Stiffness matrix of manipulators with passive joints: computational aspects

Klimchik A., Pashkevich A., Caro S., and Chablat D.

Ecole des Mines de Nantes, 4 rue Alfred-Kastler, Nantes 44307, France
Institut de Recherches en Communications et en Cybernetique de Nantes, 1 rue de la Noe, 44321 Nantes, France


(Submmited to "IEEE Transactions on Robotics", 2011)

Web-Appendix: Extended Version

Previous page  |  Outline

 

References

  1. J. Salisbury, Active Stiffness Control of a Manipulator in Cartesian Coordinates, in: 19th IEEE Conference on Decision and Control, 1980, pp. 87–97.

  2. C. Gosselin, Stiffness mapping for parallel manipulators, IEEE Transactions on Robotics and Automation 6(3) (1990) 377–382.

  3. B.-J. Yi, R.A. Freeman, Geometric analysis antagonistic stiffness redundantly actuated parallel mechanism, Journal of Robotic Systems 10(5) (1993) 581-603.

  4. Griffis, M., Duffy, J.: Global stiffness modeling of a class of simple compliant couplings. Mechanism and Machine Theory 28(2), 207–224 (1993)

  5. Ciblak, N., Lipkin, H.: Asymmetric Cartesian stiffness for the modeling of compliant robotic systems. In: Proc. 23rd Biennial ASME Mechanisms Conference, Minneapolis, MN (1994)

  6. T. Pigoski, M. Griffis, J. Duffy, Stiffness mappings employing different frames of reference. Mechanism and Machine Theory 33(6) (1998) 825–838.

  7. Howard, S., Zefran, M., Kumar, V.: On the 6 x 6 Cartesian stiffness matrix for three-dimensional motions. Mechanism and Machine Theory 33(4), 389–408 (1998)

  8. S. Chen, I. Kao, Conservative Congruence Transformation for Joint and Cartesian Stiffness Matrices of Robotic Hands and Fingers, The International Journal of Robotics Research 19(9) (2000) 835–847

  9. M.M. Svinin, S. Nosoe, M. Uchiyama, On the stiffness and stability of Gough-Stewart platforms, in: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2001,  pp. 3268–3273

  10. C.M. Gosselin, D. Zhang, Stiffness analysis of parallel mechanisms using a lumped model, International Jornal of Robotics and Automation 17 (2002) 17-27.

  11. O. Company, F. Pierrot, J.-C. Fauroux, A Method for Modeling Analytical Stiffness of a Lower Mobility Parallel Manipulator, in: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2005, pp. 3232 - 3237

  12. G. Alici, B. Shirinzadeh, Enhanced stiffness modeling, identification and characterization for robot manipulators, Proceedings of IEEE Transactions on Robotics 21(4) (2005) 554–564.

  13. J. Kövecses, J. Angeles, The stiffness matrix in elastically articulated rigid-body systems, Multibody System Dynamics 18(2) (2007) 169–184.

  14. C. Quennouelle, C. M. Gosselin, Stiffness Matrix of Compliant Parallel Mechanisms, In: Springer Advances in Robot Kinematics: Analysis and Design, 2008, pp. 331-341.

  15. J.-P. Merlet, C. Gosselin, Parallel mechanisms and robots, In B. Siciliano, O. Khatib, (Eds.), Handbook of robotics, Springer, Berlin, 2008, pp. 269-285.

  16. J.-P. Merlet, Analysis of Wire Elasticity for Wire-driven Parallel Robots, In: Proceedings of the Second European Conference on Mechanism Science (EUCOMES 08), Springer, 2008, pp. 471-478

  17. T. Bonnemains, H. Chanel, C. Bouzgarrou and P. Ray, Definition of a new static model of parallel kinematic machines: highlighting of overconstraint influence, in: Proceedings of IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS), 2008, pp. 2416–2421.

  18. I. Tyapin, G. Hovland, Kinematic and elastostatic design optimization of the 3-DOF Gantry-Tau parallel kinamatic manipulator,Modelling, Identification and Control, 30(2) (2009) 39-56

  19. G. Piras, W.L. Cleghorn, J.K. Mills, Dynamic finite-element analysis of a planar high-speed, high-precision parallel manipulator with flexible links, Mechanism and Machine Theory 40 (7) (2005) 849–862.

  20. X. Hu, R. Wang, F. Wu, D. Jin, X. Jia, J. Zhang, F. Cai, Sh. Zheng, Finite Element Analysis of a Six-Component Force Sensor for the Trans-Femoral Prosthesis, In: V.G. Duffy (Ed.), Digital Human Modeling, Springer-Verlag, Berlin Heidelberg, 2007, pp. 633–639.

  21. K. Nagai, Zh. Liu, A Systematic Approach to Stiffness Analysis of Parallel Mechanisms and its Comparison with FEM, In: Proceeding of SICE Annual Conference, Kagawa University, Japan, 2007, pp 1087-1094. 

  22. B.C. Bouzgarrou, J.C. Fauroux, G. Gogu, Y. Heerah, Rigidity analysis of T3R1 parallel robot with uncoupled kinematics, In:  Proceedings Of  the35th International Symposium on Robotics, Paris, France, 2004.

  23. R. Rizk, J.C. Fauroux, M. Mumteanu, G. Gogu, A comparative stiffness analysis of a reconfigurable parallel machine with three or four degrees of mobility, Journal of Machine Engineering 6 (2) (2006) 45–55.

