be described in abstract terms as the architecture
shown in Fig. la, i.e., a pipeline pattern for transaction control (whose parts
are represented by the dashed circles) and farm patterns (dotted circles) for
replication actions.

More concretely, the transaction concern can be conceptually structured into
two parts, locking of the tree structure that JBoss Cache uses as its main caching
data structure and the two phase commit protocol between nodes. The transac-
tion is triggered by a specific method call represented by the first node in the
above figure. Then successive calls to the basic cache manipulation methods get,
remove and put and the information is stored for further replication in other
nodes. When a particular value is not found in the cache, the cache asks for the
value from a group of selected neighboring caches, its so-called buddies. This
interaction is shown by the three edges starting in the second node of the figure
and ending in three other nodes. Once the end of a transaction is reached, the
originating cache engages a two phase commit protocol. In such a protocol the
originating cache sends a prepare message with the transaction control informa-
tion (edges numbered 1 in the right part of the figure), followed by answers from
all buddies stating agreement or non agreement (edges numbered 2). Finally, the
originating cache sends a final commit or a rollback message depending on the
answers it received (edges numbered 3).

However, while this distributed algorithm is nicely represented using patterns
on an abstract level, these patterns are not made explicit in the implementation

Invasive patterns: aspect-based adaptation of distributed applications 3

/=== Piece of code in the invoke method of class DataGravitation
public Object invoke(MethodCall call) throws Throwable{

if (!isTransactionLifecycleMethod(m)){
if (isGravitationEnabled(getInvocationContext())){
elseq{
try{
switch (m.getMethodId())

case MethodDeclarations.prepareMethod_id:

case MethodDeclarations.optimisticPrepareMethod_id:
Object o = super.invoke(m);
doPrepare (getInvocationContext () .getGlobalTransaction());
return o;

case MethodDeclarations.rollbackMethod_id:
transactionMods.remove (

getInvocationContext () .getGlobalTransaction());

return super.invoke(m);

case MethodDeclarations.commitMethod_id:
doCommit (getInvocationContext () .getGlobalTransaction());
transactionMods.remove (

getInvocationContext () .getGlobalTransaction());
return super.invoke(m);
}} catch (Throwable throwable){ ...

Fig. 2. Tangling of two phase commit (2PC) in the DataGravitation replication class

of JBoss Cache due to the scattering and tangling of code these functionalities
are subject to (as has been analyzed for the sole replication functionality in [2]).

Figure 2 shows a piece of code of the invoke method in the DataGravitation
class that is responsible for buddy replication and shows some of the crosscutting
of transaction code JBoss Cache is subject to. This code presents a common id-
iom for transactions in the JBoss Cache implementation (see lines 9 to 24) that is
often tangled with other functionalities. In this case the class DataGravitation
was supposed to control the buddy replication concern and not the transactional
behavior, the latter being handled by a specific transaction filter in JBoss Cache.
This idiom is scattered over many places in the implementation. We have found
93 places where this switch statement is used and more than 28 places where it
is used in the context of replication operations implying a farm-like communi-
cation between caches The class DataGravitation, e.g., farms out data in its
method doCommit that is called in the code excerpt. Hence, distributed patterns
are triggered by complex enabling conditions in the code of JBoss Cache, which
impedes a pattern-centric implementation of the code.

3 Invasive patterns

In order to be able to make explicit distributed patterns in crosscutting contexts
as discussed above, two basic issues have to be addressed: (i) support for a set of
basic distributed communication and computed patterns that may be composed
with one another and (ii) support for structured invasive access to information
that is not present where the communication itself occurs.

4 Luis Daniel Benavides Navarro et al.

O O
o -0 O O o{o o}o
O

a) pipe b) farm c) gather

Fig. 3. Basic patterns

There is a very large choice of potential basic architectural patterns for dis-
tributed programming, e.g., publish-subscribe relationships [5], skeleton-based
approaches [3], or more recent work on patterns for grid-based systems [4]. Since
one of the main goals of this paper is to investigate how patterns can be com-
plemented by a notion of invasive access we consider here the three most basic
patterns pipe, farm and gather, see Fig. 3 (where circles denote calculations
that possibly take place on different hosts and edges denote communication).

In order to account for crosscutting enabling conditions for patterns, such as
accesses to the transactional context in JBoss Cache as described before, that is
not available at the point where the pattern itself is to be applied, we provide
a new notion of invasive patterns. Aspect-Oriented Programming [1] seems a
promising approach for the modularization of such patterns along with their
corresponding data accesses.

We substantiate this idea in this
paper by extending basic distributed
patterns with a notion of aspects to
modularize such crosscutting accesses.
The resulting notion of patterns is il-
lustrated in Fig. 4 for the case of the
gather pattern. On the three nodes
on the left hand side, different point-
cuts (represented by dashed lines) are
used to access information that is then
prepared by “source” advice (repre-
sented by the filled rectangles) to be

Fig. 4. Invasive gather pattern sent to the right hand side node. Once

all relevant data has been passed to
the right hand side node, a “target” advice is used to integrate a (or trigger
a new) computation involving that data on that node. Note that "target” and
”source” are realized in terms of groups of hosts: the application can refer directly
to those groups to abstract from the underlying topology in pattern definitions.

Target

/" Pointcuts (...) Groups
mm Advice

3.1 Implementation using AWED

We have implemented our pattern language by means of a transformation into
the AWED language for aspects with explicit distribution [2]. This transforma-
tion exploits AWED’s concepts of distributed aspects, remote pointcuts, remote

SRV VR

Invasive patterns: aspect-based adaptation of distributed applications 5

advice and dynamic groups of hosts to implement invasive patterns. The invasive
pattern shown in Fig 4, including the pattern groups sources and target as well
as source and target advice along with the necessary synchronization between
source and target, is expressed using AWED’s advanced language features, in
particular sequence pointcuts and a/synchronously-executed remote advice.

3.2 Invasive patterns for JBoss Cache

Invasive patterns allow to concisely express the pattern-based architecture for
transaction and replication handling in JBoss Cache as shown in Fig. 1. Con-
cretely, we have implemented support for transactions under replication with
pessimistic locking and the two phase commit protocol.

cacheGroup = {H1, H2, H3}
pipe([h], Atranmsac,
farm(
gather (
farm([h], Aprepare, sync cacheGroup-[h]),Apresp, [h]), Acommit, cacheGroup-[h]));

Fig. 5. Pattern-based definition of JBoss Cache two phase commit

The corresponding solution is formulated in terms of a nested composition
involving four patterns, see Fig. 5. First, we apply a pipeline pattern to encapsu-
late the transaction start. Once a commit is encountered, a farm pattern is used
to farm-out the prepare phase of the two phase commit protocol. Then, a gather
pattern is used to collect the answers from the involved buddy caches. Finally,
after all answers have been received we use again a farm pattern to distribute
the final decision of commit or rollback. The code in the figure defines this algo-
rithm for three replicated caches. Note that the implementation is parametrized
over a cache group of three hosts and the protocol can be triggered from any of
the three caches. Once the triggering host is fixed, the expression cacheGroup-[h]
represents the group of caches without the triggering one.

Invasive accesses required to make this solution work are provided by the
involved aspects Atransac, Aprepare, Apresp and Acommit. Figure 6 presents
the pattern-defining aspect Aprepare that realizes the prepare phase of the two
phase commit protocol. Occurrences of calls to the prepare method are matched
(see the pointcut definition on lines 3 to 5) and the target advice (see target ad-
vice definition, lines 9 to 14) executes a prepare phase followed by the invocation
of an agreement or disagreement method, depending of the answer of the buddy
caches. Furthermore, this aspect does not replicate if the transaction occurs in
the control flow of a prepare phase, i.e., replication occurs only in the top-level
call to the prepare phase not nested ones.

W N e

© N o o

11
12
13
14

6 Luis Daniel Benavides Navarro et al.

aspect Aprepare{
org.jboss.cache.TreeCache tc = CacheRegistry.getInstance().getCache();
around (DataStorage d, String txId):
call (x PrepareHelper.send(..)) && args(d,s) &&
!cflow(call(TransactionManager.prepare(..)));
// source advice
{proceed();}
// target advice
{ TransactionManager tm = TransactionManager.getInstance();
PrepareHelper ph = new PrepareHelper();
try {
tm.prepare(d, txId, tc);
ph.respAgree(txId);
} catch(Exception e){ph.respNotAgree(txId);}}}

Fig. 6. 2PC invasive aspect triggers the two phase commit protocol

4 Conclusion

In this paper we have introduced the notion of invasive patterns that allow bet-
ter modularization of crosscutting enabling conditions of traditional distributed
communication and computation patterns. In the context of JBoss Cache, we
have motivated that such crosscutting is a major impediment for the use of
patterns in real-world distributed applications and have given evidence how in-
vasive patterns help bridge the gap between pattern-based architectures and
implementations.

‘We have sketched language support for invasive patterns and briefly discussed
an implementation of this language based on AWED, a system for explicitly
distributed AOP. We are currently working on augmenting the expressive power
of invasive patterns, their optimized implementation and their formal properties.

References

1. M. Aksit, S. Clarke, T. Elrad, and R. E. Filman, editors. Aspect-Oriented Software
Development. Addison-Wesley Professional, September 2004.

2. L. D. Benavides Navarro, M. Stidholt, W. Vanderperren, B. De Fraine, and D. Suvée.
Explicitly distributed AOP using AWED. In Proceedings of the 5th ACM Int. Conf.
on Aspect-Oriented Software Development (AOSD’06). ACM Press, March 2006.

3. M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, 1989.

4. J. Easton et al. Patterns: Emerging Patterns for Enterprise Grids. IBM Redbooks.
IBM, June 2006. http://publib-b.boulder.ibm.com/abstracts/sg246 682.html.

5. P. Th. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces
of publish/subscribe. ACM Computing Surveys, 35(2):114-131, June 2003.

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, 1994.

7. JBoss Cache home page. http://labs. jboss.com/jbosscache.

8. S. Siu, M. De Simone, D. Goswami, and A. Singh. Design patterns for parallel
programming. In Proc. of Parallel and Distributed Processing Techniques and Ap-
plications (PDPTA), pages 1, 230-240. C.S.R.E.A. Press, August 1996.