  24. D. Deblaise, X. Hernot, P.Maurine, A systematic analytical method for PKM stiffness matrix calculation, In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Orlando, Florida, 2006, pp. 4213-4219.

  25. H. C. Martin, Introduction to matrix methods of structural analysis, McGraw-Hill Education, 1966

  26. X. Ding and J. S. Dai, Compliance Analysis of Mechanisms with Spatial Continuous Compliance in the Context of Screw Theory and Lie Groups, Journal of Mechanical Engineering Science, 2010 ,224 (8), pp. 2493-2504.

  27. Dai, J. S. and X. Ding, Compliance Analysis of a Three-legged Rigidly-connected Compliant Platform Device, the ASME Transaction, Journal of Mechanical Design, 2006, 128(4):755-764.

  28. Selig, J. M. and X., Ding, Structure of The Spatial Stiffness Matrix, International Journal of Robotics & Automation, 2002, Vol.17, Issue 1, pp. 1-16.

  29. Sh.-F. Chen, I. Kao, Geometrical Approach to The Conservative Congruence Transformation (CCT) for Robotic Stiffness Control, In: Proceedings of the 2002 IEEE lntemational Conference on Robotics and Automation (ICRA) Washington, DC, 2002, pp 544-549.

  30. A. Pashkevich, D. Chablat, P. Wenger, Stiffness analysis of overconstrained parallel manipulators, Mechanism and Machine Theory 44 (2009) 966-982.

  31. M. Ceccarelli, G. Carbone, A stiffness analysis for CaPaMan (Cassino Parallel Manipulator), Mechanism and Machine Theory 37 (5) (2002) 427–439.

  32. O. Company, S. Krut, F. Pierrot, Modelling and preliminary design issues of a 4-axis parallel machine for heavy parts handling, Journal of Multibody Dynamics 216 (2002) 1–11.

  33. D. Zhang, F. Xi, C.M. Mechefske, S.Y.T. Lang, Analysis of parallel kinematic machine with kinetostatic modeling method, Robotics and Computer-Integrated Manufacturing 20 (2) (2004) 151–165.

  34. R. Vertechy, V. Parenti-Castelli, Static and stiffness analyses of a class of over-constrained parallel manipulators with legs of type US and UPS, in: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2007, pp. 561–567.

  35. Y. Li, Q. Xu, Stiffness analysis for a 3-PUU parallel kinematic machine, Mechanism and Machine Theory 43(2) (2008) 186-200.

  36. F. Majou, C. Gosselin, P. Wenger, D. Chablat, Parametric stiffness analysis of the Orthoglide, Mechanism and Machine Theory 42 (2007) 296-311.

  37. O. Company, S. Krut, F. Pierrot, Modelling and preliminary design issues of a 4-axis parallel machine for heavy parts handling, Journal of Multibody Dynamics 216 (2002) 1–11.

  38. A. Pashkevich, A. Klimchik, D. Chablat, Ph. Wenger, Accuracy Improvement for Stiffness Modeling of Parallel Manipulators, In: Proceedings of 42nd CIRP Conference on Manufacturing Systems, Grenoble, France, 2009.

  39. A. Taghaeipour, J. Angeles, L. Lessard, Online computation of the stiffness matrix in robotic structures using finite element analysis, report TR-CIM-10-05, Department of Mechanical engineering and centre for intelligent machines, McGill university, 2010

  40. S. Wolf, G. Hirzinger, A new variable stiffness design: Matching requirements of the next robot generation, 2008 IEEE International Conference on Robotics and Automation (2008), Pages: 1741-1746
  41. B. Vanderborght, B. Verrelst, R. Van Ham, M. Van Damme, P. Beyl and D. Lefeber, Development of a compliance controller to reduce energy consumption for bipedal robots, Volume 24, Number 4, 419-434, DOI: 10.1007/s10514-008-9088-5

  42. F. Gantmacher, Theory of matrices, AMS Chelsea publishing, 1959

  43. J. Chen, F. Lan, Instantaneous stiffness analysis and simulation for hexapod machines, Simulation Modelling Practice and Theory 16 (2008) 419–428

  44. C. Quennouelle, C. M.Gosselin, Instantaneous Kinemato-Static Model of Planar Compliant Parallel Mechanisms, In: Proceedings of ASME International Design Engineering Technical Conferences, Brooklyn, NY, USA, 2008.

  45. J.-P. Merlet, Parallel Robots, Kluwer Academic Publishers, Dordrecht, 2006.

  46. J. Angeles, Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms, Springer, New York, 2007.

  47. Y.W. Li, J.S. Wang, L.P. Wang (2002). Stiffness analysis of a Stewart platform-based parallel kinematic machine, In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Washington, US, 2002(4), pp. 3672–3677.

  48. B.S. El-Khasawneh, P.M. Ferreira, Computation of stiffness and stiffness bounds for parallel link manipulators, International Journal of Machine Tools and Manufacture 39 (2) (1999) 321–342.

  49. H.K. Arumugam, R.M. Voyles, S. Bapat, Stiffness analysis of a class of parallel mechanisms for micro-positioning applications, in: Proceedings of IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS), 2004, vol. 2, pp. 1826–1831.

  50. G. Strang, Introduction to Linear Algebra, Wellesley, MA, Wellesley Cambridge Press, 1998.

Previous page  |  Outline